Cheese production, consumption, imports, exports (in ‘000 tonnes) and retail price during 2018–2019.
\\n\\n
These books synthesize perspectives of renowned scientists from the world’s most prestigious institutions - from Fukushima Renewable Energy Institute in Japan to Stanford University in the United States, including Columbia University (US), University of Sidney (AU), University of Miami (USA), Cardiff University (UK), and many others.
\\n\\nThis collaboration embodied the true essence of Open Access by simplifying the approach to OA publishing for Academic editors and authors who contributed their research and allowed the new research to be made available free and open to anyone anywhere in the world.
\\n\\nTo celebrate the 50 books published, we have gathered them at one location - just one click away, so that you can easily browse the subjects of your interest, download the content directly, share it or read online.
\\n\\n\\n\\n\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
IntechOpen and Knowledge Unlatched formed a partnership to support researchers working in engineering sciences by enabling an easier approach to publishing Open Access content. Using the Knowledge Unlatched crowdfunding model to raise the publishing costs through libraries around the world, Open Access Publishing Fee (OAPF) was not required from the authors.
\n\nInitially, the partnership supported engineering research, but it soon grew to include physical and life sciences, attracting more researchers to the advantages of Open Access publishing.
\n\n\n\nThese books synthesize perspectives of renowned scientists from the world’s most prestigious institutions - from Fukushima Renewable Energy Institute in Japan to Stanford University in the United States, including Columbia University (US), University of Sidney (AU), University of Miami (USA), Cardiff University (UK), and many others.
\n\nThis collaboration embodied the true essence of Open Access by simplifying the approach to OA publishing for Academic editors and authors who contributed their research and allowed the new research to be made available free and open to anyone anywhere in the world.
\n\nTo celebrate the 50 books published, we have gathered them at one location - just one click away, so that you can easily browse the subjects of your interest, download the content directly, share it or read online.
\n\n\n\n\n'}],latestNews:[{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"},{slug:"intechopen-identified-as-one-of-the-most-significant-contributor-to-oa-book-growth-in-doab-20210809",title:"IntechOpen Identified as One of the Most Significant Contributors to OA Book Growth in DOAB"}]},book:{item:{type:"book",id:"8430",leadTitle:null,fullTitle:"Neurodevelopment and Neurodevelopmental Disorder",title:"Neurodevelopment and Neurodevelopmental Disorder",subtitle:null,reviewType:"peer-reviewed",abstract:"Nowadays, neurodevelopmental disorders comprise a large proportion of mental health diagnoses. These disorders, according to the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, include intellectual disabilities, communication disorders, autism spectrum disorders, attention deficit hyperactivity disorders, specific learning disorders, and motor disorders. Current research is pointing in the direction of schizophrenia, bipolar disorders, and other disorders being included in the category of neurodevelopmental disorders as well. There is a great deal of overlap among these disorders and they are best understood in a dimensional fashion. This book sets out the future of psychiatry in relation to these disorders and what is basically a new understanding of psychiatry in recent decades. Chapters cover topics such as early recognition of schizophrenia, epilepsy, and the genetics of ataxia telangiectasia. Also included is an examination of the complex issue of systems biology and neurodevelopment.",isbn:"978-1-78923-826-6",printIsbn:"978-1-78923-825-9",pdfIsbn:"978-1-78984-371-2",doi:"10.5772/intechopen.78797",price:119,priceEur:129,priceUsd:155,slug:"neurodevelopment-and-neurodevelopmental-disorder",numberOfPages:166,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"696c96d038de473216e48b199613c111",bookSignature:"Michael Fitzgerald",publishedDate:"November 27th 2019",coverURL:"https://cdn.intechopen.com/books/images_new/8430.jpg",numberOfDownloads:7149,numberOfWosCitations:0,numberOfCrossrefCitations:5,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:5,numberOfDimensionsCitationsByBook:0,hasAltmetrics:1,numberOfTotalCitations:10,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 3rd 2018",dateEndSecondStepPublish:"October 18th 2018",dateEndThirdStepPublish:"December 17th 2018",dateEndFourthStepPublish:"March 7th 2019",dateEndFifthStepPublish:"May 6th 2019",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"205005",title:"Dr.",name:"Michael",middleName:null,surname:"Fitzgerald",slug:"michael-fitzgerald",fullName:"Michael Fitzgerald",profilePictureURL:"https://mts.intechopen.com/storage/users/205005/images/system/205005.jpg",biography:"Professor Michael Fitzgerald was the first Professor of Child and Adolescent Psychiatry in Ireland, specialising in autism spectrum disorders (ASDs). He has diagnosed more than 5000 persons with ASDs. He has written many peer-reviewed publications and authored, co-authored and co-edited thirty-four books, some of which have been translated into Japanese, Dutch, and Polish. Professor Simon Baron-Cohen described one of Professor Fitzgerald’s books on autism as, ̔The best book on autism̕, and described him as an ̔exceptional scholar̕. He has lectured extensively throughout the world, including at The Royal Society/British Academy and the British Library in London. He was the overall winner of the ̔Excellence in Psychiatry̕ Award in 2017 and was nominated as one of the top four psychiatrists by Hospital Professional News Ireland. Professor Fitzgerald recently retired to spend more time in Brussels and continues to write on autism.",institutionString:"Independant Researcher",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"4",institution:{name:"Trinity College Dublin",institutionURL:null,country:{name:"Ireland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1056",title:"Neurology",slug:"neurology"}],chapters:[{id:"69354",title:"The Future of Psychiatry and Neurodevelopmental Disorders: A Paradigm Shift",doi:"10.5772/intechopen.88540",slug:"the-future-of-psychiatry-and-neurodevelopmental-disorders-a-paradigm-shift",totalDownloads:967,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:1,abstract:"A paradigm shift is now taking place in psychiatry with the emphasis on neurodevelopmental disorders with a neurobiologic emphasis and early onset including autism, ADHD, learning disability, schizophrenia and bipolar disorder. This paradigm superseded the attachment paradigm of the second half of the twentieth century with so many misguided theories such as, “blaming the mother”—the so-called refrigerated mother and the schizophrenogenic mother. The new paradigm allows more focused treatment interventions.",signatures:"Michael Fitzgerald",downloadPdfUrl:"/chapter/pdf-download/69354",previewPdfUrl:"/chapter/pdf-preview/69354",authors:[{id:"191313",title:"Dr.",name:"Michael",surname:"Fitzgerald",slug:"michael-fitzgerald",fullName:"Michael Fitzgerald"}],corrections:null},{id:"66247",title:"Autism: A Neurodevelopmental Disorder and a Stratum for Comorbidities",doi:"10.5772/intechopen.82496",slug:"autism-a-neurodevelopmental-disorder-and-a-stratum-for-comorbidities",totalDownloads:1022,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:1,abstract:"Autism is a neurodevelopmental disorder which is more common in males than females. It is characterized by social communication disorders and restricted repetitive behaviors. There is wide heterogeneity in its etiology, clinical presentations, management and consequently prognosis. Although the etiology of autism remains unclear, the most currently proven theory is that it is a complex neurodevelopmental disorder that displays “brain network abnormalities”. fMRI studies have shown decreased brain connectivity or functional synchronization between frontal and more posterior cortical regions. Dynamic brain activity through high resolution electroencephalograghy (EEG) has revealed local overconnectivity and long-range underconnectivity. This disrupted connectivity pattern would involve connectivity between hemispheres (corpus callosum), together with axonal and synaptic connectivity within each hemisphere. Inconsistent morphometric changes involving both gray and white matter structure also exist. Clinically, autism is associated with multiple comorbidities (somatic, neurologic and psychiatric); some of which are attention deficit hyperactivity disorder, dyspraxia, and sensory processing disorders.",signatures:"Marwa Mahmoud Saleh and Aya Adel",downloadPdfUrl:"/chapter/pdf-download/66247",previewPdfUrl:"/chapter/pdf-preview/66247",authors:[{id:"190980",title:"Prof.",name:"Marwa",surname:"Mahmoud Saleh",slug:"marwa-mahmoud-saleh",fullName:"Marwa Mahmoud Saleh"},{id:"195136",title:"Dr.",name:"Aya",surname:"Adel",slug:"aya-adel",fullName:"Aya Adel"}],corrections:null},{id:"68572",title:"Schizophrenia: Early Recognition and Prevention",doi:"10.5772/intechopen.88537",slug:"schizophrenia-early-recognition-and-prevention",totalDownloads:596,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:1,abstract:"Schizophrenia is a heterogenous disorder presenting as episodes of psychosis against a background of cognitive, social, and functional impairments. Schizophrenia, a multifaceted neuropsychiatric disorder, is affecting approximately 1% of the population worldwide. Its onset is the result of a complex interplay of genetic predisposition and environmental factors. The clinical staging model of psychotic disorders implies that early successful treatment may improve prognosis and prevent progression to more severe stages of disorder. So, prevention and early intervention of schizophrenia are correlated with the prodromal phase, especially with “at risk mental state” (ARMS) and the prediction of their transition to a full-blown psychotic disorder. The psychosis prodrome includes nonspecific signs and symptoms (such as depressed mood, anxiety, sleep disturbance, and deterioration in role functioning), “basic symptoms” (thought interference, disturbance of receptive language, and visual perception disturbance), attenuated or subthreshold psychotic symptoms, neurocognitive deficits, and neurobiological changes measured via magnetic resonance imaging (MRI). Increasing improvements in the identification of those truly at “high risk” for psychotic disorder have paved the way of early intervention strategies in this population and increased the possibility of minimizing distress and disability and delaying or even preventing the onset of an evident psychotic disorder. The treatment (antipsychotic medication, psychological and social interventions) for young people who meet ARMS criteria should not only focus on the symptoms that constitute the ARMS criteria but also address the broader range of difficulties with which the young person might present. There are some ethical issues to consider when selecting specific treatment options, and the potential risks of treatment have to be balanced against the potential benefits.",signatures:"Delia Marina Podea, Romina Teodora Moldovan and Laura Cristina Popa",downloadPdfUrl:"/chapter/pdf-download/68572",previewPdfUrl:"/chapter/pdf-preview/68572",authors:[{id:"30327",title:"Prof.",name:"Delia",surname:"Podea",slug:"delia-podea",fullName:"Delia Podea"},{id:"287092",title:"Dr.",name:"Romina-Teodora",surname:"Moldovan",slug:"romina-teodora-moldovan",fullName:"Romina-Teodora Moldovan"},{id:"287093",title:"Dr.",name:"Laura Cristina",surname:"Popa",slug:"laura-cristina-popa",fullName:"Laura Cristina Popa"}],corrections:null},{id:"65257",title:"Epilepsy and Cerebral Palsy",doi:"10.5772/intechopen.82804",slug:"epilepsy-and-cerebral-palsy",totalDownloads:1131,totalCrossrefCites:3,totalDimensionsCites:3,hasAltmetrics:0,abstract:"Abnormalities of muscle tone, movement, and motor skills are the hallmark of cerebral palsy (CP) which results from injury to the developing brain. Clinically, the syndrome evolves over time and may only be apparent after 3–5 years of age, although suggestive signs and symptoms may be present at an earlier age. Epilepsy is common in CP and occurs in about 30% of patients. Generally, the onset is within the first 2 years of life. Epilepsy is commonly observed in children with spastic hemiplegia, followed by quadriplegia and diplegia. Significant risk factors for the development of epilepsy in patients with CP are family history, neonatal seizure, structural abnormalities, low Apgar scores, and mental retardation. Focal to bilateral tonic-clonic seizures are the most prominent seizure types, followed by focal aware or impaired awareness seizures, while infantile spasms and myoclonic jerks are seen in 25% of cases. Mental retardation is a predisposing factor for early onset of seizures and more severe epilepsy. The overall outcome of seizures in children with CP is generally poor, requiring prolonged course of antiepileptic medication, usually polytherapy with higher incidence of refractory seizures, side effects, comorbidities, and hospital admissions for drug-resistant seizures or status epilepticus.",signatures:"Boulenouar Mesraoua, Musab Ali, Dirk Deleu, Hassan Al Hail, Gayane Melikyan, Naim Haddad, Osama Alalamy, Covanis Athanasios and Ali A. Asadi-Pooya",downloadPdfUrl:"/chapter/pdf-download/65257",previewPdfUrl:"/chapter/pdf-preview/65257",authors:[{id:"94911",title:"Dr.",name:"Boulenouar",surname:"Mesraoua",slug:"boulenouar-mesraoua",fullName:"Boulenouar Mesraoua"},{id:"272600",title:"Prof.",name:"Dirk",surname:"Deleu",slug:"dirk-deleu",fullName:"Dirk Deleu"},{id:"272602",title:"Dr.",name:"Hassan",surname:"Al Hail",slug:"hassan-al-hail",fullName:"Hassan Al Hail"},{id:"272603",title:"Prof.",name:"Naim",surname:"Haddad",slug:"naim-haddad",fullName:"Naim Haddad"},{id:"272604",title:"Dr.",name:"Gayane",surname:"Melykian",slug:"gayane-melykian",fullName:"Gayane Melykian"},{id:"272607",title:"Prof.",name:"Ali",surname:"A. Asadi-Pooya,",slug:"ali-a.-asadi-pooya",fullName:"Ali A. Asadi-Pooya,"},{id:"272608",title:"Dr.",name:"Musab",surname:"Ali",slug:"musab-ali",fullName:"Musab Ali"},{id:"282429",title:"Prof.",name:"Covanis",surname:"Athanasios",slug:"covanis-athanasios",fullName:"Covanis Athanasios"}],corrections:null},{id:"66424",title:"The Role of the DNA Damage Response in Ataxia-Telangiectasia Syndrome",doi:"10.5772/intechopen.84902",slug:"the-role-of-the-dna-damage-response-in-ataxia-telangiectasia-syndrome",totalDownloads:791,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"The DNA damage response (DDR) is a concerted response involving a myriad of pathways that cells elicit in the presence of DNA injuries. Patients bearing mutations in DDR genes have an increased cancer incidence derived from their diminished ability to respond to DNA damage, and the consequent increase in mutations. Intriguingly, mutations in ATM, the chief DDR regulator, can cause ataxia telangiectasia, a neurodegenerative disorder characterized by progressive loss of movement coordination, weak immune system, and increased cancer risk. The relationship between ATM and neural system development and degeneration remains to be fully elucidated and will be discussed in this chapter.",signatures:"Albert Ribes-Zamora",downloadPdfUrl:"/chapter/pdf-download/66424",previewPdfUrl:"/chapter/pdf-preview/66424",authors:[{id:"157196",title:"Ph.D.",name:"Albert",surname:"Ribes-Zamora",slug:"albert-ribes-zamora",fullName:"Albert Ribes-Zamora"}],corrections:null},{id:"65561",title:"The Neurobiological Development of Reading Fluency",doi:"10.5772/intechopen.82806",slug:"the-neurobiological-development-of-reading-fluency",totalDownloads:871,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"This chapter offers an extensive review of current and foundational research literature on the neurodevelopment of dyslexia and reading fluency worldwide. The impact of different languages and their orthographies on the acquisition of phonological analysis and orthographical features by beginning readers is explored. Contributions from the Psycholinguistic Grain Size Theory and new assessments, i.e. rapid automatized naming, have focused and advanced the understanding of slow phonological and visual processing skills. Recently, the development of new definitions of fluency has led to a proposed continuum of automatized decoding and processing skills required for students of English. Computer technology has enhanced the use of visual hemisphere-specific stimulation to affect the neurodevelopment of efficient word retrieval pathways and to increase reading speed. Processes for subtyping students based on reading behaviors and then stimulating a particular hemisphere of the brain with the fast presentation of words and phrases have been found to change levels of activation in key brain locations and increase the fluent processing of connected text. Newer technologies such as diffusion tensor imaging, while somewhat suspect, may provide the evidence that ultimately will document the changes in communication between regions of interest regulating the automaticity of brain functions in reading.",signatures:"Bobbie Jean Koen",downloadPdfUrl:"/chapter/pdf-download/65561",previewPdfUrl:"/chapter/pdf-preview/65561",authors:[{id:"274615",title:"Ph.D.",name:"Bobbie",surname:"Koen",slug:"bobbie-koen",fullName:"Bobbie Koen"}],corrections:null},{id:"65342",title:"INA Early Intervention for Babies at Risk",doi:"10.5772/intechopen.83610",slug:"ina-early-intervention-for-babies-at-risk",totalDownloads:953,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Brain and nervous system development are experience dependent. Indeed, the sequence of development is laid out genetically, but early environmental events are major contributors to the system’s development and optimal functioning. Various fetal injuries and birth trauma make babies vulnerable to developmental problems: cerebral palsy, seizures, abnormal muscle tone, delayed developmental milestones, sensory integration, and more. Our goal in the study presented here was to improve the neurodevelopmental track of babies at risk using Infant Neural Aquatic. Parent and baby dyads who met initial criteria were recruited for a 5–6 months intervention period through an open invitation, followed by a conversation and signing informed consent. In the beginning and end of intervention period, participants completed questionnaires, and developmental features of the babies were assessed using analysis of neuro-motor and vocal characteristics. Significant neurodevelopmental delta between values at the end and beginning of intervention period, comparing intervention and control, is described, and the strength of INA specific intervention tool is analyzed.",signatures:"Hagit Friedman, Marina Soloveichick, Amir Kushnir, Chava Kasher, Caroline Barmatz and Omer Bar-Yosef",downloadPdfUrl:"/chapter/pdf-download/65342",previewPdfUrl:"/chapter/pdf-preview/65342",authors:[{id:"206485",title:"Dr.",name:"Hagit",surname:"Friedman",slug:"hagit-friedman",fullName:"Hagit Friedman"},{id:"217799",title:"Dr.",name:"Omer",surname:"Bar-Yosef",slug:"omer-bar-yosef",fullName:"Omer Bar-Yosef"},{id:"282588",title:"Dr.",name:"Marina",surname:"Soloveichick",slug:"marina-soloveichick",fullName:"Marina Soloveichick"},{id:"282589",title:"Dr.",name:"Amir",surname:"Kushnir",slug:"amir-kushnir",fullName:"Amir Kushnir"},{id:"282590",title:"MSc.",name:"Hava",surname:"Kasher",slug:"hava-kasher",fullName:"Hava Kasher"},{id:"282592",title:"MSc.",name:"Caroline",surname:"Barmatz",slug:"caroline-barmatz",fullName:"Caroline Barmatz"}],corrections:null},{id:"66030",title:"Systems Biology Perspectives for Studying Neurodevelopmental Events",doi:"10.5772/intechopen.85072",slug:"systems-biology-perspectives-for-studying-neurodevelopmental-events",totalDownloads:819,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Brain development follows a complex process orchestrated by diverse molecular and cellular events for which a perturbation can cause pathologies. In fact, multiple neuronal cell fate decisions driven by complex gene regulatory programs are involved in neurogenesis and neurodevelopment, and their characterization are part of the current challenges on neurobiology. In this chapter, we provide an overview of the various genomic strategies in use to explore the spatiotemporally defined gene regulatory wires implicated in brain development. Finally, we will discuss the intake of these approaches for understanding the multifactorial events implicated in neurodevelopment and the future requirements for further expanding our understanding of the brain.",signatures:"Elodie Mathieux and Marco Antonio Mendoza-Parra",downloadPdfUrl:"/chapter/pdf-download/66030",previewPdfUrl:"/chapter/pdf-preview/66030",authors:[{id:"279634",title:"Ph.D.",name:"Marco Antonio",surname:"Mendoza Parra",slug:"marco-antonio-mendoza-parra",fullName:"Marco Antonio Mendoza Parra"},{id:"290795",title:"Dr.",name:"Elodie",surname:"Mathieux",slug:"elodie-mathieux",fullName:"Elodie Mathieux"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:{id:"12",series:{id:"10",title:"Physiology",issn:"2631-8261",editor:{id:"35854",title:"Prof.",name:"Tomasz",middleName:null,surname:"Brzozowski",slug:"tomasz-brzozowski",fullName:"Tomasz Brzozowski",profilePictureURL:"https://mts.intechopen.com/storage/users/35854/images/system/35854.jpg",biography:"Prof. Dr. Thomas Brzozowski works as a professor of Human Physiology and is currently Chairman at the Department of Physiology and is V-Dean of the Medical Faculty at Jagiellonian University Medical College, Cracow, Poland. His primary area of interest is physiology and pathophysiology of the gastrointestinal (GI) tract, with the major focus on the mechanism of GI mucosal defense, protection, and ulcer healing. He was a postdoctoral NIH fellow at the University of California and the Gastroenterology VA Medical Center, Irvine, Long Beach, CA, USA, and at the Gastroenterology Clinics Erlangen-Nuremberg and Munster in Germany. He has published 290 original articles in some of the most prestigious scientific journals and seven book chapters on the pathophysiology of the GI tract, gastroprotection, ulcer healing, drug therapy of peptic ulcers, hormonal regulation of the gut, and inflammatory bowel disease.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Jagiellonian University",institutionURL:null,country:{name:"Poland"}}}}},tags:null},relatedBooks:[{type:"book",id:"5498",title:"Autism",subtitle:"Paradigms, Recent Research and Clinical Applications",isOpenForSubmission:!1,hash:"7a4a04bc1ec60da290315a53de5043b8",slug:"autism-paradigms-recent-research-and-clinical-applications",bookSignature:"Michael Fitzgerald and Jane Yip",coverURL:"https://cdn.intechopen.com/books/images_new/5498.jpg",editedByType:"Edited by",editors:[{id:"205005",title:"Dr.",name:"Michael",surname:"Fitzgerald",slug:"michael-fitzgerald",fullName:"Michael Fitzgerald"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9634",title:"Autism Spectrum Disorder",subtitle:"Profile, Heterogeneity, Neurobiology and Intervention",isOpenForSubmission:!1,hash:"b9c36a2454fac16e70ba00562cb6f009",slug:"autism-spectrum-disorder-profile-heterogeneity-neurobiology-and-intervention",bookSignature:"Michael Fitzgerald",coverURL:"https://cdn.intechopen.com/books/images_new/9634.jpg",editedByType:"Edited by",editors:[{id:"205005",title:"Dr.",name:"Michael",surname:"Fitzgerald",slug:"michael-fitzgerald",fullName:"Michael Fitzgerald"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7835",title:"Autism Spectrum Disorders",subtitle:"Advances at the End of the Second Decade of the 21st Century",isOpenForSubmission:!1,hash:"2cfcf44e79e12e620251aaa9d08a4a3e",slug:"autism-spectrum-disorders-advances-at-the-end-of-the-second-decade-of-the-21st-century",bookSignature:"Michael Fitzgerald",coverURL:"https://cdn.intechopen.com/books/images_new/7835.jpg",editedByType:"Edited by",editors:[{id:"205005",title:"Dr.",name:"Michael",surname:"Fitzgerald",slug:"michael-fitzgerald",fullName:"Michael Fitzgerald"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1191",title:"Neuromuscular Disorders",subtitle:null,isOpenForSubmission:!1,hash:"6f634511340dcd5fe321e13e83a62531",slug:"neuromuscular-disorders",bookSignature:"Ashraf Zaher",coverURL:"https://cdn.intechopen.com/books/images_new/1191.jpg",editedByType:"Edited by",editors:[{id:"66392",title:"Prof.",name:"Ashraf",surname:"Zaher",slug:"ashraf-zaher",fullName:"Ashraf Zaher"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"745",title:"Neurodegenerative Diseases",subtitle:"Processes, Prevention, Protection and Monitoring",isOpenForSubmission:!1,hash:"3d5795dad33257368f0b7848c22d5dd4",slug:"neurodegenerative-diseases-processes-prevention-protection-and-monitoring",bookSignature:"Raymond Chuen-Chung Chang",coverURL:"https://cdn.intechopen.com/books/images_new/745.jpg",editedByType:"Edited by",editors:[{id:"33396",title:"Dr.",name:"Raymond Chuen-Chung",surname:"Chang",slug:"raymond-chuen-chung-chang",fullName:"Raymond Chuen-Chung Chang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3278",title:"Neurodegenerative Diseases",subtitle:null,isOpenForSubmission:!1,hash:"aa717c2801cf98db641d48414cef8ced",slug:"neurodegenerative-diseases",bookSignature:"Uday Kishore",coverURL:"https://cdn.intechopen.com/books/images_new/3278.jpg",editedByType:"Edited by",editors:[{id:"155691",title:"Dr.",name:"Uday",surname:"Kishore",slug:"uday-kishore",fullName:"Uday Kishore"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"434",title:"Alzheimer's Disease Pathogenesis",subtitle:"Core Concepts, Shifting Paradigms and Therapeutic Targets",isOpenForSubmission:!1,hash:"49f4c7dbf69e8a9eaf780e37f4aae1ab",slug:"alzheimer-s-disease-pathogenesis-core-concepts-shifting-paradigms-and-therapeutic-targets",bookSignature:"Suzanne De La Monte",coverURL:"https://cdn.intechopen.com/books/images_new/434.jpg",editedByType:"Edited by",editors:[{id:"29111",title:"Dr.",name:"Suzanne",surname:"De La Monte",slug:"suzanne-de-la-monte",fullName:"Suzanne De La Monte"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3296",title:"Understanding Alzheimer's Disease",subtitle:null,isOpenForSubmission:!1,hash:"b040d696d429a2a6dc90cd236f160778",slug:"understanding-alzheimer-s-disease",bookSignature:"Inga Zerr",coverURL:"https://cdn.intechopen.com/books/images_new/3296.jpg",editedByType:"Edited by",editors:[{id:"26013",title:"Prof.",name:"Inga",surname:"Zerr",slug:"inga-zerr",fullName:"Inga Zerr"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3437",title:"Mood Disorders",subtitle:null,isOpenForSubmission:!1,hash:"62c54b70da87ce48e712c07601105311",slug:"mood-disorders",bookSignature:"Nese Kocabasoglu",coverURL:"https://cdn.intechopen.com/books/images_new/3437.jpg",editedByType:"Edited by",editors:[{id:"91417",title:"Prof.",name:"Nese",surname:"Kocabasoglu",slug:"nese-kocabasoglu",fullName:"Nese Kocabasoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1062",title:"Dystonia",subtitle:"The Many Facets",isOpenForSubmission:!1,hash:"81069e5ab5b7c4bb52cf7bd16d0c4cb2",slug:"dystonia-the-many-facets",bookSignature:"Raymond L. Rosales",coverURL:"https://cdn.intechopen.com/books/images_new/1062.jpg",editedByType:"Edited by",editors:[{id:"70147",title:"Prof.",name:"Raymond",surname:"Rosales",slug:"raymond-rosales",fullName:"Raymond Rosales"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"66062",slug:"corrigendum-to-pain-management-in-plastic-surgery",title:"Corrigendum to: Pain Management in Plastic Surgery",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/66062.pdf",downloadPdfUrl:"/chapter/pdf-download/66062",previewPdfUrl:"/chapter/pdf-preview/66062",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/66062",risUrl:"/chapter/ris/66062",chapter:{id:"62958",slug:"pain-management-in-plastic-surgery",signatures:"I Gusti Ngurah Mahaalit Aribawa, Made Wiryana, Tjokorda Gde\nAgung Senapathi and Pontisomaya Parami",dateSubmitted:"April 5th 2017",dateReviewed:"June 5th 2018",datePrePublished:"November 5th 2018",datePublished:"April 3rd 2019",book:{id:"6221",title:"Anesthesia Topics for Plastic and Reconstructive Surgery",subtitle:null,fullTitle:"Anesthesia Topics for Plastic and Reconstructive Surgery",slug:"anesthesia-topics-for-plastic-and-reconstructive-surgery",publishedDate:"April 3rd 2019",bookSignature:"Víctor M. Whizar-Lugo",coverURL:"https://cdn.intechopen.com/books/images_new/6221.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"169249",title:"Prof.",name:"Víctor M.",middleName:null,surname:"Whizar-Lugo",slug:"victor-m.-whizar-lugo",fullName:"Víctor M. Whizar-Lugo"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"208429",title:"M.D.",name:"I Gusti Ngurah",middleName:null,surname:"Mahaalit Aribawa",fullName:"I Gusti Ngurah Mahaalit Aribawa",slug:"i-gusti-ngurah-mahaalit-aribawa",email:"mahaalit@unud.ac.id",position:null,institution:{name:"Udayana University",institutionURL:null,country:{name:"Indonesia"}}},{id:"209749",title:"Dr.",name:"Tjokorda Gde Agung",middleName:null,surname:"Senapathi",fullName:"Tjokorda Gde Agung Senapathi",slug:"tjokorda-gde-agung-senapathi",email:"tjoksenapathi@unud.ac.id",position:null,institution:null},{id:"209750",title:"Mrs.",name:"Pontisomaya",middleName:null,surname:"Parami",fullName:"Pontisomaya Parami",slug:"pontisomaya-parami",email:"ponti@unud.ac.id",position:null,institution:null},{id:"209752",title:"Prof.",name:"Made",middleName:null,surname:"Wiryana",fullName:"Made Wiryana",slug:"made-wiryana",email:"wiryana@unud.ac.id",position:null,institution:null}]}},chapter:{id:"62958",slug:"pain-management-in-plastic-surgery",signatures:"I Gusti Ngurah Mahaalit Aribawa, Made Wiryana, Tjokorda Gde\nAgung Senapathi and Pontisomaya Parami",dateSubmitted:"April 5th 2017",dateReviewed:"June 5th 2018",datePrePublished:"November 5th 2018",datePublished:"April 3rd 2019",book:{id:"6221",title:"Anesthesia Topics for Plastic and Reconstructive Surgery",subtitle:null,fullTitle:"Anesthesia Topics for Plastic and Reconstructive Surgery",slug:"anesthesia-topics-for-plastic-and-reconstructive-surgery",publishedDate:"April 3rd 2019",bookSignature:"Víctor M. Whizar-Lugo",coverURL:"https://cdn.intechopen.com/books/images_new/6221.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"169249",title:"Prof.",name:"Víctor M.",middleName:null,surname:"Whizar-Lugo",slug:"victor-m.-whizar-lugo",fullName:"Víctor M. Whizar-Lugo"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"208429",title:"M.D.",name:"I Gusti Ngurah",middleName:null,surname:"Mahaalit Aribawa",fullName:"I Gusti Ngurah Mahaalit Aribawa",slug:"i-gusti-ngurah-mahaalit-aribawa",email:"mahaalit@unud.ac.id",position:null,institution:{name:"Udayana University",institutionURL:null,country:{name:"Indonesia"}}},{id:"209749",title:"Dr.",name:"Tjokorda Gde Agung",middleName:null,surname:"Senapathi",fullName:"Tjokorda Gde Agung Senapathi",slug:"tjokorda-gde-agung-senapathi",email:"tjoksenapathi@unud.ac.id",position:null,institution:null},{id:"209750",title:"Mrs.",name:"Pontisomaya",middleName:null,surname:"Parami",fullName:"Pontisomaya Parami",slug:"pontisomaya-parami",email:"ponti@unud.ac.id",position:null,institution:null},{id:"209752",title:"Prof.",name:"Made",middleName:null,surname:"Wiryana",fullName:"Made Wiryana",slug:"made-wiryana",email:"wiryana@unud.ac.id",position:null,institution:null}]},book:{id:"6221",title:"Anesthesia Topics for Plastic and Reconstructive Surgery",subtitle:null,fullTitle:"Anesthesia Topics for Plastic and Reconstructive Surgery",slug:"anesthesia-topics-for-plastic-and-reconstructive-surgery",publishedDate:"April 3rd 2019",bookSignature:"Víctor M. Whizar-Lugo",coverURL:"https://cdn.intechopen.com/books/images_new/6221.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"169249",title:"Prof.",name:"Víctor M.",middleName:null,surname:"Whizar-Lugo",slug:"victor-m.-whizar-lugo",fullName:"Víctor M. Whizar-Lugo"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"7847",leadTitle:null,title:"Medical Toxicology",subtitle:null,reviewType:"peer-reviewed",abstract:"Medical toxicology is a sub-branch of toxicology concerned with the diagnosis, management, and prevention of poisoning and other adverse effects of drugs, cosmetics, personal care products, occupational and environmental toxicants, and biological agents. Poisoning with drugs, herbs, venoms, and toxins is a significant global public health problem. Medical toxicologists are involved in the assessment and treatment of acute or chronic poisoning, substance abuse, adverse drug reactions, drug overdoses, envenomation, industrial accidents, and other chemical exposures. As such, there is a pressing need for safe and specific antidotes, as many antidotes currently in use have a relatively low margin of safety or therapeutic index. This book focuses on poisonings with drugs, venoms, toxins, interaction in clinics, antidotes, and forensics. It provides qualified scientific knowledge on different aspects of medical toxicology, drug and substance abuse, clinical interactions between drugs and herbs, antidotes, antidote networks, and forensic toxicology.",isbn:"978-1-83880-278-3",printIsbn:"978-1-83880-277-6",pdfIsbn:"978-1-83969-155-3",doi:"10.5772/intechopen.77665",price:139,priceEur:155,priceUsd:179,slug:"medical-toxicology",numberOfPages:348,isOpenForSubmission:!1,isSalesforceBook:!1,hash:"db9b65bea093de17a0855a1b27046247",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",publishedDate:"February 3rd 2021",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",keywords:null,numberOfDownloads:10950,numberOfWosCitations:2,numberOfCrossrefCitations:12,numberOfDimensionsCitations:23,numberOfTotalCitations:37,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 8th 2019",dateEndSecondStepPublish:"August 29th 2019",dateEndThirdStepPublish:"October 28th 2019",dateEndFourthStepPublish:"January 16th 2020",dateEndFifthStepPublish:"March 16th 2020",remainingDaysToSecondStep:"3 years",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:"Edited by",kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoğlu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoğlu",profilePictureURL:"https://mts.intechopen.com/storage/users/109978/images/system/109978.jpg",biography:"Pınar Erkekoğlu graduated from the Faculty of Pharmacy, Hacettepe University, Turkey, where she received her MSci and Ph.D. in Toxicology. She completed her Ph.D. studies at the University of Joseph Fourier, France, and the French Alternative Energies and Atomic Energy Commission/Institute for Nanosciences and Cryogenics/Nucleic Acid Lesions (CEA/INAC/LAN). She worked as a post-doc and visiting associate in the Biological Engineering Department, Massachusetts Institute of Technology (MIT), USA. She is currently a full professor and head of the Department of Toxicology, Hacettepe University, and a faculty staff/board member at the Hacettepe University Vaccine Institute. Her main interests are endocrine-disrupting chemicals, neurotoxic chemicals, and the toxic effects of vaccines. Dr. Erkekoğlu has published more than 180 papers and 15 book chapters. She has edited seven international books and served as the translation editor for three others. She has been a European Registered Toxicologist (ERT) since 2014.",institutionString:"Hacettepe University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"6",totalChapterViews:"0",totalEditedBooks:"7",institution:{name:"Hacettepe University",institutionURL:null,country:{name:"Turkey"}}}],coeditorOne:{id:"67724",title:"Dr.",name:"Tomohisa",middleName:null,surname:"Ogawa",slug:"tomohisa-ogawa",fullName:"Tomohisa Ogawa",profilePictureURL:"https://mts.intechopen.com/storage/users/67724/images/system/67724.JPG",biography:"Dr. Tomohisa Ogawa obtained a Ph.D. in Chemistry from Kyushu University, Fukuoka, Japan, in 1991. After graduating, he was a postdoctoral research fellow for the Japan Society for the Promotion of Science (JSPS) and an assistant professor at the Faculty of Science, Kyushu University. In 1997, he became an associate professor at the Faculty of Agricultural Science, Tohoku University, Sendai, Japan. From 2001 to 2020, he was an associate professor at the Graduate School of Life Sciences, Tohoku University. Since then, Dr. Ogawa has been a professor at the Graduate School of Agricultural Science at the same university. He is active in the research fields of applied biochemistry (protein engineering), molecular biology (molecular evolution, venomics), and structural biochemistry. He has published a number of various reviews and original papers in renowned journals.",institutionString:"Tohoku University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Tohoku University",institutionURL:null,country:{name:"Japan"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1208",title:"Medical Toxicology",slug:"medical-toxicology"}],chapters:[{id:"73141",title:"Introductory Chapter: Medical Toxicology",slug:"introductory-chapter-medical-toxicology",totalDownloads:434,totalCrossrefCites:1,authors:[{id:"109978",title:"Prof.",name:"Pınar",surname:"Erkekoğlu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoğlu"},{id:"329934",title:"Dr.",name:"Suna",surname:"Sabuncuoğlu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoğlu"}]},{id:"71695",title:"Venomics Study of Protobothrops flavoviridis Snake: How Venom Proteins Have Evolved and Diversified?",slug:"venomics-study-of-em-protobothrops-flavoviridis-em-snake-how-venom-proteins-have-evolved-and-diversi",totalDownloads:535,totalCrossrefCites:0,authors:[{id:"67724",title:"Dr.",name:"Tomohisa",surname:"Ogawa",slug:"tomohisa-ogawa",fullName:"Tomohisa Ogawa"},{id:"309836",title:"Dr.",name:"Hiroki",surname:"Shibata",slug:"hiroki-shibata",fullName:"Hiroki Shibata"}]},{id:"70678",title:"Snakebite Therapeutics Based on Endogenous Inhibitors from Vipers",slug:"snakebite-therapeutics-based-on-endogenous-inhibitors-from-vipers",totalDownloads:653,totalCrossrefCites:0,authors:[{id:"306349",title:"Ph.D.",name:"Narumi",surname:"Aoki-Shioi",slug:"narumi-aoki-shioi",fullName:"Narumi Aoki-Shioi"},{id:"311863",title:"Dr.",name:"Cassandra",surname:"M. Modahl",slug:"cassandra-m.-modahl",fullName:"Cassandra M. Modahl"}]},{id:"70828",title:"The Effects of Snake Venom (Bitis arietans) on Embryonic Development",slug:"the-effects-of-snake-venom-em-bitis-arietans-em-on-embryonic-development",totalDownloads:500,totalCrossrefCites:1,authors:[{id:"174872",title:"Dr.",name:"Eva",surname:"Petrovova",slug:"eva-petrovova",fullName:"Eva Petrovova"},{id:"310332",title:"Dr.",name:"Vladimir",surname:"Petrilla",slug:"vladimir-petrilla",fullName:"Vladimir Petrilla"},{id:"310333",title:"Dr.",name:"Lenka",surname:"Luptakova",slug:"lenka-luptakova",fullName:"Lenka Luptakova"},{id:"310334",title:"Dr.",name:"Charlotte",surname:"Peters",slug:"charlotte-peters",fullName:"Charlotte Peters"}]},{id:"73765",title:"Toxicosis of Snake, Scorpion, Honeybee, Spider, and Wasp Venoms: Part 1",slug:"toxicosis-of-snake-scorpion-honeybee-spider-and-wasp-venoms-part-1",totalDownloads:473,totalCrossrefCites:0,authors:[{id:"266889",title:"Associate Prof.",name:"Saganuwan",surname:"Alhaji Saganuwan",slug:"saganuwan-alhaji-saganuwan",fullName:"Saganuwan Alhaji Saganuwan"}]},{id:"74217",title:"Toxicosis of Snake, Scorpion, Honeybee, Spider, and Wasp Venoms: Part 2",slug:"toxicosis-of-snake-scorpion-honeybee-spider-and-wasp-venoms-part-2",totalDownloads:374,totalCrossrefCites:0,authors:[{id:"266889",title:"Associate Prof.",name:"Saganuwan",surname:"Alhaji Saganuwan",slug:"saganuwan-alhaji-saganuwan",fullName:"Saganuwan Alhaji Saganuwan"}]},{id:"70838",title:"Scorpion Toxins from Buthus martensii Karsch (BmK) as Potential Therapeutic Agents for Neurological Disorders: State of the Art and Beyond",slug:"scorpion-toxins-from-em-buthus-martensii-em-karsch-bmk-as-potential-therapeutic-agents-for-neurologi",totalDownloads:400,totalCrossrefCites:0,authors:[{id:"279620",title:"Associate Prof.",name:"Jie",surname:"Tao",slug:"jie-tao",fullName:"Jie Tao"},{id:"279632",title:"Dr.",name:"Yudan",surname:"Zhu",slug:"yudan-zhu",fullName:"Yudan Zhu"},{id:"279639",title:"Dr.",name:"Jiwei",surname:"Cheng",slug:"jiwei-cheng",fullName:"Jiwei Cheng"},{id:"306073",title:"Ms.",name:"Xiaoli",surname:"Wang",slug:"xiaoli-wang",fullName:"Xiaoli Wang"},{id:"306075",title:"Mr.",name:"Zhiping",surname:"Zhang",slug:"zhiping-zhang",fullName:"Zhiping Zhang"},{id:"306078",title:"Dr.",name:"Guoyi",surname:"Li",slug:"guoyi-li",fullName:"Guoyi Li"},{id:"310306",title:"Dr.",name:"Shuzhang",surname:"Zhang",slug:"shuzhang-zhang",fullName:"Shuzhang Zhang"},{id:"318704",title:"Dr.",name:"Mengyao",surname:"Sun",slug:"mengyao-sun",fullName:"Mengyao Sun"},{id:"318705",title:"Dr.",name:"Qian",surname:"Xiao",slug:"qian-xiao",fullName:"Qian Xiao"}]},{id:"68132",title:"Mechanisms of Cyanotoxin Toxicity—Carcinogenicity, Anticancer Potential, and Clinical Toxicology",slug:"mechanisms-of-cyanotoxin-toxicity-carcinogenicity-anticancer-potential-and-clinical-toxicology",totalDownloads:802,totalCrossrefCites:1,authors:[{id:"294616",title:"Prof.",name:"Diana Georgieva",surname:"Ivanova",slug:"diana-georgieva-ivanova",fullName:"Diana Georgieva Ivanova"},{id:"302964",title:"Ph.D.",name:"Deyana Georgieva",surname:"Vankova",slug:"deyana-georgieva-vankova",fullName:"Deyana Georgieva Vankova"},{id:"302969",title:"Dr.",name:"Milena Gincheva",surname:"Pasheva",slug:"milena-gincheva-pasheva",fullName:"Milena Gincheva Pasheva"},{id:"302970",title:"Dr.",name:"Yoana Dimitrova",surname:"Kiselova-Kaneva",slug:"yoana-dimitrova-kiselova-kaneva",fullName:"Yoana Dimitrova Kiselova-Kaneva"},{id:"302972",title:"Prof.",name:"Dobri Lazarov",surname:"Ivanov",slug:"dobri-lazarov-ivanov",fullName:"Dobri Lazarov Ivanov"}]},{id:"69625",title:"Effects of Atypical Neurotoxins on the Developing Fetal Brain",slug:"effects-of-atypical-neurotoxins-on-the-developing-fetal-brain",totalDownloads:631,totalCrossrefCites:0,authors:[{id:"306303",title:"Prof.",name:"Chia-Yi",surname:"Tseng",slug:"chia-yi-tseng",fullName:"Chia-Yi Tseng"}]},{id:"71290",title:"Toxicity Potential of Cyanogenic Glycosides in Edible Plants",slug:"toxicity-potential-of-cyanogenic-glycosides-in-edible-plants",totalDownloads:1045,totalCrossrefCites:3,authors:[{id:"298042",title:"Dr.",name:"Kumbukani",surname:"Nyirenda",slug:"kumbukani-nyirenda",fullName:"Kumbukani Nyirenda"}]},{id:"72825",title:"Intoxication by Harmel",slug:"intoxication-by-harmel",totalDownloads:323,totalCrossrefCites:0,authors:[{id:"314869",title:"Prof.",name:"Djafer",surname:"Rachid",slug:"djafer-rachid",fullName:"Djafer Rachid"}]},{id:"70207",title:"
Less attention has been paid to peat bog growth during the Holocene than to contemporary human impact on peat bogs (e.g. Bower 1961, Mallik et al. 1984, Evans 1989, Shaw et al. 1997, Bragg and Tallis 2001, Bindler 2006, Coggins et al. 2006). The research literature states that in order for peat bogs to grow, certain geomorphological, hydrographic, hydrogeological and climate-related conditions must be satisfied (Tołpa 1949, Maksimov 1965, Grosse-Brauckmann 1974, Lowe and Walker 1997, Tobolski 2000, Chairman 2002, Ilnicki 2002). Research studies have identified several types of peat bogs: limnogenous/river-fed, topogenous, soligenous and ombrogenous, all of which differ in terms of relief (Żurek & Tomaszewicz 1996, Tobolski 2000, Ilnicki 2002). In areas with precipitation barely exceeding evaporation, which includes mountain areas, peat bog development is determined by stable groundwater outflows that foster the continuous expansion of hydrogenic sites (Łajczak 2007, 2011). Groundwater outflows create wetlands that foster the development of low bogs. Once low bogs have formed, minerotrophic contact becomes less significant at the bog surface, which leads to oligotrophication and acidification. Both processes then lead to the development of a raised bog (Gore 1983, Tobolski 2000, Ilnicki 2002). The first researcher to note the difference between a low bog and a raised bog as well as their hydrological determinants was Senft (1862).
The greatest geomorphological differences between peat bogs can be observed in the mountains. Peat bogs can be found on ridges, slopes and valley floors (Bower 1961, Kaule and Göttlich 1976, Rawes 1983, Obidowicz 1985, Carling 1986, Rhodes and Stevenson 1997, Bragg and Tallis 2001, Dykes and Warburton 2007, Łajczak 2007, 2011, Obidowicz and Margielewski 2008). While raised bog relief and extent have not been covered explicitly and extensively in the research literature, certain aspects of bog geomorphology have been covered in paleogeographic research in bog areas and research on peat deposit structure. More papers have focused on historical and modern-day changes in bog relief in areas affected by human activity. What is more rarely encountered is advanced research on modern-day changes in raised bog relief.
Research on raised bog relief in Poland is actually a little more advanced than that in other parts of the world. This is true of northern Poland, which features a large number of bogs, and the Polish Carpathians, which feature just a few bogs. The most thoroughly investigated raised bogs in the Polish Carpathian Mountains are found in the Orawsko-Nowotarska Basin and in valleys in the Bieszczady Range (Fig. 1).
Location of the study areas in southern Poland.
While raised bogs in mountain areas have been the subject of research in a number of scientific disciplines, the evolution of raised bog geomorphology has not been adequately covered. Geomorphologists tend to focus on the difference between low bogs and raised bogs – especially those with a dome (e.g. Senft 1862, Gore 1983, Tobolski 2000, Ilnicki 2002). Other key areas of interest include raised bog relief with respect to the different varieties of bogs (ombrotrophic, soligenous, topogenous, river-fed) found across ridges, slopes and valley floors (e.g. Kaule and Göttlich 1976, Obidowicz 1985, Żurek and Tomaszewicz 1996, Tobolski 2000, Ilnicki 2002, Łajczak 2007, 2011, Obidowicz and Margielewski 2008). The following papers cover geomorphological bog classification systems for mountain areas: Früh and Schröter (1904), Sjörs (1948), Gams (1958), Barsiegan (1974), Kaule (1974), Kaule and Göttlich (1976), Ringler (1981), Obidowicz (1990), Łajczak (2007, 2011). Additional analysis of various aspects of geomorphological bog development can be found in: Bower (1961), Rawes (1983), Mallik et al. (1984), Evans (1989), Cooper and McCaan (1995), Rhodes and Stevenson (1997), Shaw et al. (1997), Bragg and Tallis (2001), Dykes and Warburton (2007), Łajczak (2007, 2011).
Four Holocene stages of raised bog development were identified for mountain areas (Łajczak 2005, 2007, 2011): (a) low bog growth, (b) peat dome growth, (c) human impact on raised bogs leading to complete deterioration, (d) revitalisation of remaining bog fragments. Each stage is shorter than the previous stage. A geomorphological analysis of peat bogs during each stage of development may be found in Łajczak (2005, 2007, 2011). Papers on human impact on peat bogs tend to focus on the geomorphological effects of peat extraction, drying and burning as well as the effect of grazing and erosion (e.g. Bower 1961, Rawes 1983, Mallik et al. 1984, Carling 1986, Evans 1989, Cooper and McCann 1995, Shaw et al. 1997, Rhodes and Stevenson 1997, Dykes and Warburton 2007, Łajczak 2007, 2011) but often omit a more detailed analysis of changes in peat bog relief. The issue of raised bog development across valley and basin floors in mountain areas has not been well investigated with respect to local relief and sources of water. In addition, the issue of changes in local relief and surface water drainage patterns resulting from peat dome growth has not been adequately investigated.
The best investigated peat bogs with respect to contemporary changes are those in Great Britain and Ireland, where a lot of attention has been paid to the decline of blanket bogs as a result of sheep grazing, peat burning, new drainage systems and to some extent peat extraction (Bower 1961, Mallik et al. 1984, Evans 1989, Shaw et al. 1997, Bragg and Tallis 2001). Papers on human-induced deterioration of peat bogs often focus on peat erosion and omit the issue of changing bog relief (Cooper and McCann 1995).
The most extensive research on peat bogs in the Polish Carpathians has focused on the Orawsko-Nowotarska Basin and the Bieszczady Range. The first area has been investigated since the early 19th century, while the second area since the 1950s. Until the 1980s, peat bog research focused only on bog paleogeography, peat properties and plant cover. The oldest carbon dated samples obtained from the bottom of peat domes range from about 2,000 to 11,000 BP (Ralska-Jasiewiczowa 1972, 1980, 1989, Obidowicz 1990, Haczewski et al. 1998). This indicates that the Holocene development of raised bogs in the two study areas was non-synchronous. Peat deposits vary in thickness (1.2 m to 3.6 m), which suggests they are of variable age. Peat domes also vary in size from 0.2 km to 6.0 km (Lipka 1999, Łajczak 2007). This is especially true in the Orawsko-Nowotarska Basin. The mean rate of vertical growth in raised bogs in the Polish Carpathians is estimated to be 0.4 to 0.6 mm a-1. This value range is close to that for other European mountain areas (0.3 to 0.7 mm a-1) (Żurek 1987). Low bogs developed first in the study area and filled in local depressions and then developed further into peat domes (Ralska-Jasiewiczowa 1972, 1980, 1989, Horawski et al. 1979, Wójcikiewicz 1979, Haczewski et al. 1998, Kukulak 1998, Lipka 1999, Łajczak 2006, 2007, 2009). Researchers began to address changes in bog relief in the Polish Carpathians in the last 20 years – especially with respect to Holocene evolution (Baumgart-Kotarba 1991-1992, Kukulak 1998, Haczewski et al. 1998, 2007) and human impact (Łajczak 2005, 2006, 2007, 2009, 2011).
The number of raised bogs in the Polish Carpathians is small compared to the northern lowlands of Poland featuring young Glacial relief (Żurek 1983, 1987, Dembek et al. 2000, Dembek and Piórkowski 2007). Most peat bogs in the Polish Carpathians are less than 1 hectare in area and only a few are larger than 100 hectares (Łajczak 2007, 2009, 2011). Polish Carpathian peat bogs are often found on ridges and in spring areas, moraine depressions as well as landslide depressions. However, the largest peat bogs in this region are found in the Orawsko-Nowotarska Basin and in the largest valleys in the Bieszczady Range (Fig. 1). Peat bogs occur at lower elevations in mountain areas atop local drainage divides (ombrogenous bogs) and across slopes (soligenous or hanging bogs). Topogenous and river-fed bogs are found at the lowest elevations (Kukulak 1998, Haczewski et al. 1998, 2007, Margielewski 2006, Dembek and Piórkowski 2007, Łajczak 2007, 2009, 2011, Obidowicz and Margielewski 2008).
The Orawsko-Nowotarska Basin has an area of 600 km2 and is the only intra-mountain basin in the Carpathian Mountains where raised bogs developed during the Holocene (Łajczak 2007, 2009). The Basin is located between a high mountain massif (Tatras) and the lower Beskidy Mountains and is tilted to the north. Peat bogs in the Basin developed across glaciofluvial fans and high Holocene terraces at elevations ranging from 590 m to 770 m. Bogs in the region are found between 5 m and 40 m over river channels. The mean peat thickness in domes exceeds 1 m and may reach 11 m. Raised bogs cover 5% of the Basin area. Low bogs cover 7% of the Basin area. The total peat bog area in the Basin may have reached 40% prior to human settlement in the Late Middle Ages. As settlers began to extract peat and dry peat areas, peat bogs began to shrink to a current 70 km2, which includes dome remnants, post-peat areas and low bogs (Łajczak 2007). The European Drainage Divide runs across the Basin from south to north, separating drainage basins of the Black Sea and the Baltic Sea. The southern and western part of the Basin still experiences upward tectonic shifts, while its remaining area is shifting downward (Vanko 1988, Zuchiewicz 2010).
The bottom of the Upper San Valley and the bottom of the Wołosatka Valley are located at an elevation range of 550 to 700 m and have a total area of 13 km2. The density of raised bogs in this region is much higher than that in the Orawsko-Nowotarska Basin. However, peat bogs in the Bieszczady Mountains are smaller and less deteriorated due to less peat extraction and less drying (Łajczak 2011). The remaining peat dome fragments and post-peat areas cover 4% of the valley floors in the study area and may be found on postglacial terraces and alluvial fans at heights at 5 to 8 m above river channels. Mean peat thickness in peat domes does not exceed 3 m. Today, the total area of peat domes, post-peat areas and adjacent low bogs does not exceed 1 km2 (Łajczak 2011).
The parent material of peat bogs in both study areas is a layer of poorly permeable clay about 2 m thick. The clay is located atop water-bearing gravel. The edge zone of virtually every raised bog is recharged by shallow groundwater outflows. Given that precipitation in the study areas barely exceeds evaporation during the vegetation season, minerotrophic recharge must be considered a key determinant of bog development (Łajczak 2009).
The purpose of the paper is to show how raised bogs in mountain valleys and basins develop during each of the four stages of bog development and how this affects local relief. The research was performed in two study areas in the Polish Carpathian Mountains (Fig. 1).
The paper is based on an analysis of maps from the last 230 years (Karte des Königreisches..... 1779-1782, Administrative Karte..... 1855, Die Spezialkarte..... 1894, Tactical Map..... 1937, Topographic Maps 1965, 1997) and aerial photographs from 1965, 1988 and 2006. The maps and photographs show the shrinking process for each peat bog analyzed in the study area. In addition, extraction scarps and post-peat areas are analyzed. The paper also employs data obtained via fieldwork, which included peat bog and post-peat area mapping using GPS and morphometric measurements. The research was performed over the course of 15 years in the two study areas mentioned earlier (Łajczak 2007, 2009, 2011). Peat deposit thickness was ascertained via drilling. Maximum peat thickness data were obtained from the research literature (Horawski et al. 1979, Wójcikiewicz 1979, Baumgart-Kotarba 1991-1992, Kukulak 1998, Lipka 1999, Haczewski et al. 2007). Fieldwork focused on the location of peat deposit remnants outside of known peat areas, especially in areas where peat extraction was halted before 1850. This type of information makes it possible to make inferences about the previous extent of peat domes, which were often larger than that shown on the oldest maps (Łajczak 2007, 2009, 2011). The analysis of exhumed landforms in post-peat areas helps to identify places with the thickest peat deposits. Such places are understood to be the original peat formation sites. The research results were used to assess the most likely size of peat domes prior to human impact based on local relief and distribution of water phenomena.
The oldest maps analyzed and the traces of peat found outside of contemporary post-peat areas suggest that 26 raised bogs may have existed in the Orawsko-Nowotarska Basin prior to human settlement (Fig. 2). The total area of raised bogs prior to human settlement has been estimated to be about 4,900 ha (Łajczak 2007). Three of the bogs were completely eliminated in the 19th century. Eighteen became smaller and some became fragmented. Only five of the bogs have remained in their natural state (Łajczak 2011). The raised bogs of the past covered a more topographically diverse landscape than do their fragments today (Horawski et al. 1979, Wójcikiewicz 1979, Baumgart-Kotarba 1991-1992, Lipka 1999, Łajczak 2007, 2009). This makes it possible to assess how raised bogs at the advanced stage of development are able to alter local relief. The two largest peat domes were most likely 1,000 ha in size. Nine peat domes ranged from 100 ha to 1,000 ha in area. The largest peat domes (dimensions: 5 x 2 km and 4 x 2 km) were some of the largest in modern-day Poland (Łajczak 2007). Transit streams flowing around peat bogs, especially in areas beyond the lowest parts of edge zones had a meandering pattern. The streams were recharged primarily by water seeping out of peat bogs. Raised bogs in the Orawsko-Nowotarska Basin sit atop fragments of Quaternary glaciofluvial fans of variable age. Some are found atop Holocene high terraces (Baumgart-Kotarba 1991-1992, Łajczak 2007, 2009). In general, the younger the fragment of Quaternary glaciofluvial fan, the more expansive the raised bogs used to be. This can be explained in terms of neotectonics, local relief and hydrogeological conditions (Fig. 2). Groundwater flows at greater depths in the western and southern parts of the Basin that are being lifted upward and fragmented by erosion. In turn, this does not favor bog growth. Groundwater in the lower part of the Basin can be found at shallow depths and groundwater outflows create wet conditions in the area, which in turn favors bog growth (Łajczak 2009).
Probable range of raised bogs in the Orawsko-Nowotarska Basin in the period prior to human impact. The raised bogs are presented on the background of Quaternary landforms.a- raised bogs. Quaternary terraces within glaciofluvial fans: b- Mindel terraces, c- Riss terraces, d- Vistulian terraces, e- postglacial terraces, f- Holocene terraces. g- areas located outside the basin, h- main water-courses, i- European Drainage Divide, j- areas shifting upward, k- areas shifting downward, l- state border.
Seventeen raised bogs existed in the Upper San Valley and the Wołosatka Valley in the Bieszczady Mountains prior to human settlement in the 17th century (Kukulak 1998, Haczewski et al. 2007, Łajczak 2011). The 17 bogs had a total area of only about 60 ha and developed across topographically homogenous terrain – often close to streams – on high terraces and alluvial fans (Fig. 3).
Probable range of raised bogs in bottoms of the Upper San and Wołosatka river valleys in the Bieszczady Mountains. a- raised bogs, b- bottoms of river valleys, c- limit of larger alluvial fans, d- main water-courses, e- state border.
Eight types of geomorphological situations were identified for raised bogs location at different elevations in the study areas (Fig. 4A). Each type of bog is listed starting at high elevations and ending with low elevations. Their spatial distribution within both studied areas is shown in Fig. 4B. In each geomorphological situation, expanding peat bogs alter relief in a different way (stages “a” and “b” in Łajczak 2005, 2007, 2011). This process is perturbed or halted as a result of human impact – stage “c”. While currently almost all of the bogs are classified as ombrogenous or ombrogenous-soligenous using the Kaule and Göttlich (1976) classification system, each group of peat bogs was recharged by water in a variety of ways during its unique development stage.
Geomorphological location of identified eight groups of raised bogs in the study areas. A- distribution of peat bogs at different elevations, B- their spatial distribution within both areas. For numbering of peat bog groups (I-VIII) – see the text. Terraces: m.t.- Mindel, r.t.- Riss, v.t.- Vistulian, p.t.- postglacial.
The first group of peat bogs (I) includes five bogs located atop a drainage divide and are found only in the Orawsko-Nowotarska Basin on ridges 5 to 40 m over adjacent surfaces (Baumgart-Kotarba 1991-1992, Lipka 1999, Łajczak 2005, 2007, 2009). Group I bogs were soligenous bogs during the early stage of development. The second group of peat bogs (II) includes eight bogs in spring areas in shallow erosion incisions or at the bottom or on the sides of erosion incisions (Orawsko-Nowotarska Basin) (Łajczak 2007, 2009). Group II bogs were soligenous or river-fed bogs during the early stage of development. The third group of peat bogs (III) includes six bogs in the Orawsko-Nowotarska Basin and one bog in the Bieszczady Mountains. Group III bogs developed in old river channels found on Riss, Vistulian and older Holocene terraces (Baumgart-Kotarba 1991-1992, Kukulak 1998, Łajczak 2005, 2007, 2009, Haczewski et al. 2007). Group III bogs then transformed into river-fed bogs, topogenous bogs, soligenous bogs and finally into ombrogenous bogs. Group IV includes four bogs found on terraces of variable age near the base of the edge of the next higher terrace (Łajczak 2005, 2007). All four are found in the Orawsko-Nowotarska Basin. Group IV bogs were soligenous and later river-fed bogs in the early stage of development. Group V consists of just one bog in the Orawsko-Nowotarska Basin, which had developed on an expansive and uniformly tilted fragment of the Vistulian Terrace. This bog was soligenous at first and then became river-fed. Group VI can be found only in the Bieszczady Mountains and consists of just one bog on an alluvial fan (Łajczak 2011). The bog started out as a soligenous bog. Group VII is the largest of the groups and includes 12 raised bogs found at the edges of alluvial fans (Łajczak 2009, 2011). Ten of the bogs are found in the Bieszczady Mountains and were initially soligenous. Group VIII is found at the lowest elevations and includes five bogs in the Bieszczady Mountains. The bogs fill in oxbow lakes on the postglacial terrace between an inactive levee and an undercut flysch slope (Kukulak 1998, Haczewski et al. 2007, Łajczak 2011). The bogs were river-fed at first and then remained both ombrogenous and soligenous throughout their period of development.
The first stage of development of the studied bogs consisted of the formation of a low bog. In the case of bogs located atop drainage divides, the first stage of development included convex landforms, while other types of bogs developed in concave landforms (Ralska-Jasiewiczowa 1972, 1980, 1989, Kukulak 1998, Łajczak 2005, 2007, 2011, Haczewski et al. 2007). At this stage of development, bogs in Group I began to evolve in a way that included increasing differences in local elevation. On the other hand, other groups of peat bogs evolved in a completely different manner by reducing differences in local elevation. This process continued until low bogs filled in concave landforms (Fig. 5). This stage was dominated by soligenous bogs, with some river-fed bogs and topogenous bogs. Even bogs growing on convex landforms were initially recharged by shallow groundwater outflows. As the low bog became thicker and its surface farther removed from minerotrophic waters, oligotrophication and acidification of the site began to occur, leading to the development of a raised bog (Ralska-Jasiewiczowa 1989, Kukulak 1998, Łajczak 2005, 2007).
Scheme of growth of distinguished raised bog groups. For numbering of peat bog groups (I-VIII) – see the text. a- sub-peat material, b- low bog material, c- peat typical for raised bog, d- shallow ground water outflow, e- directions of low bog and raised bog expansion, f- surface water outflow, g- vertical peat dome growth, h- local drainage divide lines in Early Holocene, i- shifted local drainage divide lines, j- dried stream channels and filled with fine-grained sediments, k- places of shallow ground water outflows on alluvial fans, l- levee, m- channel deepening during the Holocene.
In raised bogs located atop drainage divides (I), the initial stage of development affected the entire cross section of low ridges. Only the tops of higher ridges were affected. Some Group II bogs were hanging bogs during their initial stage of development. This may be inferred from the presence of modern-day hanging bogs in the area that have not yet proceeded to the raised bog stage. Low bogs developed downstream of springs and expanded around them, although the principal direction of expansion remained downstream (Łajczak 2005, 2007, 2009). Low bogs in Group III began to develop after local streams dried up and became filled with fine-grained sediments featuring shallow groundwater. The initial stage of development of Group IV bogs occurred around spring niches at the base of a scarp of an upper terrace as well as in stream channels fed by these same springs during the Holocene. Such sites became collection points for poorly permeable clayey sediments carried in by sheet wash. Further low bog development encompassed ever larger parts of terraces (Łajczak 2005, 2007, 2009). A Group V raised bog began to develop in an area with numerous springs and over time began to cover the downstream parts of stream channels. A Group VI raised bog began to develop in an area with a gap in the poorly permeable layer of clay sitting atop gravel forming the alluvial fan. This type of situation created the right conditions for shallow groundwater to exit the ground under pressure. Group VII bogs located at lower elevations did not form due to river flooding but due to numerous springs at the base of alluvial fans. The development of these low bogs once again led to the accumulation of peat in various concave landforms situated mainly at lower elevations (Łajczak 2005, 2007, 2009). The first stage of bog development (VIII) at lower elevations was accompanied by the last stage of oxbow lake sediment accumulation (Kukulak 1998, Haczewski et al. 2007, Łajczak 2011). At first, the bogs were periodically flooded. However, the bogs were always recharged to some extent by groundwater from an undercut slope located nearby. This remains true today.
The growth of peat domes across low bogs marks the second stage of bog development, which can be interrupted or halted by human impact. The second stage began at different times for different bogs in the study area. Nevertheless, this stage of development of most bogs started during the Atlantic Period or earlier (Ralska-Jasiewiczowa 1972, 1980, 1989, Obidowicz 1990, Kukulak 1998, Haczewski et al. 2007). The second stage produced much larger changes in relief than the first stage (Łajczak 2005, 2007) (Fig. 5). The key change was fossilization of concave landforms, which became filled in by low bogs and then transitioned into raised bogs. Peat dome growth led to the formation of convex landforms atop formerly concave landforms. Other effects included the shifting of local drainage divides and a marked decrease in the density of local streams flowing close to expansive peat domes. Streams flowing in the vicinity of growing peat domes also changed course. Another tendency in raised bog development is the shift towards lower elevations, which now feature thicker peat deposits. This shift started already at the first stage of development. In effect, the thickest peat deposits are found relatively far away from the original peat formation site (Łajczak 2005). Hence, peat dome development creates increasing differences in local elevation. The opposite trend was found to be true for the first stage of bog development. However, each peat bog is different and may exhibit unique changes in relief development.
Growing peat domes covered the tops and sides of ridges found on drainage divides and their edge zones approached nearby stream channels. Higher ridges became covered by peat domes only at the top, while dome edge zones covered the upper parts of gentle slopes. The thickest peat deposits – formerly more than 6 m thick and currently up to 4 m thick – formed atop a drainage divide (Lipka 1999, Łajczak 2005, 2007). As peat domes continued to grow, so did local differences in elevation. In places with low bogs filling spring niches, growing peat domes filled in erosion incisions and created small hills in some places. As peat domes grew, their thickest deposits were to be found downslope. In such cases, the edge zone covered shallow depressions between domes and higher sections of mineral parent material. These areas are recharged by groundwater outflows and possess edge streams and larger transit streams as well. The development of raised bogs in this area also leads to larger local differences in elevation. The path of development for raised bogs in old stream channels was similar. Growing peat domes covered even neighboring erosion incisions and often joined other peat domes to form expansive domes that mask the morphologically diverse parent surface (Baumgart-Kotarba 1991-1992, Łajczak 2007). The thickest peat deposits (up to 11 m) were found at locations where the dome peaks sit atop the deepest old stream channels. In the fourth group of bogs found on high terraces at the base of the edges of even higher terraces, peat domes developed far away from groundwater outflows and cover old stream channels of a rather small size. At these sites, the peat thickness exceeds 6 m. The development of the Group V peat bog followed a similar path. Maps from 1779-1782 and 1855 show that it used to be surrounded by a wide swath of low bogs. Edge streams and larger transit streams beyond the low bogs followed a meandering course. The expansion of raised bog on the alluvial fan was limited by the presence of larger transit streams. On the other hand, the expansion of peat bogs across the lowest parts of the alluvial fans was not limited by any topographic barriers. The growth of the peat dome tends to smooth out the local land surface up to a certain point – peat deposit 5 m thick or more – at which it leads to increasing local differences in elevation. The development of peat domes in the group located at the lowest elevations also leads to increasing local differences in elevation (Kukulak 1998, Haczewski et al. 2007, Łajczak 2011). This group of raised bogs has already reached its maximum extent, as its edge zone runs along the foot of an undercut slope and a levee on the other side.
Growing peat bogs may strongly affect the network of local stream channels. The development of low bogs can affect the course of small streams. Peat also fills in oxbow lakes. At the advanced stage of raised bog development, the stream network becomes substantially reorganized. Peat domes cover some stream channels and some streams are forced to shift away from the dome (Łajczak 2007). Such streams become edge streams flowing around the peat dome. These streams are narrow and cut relatively deep into peat deposits in many cases. As peat domes expand, the thickest peat deposits tend to be found at increasingly lower elevations. This forces edge streams to quickly shift downslope. Larger transit streams are found beyond the edge zone of the peat dome and may limit dome expansion depending on their size. These streams and edge streams were recharged prior to human impact by numerous short tributaries seeping out of peat domes and flowing across the muddy edge zone. In the study area, the edge zones of many bogs approached small streams but remained 300 m or more away from larger rivers. Streams of varying size flowing outside of the peat edge zone, especially at lower elevations, tend to meander. The channels of transit streams flowing near the largest peat bog in the Orawsko-Nowotarska Basin are as much as six meters lower than the old stream channels masked by the expansive peat dome (Baumgart-Kotarba 1991-1992) (Fig. 6). This suggests that these large streams became much deeper during the Holocene in the absence of peat formation.
Chosen cross-sections through the largest raised bog in the Orawsko-Nowotarska Basin. a- sub-peat material, b- peat deposit. Differences between elevation of fossilized channels and active stream channels are marked.
Prior to the introduction of agriculture in the Orawsko-Nowotarska Basin towards the end of the Middle Ages, raised bogs most likely occupied about 10% of the Basin, while low bogs may have occupied as much as 30% of the Basin. In the valleys studied in the Bieszczady Mountains, the numbers were closer to 6% and 4% (Łajczak 2007, 2011). Some fragments of the two study areas were already largely covered by peat bogs (Figs 2, 3). In the Orawsko-Nowotarska Basin, incoming settlers began to clear low bogs by burning the peat. In the 18th century, peat extraction began at the edges of peat domes. The peat was used to heat homes. Peat extraction intensified between the mid-19th century and the late 20th century. Peat extraction usually started at the edge of the dome and continued towards the center and normally did not involve the entire dome all at once. Peat dome burning continued until the early 1900s. In the 1950s, industrial-scale peat extraction began at three peat bogs in order to serve the gardening needs of Polish consumers. Drainage work began at the same time around the edges of peat bogs and stream channels became regulated, which led to the drying of large parts of the bogs. This caused a more than three-fold reduction in the low bogs’ total area. Raised bogs became reduced 60% (Łajczak 2007, 2011) (Fig. 7). Human impact began to reduce the extent of raised bogs in the Bieszczady Mountains starting in the 19th century. The reductions ended in the 1950s. The edges of these bogs were later dried (Łajczak 2011). Today peat bogs in the valleys of the Bieszczady Mountains are protected by law, which makes bog revitalisation possible. Only one large bog in the Orawsko-Nowotarska Basin is protected by law. Almost all others are no longer experiencing human impact and are slowly regenerating.
Actual range of remnants of peat domes in the study areas. a- remnants of peat domes, b- state border.
Human impact on raised bogs helps create the following landforms: 1) shallow hollows after the surface layer of a peat dome has been burned off or after the entire peat deposit in a low bog has been burned off, 2) peat extraction pits of varying size and shape, 3) drainage ditches, 4) regulated and/or straightened stream channels (e.g. Rawes 1983, Mallik et al. 1984, Evans 1989, Cooper and McCaan 1995, Rhodes and Stevenson 1997, Shaw et al. 1997, Bragg and Tallis 2001, Łajczak 2007, 2011, Latocha 2012). Peat extraction alters bog relief in the most visible of ways (Fig. 8). Extraction from the edges towards the center of the dome produces one type of bog relief, while the opposite direction of extraction produces another type of bog relief. Peat extraction leads to the fragmentation of some peat domes. One dome in the Orawsko-Nowotarska Basin has broken up into three fragments (Łajczaka 2011).
A schematic diagram illustrating the decrease of the range of peat dome as a result of peat extraction. I- peat extraction from the edge towards the center of the dome, II- opposite direction of peat extraction. a- peat dome, b- low bog, c- remnant of peat dome, d- older post-peat area, e- younger post-peat area, f- extraction scarp or post-extraction scarp, g- peat deposit, h- sub-peat material.
In areas where peat extraction had been taking place for very many years, the following landforms can be observed: 1) older post-peat areas with occasional traces of peat that are used for agricultural purposes, 2) younger post-peat areas with reduced but continuous peat deposits, 3) peat domes reduced to peat remnants, 4) active industrial-scale extraction areas that yield large depressions atop peat domes that usually link with younger post-peat areas, 5) extraction scarps or post-extraction scarps that separate peat dome remnants from younger post-peat areas as well as expansive depressions atop peat domes (Łajczak 2011). In the Orawsko-Nowotarska Basin, older post-peat areas formed not later than the mid-19th century and mark areas previously occupied by low bogs, edge fragments of raised bogs and three entirely destroyed raised bogs. There are no older post-peat areas in the Bieszczady Mountains. Older post-peat areas feature exposed mineral parent material where landforms can be observed that served as potential starting points for peat formation (Łajczak 2006). In younger post-peat areas, the reduced peat layer features a diverse surface with numerous low scarps, pits filled with water and peat deposits overgrown with moss. Younger post-peat areas occupy a much larger area in the Orawsko-Nowotarska Basin than in the Bieszczady Mountains. In the Orawsko-Nowotarska Basin, younger post-peat areas are surrounded by wide older post-peat areas. Existing fragments of peat domes possess virtually fully natural tops and are surrounded by extraction scarps or post-extraction scarps. The scarps can be as high as 6 m and are either fully vertical or stair-shaped. In bogs where most of the peat has been extracted, reduced peat domes take the form of narrow peat remnants. In the Orawsko-Nowotarska Basin, peat dome remnants are much smaller than the original domes. However, in the Bieszczady Mountains, peat dome remnants are only slightly smaller than the original domes (Łajczak 2011). Expansive depressions found atop peat domes have formed only in three peat bogs in the Orawsko-Nowotarska Basin. The depressions occupy no more than 20% of the existing domes’ surface and can be as deep as 4 m. Each depression is ringed by vertical scarps and drained by a dense network of drainage ditches (Łajczak 2007, 2011). In the Orawsko-Nowotarska Basin, scarps surrounding peat remnants tend to zigzag, while in the Bieszczady Mountains, the scarp geometry is either bent or circular. In most of the investigated peat bogs where peat extraction had proceeded from the edge towards the center of the peat dome, the aforementioned elements of the morphology of damaged raised bogs tend to form a circular pattern around the peat dome remnants. In peat bogs where peat extraction had proceeded all over the place, the circular pattern does not exist (Fig. 9).
Distribution of main morphological elements within former large raised bogs – examples from the Orawsko-Nowotarska Basin. a- remnant of peat dome, b- younger post-peat area, c- older post-peat area, d- industrial-scale extraction area that yields large depression atop peat dome, e- extraction scarp or post-extraction scarp, f- part of a bog which has preserved natural character, g- main water-courses.
The most visible and most rapidly changing elements of relief in bogs affected by human impact are extraction scarps (Łajczak 2007, 2011, Latocha 2012). The edges of drained areas are also surrounded by scarps but they are lower. The depressed surface with dried peat is often separated from peat saturated with water by a large ditch. When peat extraction comes to an end, the post-extraction scarp changes along its vertical axis, as illustrated over time by Figure 10. The drying of peat on initially vertical walls of the scarp leads to fractures in the peat deposit and to peat sliding downward where it is washed away during snow melting periods, mainly. Peat mud fills numerous pits in younger post-peat areas. Peat hanging over the declining scarp deteriorates over time and the scarp becomes flat. A fully overgrown former scarp assumes a convex-concave shape with a small gradient. This shape becomes even smoother over time as extraction pits become overgrown and new deposits form. Cartographic materials, old photographs, and the opinions of persons involved in peat extraction indicate that post-extraction scarps maintained their vertical walls for ten years after extraction ceased in the Orawsko-Nowotarska Basin. The more time passes since the end of peat extraction, the more a post-extraction scarp resembles a mature scarp. Phase “c” scarp is about twenty years older than phase “b” and phase “d” scarp is between 30 and 60 years old. Scarps in existence more than 60 years since the end of peat extraction are designated “e” or “f”. A mature convex-concave peat dome cross section can be found only in the case of one peat dome in the Orawsko-Nowotarska Basin. This peat dome has been protected by law since the 1920s (Łajczak 2006). Scarp relief transitions from phase “a” to “e” or “f” most rapidly on southern and southwestern “warm” slopes of the peat dome. The slowest rate of change occurs on the opposite slopes. This suggests that peat is washed away during early spring snow melting periods, mainly.
Changes in relief of peat bog scarp since peat extraction is halted. a-f- phases in scarp relief changes, g- peat deposit, h- sub-peat material, i- younger post-peat area, j- bog slides, k- bogflows, l- peat hollows with water, m- shallowed hollows without water.
Edge streams, which used to flow around peat domes, became deeply incised ditches ringing the peat dome and linked with large regulated streams as well as short ditches draining younger post-peat areas and peat dome remnants (Fig. 11). The purpose of the drainage work was to dry the wet edge zone and younger post-peat areas as well as to accelerate water drainage away from the peat bog (Łajczak 2007). The following factors contributed to increasingly abrupt water discharge during flood events: 1) complete extraction of peat deposits across large older post-peat areas, with poorly permeable clayey parent material becoming exposed, 2) some extraction of peat deposits in younger post-peat areas and peat dome remnants, 3) straightening of stream channels, 4) increases in stream gradients. The result is the formation of gravel-bottom braided channels in the case of even small streams with a local tendency to aggradation. This is a sharp contrast to the earlier sinuous stream channels with a stable cross section (Łajczak 2007, 2011).
Example of ditches draining anthropogenically disturbed raised bog in the Orawsko-Nowotarska Basin: plan-view and profile. a- remnant of peat dome, b- younger post-peat area, c- girdling ditch, d- other ditch.
Peat extraction has been declining in the Orawsko-Nowotarska Basin for more than two decades. This type of human impact has ceased to exist in the Bieszczady Mountains (Łajczak 2007, 2011). Drainage ditches are overgrown with vegetation due to a lack of maintenance and are effectively retarding the flow of water. This helps create wetlands in younger post-peat areas, which are now becoming a secondary edge zone. Peat moss takes about three years to colonize fresh peat pits filled with water. The increasing sinuosity of stream channels regulated in the past helps to make secondary edge zones more wet. Streams become more sinuous as water undercuts stream channel banks, which leads to more shallow stream channels. Beaver dams built near peat bogs in the Bieszczady Mountains provide another means of retaining water in post-peat areas. Small manmade dams in the region perform the same function (Łajczak 2011). The increasingly wet secondary edge zone and the increasingly flat post-extraction scarp help make peat dome remnants more wet, which prevents the drying of peat and facilitates the growth of peat moss. The cross section of a raised bog at this stage of development is different than that at previous stage of bog development (Fig. 12). Differences in elevation across post-peat areas initially become smaller during the last stage of raised bog development. As the peat dome grows, so do differences in elevation. However, this process may be disrupted once again if more peat is extracted and dried.
Cross-profiles through Bór na Czerwonem raised bog in the Orawsko-Nowotarska Basin in the periods: I- prior to human impact, II- at the end of peat extraction, and III- at the beginning of revitalisation process. a- peat deposit, b- sub-peat material.
Figure 13 shows changes in the extent and relief of a raised bog experiencing human impact. Period I shows a pre-human impact state. Period II shows an extraction and drying state. Period III shows the initial bog revetalisation state. Younger and older post-peat areas indicate areas of losses within the peat dome and the edge zone (period II). This was an area of stream channel regulation and drainage ditch construction. Extensive peat extraction primarily along the edges of the peat dome led to major changes in peat bog relief and major losses of water supplies (Łajczak 2007, 2009, 2011). Increases in the density of the drainage network surrounding peat dome remnants led to further drying of peat. An unintended consequence of stream channel regulation was streams becoming more shallow and wider. Another consequence was stream channels evolving into braided stream channels with a local tendency to aggradation. Today peat extraction has ended at most sites and drainage ditches are no longer being maintained and are becoming more shallow. This helps make younger post-peat areas more wet, which helps them evolve into secondary edge zones. Another element of peat dome revitalisation is post-extraction scarps becoming more flat.
Typical changes in the extent and relief of a raised bog experiencing human impact. A- plan, B- profile. Periods: I- pre-human impact state, II- extraction and drying state, III- initial bog revitalisation state. a- peat dome, b- peat dome edge zone, c- remnant of peat dome surrounded by exploitation scarp, d- younger post-peat area, e- edge stream on outside of dome, f- short stream seeping out of peat dome and flowing across the muddy edge zone, g- meandering stream outside peat bog, h- ditch, i- direction flow. Schematic cross-sections of stream channels and ditches at various stages of their development are presented.
The paper focuses on changes in raised bog relief in the Polish Carpathian Mountains. It documents bog characteristics that have not been documented before. The investigated peat bogs can be classified as valley-type based on their geomorphology (Ilnicki 2002), although each bog developed in a different mesoform. Raised bogs in the study area are not found exclusively on visible drainage divides, as other researchers seem to indicate (Tobolski 2000, Ilnicki 2002), but tend to be found at lower elevations. Raised bogs with large peat domes may develop at any elevation in the study area. However, concave landforms are more likely to host peat bogs. This includes spring niches, old stream channels, the base of scarps of higher terraces, and the edges of alluvial fans. Numerous and stable groundwater outflows present within such landforms create the right conditions for low bogs to develop. As raised bogs evolve over time, these outflows maintain a high moisture level in the edge zone (Łajczak 2007, 2009).
Four stages of geomorphological development were identified for raised bogs in the study area. The last two stages are associated with human impact. Stage one is low bog development. Stage two is peat dome development. Peat domes grow depending on the relief of parent material and access to water. Gore (1983) as well as Obidowicz and Margielewski (2008) present a structural scheme of a large raised bog. The paper analyzes the geomorphological development of raised bogs found in a variety of mountain settings (e.g. valleys, basins) as well as analyzes peat bog development prior to human impact. These issues have been discussed only by a small number of researchers thus far (Kaule and Göttlich 1976, Rawes 1983, Obidowicz 1985, Carling 1986, Rhodes and Stevenson 1997, Bragg and Tallis 2001, Dykes and Warburton 2007, Łajczak 2007, 2011, Obidowicz and Margielewski 2008). New knowledge presented in this paper includes trends in bog development during the first and second stage of development relative to stable groundwater outflows facilitating bog formation. Assuming the view of Kaule and Göttlich (1976), raised bogs became ombrogenous-soligenous bogs at this stage, given that edge zones are still largely recharged by groundwater outflows.
The research literature tends to focus on historical and contemporary changes in peat bog relief caused by human impact (Bower 1961, Rawes 1983, Mallik et al. 1984, Evans 1989, Cooper and McCaan 1995, Rhodes and Stevenson 1997, Shaw et al. 1997, Bragg and Tallis 2001, Dykes and Warburton 2007, Łajczak 2007, 2011) in the form of sheep and cattle grazing, peat burning and peat drying. Peat erosion is of particular interest. However, a more in-depth analysis of contemporary changes in peat bog relief is difficult to find. This is especially true of papers published in the British Isles (Bower 1961, Evans 1989, Shaw et al. 1997, Bragg and Tallis 2001). In the study areas covered in this paper, peat extraction and drying are the main determinants of change in raised bog relief caused by human impact. Post-peat areas become larger and peat domes become smaller due to peat extraction by private landowners and industrial companies. Peat extraction, however, is on the decline. The paper also discusses changes related to the third stage of peat bog development by showing how just one form of human impact (e.g. peat extraction) can produce a variety of geomorphological effects based on how and when the impact had occurred.
The Polish research literature rarely covers ongoing changes in raised bog development – classified as stage four in this paper. The most important observations in this respect are the formation of a secondary edge zone in younger post-peat areas featuring shallow overgrown drainage ditches and peat pits as well as post-extraction scarps becoming more flat. Both processes assist in peat dome development (Łajczak 2007, 2011). On the other hand, the British research literature tends to focus on ongoing changes in peat bogs currently used for commercial purposes. In Great Britain and Ireland, both machine-based and manual harvesting of peat produce landforms such as scarps and peat pits that maintain sharp contours for long periods of time (Cooper and McCann 1995, Latocha 2012). In addition, the end of sheep grazing does not lead to a rapid smoothing of landforms produced by trampling (Rawes 1983). While the rate of relief change in post-peat areas in the British Isles is rather slow, the corresponding rate for scarps and peat pits in raised bogs in the Polish Carpathians is rather fast. Latocha (2012) writes about post-extraction depressions in blanket bogs in Ireland, which are still ringed by vertical scarps, even though peat extraction had ended more than 50 years ago at a number of these sites. The scarps in Ireland are stabilized by rapid grass growth. However, older peat pits are much more shallow than younger peat pits, as their bottom is always wet. In the study area in the Polish Carpathians, scarps become overgrown mainly by bushy plants and pine and this takes more time. On the other hand, peat moss first encroaches upon peat pits and drainage ditches (Łajczak 2007, 2011). The burning of peat is a key factor behind the deterioration of upland and mountain blanket bogs in the British Isles (Rhodes and Stevenson 1997). However, this factor ceased to be a key factor in the Polish Carpathians in the early 20th century (Łajczak 2007, 2011).
The most important the author`s findings are:
the younger the fragments of Quaternary accumulation landforms in the studied areas, the more expansive the raised bogs used to be,
almost of the bogs are classified as ombrogenous or ombrogenous-soligenous,
the key change during the first two phases of peat bog relief development is fossilization of concave landforms, which become filled in by low bogs and then transitioned into raised bogs,
another tendency in raised bog development is the shift towards lower elevation which now feature thicker peat deposits,
among various manners of human impact on the peat bog relief for the last centuries, the peat extraction alters bog relief in the most visible of ways,
the most visible and most rapidly changing elements of relief in bogs affected by human impact are extraction scarps,
since the second halt of the 20th century the younger post-peat areas are more wet, which helps them evolve into secondary edge zone of the bogs
One of the most urgent issues affecting Polish environmental conservation policy is the designation as reserves or as sites of ecological interest all the peat bogs studied that form a peatland complex unique at the European scale. A provision of legal protection for peat bogs will require some financial compensation for the local owners. Another way in which the local population should be able to improve their standards of living would be the development of eco-tourism (walking, cycling, horse-riding) promoting the natural qualities of the sprawling mountain bogs.
Well preserved peat domes constitute a valuable component of the studied areas landscape unique at the Carpathian scale. In the past the post-peat areas were converted to pastures, meadows or arable land. Taking into account mountain topography, cool climate and especially low values of local clay soils for agriculture, the post-peat areas should be treated as wastelands or as meadows and pastures.
Packaging industry stands at third position globally, next to food and petroleum industries contributing nearly 2% of Gross National Product in developed nations [1]. Approximately 51% of all packaging applications are dedicated to food sector [2]. Consumer inclination towards safe and healthy food have led to the development of state-of-the-art and unique approaches in food processing and packaging. One such development is the introduction of smart packaging technologies. Smart packaging although interchangeably used for intelligent packaging at times, refers to combination of active and intelligent packaging [3]. The Framework Regulation on Food Contact Materials (1935/2004) defines “
Active and intelligent packaging market was estimated at 17.50 billion US $ in 2019 and expected to reach at 25.16 billion US $ by 2025 witnessing a CAGR of 6.78%. Asia Pacific region was identified as the fastest growing market including China, Japan, India and South Korea and North America as the largest market with WestRock®, Honeywell®, BASF® and Amcor Ltd. as the major market players. Oxygen and moisture scavengers are the utmost commercialized forms of active packaging. Gas scavengers for food was the most marketed active packaging technique in USA during 2018–2019 [5]. During past ten years, the research interestedness in active and intelligent packaging has increased steadily as indicated by the trend of peer-reviewed publications in Figure 1 during 2010–2019. As per a survey conducted by O’Callaghan and Kerry (2016) [6] for applicability of smart packaging to cheese, the future is highly optimistic with consumers willing to pay more on receiving the information provided by these advanced technologies. However, to the best of our knowledge, not a single article has reviewed the application and future research directions of smart packaging technologies in cheese. Therefore, the present review offers insight to active and intelligent packaging systems for cheese and future research aspects.
Graph illustrating the number of publications on active packaging, intelligent packaging and cheese during the year 2010–2019 (
World cheese production has shown significant increase from 5.43 million tonnes in 1961, 14.58 million tonnes in 1995 to 22.65 million tonnes in 2015 [7]. About 3000 varieties of cheeses are produced throughout the world and the annual total cheese consumption during 2015–2028 is expected to grow at a CAGR of 1.4% [8]. EU 28 (European Union consisting of 28 countries) stood at first position in cheese export by exporting 841.8 thousand tonnes of cheese. The USA accounted for almost 20% of the world’s cheese production and exported 348.5 thousand tonnes of cheese contributing 13.8% of the total export share during 2018 while Japan and Russia were the top export destination [8]. Approximately 40% of world’s milk is converted to cheese with France, USA, Iceland, Finland and other developed nations being the major players in cheese production and consumption [7]. The total cheese production in USA was 5,908 million kg, with an import of 176 million kg [8]. Mozzarella is the highest produced cheese variety in USA and several other major cheese producing nations [9]. Additionally, the retail prices of cheese in almost all the countries had shown an upsurge during last ten years [8]. The detailed information about cheese production, consumption, import, export quantity of several countries and retail price of selected cheeses are presented in Table 1. The total whole cow milk cheese in India was 2250 tonnes in 2014 [7]. It is true that India is not a traditionally structured ‘cheese nation’ but it is gaining pace with increased domestic consumption and exports. India offers only 40 varieties of cheese of which about 60 per cent of the market is dominated by processed cheeses, 30 per cent by cheese spreads and the remaining 10 per cent by flavored and Mozzarella cheese [10].
Country | Production | Consumption | Imports | Exports | Retail Price | ||
---|---|---|---|---|---|---|---|
Cheese type | Currency | Price/kg | |||||
EU28 | 9376 | 9652 | 59 (H) | 842 (H) | |||
Germany | 2339 | 2002 | 32 | 130 | Gouda | EUR | 5.98 |
France | 1725 (A) | 1721 | — | 117 | Emmental | EUR | 8.43 |
Italy | 1101 (A) | 1320 | 10 | 100 | Mozzarella | EUR | 4.46 |
Netherlands | 880 (A) | 420 | — | 140 | Gouda | EUR | 10.98 |
Poland | 825 | 723 | — | 53 | Gouda | PLN | 20.69 |
Denmark | 452 | 166 | — | 73 | |||
United Kingdom | 426 | 795 | — | Cheddar | GBP | 7.28 | |
Ireland | 224 | 31 | — | 49 | NS | EUR | 9.60 |
Austria | 200 | 200 | — | — | |||
Spain | 179 (A) | 416 | — | — | NS | EUR | 8.60 |
Czech Republic | 135 | 201 | — | — | Edam | CZK | 144.73 |
Belgium | 109 | 164 | — | — | NS | EUR | 9.65 |
Lithuania | 102 | 58 | — | Tilsit | EUR | 7.34 | |
Finland | 87 | 142 | — | — | Edam | EUR | 9.08 |
Hungary | 84 | 129 | — | — | Trappist | HUF | 1700.00 |
Sweden | 82 | 201 | — | — | Herrgardsost | SEK | 90 |
Latvia | 47 | 39 | — | — | Hard cheese | EUR | 7.89 |
Estonia | 45 | 32 | — | — | Gouda | EUR | 8.24 |
Slovakia | 38 (A) | 74 | — | — | Edam | EUR | 6.55 |
Cyprus | 3 (A) | 22 | — | — | — | — | — |
Luxemburg | 3 | 16 | — | — | — | — | — |
Other EU | — | — | 17 | 179 | — | — | — |
North and Central America | |||||||
USA | 5908 | 5668 | 176 | 348 | Cheddar | USD | 11.87 |
Canada | 443 | 538 | 31 | — | NS | CAD | 14.70 |
Mexico | 419 | 539 | 123 | — | — | — | — |
El Salvador | — | — | 39 | — | — | — | — |
Nicaragua | — | — | — | 41 | — | — | — |
South America | |||||||
Brazil | 755 | 781 | — | — | Mozzarella | BRL | 30.49 |
Argentina | 579 | 574 | — | 49 | Quartirolo-type | ARS | 184.24 |
Chile | 101 (B) | 198 | — | — | Gouda | CLP | 6396.00 |
Colombia | 97 | 100 | — | — | — | — | — |
Uruguay | 45 | 33 | — | — | NS | UYU | 143.22 |
Other Europe | |||||||
Russia | 473 | 811 | 263 | — | NS | RUB | 412.60 |
Belarus | 332 | 128 | — | 210 | — | — | — |
Switzerland | 190 (A) | 186 | 62 | 68 | NS | CHF | 13.32 |
Ukraine | 168 | 198 | — | — | Russian (50% fat) | UAH | 172.00 |
Norway | 82 (C) | 101 | — | — | — | — | — |
Iceland | 11 | 9 | — | — | — | — | — |
Asia | |||||||
Turkey | 753 (D) | 714 | — | — | — | — | — |
Israel | 146 (A) | 160 | — | 51 | Edam | ILS | 41.30 |
India | 48 (E) | — | — | — | Mozzarella | INR | 380.00 |
Japan | 45 (F) | 321 | 297 | — | Processed | JPY | 1890.00 |
China | 41 (G) | 149 | 124 | — | — | — | — |
Kazakhstan | 28 | 47 | — | — | — | — | — |
Republic of Korea | 4 | 156 | 124 | — | NS | KRW | 16,225.0 |
Saudi Arabia | — | — | 172 | — | — | — | — |
Indonesia | — | — | 30 | — | — | — | — |
Philippines | — | — | 38 | — | — | — | — |
Oceania | |||||||
New Zealand | 385 (G) | 48 | 323 | Cheddar | NZD | 8.84 | |
Australia | 344 | 350 | 98 | 176 | Cheddar | AUD | 13.25 |
Africa | |||||||
Egypt | 395 | 482 | — | 61 | NS | EGP | 59.41 |
South Africa | 108 | 109 | — | — | NS | ZAR | 117.19 |
Zimbabwe | 3 | 9 | — | — | NS | USD | 4.00 |
Total selected countries | 21,277 | ||||||
Rest of world | — | — | 865 | 381 | — | — | — |
World | — | — | 2550 | 2550 | — | — | — |
Cheese production, consumption, imports, exports (in ‘000 tonnes) and retail price during 2018–2019.
(A) Cow’s milk cheese only; (B) Based on production of big dairies; (C) 2018: Cow’s milk cheese- 72,600 tonnes; (D) 2018: Cow’s milk cheese- 658,500 tonnes; (E) Refers to co-operative dairies only; (F) Natural cheese production; (G) Including processed cheese; (H) Excluding Intra-EU trade; NS- Not specified (
In order to simplify the cheese packaging requirements, its mandatory to classify them in several categories depending on their moisture content (hard, semi-hard, soft, very-soft), shapes (wheels or half-wheel cheese, cheese slabs also known as portioned cheese, sliced cheese, cheese squares, soft and creamy cheese, grated, diced and processed cheese) and preservation techniques (cheese preserved in brine, wax coated, modified atmosphere or vacuum packaged). The very hard, extra hard, hard to semi-hard category of cheese possess moisture content in the range of 36–52% and includes Edam, Gouda, Swiss, Parmesan, Cheshire and Romano [11]. Rindless types of cheese are ripened in their packaging material alike to cheeses having their surface covered with molds, bacteria or yeasts producing enzymes responsible for ripening [12]. The important factors for selecting packaging materials of very hard to hard varieties of cheese are ripening time, temperature, cheese surface area to volume ratio, gas production (if any), cheese product form (sliced, grated, portions) and permeability of packaging materials [13]. The packaging systems for rindless cheeses includes laminates of polyethylene terephthalate- low density polyethylene (PET-LDPE) (300/50 μm thickness), cover film of oriented (O)PET-LDPE (23/75 μm thickness), tubular bags of oriented polyamide (OPA)-LDPE (15/40 μm thickness) and trough film of PET-HMLDPE (high molecular weight LDPE) (200/25/25 μm thickness). Wax coatings (mineral, paraffin and microcrystalline wax) are used to prevent mold growth, moisture evaporation and high gas barrier properties [11]. Modified atmosphere packaging (MAP) with high barrier materials (PA/EVOH (ethylene vinyl alcohol), LLDPE/EVA (ethylene vinyl acetate)/Ionomers) is generally used for portioned or sliced hard cheese owing to their large surface area exposure to light and oxygen. Vacuum packaging is not preferred for cheese with eyes (Swiss, Gouda, Edam) as it rupture the eyes structure [14].
The semi-soft and soft varieties of cheese contain 52–80% moisture and can be further categorized broadly in three groups (i) ripened by bacteria e.g. Brick, Munster; (ii) ripened by surface mold e.g. Limburger, Brie, Camembert and (iii) internally mold ripened e.g. Gorgonzola, Roquefort, Stilton [15]. Packaging requirements of bacteria ripened cheeses is affected by presence of light, humidity, pH and gases. Internally mold ripened cheese should be packed in O2, CO2 and water permeable packages e.g. polystyrene, polyvinyl chloride or thermoformed packages etc., for optimum mold growth [3]. For externally ripened cheese, packaging should not take place until mold had grown to certain extent and packaging material with certain permeability to O2 and H2O are prerequisite to avoid growth of anaerobic proteolytic bacteria and moisture condensation inside cheese pack, respectively.
Fresh or unripened cheeses (e.g. cottage, quark, cream etc.) have moisture content greater than 80% and are exposed to lactic acid fermentation. Such cheeses have very high chances of dehydration or whey expulsion owing to their high-water activity. Some of the suitable packaging material for fresh cheeses are injection molded HDPE or PP packages with side slits for whey drainage, paraffin or PVDC (polyvinylidene chloride) coated paper and LDPE or PP laminated aluminum (Al) foil (7–20 μm) [14]. Processed cheese is hot filled into pouches, polymer coated or lacquered Al foils (12–15 μm). Processed cheese slices are packed in laminates of PET-HDPE, PET-PVDC and OPP-EVOH-LDPE and processed cheese spreads in tubes of LDPE/EVOH/PET or metal tubes, PP or PET-LDPE cups heat sealed with Al foil, tin plate or enameled Al cans and glass cups closed with Al foil plastic laminate or lidded with an easy opening tin plate [17]. A comprehensive list of permitted additives and their recommended usage level is presented in Table 2, which could be utilized for the development of legally permitted smart packaging materials. Also, a few commercially available smart packaging systems used for cheese are listed in Figure 2.
Name of the additive (&INS No.) | Recommended maximum levels | |||
---|---|---|---|---|
Unripened cheese | #Ripened cheese | Plain processed cheese/processed cheese, processed cheese spread | Note | |
Aspartame (951) | 1000 mg/kg | — | — | If used in combination with aspartame-acesulfame salt (INS 962), combined maximum use level, expressed as aspartame, should not exceed this level. |
Carotenoids | 100 mg/kg | — | 100 mg/kg | |
Chlorophylls and Chlorophyllin, copper complexes | 50 mg/kg | — | 100 mg/kg (Chlorophyll- INS No.-140) | |
Canthaxanthin (161 g) | 15 mg/kg | 15 mg/kg | — | For use in flavored products only |
Caramel III - ammonia caramel (150c) | 15000 mg/kg | — | — | |
Caramel IV-sulfite ammonia caramel (150d) | 50000 mg/kg | — | — | |
Indigotine (Indigo carmine) (132) | 200 mg/kg | — | — | For use in surface treatment only |
*Lauric arginate ethyl ester (243) | 200 mg/kg | — | — | Equivalent to 2 mg/dm2 surface application to a maximum depth of 5 mm, For use in surface treatment only |
Natamycin (Pimaricin) (235) | 40 mg/kg | 40 mg/kg | 40 mg/kg | |
Phosphates | 4400 mg/kg | — | 9000 mg/kg | As phosphorus |
Polysorbates | 80 mg/kg | — | — | On the creaming mixture basis |
Ponceau 4R (124) | 100 mg/kg | — | — | For use in surface treatment only |
Riboflavins | 300 mg/kg | 300 mg/kg | 300 mg/kg | |
*Sorbates | 2000 mg/kg | 3000 mg/kg | 3000 mg/kg | As sorbic acid, For Chhana and paneer only) |
Nisin (234) | 12.5 mg/kg | 12 mg/kg | 12.5 mg/kg | For Chhana and paneer only |
Propionic acid, sodium propionate, calcium propionate (singly or in combination, expressed as propionic acid) (280, 281, 282, 283) | 3000 mg/kg | 3000 mg/kg | — | |
Glucono delta lactone (575) | GMP | — | — | |
Sunset yellow FCF (110) | 100 mg/kg | — | 100 mg/kg | For use in surface treatment only |
Calcium chloride (509) | 200 mg/kg | 200 mg/kg | Except cream cheese | |
Beta-carotenes, vegetable (160a(ii)) | 600 mg/kg | 100 mg/kg | 1000 mg/kg | Except Coulommiers |
Carrageenan (407) | 5000 mg/kg | — | For cream cheese only | |
Alginate of sodium/potassium/ calcium (410, 402, 404) | 5000 mg/kg | — | — | For cream cheese only |
Propylene glycol alginate (405) | 5000 mg/kg | — | — | |
Paprika extract (160c) | GMP | GMP | — | |
Curcumin (100) | GMP | 100 mg/kg | 100 mg/kg | |
Annatto (160b (i) and (ii)) | GMP | $100 mg/kg @50 mg/kg | 50 mg/kg | $(Norbixin based) @(Bixin based) |
Lysozyme (1105) | — | GMP | — | |
Sodium salts of mono/di/poly phosphoric acid (339, 450 (i, ii, iii), 451 (i), 452 (i)) | — | 9000 mg/kg | — | Total salt content should not exceed 9000 mg/kg calculated as phosphorous/carbonates /citrate/ chloride |
Potassium salts of mono/di/poly phosphoric acid (340, 450 (iv, v), 451 (ii), 452 (ii)) | — | 9000 mg/kg | — | |
Allura red AC (129) | — | — | 100 mg/kg | |
Diacetyltartaric and fatty acid esters of glycerol (472e) | — | — | 10000 mg/kg | |
Hydroxybenzoates, para | — | — | 300 mg/kg | As para-hydroxybenzoic acid |
Iron oxides | — | — | 50 mg/kg | |
Sodium aluminum phosphates | — | — | 1600 mg/kg | For use in processed cheese only As aluminum |
Pimaricin (Natamicin) (235) | — | 2 mg/dm2 surface. | — | For surface/rind treatment only Not present in depth below 5 mm |
Additives permitted in different varieties of cheese as per FSSAI (Food Safety and Standards Authority of India).
Ingredients permitted in whey cheese includes Lauric arginate ethyl ester (INS No.-243) - 200 mg/kg and Sorbates (1000 mg/kg).&INS- International Numbering System for food additives.
$Indicates the amount of annatto if it is norbixin based.
@It indicates the amount of annatto if it is bixin based.
#Ripened cheese- Cheddar, Danbo, Edam, Gouda, Havarti, Tilisiter, Camembert, Brie, Saint Paulin, Samsoe, Emmentaler, Provolone, extra hard grating/sliced/cut/shredded cheese.
Commercially available active and intelligent packaging systems for cheese (A) biodegradable active antifungal film Antipack™ AF, Handary, Brussels, Belgium (B) antimicrobial films with natamycin, VGP SL®, Barcelona, Spain (C) edible plastic films developed from casein by Lactips, France (D) pull timer™, time temperature indicator for indicating temperature abuse developed by Macfarlane labels and insignia technologies, Scotland. (
“Active packaging” term was coined by food scientist Dr. Theodore Labuza [3], which includes oxygen absorbers, carbon dioxide absorbers/emitters, moisture absorbers, self-heating and self-cooling containers, antimicrobial packaging, ethanol emitters, flavor absorbers/releasers and microwave assisted containers [18]. The following section discusses different active packaging systems applicable to cheese and brief studies on active packaging materials for cheese and its products are also presented in Table 3.
Type of active packaging | Variety of cheese | Description |
---|---|---|
Cottage cheese [19] | Sachets of allyl isothiocyanate were effective against yeast and mold | |
Mozzarella cheese [13] | Lysozyme and ethylenediaminetetraacetic disodium salt (Na2-EDTA) inhibited the growth of coliform and | |
Kashar Cheese [20] | Zein and zein-wax coating with lysozyme, catechin and gallic acid. Lysozyme based film prevented the growth of | |
Mozzarella cheese [21] | Packages containing calcium lactate and lactic acid-based brine enhanced the shelf-life by 50% | |
Surface ripened cheese [22] | Polyethylene films coated with polyvinyldichloride and containing natamycin/nisin possessed inhibitory effect against | |
Zamorano sheep cheese [23] | Poly propylene and polyethylene terephthalate films with | |
Saloio cheese [24] | Whey protein isolate coating containing natamycin reduced water loss, color changes and microbial growth throughout the storage period of 60 days | |
Low fat cheese (5% fat in dry matter) [25] | Microbial oxygen absorber; Contains microorganisms which utilizes oxygen e.g. | |
High fat cheese (60% fat in dry matter) [25] | Microbial oxygen absorber containing | |
Cheddar cheese [26] | Microbial oxygen absorber containing | |
Delite 5% sliced cheese [26] | Microbial oxygen absorber containing | |
Saloio cheese [27] | ||
Camembert cheese [28] | 3-layered film with absorber/desorber film. 10% concentration of water absorbent, maintained attractive white appearance of cheese while 25% caused damage of the varnish layer due to swelling. | |
Cheese puffs [29] | Tricalcium phosphate-based UV light inhibitor could be incorporated directly into dry mix flavor powder of cheese puffs cooked in hot oil to prevent light induced rancidity and spoilage. |
Types of active packaging materials/systems explored for cheese and cheese-based products.
The presence of moisture not only affects the package appearance but also leads to poor texture and quality of cheese both microbiologically and chemically. Moisture control in the cheese package reduces the water activity thus preventing microbial growth and leaching of soluble nutrients [17]. Moisture scavengers include desiccants like silica gel, molecular sieves, natural clays like calcium oxide, calcium chloride and modified starch in the form of pads, sheets, sachets and blankets [4]. Moisture control in cheese packages could also be attained by incorporating humectant between different layers of packaging material, while keeping the inside layer water permeable. A two layered packaging material for moisture sensitive products like soft cheese was developed by [30] Marbler & Parmentier, (1999). The packaging material consisted of first functional layer (coated paper) for storing and releasing moisture and second layer (plastic laminate) for controlling gas permeability as a function of moisture content. These types of packaging material find their utility for cheese matured inside the package. Pantaleao, Pintado, & Pocas (2007) [27] successfully demonstrated humidity controller (Humidipak®) with Saloio cheese for shelf-life extension. A dual compartment vacuum packaging system (Tenderpac®) developed by SEALPAC® (Germany) for neatly collecting the drip loss from meat products, could be optimized for fresh unripened cheeses like mozzarella, quarg and cottage [31].
Oxygen scavengers market size was 1.80 billion USD in 2016 which is estimated to reach 2.41 billion USD in 2022 at a compound annual growth rate (CAGR) of 5.1%. North America (USA, Canada and Mexico) is the leading market while Asia Pacific region (China, India, Japan and South Korea) is the fastest growing market [5]. Oxygen is majorly responsible for cheese spoilage as its presence facilitates the growth of aerobic microorganisms, oxidation of cheese components, nutritional value decline, off-flavors generation, unacceptable color changes, shelf-life reduction and decrease in food safety [32]. Therefore, control of oxygen content inside cheese package is of prime importance. Modified atmosphere packaging (MAP), vacuum packaging and oxygen absorbers are the alternatives available to reduce or completely remove oxygen from the package [25]. However, MAP and vacuum packaging require costly equipment for packing cheese and still do not remove the oxygen completely (residual oxygen could be up to 1% in the headspace). Vacuum packaging can affect the appearance and structure of soft cheeses adversely and oxygen can also permeate through the packaging film during later stages of storage or distribution [33]. Oxygen scavengers provide the best alternative to remove the oxygen permeating through the packaging film and also to overcome the challenges of MAP and vacuum packaging [34].
The shelf-life of cheese tarts increased to 48 days when packaged with an iron-oxide based oxygen scavenger as compared to 7 days for control samples [35]. An oxygen scavenging film containing a blend of ethylene, methyl acrylate and cyclohexene methyl acrylate copolymer as oxygen scavenger resin was developed to overcome the oxidative rancidity in cheeses, dried milk and meat products [36]. A study on the effectiveness of various packaging methods for Gouda cheese revealed that oxygen scavengers (ATCO FT 210) were as effective as vacuum packaging and MAP (40% CO2 and 60% N2) in prolonging its shelf-life [34]. Microbiological oxygen scavenging material consisting of
Cheeses like Cheddar, Swiss, Blue, Colby etc. are highly prone to lipid oxidation owing to their high fat content. Antioxidants are extensively used to prevent oxidation by scavenging free radical but due to augmented customer trend for additives free food products, incorporation into packaging material is the best option [40]. Antioxidants incorporation into packaging material not only prevents quality deterioration of the product but also stabilizes the polymer [41]. Synthetic antioxidants like butylated hydroxytoluene (BHT) and butylated hydroxy anisole (BHA) are conventionally used in cheese packing. As per Code of Federal Regulation (CFR 21/172.115), the maximum rate of BHT addition to cheese is 200 mg/kg of fat and specific migration limit of BHA is 30 mg/kg of food product as per EU 10/2011 regulations. Asadero cheese was vacuum packed in LDPE co-extruded film containing 8 and 14 mg/g of BHT. Cheese packed in LDPE film incorporated with 8 mg/g of BHT had oxidized flavor while film with 14 mg/g of BHT surpassed the legal limit of BHT addition [42]. Therefore, similar to natural counterparts of other additives the recent focus is on natural antioxidants. Pomegranate peel extract (PPE) incorporated into zein films for packaging of Himalayan Kalari cheese retarded the oxidation of fat and protein due to the presence of polyphenols in PPE [43]. Sliced cheese packed in red algae films incorporated with 1% grape fruit seed extract (GFSE) showed decreased peroxide and thiobarbituric acid value indicating the antioxidant capability of GFSE [44]. Gelatin-chitosan edible film with Boldo herb extract possessed antioxidant and antimicrobial activity and had preservative effect on sliced Prato cheese by preventing psychrotrophs [41]. Similarly, other natural antioxidants like green tea extract [45], catechins [46] and rosemary extract [40] had been explored for their antioxidant potential in cheese packaging but the major challenge with antioxidant incorporated films in cheese packaging is synchronization of antioxidant diffusion rate according to cheese requirement. Also, for natural antioxidant incorporation in continuous film production by extrusion, their stability or thermal degradation is the major concern [46].
Cheeses packed with higher CO2 may suffer from sensory related issues as its dissolution leads to formation of carbonic acid [14]. Taleggio cheese produced excessive 2.5 mmol kg-1 day-1 CO2 when stored in nitrogen flushed packages at 6°C causing quality degradation [47]. However, carbon dioxide production is essential in some cheeses to achieve desired texture, eye formation in Emmental and Swiss cheese, and inhibition of microorganisms but excessive production could lead to puffed pouches or package burst [48]. When cheeses are preserved and sold at ambient temperature or when desired shelf life is high, the adverse effects of higher CO2 concentration aggravates many folds [47]. In such circumstances, carbon dioxide absorbers could be used to remove the excess CO2 and create a balanced internal cheese package atmosphere [2]. The only noticeable progress in segment of CO2 absorbers for cheese is by Fellows (2009) [49], who developed a mechanism for CO2 release from mold ripened cheese (e.g. Camembert) package using one-way valve while disallowing other gases to infiltrate. Crump (2012) [50] developed a CO2 absorber pouch using polyethylene that contained 1.1 g of calcium hydroxide (200 mesh) and silica gel each in 2:1 mixture of water for shrink wrapped Swiss cheese (114 g) and reported that the product remained in good color with acceptable taste without any expansion due to CO2 release during storage at 5°C for 4 months. The gas composition and volume of modified atmosphere packed semi-hard cheese (Kadett®, Arla Foods) packages were optimized using mathematical modeling based on gas solubility coefficients, initial carbon dioxide content in cheese and packaging material, thus avoiding consumer rejection due to volume changes [48].
Light, and principally UV light, may cause or accelerate various undesirable reactions like lipid oxidation in cheese. Also, riboflavin, an efficient photosensitizer, present in cheeses at levels of 0.30–0.60 mg/100 g, quickly captivates energy owing to its conjugated double bond and generates either free radicals or reactive oxygen species (ROS). These free radicals and ROS are the major causes of lipid oxidation, off-flavors, color bleaching and nutrient losses especially vitamin A in cheeses [51]. Light stabilizers are divided into five major categories namely: light absorbers, light screeners, excited-state quenchers, peroxide decomposers and free radical scavengers based on their mode of action [52]. Kristoffersen, Stussi, & Gould (1964) [53] reported reduced flavor deterioration in consumer packs of cheddar cheese using Uvinul D 49® as a UV light screening material. Uvinul® S-Pack is a novel FDA approved UV absorber for PET packaging films, which prevented the UV degradation of vitamins and β-carotene, thus highlighting its potential of preventing light degradation changes in cheeses kept in refrigerated illuminated cabinet of supermarkets [54]. Recently, flavonoids had been reported to facilitate the dissipation of photon energy to heat thus deterring photodegradation [22]. Thus, flavonoids incorporated packaging material as natural active element for UV light absorption may be explored for cheese.
Antimicrobial packaging is the most researched forms of cheese active packaging. Antimicrobial agent at certain minimum concentration (known as minimum inhibitory concentration (MIC)) diminishes or impedes microbial growth [9]. Antimicrobial effect in cheeses is most commonly obtained by organic acids and its salt derivatives (sorbic acid, citric acid and their anhydrides), bacteriocins (nisin, lacticin and pediocin), fungicides (imazalil and natamycin), enzymes (lysozyme and lactoferrin), essential oils (basil leaf, thyme, oregano and cinnamon) and miscellaneous compounds like potassium metabisulphite, allyl isothiocyanate, EDTA (ethylenediaminetetraacetic acid) or a combination of these agents [22, 55, 56]. Antimicrobial agents which are sensitive to higher polymer processing temperature are usually applied as coatings. Gliadin based bioplastic films prepared by casting, and containing cinnamaldehyde as active ingredient inhibited fungal growth in cheese spreads [57]. Immobilization of antimicrobial agents like nisin on the surface of cheese packaging material is a convenient technique, however immobilization is appropriate for fluids because of direct contact between antimicrobial surface and entire liquid food [58]. Active polyethylene terephthalate film immobilized with silver nanoparticles extended the shelf-life of white fresh cheese up to 30 days [59]. Labels containing antimicrobial agents can also be used for enhancing cheese shelf life. Labels containing allyl isothiocyanate enhanced the shelf-life of Danish Danbo cheese to 28 weeks when used in combination with MAP as compared to 18 weeks with MAP alone [60].
Chitosan, a natural polysaccharide had been utilized for antimicrobial cheese packaging owing to its biodegradable, antimicrobial, filmogenic and metal complexation attributes [61]. Cellulose polymer based antimicrobial films incorporated with nisin and natamycin showed the potential for preservation of sliced Mozzarella cheese [62]. Electrospinning technique was utilized for incorporation of nisin (at the rate of 5 mg/mL) in polyethylene oxide nanofibers to inhibit
Flavor emitters are mainly used to impart flavor to any packed product or scalp/downgrade any undesirable flavor due to harsher processing conditions, thereby improving sensorial attributes and chances of modifying product formulation [66]. It may be used for masking off-flavors but food processors may unfairly market their expired, unsafe or low-quality foods without letting the consumers know. ScentSational Technologies® is global leader in developing food packages with controlled release of legally permitted flavor into headspace of a pack at varying intervals and provision for adjustment of flavor intensity [31]. Recently, they have also ventured into developing customized and patented injection molded scented and/or flavored parts of any pack. Kraft foods had developed a system for controlled and prolonged release of volatile flavor upon opening and reopening of the package [67]. Such type of packaging innovation could also be used for cheese products like chiplets, slices, processed cheese etc. which are usually contained in multi-use packages.
Color releasing multilayered film is the novel technique for incorporating permitted food grade colors (Table 2) such as annatto over cheese surface. Such films generally find their application when low intensity shade of color is desired or color is adversely affected during any processing step, storage or distribution. Mohan, Ravishankar, & Gopal, (2010) [4] suggested the migration of edible food permitted red color from the wrapper of surimi to provide it a more desirable and acceptable color. Similarly, α, β-citral migrated from the cellulose acetate films and improved the yellowness of Coalho cheese without affecting its texture during 25 days of storage [68].
Rindless cheeses are cooked or uncooked hard varieties of cheese that are ripened in plastic film which allows little or no gas or moisture movement e.g. Cheddar, Edam, Gouda and Swiss. Natural rind is the outer crust of cheese formed either during cheese making or storage under controlled humidity and temperature [3]. These rinds are highly susceptible to undesirable fungal growth and becomes slimy at times. Gerber, Koehler, Grass, & Stark (2012) [69] developed a three layered, self-cleaning and porous rind inoculated with
Microwave susceptors are the substances which absorb microwave energy and convert it into heat energy. It consists of Al foil layer deposited on paperboard or polyester film for uniform heating treatment [18]. Emmi®, a USA based cheese manufacturing firm, provides different variants of fondue recipes (melted Swiss cheese) in microwaveable containers which are ready-to-(h)eat, convenient and recyclable [70]. These types of microwave assisted heating packs could be used for melted cheese recipes. The major concern with microwave assisted heating cheese containers is duration of microwave heating. Some pop-up sound mechanism could be attached with package which blows up and makes a noise on complete even heating of the package content [3].
Pesticide control agents are generally used with secondary packaging systems to prevent insects, or for fungicidal control, during import and export of food products over distant horizons. Packaging material with pesticide control could also be used to prevent detrimental effects of pests and insects for cheeses like Cheddar, Parmesan etc. which require longer ripening period. The major concerns with these types of pesticide control agents containing packaging is their permissible limit and regulatory issues for use with cheeses. Natamycin is a GRAS status (as per FDA) fungicide which is produced during fermentation by
Intelligent packaging has not been researched extensively for cheese as reflected by very few publications in Figure 1. A few intelligent packaging systems investigated for cheese are presented in this section. However, large size of cheese market including import and export offers attractive opportunities. A list of different suppliers of commercially available smart packaging materials along with their head office, website and contact point are detailed in Table 4.
Type of smart packaging | Company (Head Office) | Brand name | Website | Distributor/Contact point in Asia |
---|---|---|---|---|
Clariant® Chemicals (Switzerland) | OXY-GUARD™, O-Buster® | www.clariant.com | Clariant Chemical, Vadodara | |
Mitsubishi Gas Chemical (Japan) | Ageless | www.mgc.co.jp | Information & Advanced Materials Company, Oxygen Absorbers Division, Japan | |
Toppan Printing (Japan) | Freshilizer | www.toppan.com | Max Speciality Films Limited, Punjab, India | |
Multisorb Filtration Group® (New York, USA) | StabilOx®, Freshmax | www.multisorb.com | — | |
Southcorp Packaging (Acquired by Visy®) (Australia) | Zero2 | www.visy.com.au | No facility in India. Available in Thailand. | |
AGM Containers (USA) | ActiSorb®O | Clariant India, Maharashtra India | ||
Avery Dennison (California, USA) | TT Sensor™ | www.averydennison.com | Bangalore, Karnataka | |
IntroTech (Netherlands) | Monitor Mark® | www.introtech.eu | — | |
Vitsab® (Limhamn, Sweden) | CheckPoint® | www.vitsab.com | — | |
TempTime® Corporation (USA) | Fresh-Check® | www.temptimecorp.com | Lisaline Lifescience Technologies Pvt. Ltd., Thane, India | |
Life Materials Technology Limited (Hong Kong) | Agion® | www.life-materials.com | — | |
Addmaster Limited (UK) | Biomaster® | www.addmaster.co.uk | Jebsen & Jessen, Indonesia (Contact point in Asia) | |
VGP (Barcelona, Spain) | Natamycin | — | ||
Evert-Fresh Corporation (USA) | Evert-Fresh | www.evertfresh.com | — | |
Sekisui Jushi (Japan) | Neupalon | www.sjc-strapping.com | — | |
Peakfresh Products Ltd. (Australia) | Peakfresh | www.peakfresh.com | — | |
Sealed Air® Corporation (USA) | Dri-Loc® | www.sealedair.com | — | |
SEALPAC® (Germany) | Tenderpac® | www.sealpacinternational.com | Synerchem Sdn. Bhd., Selangor, Malaysia (Contact point in Asia) | |
Freshpoint Lab (Australia) | O2 Sense | www.freshpoint.com | — | |
Timestrip Ltd. | Timestrip | — | — | |
Mitsubishi Gas Chemical (Japan) | Ageless Eye | www.mgc.co.jp | Information & Advanced Materials Company, Oxygen Absorbers Division, Japan | |
Insignia Technologies Ltd. (Scotland) | Novas | www.insigniatechnologies.com | — | |
Temptrip LLC (USA) | Temptrip | www.temptrip.com | — | |
Mondi Plc (Austria) | Intelligent Box | www.mondigroup.com | — | |
COX Technologies (USA) | Fresh Tag | www.cox-tec.com | — | |
Timestrip (UK) | Timestrip® | www.timestrip.com | — | |
Ripesense Ltd. (New Zealand) | ripeSense® | www.ripesense.co.nz | — | |
Sirane Food Packaging Limited (UK) | Sira-Crisp™ | www.sirane.com | Sirane East, Vostok, Russia | |
VacPac Inc. (USA) | SmartPouch | www.vacpacinc.com | — |
Suppliers and Asian contact point of commercially available smart packaging systems.
Source: compiled from internet using website of the companies.
Gas indicators or package integrity or leak indicators generally indicate the presence or absence of any gas (majorly oxygen) on the basis of certain chemical or enzymatic reactions. Cheeses are packed under modified atmospheres usually devoid of oxygen to enhance their shelf life. However, the gas composition of cheese package may change relying on the microbial growth inside the package, barrier properties of the packaging material, efficiency of packaging system, or physical damage, if any, that causes leakage [72]. So, knowing the level of oxygen is important to ensure cheese quality and safety in the entire supply chain and throughout its shelf-life. Redox dye-based oxygen indicators have been reported to indicate the package integrity and status of MAP in food non-destructively [73]. A schematic illustration of Mozzarella cheese package equipped with an oxygen indicator and oxygen scavenger with dye-based oxygen sensor is presented in Figures 3 and 4, respectively.
A schematic illustration of intelligent packaging system using an oxygen indicator applied to mozzarella cheese package (
A schematic illustration of smart (active + intelligent) packaging system for mozzarella cheese package with oxygen indicator (shown in pink color) and oxygen scavenger (O-buster® oxygen scavenger) (
A single use fluorescent-based oxygen sensor prepared using platinum octaethylporphyrin-ketone (PtOEPK), a phosphorescent oxygen-sensitive dye, sensed oxygen concentration changes in MAP cheddar cheese over a period of 4 months. The sensor was reported to possess sensitivity in the range between 0.02% and 100% oxygen. Correlation between oxygen concentration and microbial growth presented an opportunity for assessment of cheese quality using colorimetric oxygen sensor [74]. Similarly, dye based ultraviolet light activated oxygen sensor was successfully developed and characterized for its oxygen sensitivity, oxygen dependent color change and mechanical properties by Deshwal et al. (2018) [75]. The developed indicator was integrated with MAP Mozzarella cheese as an integrity/oxygen indicator, which could be helpful for stakeholders in the entire supply chain [15]. Hempel, Gillanders, Papkovsky, & Kerry, (2012) [76] successfully exploited optical oxygen sensors for detecting integrity (ingress of oxygen) of vacuum packaged cheddar cheese samples during its storage.
Freshness indicators, mostly colorimetric in nature, determine the safety, quality or freshness of product based on microbial growth or chemical change. They trigger a visual indication mechanism by detecting the metabolites of microbial or chemical change [77]. Possibilities of freshness detection of packaged milk, cream and cottage cheese using polymer-based labels was proposed by Chen & Zall (1987) [78]. Major approach for characterizing the deterioration of any cheese is by identifying the volatile organic compounds liberated during its storage (or ripening) using solid phase microextraction-gas chromatography/mass spectroscopy (SPME-GC–MS). Octane, hexanal and 2-pentyl-furan were the indicators for light exposure as obtained during the volatile profile of processed cheese [79]. Fourier Transform Infrared Spectroscopy (FTIR) and near infrared spectroscopy (NIR) have also been used to rapidly identify the chemical groups involved in the Crescenza cheese spoilage for possible development of freshness indicator [80]. Most recently, a biodegradable chitosan film containing pomegranate peels/Melissa officinalis essential oil demonstrated not only antimicrobial potential but also anthocyanins functionality as a spoilage indicator changing its color from blue to red due to pH change of cream cheese during spoilage [77]. A diverse blue cheese classification or identification indicator based on chromogenic array pattern of several pH dyes differentiated five cheeses i.e. Roquefort, Blue Stilton, blue cheese with leaves, blue cheese spread and Cheddar with 100% accuracy [81]. Such type of indicators can be used as freshness indicators of blue cheese where the changes in pH and color could be correlated with cheese spoilage. An attempt for the development of red cabbage extract-based pH indicator for monitoring Ricotta cheese spoilage was reported by Bento, Pereira, Chaves, & Stefani, (2015) [82]. Biogenic amines like histamine, tyramine, tryptamine and phenylethylamine are produced in cheese during ripening. Several reports of histamine poisoning in the past for Gouda, Swiss, Cheddar, Cheshire etc. cheeses indicate the potential of biogenic amines as freshness or spoilage indicators for cheese [83]. Freshness indicators for poultry, fish and seafood are commercially available, but a very few “biological use by date” or “chemical best before date” indicators for dairy products had been reported to the best of our knowledge indicating research possibilities in this area.
Cheese ripening indicator could be defined as the use of any technique/process/sensor for spotting metabolites (majorly volatiles) or chemical breakdown by-products of glycolysis, proteolysis and lipolysis to quantify the maturity or age of any cheese variety. The earliest attempt in cheese segment included the use of amido black dye for detecting the age of Cheddar and lactose-hydrolyzed cheddar cheese. Dye binding values were correlated with the free amino acid content [84]. Electric nose (or e-nose) had been used for headspace fingerprinting of packaged ripened cheese (Crescenza) volatiles and the data obtained was found to be helpful for its shelf-life measurement [85]. Tavaria, Ferreira, & Malcata, (2004) [86] quantified major ripening descriptors like free fatty acids, acetic, isobutyric and isovaleric acid concentration during 180 days ripening period of Serra da Estrela cheese. These volatile fatty acids furnished information about the optimal consumption time of cheese which could also be successfully used as ripening indicator. Industrially successful models based on infrared reflectance spectra, attributed to the changes in absorbance patterns of alcohol and amide groups have been used to predict the ripening stages and sensory characteristics of Cheddar [87] and Camembert cheese [88] with a minute error of one day.
The shelf-life of any food commodity as mentioned on the package in terms of “biological use by date” or “chemical best before date” is subject to its temperature exposure history owing to temperature dependence of microbial growth, enzyme activity and chemical reactions. Time temperature indicators (TTIs) convey information about the temperature exposure of the food commodity over a period of time [89]. TTIs mainly finds their applications in temperature sensitive food products that are stored or distributed in chilled conditions like milk, cheese, ice-cream, yoghurt, meat, fish etc. Shellhammer & Singh (1991) [90] used enzyme-based full history TTI (I-POINT®) on cottage cheese to correlate temperature variation with cheese quality parameters and reported that the TTIs response was significantly affected by pH, titratable acidity and standard plate count of cheese samples. However, attempts of TTI usage in cheese are few and include shelf-life evaluation of Taleggio cheese [91] and Caprino type cheese [92] using TTIs. Potential of diacetylenic monomers as active ingredient in TTIs based on polymerization reaction for monitoring cheese maturity had also been suggested [93]. A study on evolution of proteolytic activity products in Azeitao cheese with fluctuating temperature revealed prominent presence of two free amino acids (valine and leucine) and two biogenic amines (tyramine and putrescine), which may serve as temperature change indicators for the development of microbial TTI for ripened cheese [94].
Cheese traceability at batch level is maintained using self-adhesive casein labels, written records, and in advanced cases information is stored in a local database. However, such systems are inefficient considering food safety, counterfeiting risks, voluminous cheese production, warehouse optimization and cost involved in production [95]. So, application of RFID tags at ‘farm to fork’ levels of cheese industry could provide reliable solutions as it stores more information and assess at longer distances [12]. Regattieri, Gamberi, & Manzini (2007) [96] developed a RFID based traceability systems for hard cheese (Parmigiano Reggiano) which detects the history of the product over entire supply chain. Every minute information starting from feed input, production details to detailed pedigree of a cheese piece is available, thus even facilitating consumers to authorize cheese origin and prevent cheese imitation. The final cost of such RFID tags on customer was calculated to be 0.5%. Similarly, improved traceability of long-ripened cheeses (Bra Tenero, Bra Duro, Raschera and Toma Piemontese) with automatic movement recording during production, handling in ripening room and warehouse, delivery, packing and selling was achieved using tags operating at low (125 kHz), high (13.56 MHz) and ultra-high (865 MHz) frequency [12]. RFID tags with an ability to store data related to 200 variables of cheese production not only improved the quality and yield control of the production plant but also possessed robustness against different temperature, humidity, acid and frictional forces [97]. Papetti et al. (2012) [98] designed a web based “infotracing system” for Italian cheese (
Physical shock indicators are of prime importance for status quo of any fragile product during its rough handling or carriage. Cheeses are often exported across the globe with highest probability of mishandling by personnel during any step of distribution channels or improper selection of transportation channel. Physical shock indicators could be developed using diffusion mechanism, where a fluid leaks and collects irreversibly in another impermeable package, thus indicating the force or pressure to which package content had been exposed. To the best of our knowledge and literature mining no physical shock indicator for cheese and food packaging had been reported. Convex-concave type of metallic structure could also be used to identify the forces to which any cheese packages are exposed over long distances.
Packaging could also be used for facilitating the reduction of cholesterol and lactose in cheeses using cholesterol reductase and lactase enzymes. Cholesterol reductase enzyme converts cholesterol to undigested form (coprosterol), reducing its absorption in intestine. An innovative ethylene-vinyl alcohol copolymer (EVOH) plastic encompassing 30% beta-cyclodextrins reduced the cholesterol concentration by 23% in UHT milk [100]. Such type of active plastic films could be incorporated with β-galactosidase enzyme (lactase) and explored for the development of lactose free whey cheeses due to increased incidences of lactose intolerance across the globe [101].
Citric acid, ferrous salt/ascorbic acid, cellulose triacetate and activated carbon/clays/zeolites are most commonly used off-odor absorbers finding their use in fish, cereals, fruits and poultry products [3]. Off-flavor and odor scavengers prevent cross contamination of pungent odor and aids in improving the overall acceptance of cheeses. However, it is imperative that the constituents scavenged should not be spoilage indicators or essential for flavor development. Some ketones, aldehydes and esters are associated with fruity flavor of cheeses which may be undesirable for some customers [102]. Aldehyde and ester scavengers in cheese packaging can be helpful in improving its sensorial quality. The identified volatile compounds from the headspace of cheese packages revealed the possibilities for development of absorption system and stabilization of sensory qualities of semi-soft ripened cheese [103].
The earliest documented and patented step to achieve the tack ability of a multilayered polyester film over cheese surface was the electrical discharge or flame treatment of the inner surface [104]. Such films were temporarily adherent and easily peel able while opening cheese package. Presently, these anti-stick films can find their vast application for packaging individual slices of processed cheese or Mozzarella cheese spheres thus, reducing sticking losses.
Carbon dioxide and ethanol not only inhibit bacteria, yeasts, molds but also reduces oxidation and could be used individually or in combination for cheese packaging systems to inhibit microbial growth and pack shrinkage [105]. Cheese is most commonly packed with higher CO2 concentration using MAP technique but CO2 dissolves in the product leading to package collapse [6]. Package collapse could be overcome by inserting CO2 emitters in standard MAP cheese trays with perforated false bottom. The controlled release of ethanol in cheese packs could be obtained by encapsulating in a carrier material [65]. Ethicap®, a commercialized ethanol emitter absorbed in silica pads and embedded in sachets made from ethylene vinyl acetate copolymer prevented the growth of molds and yeast, thereby enhancing the shelf-life of soft cheeses [106]. However, objectionable off-flavors involved with higher concentration of CO2 and ethanol are concerning and supplementary flavor mixtures may be required.
An innovative single use package having the ability to absorb oxygen, carbon dioxide and water vapor, comprising of calcium hydroxide which emits water due to CO2 absorption, thus activating transition metal (iron oxide) based oxygen scavenger has been developed. Such containers would be suitable for hard cheeses like Taleggio, which emits large amount of CO2 during ripening and require slight oxygen for maintaining the growth of live cultures [107].
Self-cooling packaging technique is based on an endothermic chemical reaction involving the dissolution of ammonium chloride or ammonium nitrate in water and heat pump technology using water as the heat transmission medium. Such type of packaging systems may remunerate the cold chain conditions, especially where supply channel is inefficient [3]. Initially, thermal sensitive cheese varieties may be shipped using secondary or tertiary thermal management system. Greenbox Thermal Management Systems™ utilizes organic phase change nanomaterial labeled as PureTemp®, to provide specifically designed distribution carriage systems with an ability to maintain temperature precisely for longer durations of supply [108]. It consists of a reusable, recyclable and completely biodegradable boxes in box arrangement with exterior layer of corrugated plastic. Such type of self-cooling containers may be really helpful for exporting cheeses over longer distances without any thermal abuse and quality deterioration.
Emmental and Gouda cheese possess typical and desired regular round holes (eyes) owing to the production of large amount of carbon dioxide during lactate metabolism [109]. Dye based CO2 indicators based on color intensity that is correlated with amount of CO2 released could be used to monitor advances in ripening and signpost the accomplishment of optimal ripening. Recently, a novel consumable adhesive CO2 indicator strip consisting of phenol red dye and tetrabutylammonium hydroxide coated onto silica nanoparticles was developed by Wang, Yusufu, & Mills, (2019) [110]. The color response was dependent on temperature and thickness of polymer barrier films. Such type of indicators could be explored for the development of CO2 indicator or freshness indicator for modified atmosphere packaged cheese and cheese-based products.
Temperature sensitive networks based on chitosan-poly-(N-isopropylacrylamide) for controlled release were developed by Alvarez-Lorenzo et al. (2005) [111], which can be used in active cheese packaging materials for precise emission of any active component. Films changing their gas permeability in response to degree of temperature and exposure duration may be frequently used during storage and distribution of respiring cheeses like Camembert and Gouda. BreatheWay® membrane technology (Apio Inc., California), based on side chain crystallizable (SCC) polymers provides the solution for gas permeability control according to change in temperature. The change in polymer properties like chain length and side chains can be used for attaining required oxygen and carbon dioxide permeabilities in cheese packages [3].
With the focal point being shifted to consumer convenience, quality and safety, active and intelligent packaging tools may help customers with informed choice. As the world is witnessing increased consumption of cheese, these packaging tools have potential market growth. The expansion of smart packaging technologies in cheese industry remains at a nascent stage. Recent research publications on smart packaging of meat, fish, fruits and vegetables suggest innovative ideas which could be conceptualized for cheese in near future. Smart packaging tools need to be of low cost and multiple benefits. The partnership of active and intelligent packaging can be used to complement each other’s actions. Existing challenges could be overcome by multidisciplinary approaches for the development of smaller, more powerful and cost-effective smart packaging systems. Biotechnology, nanotechnology, food science, sensor technology and information technology could be combined for overcoming the shortcomings. Biosensor and hybrid devices for cheese packaging remains untouched in terms of its development and commercialization. It could be expected that with the continuous advances in intelligent packaging and growing modified atmosphere packaged dairy products market, the demand for such type of intelligent packaging systems is expected to rise.
We are highly thankful to Director, ICAR-National Dairy Research Institute, Karnal for providing the required facilities to carry out the present work.
The authors declare no conflict of interest that might be perceived as affecting the neutrality of the article.
All publications on this website are published under the Open Access model, without any subscription, registration, or access fees required from the user or his/her institution. In accordance with the Budapest Open Access Initiative's (BOAI) definition of Open Access, users are allowed to read, download, copy, distribute, print, search, and link to the full text versions of all Chapters. To read more about our Open Access Statement click here.
\n\nFor Editorial Policies for journals please consult individual journal pages.
',metaTitle:"Editorial policies",metaDescription:"Editorial policies",metaKeywords:null,canonicalURL:"/page/editorial-policies",contentRaw:'[{"type":"htmlEditorComponent","content":"All published Book Chapters are licensed under a Creative Commons Attribution 3.0 Unported License. Monographs are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license granted to all others. Our Copyright Policy aims to guarantee that original material is published while at the same time giving significant freedom to our Authors. IntechOpen upholds a flexible Copyright Policy meaning that there is no copyright transfer to the publisher and Authors hold exclusive copyright to their work.
\\n\\n\\n\\nWith the purpose of protecting our Authors' copyright and the transparent reuse of Open Access content, IntechOpen has developed an Attribution Policy for works published under Creative Commons licenses.
\\n\\n\\n\\nIntechOpen is committed to disseminating high-quality scientific research in a manner that exemplifies the best practice in scholarly publishing. IntechOpen is an official member of the Committee on Publication Ethics (COPE), which advocates the maintenance of the highest ethical standards for all parties involved in the act of publishing, including Authors, Academic Editors of the book, Peer Reviewers, the publisher and Societies, where applicable.
\\n\\nIn line with publication ethics practices recommended by COPE, ICMJE, and other similar organizations, IntechOpen's contributing Authors, Academic Editors, and Peer Reviewers are required to declare fully all possible conflicts of interest.
\\n\\n\\n\\nIntechOpen's Authorship Policy is based on ICMJE criteria for authorship. In order to be identified as an Author, the following requirements must be met:
\\n\\nAll scientific works are subject to Peer Review prior to publishing. IntechOpen is a member of the Committee on Publication Ethics (COPE) and all participating referees and Academic Editors are expected to review submitted scientific works in line with the COPE Ethical Guidelines for Peer Reviewers where applicable.
\\n\\n\\n\\nThe Internet has changed the dynamics of scholarly communication and publishing which is why we find it necessary to clearly indicate our stance on what we consider to be a published scientific work. A significant number of working papers, early drafts, and similar works in progress are shared openly online between members of the scientific community. It has become common practice for researchers to announce their work on a personal website or a blog in order to gather comments and suggestions from other researchers. Such works and online postings are ‘published’ in the sense that they are made publicly available, but this does not mean that if submitted for publication by IntechOpen they are not original works. We differentiate between reviewed and non-reviewed works when determining whether a work is original and has been published in a scholarly sense or not.
\\n\\n\\n\\nTo identify instances of fraud and misconduct during the publishing process, IntechOpen implements a robust policy governing such occurrences. In line with our general commitment to openness, and in order to maintain the highest scientific standards, we are committed to transparency about our editorial policy regarding retractions and corrections.
\\n\\n\\n\\nWhen faced with potential misconduct, IntechOpen accepts its responsibility to maintain the integrity of the academic record. For particularly complex cases, IntechOpen might ask for the assistance of formal industry bodies or seek advice from an appropriate team of advisors.
\\n\\nIntechOpen's advisors are professionals and scholars with broad knowledge and understanding of different aspects of the scientific publishing process: editorial, authorship, and reviewing roles; publication ethics, copyright, and general legal issues; as well as bibliographic and technical standards.
\\n\\nIn order to provide us with unbiased insights, without compromising the privacy of third parties, IntechOpen presents problematic cases to its advisors in an anonymized format.
\\n\\nIntechOpen publishes books in the English language. If you are interested in the translation of Book Chapters, please check IntechOpen's Translation Policy.
\\n\\n\\n\\nIn line with the Principles of Transparency and Best Practice in Scholarly Publishing, you can access a more detailed description of IntechOpen's Advertising Policy.
\\n\\n\\n\\nAt IntechOpen we realize that exceptional circumstances can occur, resulting in a request for a refund. We will honor all justified requests in the specific instances outlined in our Refund Policy.
\\n\\n\\n\\nAll chapters will be published via IntechOpen's 'Online First' service meaning chapters will be published individually, immediately after review and before the entire book is ready for publication, allowing content to be shared, searched and cited straightaway, thereby generating early stage interest and momentum for your research
\\n\\nOnline First Chapters are considered published on the day they are posted and are citable from that date.
\\n\\nChapters will remain listed as Online First until the final versions of the books are published online. Following publication of the full monograph, Chapters will be redirected from the Online First version and will be available only through the final link of the official published page.
\\n\\nYou are invited to download, use, reproduce, make derivative works of, display, distribute and cite the Online First works. You can find "How to Cite and Reference" by following the link at the end of each online book chapter. Please be aware that it is possible that further editing and changes might be made before the final release of the book.
\\n\\nIf there are supplemental materials to the chapter, these will be published at the time the final book is published online.
\\n\\nReaders and Authors can notify us if they find any errors in the works published under Online First. All major errors will be accompanied by a separate correction notice, erratum or corrigendum (Retraction and Correction Policy.)
\\n\\nIntechOpen books are available online by accessing all published content on a chapter level.
\\n\\n\\n\\nIntechOpen publishes different types of publications.
\\n\\n\\n\\n\\n"}]'},components:[{type:"htmlEditorComponent",content:'
All published Book Chapters are licensed under a Creative Commons Attribution 3.0 Unported License. Monographs are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license granted to all others. Our Copyright Policy aims to guarantee that original material is published while at the same time giving significant freedom to our Authors. IntechOpen upholds a flexible Copyright Policy meaning that there is no copyright transfer to the publisher and Authors hold exclusive copyright to their work.
\n\n\n\nWith the purpose of protecting our Authors' copyright and the transparent reuse of Open Access content, IntechOpen has developed an Attribution Policy for works published under Creative Commons licenses.
\n\n\n\nIntechOpen is committed to disseminating high-quality scientific research in a manner that exemplifies the best practice in scholarly publishing. IntechOpen is an official member of the Committee on Publication Ethics (COPE), which advocates the maintenance of the highest ethical standards for all parties involved in the act of publishing, including Authors, Academic Editors of the book, Peer Reviewers, the publisher and Societies, where applicable.
\n\nIn line with publication ethics practices recommended by COPE, ICMJE, and other similar organizations, IntechOpen's contributing Authors, Academic Editors, and Peer Reviewers are required to declare fully all possible conflicts of interest.
\n\n\n\nIntechOpen's Authorship Policy is based on ICMJE criteria for authorship. In order to be identified as an Author, the following requirements must be met:
\n\nAll scientific works are subject to Peer Review prior to publishing. IntechOpen is a member of the Committee on Publication Ethics (COPE) and all participating referees and Academic Editors are expected to review submitted scientific works in line with the COPE Ethical Guidelines for Peer Reviewers where applicable.
\n\n\n\nThe Internet has changed the dynamics of scholarly communication and publishing which is why we find it necessary to clearly indicate our stance on what we consider to be a published scientific work. A significant number of working papers, early drafts, and similar works in progress are shared openly online between members of the scientific community. It has become common practice for researchers to announce their work on a personal website or a blog in order to gather comments and suggestions from other researchers. Such works and online postings are ‘published’ in the sense that they are made publicly available, but this does not mean that if submitted for publication by IntechOpen they are not original works. We differentiate between reviewed and non-reviewed works when determining whether a work is original and has been published in a scholarly sense or not.
\n\n\n\nTo identify instances of fraud and misconduct during the publishing process, IntechOpen implements a robust policy governing such occurrences. In line with our general commitment to openness, and in order to maintain the highest scientific standards, we are committed to transparency about our editorial policy regarding retractions and corrections.
\n\n\n\nWhen faced with potential misconduct, IntechOpen accepts its responsibility to maintain the integrity of the academic record. For particularly complex cases, IntechOpen might ask for the assistance of formal industry bodies or seek advice from an appropriate team of advisors.
\n\nIntechOpen's advisors are professionals and scholars with broad knowledge and understanding of different aspects of the scientific publishing process: editorial, authorship, and reviewing roles; publication ethics, copyright, and general legal issues; as well as bibliographic and technical standards.
\n\nIn order to provide us with unbiased insights, without compromising the privacy of third parties, IntechOpen presents problematic cases to its advisors in an anonymized format.
\n\nIntechOpen publishes books in the English language. If you are interested in the translation of Book Chapters, please check IntechOpen's Translation Policy.
\n\n\n\nIn line with the Principles of Transparency and Best Practice in Scholarly Publishing, you can access a more detailed description of IntechOpen's Advertising Policy.
\n\n\n\nAt IntechOpen we realize that exceptional circumstances can occur, resulting in a request for a refund. We will honor all justified requests in the specific instances outlined in our Refund Policy.
\n\n\n\nAll chapters will be published via IntechOpen's 'Online First' service meaning chapters will be published individually, immediately after review and before the entire book is ready for publication, allowing content to be shared, searched and cited straightaway, thereby generating early stage interest and momentum for your research
\n\nOnline First Chapters are considered published on the day they are posted and are citable from that date.
\n\nChapters will remain listed as Online First until the final versions of the books are published online. Following publication of the full monograph, Chapters will be redirected from the Online First version and will be available only through the final link of the official published page.
\n\nYou are invited to download, use, reproduce, make derivative works of, display, distribute and cite the Online First works. You can find "How to Cite and Reference" by following the link at the end of each online book chapter. Please be aware that it is possible that further editing and changes might be made before the final release of the book.
\n\nIf there are supplemental materials to the chapter, these will be published at the time the final book is published online.
\n\nReaders and Authors can notify us if they find any errors in the works published under Online First. All major errors will be accompanied by a separate correction notice, erratum or corrigendum (Retraction and Correction Policy.)
\n\nIntechOpen books are available online by accessing all published content on a chapter level.
\n\n\n\nIntechOpen publishes different types of publications.
\n\n\n\n\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{regionId:"4",sort:"featured,name"},profiles:[{id:"58592",title:"Dr.",name:"Arun",middleName:null,surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/58592/images/1664_n.jpg",biography:"Arun K. Shanker is serving as a Principal Scientist (Plant Physiology) with the Indian Council of Agricultural Research (ICAR) at the Central Research Institute for Dryland Agriculture in Hyderabad, India. He is working with the ICAR as a full time researcher since 1993 and has since earned his Advanced degree in Crop Physiology while in service. He has been awarded the prestigious Member of the Royal Society of Chemistry (MRSC), by the Royal Society of Chemistry, London in 2015. Presently he is working on systems biology approach to study the mechanism of abiotic stress tolerance in crops. His main focus now is to unravel the mechanism of drought and heat stress response in plants to tackle climate change related threats in agriculture.",institutionString:null,institution:{name:"Indian Council of Agricultural Research",country:{name:"India"}}},{id:"4782",title:"Prof.",name:"Bishnu",middleName:"P",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/4782/images/system/4782.jpg",biography:"Bishnu P. Pal is Professor of Physics at Mahindra École\nCentrale Hyderabad India since July 1st 2014 after retirement\nas Professor of Physics from IIT Delhi; Ph.D.’1975 from IIT\nDelhi; Fellow of OSA and SPIE; Senior Member IEEE;\nHonorary Foreign Member Royal Norwegian Society for\nScience and Arts; Member OSA Board of Directors (2009-\n11); Distinguished Lecturer IEEE Photonics Society (2005-\n07).",institutionString:null,institution:{name:"Indian Institute of Technology Delhi",country:{name:"India"}}},{id:"69653",title:"Dr.",name:"Chusak",middleName:null,surname:"Limsakul",slug:"chusak-limsakul",fullName:"Chusak Limsakul",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Prince of Songkla University",country:{name:"Thailand"}}},{id:"23804",title:"Dr.",name:"Hamzah",middleName:null,surname:"Arof",slug:"hamzah-arof",fullName:"Hamzah Arof",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/23804/images/5492_n.jpg",biography:"Hamzah Arof received his BSc from Michigan State University, and PhD from the University of Wales. Both degrees were in electrical engineering. His current research interests include signal processing and photonics. Currently he is affiliated with the Department of Electrical Engineering, University of Malaya, Malaysia.",institutionString:null,institution:{name:"University of Malaya",country:{name:"Malaysia"}}},{id:"41989",title:"Prof.",name:"He",middleName:null,surname:"Tian",slug:"he-tian",fullName:"He Tian",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"East China University of Science and Technology",country:{name:"China"}}},{id:"33351",title:null,name:"Hendra",middleName:null,surname:"Hermawan",slug:"hendra-hermawan",fullName:"Hendra Hermawan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/33351/images/168_n.jpg",biography:null,institutionString:null,institution:{name:"Institut Teknologi Bandung",country:{name:"Indonesia"}}},{id:"11981",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Ishiguro",slug:"hiroshi-ishiguro",fullName:"Hiroshi Ishiguro",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRglaQAC/Profile_Picture_1626411846553",biography:"Hiroshi Ishiguro is an award-winning roboticist and innovator. As the Director of the Intelligent Robotics Laboratory, which is part of the Department of Systems Innovation in the Graduate School of Engineering Science at Osaka University, Japan, Ishiguro concentrates on making robots that are similar as possible to humans to understand the human species. A notable project of his laboratory is the Actroid, a humanoid robot with a lifelike appearance and observable behavior such as facial movements. (Sources: http://www.geminoid.jp/en/index.html, https://en.wikipedia.org/wiki/Hiroshi_Ishiguro)",institutionString:null,institution:{name:"Osaka University",country:{name:"Japan"}}},{id:"45747",title:"Dr.",name:"Hsin-I",middleName:null,surname:"Chang",slug:"hsin-i-chang",fullName:"Hsin-I Chang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Chiayi University",country:{name:"Taiwan"}}},{id:"61581",title:"Dr.",name:"Joy Rizki Pangestu",middleName:null,surname:"Djuansjah",slug:"joy-rizki-pangestu-djuansjah",fullName:"Joy Rizki Pangestu Djuansjah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/61581/images/237_n.jpg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"94249",title:"Prof.",name:"Junji",middleName:null,surname:"Kido",slug:"junji-kido",fullName:"Junji Kido",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Yamagata University",country:{name:"Japan"}}},{id:"12009",title:"Dr.",name:"Ki Young",middleName:null,surname:"Kim",slug:"ki-young-kim",fullName:"Ki Young Kim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12009/images/system/12009.jpg",biography:"Http://m80.knu.ac.kr/~doors",institutionString:null,institution:{name:"National Cheng Kung University",country:{name:"Taiwan"}}},{id:"132595",title:"Prof.",name:"Long",middleName:null,surname:"Wang",slug:"long-wang",fullName:"Long Wang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Peking University",country:{name:"China"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6583},{group:"region",caption:"Middle and South America",value:2,count:5888},{group:"region",caption:"Africa",value:3,count:2381},{group:"region",caption:"Asia",value:4,count:12511},{group:"region",caption:"Australia and Oceania",value:5,count:1006},{group:"region",caption:"Europe",value:6,count:17529}],offset:12,limit:12,total:12511},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateendthirdsteppublish"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:42},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:6},{group:"topic",caption:"Chemistry",value:8,count:21},{group:"topic",caption:"Computer and Information Science",value:9,count:20},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:60},{group:"topic",caption:"Environmental Sciences",value:12,count:8},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:27},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:122},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:11},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10351",title:"Enhanced Liposuction",subtitle:"New Perspectives and Techniques",isOpenForSubmission:!1,hash:"f08ed6de16da357614586c5b58ed4dfa",slug:"enhanced-liposuction-new-perspectives-and-techniques",bookSignature:"Diane Irvine Duncan",coverURL:"https://cdn.intechopen.com/books/images_new/10351.jpg",editors:[{id:"279869",title:"Dr.",name:"Diane Irvine",middleName:null,surname:"Duncan",slug:"diane-irvine-duncan",fullName:"Diane Irvine Duncan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10779",title:"21st Century Nanostructured Materials",subtitle:"Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture",isOpenForSubmission:!1,hash:"72c67f97f9bef68200df115b5fd79884",slug:"21st-century-nanostructured-materials-physics-chemistry-classification-and-emerging-applications-in-industry-biomedicine-and-agriculture",bookSignature:"Phuong V. Pham",coverURL:"https://cdn.intechopen.com/books/images_new/10779.jpg",editors:[{id:"236073",title:"Dr.",name:"Phuong",middleName:"Viet",surname:"Pham",slug:"phuong-pham",fullName:"Phuong Pham"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4386},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3665,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1713,editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",publishedDate:"April 28th 2022",numberOfDownloads:2481,editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1107,editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3307,editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3266,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1868,editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",publishedDate:"May 4th 2022",numberOfDownloads:856,editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1704,editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7489,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8737",title:"Rabies Virus at the Beginning of 21st Century",subtitle:null,isOpenForSubmission:!1,hash:"49cce3f548da548c718c865feb343509",slug:"rabies-virus-at-the-beginning-of-21st-century",bookSignature:"Sergey Tkachev",coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10861",title:"Furan Derivatives",subtitle:"Recent Advances and Applications",isOpenForSubmission:!1,hash:"fdfc39cecd82f91b0effac994f75c877",slug:"furan-derivatives-recent-advances-and-applications",bookSignature:"Anish Khan, Mohammed Muzibur Rahman, M. Ramesh, Salman Ahmad Khan and Abdullah Mohammed Ahmed Asiri",coverURL:"https://cdn.intechopen.com/books/images_new/10861.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"293058",title:"Dr.",name:"Anish",middleName:null,surname:"Khan",slug:"anish-khan",fullName:"Anish Khan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10870",title:"Ultrasound Imaging",subtitle:"Current Topics",isOpenForSubmission:!1,hash:"2f0bc3733ab226d67fa73759ef0e12ad",slug:"ultrasound-imaging-current-topics",bookSignature:"Felix Okechukwu Erondu",coverURL:"https://cdn.intechopen.com/books/images_new/10870.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"68312",title:"Prof.",name:"Felix",middleName:null,surname:"Okechukwu Erondu",slug:"felix-okechukwu-erondu",fullName:"Felix Okechukwu Erondu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11392",title:"Leadership in a Changing World",subtitle:"A Multidimensional Perspective",isOpenForSubmission:!1,hash:"86a6d33cf601587e591064ce92effc02",slug:"leadership-in-a-changing-world-a-multidimensional-perspective",bookSignature:"Muhammad Mohiuddin, Bilal Khalid, Md. Samim Al Azad and Slimane Ed-dafali",coverURL:"https://cdn.intechopen.com/books/images_new/11392.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10400",title:"The Application of Ant Colony Optimization",subtitle:null,isOpenForSubmission:!1,hash:"f4fdfd07ee1ab99fb7c740d6d0c144c6",slug:"the-application-of-ant-colony-optimization",bookSignature:"Ali Soofastaei",coverURL:"https://cdn.intechopen.com/books/images_new/10400.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"257455",title:"Dr.",name:"Ali",middleName:null,surname:"Soofastaei",slug:"ali-soofastaei",fullName:"Ali Soofastaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10915",title:"Leadership",subtitle:"New Insights",isOpenForSubmission:!1,hash:"0d72e79892f2a020cee66a52d09de5a4",slug:"leadership-new-insights",bookSignature:"Mário Franco",coverURL:"https://cdn.intechopen.com/books/images_new/10915.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"105529",title:"Dr.",name:"Mário",middleName:null,surname:"Franco",slug:"mario-franco",fullName:"Mário Franco"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10683",title:"Technological Innovations and Advances in Hydropower Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ce7ad8768bd2cad155470fe1fd883f4",slug:"technological-innovations-and-advances-in-hydropower-engineering",bookSignature:"Yizi Shang, Ling Shang and Xiaofei Li",coverURL:"https://cdn.intechopen.com/books/images_new/10683.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"349630",title:"Dr.",name:"Yizi",middleName:null,surname:"Shang",slug:"yizi-shang",fullName:"Yizi Shang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7102",title:"Pneumonia",subtitle:null,isOpenForSubmission:!1,hash:"9fd70142814192dcec58a176749f1b60",slug:"pneumonia",bookSignature:"Nima Rezaei",coverURL:"https://cdn.intechopen.com/books/images_new/7102.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1382",title:"Theriogenology",slug:"genesiology-theriogenology",parent:{id:"300",title:"Genesiology",slug:"genesiology"},numberOfBooks:2,numberOfSeries:0,numberOfAuthorsAndEditors:73,numberOfWosCitations:52,numberOfCrossrefCitations:34,numberOfDimensionsCitations:79,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"1382",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,isOpenForSubmission:!1,hash:"74f4147e3fb214dd050e5edd3aaf53bc",slug:"new-insights-into-theriogenology",bookSignature:"Rita Payan-Carreira",coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",editedByType:"Edited by",editors:[{id:"38652",title:"Dr.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5105",title:"Insights from Animal Reproduction",subtitle:null,isOpenForSubmission:!1,hash:"25cd16b683d1f098bc304cbbdb3206cd",slug:"insights-from-animal-reproduction",bookSignature:"Rita Payan Carreira",coverURL:"https://cdn.intechopen.com/books/images_new/5105.jpg",editedByType:"Edited by",editors:[{id:"38652",title:"Dr.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"49736",doi:"10.5772/62053",title:"Chromosome Abnormalities in Domestic Animals as Causes of Disorders of Sex Development or Impaired Fertility",slug:"chromosome-abnormalities-in-domestic-animals-as-causes-of-disorders-of-sex-development-or-impaired-f",totalDownloads:4132,totalCrossrefCites:7,totalDimensionsCites:20,abstract:"Cytogenetic evaluation is an important step in the diagnosis of infertile or sterile animals. Moreover, the analysis of sex chromosomes is crucial for a proper classification of disorders of sex development (DSD). For many years, chromosome studies mainly addressed the livestock species, while recently, increasing interest in such analysis in companion animals is observed. New molecular and cytogenetic tools and techniques have given opportunities for a precise identification of chromosome mutations. Among them, fluorescence in situ hybridization, besides chromosome banding, has become a gold standard. In this chapter, recent advances in the cytogenetic diagnosis of cattle, pigs, horses, dogs and cats are presented.",book:{id:"5105",slug:"insights-from-animal-reproduction",title:"Insights from Animal Reproduction",fullTitle:"Insights from Animal Reproduction"},signatures:"Izabela Szczerbal and Marek Switonski",authors:[{id:"177030",title:"Prof.",name:"Marek",middleName:null,surname:"Switonski",slug:"marek-switonski",fullName:"Marek Switonski"},{id:"177045",title:"Dr.",name:"Izabela",middleName:null,surname:"Szczerbal",slug:"izabela-szczerbal",fullName:"Izabela Szczerbal"}]},{id:"49857",doi:"10.5772/62207",title:"Germ Cell Determinant Transmission, Segregation, and Function in the Zebrafish Embryo",slug:"germ-cell-determinant-transmission-segregation-and-function-in-the-zebrafish-embryo",totalDownloads:2278,totalCrossrefCites:4,totalDimensionsCites:11,abstract:"Animals specify primordial germ cells (PGCs) in two alternate modes: preformation and epigenesis. Epigenesis relies on signal transduction from the surrounding tissues to instruct a group of cells to acquire PGC identity. Preformation, thought to be the more derived PGC specification mode, is instead based on the maternal inheritance of germ cell-determining factors. We use the zebrafish as a model system, in which PGCs are specified through maternal inheritance of germ plasm, to study this process in vertebrates. In zebrafish, maternally inherited germ plasm ribonucleoparticles (RNPs) have co-opted the cytoskeletal machinery to reach progressive levels of multimerization, resulting in the formation of four large masses of aggregated germ plasm RNPs. At later stages, germ plasm masses continue to use components of the cell division machinery, such as the spindles, centrosomes, and/or subcellular organelles to segregate asymmetrically during cell division and subsequently induce germ cell fate. This chapter discusses the current knowledge of germ cell specification focusing on the zebrafish as a model system. We also provide a comparative analysis of the mechanism for germ plasm RNP segregation in zebrafish versus other known vertebrate systems of germ cell preformation, such as in amphibian and avian models.",book:{id:"5105",slug:"insights-from-animal-reproduction",title:"Insights from Animal Reproduction",fullTitle:"Insights from Animal Reproduction"},signatures:"Celeste Eno and Francisco Pelegri",authors:[{id:"177209",title:"Prof.",name:"Francisco",middleName:null,surname:"Pelegri",slug:"francisco-pelegri",fullName:"Francisco Pelegri"}]},{id:"62171",doi:"10.5772/intechopen.79106",title:"Intraoviductal Instillation of a Solution as an Effective Route for Manipulating Preimplantation Mammalian Embryos in vivo",slug:"intraoviductal-instillation-of-a-solution-as-an-effective-route-for-manipulating-preimplantation-mam",totalDownloads:1121,totalCrossrefCites:8,totalDimensionsCites:9,abstract:"Preimplantation embryos of mammals are enclosed by a translucent layer called zona pellucida (ZP), which is composed of glycoproteins. ZP is important for protecting against infection by virus and bacteria, and to prevent attachment of embryos to the oviductal epithelia. Due to the presence of ZP, it has been difficult to transfect preimplantation embryos existing within the oviductal lumen, with exogenous nucleic acids, such as DNA and mRNA. However, intraoviductal instillation of nucleic acids, and subsequent in vivo electroporation in pregnant females, enables transfection of these embryos, leading to the production of gene-modified animals. This new method for production of genetically modified animals does not require any ex vivo handling of embryos, which has been essential for traditional transgenesis. In this article, we describe recent advances in the in vivo transfection of preimplantation mammalian embryos, and also the possibility of simple transfection of these embryos through intraoviductal instillation of a solution, alone.",book:{id:"7233",slug:"new-insights-into-theriogenology",title:"New Insights into Theriogenology",fullTitle:"New Insights into Theriogenology"},signatures:"Masahiro Sato, Masato Ohtsuka and Shingo Nakamura",authors:[{id:"177440",title:"Dr.",name:"Masato",middleName:null,surname:"Ohtsuka",slug:"masato-ohtsuka",fullName:"Masato Ohtsuka"},{id:"177444",title:"Dr.",name:"Shingo",middleName:null,surname:"Nakamura",slug:"shingo-nakamura",fullName:"Shingo Nakamura"},{id:"245795",title:"Prof.",name:"Masahiro",middleName:null,surname:"Sato",slug:"masahiro-sato",fullName:"Masahiro Sato"}]},{id:"50061",doi:"10.5772/62470",title:"Sperm Motility Regulatory Proteins: A Tool to Enhance Sperm Quality",slug:"sperm-motility-regulatory-proteins-a-tool-to-enhance-sperm-quality",totalDownloads:2126,totalCrossrefCites:2,totalDimensionsCites:6,abstract:"Sperm forward motility is an essential parameter in mammalian fertilization. Studies from our laboratory have identified and characterized a few unique sperm motility regulatory proteins/glycoproteins from the male reproductive fluids and mammalian blood serum. The purified sperm motility-initiating protein (MIP) from caprine epididymal plasma as well as the forward motility-stimulating factor (FMSF) and motility-stimulating protein (MSP) from buffalo and goat serum, respectively, have high efficacy to initiate or increase motility in nonmotile or less motile sperm. Antibody of sperm motility inhibitory factor (MIF-II) has the high potential to enhance sperm vertical velocity and forward motility by increasing intracellular cyclic adenosine monophosphate (cAMP) level. The appearance and disappearance of D-galactose–specific lectin and its receptor along the epididymis has been reported to be involved in motility regulation in spermatozoa. A novel synthetic cryopreservation method and role of lipid to protect membrane damage during cryopreservation have been demonstrated. Motility-promoting proteins may be extremely useful for improving cattle breeding and breeding of endangered species, thereby helping in enhanced production of animal products as well as in the conservation of animals. Isolated proteins and developed cryopreservation technology may also be beneficial in human infertility clinics to increase the chance of fertilization.",book:{id:"5105",slug:"insights-from-animal-reproduction",title:"Insights from Animal Reproduction",fullTitle:"Insights from Animal Reproduction"},signatures:"Sandhya R. Dungdung, Arpita Bhoumik, Sudipta Saha, Prasanta\nGhosh, Kaushik Das, Sandipan Mukherjee, Debjani Nath, Jitamanyu\nChakrabarty, Chanakyanath Kundu, Bijay Shankar Jaiswal, Mahitosh\nMandal, Arunima Maiti, Saswati Banerjee, Madhumita\nRoychowdhury, Debleena Ray, Debdas Bhattacharyya and Gopal C.\nMajumder",authors:[{id:"50052",title:"Dr.",name:"Mahitosh",middleName:null,surname:"Mandal",slug:"mahitosh-mandal",fullName:"Mahitosh Mandal"},{id:"177044",title:"Dr.",name:"Sandhya",middleName:null,surname:"Dungdung",slug:"sandhya-dungdung",fullName:"Sandhya Dungdung"},{id:"177920",title:"Dr.",name:"Arpita",middleName:null,surname:"Bhoumik",slug:"arpita-bhoumik",fullName:"Arpita Bhoumik"},{id:"177921",title:"Dr.",name:"Sudipta",middleName:null,surname:"Saha",slug:"sudipta-saha",fullName:"Sudipta Saha"},{id:"177922",title:"MSc.",name:"Prasanta",middleName:null,surname:"Ghosh",slug:"prasanta-ghosh",fullName:"Prasanta Ghosh"},{id:"177923",title:"Dr.",name:"Kaushik",middleName:null,surname:"Das",slug:"kaushik-das",fullName:"Kaushik Das"},{id:"177924",title:"MSc.",name:"Sandipan",middleName:null,surname:"Mukherjee",slug:"sandipan-mukherjee",fullName:"Sandipan Mukherjee"},{id:"177925",title:"Dr.",name:"Debjani",middleName:null,surname:"Nath",slug:"debjani-nath",fullName:"Debjani Nath"},{id:"177927",title:"Dr.",name:"Jitamanyu",middleName:null,surname:"Chakrabarty",slug:"jitamanyu-chakrabarty",fullName:"Jitamanyu Chakrabarty"},{id:"177928",title:"Dr.",name:"Chanakyanath",middleName:null,surname:"Kundu",slug:"chanakyanath-kundu",fullName:"Chanakyanath Kundu"},{id:"177929",title:"Dr.",name:"Bijay Shankar",middleName:null,surname:"Jaiswal",slug:"bijay-shankar-jaiswal",fullName:"Bijay Shankar Jaiswal"},{id:"177930",title:"Dr.",name:"Arunima",middleName:null,surname:"Maiti",slug:"arunima-maiti",fullName:"Arunima Maiti"},{id:"177931",title:"Dr.",name:"Saswati",middleName:null,surname:"Banerjee",slug:"saswati-banerjee",fullName:"Saswati Banerjee"},{id:"177932",title:"Dr.",name:"Madhumita",middleName:null,surname:"Roychowdhury",slug:"madhumita-roychowdhury",fullName:"Madhumita Roychowdhury"},{id:"177933",title:"MSc.",name:"Debleena",middleName:null,surname:"Ray",slug:"debleena-ray",fullName:"Debleena Ray"},{id:"177934",title:"Dr.",name:"Debdas",middleName:null,surname:"Bhattacharyya",slug:"debdas-bhattacharyya",fullName:"Debdas Bhattacharyya"},{id:"177935",title:"Dr.",name:"Gopal Chandra",middleName:null,surname:"Majumder",slug:"gopal-chandra-majumder",fullName:"Gopal Chandra Majumder"}]},{id:"49863",doi:"10.5772/62280",title:"Major Components in Limiting Litter Size",slug:"major-components-in-limiting-litter-size",totalDownloads:2090,totalCrossrefCites:3,totalDimensionsCites:5,abstract:"The litter size is an important trait in prolific species such as rabbits and pigs. However, selection on litter size has had limited success in these species because of its low heritability and sex-limited expression. The litter size is a complex physiological trait in prolific species, affected by several components that are expressed sequentially, for example, ovulation, fertilization, embryo development, and fetal survival. The selection for ovulation rate or/and prenatal survival has been proposed to improve litter size indirectly. However, these alternative methods have not reached the expected response rate. Implantation is also a critical point in successful gestation, one-third to one-half of prenatal mortality occurring during peri-implantation. The uterus must provide an adequate microenviroment for the growth and development of embryo and for receptivity to implantation. There are multitudes of cellular events involved in crosstalk between embryo and maternal uterus during peri-implantation. A better understanding of molecular mechanisms affecting the implantation process could help to propose new strategies for litter size improvement in prolific species.",book:{id:"5105",slug:"insights-from-animal-reproduction",title:"Insights from Animal Reproduction",fullTitle:"Insights from Animal Reproduction"},signatures:"María-José Argente",authors:[{id:"176987",title:"Ph.D.",name:"María-José",middleName:"Carrascosa",surname:"Argente",slug:"maria-jose-argente",fullName:"María-José Argente"}]}],mostDownloadedChaptersLast30Days:[{id:"49736",title:"Chromosome Abnormalities in Domestic Animals as Causes of Disorders of Sex Development or Impaired Fertility",slug:"chromosome-abnormalities-in-domestic-animals-as-causes-of-disorders-of-sex-development-or-impaired-f",totalDownloads:4135,totalCrossrefCites:7,totalDimensionsCites:20,abstract:"Cytogenetic evaluation is an important step in the diagnosis of infertile or sterile animals. Moreover, the analysis of sex chromosomes is crucial for a proper classification of disorders of sex development (DSD). For many years, chromosome studies mainly addressed the livestock species, while recently, increasing interest in such analysis in companion animals is observed. New molecular and cytogenetic tools and techniques have given opportunities for a precise identification of chromosome mutations. Among them, fluorescence in situ hybridization, besides chromosome banding, has become a gold standard. In this chapter, recent advances in the cytogenetic diagnosis of cattle, pigs, horses, dogs and cats are presented.",book:{id:"5105",slug:"insights-from-animal-reproduction",title:"Insights from Animal Reproduction",fullTitle:"Insights from Animal Reproduction"},signatures:"Izabela Szczerbal and Marek Switonski",authors:[{id:"177030",title:"Prof.",name:"Marek",middleName:null,surname:"Switonski",slug:"marek-switonski",fullName:"Marek Switonski"},{id:"177045",title:"Dr.",name:"Izabela",middleName:null,surname:"Szczerbal",slug:"izabela-szczerbal",fullName:"Izabela Szczerbal"}]},{id:"50144",title:"Proliferative Endometrial Lesions Hidden behind the Feline Pyometra",slug:"proliferative-endometrial-lesions-hidden-behind-the-feline-pyometra",totalDownloads:2457,totalCrossrefCites:0,totalDimensionsCites:4,abstract:"The literature refers to pyometra as the most important pathology in the feline uterus, which is often associated with cystic endometrial disease (cystic endometrial hyperplasia/pyometra complex or CEH-Pyo). The etiology of pyometra is complex and probably multifactorial, but hormonal influences are suggested to play an important role in the pathogenesis. Progestagen-based contraceptives may be risk factors for the CEH-Pyo syndrome, for endometrial adenocarcinoma and also to mammary tumors in this species.",book:{id:"5105",slug:"insights-from-animal-reproduction",title:"Insights from Animal Reproduction",fullTitle:"Insights from Animal Reproduction"},signatures:"Maria dos Anjos Pires, Hugo Vilhena, Sónia Miranda, Miguel\nTavares Pereira, Fernanda Seixas and Ana Laura Saraiva",authors:[{id:"41065",title:"Dr.",name:"Sónia",middleName:null,surname:"Miranda",slug:"sonia-miranda",fullName:"Sónia Miranda"},{id:"161556",title:"Dr.",name:"Maria Dos Anjos",middleName:null,surname:"Pires",slug:"maria-dos-anjos-pires",fullName:"Maria Dos Anjos Pires"},{id:"179547",title:"MSc.",name:"Hugo",middleName:null,surname:"Vilhena",slug:"hugo-vilhena",fullName:"Hugo Vilhena"},{id:"179548",title:"MSc.",name:"Miguel",middleName:null,surname:"Tavares Pereira",slug:"miguel-tavares-pereira",fullName:"Miguel Tavares Pereira"},{id:"179549",title:"Prof.",name:"Fernanda",middleName:null,surname:"Seixas",slug:"fernanda-seixas",fullName:"Fernanda Seixas"},{id:"179550",title:"Prof.",name:"Ana Laura",middleName:null,surname:"Saraiva",slug:"ana-laura-saraiva",fullName:"Ana Laura Saraiva"}]},{id:"49944",title:"The Use of Reproductive Technologies to Produce Transgenic Goats",slug:"the-use-of-reproductive-technologies-to-produce-transgenic-goats",totalDownloads:2411,totalCrossrefCites:2,totalDimensionsCites:3,abstract:"Recombinant DNA technology has revolutionized the production of therapeutic proteins. Thus, genes of a great number of human proteins have already been identified and cloned. The use of farm animals as bioreactors may be the better choice to produce recombinant therapeutic proteins. For this activity, the term “pharming” was created, referring to the use of genetic engineering to obtain a transgenic or genetically modified animal. Considering the advantages and disadvantages of livestock species, goats appear as a very good model. In addition, the first human commercially approved biological drug (antithrombin (AT)) was produced from the milk of transgenic goats. The aim of this chapter is to present various reproductive technologies used to obtain transgenic goats secreting recombinant proteins in milk. Initially, this chapter presents the methods for embryo production (in vivo and in vitro) to realize the DNA microinjection in pronuclear embryos. Thus, the techniques of superovulation of donors (in vivo embryo production) and ovarian stimulation for oocyte recovery (in vitro embryo production) are described. Also, the methods for DNA microinjection and embryo transfer are detailed in this chapter. Finally, this chapter describes the reproductive procedures used for obtaining transgenic goats by cloning.",book:{id:"5105",slug:"insights-from-animal-reproduction",title:"Insights from Animal Reproduction",fullTitle:"Insights from Animal Reproduction"},signatures:"Vicente J. F. Freitas, Luciana M. Melo, Dárcio I.A. Teixeira, Maajid H.\nBhat, Irina A. Serova, Lyudmila E. Andreeva and Oleg L. Serov",authors:[{id:"177122",title:"Dr.",name:"Vicente",middleName:null,surname:"Freitas",slug:"vicente-freitas",fullName:"Vicente Freitas"},{id:"177194",title:"Dr.",name:"Luciana",middleName:null,surname:"Melo",slug:"luciana-melo",fullName:"Luciana Melo"},{id:"177195",title:"Dr.",name:"Dárcio",middleName:null,surname:"Teixeira",slug:"darcio-teixeira",fullName:"Dárcio Teixeira"},{id:"177196",title:"Dr.",name:"Maajid",middleName:null,surname:"Bhat",slug:"maajid-bhat",fullName:"Maajid Bhat"},{id:"185365",title:"Dr.",name:"Irina",middleName:null,surname:"Aleksandrovna SEROVA",slug:"irina-aleksandrovna-serova",fullName:"Irina Aleksandrovna SEROVA"},{id:"185366",title:"Dr.",name:"Lyudmila",middleName:null,surname:"Evgenievna ANDREEVA",slug:"lyudmila-evgenievna-andreeva",fullName:"Lyudmila Evgenievna ANDREEVA"},{id:"185367",title:"Dr.",name:"Oleg",middleName:null,surname:"Leonidovich SEROV",slug:"oleg-leonidovich-serov",fullName:"Oleg Leonidovich SEROV"}]},{id:"63404",title:"Subclinical Endometritis in Dairy Cattle",slug:"subclinical-endometritis-in-dairy-cattle",totalDownloads:1801,totalCrossrefCites:1,totalDimensionsCites:5,abstract:"Subclinical endometritis is recognized as a cause of poor reproductive performance in dairy cows. Inflammation of the endometrium persisting after postpartum uterine involution has been related with prolonged calving-conception intervals and low fertility in dairy cows. The subclinical nature of this condition makes it necessary in the use of endometrial cytology or biopsy for diagnosing it. There are some controversies among authors in relation to the postpartum period from which a physiological endometrial inflammation should be considered a pathological subclinical endometritis. Therefore, depending on the sampling period after calving, different studies establish a different degree of polymorphonuclear leukocyte infiltration as cutoff point to diagnose subclinical endometritis. Controversies also exist regarding the pathogenesis of the disease and its consequences on the fertility of dairy cattle. The aim of this chapter was to review the current knowledge on this uterine pathology.",book:{id:"7233",slug:"new-insights-into-theriogenology",title:"New Insights into Theriogenology",fullTitle:"New Insights into Theriogenology"},signatures:"Luis Angel Quintela Arias, Marcos Vigo Fernández, Juan José\nBecerra González, Mónica Barrio López, Pedro José García Herradón\nand Ana Isabel Peña Martínez",authors:[{id:"243272",title:"Prof.",name:"Luis Angel",middleName:null,surname:"Quintela Arias",slug:"luis-angel-quintela-arias",fullName:"Luis Angel Quintela Arias"},{id:"243886",title:"Prof.",name:"Ana Isabel",middleName:null,surname:"Peña Martínez",slug:"ana-isabel-pena-martinez",fullName:"Ana Isabel Peña Martínez"},{id:"243887",title:"Prof.",name:"Pedro",middleName:null,surname:"García Herradón",slug:"pedro-garcia-herradon",fullName:"Pedro García Herradón"},{id:"243888",title:"Prof.",name:"Juan José",middleName:null,surname:"Becerra González",slug:"juan-jose-becerra-gonzalez",fullName:"Juan José Becerra González"},{id:"256852",title:"Dr.",name:"Mónica",middleName:null,surname:"Barrio López",slug:"monica-barrio-lopez",fullName:"Mónica Barrio López"},{id:"256854",title:"Dr.",name:"Marcos",middleName:null,surname:"Vigo Fernández",slug:"marcos-vigo-fernandez",fullName:"Marcos Vigo Fernández"}]},{id:"79909",title:"Cryopreservation Methods and Frontiers in the Art of Freezing Life in Animal Models",slug:"cryopreservation-methods-and-frontiers-in-the-art-of-freezing-life-in-animal-models",totalDownloads:160,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"The development in cryobiology in animal breeding had revolutionized the field of reproductive medicine. The main objective to preserve animal germplasm stems from variety of reasons such as conservation of endangered animal species, animal diversity, and an increased demand of animal models and/or genetically modified animals for research involving animal and human diseases. Cryopreservation has emerged as promising technique for fertility preservation and assisted reproduction techniques (ART) for production of animal breeds and genetically engineered animal species for research. Slow rate freezing and rapid freezing/vitrification are the two main methods of cryopreservation. Slow freezing is characterized by the phase transition (liquid turning into solid) when reducing the temperature below freezing point. Vitrification, on the other hand, is a phenomenon in which liquid solidifies without the formation of ice crystals, thus the process is referred to as a glass transition or ice-free cryopreservation. The vitrification protocol applies high concentrations of cryoprotective agents (CPA) used to avoid cryoinjury. This chapter provides a brief overview of fundamentals of cryopreservation and established methods adopted in cryopreservation. Strategies involved in cryopreserving germ cells (sperm and egg freezing) are included in this chapter. Last section describes the frontiers and advancement of cryopreservation in some of the important animal models like rodents (mouse and rats) and in few large animals (sheep, cow etc).",book:{id:"10664",slug:null,title:"Animal Reproduction",fullTitle:"Animal Reproduction"},signatures:"Feda S. Aljaser",authors:null}],onlineFirstChaptersFilter:{topicId:"1382",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"79909",title:"Cryopreservation Methods and Frontiers in the Art of Freezing Life in Animal Models",slug:"cryopreservation-methods-and-frontiers-in-the-art-of-freezing-life-in-animal-models",totalDownloads:160,totalDimensionsCites:0,doi:"10.5772/intechopen.101750",abstract:"The development in cryobiology in animal breeding had revolutionized the field of reproductive medicine. The main objective to preserve animal germplasm stems from variety of reasons such as conservation of endangered animal species, animal diversity, and an increased demand of animal models and/or genetically modified animals for research involving animal and human diseases. Cryopreservation has emerged as promising technique for fertility preservation and assisted reproduction techniques (ART) for production of animal breeds and genetically engineered animal species for research. Slow rate freezing and rapid freezing/vitrification are the two main methods of cryopreservation. Slow freezing is characterized by the phase transition (liquid turning into solid) when reducing the temperature below freezing point. Vitrification, on the other hand, is a phenomenon in which liquid solidifies without the formation of ice crystals, thus the process is referred to as a glass transition or ice-free cryopreservation. The vitrification protocol applies high concentrations of cryoprotective agents (CPA) used to avoid cryoinjury. This chapter provides a brief overview of fundamentals of cryopreservation and established methods adopted in cryopreservation. Strategies involved in cryopreserving germ cells (sperm and egg freezing) are included in this chapter. Last section describes the frontiers and advancement of cryopreservation in some of the important animal models like rodents (mouse and rats) and in few large animals (sheep, cow etc).",book:{id:"10664",title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg"},signatures:"Feda S. Aljaser"},{id:"79782",title:"Avian Reproduction",slug:"avian-reproduction",totalDownloads:149,totalDimensionsCites:0,doi:"10.5772/intechopen.101185",abstract:"There are about 10,400 living avian species belonging to the class Aves, characterized by feathers which no other animal classes possess and are warm-blooded vertebrates with four-chamber heart. They have excellent vision, and their forelimbs are modified into wings for flight or swimming, though not all can fly or swim. They lay hard-shelled eggs which are a secretory product of the reproductive system that vary greatly in colour, shape and size, and the bigger the bird, the bigger the egg. Since domestication, avian species have been basically reared for eggs, meat, pleasure and research. They reproduce sexually with the spermatozoa being homogametic and carry Z-bearing chromosomes, and the blastodisk carries either Z-bearing or W-bearing chromosomes, hence, the female is heterogametic, and thus, determines the sex of the offspring. The paired testes produce spermatozoa, sex hormones and the single ovary (with a few exceptions) produces yolk bearing the blastodisk and sex hormones. Both testis and ovary are the primary sex organs involved in sexual characteristics development in avian. In avian reproduction, there must be mating for fertile egg that must be incubated to produce the young ones. At hatch, hatchling sex is identified and reared to meet the aim of the farmer.",book:{id:"10664",title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg"},signatures:"Kingsley Omogiade Idahor"},{id:"78802",title:"Intraovarian Gestation in Viviparous Teleosts: Unique Type of Gestation among Vertebrates",slug:"intraovarian-gestation-in-viviparous-teleosts-unique-type-of-gestation-among-vertebrates",totalDownloads:184,totalDimensionsCites:0,doi:"10.5772/intechopen.100267",abstract:"The intraovarian gestation, occurring in teleosts, makes this type of reproduction a such complex and unique condition among vertebrates. This type of gestation of teleosts is expressed in special morphological and physiological characteristic where occurs the viviparity and it is an essential component in the analysis of the evolutionary process of viviparity in vertebrates. In viviparous teleosts, during embryogenesis, there are not development of Müllerian ducts, which form the oviducts in the rest of vertebrates, as a result, exclusively in teleosts, there are not oviducts and the caudal region of the ovary, the gonoduct, connects the ovary to the exterior. The lack of oviducts defines that the embryos develop into the ovary, as intraovarian gestation. The ovary forms the oocytes which may develop different type of oogenesis, according with the storage of diverse amount of yolk, variation observed corresponding to the species. The viviparous gestation is characterized by the possible intimate contact between maternal and embryonic tissues, process that permits their metabolic interchanges. So, the nutrients obtained by the embryos could be deposited in the oocyte before fertilization, contained in the yolk (lecithotrophy), and may be completed during gestation by additional provisioning from maternal tissues to the embryo (matrotrophy). Then, essential requirements for viviparity in poeciliids and goodeids are characterized by: a) the diversification of oogenesis, with the deposition of different amount of yolk in the oocyte; b) the insemination, by the transfer of sperm to the female gonoduct and their transportation from the gonoduct to the germinal region of the ovary where the follicles develop; c) the intrafollicular fertilization; d) the intraovarian gestation with the development of embryos in intrafollicular gestation (as in poeciliids), or intraluminal gestation (as in goodeids); and, e) the origin of embryonic nutrition may be by lecithotrophy and matrotrophy. The focus of this revision compares the general and specific structural characteristics of the viviparity occurring into the intraovarian gestation in teleosts, defining this reproductive strategy, illustrated in this review with histological material in a poeciliid, of the species Poecilia latipinna (Lesueur, 1821) (Poeciliidae), and in a goodeid, of the species Xenotoca eiseni (Rutter, 1896) (Goodeidae).",book:{id:"10664",title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg"},signatures:"Mari-Carmen Uribe, Gabino De la Rosa-Cruz, Adriana García-Alarcón and Juan Carlos Campuzano-Caballero"},{id:"78617",title:"Doppler Ultrasound in the Reproduction of Mares",slug:"doppler-ultrasound-in-the-reproduction-of-mares",totalDownloads:122,totalDimensionsCites:0,doi:"10.5772/intechopen.98951",abstract:"Doppler ultrasonographic (US) is a method that provides real-time information on vascular architecture and hemodynamic aspects of blood vessels. It can determine the presence, direction, and speed of blood flow, being subdivided into the categories of color Doppler (color flow and power flow) and pulsed Doppler. The objective of this chapter was to compile data from several studies addressing the use of US Doppler correlated with pathophysiological phenomena of equine reproduction. Initially we decided to describe the technique, advantages, and disadvantages of each Doppler mode. Then the applicability of US Doppler in mares related to equine reproduction. Thus, within this chapter, you will find the form of use and descriptions of studies carried out on vascular perfusion of the follicular dynamics, the corpus luteum, the uterine segments, which we have divided into post-insemination evaluation, endometritis diagnosis and pregnancy diagnosis. So, we hope that this chapter will expand the knowledge about US Doppler and increase the number of veterinarians who will introduce the technique into their practical routine.",book:{id:"10664",title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg"},signatures:"Camila Silva Costa Ferreira and Rita de Cássia Lima Morais"},{id:"78202",title:"Stimulatory Effects of Androgens on Eel Primary Ovarian Development - from Phenotypes to Genotypes",slug:"stimulatory-effects-of-androgens-on-eel-primary-ovarian-development-from-phenotypes-to-genotypes",totalDownloads:138,totalDimensionsCites:0,doi:"10.5772/intechopen.99582",abstract:"Androgens stimulate primary ovarian development in Vertebrate. Japanese eels underwent operation to sample the pre- and post-treated ovarian tissues from the same individual. Ovarian phenotypic or genotypic data were mined in a pair. A correlation between the initial ovarian status (determined by kernel density estimation (KDE), presented as a probability density of oocyte size) and the consequence of androgen (17MT) treatment (change in ovary) has been showed. The initial ovarian status appeared to be important to influence ovarian androgenic sensitivity. The initial ovary was important to the outcomes of androgen treatments, and ePAV (expression presence-absence variation) is existing in Japanese eel by analyze DEGs; core, unique, or accessory genes were identified, the sensitivities of initial ovaries were correlated with their gene expression profiles. We speculated the importance of genetic differential expression on the variations of phenotypes by 17MT, and transcriptomic approach seems to allow extracting multiple layers of genomic data.",book:{id:"10664",title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg"},signatures:"Yung-Sen Huang and Chung-Yen Lin"},{id:"78116",title:"Embryo Transfer",slug:"embryo-transfer",totalDownloads:255,totalDimensionsCites:1,doi:"10.5772/intechopen.99683",abstract:"Assisted reproductive technologies (ART) have made tremendous advances, in last years. Artificial insemination is a method for achieving slow genetic progress in populations of animals. Many large and small ruminants are bred by AI, and more than a half million embryos are transferred every year around the world. Most of the ruminants sires used for artificial insemination were derived from embryo transfer. Improvements of reproductive biotechnologies of controlling the estrous cycle and ovulation have resulted in more effective programs for AI, superovulation of donor, and the management of ET. In the ruminants, ET procedure is a timely alternative that can allow good conception rates to be obtained constant in a year. There have been great advances of this biotechnique with on aimed to intensify the genetic progress between generations of farm. The gains is possible with the development of advanced reproductive biotechnique. The best current strategy in applying biotechnology to farmers is to use AI with sexed semen, so farmers will enjoy and benefit. The use of ET together with cryopreserved sexed embryos has a very specific potential for donor replacement and genetic improvement of the herd. In this chapter, procedures of the MOET protocol were described step by step.",book:{id:"10664",title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg"},signatures:"Ștefan Gregore Ciornei"}],onlineFirstChaptersTotal:7},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:8,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:286,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:9,numberOfPublishedChapters:101,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 15th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",isOpenForSubmission:!0,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",isOpenForSubmission:!0,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",isOpenForSubmission:!0,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",isOpenForSubmission:!0,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:48,paginationItems:[{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81756",title:"Alteration of Cytokines Level and Oxidative Stress Parameters in COVID-19",doi:"10.5772/intechopen.104950",signatures:"Marija Petrusevska, Emilija Atanasovska, Dragica Zendelovska, Aleksandar Eftimov and Katerina Spasovska",slug:"alteration-of-cytokines-level-and-oxidative-stress-parameters-in-covid-19",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}},{id:"81681",title:"Immunomodulatory Effects of a M2-Conditioned Medium (PRS® CK STORM): Theory on the Possible Complex Mechanism of Action through Anti-Inflammatory Modulation of the TLR System and the Purinergic System",doi:"10.5772/intechopen.104486",signatures:"Juan Pedro Lapuente",slug:"immunomodulatory-effects-of-a-m2-conditioned-medium-prs-ck-storm-theory-on-the-possible-complex-mech",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}}]},overviewPagePublishedBooks:{paginationCount:27,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science and Technology from the Department of Chemistry, National University of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013. She relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the National Institute of Fundamental Studies from April 2013 to October 2016. She was a senior lecturer on a temporary basis at the Department of Food Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is currently Deputy Principal of the Australian College of Business and Technology – Kandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI) Ambassador to Sri Lanka.",institutionString:"Australian College of Business & Technology",institution:null}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{paginationCount:6,paginationItems:[{id:"11671",title:"Importance of Oxidative Stress and Antioxidant System in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11671.jpg",hash:"2bd98244cd9eda2107f01824584c1eb4",secondStepPassed:!0,currentStepOfPublishingProcess:4,submissionDeadline:"March 17th 2022",isOpenForSubmission:!0,editors:[{id:"270856",title:"Associate Prof.",name:"Suna",surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11669",title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",hash:"9117bd12dc904ced43404e3383b6591a",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 3rd 2022",isOpenForSubmission:!0,editors:[{id:"415310",title:"Assistant Prof.",name:"Erik",surname:"Froyen",slug:"erik-froyen",fullName:"Erik Froyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11672",title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",hash:"c00855833476a514d37abf7c846e16e9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 6th 2022",isOpenForSubmission:!0,editors:[{id:"14794",title:"Prof.",name:"Murat",surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11674",title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",hash:"5d7d49bd80f53dad3761f78de4a862c6",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 6th 2022",isOpenForSubmission:!0,editors:[{id:"238047",title:"Dr.",name:"Gaia",surname:"Favero",slug:"gaia-favero",fullName:"Gaia Favero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11670",title:"Chitin-Chitosan - Isolation, Properties, and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11670.jpg",hash:"69f009be08998711eecfb200adc7deca",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"May 26th 2022",isOpenForSubmission:!0,editors:[{id:"176093",title:"Dr.",name:"Brajesh",surname:"Kumar",slug:"brajesh-kumar",fullName:"Brajesh Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11673",title:"Stem Cell Research",coverURL:"https://cdn.intechopen.com/books/images_new/11673.jpg",hash:"13092df328080c762dd9157be18ca38c",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 8th 2022",isOpenForSubmission:!0,editors:[{id:"203598",title:"Ph.D.",name:"Diana",surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:25,paginationItems:[{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81271",title:"The Diversity of Parvovirus Telomeres",doi:"10.5772/intechopen.102684",signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:23,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"80187",title:"Potential Utilization of Insect Meal as Livestock Feed",doi:"10.5772/intechopen.101766",signatures:"Sipho Moyo and Busani Moyo",slug:"potential-utilization-of-insect-meal-as-livestock-feed",totalDownloads:101,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Feed Science and Nutrition - Production, Health and Environment",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"79909",title:"Cryopreservation Methods and Frontiers in the Art of Freezing Life in Animal Models",doi:"10.5772/intechopen.101750",signatures:"Feda S. Aljaser",slug:"cryopreservation-methods-and-frontiers-in-the-art-of-freezing-life-in-animal-models",totalDownloads:160,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}},{id:"79866",title:"Ruminal Microbiome Manipulation to Improve Fermentation Efficiency in Ruminants",doi:"10.5772/intechopen.101582",signatures:"Yosra Ahmed Soltan and Amlan Kumar Patra",slug:"ruminal-microbiome-manipulation-to-improve-fermentation-efficiency-in-ruminants",totalDownloads:216,totalCrossrefCites:0,totalDimensionsCites:1,authors:null,book:{title:"Animal Feed Science and Nutrition - Production, Health and Environment",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"79782",title:"Avian Reproduction",doi:"10.5772/intechopen.101185",signatures:"Kingsley Omogiade Idahor",slug:"avian-reproduction",totalDownloads:149,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Kingsley O.",surname:"Idahor"}],book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}},{id:"78802",title:"Intraovarian Gestation in Viviparous Teleosts: Unique Type of Gestation among Vertebrates",doi:"10.5772/intechopen.100267",signatures:"Mari-Carmen Uribe, Gabino De la Rosa-Cruz, Adriana García-Alarcón and Juan Carlos Campuzano-Caballero",slug:"intraovarian-gestation-in-viviparous-teleosts-unique-type-of-gestation-among-vertebrates",totalDownloads:183,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}},{id:"79209",title:"Virtual Physiology: A Tool for the 21st Century",doi:"10.5772/intechopen.99671",signatures:"Carmen Nóbrega, Maria Aires Pereira, Catarina Coelho, Isabel Brás, Ana Cristina Mega, Carla Santos, Fernando Esteves, Rita Cruz, Ana I. Faustino-Rocha, Paula A. Oliveira, João Mesquita and Helena Vala",slug:"virtual-physiology-a-tool-for-the-21st-century",totalDownloads:136,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78849",title:"Application of Vermicompost Fertilizer in Aquaculture Nutrition: Review",doi:"10.5772/intechopen.100326",signatures:"Sonnia Nzilani Musyoka and Rita Nairuti",slug:"application-of-vermicompost-fertilizer-in-aquaculture-nutrition-review",totalDownloads:67,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Nutrition - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11416.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"78998",title:"Effect of Various Feed Additives on the Methane Emissions from Beef Cattle Based on an Ammoniated Palm Frond Feeds",doi:"10.5772/intechopen.100142",signatures:"Mardiati Zain, Rusmana Wijaya Setia Ningrat, Heni Suryani and Novirman Jamarun",slug:"effect-of-various-feed-additives-on-the-methane-emissions-from-beef-cattle-based-on-an-ammoniated-pa",totalDownloads:143,totalCrossrefCites:0,totalDimensionsCites:1,authors:null,book:{title:"Animal Feed Science and Nutrition - Production, Health and Environment",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",subseries:{id:"20",title:"Animal Nutrition"}}}]},subseriesFiltersForOFChapters:[{caption:"Animal Nutrition",value:20,count:7,group:"subseries"},{caption:"Animal Reproductive Biology and Technology",value:28,count:7,group:"subseries"},{caption:"Animal Science",value:19,count:11,group:"subseries"}],publishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"8737",title:"Rabies Virus at the Beginning of 21st Century",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",slug:"rabies-virus-at-the-beginning-of-21st-century",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Sergey Tkachev",hash:"49cce3f548da548c718c865feb343509",volumeInSeries:9,fullTitle:"Rabies Virus at the Beginning of 21st Century",editors:[{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev",profilePictureURL:"https://mts.intechopen.com/storage/users/61139/images/system/61139.png",institutionString:"Russian Academy of Sciences",institution:{name:"Russian Academy of Sciences",institutionURL:null,country:{name:"Russia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10496",title:"Advanced Studies in the 21st Century Animal Nutrition",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10496.jpg",slug:"advanced-studies-in-the-21st-century-animal-nutrition",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"László Babinszky, Juliana Oliveira and Edson Mauro Santos",hash:"8ffe43a82ac48b309abc3632bbf3efd0",volumeInSeries:8,fullTitle:"Advanced Studies in the 21st Century Animal Nutrition",editors:[{id:"53998",title:"Prof.",name:"László",middleName:null,surname:"Babinszky",slug:"laszlo-babinszky",fullName:"László Babinszky",profilePictureURL:"https://mts.intechopen.com/storage/users/53998/images/system/53998.png",institutionString:"University of Debrecen",institution:{name:"University of Debrecen",institutionURL:null,country:{name:"Hungary"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10497",title:"Canine Genetics, Health and Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10497.jpg",slug:"canine-genetics-health-and-medicine",publishedDate:"June 2nd 2021",editedByType:"Edited by",bookSignature:"Catrin Rutland",hash:"b91512e31ce34032e560362e6cbccc1c",volumeInSeries:7,fullTitle:"Canine Genetics, Health and Medicine",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",editedByType:"Edited by",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",hash:"13aaddf5fdbbc78387e77a7da2388bf6",volumeInSeries:6,fullTitle:"Animal Reproduction in Veterinary Medicine",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral",profilePictureURL:"https://mts.intechopen.com/storage/users/25600/images/system/25600.jpg",institutionString:"Independent Researcher",institution:{name:"Harran University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9081",title:"Equine Science",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9081.jpg",slug:"equine-science",publishedDate:"September 23rd 2020",editedByType:"Edited by",bookSignature:"Catrin Rutland and Albert Rizvanov",hash:"ac415ef2f5450fa80fdb9cf6cf32cd2d",volumeInSeries:5,fullTitle:"Equine Science",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Naceur M'Hamdi",hash:"2aa2a9a0ec13040bbf0455e34625504e",volumeInSeries:3,fullTitle:"Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi",profilePictureURL:"https://mts.intechopen.com/storage/users/73376/images/system/73376.jpg",institutionString:null,institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",slug:"veterinary-anatomy-and-physiology",publishedDate:"March 13th 2019",editedByType:"Edited by",bookSignature:"Catrin Sian Rutland and Valentina Kubale",hash:"75cdacb570e0e6d15a5f6e69640d87c9",volumeInSeries:2,fullTitle:"Veterinary Anatomy and Physiology",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Dr.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Animal Nutrition",value:20,count:1},{group:"subseries",caption:"Animal Reproductive Biology and Technology",value:28,count:3},{group:"subseries",caption:"Animal Science",value:19,count:5}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1},{group:"publicationYear",caption:"2021",value:2021,count:3},{group:"publicationYear",caption:"2020",value:2020,count:3},{group:"publicationYear",caption:"2019",value:2019,count:1},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:0,paginationItems:[]}},subseries:{item:{id:"12",type:"subseries",title:"Human Physiology",keywords:"Anatomy, Cells, Organs, Systems, Homeostasis, Functions",scope:"Human physiology is the scientific exploration of the various functions (physical, biochemical, and mechanical properties) of humans, their organs, and their constituent cells. The endocrine and nervous systems play important roles in maintaining homeostasis in the human body. Integration, which is the biological basis of physiology, is achieved through communication between the many overlapping functions of the human body's systems, which takes place through electrical and chemical means. Much of the basis of our knowledge of human physiology has been provided by animal experiments. Because of the close relationship between structure and function, studies in human physiology and anatomy seek to understand the mechanisms that help the human body function. The series on human physiology deals with the various mechanisms of interaction between the various organs, nerves, and cells in the human body.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/12.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11408,editor:{id:"195829",title:"Prof.",name:"Kunihiro",middleName:null,surname:"Sakuma",slug:"kunihiro-sakuma",fullName:"Kunihiro Sakuma",profilePictureURL:"https://mts.intechopen.com/storage/users/195829/images/system/195829.jpg",biography:"Professor Kunihiro Sakuma, Ph.D., currently works in the Institute for Liberal Arts at the Tokyo Institute of Technology. He is a physiologist working in the field of skeletal muscle. He was awarded his sports science diploma in 1995 by the University of Tsukuba and began his scientific work at the Department of Physiology, Aichi Human Service Center, focusing on the molecular mechanism of congenital muscular dystrophy and normal muscle regeneration. His interest later turned to the molecular mechanism and attenuating strategy of sarcopenia (age-related muscle atrophy). His opinion is to attenuate sarcopenia by improving autophagic defects using nutrient- and pharmaceutical-based treatments.",institutionString:null,institution:{name:"Tokyo Institute of Technology",institutionURL:null,country:{name:"Japan"}}},editorTwo:null,editorThree:{id:"331519",title:"Dr.",name:"Kotomi",middleName:null,surname:"Sakai",slug:"kotomi-sakai",fullName:"Kotomi Sakai",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000031QtFXQA0/Profile_Picture_1637053227318",biography:"Senior researcher Kotomi Sakai, Ph.D., MPH, works at the Research Organization of Science and Technology in Ritsumeikan University. She is a researcher in the geriatric rehabilitation and public health field. She received Ph.D. from Nihon University and MPH from St.Luke’s International University. Her main research interest is sarcopenia in older adults, especially its association with nutritional status. Additionally, to understand how to maintain and improve physical function in older adults, to conduct studies about the mechanism of sarcopenia and determine when possible interventions are needed.",institutionString:null,institution:{name:"Ritsumeikan University",institutionURL:null,country:{name:"Japan"}}},series:{id:"10",title:"Physiology",doi:"10.5772/intechopen.72796",issn:"2631-8261"},editorialBoard:[{id:"213786",title:"Dr.",name:"Henrique P.",middleName:null,surname:"Neiva",slug:"henrique-p.-neiva",fullName:"Henrique P. Neiva",profilePictureURL:"https://mts.intechopen.com/storage/users/213786/images/system/213786.png",institutionString:null,institution:{name:"University of Beira Interior",institutionURL:null,country:{name:"Portugal"}}},{id:"39275",title:"Prof.",name:"Herbert Ryan",middleName:null,surname:"Marini",slug:"herbert-ryan-marini",fullName:"Herbert Ryan Marini",profilePictureURL:"https://mts.intechopen.com/storage/users/39275/images/9459_n.jpg",institutionString:null,institution:{name:"University of Messina",institutionURL:null,country:{name:"Italy"}}},{id:"196218",title:"Dr.",name:"Pasquale",middleName:null,surname:"Cianci",slug:"pasquale-cianci",fullName:"Pasquale Cianci",profilePictureURL:"https://mts.intechopen.com/storage/users/196218/images/system/196218.png",institutionString:null,institution:{name:"University of Foggia",institutionURL:null,country:{name:"Italy"}}}]},onlineFirstChapters:{paginationCount:19,paginationItems:[{id:"81067",title:"Encapsulation of Essential Oils and Their Use in Food Applications",doi:"10.5772/intechopen.103147",signatures:"Hamdy A. Shaaban and Amr Farouk",slug:"encapsulation-of-essential-oils-and-their-use-in-food-applications",totalDownloads:46,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80959",title:"Biological Application of Essential Oils and Essential Oils Components in Terms of Antioxidant Activity and Inhibition of Cholinesterase Enzymes",doi:"10.5772/intechopen.102874",signatures:"Mejra Bektašević and Olivera Politeo",slug:"biological-application-of-essential-oils-and-essential-oils-components-in-terms-of-antioxidant-activ",totalDownloads:46,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80859",title:"Antioxidant Effect and Medicinal Properties of Allspice Essential Oil",doi:"10.5772/intechopen.103001",signatures:"Yasvet Yareni Andrade Avila, Julián Cruz-Olivares and César Pérez-Alonso",slug:"antioxidant-effect-and-medicinal-properties-of-allspice-essential-oil",totalDownloads:33,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80777",title:"Starch: A Veritable Natural Polymer for Economic Revolution",doi:"10.5772/intechopen.102941",signatures:"Obi P. Adigwe, Henry O. Egharevba and Martins O. Emeje",slug:"starch-a-veritable-natural-polymer-for-economic-revolution",totalDownloads:43,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Starch - Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80673",title:"Teucrium ramosissimum Derived-Natural Products and Its Potent Effect in Alleviating the Pathological Kidney Damage in LPS-Induced Mice",doi:"10.5772/intechopen.102788",signatures:"Fatma Guesmi and Ahmed Landoulsi",slug:"teucrium-ramosissimum-derived-natural-products-and-its-potent-effect-in-alleviating-the-pathological",totalDownloads:35,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80600",title:"Essential Oil as Green Preservative Obtained by Ecofriendly Extraction Techniques",doi:"10.5772/intechopen.103035",signatures:"Nashwa Fathy Sayed Morsy",slug:"essential-oil-as-green-preservative-obtained-by-ecofriendly-extraction-techniques",totalDownloads:57,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Nashwa",surname:"Morsy"}],book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"79875",title:"Comparative Study of the Physiochemical Composition and Techno-Functional Properties of Two Extracted Acorn Starches",doi:"10.5772/intechopen.101562",signatures:"Youkabed Zarroug, Mouna Boulares, Dorra Sfayhi and Bechir Slimi",slug:"comparative-study-of-the-physiochemical-composition-and-techno-functional-properties-of-two-extracte",totalDownloads:49,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Starch - Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80395",title:"History, Evolution and Future of Starch Industry in Nigeria",doi:"10.5772/intechopen.102712",signatures:"Obi Peter Adigwe, Judith Eloyi John and Martins Ochubiojo Emeje",slug:"history-evolution-and-future-of-starch-industry-in-nigeria",totalDownloads:51,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Starch - Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80168",title:"Benzimidazole: Pharmacological Profile",doi:"10.5772/intechopen.102091",signatures:"Mahender Thatikayala, Anil Kumar Garige and Hemalatha Gadegoni",slug:"benzimidazole-pharmacological-profile",totalDownloads:73,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80122",title:"Pharmaceutical and Therapeutic Potentials of Essential Oils",doi:"10.5772/intechopen.102037",signatures:"Ishrat Nazir and Sajad Ahmad Gangoo",slug:"pharmaceutical-and-therapeutic-potentials-of-essential-oils",totalDownloads:123,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80130",title:"Exploring the Versatility of Benzimidazole Scaffolds as Medicinal Agents: A Brief Update",doi:"10.5772/intechopen.101942",signatures:"Gopakumar Kavya and Akhil Sivan",slug:"exploring-the-versatility-of-benzimidazole-scaffolds-as-medicinal-agents-a-brief-update",totalDownloads:55,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80018",title:"Potato Starch as Affected by Varieties, Storage Treatments and Conditions of Tubers",doi:"10.5772/intechopen.101831",signatures:"Saleem Siddiqui, Naseer Ahmed and Neeraj Phogat",slug:"potato-starch-as-affected-by-varieties-storage-treatments-and-conditions-of-tubers",totalDownloads:90,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Starch - Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80023",title:"Binary Interactions and Starch Bioavailability: Critical in Limiting Glycemic Response",doi:"10.5772/intechopen.101833",signatures:"Veda Krishnan, Monika Awana, Debarati Mondal, Piyush Verma, Archana Singh and Shelly Praveen",slug:"binary-interactions-and-starch-bioavailability-critical-in-limiting-glycemic-response",totalDownloads:73,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Starch - Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"79964",title:"The Anticancer Profile of Benzimidazolium Salts and their Metal Complexes",doi:"10.5772/intechopen.101729",signatures:"Imran Ahmad Khan, Noor ul Amin Mohsin, Sana Aslam and Matloob Ahmad",slug:"the-anticancer-profile-of-benzimidazolium-salts-and-their-metal-complexes",totalDownloads:90,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"79835",title:"Advances of Benzimidazole Derivatives as Anticancer Agents: Bench to Bedside",doi:"10.5772/intechopen.101702",signatures:"Kashif Haider and Mohammad Shahar Yar",slug:"advances-of-benzimidazole-derivatives-as-anticancer-agents-bench-to-bedside",totalDownloads:105,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"79856",title:"Starch-Based Hybrid Nanomaterials for Environmental Remediation",doi:"10.5772/intechopen.101697",signatures:"Ashoka Gamage, Thiviya Punniamoorthy and Terrence Madhujith",slug:"starch-based-hybrid-nanomaterials-for-environmental-remediation",totalDownloads:101,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Starch - Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",subseries:{id:"15",title:"Chemical Biology"}}}]},publishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",slug:"biomedical-signal-and-image-processing",publishedDate:"April 14th 2021",editedByType:"Edited by",bookSignature:"Yongxia Zhou",hash:"22b87a09bd6df065d78c175235d367c8",volumeInSeries:10,fullTitle:"Biomedical Signal and Image Processing",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou",profilePictureURL:"https://mts.intechopen.com/storage/users/259308/images/system/259308.jpeg",institutionString:"University of Southern California",institution:{name:"University of Southern California",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9973",title:"Data Acquisition",subtitle:"Recent Advances and Applications in Biomedical Engineering",coverURL:"https://cdn.intechopen.com/books/images_new/9973.jpg",slug:"data-acquisition-recent-advances-and-applications-in-biomedical-engineering",publishedDate:"March 17th 2021",editedByType:"Edited by",bookSignature:"Bartłomiej Płaczek",hash:"75ea6cdd241216c9db28aa734ab34446",volumeInSeries:9,fullTitle:"Data Acquisition - Recent Advances and Applications in Biomedical Engineering",editors:[{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",institutionString:"University of Silesia",institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9905",title:"Biometric Systems",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9905.jpg",slug:"biometric-systems",publishedDate:"February 10th 2021",editedByType:"Edited by",bookSignature:"Muhammad Sarfraz",hash:"c730560dd2e3837a03407b3a86b0ef2a",volumeInSeries:8,fullTitle:"Biometric Systems",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",institutionString:"Kuwait University",institution:{name:"Kuwait University",institutionURL:null,country:{name:"Kuwait"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8622",title:"Peptide Synthesis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8622.jpg",slug:"peptide-synthesis",publishedDate:"December 18th 2019",editedByType:"Edited by",bookSignature:"Jaya T. Varkey",hash:"de9fa48c5248dbfb581825b8c74f5623",volumeInSeries:0,fullTitle:"Peptide Synthesis",editors:[{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",institutionString:"St. Teresa’s College",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7497",title:"Computer Vision in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7497.jpg",slug:"computer-vision-in-dentistry",publishedDate:"September 18th 2019",editedByType:"Edited by",bookSignature:"Monika Elzbieta Machoy",hash:"1e9812cebd46ef9e28257f3e96547f6a",volumeInSeries:7,fullTitle:"Computer Vision in Dentistry",editors:[{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8633",title:"Novel Diagnostic Methods in Ophthalmology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8633.jpg",slug:"novel-diagnostic-methods-in-ophthalmology",publishedDate:"September 4th 2019",editedByType:"Edited by",bookSignature:"Anna Nowinska",hash:"da2c90e8db647ead30504defce3fb5d3",volumeInSeries:6,fullTitle:"Novel Diagnostic Methods in Ophthalmology",editors:[{id:"261466",title:"Dr.",name:"Anna",middleName:"Karolina",surname:"Nowińska",slug:"anna-nowinska",fullName:"Anna Nowińska",profilePictureURL:"https://mts.intechopen.com/storage/users/261466/images/system/261466.jpeg",institutionString:"Medical University of Silesia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",institutionString:"University of Silesia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.jpg",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:8,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:286,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:9,numberOfPublishedChapters:101,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"4",title:"Fungal Infectious Diseases",scope:"Fungi are ubiquitous and there are almost no non-pathogenic fungi. Fungal infectious illness prevalence and prognosis are determined by the exposure between fungi and host, host immunological state, fungal virulence, and early and accurate diagnosis and treatment. \r\nPatients with both congenital and acquired immunodeficiency are more likely to be infected with opportunistic mycosis. Fungal infectious disease outbreaks are common during the post- disaster rebuilding era, which is characterised by high population density, migration, and poor health and medical conditions.\r\nSystemic or local fungal infection is mainly associated with the fungi directly inhaled or inoculated in the environment during the disaster. The most common fungal infection pathways are human to human (anthropophilic), animal to human (zoophilic), and environment to human (soilophile). Diseases are common as a result of widespread exposure to pathogenic fungus dispersed into the environment. \r\nFungi that are both common and emerging are intertwined. In Southeast Asia, for example, Talaromyces marneffei is an important pathogenic thermally dimorphic fungus that causes systemic mycosis. Widespread fungal infections with complicated and variable clinical manifestations, such as Candida auris infection resistant to several antifungal medicines, Covid-19 associated with Trichoderma, and terbinafine resistant dermatophytosis in India, are among the most serious disorders. \r\nInappropriate local or systemic use of glucocorticoids, as well as their immunosuppressive effects, may lead to changes in fungal infection spectrum and clinical characteristics. Hematogenous candidiasis is a worrisome issue that affects people all over the world, particularly ICU patients. CARD9 deficiency and fungal infection have been major issues in recent years. Invasive aspergillosis is associated with a significant death rate. Special attention should be given to endemic fungal infections, identification of important clinical fungal infections advanced in yeasts, filamentous fungal infections, skin mycobiome and fungal genomes, and immunity to fungal infections.\r\nIn addition, endemic fungal diseases or uncommon fungal infections caused by Mucor irregularis, dermatophytosis, Malassezia, cryptococcosis, chromoblastomycosis, coccidiosis, blastomycosis, histoplasmosis, sporotrichosis, and other fungi, should be monitored. \r\nThis topic includes the research progress on the etiology and pathogenesis of fungal infections, new methods of isolation and identification, rapid detection, drug sensitivity testing, new antifungal drugs, schemes and case series reports. It will provide significant opportunities and support for scientists, clinical doctors, mycologists, antifungal drug researchers, public health practitioners, and epidemiologists from all over the world to share new research, ideas and solutions to promote the development and progress of medical mycology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",keywords:"Emerging Fungal Pathogens, Invasive Infections, Epidemiology, Cell Membrane, Fungal Virulence, Diagnosis, Treatment"},{id:"5",title:"Parasitic Infectious Diseases",scope:"Parasitic diseases have evolved alongside their human hosts. In many cases, these diseases have adapted so well that they have developed efficient resilience methods in the human host and can live in the host for years. Others, particularly some blood parasites, can cause very acute diseases and are responsible for millions of deaths yearly. Many parasitic diseases are classified as neglected tropical diseases because they have received minimal funding over recent years and, in many cases, are under-reported despite the critical role they play in morbidity and mortality among human and animal hosts. The current topic, Parasitic Infectious Diseases, in the Infectious Diseases Series aims to publish studies on the systematics, epidemiology, molecular biology, genomics, pathogenesis, genetics, and clinical significance of parasitic diseases from blood borne to intestinal parasites as well as zoonotic parasites. We hope to cover all aspects of parasitic diseases to provide current and relevant research data on these very important diseases. In the current atmosphere of the Coronavirus pandemic, communities around the world, particularly those in different underdeveloped areas, are faced with the growing challenges of the high burden of parasitic diseases. At the same time, they are faced with the Covid-19 pandemic leading to what some authors have called potential syndemics that might worsen the outcome of such infections. Therefore, it is important to conduct studies that examine parasitic infections in the context of the coronavirus pandemic for the benefit of all communities to help foster more informed decisions for the betterment of human and animal health.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",keywords:"Blood Borne Parasites, Intestinal Parasites, Protozoa, Helminths, Arthropods, Water Born Parasites, Epidemiology, Molecular Biology, Systematics, Genomics, Proteomics, Ecology"},{id:"6",title:"Viral Infectious Diseases",scope:"The Viral Infectious Diseases Book Series aims to provide a comprehensive overview of recent research trends and discoveries in various viral infectious diseases emerging around the globe. The emergence of any viral disease is hard to anticipate, which often contributes to death. A viral disease can be defined as an infectious disease that has recently appeared within a population or exists in nature with the rapid expansion of incident or geographic range. This series will focus on various crucial factors related to emerging viral infectious diseases, including epidemiology, pathogenesis, host immune response, clinical manifestations, diagnosis, treatment, and clinical recommendations for managing viral infectious diseases, highlighting the recent issues with future directions for effective therapeutic strategies.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",keywords:"Novel Viruses, Virus Transmission, Virus Evolution, Molecular Virology, Control and Prevention, Virus-host Interaction"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"May 7th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:3,numberOfPublishedChapters:96,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},subseries:[{id:"7",title:"Bioinformatics and Medical Informatics",keywords:"Biomedical Data, Drug Discovery, Clinical Diagnostics, Decoding Human Genome, AI in Personalized Medicine, Disease-prevention Strategies, Big Data Analysis in Medicine",scope:"Bioinformatics aims to help understand the functioning of the mechanisms of living organisms through the construction and use of quantitative tools. The applications of this research cover many related fields, such as biotechnology and medicine, where, for example, Bioinformatics contributes to faster drug design, DNA analysis in forensics, and DNA sequence analysis in the field of personalized medicine. Personalized medicine is a type of medical care in which treatment is customized individually for each patient. Personalized medicine enables more effective therapy, reduces the costs of therapy and clinical trials, and also minimizes the risk of side effects. Nevertheless, advances in personalized medicine would not have been possible without bioinformatics, which can analyze the human genome and other vast amounts of biomedical data, especially in genetics. The rapid growth of information technology enabled the development of new tools to decode human genomes, large-scale studies of genetic variations and medical informatics. The considerable development of technology, including the computing power of computers, is also conducive to the development of bioinformatics, including personalized medicine. In an era of rapidly growing data volumes and ever lower costs of generating, storing and computing data, personalized medicine holds great promises. Modern computational methods used as bioinformatics tools can integrate multi-scale, multi-modal and longitudinal patient data to create even more effective and safer therapy and disease prevention methods. Main aspects of the topic are: Applying bioinformatics in drug discovery and development; Bioinformatics in clinical diagnostics (genetic variants that act as markers for a condition or a disease); Blockchain and Artificial Intelligence/Machine Learning in personalized medicine; Customize disease-prevention strategies in personalized medicine; Big data analysis in personalized medicine; Translating stratification algorithms into clinical practice of personalized medicine.",annualVolume:11403,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"5886",title:"Dr.",name:"Alexandros",middleName:"T.",surname:"Tzallas",fullName:"Alexandros Tzallas",profilePictureURL:"https://mts.intechopen.com/storage/users/5886/images/system/5886.png",institutionString:"University of Ioannina, Greece & Imperial College London",institution:{name:"University of Ioannina",institutionURL:null,country:{name:"Greece"}}},{id:"257388",title:"Distinguished Prof.",name:"Lulu",middleName:null,surname:"Wang",fullName:"Lulu Wang",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRX6kQAG/Profile_Picture_1630329584194",institutionString:null,institution:{name:"Shenzhen Technology University",institutionURL:null,country:{name:"China"}}},{id:"225387",title:"Prof.",name:"Reda",middleName:"R.",surname:"Gharieb",fullName:"Reda Gharieb",profilePictureURL:"https://mts.intechopen.com/storage/users/225387/images/system/225387.jpg",institutionString:"Assiut University",institution:{name:"Assiut University",institutionURL:null,country:{name:"Egypt"}}}]},{id:"8",title:"Bioinspired Technology and Biomechanics",keywords:"Bioinspired Systems, Biomechanics, Assistive Technology, Rehabilitation",scope:'Bioinspired technologies take advantage of understanding the actual biological system to provide solutions to problems in several areas. Recently, bioinspired systems have been successfully employing biomechanics to develop and improve assistive technology and rehabilitation devices. The research topic "Bioinspired Technology and Biomechanics" welcomes studies reporting recent advances in bioinspired technologies that contribute to individuals\' health, inclusion, and rehabilitation. Possible contributions can address (but are not limited to) the following research topics: Bioinspired design and control of exoskeletons, orthoses, and prostheses; Experimental evaluation of the effect of assistive devices (e.g., influence on gait, balance, and neuromuscular system); Bioinspired technologies for rehabilitation, including clinical studies reporting evaluations; Application of neuromuscular and biomechanical models to the development of bioinspired technology.',annualVolume:11404,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"49517",title:"Prof.",name:"Hitoshi",middleName:null,surname:"Tsunashima",fullName:"Hitoshi Tsunashima",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTP4QAO/Profile_Picture_1625819726528",institutionString:null,institution:{name:"Nihon University",institutionURL:null,country:{name:"Japan"}}},{id:"425354",title:"Dr.",name:"Marcus",middleName:"Fraga",surname:"Vieira",fullName:"Marcus Vieira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003BJSgIQAX/Profile_Picture_1627904687309",institutionString:null,institution:{name:"Universidade Federal de Goiás",institutionURL:null,country:{name:"Brazil"}}},{id:"196746",title:"Dr.",name:"Ramana",middleName:null,surname:"Vinjamuri",fullName:"Ramana Vinjamuri",profilePictureURL:"https://mts.intechopen.com/storage/users/196746/images/system/196746.jpeg",institutionString:"University of Maryland, Baltimore County",institution:{name:"University of Maryland, Baltimore County",institutionURL:null,country:{name:"United States of America"}}}]},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",keywords:"Biotechnology, Biosensors, Biomaterials, Tissue Engineering",scope:"The Biotechnology - Biosensors, Biomaterials and Tissue Engineering topic within the Biomedical Engineering Series aims to rapidly publish contributions on all aspects of biotechnology, biosensors, biomaterial and tissue engineering. We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics can include but are not limited to: Biotechnology such as biotechnological products and process engineering; Biotechnologically relevant enzymes and proteins; Bioenergy and biofuels; Applied genetics and molecular biotechnology; Genomics, transcriptomics, proteomics; Applied microbial and cell physiology; Environmental biotechnology; Methods and protocols. Moreover, topics in biosensor technology, like sensors that incorporate enzymes, antibodies, nucleic acids, whole cells, tissues and organelles, and other biological or biologically inspired components will be considered, and topics exploring transducers, including those based on electrochemical and optical piezoelectric, thermal, magnetic, and micromechanical elements. Chapters exploring biomaterial approaches such as polymer synthesis and characterization, drug and gene vector design, biocompatibility, immunology and toxicology, and self-assembly at the nanoscale, are welcome. Finally, the tissue engineering subcategory will support topics such as the fundamentals of stem cells and progenitor cells and their proliferation, differentiation, bioreactors for three-dimensional culture and studies of phenotypic changes, stem and progenitor cells, both short and long term, ex vivo and in vivo implantation both in preclinical models and also in clinical trials.",annualVolume:11405,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"35539",title:"Dr.",name:"Cecilia",middleName:null,surname:"Cristea",fullName:"Cecilia Cristea",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYQ65QAG/Profile_Picture_1621007741527",institutionString:null,institution:{name:"Iuliu Hațieganu University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"40735",title:"Dr.",name:"Gil",middleName:"Alberto Batista",surname:"Gonçalves",fullName:"Gil Gonçalves",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYRLGQA4/Profile_Picture_1628492612759",institutionString:null,institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}},{id:"211725",title:"Associate Prof.",name:"Johann F.",middleName:null,surname:"Osma",fullName:"Johann F. Osma",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDv7QAG/Profile_Picture_1626602531691",institutionString:null,institution:{name:"Universidad de Los Andes",institutionURL:null,country:{name:"Colombia"}}},{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",fullName:"Mani T. Valarmathi",profilePictureURL:"https://mts.intechopen.com/storage/users/69697/images/system/69697.jpg",institutionString:"Religen Inc. | A Life Science Company, United States of America",institution:null},{id:"205081",title:"Dr.",name:"Marco",middleName:"Vinícius",surname:"Chaud",fullName:"Marco Chaud",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDGeQAO/Profile_Picture_1622624307737",institutionString:null,institution:{name:"Universidade de Sorocaba",institutionURL:null,country:{name:"Brazil"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"news.detail",path:"/news/50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",hash:"",query:{},params:{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316"},fullPath:"/news/50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()