3GPP considerations for V2X use cases [4].
\r\n\tThis book will intend to look at different migrant patterns, voluntary and involuntary migration, over the last three centuries. What influenced people to leave their home countries, family, and friends and settle somewhere else? The book may include histories of the 19th century, consider tragedies and movements activated by political events in the 20th century, and/or look at recent events of the 21st century. Push and pull factors are important points. While most of us may be influenced in a negative way by the current happenings in Eastern Europe, the Russian invasion and resulting tragedies also demonstrate some very positive human traits – the preparedness of Ukraine’s surrounding countries to help those in need and to provide a safe place for the present.
\r\n\tWhether one looks at voluntary or involuntary migration into any country, after a period of adjustment, migrants do play a positive role. The research found that migrants contribute to the economy (food, shelter, employment, tax) and enrich a country’s cultural norms. Prerequisites for successful settlements are that the host society adopts a tolerant approach and that the migrants recognize the law and the language of the host country. Nothing is ever easy or without controversy, but I am a migrant (German Australian), and life in Australia has been relatively harmonious. Issues that could be considered in the book are multicultural societies (do monocultural societies still exist?) and theories of acculturation versus integration (settlement processes).
\r\n\tTwo further issues are very important in relation to human migration. There is climate change, global warming, and the environment, which clearly affect people’s movement. Small island populations are very concerned about rising sea levels. 2021 has also seen floods costing human lives: Turkey (August 2021), Brazil (December 2021), Chile (January 2021), and South India (November 2021), to name but a few. In Australia (March 2022), farms and whole townships in New South Wales and Queensland have been flooded for the second time in five years, and plans to resettle these towns are considered. Official and social media provide ample coverage of the events, which leads me to the next issue. There is today’s very important role of the media, of the official and social media. We are constantly bombarded with images of human war tragedies and flood victims. People in industrialized, western countries must be the best-informed populace. How far do the images and up-to-date TV news influence us, make us change our behavior, and perhaps even consider us more generous than we have been?
\r\n\tClimate change and the media are relatively new to the human migration debate, but both issues play important parts, and some interesting discussions are appreciated.
\r\n\t
Artificial intelligence (AI)-based communication applications have shown a tremendous upsurge in the late decade. It is triggering an exceptional attention from academia, governments and diverse industry sectors on the evolving generations of wireless networks. The imminent coming application of fifth generation (5G) wireless communications scheme has spurred the question what is next?. Research sectors have recently started to investigate what is beyond 5G and envisage the upcoming sixth generation (6G). The work in [1] has paved the way for a more detailed exploration of possible methodologies of AI-empowered 6G communication systems and their unprecedented makeover in their architectures compared to the preceding versions of wireless networks. Figure 1 illustrates a world of
Potential network design for future generation of wireless networks [
Now, time has come for academia and manufacturing sectors to bring their focus on the potential applications of the coming generations of wireless communication systems in various aspects of our lives. It can be observed that multiple countries have been starting to apply the new generations of communications i.e., fifth generation (5G) wireless communications scheme. Today, the current promises in telecommunication sector for 5G tell that, firstly the deployment of 5G is ongoing now, prominent low levels of latency, significant increment in capacity, higher speeds of transmissions rate, device-to-device (D2D) communication and of course connected V2X networks, and internet of everything (IoE). Intensive progress is currently witnessed for the transition from the Long-Term Evolution (LTE) to 5G systems in the communication industry. With this momentum, V2X has garnered more considerable attraction today [2], it has the ultimate potential into the enhancement of transportation efficiency, road safety and security, forming a key platform for transportation systems. Such systems intend to be more efficient and intelligent when next-generation communication schemes (5G & beyond) are involved. 5G-based V2X communications can accelerate the advancement of the intelligent transportation systems and reduce traffic and road risks. In V2X schemes, the connected vehicles can aggregate more information about the road environment condition and communicate this valuable information with adjacent vehicles in a real-time scenario. This will lead to an accurate estimation of a risky event before its occurrence. Originally, before this collaboration among vehicles, an internal sensor unit like a global positioning system (GPS) or radar device was envisioned to generate and provide information about vehicle-surrounding environment. Today, the emergence of 5G & beyond communications schemes is promising to efficiently facilitate collaborative connections among vehicles. Back to LTE systems, the Third Generation Partnership Project (3GPP) worked on completing the standardization of LTE-based V2X in their Release 14 to support the automotive industry with LTE services [3]. In Release 16, 3GPP has developed the 5G New Radio (NR) to provide V2X services much more superior than the facilities provided by LTE networks earlier [4]. Normally, Mobile units in cellular networks are connected via one or more base stations but with 5G NR scheme, these unites are connected directly by using what is called sidelink communication technology. Thus, 5G-assisted vehicles will be able to form their ad hoc systems, leaving the need of any extra radio access equipment as an interface among them. On the other hand, in contrast to LTE sidelink, plateau of services are offered by NR sidelink such as collision prevention, unicast and groupcast transmission, QoS administration, cooperative lane switching, compatibility in mm-wave frequency bands, etc. Figure 2 illustrates V2X communication scenario. The fıgure depeicts various potential events that may occur among vehicles in real time, the roadside unit (RSU) can relay the received information and deliver them to a vehicle or a group of vehicles supporting V2I applications. This transportation system tends to be more intelligent when V2X scheme is applied as it enables less traffic, collision avoidance, real time data collection [5].
V2X communication environment with roadside unit (RSU).
According to the European Telecommunications Standards Institute (ETSI), V2X communication messages are categorized into two groups: decentralized environmental notification messages (DENMs) [6] and cooperative awareness messages (CAMs) [7]. These messages convey information about the vehicle condition such as direction, position, velocity, and acceleration, etc. Figure 3 portrays a scenario on how vehicles being instantly assisted by warning messages. In addition, LTE\\5G NR enable exchanging these V2X-messages in unicast and broadcast carriers (bearers) whereas acknowledging the message delivery is executed, at the physical & MAC layers, by the network (i.e. base station). This acknowledgment feature can efficiently minimize the retransmission rate of V2X communication messages. Detected situations will generate DENMs to warn road drivers whereas the periodic CAMs to update the condition within up to 100
The 5G base station broadcasting warning messages to vehicles on trajectory.
In June 2016, the use cases and related key requirements for enabling LTE network to serve V2X communications, were identified by Technical Specification Group (TSG) and System Aspects Working Group 1 (SA1). They classified the use cases in 3GPP into safety and non-safety use cases. The former focusing on securing life and objects, and collision avoidance, the latter use cases aiming the enhancement of environmental performance and transportation movement. Nevertheless, 3GPP has carried out a comprehensive revision of V2X service requirements and enhanced them by proposing NR Release 16 [8, 9]. There are four areas of V2X possible events, have been defined in [9] (i.e., platooning, advanced driving, extended sensor, and remote driving). The following Table 1 maps these four areas into various 3GPP technologies.
Use case field | Use cases | QoS necessities | Technical enablers | ||
---|---|---|---|---|---|
Data rate [Mb/s] | Reliability [%] | Latency [ms] | |||
Driving group of vehicles together (platooning) | Sharing information among the vehicle group and with other groups | 65 | 99.99 | 10 | LTE or 5G broadcast (for limited cases), 5G groupcast or unicast |
Advanced driving | Data sharing, Cooperative crash prevention, Vulnerable driver recognition, Emergency trajectory alignment | 53 | 99.999 | 3 | 5G broadcast/groupcast/unicast |
Extended sensor | Collective perception of environment, Transparency | 1000 | 99.999 | 3 | LTE broadcast, 5G broadcast |
Remote control | Drive a vehicle remotely | Uplink: 25, Downlink: 1 | 99.999 | 5 | LTE or 5G unicast via cellular interface |
3GPP considerations for V2X use cases [4].
Practically, most of the requirements mentioned in Table 1 have been already attained by 5G Release 15 cellular downlink and uplink. On the other hand, remote driving demands optimal QoS requirements i.e., extremely small latency values and higher levels of reliability which are abbreviated as ultra-reliable low-latency communication (URLLC). In order to meet these demands, 3GPP has extensively worked on improving the reliability and reducing the latency of the cellular downlink and uplink [10] in Release 16, by considering the following procedures:
Enable more stable and solid transmissions by improving the downlink control channel information (CCI).
Enable prompt feedback of hybrid automatic repeat request (HARQ) by refining the uplink CCI.
Empower instant communication by enabling multiple configurations to the uplink and downlink scheduling.
Support the recurrence of short-range communications by improving the uplink data channel.
Ease transmissions of critical packets at crucial levels of latency by prioritizing intra-vehicles and inter-vehicles packets
The above procedures will lead to the betterment of reliability and latency of V2X communications. Thus, 5G communication scheme (including LTE & NR Release 16) can increasingly enhance the V2X use cases covering those ones that require high levels of reliability and low latency.
3GPP has been actively worked on specifying the 5G radio interface or as referred to as NR, aiming to achieve more flexible spectrum with higher frequency operations. This is due to the need of deploying radio access technologies and enlarging the spectrum range.
In order to ensure a reliable communication among vehicles and avoid any outage effect from the network, 3GPP, in its Release 16, proposed device-to-device link in NR called sidelink [11]. The proposed sidelink enjoys multiple advantages such as:
Flexible radio link benefiting from the exiting NR cellular interface.
Operates in unlicensed and licensed frequencies’ ranges, hence, it can be allocated for V2X facilities and even shares with existing mobile network services.
Enables V2X use cases for unicast and broadcast transmission among vehicles themselves.
Gives a space to the network to allocate and control the sidelink resource.
Offers instant V2X services by the coexistence of NR and LTE sidelinks.
Operates in dual ranges of frequencies, lower (FR1) and higher (FR2) frequency bands i.e., 7.125 GHz and 52.6 GHz respectively.
Enables vehicles to connect with each other regardless the condition of the base stations in the network.
The design of NR inherently includes capabilities that support the user equipment to control the sidelink transmissions in the network. This, together with cellular transmissions, leads to share the existing available frequency bands. The aforementioned discussion can lead us to the fact that there are two transmission scenarios termed as mode 1 and mode 2. The former is active when decisions are given and centralized by the network. The latter operates in the case when base station system goes down.
Figure 4 shows potential scenarios of 5G (i.e., NR) and LTE with V2X networks. A base station can be classified into LTE or 5G station, depending on its connected core. As illustrated in the figure, the base station can configure all the cellular links and sidelinks over the network.
Illustration of (a) LTE sidelink mechanism, and (b) 5G sidelink mechanism.
WAVE is a group of wireless standards that are represented by the Dedicated Short Range Communications (DSRC) protocol such as IEEE 802.11p and IEEE 1609 standards [12]. This protocol, to support V2X networks, is being defined by IEEE and ETSI in collaboration with the automotive industry sector. The main idea behind DSRC protocol is the provision of road safety in V2X networks. Furthermore, academia, industries and governments have supported many projects to utilize DSRC in fulfilling V2X applications.
The IEEE 802.11p, which belongs to IEEE 802.11 family, is considered as a base to the V2X communication networks due to its high security levels. Moreover, road safety applications such as crucial exchange of real-time data among fast-moving vehicles, and many more of Intelligent Transport System (ITS) platforms, are supported by IEEE 802.11p protocol.
Figure 5 portrays the WAVE stack, which has multiple layers and protocols. On the top WAVE stack, there is application layer (APPL) which is responsible for resource management and handling diversity of non-safety and safety applications. Under this layer, there are three essential sublayers, that is, user datagram protocol (UDP), transmission control protocol (TCP) and internet protocol version 6 (IPV6) sub-layers. They are part of the main WAVE short message protocol (WSMP) layer. Then, the logic link control (LLC) layer, WAVE MAC layer, and eventually the WAVE physical layer which essentially supports the higher layers [13, 14, 15].
Wireless access in vehicular environments (WAVE) stack.
It is crucial to mention that possessing a very flexible and reliable design of WAVE physical layer will ensure optimum throughput and extremely lower latency. This can be realized in the upcoming 5G communication scheme and its proposed NR sidelinks.
In fact, the structure of sidelink protocol between LTE and 5G is nearly common. However, as illustrated in Table 1 before, the focus on quality of services’ issues is much more vital in 5G sidelink than in LTE as enhancing the V2X use cases is an essential goal in this new cellular paradigm. In contrast to LTE, the 5G sidelinks are envisioned to provide more flexibility in efficient utilization of existing resources and superior adaptability to various mobility situations. These potentials are attributed to significant privileges of 5G sidelink, involving:
A power control procedure to alleviate interferences among V2V sidelink and base stations.
Radio link adaption based on sensing channel condition.
More details will be elaborated in subsequent sections on signal identification techniques in next-generations wireless communications.
Next-generation communication networks are envisioned to go more intelligent in the coming decade. Transmitters and receivers in any such networks are anticipated to work in adaptive mode when these devices are able to sense the communication medium (i.e., wireless channel) status between them. Based on the channel condition i.e., signal to noise ratio (SNR) value, the transmitter can decide the optimum transmitted signal parameters before the implementation of transmission process. For example, bit rates, modulation type, SNR level, transmitted power, and so on, can be adjusted by the transmitter, depends on the current environment status. It will monitor the channel condition, if it is good, then parameters such as less transmitted power, is required, or higher modulation schemes can be considered, hence higher transmission data rates can be achieved. This, in turn, requires the other receiving side to adapt to such unexpected changes and correctly estimate the parameters used to transmit the signal by the sender. Artificial intelligent (AI) tools can play a significant role to facilitate this estimation process [16]. On the other hand, it is promising that AI-based V2X communication systems will enable more safety, traffic efficiency, awareness & automotive driving, and security in the vehicular industry. When AI meets the emergence of 5G & beyond communication systems, the way is more paved to smart transport networks [17]. These networks will definitely bring a new concept of connectivity among vehicles and have a profound influence on our daily life. Furthermore, the deployment of 5G communication systems in V2X networks will bring this paradigm to higher efficiency and safety level.
As in traditional mobile networks, there are both transmitter and receiver nodes to exchange the data. Similarly in V2X communication networks, there are these nodes (i.e., vehicles) to exchange instant information. In the transmission process, a vehicular transmitter will modulate the data and send the modulated signal via the communication channel to the vehicular receiver side. A smart vehicle in 5G-based V2X network is anticipated to adapt to the channel condition and optimally adjust the modulation type or transmitted power suitable for transmission. This, in turn, will necessitate the vehicular receiver to adapt itself to these unexpected changes and recognize the signal parameter i.e., modulation being used at the transmitter side. Accurate recognition of V2V signal’s parameters can be very beneficial to many use cases in the vehicular networks. In addition, it can be utilized as a source of information for the base stations to update many instant and vital data such as the position of moving vehicles, awareness messages, and information related to road environment.
For the purpose of meeting such demands, vehicular networks utilized indexed modulation (IM) techniques for data transmission [18]. IM method (i.e., spatial modulation) uses indices of the building modulated blocks (i.e., transmit antennas) in a communication scheme (i.e., MIMO systems). The following block diagram illustrates the key idea of IM technique as shown in Figure 6.
The key principle of IM process.
As illustrated in the figure, first, the input data is projected into a common vector before splitting it into two sub-vectors. They are dedicated to distinct transmit indices and then mapped to a digital modulation symbol such as phase shift keying (PSK) or quadrature amplitude modulation (QAM). Eventually, the common vector is mapped to IM vector for the purpose of transmission.
The decision of choosing which digital modulation type is suitable, can significantly affect the vehicular network throughput. In conventional transmission, the receiver will have a pre-knowledge about the selected modulation type, the channel condition, the transmitted power, the bit rates and so on. As mentioned earlier, a vehicle in advanced generations of vehicular communication systems is anticipated to go more intelligent in sensing the wireless channel condition and adjusting these parameters accordingly. In other words, to determine the optimal signal parameters (modulation type, bit rates, transmitted power, etc) before transmission takes a place. In this scenario, the vehicular receiver has to track these possible changes and automatically recognize these signal parameters without any pre-communication with the transmitter. This capability at the receiver side, will exempt the vehicular transmitter to broadcast these valuable information over a wireless channel, and this means adding another good level of security to such information.
In order to enable the receiver with an accurate automatic recognition property of signal parameters i.e., automatic modulation recognition (AMR), two key approaches are used and have been reported in literature, that is, maximum likelihood (ML) approach and feature-based (FB) approach [19, 20]. The former provides optimal solution but suffers from higher computational complexity whereas the latter offers sub-optimal results but with lower complexity as illustrated in Figure 7. Hence, in this chapter, the FB approach is considered. After careful scanning of existing work in V2X networks, it is worth to mention that, to the best of our knowledge, the recognition of wireless signal parameters has not yet been addressed in the literature.
ML and FB methods used for wireless signal parameter recognition.
In ML approach, the values of likelihood functions are calculated and compared with a reference value to finalize the optimal modulation. On the other hand, in FB approach, the statistical characteristics of the received signal are extracted and utilized to estimate the intended signal parameters. There are numerous types of features can be exploited to recognize the modulation type of a detected signal such as, instantaneous time-domain features, fourier and wavelet transforms, higher-order statistics, asynchronous amplitude histograms (AAHs), two-dimensional histogram of asynchronous sampled in-phase-quadrature amplitudes (2D-ASIQHs), and so on.
For instance, AAHs features have proved a prominent cost-effectiveness, flexibility and lower computational and implementation complexity. We have applied this type of features before in our work in [21] to estimate multiple signal parameters together using support vector machines (SVMs). It has shown a phenomenal performance to distinguish signals from each other in a realistic cellular wireless environment. Furthermore, SVM has proved its capability in processing small size of datasets compared to other machine learning tools. To clarify the conceptual meaning of AAHs features to the readers, the following Figure 8 depicts the idea.
The main idea of AAHs-based signals (three different modulations i.e., ASK, QPSK, and 16QAM) [
As illustrated in Figure 8, the main constellation diagrams of three different signals and the corresponding AAHs are shown. Asynchronous shift keying (ASK) has two constellation levels (0 and 1), therefore, two unique peaks appear in the corresponding histogram. But, the case is different in the second histogram for the quadrature-PSK, where one unique peak exists. This is due to the existence of single equal amplitude for the four constellation points in the related constellation diagram. In 16QAM modulation, AAHs show different shape than in the previous two signals. As portrayed in the complex plane for this type, there are 16 points of constellations but only three unique amplitude levels exist, and this interprets why we have three amplitude levels in the corresponding AAH for this signal. We can conclude that AAHs feature demonstrates distinctive signatures among various digital modulations of detected signals. This, in turn, will facilitate the job of the receiver node in the network to automatically recognize the type of modulation being used by the transmitter node leaving the necessity to obtain this information from the transmitter vehicle beforehand.
In the subsequent procedure, the aforementioned features will be fed into a machine learning tool as an input vector in order to enable autonomous recognition at the receiver terminal in the vehicular network. Machine learning tools have found a versatile deployment in different aspects of our lives. They construct smart systems to experience challenging environments. Moreover, they process large quantity of data generated from multiple resources, to extract useful and unique models that can be efficiently utilized in intelligent telecommunications terminals [17]. AI (i.e., machine & deep learning) techniques are still an attractive research direction in the vehicular communication to be more explored. They have the potential to enable data-driven decisions and offer exceptional services in the vehicular networks such as instant traffic control and estimation, position-based facilities, and of course, autonomous driving. Basically, machine learning tools can be broadly classified into two main groups. One called supervised learning machine, the second one is unsupervised machine. The former requires a training process for the classifier\\regressor whereas the latter does not use training subset and usually its task is for clustering and dimension reduction process.
Artificial intelligent (AI) tools have been regarded as a key solid solution to the challenges experienced by self-driving vehicles, such challenges are heavy rain, dense fog or snow, and any other difficult hostile weather conditions. For instance, authors in [22] have proposed a novel scheme to enable awareness and clear vision in automated cars of their surroundings. They deployed deep neural network in combination with the automatic white balance joined with laplacian pyramids (AWBLP) technique in order to enhance the contrast and resolution of the captured vehicle image. For a missed or wrong detection in the adverse condition of weather, they proposed an online tracking system and constructed a dataset which can serve as a benchmark called, detection in adverse weather nature (DAWN) aiming to examine their proposed system. Sample images of the DAWN dataset, before restoration, are shown in Figure 9 where this dataset covers four challenging weather conditions for automatous vehicles.
Different groups of images that describe four challenging weather conditions in DAWN dataset.
The images in this dataset will be restored to enhance their resolution and then to be input into the deep learning tool. This is to perform an online detection of the vehicles and enable them to see each other in difficult weather conditions, and therefore to increase the road safety. However, we have enhanced the resolution of the sample images in Figure 9 just to add more clarity and visibility for the reader as reflected in Figure 10. More challenges will be overcome in the industry domain with such current proposed panacea like DAWN and AWBLP. However, more investigations on other deep learning types, their parameters and their performance to serve cellular V2X networks are still demanded.
Samples from DAWN dataset after enhancing their resolution.
This chapter has offered an insight to the scientific community about the potential enhancement of V2X schemes by the deployment of 5G communication network. Let recap what have been addressed earlier, the 5G & beyond wireless systems will enable vehicles to talk to each other and to different infrastructures. Furthermore, the latest advancements in 3GPP enable deploying 5G as a great communication paradigm for V2X networks. In addition, the 5G sidelinks offer unicast, groupcast and broadcast transmission in vehicular communication networks. Furthermore, 5G & beyond systems can enhance the DSCR for collision-free and road safety. With the emergence of 5G technology, the cellular V2X networks will track the momentum and gain more capabilities and connectivity.
The chapter has also paved the way to a prospective research direction on signal recognition schemes (i.e., AMR & SNR) in V2X communication networks. Furthermore, it shed light on their potential techniques and the significance of their role in V2X networks in increasing security levels and enhancing V2V communication system throughput. However, further investigation on identifying many other parameters is required. For instance, a vehicular node in future intelligent V2V networks is envisaged to go adaptive and vary the transmitted power or transmission data rate when sensing the wireless channel.
On the other hand, simultaneous recognition of multiple signal parameters of a vehicle in V2X networks remains a future challenge in the V2X future development. Besides, issues related to wider coverage range utilizing wireless cooperative communication schemes; and matters concerned about higher levels of security in V2X networks with arising complexity of densely connected things will be attractive topics in the near future.
V2X | Vehicle-to-Everything |
V2V | Vehicle-to-Vehicle |
5G | Fifth-Generation |
SVM | Support Vector Machine |
LTE | Long-Term Evolution |
DNN | Deep Neural Network |
IoE | Internet of Everything |
6G | Six-Generation |
3GPP | Third Generation Partnership Project |
D2D | Device-to-Device |
GPS | Global Positioning System |
RSU | Roadside Unit |
QoS | Quality of Service |
ETSI | European Telecommunications Standards Institute |
NR | New Radio |
CAM | Cooperative Awareness Message |
TSG | Technical Specification Group |
SA1 | System Aspects Working Group 1 |
CCI | Control Channel Information |
HARQ | Hybrid Automatic Repeat Request |
FR1 | Lower Frequency Band |
FR2 | Higher Frequency Band |
WAVE | Wireless Access in Vehicular Environment |
ITS | Intelligent Transport System |
UDP | User Datagram Protocol |
IPV6 | Internet Protocol Version 6 |
IM | Indexed Modulation |
PSK | Phase Shift Keying |
QAM | Quadrature Amplitude Modulation |
AMR | Automatic Modulation Recognition |
ML | Maximum Likelihood Approach |
FB | Feature-Based Approach |
AAH | Asynchronous Amplitude Histogram |
2D-ASIQH | Two-dimensional Asynchronous Sampled In-phase-Quadrature Amplitude |
AWBLP | Automatic White Balance Joined with Laplacian Pyramid |
DAWN | Detection in Adverse Weather Nature |
One of the essences of Einstein’s general theory of relativity is curving the space–time [1]; from which as John Wheeler had said that as I quote “Space-time tells matter how to move; matter tells space-time how to curve”. However as I see it; it is time tells space how to curve but “not” space tells time how to curve. Nevertheless Einstein’s general theory of relativity was developed based on a Minkowski type space–time continuum where time is treated as an “independent” variable (i.e., an independent dimension) [2]. However from temporal (t > 0) universe standpoint, time and space are coexisted in which time is a “dependent” forward variable moving at a “constant” speed. In other words within our temporal universe, time curves time–space, but time–space “cannot” curve the pace of time.
Since it is impossible to create a magnetic field within an empty space that normally assumed it could. But we will show it is a temporal (t > 0) space, instead of an empty space that normally assumed [3], that an assumed gigantic mass was situated. For which the mass is capable for continuingly attracting substances to build up a super-gigantic mass, such that a huge gravitational field induced by the mass can be established overtime. From which we see that it was the huge convergent gravitational force that ignited the thermo-nuclei big bang explosion created our universe, but not by time. In other words it was big bang explodes with time, but not time ignites the big bang.
As we accepted subspace and time are coexisted within our temporal (t > 0) universe [4, 5], time has to be real, and it cannot be virtual since we are physically real. And every physical existence within our universe is real. The reason some scientists believed time is virtual or illusion is that; it has no mass, no weight, no coordinate, no origin, and it cannot be detected or even be seen. Yet time is an everlasting existed real variable within our known universe. Without time there would be no physical matter, no physical space, and no life. The fact is that every physical matter is coexisted with time which including our universe. Therefore, when one is dealing with science, time is one of the most enigmatic variables that ever presence and cannot be simply ignored. Strictly speaking, all the laws of science as well every physical substance cannot be existed without the existence with time. For which we see that; time cannot be an independent dimension or an illusion. In other words, if time is an illusion, then time will be independently existed from physical reality or from our universe. And this is precisely that many scientists have treated time as an independent variable such as Minkowski’s space [2], for which we see that Einstein ‘s space–time can curve time. However if matter can curve time–space, then we can change the speed of time. But as I see that it is our universe exists with time, it is “not” our universe changes time.
Since time is a constantly moving dependent variable at a constant pace, for scientific presentation we usually use numeric symbols to represent time otherwise it would be very difficult to facilitate and to understand the nature of time. For convenience we had divided time into past (i.e., t < 0), present (i.e., t = 0), and future (i.e., t > 0) domains to represent time, as exemplified in Figure 1.
Shows that our temporal (t > 0) universe changes naturally with time, in which it shows the age of our universe is about 14 billion light years old. The past time domain (t < 0) represents a set of certainty virtual events (i.e., past universes), the future time domain (t > 0) represents a physically realizable domain of uncertainty. And the instantaneous present moment (t = 0) is the only moment of absolute physical certainty. Yet we see that present moment is instantaneously moved forwardly to become the next new present moment [(i.e., t = 0 + ∆t) where ∆t → 0], to next absolute certainty moment.
From which we see that our universe changes with time; for example present moment at t = 0 moves immediately forward to become the next present moment (t + ∆t). In other words the present moment t = 0 becomes the moment of past. Once the present moment (t = 0) moves forward a section of ∆t → 0, no matter how small it is, it is impossible to return back, since our universe changes with time. From which we also see that it is impossible to move the current moment (t = 0), no matter how small ∆t is, ahead or behind the pace of time. Nevertheless this diagram exemplifies our temporal (t > 0) universe changes with time, since our universe is a stochastic dynamic temporal (t > 0) space [4, 5]. Of which we see that it is impossible to travel backward or ahead the pace of time.
Since past time domain (i.e., t < 0) represents the moment of certainty events (e.g., past universes), they were the past memories (i.e., information) but without physical substance in it and no time. Which is similar as viewing a backward video clip, if we move time backwardly (t < 0), we see that past consequences (i.e., past universes) changes with time (e.g., t = − tn) as a backward movie clip. In view of Einstein’s general theory of relativity as I quote; matter (i.e., time–space) curves (or changes) time–space. And this is precisely the section of past time (i.e., t < 0) domain that Einstein used to derive his general theory, by which his theory had have treated time as an independent variable. This is precisely why general theory is a deterministic theory instead indeterministic. Which is similar to most of the classical sciences are deterministic, yet science is supposed to be non-deterministic or approximated.
Nevertheless within our temporal (t > 0) universe, time is a dependent or interdependent variable with respect to the subspace since space and time are coexisted. In which we see that future events (i.e., t > 0 domain) are non-deterministic consequences with degree of uncertainties. And this is the positive time [or temporal (t > 0)] domain that Einstein general theory may not apply within t > 0 domain, since subspaces are not deterministic (i.e., our universe changes with time). Nevertheless the implication of temporal (t > 0) is that physical realizable events exist if and only if within positive time domain, by which the instantaneous t = 0 can only be approach but never be able to attain (i.e., t ⟶ 0), even assumed we have all the energy (i.e., ∆E) to spend.
To further epitomize the nature of our temporal (t > 0) universe, I have come up with a composite diagram as depicted in Figure 2, which shows that our universe started from a big bang creation, although time has been existed well before the creation. Since the past certainty consequences (i.e., memory spaces) were happened at specific time within the negative time domain (i.e., t < 0), we see that every specific past time event had have been determined with respect to a specific past certainty subspace. From which we see that time can be treated as an independent variable with respect to the past certainty consequences in the pass-time domain (t < 0) as from mathematical standpoint. But from physical reality standpoint, time is no longer existed within the past time (t < 0) domain. And this is precisely why time can be treated as an independent variable from mathematical analysis to predict what would happen at a distant future, but with some degrees of uncertainty since physical substance or subspace changes naturally with time.
Shows a composited temporal (t > 0) time–space diagram to epitomize the nature of our temporal universe. BLY is billion of light years. In which instant-present moment t = 0 is the only moment of absolute physically certainty of our universe. Past time domain (t < 0) shows past certainty universes but without time and no physical substance. And future time domain (t > 0) represents a physically realizable domain that changes with time.
This is precisely what classical laws and principles had done to science, using past deterministic certainties to predict the future. Since prediction is supposed to be non-deterministic (i.e., uncertainty), yet all the predicted solutions were maintained deterministic. it is because deterministic analysis produces deterministic solution. In other words all physically realizable solutions strictly speaking should be temporal (t > 0) solution. From which we see that all the laws, principles, theories as well paradoxes were developed from the deterministic past certainties to predict the future uncertainty consequences, but in reality, those laws and principles should not deterministic instead of deterministic. From which we see that Einstein’s general theory of relativity cannot be the exception [2]. But using past deterministic to predict the future consequence is likely be deterministic, that contradicts with our temporal (t > 0) universe, which is a non-deterministic universe (or subspace) constantly changes with time.
Although using past certainties to predict future outcome is a reasonable method that had have been using for centuries, but it is physically wrong if we treated time as an independent variable within our temporal (t > 0) universe. From which we see that irrational, weird, and fictitious solutions emerged, which had had already been dominating the world-wide scientific conspiracy. This includes Schrödinger ‘s fundamental principle of superposition [6], Einstein’s special and general relativity theories [2], Hawking’s space–time [7] and others. Since they were all developed from the past certainties to predict the deterministic future, but future prediction physically cannot be deterministic or certainty.
Nevertheless the section of time Δt shown in Figure 2 represents an incremental moment after the instant t = 0 moves to a new t = 0 + Δt, where Δt can be as small as we wish (i.e., Δt ⟶0). Yet we will never be able to squeeze it to zero (i.e., Δt = 0) and this is the section of time that cannot be delay or moved ahead the pace of time (i.e., t < 0 + Δt or t > 0 + Δt) or even stop. From which we see the aspect for time traveling either ahead or behind the pace of time is inconceivable, since we are coexisted with time.
Moreover the present instant t = 0 which represents the absolute certainty moment within our temporal (t > 0) universe, and this is the moment of time (i.e., t = 0) that divides the physical and virtual realities. From which we see that; future uncertainties are physical realizable consequences, but all the past deterministic consequences were the virtual reality since time is no longer existed within the past time domain i.e., (t < 0). From this conjecture we see that any hypothetical solution obtained from the past deterministic domain is anticipated to be deterministic. Nevertheless, every aspect happens within our temporal (t > 0) universe is a physical reality but non-deterministic. In other words every physical reality within the temporal (t > 0) universe are uncertainties that change with time. In other words, any deterministic science within our universe temporal (t > 0) is virtual as from strictly physically realizable standpoint. This is precisely the reason that classical sciences are deterministic. But this by no means that timeless (t = 0) solutions are useless, the fact is that all the laws, principles and theories were developed from the past certainty regime are still the foundation of our science. From which it tells us that; science developed mostly from the past certainties were deterministic, but science within our temporal (t > 0) universe are probabilistic or non-deterministic which changes with time.
Nonetheless, without the past deterministic consequences, it has no better way to determine the non-deterministic consequences. Thus we see that if temporal (t > 0) constraint is imposed on the past deterministic consequences in search for future non-deterministic solution, very likely physically realizable solution would emerge. From which we see that science is not supposed to be deterministic, science is a law of approximation. In view the nature of temporal (t > 0) space we see a temporal (t > 0) exclusive principle as stated: Empty space and temporal (t > 0) space are mutually exclusive.
Since physically realizable paradigm is depending on temporal space, it is vitally important to have a basic idea of our temporal (t > 0) universe, for which we exemplify the nature our temporal (t > 0) universe as depicted in Figure 3.
Shows a simplified diagram of our temporal (t > 0) universe. c is the speed of light. v is the radial velocity. In which we show that every subspace is moving radially toward the boundary of the universe, which is linearly proportional to the speed of light since light speed is the current limit.
In which we see that every subspace has the same time within the entire universe. And our universe also has the same time with the same pace as the greater temporal pace that our universe is embedded in.
As we have accepted the origin of our universe was started by a big bang explosion from a gigantic mass annihilation within in a temporal (t > 0) space [4, 5], instead within an empty space as normally assumed [3]. Then before the big bang started a question may be asked, what triggers the explosion? As I will show that it must be ignited by an intense convergent gravitational force, induced by a gigantic mass M(t), that triggers the thermo-nuclei explosion which is mass to energy conversion.
Since big bang creation cannot be started from an empty space, big bang creation has to be started within a temporal (t > 0) because mass M(t) is temporal (t > 0), then a question is asked, under what physical means that will ignite the big bang explosion? I assert that it must be triggered by an extreme “convergent” gravitational force induced by mass M(t) over time as depicted in Figure 4.
Shows a well before the big bang explosion scenario. In which the dark dot represents a point-singularity approximated gigantic mass M(t), F(t) represents a huge gravitational field induced by M(t), the arrows show a set of very intense “convergent” gravitational force are applying at M(t).
From which we see that a huge mass M(t) had had been existed within a temporal (t > 0) space well before the big bang started. Since temporal space is a non-empty space, it allows M(t) to continuingly attracting new substances into mass M(t). Then eventually a huge induced gravitational field was created as M(t) grows. In which we see that mass M(t) is able to attract more and more substances added to her mass. Eventually M(t) behaves like a giant Black Hole or it is a black hole [8] that swallows more and more substances over time. From which we see that as M(t) is getting heavier and heavier until her “storage” gravitational pressure reaches to a point that triggers the thermo-nuclei explosion of mass M(t). From which we see that it must be the induced gravitational force that triggers the big bang explosion instead by “time” as most cosmologists assumed [3]. Thus it is reasonable to accept that, if mass M(t) were not embedded within a temporal (t > 0) space then there would be “no” gravitational field to create by mass M(t) and there would be “no” big bang. This is one of the many examples shows that physically realizable science comes from a physically realizable paradigm. From which we had have seen virtual and fictitious conjectures based the big bang creation within an empty space and it is hard to accept those illogical predictions as from physically realizable scientist standpoint.
Since mass M(t) and her induced gravitational field are temporal (t > 0) substances, by which induced gravitational field “coexists” with mass M(t) as given by,
from which we see that gravitational force strength F(r; t) “decreases” rapidly as inverse square law of distance r, where G is a gravitational constant and m represents an unit reference mass (i.e., points of interest) as illustrated in Figure 5.
Shows induced gravitational forces converge at a point-singularity approximated mass M(t). M represents a unit mass of interest. In which we see that without embedded within a temporal (t > 0) space paradigm it is impossible to create an induced gravitational field stored around mass M(t).
With reference to the point of interest, “potential” energy for each unit m away from gigantic mass M(t) is given by [9];
where G0 = G · m is a “normalized” gravitational constant. In which it shows that gravitational energy exponentially “increases” as distance approaches to mass M(t). From which we see that as mass M(t) “reduces” rapidly with time, magnetic force attached to m (i.e., point of interest) releases quickly that causes m moves outwardly away as the induced gravitational force loses her pull. The outward force acted on each m, by Newtonian second law is approximated as given by,
where f is an outward acting force on unit m and a is its acceleration.
which is proportional to the inversed square laws of distance r. From Figure 6 we see that further away from M(t) is lowering the acceleration a. While closer to M(t), acceleration of m is anticipated to be very high, as the gravitational field shrinks rapidly. This rapidly disappearing gravitational field give rise to a huge amount of energy as mass M(t) annihilates itself rapidly with time. From which we see that a gigantic gravitational energy together with a huge thermo-nuclei energy are simultaneously releasing as the big bang started.
Illustrates the thermo-nuclei big bang hypothesis, where the associated gravitational field releases its energy as the stored gravitational field shrinking with time rapidly. In which we see that unit m moves outwardly as gravitational field shrinks rapidly with mass M(t) annihilates.
Yet, without the thermo-nuclei mass annihilation there would be “no” such magnitude of gravitational waves that can be detected [10]. Unlike the electro-magnetic waves, gravitational waves are mostly “longitudinal” waves which dissipated quickly due to mass in motion within our temporal (t > 0) universe. As in contrast with transversal electro-magnetic wave it travels at speed of light. From which we see that it is extremely difficult to detect gravitational waves due to mass or masses in motion within our universe as can be seen as depicted in Figure 7.
Shows a scenario of possible black holes collide-annihilation or neutron star explosion. Aside the anticipated electro-magnetic energy radiation at speed of light, a huge gravitational waves releases as mases of black holes annihilation as depicted in the figure.
Nevertheless the essence of preexisting temporal (t > 0) space condition is very crucial since any analytical conjecture or solution comes out from a physically realizable paradigm is “likely” to be physically realizable, as in contrast with commonly used paradigm gravitational field can be created within an “empty” space. Since substance and emptiness are mutually exclusive, empty space is a “non-physically” realizable paradigm [11]. Aside the non-physically realizable issue, empty space has “no” substances for gravitational field to store. From which we see that it is a physically realizable reason to assume that big bang explosion was triggered by a huge convergent gravitational force induced by mass M(t), instead triggered by time as some cosmologists believed.
Strictly speaking there are “two” dominant energies that associated with mass M before big bang explosion as given by,
where E’ represents the gravitational energy induced by mass M, and E is the thermo-nuclei energy due to mass M annihilation. Since physically realizable paradigm guarantees her solution would be physically realizable, but either Eq. (5) and Eq, (6) are not physical realizable. Firstly there are timeless (t = 0) or time independent equations, as most of the laws and principles do. Secondly there are not temporal (t > 0) equations yet since mass M does not change with time [i.e., or temporal (t > 0)]. In which we see that everything existed within a temporal (t > 0) space has to be temporal (t > 0). Thus from physical reality standpoint, the existence mass M it has to be temporal (t > 0) [i.e., M(t)]. Which means that M(t) changes naturally with time and exist within positive time domain. For which Eq. (5) and Eq. (6) can be written in temporal (t > 0) formulas as given by, respectively,
where t > 0 denotes that equation is complied with the temporal (t > 0) condition (i.e., exists within the positive time domain (t > 0). E’ (t) is the gravitational equation, E(t) is the thermo-nuclei energy equation, and M(t) is a temporal (t > 0) mass.
In view of thermo-nuclei Eq. (8) one might wonder where the (1/2) factor comes from since it is different from Einstein’s energy Eq. E = Mc2. For which I will show in a in Section 6 Einstein’s energy equation is physically significantly correct that energy and mass are equivalent, but it is “not” physically realizable within our temporal (t > 0) universe. It is because Einstein energy Eq. E = Mc2 was derived from his special theory of relativity, but his special theory was developed within a non-physically realizable empty space. Since E = Mc2 and E = (½)Mc2 shares identical physical significance that energy and mass are equivalent, but E = (½)Mc2 was based on kinetic energy standpoint where velocity of light is the current physical limit.
However, it is the induced gravitational energy E’(t) that had had never been a component included within the big bang explosion that I am concerned [3]. For which we start with the total potential energy due to induced gravitational field of Eq. (7), as referenced to point of interest “m” the overall gravitational energy induced by mass M(t) can be “approximated “by,
this shows that total gravitational energy E”(t) decreases as mass M(t) annihilates. From which we see that a huge amount of gravitational energy releases instantly soon after M(t) annihilated. In other words an intense “divergent” gravitational shock waves releases almost simultaneously with thermo-nuclei explosion, within a newly created expanding universe as depicted in Figure 8.
Shows a composited diagram that our universe was created. The set of converged arrows represents a shrinking gravitational field. A set of outward arrows shows an outward energy explosion due to big bang. In which we also see that the boundary our universe is expanding at speed of light due to thermo-nuclei big bang explosion.
Since Eq. (7) and Eq. (8) are not time varying equations, strictly speaking they “cannot” implement directly within the temporal (t > 0) space unless they were reconfigured into time-varying partial differential forms, as given by [4, 5],
where
As we know that an equation is a language, a picture or even a video, from which we see that soon after the big bang explosion two divergent energies emerge from the exploding mass M(t) are illustrated in Figure 8, one is due to thermo-nuclei explosion and the other is from sudden releases (i.e., outward explosion) stored gravitational energy due to instantaneous mass M(t) annihilation. Although thermo-nuclei explosion is responsible mostly for the big bang creation [4, 5] for which the boundary of our universe is expanding at the speed of light, but with a surge of gravitational waves as represented by a set of arrows diverges from the big bang explosion as can be seen in the figure. From which we see that a set of convergent arrows represents the collapsing gravitational field as the mass of M(t) reduces rapidly as big bang explosion started.
Since every subspace within our universe is created by an amount of energy ΔE and a section of time Δt, we see that it is the “necessary cost” for space creation, which includes our universe herself. For instance mass to energy conversion can be written in partial differential form as given by,
In which we have ignored the stored gravitational energy due to mass M(t), since thermo-nuclei energy is much greater than the induced gravitational energy from mass M(t) [i.e., E(t) > > E”(t)], where t > 0 denoted that equation is subjected to temporal (t > 0) condition or exists only in the positive time domain t > 0. By which the “total” amount of energy due to big bang explosion can be approximated by,
where M0 represents the total mass and c is the speed of light. Since ΔE(t) ∆t is equivalent to a temporal (t > 0) subspace. In this case we see that our universe changes with time [i.e., temporal (t > 0)].
For example if we let t = 0 which is at the time equals to 14 BLY (i.e., billion light years) after the big bang, the amount of energy ∆E and the section of time ∆t = 14 BLY that created our universe is given as,
where t = 0 represents the instant present moment, after the big bang explosion 14 BLY ago which is the moment when big bang started to explode (i.e., 14 BLY ago). Nevertheless, Eq. (13) can be written as.
where t is bounded between - 14 BLY to 0 [i.e.,(− 14 BLY, 0)], and ∆t increases proportionally from – 14 BLT to 0. In view of preceding equation we see that energy is conserved which is equals to the total equivalent energy of the big bang mass M0. From which we see that the section of time ∆t = 0 means that no energy releases yet from mass M0 at exactly 14 BYL ago (i.e., t = −14 BLY). In other words our past time universes [i.e., ΔE
But as time moves on forwardly from the present t = 0 into the future time domain (I.e., t > 0), our universe [i.e., ∆E(t > 0)∆t] is an indeterministic or uncertainty domain, for which we have the following expression after Eq. (13),
which shows our universe [i.e. ∆E t > 0 ∆t t > 0] changes with time and it does not change time. From which it is a mistake to treat our temporal (t > 0) universe as a deterministic universe, as Einstein’s general theory did. From which we have seen that scores of fantasy time-traveling scenarios back to the past or to the future emerged.
Yet, it remains to be answered when the section of time ∆t approaches to infinitely large (i.e., ∆t → ∞)? Or is our temporal (t > 0) universe having a life? As we accepted our temporal (t > 0) universe, then it would be the end of physical realizability as ∆t → ∞ that must be the end of our universe. But in view of energy conservation we see that when ∆t → ∞ then ∆E → 0, we should have a finite energy preserved within a huge cosmological subspace within a vast temporal (t > 0) space that our universe was created as given by,
And this is the end of our universe at t → ∞ at point of infinity, since time within the greater temporal (t > 0) space that had had supported the big bang creation of our universe has no beginning and has no end. But our universe has a beginning, but it has no end in time and in space. Similar to a wave created on a still water pond, it has the beginning, but it has no end from strictly speaking viewpoint.
Yet every subspace within our temporal (t > 0) universe, no matter how small it has a lowest limit by Planck constant. In which we see that the lowest limit for a tiniest particle within our temporal universe even at point of infinity (i.e., t → ∞) ∆t ∆E is still within the quantum limit as from current knowledge of science is given by,
where h is the Planck’s constant.
Nevertheless as from macroscopic standpoint every subspace no matter how big it is, it is currently limited by.
where M is the mass.
Nonetheless, every subspace, as well our universe, changes with time. But our universe and her subspaces “cannot” change the speed of time since time and subspace (i.e., substance) are coexisted. Thus every subspace within our universe has the “same” time speed. Since the universe as a whole run at “the same” pace of time. In which we see that if any subspace has a “different” pace of time it “cannot” exist within our universe, that includes the timeless (t = 0) subspace. The fact is that; those timeless (t = 0) and time-independent subspaces are virtual and “non-physically” realizable subspaces. For which is “incorrect” to assume those virtual and non-physically realizable spaces as “inaccessible” subspaces within our universe as some scientists do.
Since there are two pillars of modern physics one is dealing with very small particles of Schrödinger’s quantum mechanics [6] and the other is dealing very large object of Einstein’s relativistic theories [2], yet both of them are timeless (t = 0) or time independent principles since both of them were developed within a non-physically realizable paradigm. Firstly we see that Einstein’s special theory of relativity was developed on an empty space paradigm as depicted in Figure 9.
Shows where Einstein’s special theory of relativistic mechanics was developed from an empty space paradigm. In which we see a coordinate system (X’ Y′ Z’) is translating at a constant speed with respect to a stationary coordinate system (X, Y, Z).
In which we see that it is not a physically realizable paradigm by virtue of temporal exclusive principle. Nevertheless Einstein’s special theory can be developed with Pythagoras theorem as given by,
where v is the velocity of a coordinate system and c is the speed of light. Since within empty space paradigm it has no time and has no direction, Einstein’s special theory of Eq. (20) shows no sign of relativistic direction. Although the implication is relative-directional similar to the kinetic energy equation it has no sign of direction, but the equation implies that the energy is on the same direction of the velocity vector v. From which we see that scientists have frequently treated special theory as a relativistic-directional independent, which is due to the empty space paradigm. The question is that why we made those trivial mistakes? The answer is that, since scientists are mathematicians, they can implant virtual time on a piece of paper as they wish. But not knowing the background of that piece had have been assumed as an empty subspace for centuries.
On the other hand, if Einstein’s special theory is developed within a temporal (t > 0) subspace as depicted in Figure 10. For example, derivation can start at time t = t1 with a light emitter of S, where t is the time of the background temporal (t > 0) space. With reference to the diagram, we see that it will take a section of time Δt (i.e., t = t1 + Δt) for beam 1 to reach position 1, which is a subsection within Δt′ (i.e., Δt < Δt′) for light beam 2 before reaches position 2. Since v·Δt is a sub-distance of v·Δt′ before the moving particle reaches position 2, it will take beam 2 an additional section of c Δt″ = c (Δt′ – Δt) to reach position 2 simultaneously when the particle arrives. Therefore we see that the duration at static position 1 is actually Δt′ = Δt + Δt″, instead of just Δt as shown in the special theory of relativity [i.e., Eq. (20)], from which we see that the moving particle has “no” section of time-gain relative to the static position 1, since time at position 1 and 2 are “the same” (t = t2 = t1 + Δt′) when moving particle reaches position 2. In which the duration at position 1 is actually Δt′ = Δt + Δt″, instead of Δt as shown in the special theory of relativity. Thus we see that Einstein’s special theory of relativity fails to exist within our temporal (t > 0) universe. In other words Einstein’s special theory of relativity is a timeless (t = 0) theory which is only existed within an empty space, which has no time and no space. From which we see that it is the background of that piece of paper inadvertently that had have treated it as an empty timeless (t = 0) space.
Shows the same relativistic mechanics model is embedded within a temporal (t > 0) subspace. S is the light source and P is a particle in motion at a constant velocity of v, c is the velocity of light.
Nevertheless what is the physical significant of Einstein’s special theory of relativistic to what? In view of the temporal (t > 0) paradigm of Figure 10, we see that it is the relativistic theory of distance as given by,
where dr is a relativistic distance between position S of the light source and position 1 of a moving particle both simultaneous reach position 2. From which we see that light beam has traveled a extra distance of (c – v) ∆t more than the particle traveled. Thus we see that Einstein’s special theory of relativity is relative to distance within our temporal (t > 0) subspace, instead of relative to time since we cannot change time. That means that particle and the light beam arrived position 2 at the same time which is the same time at position 1, at position 2, at position S and the same time at everywhere within our universe. In which we see it has no time-gain or time-loss of the traveling particle.
Nevertheless when velocity of the moving particle approaches the speed of light (i.e., v → c), we have a relative distance dr → 0. This is by no meant that time is running behind or ahead the pace of time. For which we see that it is the speed of light travels with time, and it is not the speed of light changes the pace of time.
Similarly relativistic distance of preceding equation can also be applied for relative velocity of two moving particles. For example two particles are moving at the same direction at different speeds v1 and v2, respectively. In view of Einstein’s special theory is not a physically realizable theory within our temporal (t > 0) universe, and it is also incorrectly had have interpreted as directional-independent, as can be seen from Eq. (20). It is however should correctly treated special theory as a directional sensitive theory because of particle’s velocity vector. From which we see that the relativistic distance between two particles on the “same direction” can be shown as,
Again we have seen that Einstein’s special theory is a relativistic velocity equation instead a relativistic time theory.
Equivalently Einstein relativistic mass equation can be derived from his special theory as given by,
where M is the effective mass (or mass in motion), M
By multiply the preceding equation with the velocity of light c2 and noting the terms with the orders of v4/ c2 are negligibly small, above equation can be approximated by,
which can be written as,
The significant of the preceding equation is that M-Mo represents an increased in mass due to motion, which is the kinetic energy of the rest mass Mo. And (M-Mo)c2 is the extra energy gain due to motion. Nevertheless what Einstein postulated, as I remembered, is that there must energy associated with the mass even at rest. And this was exactly what he had proposed,
where E represents the total energy of the mass. In which we see that Energy and mass are equivalent but there are not equaled.
Since we had shown that Einstein’s special theory of relativity exists only within empty space, from which we see his energy equation cannot be legitimized within our temporal (t > 0) universe. Yet energy and mass are equivalent is a well-accepted physical reality but may not in exact form since science after all is approximated. In view of the legitimacy and Einstein’s energy equation and comparison of the well accepted although empirical kinetic energy Eq. E = (1/2) m v2, where v is the velocity. Since velocity of light c is the current limit of science, it is justifiable to rewrite the energy equation in following form after kinetic energy equation as given by,
In which we see that mass and energy are equivalent, and it has the same physical significant as Einstein’s energy equation although Einstein’s equruion has been illegimated. In view of preceding equation we see that energy and mass can be simply traded as given by,
From which in princiole we can convert mass to energy or energy to mass.
Nevertheless, one of the greatest theories that Einstein had had developed must his general theory of relativity as given by [2],
where Gμν is the Einstein tensor, gμν is the metric tensor, Tuν is the stress-energy tensor, is the cosmological constant,
In view of general theory it is a point-singularity approximated deterministic equation, we see that Einstein’s general theory is not a physically realizable principle since science is supposed not to be deterministic. For which it is impossible to predict future with deterministic general theory. Although we can change a section of time ∆t but we cannot change the pace of time or even stop time. Strictly speaking all physically realizable theory must be temporal (t > 0). For which we see that degree of uncertainty increases as time moves further away from the point of absolute certainty (i.e., present instance t = 0). Thus we see that it is not the complexity of mathematic that Einstein had have used, it is the physically realizable paradigm that determines the physically realizable science. Nevertheless, Einstein’s theory is a relativistic theory of distance but not a relativistic theory of time since we cannot change time.
One of most important aspects within our temporal universe is that everything has a price, and it is not free. For example, every physical realizable theory takes a section of time ∆t and an amount of energy ∆E (i.e., ∆t, ∆E) to implement, which is a necessary cost. From which we see that ∆E is coexisting with ∆t and ∆E(t) changes with time t or temporal (t > 0). Since general relativistic theory of Einstein tells us that matter curves the space–time, then space is possible to curve our universe. As in contrast with our temporal (t > 0) universe, although space curves with time but space cannot curve time.
Einstein’s general theory tells us it is possible to curve our universe for wormhole traveling, a scenario was proposed by renounced astrophysicists [12] as depicted in Figure 11, where we see a curved equivalent universe is situated within our temporal (t > 0) universe. From which we see that it is possibly go through a wormhole tunnel from one edge of our universe to the other edge. Instead of crossing the vast cosmological space that will take us beyond 28 billion light years of voyage at speed of light and still unable to reach it since our universe is expanding at velocity of light. Aside the fact that Figure 11 is a non-physically realizable paradigm (i.e., by virtue of temporal exclusive principle), my question is that how long it will take to curve the universe (i.e., a section of time ∆t), in which we assume that we have all the energy ∆E we need. From which we see that the necessary cost is the section of time ∆t and the amount of energy (i.e., ∆t, ∆E). But in reality, to make it happen we also need an amount of information ∆I or equivalently an amount of entropy ∆S that makes it sufficient, to curving a topological equivalent universe shown in the figure.
Shows a non-physically realizable paradigm for curving space–time within our temporal (t > 0) universe. The curved topological equivalent space shows as a “deterministic” time–space. Since future universe is supposed to be non-deterministic or uncertain, this shows Einstein’s general theory is “not” a physically realizable theory.
From which we see that Einstein general theory predicts the future deterministically, but from physical reality, future is supposed to be non-deterministic or uncertainty. Of which we see that Einstein’s general theory is not a physically realizable principle within our temporal (t > 0) universe. Nevertheless it is possible to reconfigure his general theory to be temporal (t > 0), by imposing a temporal constraint on Eq. (30) as given by,
Where t > 0 denotes that equation is subjected by temporal constraint for which any solution comes out from this equation will be temporal (t > 0) or physically realizable.
In summary, we have seen as from Newtonian mechanics to Hamiltonian, to statistical, to wave mechanics, to relativistic and quantum mechanics are timeless (t = 0) mechanics. Although those timeless (t = 0) mechanics paved the way to our modern science, but the basic empty space paradigm had have not changed. For which it has produced a number of unthinkable virtual timeless (t = 0) solutions that causing a worldwide scientific conspiracy. Regardless of it is inadvertently or not, but it our responsibility to change it back to physically realizable science. Otherwise we will be continuingly trapping within the wonderland of timeless (t = 0) science which does not need to pay any price (i.e., ∆t, ∆E). But unfortunately within our temporal (t > 0) universe everything needs a price to pay a section of time ∆t and an amount of energy ∆E and it is not free.
Prior the origin of gravitational waves, I have shown the nature of our temporal (t > 0) universe. Since physical realizability of science depends on physically realizable paradigm, nature of temporal (t > 0) space paradigm supports the physical reality of science. Otherwise fictitious and virtual solution emerges which had had created a worldwide scientific conspiracy. As we are searching for gravitational waves, Einstein’s relativistic theories cannot be avoided from which I had shown that his relativistic theories are not physically realizable theories since his theories were developed from an empty timeless (t = 0) space platform.
Since induced gravitational field from mass has never been a component in big bang creation, I have shown that it is a significant component for the inclusion. Prior the origin of gravitational waves, I have shown gravitational energy comes from a huge induced gravitational field by a gigantic mass within a preexistent temporal (t > 0) subspace. From which I have shown it is impossible to develop an induced gravitational within an empty space since empty space has no substance for gravitational energy to store. From which I had shown that without a gigantic convergent gravitational force to ignites the thermo-nuclei explosion, big band explosion was not possible to be ignited, as in contrast with commonly believed big bang explosion was ignited by time. In other words any mass annihilation will release an equivalent amount of gravitational energy associated with the mass annihilation. From which I assert that it is the gravitational field (i.e., time–space) changes with time, but not the gravitational field that changes (i.e., curves) the time–space.
IntechOpen - where academia and industry create content with global impact
",metaTitle:"Team",metaDescription:"Advancing discovery in Open Access for the scientists by the scientist",metaKeywords:null,canonicalURL:"page/team",contentRaw:'[{"type":"htmlEditorComponent","content":"Our business values are based on those any scientist applies to their research. We have created a culture of respect and collaboration within a relaxed, friendly and progressive atmosphere, while maintaining academic rigour.
\\n\\nCo-founded by Alex Lazinica and Vedran Kordic: “We are passionate about the advancement of science. As Ph.D. researchers in Vienna, we found it difficult to access the scholarly research we needed. We created IntechOpen with the specific aim of putting the academic needs of the global research community before the business interests of publishers. Our Team is now a global one and includes highly-renowned scientists and publishers, as well as experts in disseminating your research.”
\\n\\nBut, one thing we have in common is -- we are all scientists at heart!
\\n\\nSara Uhac, COO
\\n\\nSara Uhac was appointed Managing Director of IntechOpen at the beginning of 2014. She directs and controls the company’s operations. Sara joined IntechOpen in 2010 as Head of Journal Publishing, a new strategically underdeveloped department at that time. After obtaining a Master's degree in Media Management, she completed her Ph.D. at the University of Lugano, Switzerland. She holds a BA in Financial Market Management from the Bocconi University in Milan, Italy, where she started her career in the American publishing house Condé Nast and further collaborated with the UK-based publishing company Time Out. Sara was awarded a professional degree in Publishing from Yale University (2012). She is a member of the professional branch association of "Publishers, Designers and Graphic Artists" at the Croatian Chamber of Commerce.
\\n\\nAdrian Assad De Marco
\\n\\nAdrian Assad De Marco joined the company as a Director in 2017. With his extensive experience in management, acquired while working for regional and global leaders, he took over direction and control of all the company's publishing processes. Adrian holds a degree in Economy and Management from the University of Zagreb, School of Economics, Croatia. A former sportsman, he continually strives to develop his skills through professional courses and specializations such as NLP (Neuro-linguistic programming).
\\n\\nDr Alex Lazinica
\\n\\nAlex Lazinica is co-founder and Board member of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his Ph.D. in Robotics at the Vienna University of Technology. There, he worked as a robotics researcher with the university's Intelligent Manufacturing Systems Group, as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and, most importantly, co-founded and built the International Journal of Advanced Robotic Systems, the world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career since it proved to be the pathway to the foundation of IntechOpen with its focus on addressing academic researchers’ needs. Alex personifies many of IntechOpen´s key values, including the commitment to developing mutual trust, openness, and a spirit of entrepreneurialism. Today, his focus is on defining the growth and development strategy for the company.
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Our business values are based on those any scientist applies to their research. We have created a culture of respect and collaboration within a relaxed, friendly and progressive atmosphere, while maintaining academic rigour.
\n\nCo-founded by Alex Lazinica and Vedran Kordic: “We are passionate about the advancement of science. As Ph.D. researchers in Vienna, we found it difficult to access the scholarly research we needed. We created IntechOpen with the specific aim of putting the academic needs of the global research community before the business interests of publishers. Our Team is now a global one and includes highly-renowned scientists and publishers, as well as experts in disseminating your research.”
\n\nBut, one thing we have in common is -- we are all scientists at heart!
\n\nSara Uhac, COO
\n\nSara Uhac was appointed Managing Director of IntechOpen at the beginning of 2014. She directs and controls the company’s operations. Sara joined IntechOpen in 2010 as Head of Journal Publishing, a new strategically underdeveloped department at that time. After obtaining a Master's degree in Media Management, she completed her Ph.D. at the University of Lugano, Switzerland. She holds a BA in Financial Market Management from the Bocconi University in Milan, Italy, where she started her career in the American publishing house Condé Nast and further collaborated with the UK-based publishing company Time Out. Sara was awarded a professional degree in Publishing from Yale University (2012). She is a member of the professional branch association of "Publishers, Designers and Graphic Artists" at the Croatian Chamber of Commerce.
\n\nAdrian Assad De Marco
\n\nAdrian Assad De Marco joined the company as a Director in 2017. With his extensive experience in management, acquired while working for regional and global leaders, he took over direction and control of all the company's publishing processes. Adrian holds a degree in Economy and Management from the University of Zagreb, School of Economics, Croatia. A former sportsman, he continually strives to develop his skills through professional courses and specializations such as NLP (Neuro-linguistic programming).
\n\nDr Alex Lazinica
\n\nAlex Lazinica is co-founder and Board member of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his Ph.D. in Robotics at the Vienna University of Technology. There, he worked as a robotics researcher with the university's Intelligent Manufacturing Systems Group, as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and, most importantly, co-founded and built the International Journal of Advanced Robotic Systems, the world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career since it proved to be the pathway to the foundation of IntechOpen with its focus on addressing academic researchers’ needs. Alex personifies many of IntechOpen´s key values, including the commitment to developing mutual trust, openness, and a spirit of entrepreneurialism. Today, his focus is on defining the growth and development strategy for the company.
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6581},{group:"region",caption:"Middle and South America",value:2,count:5888},{group:"region",caption:"Africa",value:3,count:2381},{group:"region",caption:"Asia",value:4,count:12507},{group:"region",caption:"Australia and Oceania",value:5,count:1006},{group:"region",caption:"Europe",value:6,count:17528}],offset:12,limit:12,total:132501},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish",topicId:"24"},books:[{type:"book",id:"12066",title:"Multimedia Development",subtitle:null,isOpenForSubmission:!0,hash:"493947b89a44a902192caeff10031982",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12066.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:41},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:6},{group:"topic",caption:"Chemistry",value:8,count:20},{group:"topic",caption:"Computer and Information Science",value:9,count:20},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:60},{group:"topic",caption:"Environmental Sciences",value:12,count:8},{group:"topic",caption:"Immunology and Microbiology",value:13,count:9},{group:"topic",caption:"Materials Science",value:14,count:27},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:122},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:11},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:1},popularBooks:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10351",title:"Enhanced Liposuction",subtitle:"New Perspectives and Techniques",isOpenForSubmission:!1,hash:"f08ed6de16da357614586c5b58ed4dfa",slug:"enhanced-liposuction-new-perspectives-and-techniques",bookSignature:"Diane Irvine Duncan",coverURL:"https://cdn.intechopen.com/books/images_new/10351.jpg",editors:[{id:"279869",title:"Dr.",name:"Diane Irvine",middleName:null,surname:"Duncan",slug:"diane-irvine-duncan",fullName:"Diane Irvine Duncan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10779",title:"21st Century Nanostructured Materials",subtitle:"Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture",isOpenForSubmission:!1,hash:"72c67f97f9bef68200df115b5fd79884",slug:"21st-century-nanostructured-materials-physics-chemistry-classification-and-emerging-applications-in-industry-biomedicine-and-agriculture",bookSignature:"Phuong V. Pham",coverURL:"https://cdn.intechopen.com/books/images_new/10779.jpg",editors:[{id:"236073",title:"Dr.",name:"Phuong",middleName:"Viet",surname:"Pham",slug:"phuong-pham",fullName:"Phuong Pham"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4386},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3665,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1713,editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",publishedDate:"April 28th 2022",numberOfDownloads:2481,editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1107,editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3307,editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3266,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1868,editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",publishedDate:"May 4th 2022",numberOfDownloads:856,editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1704,editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7489,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8737",title:"Rabies Virus at the Beginning of 21st Century",subtitle:null,isOpenForSubmission:!1,hash:"49cce3f548da548c718c865feb343509",slug:"rabies-virus-at-the-beginning-of-21st-century",bookSignature:"Sergey Tkachev",coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10861",title:"Furan Derivatives",subtitle:"Recent Advances and Applications",isOpenForSubmission:!1,hash:"fdfc39cecd82f91b0effac994f75c877",slug:"furan-derivatives-recent-advances-and-applications",bookSignature:"Anish Khan, Mohammed Muzibur Rahman, M. Ramesh, Salman Ahmad Khan and Abdullah Mohammed Ahmed Asiri",coverURL:"https://cdn.intechopen.com/books/images_new/10861.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"293058",title:"Dr.",name:"Anish",middleName:null,surname:"Khan",slug:"anish-khan",fullName:"Anish Khan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10870",title:"Ultrasound Imaging",subtitle:"Current Topics",isOpenForSubmission:!1,hash:"2f0bc3733ab226d67fa73759ef0e12ad",slug:"ultrasound-imaging-current-topics",bookSignature:"Felix Okechukwu Erondu",coverURL:"https://cdn.intechopen.com/books/images_new/10870.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"68312",title:"Prof.",name:"Felix",middleName:null,surname:"Okechukwu Erondu",slug:"felix-okechukwu-erondu",fullName:"Felix Okechukwu Erondu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11392",title:"Leadership in a Changing World",subtitle:"A Multidimensional Perspective",isOpenForSubmission:!1,hash:"86a6d33cf601587e591064ce92effc02",slug:"leadership-in-a-changing-world-a-multidimensional-perspective",bookSignature:"Muhammad Mohiuddin, Bilal Khalid, Md. Samim Al Azad and Slimane Ed-dafali",coverURL:"https://cdn.intechopen.com/books/images_new/11392.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10400",title:"The Application of Ant Colony Optimization",subtitle:null,isOpenForSubmission:!1,hash:"f4fdfd07ee1ab99fb7c740d6d0c144c6",slug:"the-application-of-ant-colony-optimization",bookSignature:"Ali Soofastaei",coverURL:"https://cdn.intechopen.com/books/images_new/10400.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"257455",title:"Dr.",name:"Ali",middleName:null,surname:"Soofastaei",slug:"ali-soofastaei",fullName:"Ali Soofastaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10915",title:"Leadership",subtitle:"New Insights",isOpenForSubmission:!1,hash:"0d72e79892f2a020cee66a52d09de5a4",slug:"leadership-new-insights",bookSignature:"Mário Franco",coverURL:"https://cdn.intechopen.com/books/images_new/10915.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"105529",title:"Dr.",name:"Mário",middleName:null,surname:"Franco",slug:"mario-franco",fullName:"Mário Franco"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10683",title:"Technological Innovations and Advances in Hydropower Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ce7ad8768bd2cad155470fe1fd883f4",slug:"technological-innovations-and-advances-in-hydropower-engineering",bookSignature:"Yizi Shang, Ling Shang and Xiaofei Li",coverURL:"https://cdn.intechopen.com/books/images_new/10683.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"349630",title:"Dr.",name:"Yizi",middleName:null,surname:"Shang",slug:"yizi-shang",fullName:"Yizi Shang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7102",title:"Pneumonia",subtitle:null,isOpenForSubmission:!1,hash:"9fd70142814192dcec58a176749f1b60",slug:"pneumonia",bookSignature:"Nima Rezaei",coverURL:"https://cdn.intechopen.com/books/images_new/7102.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"740",title:"Electronic Devices and Materials",slug:"electronic-devices-and-materials",parent:{id:"116",title:"Electrical and Electronic Engineering",slug:"electrical-and-electronic-engineering"},numberOfBooks:14,numberOfSeries:0,numberOfAuthorsAndEditors:312,numberOfWosCitations:350,numberOfCrossrefCitations:205,numberOfDimensionsCitations:420,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"740",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10769",title:"Supercapacitors for the Next Generation",subtitle:null,isOpenForSubmission:!1,hash:"dda2f53b2c9ee308fe5f3e0d1638ff5c",slug:"supercapacitors-for-the-next-generation",bookSignature:"Daisuke Tashima and Aneeya Kumar Samantara",coverURL:"https://cdn.intechopen.com/books/images_new/10769.jpg",editedByType:"Edited by",editors:[{id:"254915",title:"Prof.",name:"Daisuke",middleName:null,surname:"Tashima",slug:"daisuke-tashima",fullName:"Daisuke Tashima"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10501",title:"Memristor",subtitle:"An Emerging Device for Post-Moore’s Computing and Applications",isOpenForSubmission:!1,hash:"9d679b7df63b5aa45462dcaeab4511ae",slug:"memristor-an-emerging-device-for-post-moore-s-computing-and-applications",bookSignature:"Yao-Feng Chang",coverURL:"https://cdn.intechopen.com/books/images_new/10501.jpg",editedByType:"Edited by",editors:[{id:"201955",title:"Dr.",name:"Yao-Feng",middleName:null,surname:"Chang",slug:"yao-feng-chang",fullName:"Yao-Feng Chang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7783",title:"Polyimide for Electronic and Electrical Engineering Applications",subtitle:null,isOpenForSubmission:!1,hash:"736e80c9bf791829c9a74ac05abb04b7",slug:"polyimide-for-electronic-and-electrical-engineering-applications",bookSignature:"Sombel Diaham",coverURL:"https://cdn.intechopen.com/books/images_new/7783.jpg",editedByType:"Edited by",editors:[{id:"57115",title:"Dr.",name:"Sombel",middleName:null,surname:"Diaham",slug:"sombel-diaham",fullName:"Sombel Diaham"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7619",title:"Solar Cells",subtitle:null,isOpenForSubmission:!1,hash:"0a247e3e90115e9dce4f44a6996bc866",slug:"solar-cells",bookSignature:"Majid Nayeripour, Mahdi Mansouri and Eberhard Waffenschmidt",coverURL:"https://cdn.intechopen.com/books/images_new/7619.jpg",editedByType:"Edited by",editors:[{id:"66929",title:"Prof.",name:"Majid",middleName:null,surname:"Nayeripour",slug:"majid-nayeripour",fullName:"Majid Nayeripour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8724",title:"Gas Sensors",subtitle:null,isOpenForSubmission:!1,hash:"bc4be4b954b559709aaace45f70adcd0",slug:"gas-sensors",bookSignature:"Sher Bahadar Khan, Abdullah M. Asiri and Kalsoom Akhtar",coverURL:"https://cdn.intechopen.com/books/images_new/8724.jpg",editedByType:"Edited by",editors:[{id:"245468",title:"Dr.",name:"Sher Bahadar",middleName:null,surname:"Khan",slug:"sher-bahadar-khan",fullName:"Sher Bahadar Khan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7567",title:"Science, Technology and Advanced Application of Supercapacitors",subtitle:null,isOpenForSubmission:!1,hash:"6f3c82213ad65bc6260c0164da9319f4",slug:"science-technology-and-advanced-application-of-supercapacitors",bookSignature:"Takaya Sato",coverURL:"https://cdn.intechopen.com/books/images_new/7567.jpg",editedByType:"Edited by",editors:[{id:"51962",title:"Prof.",name:"Takaya",middleName:null,surname:"Sato",slug:"takaya-sato",fullName:"Takaya Sato"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6489",title:"Light-Emitting Diode",subtitle:"An Outlook On the Empirical Features and Its Recent Technological Advancements",isOpenForSubmission:!1,hash:"20818f168134f1af35547e807d839463",slug:"light-emitting-diode-an-outlook-on-the-empirical-features-and-its-recent-technological-advancements",bookSignature:"Jagannathan Thirumalai",coverURL:"https://cdn.intechopen.com/books/images_new/6489.jpg",editedByType:"Edited by",editors:[{id:"99242",title:"Prof.",name:"Jagannathan",middleName:null,surname:"Thirumalai",slug:"jagannathan-thirumalai",fullName:"Jagannathan Thirumalai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6511",title:"Complementary Metal Oxide Semiconductor",subtitle:null,isOpenForSubmission:!1,hash:"96b2d63df3822f48468050aa7a44a44c",slug:"complementary-metal-oxide-semiconductor",bookSignature:"Kim Ho Yeap and Humaira Nisar",coverURL:"https://cdn.intechopen.com/books/images_new/6511.jpg",editedByType:"Edited by",editors:[{id:"24699",title:"Dr.",name:"Kim Ho",middleName:null,surname:"Yeap",slug:"kim-ho-yeap",fullName:"Kim Ho Yeap"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6275",title:"Supercapacitors",subtitle:"Theoretical and Practical Solutions",isOpenForSubmission:!1,hash:"94a2398d62d5bcefd79ae73a0003ad7a",slug:"supercapacitors-theoretical-and-practical-solutions",bookSignature:"Lionginas Liudvinavičius",coverURL:"https://cdn.intechopen.com/books/images_new/6275.jpg",editedByType:"Edited by",editors:[{id:"32614",title:"Dr.",name:"Lionginas",middleName:null,surname:"Liudvinavičius",slug:"lionginas-liudvinavicius",fullName:"Lionginas Liudvinavičius"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6509",title:"Energy Harvesting",subtitle:null,isOpenForSubmission:!1,hash:"9665f0b76c3e7d51613f12f86efc3767",slug:"energy-harvesting",bookSignature:"Reccab Manyala",coverURL:"https://cdn.intechopen.com/books/images_new/6509.jpg",editedByType:"Edited by",editors:[{id:"12002",title:"Associate Prof.",name:"Reccab",middleName:"Ochieng",surname:"Manyala",slug:"reccab-manyala",fullName:"Reccab Manyala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5741",title:"Epitaxy",subtitle:null,isOpenForSubmission:!1,hash:"a5fad1c4783ec478a4c4877914ae5ca9",slug:"epitaxy",bookSignature:"Miao Zhong",coverURL:"https://cdn.intechopen.com/books/images_new/5741.jpg",editedByType:"Edited by",editors:[{id:"164790",title:"Dr.",name:"Miao",middleName:null,surname:"Zhong",slug:"miao-zhong",fullName:"Miao Zhong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"253",title:"Organic Light Emitting Diode",subtitle:"Material, Process and Devices",isOpenForSubmission:!1,hash:"bf0742adef8e8ae73b12780081eeb1d7",slug:"organic-light-emitting-diode-material-process-and-devices",bookSignature:"Seung Hwan Ko",coverURL:"https://cdn.intechopen.com/books/images_new/253.jpg",editedByType:"Edited by",editors:[{id:"33170",title:"Prof.",name:"Seung Hwan",middleName:null,surname:"Ko",slug:"seung-hwan-ko",fullName:"Seung Hwan Ko"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:14,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"56956",doi:"10.5772/intechopen.70694",title:"Electrochemical Capacitor Performance: Influence of Aqueous Electrolytes",slug:"electrochemical-capacitor-performance-influence-of-aqueous-electrolytes",totalDownloads:2062,totalCrossrefCites:16,totalDimensionsCites:32,abstract:"Due to low energy characteristics such as energy density and cyclic life, it is mandatory to enhance the energy characteristics of the supercapacitors (ESs). Electrolytes have been recognized as the most prominent ingredients in electrochemical supercapacitor performance. Most commercially available ESs use organic electrolytes and have some advantage like wide operating voltage. However, compared with aqueous alternatives, organic electrolytes are expensive, flammable, and, in some cases, toxic. It is reliable to assert that even though aqueous electrolytes examined by a cramped working voltage, the ions present in them are yet capable of incredibly faster carrier rates than organic electrolytes and can achieve better performance of ESs. Thus, efforts turned toward enlarging the working voltage window of aqueous electrolytes to increase overall operating potential and energy density of supercapacitor devices. This book chapter comprises the latest accomplishments in this area and provides an insight into the aqueous electrolyte advancement.",book:{id:"6275",slug:"supercapacitors-theoretical-and-practical-solutions",title:"Supercapacitors",fullTitle:"Supercapacitors - Theoretical and Practical Solutions"},signatures:"Rajendran Ramachandran and Fei Wang",authors:[{id:"212251",title:"Dr.",name:"Fei",middleName:null,surname:"Wang",slug:"fei-wang",fullName:"Fei Wang"},{id:"212284",title:"Dr.",name:"Rajendran",middleName:null,surname:"Ramachandran",slug:"rajendran-ramachandran",fullName:"Rajendran Ramachandran"}]},{id:"9781",doi:"10.5772/8564",title:"Advanced Plasma Processing: Etching, Deposition, and Wafer Bonding Techniques for Semiconductor Applications",slug:"advanced-plasma-processing-etching-deposition-and-wafer-bonding-techniques-for-semiconductor-applica",totalDownloads:7111,totalCrossrefCites:13,totalDimensionsCites:24,abstract:null,book:{id:"3644",slug:"semiconductor-technologies",title:"Semiconductor Technologies",fullTitle:"Semiconductor Technologies"},signatures:"Michael Shearn, Xiankai Sun, M. David Henry, Amnon Yariv and Axel Scherer",authors:null},{id:"64083",doi:"10.5772/intechopen.80298",title:"Transition Metal Oxide-Based Nano-materials for Energy Storage Application",slug:"transition-metal-oxide-based-nano-materials-for-energy-storage-application",totalDownloads:1902,totalCrossrefCites:7,totalDimensionsCites:18,abstract:"With improvement of global economy, the fatigue of energy becomes inevitable in twenty-first century. It is expected that the increase of world energy requirements will be triple at the end of this century. Thus, there is an imperative need for development of renewable energy sources and storage systems. Among various energy storage systems, supercapacitors are ascertained one of the most significant storage devices. But the development of supercapacitor devices with high power and energy density are the greatest challenges for modern research. In this article, transition metal oxides such as TiO2-V2O5, NiMn2O4 etc. with porous structure are considered as high performance supercapacitors electrode. The effects of its structural, morphological and electrochemical properties have been studied extensively. A TiO2-V2O5 and NiMn2O4 based electrode delivered specific capacitance of 310 and 875 F g−1, respectively at a scan rate 2 mV s−1. This TiO2-V2O5 based asymmetric supercapacitor also exhibits excellent device performance with specific energy 20.18 W h kg−1 at specific power 5.94 kW kg−1, and retained 88.0% specific capacitance at current density of 10 A g−1 after 5000 cycles.",book:{id:"7567",slug:"science-technology-and-advanced-application-of-supercapacitors",title:"Science, Technology and Advanced Application of Supercapacitors",fullTitle:"Science, Technology and Advanced Application of Supercapacitors"},signatures:"Apurba Ray, Atanu Roy, Samik Saha and Sachindranath Das",authors:[{id:"24791",title:"Dr.",name:"Sachindra Nath",middleName:null,surname:"Das",slug:"sachindra-nath-das",fullName:"Sachindra Nath Das"},{id:"255864",title:"MSc.",name:"Apurba",middleName:null,surname:"Ray",slug:"apurba-ray",fullName:"Apurba Ray"},{id:"255910",title:"MSc.",name:"Atanu",middleName:null,surname:"Roy",slug:"atanu-roy",fullName:"Atanu Roy"},{id:"255912",title:"MSc.",name:"Samik",middleName:null,surname:"Saha",slug:"samik-saha",fullName:"Samik Saha"}]},{id:"16966",doi:"10.5772/18545",title:"Transparent Conductive Oxide (TCO) Films for Organic Light Emissive Devices (OLEDs)",slug:"transparent-conductive-oxide-tco-films-for-organic-light-emissive-devices-oleds-",totalDownloads:16461,totalCrossrefCites:9,totalDimensionsCites:18,abstract:null,book:{id:"253",slug:"organic-light-emitting-diode-material-process-and-devices",title:"Organic Light Emitting Diode",fullTitle:"Organic Light Emitting Diode - Material, Process and Devices"},signatures:"Sunyoung Sohn and Yoon Soo Han",authors:[{id:"31808",title:"Prof.",name:"Yoon Soo",middleName:null,surname:"Han",slug:"yoon-soo-han",fullName:"Yoon Soo Han"},{id:"91912",title:"Dr.",name:"Sunyoung",middleName:null,surname:"Sohn",slug:"sunyoung-sohn",fullName:"Sunyoung Sohn"}]},{id:"60131",doi:"10.5772/intechopen.74136",title:"Dielectric Elastomers for Energy Harvesting",slug:"dielectric-elastomers-for-energy-harvesting",totalDownloads:1188,totalCrossrefCites:9,totalDimensionsCites:16,abstract:"Dielectric elastomers are a type of electroactive polymers that can be conveniently used as sensors, actuators or energy harvesters and the latter is the focus of this review. The relatively high number of publications devoted to dielectric elastomers in recent years is a direct reflection of their diversity, applicability as well as nontrivial electrical and mechanical properties. This chapter provides a review of fundamental mechanical and electrical properties of dielectric elastomers and up-to-date information regarding new developments of this technology and it’s potential applications for energy harvesting from various vibration sources explored over the past decade.",book:{id:"6509",slug:"energy-harvesting",title:"Energy Harvesting",fullTitle:"Energy Harvesting"},signatures:"Gordon Thomson, Daniil Yurchenko and Dimitri V. Val",authors:[{id:"227338",title:"Ph.D. Student",name:"Gordon",middleName:null,surname:"Thomson",slug:"gordon-thomson",fullName:"Gordon Thomson"},{id:"227344",title:"Dr.",name:"Daniil",middleName:null,surname:"Yurchenko",slug:"daniil-yurchenko",fullName:"Daniil Yurchenko"},{id:"227346",title:"Prof.",name:"Dimitry",middleName:null,surname:"Val",slug:"dimitry-val",fullName:"Dimitry Val"}]}],mostDownloadedChaptersLast30Days:[{id:"61888",title:"Work Function Setting in High-k Metal Gate Devices",slug:"work-function-setting-in-high-k-metal-gate-devices",totalDownloads:2543,totalCrossrefCites:0,totalDimensionsCites:1,abstract:"As transistor size continues to shrink, SiO2/polysilicon gate stack has been replaced by high-k/metal gate to enable further scaling. Two different integration approaches have been implemented in high-volume production: gate first and gate last; the latter is also known as replacement gate approach. In both integration schemes, getting the right work functions and threshold voltages for N-type metal-oxide-semiconductor (NMOS) and P-type metal-oxide-semiconductor (PMOS) devices is critical. A number of recent studies have shown that the threshold voltage of devices is highly dependent on not just the deposited material properties but also on subsequent device processing steps. This chapter contains a description on the different mechanisms of work function setting in gate last and gate first technologies, the sensitivities to different process conditions and special measurement techniques for gate stack analysis is shown.",book:{id:"6511",slug:"complementary-metal-oxide-semiconductor",title:"Complementary Metal Oxide Semiconductor",fullTitle:"Complementary Metal Oxide Semiconductor"},signatures:"Elke Erben, Klaus Hempel and Dina Triyoso",authors:null},{id:"16962",title:"Organic Field-Effect Transistors Using Hetero-Layered Structure with OLED Materials",slug:"organic-field-effect-transistors-using-hetero-layered-structure-with-oled-materials",totalDownloads:6058,totalCrossrefCites:2,totalDimensionsCites:2,abstract:null,book:{id:"253",slug:"organic-light-emitting-diode-material-process-and-devices",title:"Organic Light Emitting Diode",fullTitle:"Organic Light Emitting Diode - Material, Process and Devices"},signatures:"Ken-Ichi Nakayama, Masaaki Yokoyama, Yong-Jin Pu and Junji Kido",authors:[{id:"48743",title:"Prof.",name:"Ken-Ichi",middleName:null,surname:"Nakayama",slug:"ken-ichi-nakayama",fullName:"Ken-Ichi Nakayama"},{id:"94247",title:"Prof.",name:"Masaaki",middleName:null,surname:"Yokoyama",slug:"masaaki-yokoyama",fullName:"Masaaki Yokoyama"},{id:"94248",title:"Prof.",name:"Yong-Jin",middleName:null,surname:"Pu",slug:"yong-jin-pu",fullName:"Yong-Jin Pu"},{id:"94249",title:"Prof.",name:"Junji",middleName:null,surname:"Kido",slug:"junji-kido",fullName:"Junji Kido"}]},{id:"57851",title:"Towards New Generation Power MOSFETs for Automotive Electric Control Units",slug:"towards-new-generation-power-mosfets-for-automotive-electric-control-units",totalDownloads:1439,totalCrossrefCites:1,totalDimensionsCites:0,abstract:"Power metal-oxide-semiconductor field-effect transistors (MOSFETs) are thought to be highly robust and versatile in high-speed switching applications in power electronics design due to its intrinsic high input impedance and compact size. This chapter concerns the development of a high-performance low voltage rating power MOSFET possessing low on-resistance and excellent avalanche current capability for an automotive electric power steering system (EPS). Using industry-standard Technology Computer-Aided Design (TCAD) tools, the planar- and trench-technology power MOSFETs, have been designed, modeled, simulated and compared. We surveyed and analyzed the specific on-resistance due to the different device structures, and various methods are highlighted and compared so that their benefits can be better understood and adopted. Additionally, the device ruggedness has been investigated and its improvement was evaluated and established for that of the trench MOSFET due to gate corner smoothing.",book:{id:"6511",slug:"complementary-metal-oxide-semiconductor",title:"Complementary Metal Oxide Semiconductor",fullTitle:"Complementary Metal Oxide Semiconductor"},signatures:"Kuan W.A. Chee and Tianhong Ye",authors:null},{id:"60757",title:"Selective Epitaxy of Group IV Materials for CMOS Application",slug:"selective-epitaxy-of-group-iv-materials-for-cmos-application",totalDownloads:1788,totalCrossrefCites:0,totalDimensionsCites:1,abstract:"As the International Technology Roadmap for Semiconductors (ITRS) demands an increase of transistor density in the chip, the size of transistors has been continuously shrunk. In this evolution of transistor structure, different strain engineering methods were introduced to induce strain in the channel region. One of the most effective methods is applying embedded SiGe as stressor material in source and drain (S/D) regions by using selective epitaxy. This chapter presents an overview of implementation, modeling, and pattern dependency of selective epitaxy for S/D application in CMOS. The focus is also on the wafer in and ex situ cleaning prior to epitaxy, integrity of gate, and selectivity mode.",book:{id:"6511",slug:"complementary-metal-oxide-semiconductor",title:"Complementary Metal Oxide Semiconductor",fullTitle:"Complementary Metal Oxide Semiconductor"},signatures:"Guilei Wang, Henry H. Radamson and Mohammadreza Kolahdouz",authors:null},{id:"74939",title:"Polyimide in Electronics: Applications and Processability Overview",slug:"polyimide-in-electronics-applications-and-processability-overview",totalDownloads:582,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"Polyimides are nowadays quite famous dielectrics and insulating materials widely used in electronics and electrical engineering applications from low voltage microelectronics up to high voltage engineering industry. They are well appreciated because of their excellent physical properties (i.e., thermal, electrical, and mechanical properties), as well as, their coating process ease either from a liquid or a gas phase. Consequently, polyimides appear in a various range of applications to efficiently separate metal levels or electrodes at different electrical potentials. This chapter intends to review the main chemical generalities of polyimides, the different monomer families, the coating and curing processes, and the main physical properties for electronic and high voltage industrial applications.",book:{id:"7783",slug:"polyimide-for-electronic-and-electrical-engineering-applications",title:"Polyimide for Electronic and Electrical Engineering Applications",fullTitle:"Polyimide for Electronic and Electrical Engineering Applications"},signatures:"Sombel Diaham",authors:[{id:"57115",title:"Dr.",name:"Sombel",middleName:null,surname:"Diaham",slug:"sombel-diaham",fullName:"Sombel Diaham"}]}],onlineFirstChaptersFilter:{topicId:"740",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:8,numberOfPublishedChapters:86,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:96,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:283,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:138,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:128,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:9,numberOfPublishedChapters:100,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403",scope:"Artificial Intelligence (AI) is a rapidly developing multidisciplinary research area that aims to solve increasingly complex problems. In today's highly integrated world, AI promises to become a robust and powerful means for obtaining solutions to previously unsolvable problems. This Series is intended for researchers and students alike interested in this fascinating field and its many applications.",coverUrl:"https://cdn.intechopen.com/series/covers/14.jpg",latestPublicationDate:"May 14th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:8,editor:{id:"218714",title:"Prof.",name:"Andries",middleName:null,surname:"Engelbrecht",slug:"andries-engelbrecht",fullName:"Andries Engelbrecht",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRNR8QAO/Profile_Picture_1622640468300",biography:"Andries Engelbrecht received the Masters and PhD degrees in Computer Science from the University of Stellenbosch, South Africa, in 1994 and 1999 respectively. He is currently appointed as the Voigt Chair in Data Science in the Department of Industrial Engineering, with a joint appointment as Professor in the Computer Science Division, Stellenbosch University. Prior to his appointment at Stellenbosch University, he has been at the University of Pretoria, Department of Computer Science (1998-2018), where he was appointed as South Africa Research Chair in Artifical Intelligence (2007-2018), the head of the Department of Computer Science (2008-2017), and Director of the Institute for Big Data and Data Science (2017-2018). In addition to a number of research articles, he has written two books, Computational Intelligence: An Introduction and Fundamentals of Computational Swarm Intelligence.",institutionString:null,institution:{name:"Stellenbosch University",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:6,paginationItems:[{id:"22",title:"Applied Intelligence",coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",isOpenForSubmission:!0,editor:{id:"27170",title:"Prof.",name:"Carlos",middleName:"M.",surname:"Travieso-Gonzalez",slug:"carlos-travieso-gonzalez",fullName:"Carlos Travieso-Gonzalez",profilePictureURL:"https://mts.intechopen.com/storage/users/27170/images/system/27170.jpeg",biography:"Carlos M. Travieso-González received his MSc degree in Telecommunication Engineering at Polytechnic University of Catalonia (UPC), Spain in 1997, and his Ph.D. degree in 2002 at the University of Las Palmas de Gran Canaria (ULPGC-Spain). He is a full professor of signal processing and pattern recognition and is head of the Signals and Communications Department at ULPGC, teaching from 2001 on subjects on signal processing and learning theory. His research lines are biometrics, biomedical signals and images, data mining, classification system, signal and image processing, machine learning, and environmental intelligence. He has researched in 52 international and Spanish research projects, some of them as head researcher. He is co-author of 4 books, co-editor of 27 proceedings books, guest editor for 8 JCR-ISI international journals, and up to 24 book chapters. He has over 450 papers published in international journals and conferences (81 of them indexed on JCR – ISI - Web of Science). He has published seven patents in the Spanish Patent and Trademark Office. He has been a supervisor on 8 Ph.D. theses (11 more are under supervision), and 130 master theses. He is the founder of The IEEE IWOBI conference series and the president of its Steering Committee, as well as the founder of both the InnoEducaTIC and APPIS conference series. He is an evaluator of project proposals for the European Union (H2020), Medical Research Council (MRC, UK), Spanish Government (ANECA, Spain), Research National Agency (ANR, France), DAAD (Germany), Argentinian Government, and the Colombian Institutions. He has been a reviewer in different indexed international journals (<70) and conferences (<250) since 2001. He has been a member of the IASTED Technical Committee on Image Processing from 2007 and a member of the IASTED Technical Committee on Artificial Intelligence and Expert Systems from 2011. \n\nHe has held the general chair position for the following: ACM-APPIS (2020, 2021), IEEE-IWOBI (2019, 2020 and 2020), A PPIS (2018, 2019), IEEE-IWOBI (2014, 2015, 2017, 2018), InnoEducaTIC (2014, 2017), IEEE-INES (2013), NoLISP (2011), JRBP (2012), and IEEE-ICCST (2005)\n\nHe is an associate editor of the Computational Intelligence and Neuroscience Journal (Hindawi – Q2 JCR-ISI). He was vice dean from 2004 to 2010 in the Higher Technical School of Telecommunication Engineers at ULPGC and the vice dean of Graduate and Postgraduate Studies from March 2013 to November 2017. He won the “Catedra Telefonica” Awards in Modality of Knowledge Transfer, 2017, 2018, and 2019 editions, and awards in Modality of COVID Research in 2020.\n\nPublic References:\nResearcher ID http://www.researcherid.com/rid/N-5967-2014\nORCID https://orcid.org/0000-0002-4621-2768 \nScopus Author ID https://www.scopus.com/authid/detail.uri?authorId=6602376272\nScholar Google https://scholar.google.es/citations?user=G1ks9nIAAAAJ&hl=en \nResearchGate https://www.researchgate.net/profile/Carlos_Travieso",institutionString:null,institution:{name:"University of Las Palmas de Gran Canaria",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"23",title:"Computational Neuroscience",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",isOpenForSubmission:!0,editor:{id:"14004",title:"Dr.",name:"Magnus",middleName:null,surname:"Johnsson",slug:"magnus-johnsson",fullName:"Magnus Johnsson",profilePictureURL:"https://mts.intechopen.com/storage/users/14004/images/system/14004.png",biography:"Dr Magnus Johnsson is a cross-disciplinary scientist, lecturer, scientific editor and AI/machine learning consultant from Sweden. \n\nHe is currently at Malmö University in Sweden, but also held positions at Lund University in Sweden and at Moscow Engineering Physics Institute. \nHe holds editorial positions at several international scientific journals and has served as a scientific editor for books and special journal issues. \nHis research interests are wide and include, but are not limited to, autonomous systems, computer modeling, artificial neural networks, artificial intelligence, cognitive neuroscience, cognitive robotics, cognitive architectures, cognitive aids and the philosophy of mind. \n\nDr. Johnsson has experience from working in the industry and he has a keen interest in the application of neural networks and artificial intelligence to fields like industry, finance, and medicine. \n\nWeb page: www.magnusjohnsson.se",institutionString:null,institution:{name:"Malmö University",institutionURL:null,country:{name:"Sweden"}}},editorTwo:null,editorThree:null},{id:"24",title:"Computer Vision",coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",isOpenForSubmission:!0,editor:{id:"294154",title:"Prof.",name:"George",middleName:null,surname:"Papakostas",slug:"george-papakostas",fullName:"George Papakostas",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002hYaGbQAK/Profile_Picture_1624519712088",biography:"George A. Papakostas has received a diploma in Electrical and Computer Engineering in 1999 and the M.Sc. and Ph.D. degrees in Electrical and Computer Engineering in 2002 and 2007, respectively, from the Democritus University of Thrace (DUTH), Greece. Dr. Papakostas serves as a Tenured Full Professor at the Department of Computer Science, International Hellenic University, Greece. Dr. Papakostas has 10 years of experience in large-scale systems design as a senior software engineer and technical manager, and 20 years of research experience in the field of Artificial Intelligence. Currently, he is the Head of the “Visual Computing” division of HUman-MAchines INteraction Laboratory (HUMAIN-Lab) and the Director of the MPhil program “Advanced Technologies in Informatics and Computers” hosted by the Department of Computer Science, International Hellenic University. He has (co)authored more than 150 publications in indexed journals, international conferences and book chapters, 1 book (in Greek), 3 edited books, and 5 journal special issues. His publications have more than 2100 citations with h-index 27 (GoogleScholar). His research interests include computer/machine vision, machine learning, pattern recognition, computational intelligence. \nDr. Papakostas served as a reviewer in numerous journals, as a program\ncommittee member in international conferences and he is a member of the IAENG, MIR Labs, EUCogIII, INSTICC and the Technical Chamber of Greece (TEE).",institutionString:null,institution:{name:"International Hellenic University",institutionURL:null,country:{name:"Greece"}}},editorTwo:null,editorThree:null},{id:"25",title:"Evolutionary Computation",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",isOpenForSubmission:!0,editor:{id:"136112",title:"Dr.",name:"Sebastian",middleName:null,surname:"Ventura Soto",slug:"sebastian-ventura-soto",fullName:"Sebastian Ventura Soto",profilePictureURL:"https://mts.intechopen.com/storage/users/136112/images/system/136112.png",biography:"Sebastian Ventura is a Spanish researcher, a full professor with the Department of Computer Science and Numerical Analysis, University of Córdoba. Dr Ventura also holds the positions of Affiliated Professor at Virginia Commonwealth University (Richmond, USA) and Distinguished Adjunct Professor at King Abdulaziz University (Jeddah, Saudi Arabia). Additionally, he is deputy director of the Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI) and heads the Knowledge Discovery and Intelligent Systems Research Laboratory. He has published more than ten books and over 300 articles in journals and scientific conferences. Currently, his work has received over 18,000 citations according to Google Scholar, including more than 2200 citations in 2020. In the last five years, he has published more than 60 papers in international journals indexed in the JCR (around 70% of them belonging to first quartile journals) and he has edited some Springer books “Supervised Descriptive Pattern Mining” (2018), “Multiple Instance Learning - Foundations and Algorithms” (2016), and “Pattern Mining with Evolutionary Algorithms” (2016). He has also been involved in more than 20 research projects supported by the Spanish and Andalusian governments and the European Union. He currently belongs to the editorial board of PeerJ Computer Science, Information Fusion and Engineering Applications of Artificial Intelligence journals, being also associate editor of Applied Computational Intelligence and Soft Computing and IEEE Transactions on Cybernetics. Finally, he is editor-in-chief of Progress in Artificial Intelligence. He is a Senior Member of the IEEE Computer, the IEEE Computational Intelligence, and the IEEE Systems, Man, and Cybernetics Societies, and the Association of Computing Machinery (ACM). Finally, his main research interests include data science, computational intelligence, and their applications.",institutionString:null,institution:{name:"University of Córdoba",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"26",title:"Machine Learning and Data Mining",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",isOpenForSubmission:!0,editor:{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:null,institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null},{id:"27",title:"Multi-Agent Systems",coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",isOpenForSubmission:!0,editor:{id:"148497",title:"Dr.",name:"Mehmet",middleName:"Emin",surname:"Aydin",slug:"mehmet-aydin",fullName:"Mehmet Aydin",profilePictureURL:"https://mts.intechopen.com/storage/users/148497/images/system/148497.jpg",biography:"Dr. Mehmet Emin Aydin is a Senior Lecturer with the Department of Computer Science and Creative Technology, the University of the West of England, Bristol, UK. His research interests include swarm intelligence, parallel and distributed metaheuristics, machine learning, intelligent agents and multi-agent systems, resource planning, scheduling and optimization, combinatorial optimization. Dr. Aydin is currently a Fellow of Higher Education Academy, UK, a member of EPSRC College, a senior member of IEEE and a senior member of ACM. In addition to being a member of advisory committees of many international conferences, he is an Editorial Board Member of various peer-reviewed international journals. He has served as guest editor for a number of special issues of peer-reviewed international journals.",institutionString:null,institution:{name:"University of the West of England",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:26,paginationItems:[{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:null,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79345",title:"Application of Jump Diffusion Models in Insurance Claim Estimation",doi:"10.5772/intechopen.99853",signatures:"Leonard Mushunje, Chiedza Elvina Mashiri, Edina Chandiwana and Maxwell Mashasha",slug:"application-of-jump-diffusion-models-in-insurance-claim-estimation-1",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81557",title:"Object Tracking Using Adapted Optical Flow",doi:"10.5772/intechopen.102863",signatures:"Ronaldo Ferreira, Joaquim José de Castro Ferreira and António José Ribeiro Neves",slug:"object-tracking-using-adapted-optical-flow",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"81558",title:"Thresholding Image Techniques for Plant Segmentation",doi:"10.5772/intechopen.104587",signatures:"Miguel Ángel Castillo-Martínez, Francisco Javier Gallegos-Funes, Blanca E. Carvajal-Gámez, Guillermo Urriolagoitia-Sosa and Alberto J. Rosales-Silva",slug:"thresholding-image-techniques-for-plant-segmentation",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}}]},overviewPagePublishedBooks:{paginationCount:8,paginationItems:[{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:null,institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:null}]},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",institutionURL:null,country:{name:"Romania"}}}]},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:null,institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]}]},openForSubmissionBooks:{paginationCount:5,paginationItems:[{id:"11576",title:"Malaria - Recent Advances, and New Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11576.jpg",hash:"5a01644fb0b4ce24c2f947913d154abe",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 26th 2022",isOpenForSubmission:!0,editors:[{id:"76041",title:"Prof.",name:"Pier Paolo",surname:"Piccaluga",slug:"pier-paolo-piccaluga",fullName:"Pier Paolo Piccaluga"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11577",title:"Tick-Borne Diseases - A Review and an Update of Knowledge on Infections in Human and Animal Population",coverURL:"https://cdn.intechopen.com/books/images_new/11577.jpg",hash:"3d72ae651ee2a04b2368bf798a3183ca",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 29th 2022",isOpenForSubmission:!0,editors:[{id:"51521",title:"Prof.",name:"Elisa",surname:"Pieragostini",slug:"elisa-pieragostini",fullName:"Elisa Pieragostini"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11570",title:"Influenza - New Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11570.jpg",hash:"157b379b9d7a4bf5e2cc7a742f155a44",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 10th 2022",isOpenForSubmission:!0,editors:[{id:"139889",title:"Dr.",name:"Seyyed Shamsadin",surname:"Athari",slug:"seyyed-shamsadin-athari",fullName:"Seyyed Shamsadin Athari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11569",title:"Bacterial Sexually Transmitted Infections - New Findings, Diagnosis, Treatment, and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/11569.jpg",hash:"069d6142ecb0d46d14920102d48c0e9d",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"May 31st 2022",isOpenForSubmission:!0,editors:[{id:"189561",title:"Dr.",name:"Mihaela Laura",surname:"Vica",slug:"mihaela-laura-vica",fullName:"Mihaela Laura Vica"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11568",title:"Staphylococcal Infections - Recent Advances and Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11568.jpg",hash:"92c881664d1921c7f2d0fee34b78cd08",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 1st 2022",isOpenForSubmission:!0,editors:[{id:"59719",title:"Dr.",name:"Jaime",surname:"Bustos-Martínez",slug:"jaime-bustos-martinez",fullName:"Jaime Bustos-Martínez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:26,paginationItems:[{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:0,totalCrossrefCites:null,totalDimensionsCites:null,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79345",title:"Application of Jump Diffusion Models in Insurance Claim Estimation",doi:"10.5772/intechopen.99853",signatures:"Leonard Mushunje, Chiedza Elvina Mashiri, Edina Chandiwana and Maxwell Mashasha",slug:"application-of-jump-diffusion-models-in-insurance-claim-estimation-1",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81557",title:"Object Tracking Using Adapted Optical Flow",doi:"10.5772/intechopen.102863",signatures:"Ronaldo Ferreira, Joaquim José de Castro Ferreira and António José Ribeiro Neves",slug:"object-tracking-using-adapted-optical-flow",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"81558",title:"Thresholding Image Techniques for Plant Segmentation",doi:"10.5772/intechopen.104587",signatures:"Miguel Ángel Castillo-Martínez, Francisco Javier Gallegos-Funes, Blanca E. Carvajal-Gámez, Guillermo Urriolagoitia-Sosa and Alberto J. Rosales-Silva",slug:"thresholding-image-techniques-for-plant-segmentation",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"81471",title:"Semantic Map: Bringing Together Groups and Discourses",doi:"10.5772/intechopen.103818",signatures:"Theodore Chadjipadelis and Georgia Panagiotidou",slug:"semantic-map-bringing-together-groups-and-discourses",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79491",title:"Fuzzy Perceptron Learning for Non-Linearly Separable Patterns",doi:"10.5772/intechopen.101312",signatures:"Raja Kishor Duggirala",slug:"fuzzy-perceptron-learning-for-non-linearly-separable-patterns",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Raja Kishor",surname:"Duggirala"}],book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81234",title:"Cognitive Visual Tracking of Hand Gestures in Real-Time RGB Videos",doi:"10.5772/intechopen.103170",signatures:"Richa Golash and Yogendra Kumar Jain",slug:"cognitive-visual-tracking-of-hand-gestures-in-real-time-rgb-videos",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"81331",title:"Machine Learning Algorithm-Based Contraceptive Practice among Ever-Married Women in Bangladesh: A Hierarchical Machine Learning Classification Approach",doi:"10.5772/intechopen.103187",signatures:"Iqramul Haq, Md. Ismail Hossain, Md. Moshiur Rahman, Md. Injamul Haq Methun, Ashis Talukder, Md. Jakaria Habib and Md. Sanwar Hossain",slug:"machine-learning-algorithm-based-contraceptive-practice-among-ever-married-women-in-bangladesh-a-hie",totalDownloads:18,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Machine Learning and Data Mining - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11422.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81321",title:"Velocity Planning via Model-Based Reinforcement Learning: Demonstrating Results on PILCO for One-Dimensional Linear Motion with Bounded Acceleration",doi:"10.5772/intechopen.103690",signatures:"Hsuan-Cheng Liao, Han-Jung Chou and Jing-Sin Liu",slug:"velocity-planning-via-model-based-reinforcement-learning-demonstrating-results-on-pilco-for-one-dime",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Applied Intelligence - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11418.jpg",subseries:{id:"22",title:"Applied Intelligence"}}},{id:"81272",title:"Pain Identification in Electroencephalography Signal Using Fuzzy Inference System",doi:"10.5772/intechopen.103753",signatures:"Vahid Asadpour, Reza Fazel-Rezai, Maryam Vatankhah and Mohammad-Reza Akbarzadeh-Totonchi",slug:"pain-identification-in-electroencephalography-signal-using-fuzzy-inference-system",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Brain-Computer Interface",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",subseries:{id:"23",title:"Computational Neuroscience"}}}]},subseriesFiltersForOFChapters:[{caption:"Applied Intelligence",value:22,count:1,group:"subseries"},{caption:"Computer Vision",value:24,count:8,group:"subseries"},{caption:"Machine Learning and Data Mining",value:26,count:8,group:"subseries"},{caption:"Computational Neuroscience",value:23,count:9,group:"subseries"}],publishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"9883",title:"Biosensors",subtitle:"Current and Novel Strategies for Biosensing",coverURL:"https://cdn.intechopen.com/books/images_new/9883.jpg",slug:"biosensors-current-and-novel-strategies-for-biosensing",publishedDate:"May 5th 2021",editedByType:"Edited by",bookSignature:"Luis Jesús Villarreal-Gómez and Ana Leticia Iglesias",hash:"028f3e5dbf9c32590183ac4b4f0a2825",volumeInSeries:11,fullTitle:"Biosensors - Current and Novel Strategies for Biosensing",editors:[{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",slug:"biomedical-signal-and-image-processing",publishedDate:"April 14th 2021",editedByType:"Edited by",bookSignature:"Yongxia Zhou",hash:"22b87a09bd6df065d78c175235d367c8",volumeInSeries:10,fullTitle:"Biomedical Signal and Image Processing",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou",profilePictureURL:"https://mts.intechopen.com/storage/users/259308/images/system/259308.jpeg",institutionString:"University of Southern California",institution:{name:"University of Southern California",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9973",title:"Data Acquisition",subtitle:"Recent Advances and Applications in Biomedical Engineering",coverURL:"https://cdn.intechopen.com/books/images_new/9973.jpg",slug:"data-acquisition-recent-advances-and-applications-in-biomedical-engineering",publishedDate:"March 17th 2021",editedByType:"Edited by",bookSignature:"Bartłomiej Płaczek",hash:"75ea6cdd241216c9db28aa734ab34446",volumeInSeries:9,fullTitle:"Data Acquisition - Recent Advances and Applications in Biomedical Engineering",editors:[{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",institutionString:"University of Silesia",institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9905",title:"Biometric Systems",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9905.jpg",slug:"biometric-systems",publishedDate:"February 10th 2021",editedByType:"Edited by",bookSignature:"Muhammad Sarfraz",hash:"c730560dd2e3837a03407b3a86b0ef2a",volumeInSeries:8,fullTitle:"Biometric Systems",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",institutionString:"Kuwait University",institution:{name:"Kuwait University",institutionURL:null,country:{name:"Kuwait"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8622",title:"Peptide Synthesis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8622.jpg",slug:"peptide-synthesis",publishedDate:"December 18th 2019",editedByType:"Edited by",bookSignature:"Jaya T. Varkey",hash:"de9fa48c5248dbfb581825b8c74f5623",volumeInSeries:0,fullTitle:"Peptide Synthesis",editors:[{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",institutionString:"St. Teresa’s College",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7497",title:"Computer Vision in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7497.jpg",slug:"computer-vision-in-dentistry",publishedDate:"September 18th 2019",editedByType:"Edited by",bookSignature:"Monika Elzbieta Machoy",hash:"1e9812cebd46ef9e28257f3e96547f6a",volumeInSeries:7,fullTitle:"Computer Vision in Dentistry",editors:[{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8633",title:"Novel Diagnostic Methods in Ophthalmology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8633.jpg",slug:"novel-diagnostic-methods-in-ophthalmology",publishedDate:"September 4th 2019",editedByType:"Edited by",bookSignature:"Anna Nowinska",hash:"da2c90e8db647ead30504defce3fb5d3",volumeInSeries:6,fullTitle:"Novel Diagnostic Methods in Ophthalmology",editors:[{id:"261466",title:"Dr.",name:"Anna",middleName:"Karolina",surname:"Nowińska",slug:"anna-nowinska",fullName:"Anna Nowińska",profilePictureURL:"https://mts.intechopen.com/storage/users/261466/images/system/261466.jpeg",institutionString:"Medical University of Silesia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7437",title:"Nanomedicines",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7437.jpg",slug:"nanomedicines",publishedDate:"February 13th 2019",editedByType:"Edited by",bookSignature:"Muhammad Akhyar Farrukh",hash:"0e1f5f6258f074c533976c4f4d248568",volumeInSeries:5,fullTitle:"Nanomedicines",editors:[{id:"63182",title:"Dr.",name:"Muhammad Akhyar",middleName:null,surname:"Farrukh",slug:"muhammad-akhyar-farrukh",fullName:"Muhammad Akhyar Farrukh",profilePictureURL:"https://mts.intechopen.com/storage/users/63182/images/system/63182.png",institutionString:"Forman Christian College",institution:{name:"Forman Christian College",institutionURL:null,country:{name:"Pakistan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",institutionString:"University of Silesia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",value:9,count:1},{group:"subseries",caption:"Bioinspired Technology and Biomechanics",value:8,count:2},{group:"subseries",caption:"Bioinformatics and Medical Informatics",value:7,count:9}],publicationYearFilters:[{group:"publicationYear",caption:"2021",value:2021,count:4},{group:"publicationYear",caption:"2019",value:2019,count:5},{group:"publicationYear",caption:"2018",value:2018,count:3}],authors:{paginationCount:0,paginationItems:[]}},subseries:{item:{id:"93",type:"subseries",title:"Inclusivity and Social Equity",keywords:"Social contract, SDG, Human rights, Inclusiveness, Equity, Democracy, Personal learning, Collaboration, Glocalization",scope:"