Fitted values and rank of parameters used in the SWAT model calibration/validation (1998–2012).
\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\\n"}]',published:!0,mainMedia:{caption:"Highly Cited",originalUrl:"/media/original/117"}},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"4617",leadTitle:null,fullTitle:"Advanced Electromagnetic Waves",title:"Advanced Electromagnetic Waves",subtitle:null,reviewType:"peer-reviewed",abstract:"This book endeavors to give the reader a strong base in the advanced theory of electromagnetic waves and its applications, while keeping pace with research in various other disciplines that apply electrostatics/electrodynamics theory. The treatment is highly mathematical, which tends to obscure the principles involved.",isbn:null,printIsbn:"978-953-51-2205-0",pdfIsbn:"978-953-51-6398-5",doi:"10.5772/59382",price:119,priceEur:129,priceUsd:155,slug:"advanced-electromagnetic-waves",numberOfPages:278,isOpenForSubmission:!1,isInWos:1,isInBkci:!1,hash:"dffb45dc681f2d74f30ad9ab9c2c527f",bookSignature:"Saad Osman Bashir",publishedDate:"November 18th 2015",coverURL:"https://cdn.intechopen.com/books/images_new/4617.jpg",numberOfDownloads:14120,numberOfWosCitations:12,numberOfCrossrefCitations:16,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:24,numberOfDimensionsCitationsByBook:0,hasAltmetrics:1,numberOfTotalCitations:52,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 6th 2014",dateEndSecondStepPublish:"October 27th 2014",dateEndThirdStepPublish:"January 31st 2015",dateEndFourthStepPublish:"May 1st 2015",dateEndFifthStepPublish:"May 31st 2015",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"100186",title:"Prof.",name:"Saad",middleName:"Osman",surname:"Bashir",slug:"saad-bashir",fullName:"Saad Bashir",profilePictureURL:"https://mts.intechopen.com/storage/users/100186/images/system/100186.jpg",biography:"Prof. Dr. Bashir received his PhD in Electronics and Telecommunications Engineering, University of Bradford, West Yorkshire, in 1980/84. His research interests include antennas and radio wave propagation, optical communication systems, microwave and satellite systems, EM theory, and EM scattering computation methods; there is a significant amount of original publications in these fields. An InTech book, Electromagnetic Radiation, edited by Prof. Bashir was first published in June 2012 (p. cm. ISBN 978-953-51-0639-5).",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"International Islamic University",institutionURL:null,country:{name:"Pakistan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"750",title:"Microwave Engineering",slug:"microwave-engineering"}],chapters:[{id:"49217",title:"The Electromagnetic Force between Two Parallel Current Conductors Explained Using Coulomb’s Law",doi:"10.5772/61221",slug:"the-electromagnetic-force-between-two-parallel-current-conductors-explained-using-coulomb-s-law",totalDownloads:1778,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"In this book chapter the electromagnetic force between two parallel electric conductors has been derived, applying thereby the effects of propagation delay and the Special Relativity theory, taking thereby also into count the thus far neglected effects introduced by the voltage sources of both circuits. This has been done for a specific case consisting of two rectangular circuits, aligned to each other along one of the long sides, at a distance that is short compared to the long sides. The intention in doing so is to make a meaningful application of the concept of “two parallel conductors of infinite length”, so that it is possible to make a complete calculation of the force between the two circuits, avoiding thus making a vague claim as for example Maxwell, saying that the other parts of the conductors do not contribute to the force. What is radically new in this interpretation is that it is Coulomb’s law that is responsible for the force.",signatures:"Jan Olof Jonson",downloadPdfUrl:"/chapter/pdf-download/49217",previewPdfUrl:"/chapter/pdf-preview/49217",authors:[{id:"174589",title:"Dr.",name:"Jan Olof",surname:"Jonson",slug:"jan-olof-jonson",fullName:"Jan Olof Jonson"}],corrections:null},{id:"48957",title:"Electromagnetic Waves Propagation and Detection in Shielded Dielectric Power Cables",doi:"10.5772/61055",slug:"electromagnetic-waves-propagation-and-detection-in-shielded-dielectric-power-cables",totalDownloads:1798,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Partial discharge occurs a lot in shielded dielectric power cables. Partial discharge pulses are high-frequency electromagnetic waves that propagate in the shielded dielectric power cables. This chapter will study partial discharge propagation and detection in shielded dielectric power cables.",signatures:"Chunchuan Charles Xu and Chengyin Liu",downloadPdfUrl:"/chapter/pdf-download/48957",previewPdfUrl:"/chapter/pdf-preview/48957",authors:[{id:"174028",title:"Dr.",name:"Chunchuan",surname:"Xu",slug:"chunchuan-xu",fullName:"Chunchuan Xu"},{id:"174029",title:"Dr.",name:"Chengyin",surname:"Liu",slug:"chengyin-liu",fullName:"Chengyin Liu"}],corrections:null},{id:"49513",title:"Nonreciprocal Devices Utilizing Longitudinally Magnetized Ferrite Coupled Lines",doi:"10.5772/61524",slug:"nonreciprocal-devices-utilizing-longitudinally-magnetized-ferrite-coupled-lines",totalDownloads:1284,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Adam Kusiek, Wojciech Marynowski, Rafal Lech and Jerzy Mazur",downloadPdfUrl:"/chapter/pdf-download/49513",previewPdfUrl:"/chapter/pdf-preview/49513",authors:[{id:"174216",title:"Dr.",name:"Adam",surname:"Kusiek",slug:"adam-kusiek",fullName:"Adam Kusiek"}],corrections:null},{id:"49197",title:"Electromagnetic Waves Excitation by Thin Impedance Vibrators and Narrow Slots in Electrodynamic Volumes",doi:"10.5772/61188",slug:"electromagnetic-waves-excitation-by-thin-impedance-vibrators-and-narrow-slots-in-electrodynamic-volu",totalDownloads:1357,totalCrossrefCites:3,totalDimensionsCites:2,hasAltmetrics:0,abstract:"Linear vibrator and slot radiators, i.e., radiators of electric and magnetic type, respectively, are widely used as separate receiver and transmitter structures, elements of antenna systems, and antenna-feeder devices, including combined vibrator-slot structures. Widespread occurrence of such radiators is an objective prerequisite for theoretical analysis of their electrodynamic characteristics. During the last decades, researchers have published results which make it possible to create a modern theory of thin vibrator and narrow slot radiators. This theory combines the fundamental asymptotic methods for determining the single radiator characteristics, the hybrid analytic-numerical approaches, and the direct numerical techniques for electrodynamic analysis of such radiators. However, the electrodynamics of single linear electric and magnetic radiators is far from been completed. It may be explained by further development of modern antenna techniques and antenna-feeder devices, which can be characterized by such features as multielement structures, integration, and modification of structural units to minimize their mass and dimensions and to ensure electromagnetic compatibility of radio aids, application of metamaterials, formation of required spatial-energy, and spatial-polarization distributions of electromagnetic fields in various nondissipative and dissipative media. To solve these tasks, electric and magnetic radiators, based on various impedance structures with irregular geometric or electrophysical parameters and on combined vibrator-slot structures, should be created. This chapter presents the methodological basis for application of the generalized method of induced EMMF for the analysis of electrodynamic characteristics of the combined vibrator-slot structures. Characteristic feature of the generalization to a new class of approximating functions consists in using them as a function of the current distributions along the impedance vibrator and slot elements; these distributions are derived as the asymptotic solution of integral equations for the current (key problems) by the method of averaging. It should be noted that for simple structures similar to that considered in the model problem, the proposed approach yields an analytic solution of the electrodynamic problem. For more complex structures, the method may be used to design effective numerical-analytical algorithms for their analyses. The demonstrative simulation (the comparative analysis of all electrodynamic characteristics in the operating frequencies range) has confirmed the validity of the proposed generalized method of induced EMMF for analysis of vibrator-slot systems with rather arbitrary structure (within accepted assumptions). Here, as examples, some fragments of this comparative analysis were presented. This method retains all benefits of analytical methods as compared with direct numerical methods and allows to expand significantly the boundaries of numerical and analytical studies of practically important problems, concerning the application of single impedance vibrator, including irregular vibrator, the systems of such vibrators, and narrow slots.",signatures:"Mikhail V. Nesterenko, Sergey L. Berdnik, Victor A. Katrich and Yuriy\nM. Penkin",downloadPdfUrl:"/chapter/pdf-download/49197",previewPdfUrl:"/chapter/pdf-preview/49197",authors:[{id:"24666",title:"Dr.",name:"Mikhail",surname:"Nesterenko",slug:"mikhail-nesterenko",fullName:"Mikhail Nesterenko"}],corrections:null},{id:"49203",title:"Rigorous Approach to Analysis of Two-Dimensional Potential Problems, Wave Propagation and Scattering for Multi-conductor Systems",doi:"10.5772/61287",slug:"rigorous-approach-to-analysis-of-two-dimensional-potential-problems-wave-propagation-and-scattering-",totalDownloads:1475,totalCrossrefCites:3,totalDimensionsCites:3,hasAltmetrics:0,abstract:"The research described in this chapter analyses two-dimensional potential problems for the multi-body systems, transverse electromagnetic wave propagation along multi-conductor transmission lines and two-dimensional plane wave scattering by various arrays. All conductors may be of arbitrary cross-sections; the only restriction on the system geometry is a smooth parameterization. These problems are mathematically modelled by Dirichlet boundary value problems for either the Laplace or the Helmholtz equation, with the classical integral representation of the solutions in the form of single-layer potential. The analytical-numerical algorithm presented here is based on the method of analytical regularization. The key idea behind this technique is an analytical transformation of the initial ill-posed integral equations to a well-conditioned Fredholm second kind matrix equation. The resulting system of infinite linear algebraic equations is effectively solved using the truncation method: the solution of the truncated system converges to the solution of the infinite system with the guaranteed accuracy that only depends on the truncation number and thus may be pre-specified. The solution obtained is applied to the accurate analysis of 2-D electrostatic- and electrodynamic-field problems for multi-conductor systems with arbitrary profiled conductors. Examples of some conceptual shielded transmission lines incorporating various configurations of conductors and scattering problems for the arrays of thick strips establish the utility of our method and its reliability in various situations",signatures:"Galyna Safonova and Elena Vinogradova",downloadPdfUrl:"/chapter/pdf-download/49203",previewPdfUrl:"/chapter/pdf-preview/49203",authors:[{id:"151912",title:"Dr.",name:"Elena",surname:"Vinogradova",slug:"elena-vinogradova",fullName:"Elena Vinogradova"},{id:"174302",title:"Dr.",name:"Galyna",surname:"Safonova",slug:"galyna-safonova",fullName:"Galyna Safonova"}],corrections:null},{id:"49346",title:"Characterization of Magnetic Phases in Nanostructured Ferrites by Electron Spin Resonance",doi:"10.5772/61508",slug:"characterization-of-magnetic-phases-in-nanostructured-ferrites-by-electron-spin-resonance",totalDownloads:2202,totalCrossrefCites:2,totalDimensionsCites:9,hasAltmetrics:1,abstract:"This chapter is dedicated to the analysis of the spin resonance response (ESR) of different magnetic phases, in nanoparticles (NPs) of magnetic oxides, or ferrites. Evidence of the correlations between resonance spectrum and magnetic structure has been published, of course, in many works; however, to our knowledge, it is somewhat scattered and not easily accessible. We have chosen to carry out this analysis mainly on ferrite NPs because these magnetic materials exhibit a wide variety of magnetic properties, and as a consequence, a large diversity of classic and novel applications in technological fields ranging from electronics to biomedics.",signatures:"Rebeca Díaz-Pardo and Raúl Valenzuela",downloadPdfUrl:"/chapter/pdf-download/49346",previewPdfUrl:"/chapter/pdf-preview/49346",authors:[{id:"167617",title:"Prof.",name:"Raul",surname:"Valenzuela",slug:"raul-valenzuela",fullName:"Raul Valenzuela"}],corrections:null},{id:"49350",title:"Time-Domain Electromagnetic Wave Propagation in Confined Environments",doi:"10.5772/61340",slug:"time-domain-electromagnetic-wave-propagation-in-confined-environments",totalDownloads:1400,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Jorge Avella-Castiblanco, Divitha Seetharamdoo, Marion Berbineau,\nMichel Ney, Ibrahim Massy and Franois Gallée",downloadPdfUrl:"/chapter/pdf-download/49350",previewPdfUrl:"/chapter/pdf-preview/49350",authors:[{id:"103183",title:"Dr.",name:"Divitha",surname:"Seetharamdoo",slug:"divitha-seetharamdoo",fullName:"Divitha Seetharamdoo"},{id:"148928",title:"Dr.",name:"Jorge",surname:"Avella Castiblanco",slug:"jorge-avella-castiblanco",fullName:"Jorge Avella Castiblanco"},{id:"148945",title:"Dr.",name:"Marion",surname:"Berbineau",slug:"marion-berbineau",fullName:"Marion Berbineau"},{id:"148949",title:"Dr.",name:"Ibrahim",surname:"Massy Sanchez",slug:"ibrahim-massy-sanchez",fullName:"Ibrahim Massy Sanchez"},{id:"148950",title:"Dr.",name:"Francois",surname:"Gallee",slug:"francois-gallee",fullName:"Francois Gallee"},{id:"177465",title:"Prof.",name:"Michel",surname:"Ney",slug:"michel-ney",fullName:"Michel Ney"}],corrections:null},{id:"49515",title:"What Effect does Rounding the Corners have on Diffraction from Structures with Corners?",doi:"10.5772/61152",slug:"what-effect-does-rounding-the-corners-have-on-diffraction-from-structures-with-corners-",totalDownloads:1197,totalCrossrefCites:8,totalDimensionsCites:8,hasAltmetrics:0,abstract:null,signatures:"Paul D. Smith and Audrey J. Markowskei",downloadPdfUrl:"/chapter/pdf-download/49515",previewPdfUrl:"/chapter/pdf-preview/49515",authors:[{id:"31870",title:"Prof.",name:"Paul",surname:"Smith",slug:"paul-smith",fullName:"Paul Smith"},{id:"174248",title:"Ms.",name:"Audrey",surname:"Markowskei",slug:"audrey-markowskei",fullName:"Audrey Markowskei"}],corrections:null},{id:"49249",title:"Probing the Molecular Ordering in Azopolymer Thin Films by Second-Order Nonlinear Optics",doi:"10.5772/61180",slug:"probing-the-molecular-ordering-in-azopolymer-thin-films-by-second-order-nonlinear-optics",totalDownloads:1634,totalCrossrefCites:0,totalDimensionsCites:2,hasAltmetrics:0,abstract:"Second-harmonic generation (SHG), a second-order nonlinear optical technique, was used to investigate the molecular ordering of self-assembled layer-by-layer films of PAH, a cationic polyelectrolyte, and PS-119, an anionic polyelectrolyte containing photoisomerizable azo groups. Possible phase transitions in these multilayer films and their thermal stability were investigated by probing the SHG signal as a function of temperature and comparing the molecular order before and after thermal treatment. These studies were also performed with different pH values for the assembling solutions, a relevant parameter for polyelectrolyte adsorption. The results have shown that the films are not thermally stable, with the SHG signal nearly vanishing at a temperature of 150°C, in contrast to what is reported in the literature. SHG measurements have also confirmed that the films are isotropic in the plane of the samples, independent of their number of layers or the pH of assembling solutions. SHG signal before and after heating indicates that the SHG signal was considerably reduced at high temperatures, but after slow cooling it was recovered to almost the same value as before heating, showing that the thermal disorder is reversible. No phase transition was observed, since the SHG signal reduction was slow and gradual, without any sudden change that would characterize a glass transition. We demonstrate that the SHG technique provides information on the film arrangement at the microscopic level which could be difficult to get with traditional techniques.",signatures:"Heurison S. Silva, Irismar G. Paz and Paulo B. Miranda",downloadPdfUrl:"/chapter/pdf-download/49249",previewPdfUrl:"/chapter/pdf-preview/49249",authors:[{id:"4665",title:"Prof.",name:"Paulo",surname:"Miranda",slug:"paulo-miranda",fullName:"Paulo Miranda"},{id:"27072",title:"Dr.",name:"Irismar",surname:"Da Paz",slug:"irismar-da-paz",fullName:"Irismar Da Paz"},{id:"174044",title:"Prof.",name:"Heurison",surname:"Silva",slug:"heurison-silva",fullName:"Heurison Silva"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"1543",title:"Electromagnetic Radiation",subtitle:null,isOpenForSubmission:!1,hash:"1ade06592c00a3854500b79f21a37988",slug:"electromagnetic-radiation",bookSignature:"Saad Osman Bashir",coverURL:"https://cdn.intechopen.com/books/images_new/1543.jpg",editedByType:"Edited by",editors:[{id:"100186",title:"Prof.",name:"Saad",surname:"Bashir",slug:"saad-bashir",fullName:"Saad Bashir"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3707",title:"Microwave and Millimeter Wave Technologies",subtitle:"from Photonic Bandgap Devices to Antenna and Applications",isOpenForSubmission:!1,hash:null,slug:"microwave-and-millimeter-wave-technologies-from-photonic-bandgap-devices-to-antenna-and-applications",bookSignature:"Igor Minin",coverURL:"https://cdn.intechopen.com/books/images_new/3707.jpg",editedByType:"Edited by",editors:[{id:"123258",title:"Dr.",name:"Igor",surname:"Minin",slug:"igor-minin",fullName:"Igor Minin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3623",title:"Advanced Microwave and Millimeter Wave Technologies",subtitle:"Semiconductor Devices Circuits and Systems",isOpenForSubmission:!1,hash:null,slug:"advanced-microwave-and-millimeter-wave-technologies-semiconductor-devices-circuits-and-systems",bookSignature:"Moumita Mukherjee",coverURL:"https://cdn.intechopen.com/books/images_new/3623.jpg",editedByType:"Edited by",editors:[{id:"24251",title:"Dr.",name:"Moumita",surname:"Mukherjee",slug:"moumita-mukherjee",fullName:"Moumita Mukherjee"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1565",title:"Bolometers",subtitle:null,isOpenForSubmission:!1,hash:"c193ef12df5ac7a70b88a3b56c786e45",slug:"bolometers",bookSignature:"A. G. Unil Perera",coverURL:"https://cdn.intechopen.com/books/images_new/1565.jpg",editedByType:"Edited by",editors:[{id:"92217",title:"Prof.",name:"Unil",surname:"Perera",slug:"unil-perera",fullName:"Unil Perera"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5436",title:"Microwave Systems and Applications",subtitle:null,isOpenForSubmission:!1,hash:"cdb6126a0b68bc14bc51600c8dc7ccfc",slug:"microwave-systems-and-applications",bookSignature:"Sotirios K. Goudos",coverURL:"https://cdn.intechopen.com/books/images_new/5436.jpg",editedByType:"Edited by",editors:[{id:"171056",title:"Dr.",name:"Sotirios",surname:"Goudos",slug:"sotirios-goudos",fullName:"Sotirios Goudos"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3708",title:"Microwave and Millimeter Wave Technologies",subtitle:"Modern UWB antennas and equipment",isOpenForSubmission:!1,hash:null,slug:"microwave-and-millimeter-wave-technologies-modern-uwb-antennas-and-equipment",bookSignature:"Igor Minin",coverURL:"https://cdn.intechopen.com/books/images_new/3708.jpg",editedByType:"Edited by",editors:[{id:"123258",title:"Dr.",name:"Igor",surname:"Minin",slug:"igor-minin",fullName:"Igor Minin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6318",title:"Emerging Microwave Technologies in Industrial, Agricultural, Medical and Food Processing",subtitle:null,isOpenForSubmission:!1,hash:"67de575df6dcd16554dd8f575e8c8368",slug:"emerging-microwave-technologies-in-industrial-agricultural-medical-and-food-processing",bookSignature:"Kok Yeow You",coverURL:"https://cdn.intechopen.com/books/images_new/6318.jpg",editedByType:"Edited by",editors:[{id:"188673",title:"Dr.",name:"Kok Yeow",surname:"You",slug:"kok-yeow-you",fullName:"Kok Yeow You"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"66062",slug:"corrigendum-to-pain-management-in-plastic-surgery",title:"Corrigendum to: Pain Management in Plastic Surgery",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/66062.pdf",downloadPdfUrl:"/chapter/pdf-download/66062",previewPdfUrl:"/chapter/pdf-preview/66062",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/66062",risUrl:"/chapter/ris/66062",chapter:{id:"62958",slug:"pain-management-in-plastic-surgery",signatures:"I Gusti Ngurah Mahaalit Aribawa, Made Wiryana, Tjokorda Gde\nAgung Senapathi and Pontisomaya Parami",dateSubmitted:"April 5th 2017",dateReviewed:"June 5th 2018",datePrePublished:"November 5th 2018",datePublished:"April 3rd 2019",book:{id:"6221",title:"Anesthesia Topics for Plastic and Reconstructive Surgery",subtitle:null,fullTitle:"Anesthesia Topics for Plastic and Reconstructive Surgery",slug:"anesthesia-topics-for-plastic-and-reconstructive-surgery",publishedDate:"April 3rd 2019",bookSignature:"Víctor M. Whizar-Lugo",coverURL:"https://cdn.intechopen.com/books/images_new/6221.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"169249",title:"Prof.",name:"Víctor M.",middleName:null,surname:"Whizar-Lugo",slug:"victor-m.-whizar-lugo",fullName:"Víctor M. Whizar-Lugo"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"208429",title:"M.D.",name:"I Gusti Ngurah",middleName:null,surname:"Mahaalit Aribawa",fullName:"I Gusti Ngurah Mahaalit Aribawa",slug:"i-gusti-ngurah-mahaalit-aribawa",email:"mahaalit@unud.ac.id",position:null,institution:{name:"Udayana University",institutionURL:null,country:{name:"Indonesia"}}},{id:"209749",title:"Dr.",name:"Tjokorda Gde Agung",middleName:null,surname:"Senapathi",fullName:"Tjokorda Gde Agung Senapathi",slug:"tjokorda-gde-agung-senapathi",email:"tjoksenapathi@unud.ac.id",position:null,institution:null},{id:"209750",title:"Mrs.",name:"Pontisomaya",middleName:null,surname:"Parami",fullName:"Pontisomaya Parami",slug:"pontisomaya-parami",email:"ponti@unud.ac.id",position:null,institution:null},{id:"209752",title:"Prof.",name:"Made",middleName:null,surname:"Wiryana",fullName:"Made Wiryana",slug:"made-wiryana",email:"wiryana@unud.ac.id",position:null,institution:null}]}},chapter:{id:"62958",slug:"pain-management-in-plastic-surgery",signatures:"I Gusti Ngurah Mahaalit Aribawa, Made Wiryana, Tjokorda Gde\nAgung Senapathi and Pontisomaya Parami",dateSubmitted:"April 5th 2017",dateReviewed:"June 5th 2018",datePrePublished:"November 5th 2018",datePublished:"April 3rd 2019",book:{id:"6221",title:"Anesthesia Topics for Plastic and Reconstructive Surgery",subtitle:null,fullTitle:"Anesthesia Topics for Plastic and Reconstructive Surgery",slug:"anesthesia-topics-for-plastic-and-reconstructive-surgery",publishedDate:"April 3rd 2019",bookSignature:"Víctor M. Whizar-Lugo",coverURL:"https://cdn.intechopen.com/books/images_new/6221.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"169249",title:"Prof.",name:"Víctor M.",middleName:null,surname:"Whizar-Lugo",slug:"victor-m.-whizar-lugo",fullName:"Víctor M. Whizar-Lugo"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"208429",title:"M.D.",name:"I Gusti Ngurah",middleName:null,surname:"Mahaalit Aribawa",fullName:"I Gusti Ngurah Mahaalit Aribawa",slug:"i-gusti-ngurah-mahaalit-aribawa",email:"mahaalit@unud.ac.id",position:null,institution:{name:"Udayana University",institutionURL:null,country:{name:"Indonesia"}}},{id:"209749",title:"Dr.",name:"Tjokorda Gde Agung",middleName:null,surname:"Senapathi",fullName:"Tjokorda Gde Agung Senapathi",slug:"tjokorda-gde-agung-senapathi",email:"tjoksenapathi@unud.ac.id",position:null,institution:null},{id:"209750",title:"Mrs.",name:"Pontisomaya",middleName:null,surname:"Parami",fullName:"Pontisomaya Parami",slug:"pontisomaya-parami",email:"ponti@unud.ac.id",position:null,institution:null},{id:"209752",title:"Prof.",name:"Made",middleName:null,surname:"Wiryana",fullName:"Made Wiryana",slug:"made-wiryana",email:"wiryana@unud.ac.id",position:null,institution:null}]},book:{id:"6221",title:"Anesthesia Topics for Plastic and Reconstructive Surgery",subtitle:null,fullTitle:"Anesthesia Topics for Plastic and Reconstructive Surgery",slug:"anesthesia-topics-for-plastic-and-reconstructive-surgery",publishedDate:"April 3rd 2019",bookSignature:"Víctor M. Whizar-Lugo",coverURL:"https://cdn.intechopen.com/books/images_new/6221.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"169249",title:"Prof.",name:"Víctor M.",middleName:null,surname:"Whizar-Lugo",slug:"victor-m.-whizar-lugo",fullName:"Víctor M. Whizar-Lugo"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"12100",leadTitle:null,title:"Nursing",subtitle:null,reviewType:"peer-reviewed",abstract:"This book will be a self-contained collection of scholarly papers targeting an audience of practicing researchers, academics, PhD students and other scientists. The contents of the book will be written by multiple authors and edited by experts in the field.",isbn:null,printIsbn:null,pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,hash:"e182e8721219e690a1be729935c41900",bookSignature:"",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/12100.jpg",keywords:null,numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 2nd 2022",dateEndSecondStepPublish:"March 23rd 2022",dateEndThirdStepPublish:"May 22nd 2022",dateEndFourthStepPublish:"August 10th 2022",dateEndFifthStepPublish:"October 9th 2022",remainingDaysToSecondStep:"2 months",secondStepPassed:!0,currentStepOfPublishingProcess:1,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:null},relatedBooks:[{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9500",title:"Recent Advances in Bone Tumours and Osteoarthritis",subtitle:null,isOpenForSubmission:!1,hash:"ea4ec0d6ee01b88e264178886e3210ed",slug:"recent-advances-in-bone-tumours-and-osteoarthritis",bookSignature:"Hiran Amarasekera",coverURL:"https://cdn.intechopen.com/books/images_new/9500.jpg",editedByType:"Edited by",editors:[{id:"67634",title:"Dr.",name:"Hiran",surname:"Amarasekera",slug:"hiran-amarasekera",fullName:"Hiran Amarasekera"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"77262",title:"Evaluation of Climate Change-Induced Impact on Streamflow and Sediment Yield of Genale Watershed, Ethiopia",doi:"10.5772/intechopen.98515",slug:"evaluation-of-climate-change-induced-impact-on-streamflow-and-sediment-yield-of-genale-watershed-eth",body:'Water is a unique resource given to humankind from nature impacted by induced climate change [1]. The atmospheric scientists suggest that the Earth is warming as a global temperature increase the hydrological cycle more actively. Greenhouse gases (GHGs) increase in the surroundings is a significant concern for global warming & climate changes. These changes may influence natural water resources in the catchment [2]. The Intergovernmental Panel on Climate Change (IPCC) appraisal report stated that global mean precipitation, surface temperature, droughts, and floods had changed significantly, and the changes are expected to continue [3]. Principally, developing country like Ethiopia is now facing severe climate change effects on water and agriculture sector. Currently, it is of great importance to evaluate the consequence of climate change on the regional and local water resources. The rise in surface earth air temperature and precipitation patterns are prominent features of change in climate that directly impact almost all other hydrological responses [4]. A temperate climate will accelerate the hydrological process, altering rainfall patterns and the magnitude & timing of streamflow. Climate changes are also expected to have remarkable impacts on the soil type since rainfall and runoff are the factors governing soil erosion and sediment yield/transport within landscapes [5].
The information derived from Global Climate Models (GCMs) is currently the most applicable in evaluating both past and possible future changes in climate scenarios. This climate data is then used as input to drive the hydrologic process. Long-term locally-observed climate data are also needed to validate climate model outputs to capture local settings [6]. However, direct implementation of GCM outputs to any hydrological model for subsequent evaluation of impact is despondent in climate studies because of coarse resolution issues. The simulation of GCMs runs on large scales to consider various grids across the globe, and GCM typically takes about 2.80 x 2.80 longitude and latitude resolution. To tackle the problems downscaling is assumed, a process of bringing down the climate information from GCM to regional & local hydrologic scales to produce outputs of the more acceptable resolution, which are more realistic with the local scale before estimating the risks associated with the future hydrologic scenarios [7, 8].
Different downscaling techniques have been advanced over the past two decades, deriving from two major blueprints; dynamic downscaling and statistical downscaling approaches. The dynamic approach is often viewed as a mini-GCM because it stimulates regional climate variables by decreasing the horizontal area covered (typically around 25 by 25 km) using the same boundary conditions as the evolving GCM. Because they produce high-resolution climate data, they have not been extensively accepted because of the complexities and costs involved in running this type of technique to capture regional-scale climate variables. Statistical downscaling approach, involving weather typing procedures, transfer functions, and stochastic weather generators, are the most known methods used in climate change studies nowadays [9]. They give future climate scenarios based on a statistical relationship between climate variables at one or more GCM grid points at a particular station. They are adopted because they are relatively economical to apply and give point climate data at a specific site of interest [5, 7].
The changes in streamflow and sediment yield characteristics resulting from climate change depend on individual watershed aspects. Decisive evaluations of the quantity and rate of runoff and sediment yield are needed to help decision-makers develop catchment management plans for better soil & water conservation measures [10, 11]. The SWAT-Soil and Water Assessment Tool model simulates the climate change-induced impacts for the San Jacinto River basin in Texas [12]. The effect of climate change on catchment hydrology is typically evaluated by characterizing climate change scenarios to a hydrological model based on the futuristic GHGs [1, 5, 4].
Streamflow modeling is essential to know sediment concentration in the stream, whereas peak streamflow rate is vital for hydraulic structure, watershed management practices, and flood protection. Different studies used empirical, statistical, and simulation methods to resolve the impacts of climate change on hydrological responses [13]. Recent studies recommended that SWAT is widely used as a capable model to evaluate environmental and hydrological changes with varying land types and climate conditions [14]. Additionally, the output components incorporated in the SWAT model are found to address various water-related systems in the watershed. The study highlighted that an increase in the concentration of CO2 has a notable effect on streamflow, sediment yield, evaporation, and water yield. Carbon emission scenarios are the main driving forces in climate models. Scenarios are images or pictures of how the world is likely to emerge in the future in terms of greenhouse gasses (GHGs). In the recent study, we use the latest scenarios, called Representative Concentration Pathways (RCPs), which have rarely been applied in the study catchment. The IPCC characterizes a set of RCP scenarios (2.5, 4.5, 6.0, and 8.5) for projection of future climate based on Coupled Model Intercomparison Project (CMIP5) [15]. These four RCPs consolidate one alleviation scenario priming a low driving level (RCP2.6), two stabilization (medium) scenarios (RCP4.5 and RCP6), and one with a high GHGs emissions scenario (RCP8.5). These emissions scenarios are emerged based on the driving force such as socio-economic development, population growth, and GHGs [16]. Based on the IPCC report, by the end of the 21st century, global warming/temperature may increase by 1–5°C. Climate change scenarios for the Global Climate Model (GCM) or simple analog models are sometimes adapted to investigate climate change impacts on hydrology [17].
Nevertheless, their spatial resolutions are extremely coarse for regional climate study and need to downscale it. Therefore, either through statistical or dynamic regional climate models, the downscaling approach is required to convert GCM data into acceptable resolution before using for any hydrological study [18, 19]. Limited reports address the climate change analysis using Regional Climate Model (RCM) on streamflow and sediment concentration in the region. Nevertheless, most studies have used coarse-resolution GCM data, which are not favored for watershed hydrological modeling. The SWAT model was selected for this study because of its ability & wide range of applications, demonstrating that the model is a flexible and robust tool that can simulate various regional water flow at a watershed scale provide effective results [20].
This study contributes to investigate the effects of future climate change projection on the streamflow and sediment yield of Genale catchment using the calibrated/validated SWAT model under baseline and future two emissions and offers baseline information for adaptive soil and water resource management in a changing climate region. For the SWAT input, the future climate projection (2022–2080) statistically downscaled Regional Climate Model (RCM) Bias-corrected Coordinated Regional Climate Downscaling Experiment (CORDEX) precipitation, max/min temperature for Ethiopia, under RCP 4.5 and RCP 8.5 emissions scenario was used with historical data of (1990–2013). The climatic model data for the hydrologic modeling tool (CMhyd) is used to extract and bias-correct the climate variables obtained from RCM-CORDEX.
The surface of the Earth has three main climate zones: tropical (hot & higher humidity zones), temperate (moderate between tropical & polar), and polar (floating and pack ice). Ethiopia is placed in the tropical climate zone lying between the Equator and the Tropic of Cancer. The latitude, longitude, & altitude of Ethiopia is given as 90 8′ 53” N, 400 29′ 35″ E, & 1343 m respectively. Based on elevation, the country has three different climate zones: Tropical zone (Dega, Weyna Dega, and Kola), with an average annual temperature of about 27°C and annual rainfall of about 510 millimeters. The study area is located on the Genale watershed with 54,941.583 Km2 of the part of Genale Dawa River, situated in the South-Eastern part of Ethiopia and joins with Dawa River at the border with Somalia (Dolo Ado) (4° 16’N, 42° 04′E) to become the Juba River. In the Genale Basin, a total of 464 HRUs were created and scattered among 25 sub-basins. The annual mean of precipitation experienced in the area 810 mm distribution of rainfall in the watershed is 300 to 1302 mm per year. The daily max and min temperatures are 34.5 °C and 8.6 °C, respectively, with a daily average of 19 °C (Figure 1).
Shows the delineated watershed of the study area extracted from the Africa, Ethiopia map.
The SWAT was advanced in the 1990s by the United States Department of Agriculture (USDA). It is a mechanism-based and spatially semi-scattered hydrological model or flexible tool in different parts of the world, designed to calculate and route water, sediments, management practices, and nutrient-point sources of pollution from individual sub-basins through the mainstream watersheds towards its outlet resulting from changes in land use/cover in the river basins [21]. In general, SWAT simulates the hydrological cycle and water balance in the catchment using equation (1).
Where; SWt = Final soil water content on a day i (mm/day), SWo = Initial soil water content on day i (mm/day), t = time in days, Rday = amount of precipitation on day i (mm/day),Qsurface = amount of surface runoff on day i (mm/day), Ea = amount of evapotranspiration on day i (mm/day), Wseep = amount of water entering the vadose zone from the soil profile on day i (mm/day), Qgw = amount of return flow on day i (mm/day). The SWAT uses the soil conservation service curve number (SCS-CN) approach to evaluate surface runoff, illustrating runoff to soil type, land use/cover, slope classes, and management practices, and is computationally effective [22]. The model estimates the streamflow in the sub-basins as a result of the total daily rainfall SCS- using the Soil Conservation Service curve number (CN) method as follows:
The retention parameter(S) and prediction of lateral flow by SWAT model expressed as;
Where; S = drainable volume of soil water per unit area of a saturated thickness(mm/day), CN = curve number.
The model’s water yield within a watershed has been evaluated based on the equation; (Negewo & Sarma, 2021).
Where;
For individual HRU, the sediment losses attributed to the surface runoff were evaluated based on the Modified Universal Soil Loss Equation (MUSLE) [23]. The MUSLE formula of sediment yield in the sub-basin roughly estimates the gross soil erosion caused by sheet, rill, and rain splash but does not include the erosion caused by landslides and gullies.
Where; QSED = Sediment loss/Sediment yield(ton/ha/day) from individual HRU,
Typically, the application of the SWAT contained five mains: (a) watershed delineation and streams network generation, (b) combination of DEM, soil data, and land use/cover data and create slopes classes, (c) creating HRU (Hydrological response unit) definition, (d) combination of climate data (e) run the simulation (Figure 2).
Steps of the implementation of the SWAT model for the study area. Analysis of SWAT input data.
The statistically downscaled Regional Climate Model (RCM) Bias-corrected Coordinated Regional Climate Downscaling Experiment (CORDEX) precipitation, min/mean/max temperature for Ethiopia, under RCP 4.5 and RCP 8.5, downloaded from(https://dataservices.gfzpotsdam.de/pik/showshort.php?id=escidoc:3124935) is provided as input data for hydrological modeling of this study. This dataset contributes bias-corrected daily precipitation, min/mean/max air temperature of ten CORDEX RCM runs covering the country of Ethiopia for historical (1970–1999) and over the 21st century for RCP 4.5 and RCP 8.5 [24]. For this study, daily rainfall and maximum & minimum temperature data of historical (1990–2013) of eight climatic stations were obtained from the Meteorological Agency of Ethiopia, and other eight climatic stations were from the global database of Climate Forecast System Reanalysis (CFSR) after filling missing data, consistency, and outlier checked [1].
Accordingly, all the bias correction has improved the simulation of precipitation and temperature before using CORDEX-RCM outputs for any climate impact modeling. The study used climate model data for hydrological modeling CMhyd to extract CORDEX-NetCDF and bias correction of precipitation, minimum and maximum temperature to predict climate change-induced temperature changes in the Genale catchment.
SWAT model was used to simulate water yield using the RCM under the future emission scenarios of two representative concentration pathways (RCPs) (medium emission scenario (RCP4.5) and high emission scenario (RCP-8.5)). Climate data for different periods are input into the SWAT model with the other components unchanged. The period of 1990–2013 is set as the baseline period.
Digital elevation model was downloaded from USGS Earth Explorer (http://earthexplorer.usgs. gov/) SRTM (Shuttle Radar Topography Mission) 90 m*90 m and used for watershed delineation, sub-basin, slope calculation/ classification, and extract stream networks. The spatial land use/cover collected from the Ethiopian Ministry of Water, Irrigation, and Electricity (MoWIE) GIS department of the year 2013 used for SWAT input, and the dominant land use/cover is range brushland (RNGB) accounts for about 71% of the area. This study’s soil map/type is from the Food and Agricultural Organization (FAO) Digital Soil Map of the World (http://www.fao.org/geonetwork/srv/en/metadata) the scale of 1/5000000 for 2007. The soil data that integrated into the SWAT model are: the available water content, the texture, the hydraulic conductivity, the apparent density of the different soil layers, and the dominant soil type in the study watershed was Rc19-bc-204 (Calcaric Regosols), and it accounts about 40% of the catchment.
The climate data required for this paper has been taken from the National Meteorological Agency of Ethiopia, http://www.ethiomet.gov.et/etms. These data subsist of precipitation, max and min temperatures, wind energy, solar radiation, and relative humidity daily and covered the period from 1990 to 2013 for sixteen stations. The discharge data from the Ethiopian Ministry of Water, Irrigation, and Electricity (MoWIE) Hydrology department Genale @ Halwen gauging station a bit upstream of the outlet, and then transferred to the outlet, and arranged for SWAT language for the period from 1990 to 2013.
Figure 3, shows different 16 (sixteen) meteorological stations were distributed in the watershed, hydrological gauging station, watershed outlet, stream reach, and basin mark of the study area. The stations which were designated as; GMS1-Gridded Meteorological station-1, GMS2- Gridded Meteorological station-2, GMS3- Gridded Meteorological station-3, 4,5,6,7, & 8 respectively (Figure 3).
Meteorological and hydrological gauging station distribution sub-basin wise for Genale River.
Figure 4 shows the distribution of rainfall in the study area for the selected different gauge stations.
Mean monthly rainfall for selected stations in the study area over 1990–2013.
From Figure 5b, the details of maximum, average, and minimum yearly temperature of the study area were pinpointed as 24.6, 19, & 12.93 °C, respectively, for 1990–2013 (Figure 6).
Daily and yearly average maximum, minimum, and average daily temperatures in the study area, respectively.
DEM, LULC, soil type, and slope classes of the Genale watershed, respectively.
The automatic calibration and validation adjustment in the SWAT model achieved using the SWAT-CUP (SUFI-II) public user software developed by [25]. The SWAT-CUP has interfaced with five algorithms: (1) sequential uncertainty fitting (SUFI-2, (2) generalized likelihood uncertainty estimation (GLUE), (3) parameter solution (ParaSol), (4) Markov chain Monte Carlo (MCMC), and (5) particle swarm optimization (PSO) [26].
In this study, the analysis of uncertainty, calibration, validation was conducted using the SUFI-2 optimization algorithm; this algorithm needs less simulation number, faster, and one of the most used in the automatic calibration of model for several basins the semi-arid region like Genale Basin.
Assessment of performance criteria for the model is; Nash-Sutcliffe Efficiency (NSE), PBIAS, and Coefficient of Determination (R2) has been used as the efficiency criteria to evaluate the performance of models in the Genale watershed. The first three objective functions are mainly used for daily and monthly streamflow /sediment calibration–validation uncertainty analysis.
Coefficient of Determination (R2)
Where,
where,
The model was built with DEM, soil classes, land use/cover, and slope types for the Genale watershed, which contained 25 sub-basins, 464 HRUs with a catchment area 54,942Km2 at the outlet.
Sensitivity analysis was performed to navigate the calibration action and pinpoint parameters that significantly affect the discharge and sediment flow. In a sensitivity analysis of the model, SCS curve number (CN2.mgt), an available water capacity of the soil layer (SOL_AWC.sol), and saturated hydraulic conductivity (SOL_K.sol) are the most sensitive parameters for runoff estimation. However, model efficiency is also influenced by the reliability of spatial and temporal data.
Sediment sensitivity analysis was carried out for three years warm-up period 1987 to 1989- and 16-years calibration period 1990 to 2005- and 8-years validation period 2006 to 2013. Based on the p-value and t-stat results obtained from sensitivity analysis, the ranks of parameters were finalized. The simulated sediment was sensitive to the amount of sediment re-entrained during channel sediment routing (SPCON.bsn), (SOL_AWC.sol), CN2, etc., respectively.
A parameter with a larger absolute value of t-stat is more sensitive to flow. The p-value gives the relevance of the sensitivity. Thus, when the p-value is close to zero, then the sensitivity of the parameter is a priority (Table 1).
Process | Parameter name | Description of the parameter | Range value | Fitted value | p-value | t-stat | Rank |
---|---|---|---|---|---|---|---|
Streamflow | CN2.mgt | SCS runoff curve number | 35–98 | −0.17 | 0.0 | −42 | 1 |
SOL_AWC.sol | Available water capacity of the soil layer | 0–1 | 1.0 | 0.004 | 2.9 | 2 | |
SOL_K.sol | Saturated hydraulic conductivity | 0–2000 | 0.566 | 0.12 | −1.5 | 3 | |
SOL_BD.sol | Moist bulk density | 0.9–2.5 | 0.984 | 0.20 | 1.2 | 4 | |
ALPHA_BF.gw | Baseflow alpha-factor (days). | 0–1 | 0.570 | 0.21 | −1.2 | 5 | |
REVAPMN.gw | Threshold depth of water in a shallow aquifer for “revap” to occur (mm) | 0–500 | 408.6 | 0.308 | −1.0 | 6 | |
GW_REVAP.gw | USLE support practice factor | 0–1 | 1.2 | 0.49 | −0.6 | 7 | |
ESCO.hru | Soil evaporation compensation factor | 0–1 | 0.27 | 0.65 | −0.4 | 8 | |
HRU_SLP.hru | Average slope steepness | 0–1 | 0.578 | 0.72 | 0.34 | 9 | |
SURLAG.bsn | Surface runoff lag time | 0.05–24 | 0.072 | 0.96 | −0.05 | 10 | |
Sediment | SPCON.bsn | The max amount of sediment that can be retrained during channel routing. | 0.0001–0.01 | 0.0002 | 0.0 | −29.5 | 1 |
SOL_AWC(.)sol | Available water capacity of the soil layer | 0–1 | 0.639 | 0.0 | 14.2 | 2 | |
CN2.mgt | SCS runoff curve number | 35–98 | −0.24 | 0.0 | −10 | 3 | |
SOL_K(..).sol | Saturated hydraulic conductivity | 0–2000 | 0.845 | 0.0 | 7.18 | 4 | |
SPEXP.bsn | Exponent parameter for calculating sediment retrained in channel sediment routing. | 1–1.5 | 1.156 | 0.0 | −5.63 | 5 | |
CH_COV1.rte | Channel erodibility factor. | −0.05-0.6 | 0.78 | 0.145 | −1.44 | 6 | |
USLE_K(..)sol | USLE equation soil erodibility (K) factor. | 0–0.65 | 0.012 | 0.57 | −0.6 | 7 | |
USLE_P.mgt | USLE equation support parameter | 0–1 | 0.029 | 0.73 | 0.35 | 8 |
Fitted values and rank of parameters used in the SWAT model calibration/validation (1998–2012).
Calibrated parameters and the fitted values are final notes for the modeler from the calibration process used for the required objectives. Calibration of discharge and sediment flow was performed with several iterations of 500 simulations number; each was carried out for the calibration period of 1990–2005 monthly.
Validation is required to verify whether the calibrated parameters also work for other data of different years within the watershed. Validation time (2006–2013) results revealed a satisfactory performance, as statistical measures are in the acceptable range for discharge and sediment. Table 2 shows the acceptable range for the model’s performance in light of the calibration and validation process.
p-factor | r-factor | R2 | NSE | PBIAS | RSR | Rating | |
---|---|---|---|---|---|---|---|
Flow | Sediment | ||||||
0.7–1 | <1, (close to 0) | 0.75–1 | 0.75–1 | <±10% | <±15% | 0–0.5 | very good |
0.65–0.75 | 0.65–0.75 | ±10–15% | ±15–30% | 0.5–0.6 | good | ||
0.5–0.65 | 0.5–0.65 | ±15–25% | ±30–55% | 0.6–0.7 | satisfactory | ||
Close to 0 | >1, (infinite) | <0.5 | ≤0.5 | > ± 25% | > ± 55% | >0.7 | unsatisfactory |
The results show satisfactory and well responded to calibration and validation process (Table 3).
Types of assessment | p-factor | r-factor | R2 | NSE | PBIAS | RSR | Rating | |
---|---|---|---|---|---|---|---|---|
Flow | Calibration | 0.51 | 0.78 | 0.87 | 0.81 | −2.1% | 0.50 | good |
Validation | 0.54 | 0.86 | 0.85 | 0.78 | −0.5% | 0.52 | good | |
Sediment | Calibration | 0.48 | 0.37 | 0.84 | 0.79 | 3.8% | 0.61 | satisfactory |
Validation | 0.43 | 0.39 | 0.82 | 0.75 | 3.9% | 0.67 | satisfactory |
Actual index value for SWAT output during calibration/validation process (1990–2013).
The calibration was done from 1990 to 2005 & the validation period from 2006 to 2013, and the model performance shows satisfactory agreement between the observed and simulated flow (Figure 7). The calibrated/validated model also responded to the rainfall with the respective months.
Monthly calibration and validation of streamflow (1990–2013) for Genale River basin at Genale Halwen.
As indicated, the simulated and observed sediment load agreed and showed a satisfactory performance during the calibration and validation action (Figure 8).
Monthly observed and simulated sediment load plots for the calibration (1990–2005) and validation (2006–2013).
The climate change impact on hydrology was evaluated by driving the calibrated/validated SWAT model with the bias-corrected RCM-CORDEX weather corresponding to the present-day historical data and future emission scenarios. The analysis was executed on a monthly basis for streamflow and sediment yield.
The statistically downscaled Regional Climate Model (RCM) Bias-corrected Coordinated Regional Climate Downscaling Experiment (CORDEX), precipitation, min/mean/max temperature for Africa-Ethiopia, under RCP 4.5 and RCP 8.5. The average annual rainfall in the study climate stations during the baseline 24-years period (1990–2013) was 810 mm, and the maximum and minimum yearly rainfall accounts were 1,303 mm and 300 mm, respectively.
The monthly temperature of the catchment varies from 14.5°C to 24.6°C, with an average of 19.5°C. We predicted the long-term average precipitation with the historical data for two climate emission scenarios. As shown in Figure 9, significant changes occur in the dry season (December, January & February).
Comparison of average observed monthly precipitation for baseline condition, RCP4.5, & RCP8.5 scenarios of four stations in the catchment.
Figures 9 and 10 show the climate changes in the average monthly precipitation and the maximum and minimum air temperatures over the catchment between the historical and future periods (2022–2080) for the two emission scenarios. Generally, the climate change over the Genale basin will likely become warmer, especially in autumn and spring, considering the higher emission scenario (Figure 10). Indistinct, the maximum temperature increase is somewhat higher than that of the minimum temperature in the region.
Comparison of mean temperatures for historical data, RCP4.5, & RCP8.5 scenarios of four stations in the catchment.
Figure 10 shows an average of mean monthly changes in temperatures in the study watershed, and it is increasing under emission scenarios of RCP4.5 and RCP8.5.
The bias-corrected rainfall and maximum/minimum temperature outputs were used as inputs to the calibrated/validated SWAT model to examine the Genale catchment streamflow and sediment yield responses in the future years. The climate-induced discharge changes are understood by assessing differences produced by the SWAT model when driven by future scenarios and present-day climates. A similar study by Negewo & Sarma (2021) for the Genale watershed revealed that the mean annual quantity of water resources is possible to increase under RCP4.5, but variations are substantial for individual sub-basins and HRUs. The study results reflected that climate change might increase the high flows in the catchment in the Autumn season (April, May, June) and Spring season (September, October & November) (Figure 11).
Streamflow variations under historical data and two emissions scenarios.
Monthly discrepancy showed that the increase in discharge is more pronounced in March, April, May, August, September under RCP4.5, and the decrease is more pronounced in the same months under RCP8.5 scenarios (Figure 11). The average monthly change of streamflow for the RCP4.5 and RCP8.5 was running from −16.47% to 6.58% and − 3.6% to 8.27%, respectively, of 2022–2080(Figure 12). The change in monthly streamflow is consistent with the predicted changes in rainfall and temperature patterns in the future period.
Predicted relative changes (percent of baseline levels) in monthly streamflow by RCP4.5 & RCP8.5.
The change patterns of sediment yield follow that of streamflow in the region.
Prediction of RCM showed an increase in sediment yield for RCP4.5 and slightly decreased for the RCP8.5 scenario (Figure 13). Monthly variation showed that the magnitude changes in sediment yield in March, April & June was the highest with values of −21.8%, −15.0%, −15.0% and − 13.7% respectively for RCP4.5 scenario, and slightly lower in January, March, November, September & December with values of −3.5%, 1.5%, 2.1%, 2.1% & 2.2% respectively for RCP8.5 scenario (Figure 14). It should be recognized that the maximum increase in heavy rainfall and extreme events was also predicted in the respective months. Hence, the corresponding change predicted by the model is reasonable. The monthly average changes in sediment yield for the RCP4.5 and RCP8.5 scenarios were − 21.8% to 6.2% and − 5.6% to 4.66%, respectively, over 2022–2080 (Figure 14).
Sediment yield variations for baseline and two GHGs scenarios.
Predicted relative monthly changes in sediment yield in future periods for two emission scenarios compared to baseline.
The increase in change (percentage) of sediment yield is more significant than discharge, implying that the sediment concentration in the Genale catchment will likely increase in the future periods under the RCP4.5 scenario.
From the spatial distribution of the sediment yield for the baseline & two emissions scenarios periods (Figure 15), the high-sediment-yield regions are mainly located in the upstream regions of the catchment for all cases, in which the sediment yield varies from 0 to 31 (baseline condition), from 0 to 35 (under RCP4.5) & from 0 to 30 (under RCP8.5) over 1990–2013, 2022–2080, 2022–2080 respectively.
Annual average spatial distribution of sediment yield (ton/ha/year) at sub-basin scale in historical data & future periods under baseline, RCP4.5& RCP8.5.
Irrespective of the catchment area, the spatial distribution of streamflow at the sub-basin level follows the trend of sediment yield patterns in historical data (1990–2013) and future periods (2022–2080) under baseline conditions & two emissions scenarios (RCP4.5 & RCP8.5) (Figure 16).
Annual average spatial distribution of streamflow (mm) at sub-basin scale in historical data & future periods under baseline and two emission scenarios.
From the results, a comparison of monthly stream discharge & sediment yield predictions for 2022–2080 indicated that the impact of climate changes induced on sediment yield is more significant than on streamflow under the two emission scenarios.
The study evaluated the impact of climate change-induced on the sediment yield and streamflow of the Genale catchment, Ethiopia, for the medium-future period 2022–2080 under the RCP 4.5 and RCP 8.5 emission scenarios. The SWAT hydrological model was applied to simulate discharge and sediment yield, and the SUFI-2 algorithm technique in the SWAT-CUP tool was used for parameterization. The process of uncertainty analysis, calibration (1990–2005), & validation (2006–2013) for both discharge and sediment were satisfactory. The sensitivity analysis enabled that the SCS curve number (CN2.mgt), an available water capacity of the soil layer (SOL_AWC.sol), and saturated hydraulic conductivity (SOL_K.sol) are the most sensitive parameters for runoff estimation.
The study used the change of climate scenarios built up using the outcomes bias-corrected CORDEX RCM daily precipitation, min/mean/max temperature for Ethiopia under RCP 4.5 and RCP 8.5 emission scenarios and fed them into the validated SWAT model to simulate future changes in streamflow and sediment yields due to change of climate. The average monthly change of streamflow for the RCP4.5 and RCP8.5 was running from −16.47% to 6.58% and − 3.6% to 8.27%, respectively, of 2022–2080. The monthly average changes in sediment yield for the RCP4.5 and RCP8.5 scenarios were − 21.8% to 6.2% and − 5.6% to 4.66%, respectively, over 2022–2080. The monthly average discharge varies significantly throughout the year and relatively high in March, April, May, August, September, and October. The monthly streamflow and sediment yield variations were more during the wet seasons (Autumn and Spring). The results revealed that the impact of climate changes induced on sediment yield is more significant than streamflow under the two emission scenarios for 2022–2080.
The results revealed that regional decision-makers and other stakeholders are helpful for the effective adaptive strategy, plan & management practices of soil and water resources improvement under changing climate.
The authors express special thanks to the Ministry of Water, Irrigation, and Electricity (MWIE), Ethiopia, Department of Hydrology, and National Meteorological Agency of Ethiopia for supporting streamflow, sediment concentration, and weather data of Genale catchment based on the request. Finally, we are grateful for the invitation of the IntechOpen publisher to contribute a chapter to “Global Warming and Climate Change,” book, which extensively fills the knowledge gap of the readership.
The authors declare no conflict of interest.
There are two types of helminths: free-living and parasitic helminths. For decades, free-living helminths have been used as models in studies on mechanisms used to survive against the pathogenic effects of micro pathogens. Because of the evolutionary link between free-living helminth defenses and human innate immunity, this research is highly relevant to humans [1].
On the other hand, little is known about the micro pathogens that affect animal helminth parasites, particularly in the adult form, despite coexisting with large numbers of microorganisms in the intestine of their host. This gap in our understanding is problematic because of the damage that helminth parasites can inflict on the health of their hosts, including humans and livestock.
Identifying the defense mechanism that helminth parasites use against their micro pathogens, as is known for free-living helminths, would be extremely useful. However, this is technically impossible, despite indirect information suggesting that helminth parasites develop defense mechanisms against micro pathogens as a result of the long periods of time they spend inside the intestine of their hosts [2].
One observation relevant to helminth parasites, in relation to the defense mechanisms used by free-living helminths, is that of aerobic organism conditions. Under these conditions, free-living helminths survive against their micro pathogens using in some situations the toxic capacity of the oxygen molecule to induce oxidative stress [3].
The defense mechanisms of helminths against micro pathogens are important in the study of the evolution of helminths from their ancient origins to the modern day. Understanding these mechanisms will provide insights into oxidative mechanisms and reduction-oxidation reactions (redox) more generally, both of which are chemical events present in the defense mechanisms of any pathogen.
Helminths are free-living parasitic invertebrate metazoan organisms. They include nematodes (round worms), trematodes (flukes), cestodes (tapeworms), and acanthocephalans (thorny-headed worms). The fossil record provides evidence that ectoparasitic helminths (e.g., worm-like pentastomid arthropods) have existed since the early Paleozoic era (542–444 million years (My)), while endoparasitic helminths (cestodes) arose during, or possibly even before, the late Paleozoic era (416–251 My) [4]. Therefore, the origins of helminths, all from free-living and parasitic organisms, were derived from a world in which the atmospheric conditions were initially reductive before transforming to oxidative [5].
The amount of oxygen (O2) in the atmosphere before the Paleozoic era was at levels <0.001% of those present in the atmosphere today. However, during the Paleozoic and after this era, free oxygen was spawned by cyanobacteria producing land releasing it as a by-product of photosynthesis [6], causing the Great Oxidation Event (GOE), which dramatically changed the composition of the Earth’s life forms and led to the near extinction of anaerobic organisms. The GOE is believed to have input sufficient oxygen into the atmosphere to allow for the evolution of animal respiration Figure 1.
Earth atmosphere modification and consequences on living organisms. Cyanobacteria are associated with the Great Oxidation Event (GOE) on Earth. Then redox reactions contribute to the development of reactive oxygen, nitrogen, and sulfur species (ROS, RNS, RSS). High concentrations of these are avoided through glutathione (GSH)/thioredoxin (TrxR) systems, but low species concentrations are necessary for signal transduction pathway cells to control gene expressions.
On the other hand, if cyanobacteria were fundamental for the “rusting” of the Earth, redox reactions (electron transfer mechanism or redox) would still be relevant, in particular for the physiology of aerobic organisms.
In the Hadean eon (4.6 billion years ago), redox reactions were a response to the large amounts of energy in the primitive Earth resulting from cosmic and geophysical reactions occurring at the time [7].
The energy flow theory proposed by Harold Morowitz is useful for explaining the origin of life [8]. In the primitive Earth, millions of reduction-oxidation reactions took place, one of which occurred between molecular hydrogen (reductor) and carbon dioxide (oxidant). This redox reaction was not spontaneous. Therefore, primitive organisms, such as helminths, acquired the skills needed to manage this reaction via enzyme catalysis. The citric acid or Krebs cycle is one such example. In addition to the citric acid cycle, aerobic organisms, such as helminths, developed a group of metabolic cycles to obtain their capacity to manage oxygen because of their dual contrasting molecular characteristics Figure 2.
Redox throughout life’s evolution. Two different groups of molecules that originate redox reactions. Principally, metals, in the early Earth contributed to its oxidation. Redox enzymes in organism, including helminths, contributed to their homeostasis.
As described previously, although molecular oxygen is vital for aerobic organisms, it is also a toxic mutagenic gas due to the production of intermediary oxygen molecules and reactive oxygen species (ROS) [9]. The toxicity of oxygen arises from its chemical electron acceptability by redox mechanisms, producing superoxide radicals (O•−), hydrogen peroxide (H2O2), hydroxyl radicals (•OH), and singlet oxygen (O2), also known as reactive oxygen species (ROS). When concentration of ROS exceeds the capacity of the cells’ defense systems, this results in the phenomenon of oxidative stress, which is characterized by an increase in the reduction potential or a large decrease in the reducing capacity of the cellular redox couples.
Oxidative stress is associated with damage to biological molecules. ROS can oxidize amino acid chains and cross-link proteins, as well as oxidize protein backbones. The highly reactive hydroxyl radical (•OH) reacts with DNA via the addition of double bonds of DNA bases and by the abstraction of a hydrogen atom from the methyl group of thymine and each of the C▬H bonds of 2-deoxyribose. Furthermore, ROS also induces the process of lipid peroxidation in lipoprotein particles or membranes, giving rise to a variety of products, including short chain aldehydes, such as malondialdehyde or 4-hydroxynonenal, alkanes, alkenes, conjugated dienes, and a variety of hydroxides and hydroperoxides.
One way to understand how oxidative stress works in free-living helminths is to appreciate the process by which these organisms can be affected by bacterial virulence. This observation is clear from the studies developed in
Based on this, microbes that cause diseases in mammalian hosts have also been shown to be important for diseases in
A historical summary of the major results obtained in the study of the
To answer this question, several research groups have developed nematode bacteria experimental systems. Their results can be grouped into five different mechanisms: (1) Colonization: The worm is killed slowly through an infection-like process, which correlates with the accumulation of bacteria within the worm’s intestine [15]. (2) Infection persistence: In this mechanism, contact between the worm and live bacterial cells is necessary as they accumulate in the intestinal tract of the animal host. Additionally, the proliferation of bacterial cells inside the worm intestine is also needed to establish a persistent infection. This mechanism suggests that some bacterial species may adhere to the intestinal receptors in worms [16]. (3) Invasive: Bacterial cells, such as
Although the mechanisms by which different bacteria affect the resistance of worm to pathogens are poorly understood, helminths have developed a number of different procedures to survive: (1) Behavioral defense: In this case, the worm detects olfactory stimuli, recognizes odors, and modifies its behavior by olfactory learning and imprinting [20]. (2) Barrier mechanism: The muscular pharynx grinder provides a physical barrier against pathogens, which protects them by disrupting the engulfed microbes [21]. (3) Production of soluble molecules: Examples of antimicrobial proteins and peptides in response to microbial infection [22]. (4) Direct inhibition of pathogens: Exerts a commensal-mediated protective effect on
NADPH oxidases, whose biological function lies in electron transport, are also a major source of ROS. These enzymes are multi-pass transmembrane proteins that catalyze the reduction of extracellular or luminal oxygen by intracellular NADPH to generate superoxide anions (O2•) [26]. NADPH oxidases have been discovered in macrophages as a defense mechanism against pathogens, but today it is known that they are widely distributed in different kingdoms with multiple biological functions. The importance of these enzymes in aerobic organisms has led to the discovery of the NOX/DUOX family of NADPH oxidases, which includes three NOX subfamilies: ancestral type, NOX5-like, and DUOX [27]. DUOX isoforms that presumably developed from the NOX5-like subfamily are known as dual oxidases because they have both a peroxidase homology domain and a gp91phox domain. This last domain is the heme-binding subunit of the superoxide-generating NADPH oxidase, the catalytic moiety; thus, DUOXs produce anion superoxide (O2•) and hydrogen peroxide (H2O2) by transferring one and two electrons, respectively, from intracellular NADPH to extracellular oxygen. DUOX is the only type of NOX present in
Therefore,
Lipid peroxidation comprises a chain of reactions involving the oxidative degradation of lipids. It is the process in which free radicals, such as O2•, “steal” electrons from the lipids in cell membranes, resulting in cell damage. This process evolved from a free radical chain reaction mechanism, which comprised three steps: initiation, propagation, and termination. In the first step, O2• interacts with polysaturated fatty acids. This O2• is dismuted by superoxide dismutase, and in addition to hydrogen atoms, it breaks down into ordinary molecular oxygen and H2O2. Then, H2O2 in the presence of Fe2+ produces hydroxyl anions (OH•) via the Fenton reaction. The OH• takes away allylic hydrogens from the polyunsaturated fatty acid chains to obtain a radical carbon (L•). Then, the easy reaction with oxygen molecules by L• gives rise to the peroxyl radical (LOO•). When hydrogens are removed from polyunsaturated fatty acid neighbors, this LOO• results in the formation of lipid hydroperoxide (LOOH). The propagation step occurs when LOO• interacts with other polyunsaturated fatty acids, resulting in the formation of further lipid radicals and H2O2. Additionally, the catalysis of H2O2 by Fe2+ makes results in the formation of alkoxy and peroxy radicals during propagation step, with this secondary free radical production beginning another lipid hydrogen peroxide chain. Termination occurs when two radicals are conjugated, the result of which is a non-radical product.
The
Due the short life of
In this sense, Hoeven et al. [25] found that aerobic organism evolution works in a balanced dualism. For example, when the Earth’s atmosphere became oxidant, living forms, including older forms of free-living helminths, developed an extremely complex cellular signal mechanism to manage oxygen toxicity. This permitted them to kill their adversary while surviving the collateral damage at the same time; this strategy is very clever and clearly observed in
Transcription factors belonging to this group of proteins play a crucial role in protecting cells against oxidative stress. Under physiological conditions, they remain in the cytoplasm in the inactive form or are degraded. However, under oxidative stress conditions, they are translocated to the nucleus and bind to DNA in the antioxidant response element (ARE) motif. Consequently, genes encoding cytoprotective proteins, such as low-molecular-weight antioxidant proteins (i.e., thioredoxin, ferritin, and metallothionein), responsible for protecting cells against the action of ROS, are transcribed.
Both transcription factors are highly conserved proteins with functions similar to those of the promoters of oxidative-stress-related genes. In fact, Nrf2 and SKN-1 regulate phase II detoxification genes needed to defend against oxidative stress and electrophilic xenobiotics. With this detoxification system, worms can solubilize lipophilic xenobiotics or endobiotics via cytochrome P450s (CYPs) and short-chain dehydrogenases (SDHs), two classic enzymes of the phase I detoxification step. Reactive products, including ROS originating from the original toxic molecules, are detoxified, either via metabolization or conjugation, by the phase II system using UDP-glucuronosyl/glucosyl transferases (UDP) or glutathione transferases (GSTs), among others. Afterward, conjugated toxins are eliminated from cells by phase III proteins, including ATP-binding cassette (ABC) and other transporters.
Thus, similar to Nrf2, SKN-1 controls many critical detoxification processes directly as glutathione transferase enzymes (GSTs).
From an evolutionary point of view, these enzymes emerged over two billion years ago. Based on structural and functional criteria, they can be grouped into four different families: cytoplasmic, microsomal, mitochondrial, and bacterial.
Glutathione transferases are ubiquitous in prokaryotes and eukaryotes, indicating their protective and functional importance. These transferases are a large superfamily of supergene isoenzymes that play important roles in cell detoxification. These enzymes use electrophiles to catalyze the nucleophilic addition of the thiol of reduced glutathione (l-g-glutamyl-l-cysteinyl-glycine) (GSH) to electrophilic centers in organic compounds. The resulting glutathione conjugates are rendered more water-soluble to facilitate their eventual elimination. A wide variety of endogenous (e.g., by-products of reactive oxygen species activity) and exogenous (e.g., polycyclic aromatic hydrocarbons) electrophilic substrates have been identified. In addition, the detoxification functions of these enzymes have been observed not only in one but two mechanisms: passive detoxification and active detoxification. The former, as mentioned by Kostaropoulos et al. [31], refers to a detoxification mechanism characterized by an absence of catalytic function, such as the binding of potentially toxic non-substrate ligands, including porphyrins and lipid peroxides. In fact, GSTs were originally named “ligandins” due to their passive role in detoxification.
Ligandin activity exhibited by GST isoforms was first suggested as a result of the observed affinity for bilirubin, an azo dye carcinogen, and a metabolite of cortisone. The second mechanism was developed by catalytic activity, as described previously Table 1.
Ligand | Ki (mM) | %F (mM) | |
---|---|---|---|
Mesoporphyrin | 00.0012–0.1 | 15, 30, 45 | 0.0003–0.014 |
Prothoporphyrin | 0.002–0.064 | 12, 24, 36 | 0.0012–0.027 |
Coproporphyrin | 0.0005–0.005 | 0.0015, 0.0045 | 0.0002–0.014 |
Hematin | 0.0007–0.012 | 0.002, 0.004 | 0.00012–0.003 |
0.0001–10 | 1.5, 3 | 0.003–1.9 | |
0.0001–10 | 0.45, 0.9 | 0.0016–0.35 | |
0.0001–10 | 0.01, 0.1 | 0.0016–2.6 | |
Arachidic acid | 0.001–0.25 | ND | 0.0016–0.2 |
Palmitic acid | 0.0001–1 | ND | 0.0016–0.27 |
Cholic acid | 0.0001–1 | ND | 0.003–0.045 |
Chenodeoxycholic acid | 0.0001–0.2 | ND | 0.001–0.011 |
Lithocholic acid | 0.0001–1 | ND | 0.025–0 .2 |
Conditions for inhibition Ts26GST catalytic activity and spectrofluorometric assays.
Glutathione transferases in cestodes were identified several years ago. Initially, these cestode transferase isoforms were associated with the detoxified procedures in several organisms, including
As mentioned before, the reduced form of glutathione (GSH) serves as a ubiquitous nucleophile for the conversion of a variety of electrophilic substances under physiological conditions. This is possible when GSH is oxidized to glutathione disulfide (GSSG) by a reaction that involves the transfer of electrons between two species; in other words, when it is affected by the redox reaction.
GSH/GSSG is an example of millions of redox couples that are chemically similar or different, present in cells, organs, tissues, biological fluids, and cell organelles. A considerable number of these redox couples could be linked to each other to form a set of related redox couples, or redox couples that work independently. These reactions are achieved by capturing the energy released via oxidation to build cellular and organismic structures, maintain these structures (some avoid pathogenic action), and provide energy for the processes they support.
The production of a large number of redox couples in aerobic organisms occurs by enzymes and proteins of the glutaredoxin and thioredoxin systems, the former using GSH and the latter thioredoxin (Trx) [35].
The glutaredoxin system is composed of glutathione reductase (GR or GSR), glutathione (GSH), and glutaredoxin (Grx), while the thioredoxin system comprises thioredoxin reductase (TrxR) and thioredoxin (Trx). The glutaredoxin and thioredoxin systems are likely to have evolved very early in aerobic organisms. Owing to the cysteine moiety of GSH, the entire system is based on common sulfur biochemistry. Therefore, it requires an electron relay, linking the universal reducing agent NADPH to thiol/disulfide metabolism, and a thiol-containing adapter molecule (GSH, which is considered as a universal adaptor) to transfer electrons to a set of different acceptors, such as flavoproteins, which are widely used as electron relays.
Hence, it is not surprising that the reducing equivalents from NADPH enter the glutathione system either with the help of the FAD-dependent enzyme glutathione reductase (GR) or the thioredoxin reductase/thioredoxin couple (TrxR/Trx).
Glutaredoxin protein (Grx) was first described in crude enzyme preparations from beef liver by Racker [36] in 1955. Grxs are small (12–18 kDa) GSH-disulfide oxidoreductase members of the thioredoxin family, which includes the cytosolic (Grx1) and mitochondrial (Grx2) isoforms. Oxidized Grxs are reduced by GSH. According to its active site domain, Grxs are classified as dithiols (CPY/FC motif) and monothiols (CGFS motif), wherein monothiols can contain single or multiple monothiol Grx domains. Dithiol Grxs regulate the redox state of various proteins by catalyzing the reversible reduction of oxidized disulfides. For this purpose, Grxs use both cysteine residues from their active sites. In contrast, the monothiol Grxs reduce mixtures of disulfides (glutathionylation) formed between GSH and the thiols of proteins or other small compounds, using the cysteine residues from the active sites in their amino terminals.
With regard to the glutaredoxin genes of
Recently, the human and pig helminth parasite,
Protein S-glutathionylation by glutaredoxins is a widely distributed posttranslational modification of thiol groups with glutathione, which can function as a redox-sensitive switch to mediate redox regulation and signal transduction. Therefore, the presence of Grxs in
GR (also termed GSR, as mentioned before) is a flavoenzyme of the pyridine nucleotide-disulfide oxidoreductase family (EC 1.6.4.2, now 1.8.1.7). This enzyme recycles reduced GSH from its oxidized form GSSG. However, this function was also developed for the thioredoxin system acting as a backup, a trait that is conserved from bacteria to mammals, highlighting its physiological relevance, including protection against toxicity, in both systems.
Glutathione reductase is a GR-isoform from prokaryote and eukaryotes that form stable homodimers of ~110 kDa. From a structural point of view, each subunit is organized into four domains (FAD binding, NADPH binding, central, and interface) and possesses an N-terminal flexible segment of 18 amino acids with a cysteine residue at position 2.
In
The GSR-1 gene is vital in
Therefore, the
Thioredoxin reductase (EC 1.6.4.5) (TrxR) was originally identified in
The
Tioredoxin (Trx), the major TrxR substrate, as mentioned previously, is a disulfide reductase with a molecular weight of approximately 12 kDa and has two cysteine residues in its consensus sequence (CGPC motif). When chemically reduced, this allows for the transfer of reducing equivalents to a wide variety of substrates, such as H2O2. Thus, Trxs can, either directly or via 2-Cys peroxidases, catalyze the reduction of hydrogen peroxide (H2O2) to water and lipid hydroperoxides (R▬O▬O▬R) to alcohols in the cell. Trxs can also inhibit and/or activate transcription factors related to immune responses in mammals. For example, the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) is inhibited when TRX1 prevents the release of IkB, an inhibitor of NF-κB.
Although the thioredoxin and glutaredoxin systems are vital for aerobic organisms, in platyhelminths (flatworms), both GR and TrxR are missing in their tissues. Instead of these proteins, some platyhelminths have a GR and TrxR molecular link exhibiting the fusion of glutaredoxin (Grx) and thioredoxin reductase (TrxR) domains into a single protein, a selenocysteine-containing enzyme that acts as a thioredoxin glutathione reductase (TGR) [41, 42].
Thus, TGR plays a central role in thiol-disulfide redox reactions by providing electrons to essential detoxification enzymes, such as GR and Prx. GR reduces the tripeptide GSSG to GSH, which acts as the main reducing agent in the catalytic functions displayed by GSTs [43].
Because conventional TrxR and GR are functional in
The range of antioxidant enzyme systems available to
Interestingly, for the first time in the study of the TGR system [47], HcTrxR3 was found to catalyze the direct reduction of GSSG, the specific substrate for GR, in the same catalytic range as that of any GR. Its affinity for GSSG, measured as Km value, was higher than that of the 5,5-dithiobis-(2-nitrobenzoic acid) (DTNB) substrate for TrxR, demonstrating its preference for the GSSG substrate. Until now, no TrxR has been identified that is able to directly reduce GSSG.
This GR activity from HcTrxR3 is important not only because the enzyme is a TrxR, but also because information on the presence of GR in the
Kinetic evidences of TR and GR activity from HcTrxR3. (A) Reduction of ebselen by NADPH catalyzed by HcTrxR3 produced ebselen diselenide and ebselen selenol. To 1 ml solutions containing 50 mM Tris-Cl, 1 mM EDTA, pH 7.5, 100 mM NADPH, and 0.1 mM ebselen, 2 μg (▪) or 4 μg (•) HcTrxR3, was added, and A340 was measured against a blank without ebselen (∆). Ebselen reduction was shown when absorbance decreased followed by ebselen selenol formation in the highest enzyme concentration. (B) Effect of NADP+ on the glutathione reductase activities of HcTrxR3. IC50 plots were obtained; an enzyme aliquot (about 2 μg) was pre-incubated at 25°C in the presence of 100 μM NADPH and different concentrations of NADP+. To start the reaction GSSG at a final concentration of 0.2 mM was added. (C) Show a competitive type inhibition where the 1/v versus 1/[NADPH+] plot of initial velocities HcTrxR3 activity in absence (◆) and the presence of 0.1 mM (•) and 0.5 mM (▪) of NADP+ with various concentrations of NADPH+ (0.01–10 μM). Inset shows secondary plot of the slope values derived from the primary 1/v versus 1/[NADPH+] plot versus NADP+ concentration for the determination of Ki [
In addition to being essential for soil fertility, earthworms are also an excellent model for the study of the protection mechanisms used by helminths against micro pathogens [48], as in
Earthworms are terrestrial invertebrates belonging to the order Oligochaeta, class Chaetopoda, and phylum Annelidae. They range in size from a fraction of a centimeter to exceptional individuals of Megascolides australis, which can measure up to 2.75 m in length and 3 cm in diameter. Approximately 1800 species are distributed all over the world.
Earthworms became a model for comparative immunology in the early 1960s with the publication of results from transplantation experiments that proved the existence of self/non-self-recognition in earthworms. This initiated extensive studies on the immune mechanisms of earthworms, which evolved to prevent invasion by pathogens. In recent decades, important cellular and humoral pathways have been discovered, and numerous biologically active compounds have been characterized and cloned [49].
For example, earthworm coelomocytes (macrophage-like cells) are part of the cellular immune response and are both morphologically and functionally analogous to vertebrate phagocytes. Coelomocyte subpopulations (named as hyaline-, granular amoebocytes, and eleocytes) possess distinct functions, such as phagocytosis, encapsulation, and cellular cytotoxicity.
Additionally, phagocytic defense by the earthworm
The invertebrate research model has been used to reveal the evolutive link between the oxygen atmosphere and the adaptability of helminths to aggressive environments. These organisms have been found to use oxygen molecules and redox reactions to exert protective effects against micro pathogens. Helminth models have also revealed similarities between the cells, molecules, and mechanisms of helminths and those of human components used against pathogens, highlighting the evolutionary success of these molecules, structures, and biological procedures. Thus, this review shows how understanding the mechanisms by which invertebrates manage their environmental adaptability can provide insights into how humans protect themselves against their own pathogens. Honey bees are another example of this idea, in which individuals are protected against micro pathogens via the concept of social immunity [50].
We thank Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica (PAPIIT), UNAM, IN209819.
IntechOpen will act in accordance with its published Refund Policy if requests for refunds are made.
",metaTitle:"Refund Policy",metaDescription:"IntechOpen will act in accordance with its Refund Policy if requests for refunds are made.",metaKeywords:null,canonicalURL:"/page/refund-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"Refunds are possible in the following cases:
\\n\\n1. A double payment, in which case a full refund will be made.
\\n\\n2. A justified withdrawal of work by the Author, which had already been accepted during or after production but prior to publication. In this situation, a 50% refund will be made. (IntechOpen reserves the right to determine, at its discretion, whether withdrawal is justified and, consequently, whether a refund should be issued).
\\n\\n3. In those rare instances where IntechOpen declines to publish a book that had been previously accepted, full refunds will be made to the same account or credit card from which the Author made the original payment.
\\n\\nPlease note that refunded amounts will not always be exactly the same as original payment amounts due to bank transaction fees and expenses. Any such costs will be split evenly between IntechOpen and the Author.
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Refunds are possible in the following cases:
\n\n1. A double payment, in which case a full refund will be made.
\n\n2. A justified withdrawal of work by the Author, which had already been accepted during or after production but prior to publication. In this situation, a 50% refund will be made. (IntechOpen reserves the right to determine, at its discretion, whether withdrawal is justified and, consequently, whether a refund should be issued).
\n\n3. In those rare instances where IntechOpen declines to publish a book that had been previously accepted, full refunds will be made to the same account or credit card from which the Author made the original payment.
\n\nPlease note that refunded amounts will not always be exactly the same as original payment amounts due to bank transaction fees and expenses. Any such costs will be split evenly between IntechOpen and the Author.
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6585},{group:"region",caption:"Middle and South America",value:2,count:5888},{group:"region",caption:"Africa",value:3,count:2382},{group:"region",caption:"Asia",value:4,count:12514},{group:"region",caption:"Australia and Oceania",value:5,count:1006},{group:"region",caption:"Europe",value:6,count:17531}],offset:12,limit:12,total:132763},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"title"},books:[{type:"book",id:"11700",title:"Abdominal Trauma - New Solutions to Old Problems",subtitle:null,isOpenForSubmission:!0,hash:"8e898d70673411f9c222d429889c8967",slug:null,bookSignature:"Prof. Dmitry Victorovich Garbuzenko",coverURL:"https://cdn.intechopen.com/books/images_new/11700.jpg",editedByType:null,editors:[{id:"108808",title:"Prof.",name:"Dmitry",surname:"Garbuzenko",slug:"dmitry-garbuzenko",fullName:"Dmitry Garbuzenko"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11904",title:"Actinides - New Insights on Contamination, Exposure, and Analytical Techniques",subtitle:null,isOpenForSubmission:!0,hash:"a74f62997524c0c100aac1388bf529e8",slug:null,bookSignature:"Dr. Markus R. Zehringer",coverURL:"https://cdn.intechopen.com/books/images_new/11904.jpg",editedByType:null,editors:[{id:"311750",title:"Dr.",name:"Markus R.",surname:"Zehringer",slug:"markus-r.-zehringer",fullName:"Markus R. Zehringer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11820",title:"Acupuncture and Moxibustion - Recent Advances, New Perspectives, and Applications",subtitle:null,isOpenForSubmission:!0,hash:"e40653fa6cd3f2c653436c4e4bd8ad1e",slug:null,bookSignature:"Dr. Wen-Long Hu, Dr. Mao-Feng Sun and Dr. Yu-Chiang Hung",coverURL:"https://cdn.intechopen.com/books/images_new/11820.jpg",editedByType:null,editors:[{id:"49848",title:"Dr.",name:"Wen-Long",surname:"Hu",slug:"wen-long-hu",fullName:"Wen-Long Hu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11819",title:"Adhesives - Science, Technology, Recent Advances, and Applications",subtitle:null,isOpenForSubmission:!0,hash:"c58b7d4c17e2a202af1dc4b906b7becb",slug:null,bookSignature:"Prof. António Bastos Pereira and Dr. Alexandre Luiz Pereira",coverURL:"https://cdn.intechopen.com/books/images_new/11819.jpg",editedByType:null,editors:[{id:"211131",title:"Prof.",name:"António",surname:"Pereira",slug:"antonio-pereira",fullName:"António Pereira"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11853",title:"Adrenal Glands - The Current Stage and New Perspectives of Diseases and Treatment",subtitle:null,isOpenForSubmission:!0,hash:"86c26879d83ac24206ed5476b6cde7fd",slug:null,bookSignature:"Dr. Diana Loreta Paun",coverURL:"https://cdn.intechopen.com/books/images_new/11853.jpg",editedByType:null,editors:[{id:"190860",title:"Dr.",name:"Diana Loreta",surname:"Paun",slug:"diana-loreta-paun",fullName:"Diana Loreta Paun"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11471",title:"Advanced Cement-Based Materials",subtitle:null,isOpenForSubmission:!0,hash:"ade4b6eb27dabcb68870dd1d320840cd",slug:null,bookSignature:"Dr. Mohsen Mhadhbi",coverURL:"https://cdn.intechopen.com/books/images_new/11471.jpg",editedByType:null,editors:[{id:"228366",title:"Dr.",name:"Mohsen",surname:"Mhadhbi",slug:"mohsen-mhadhbi",fullName:"Mohsen Mhadhbi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11829",title:"Advanced Rheology and Its Applications",subtitle:null,isOpenForSubmission:!0,hash:"095d5991269fb83f32687922efdc9fa9",slug:null,bookSignature:"Dr. Ashim Kumar Dutta",coverURL:"https://cdn.intechopen.com/books/images_new/11829.jpg",editedByType:null,editors:[{id:"277477",title:"Dr.",name:"Ashim",surname:"Dutta",slug:"ashim-dutta",fullName:"Ashim Dutta"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11688",title:"Advances in Drug Delivery Methods",subtitle:null,isOpenForSubmission:!0,hash:"b237999737fb375b4f629ab01a498a9f",slug:null,bookSignature:"Prof. Bhupendra Gopalbhai Prajapati",coverURL:"https://cdn.intechopen.com/books/images_new/11688.jpg",editedByType:null,editors:[{id:"340226",title:"Prof.",name:"Bhupendra",surname:"Prajapati",slug:"bhupendra-prajapati",fullName:"Bhupendra Prajapati"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11540",title:"Advances in Fusion Energy Research - Theory, Models, Algorithms, and Applications",subtitle:null,isOpenForSubmission:!0,hash:"f03f48f4d6fd8beacecaac19314be864",slug:null,bookSignature:"Dr. Bruno Carpentieri",coverURL:"https://cdn.intechopen.com/books/images_new/11540.jpg",editedByType:null,editors:[{id:"92921",title:"Dr.",name:"Bruno",surname:"Carpentieri",slug:"bruno-carpentieri",fullName:"Bruno Carpentieri"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11533",title:"Advances in Green Electronics Technologies",subtitle:null,isOpenForSubmission:!0,hash:"209fb1d781e97e58e1b2098b8976e2c3",slug:null,bookSignature:"Dr. Albert Sabban",coverURL:"https://cdn.intechopen.com/books/images_new/11533.jpg",editedByType:null,editors:[{id:"16889",title:"Dr.",name:"Albert",surname:"Sabban",slug:"albert-sabban",fullName:"Albert Sabban"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11461",title:"Advances in Nanowires Synthesis and Applications to Sensing Technologies \ufeff",subtitle:null,isOpenForSubmission:!0,hash:"94ce46811974b75b5efded35f161ea18",slug:null,bookSignature:"Dr. Felix Kutsanedzie, Dr. Annavaram Viswadevarayalu, Dr. Akwasi Akomeah Agyekum and Dr. Isaac Asempah",coverURL:"https://cdn.intechopen.com/books/images_new/11461.jpg",editedByType:null,editors:[{id:"443651",title:"Dr.",name:"Felix",surname:"Kutsanedzie",slug:"felix-kutsanedzie",fullName:"Felix Kutsanedzie"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11490",title:"Advances in Plate Tectonics",subtitle:null,isOpenForSubmission:!0,hash:"412f2e209ff259650a5a1c7df151e3a7",slug:null,bookSignature:"Dr. Gaurav D. Chauhan, Dr. Subhash Bhandari and Dr. M. G. Thakkar",coverURL:"https://cdn.intechopen.com/books/images_new/11490.jpg",editedByType:null,editors:[{id:"239938",title:"Dr.",name:"Gaurav",surname:"Chauhan",slug:"gaurav-chauhan",fullName:"Gaurav Chauhan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:6},{group:"topic",caption:"Chemistry",value:8,count:21},{group:"topic",caption:"Computer and Information Science",value:9,count:21},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:59},{group:"topic",caption:"Environmental Sciences",value:12,count:8},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:27},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:122},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:11},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:412},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3665,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1713,editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",publishedDate:"April 28th 2022",numberOfDownloads:2481,editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1107,editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3307,editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3266,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1868,editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",publishedDate:"May 4th 2022",numberOfDownloads:856,editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1704,editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7489,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"789",title:"Marine Engineering",slug:"marine-engineering",parent:{id:"118",title:"Environmental Engineering",slug:"engineering-environmental-engineering"},numberOfBooks:1,numberOfSeries:0,numberOfAuthorsAndEditors:34,numberOfWosCitations:28,numberOfCrossrefCitations:16,numberOfDimensionsCitations:36,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"789",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"5096",title:"Applied Studies of Coastal and Marine Environments",subtitle:null,isOpenForSubmission:!1,hash:"c69d748a6e4e39139e6f4be531b1f30e",slug:"applied-studies-of-coastal-and-marine-environments",bookSignature:"Maged Marghany",coverURL:"https://cdn.intechopen.com/books/images_new/5096.jpg",editedByType:"Edited by",editors:[{id:"96666",title:"Prof.",name:"Prof.Dr. Maged",middleName:null,surname:"Marghany",slug:"prof.dr.-maged-marghany",fullName:"Prof.Dr. Maged Marghany"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"49930",doi:"10.5772/62242",title:"Monitoring the Coastal Environment Using Remote Sensing and GIS Techniques",slug:"monitoring-the-coastal-environment-using-remote-sensing-and-gis-techniques",totalDownloads:2632,totalCrossrefCites:7,totalDimensionsCites:10,abstract:"The coastal zone has been of importance for economic development and ecological restoration due to their rich natural resources and vulnerable ecosystems. Remote sensing techniques have proven to be powerful tools for the monitoring of the Earth’s surface and atmosphere on a global, regional, and even local scale, by providing important coverage, mapping and classification of land cover features such as vegetation, soil, water and forests. This chapter introduced the methods for monitoring the coastal environment using remote sensing and GIS techniques. Case studies of port expansion monitoring in typical coastal regions, together with the coastal environment changes analysis were also presented.",book:{id:"5096",slug:"applied-studies-of-coastal-and-marine-environments",title:"Applied Studies of Coastal and Marine Environments",fullTitle:"Applied Studies of Coastal and Marine Environments"},signatures:"Dong Jiang, Mengmeng Hao and Jingying Fu",authors:[{id:"25222",title:"Dr.",name:"Dong",middleName:null,surname:"Jiang",slug:"dong-jiang",fullName:"Dong Jiang"},{id:"176843",title:"Dr.",name:"Jingying",middleName:null,surname:"Fu",slug:"jingying-fu",fullName:"Jingying Fu"},{id:"176844",title:"MSc.",name:"Mengmeng",middleName:null,surname:"Hao",slug:"mengmeng-hao",fullName:"Mengmeng Hao"}]},{id:"49642",doi:"10.5772/61979",title:"Engineering Tools for the Estimation of Dredging-Induced Sediment Resuspension and Coastal Environmental Management",slug:"engineering-tools-for-the-estimation-of-dredging-induced-sediment-resuspension-and-coastal-environme",totalDownloads:2264,totalCrossrefCites:1,totalDimensionsCites:6,abstract:"In recent years, increasing attention has been paid to environmental impacts that may result from resuspension, sedimentation and increase in concentration of chemicals during dredging activities. Dredging dislodges and resuspends bottom sediments that are not captured by dredge-head movements. Resuspended sediments are advected far from the dredging site as a dredging plume and the increase in the suspended solid concentration (SSC) can strongly differ, in time and space, depending on site and operational conditions. Well-established international guidelines often include numerical modelling applications to support environmental studies related to dredging activities. Despite the attention that has been focused on this issue, there is a lack of verified predictive techniques of plume dynamics at progressive distances from the different dredging sources, as a function of the employed dredging techniques and work programs, i.e., spatial and temporal variation of resuspension source. This chapter illustrates predictive techniques to estimate the SSC arising from dredges with different mechanisms of sediment release and to assess the spatial and temporal variability of the resulting plume in estuarine and coastal areas. Predictive tools are aimed to support technical choices during planning and operational phases and to better plan the location and frequency of environmental monitoring activities during dredging execution.",book:{id:"5096",slug:"applied-studies-of-coastal-and-marine-environments",title:"Applied Studies of Coastal and Marine Environments",fullTitle:"Applied Studies of Coastal and Marine Environments"},signatures:"Iolanda Lisi, Marcello Di Risio, Paolo De Girolamo and Massimo\nGabellini",authors:[{id:"15209",title:"Prof.",name:"Marcello",middleName:null,surname:"Di Risio",slug:"marcello-di-risio",fullName:"Marcello Di Risio"},{id:"116232",title:"Dr.",name:"Massimo",middleName:null,surname:"Gabellini",slug:"massimo-gabellini",fullName:"Massimo Gabellini"},{id:"176998",title:"Ph.D.",name:"Iolanda",middleName:null,surname:"Lisi",slug:"iolanda-lisi",fullName:"Iolanda Lisi"},{id:"177000",title:"Prof.",name:"Paolo",middleName:null,surname:"De Girolamo",slug:"paolo-de-girolamo",fullName:"Paolo De Girolamo"}]},{id:"49688",doi:"10.5772/61991",title:"Review of Mercury Circulation Changes in the Coastal Zone of Southern Baltic Sea",slug:"review-of-mercury-circulation-changes-in-the-coastal-zone-of-southern-baltic-sea",totalDownloads:1308,totalCrossrefCites:3,totalDimensionsCites:5,abstract:"Despite its undoubted usability, mercury (Hg) is the most toxic metal and one of the most toxic elements. The problem of mercury toxicity was only widely explored in the second half of the 20th century, following cases of fatal poisonings as a result of the consumption of contaminated fish and grains preserved with mercury compounds. According to HELCOM reports, Hg emission in the Baltic region at the beginning of the 21st century was lower than during the 1980s. In addition to mercury transformation, climate warming, particularly in the autumn-winter season, is another factor contributing to the changes in mercury circulation, especially in the area of land-sea contact. The increase in rainfall, particularly in the summer, is of particular importance for the marine environment. This is related to an increased inflow of Hg with wet precipitation, but the warm season is also favourable for intensive growth of sea organisms and, consequently, a faster accumulation of chemical substances, including toxic ones. As a result, the concentration of mercury in organism biomass increases.",book:{id:"5096",slug:"applied-studies-of-coastal-and-marine-environments",title:"Applied Studies of Coastal and Marine Environments",fullTitle:"Applied Studies of Coastal and Marine Environments"},signatures:"Magdalena Bełdowska",authors:[{id:"176840",title:"Dr.",name:"Magdalena",middleName:null,surname:"Bełdowska",slug:"magdalena-beldowska",fullName:"Magdalena Bełdowska"}]},{id:"49825",doi:"10.5772/62132",title:"Management of Marine Protected Zones – Case Study of Bahrain, Arabian Gulf",slug:"management-of-marine-protected-zones-case-study-of-bahrain-arabian-gulf",totalDownloads:2872,totalCrossrefCites:1,totalDimensionsCites:4,abstract:"Coastal and marine environments in Bahrain are characterized by a variety of habitats, including seagrass beds, coral reefs, and mangroves that support some of the most endangered species such as dugongs and turtles. Marine Protected Areas (MPAs) are considered the most advocated approach for marine conservation. Several MPAs have been established in Bahrain. This study explores the ecological and legal contexts of MPAs in Bahrain and evaluates the effectiveness of these MPAs in achieving their conservation goals. Although MPAs are contributing to the protection of critical coastal and marine habitats and their associated flora and fauna, there is yet further need to strengthen efforts on conserving coastal and marine environments in Bahrain. Effectiveness of MPAs in Bahrain could be enhanced by developing management plans, implementing the necessary regulatory measures, and investing in long-term monitoring and research programs. Findings of this study could contribute to wider regional and international experience of the effectiveness of MPAs in protecting important coastal and marine environments.",book:{id:"5096",slug:"applied-studies-of-coastal-and-marine-environments",title:"Applied Studies of Coastal and Marine Environments",fullTitle:"Applied Studies of Coastal and Marine Environments"},signatures:"Humood A. Naser",authors:[{id:"50322",title:"Dr.",name:"Humood",middleName:null,surname:"Naser",slug:"humood-naser",fullName:"Humood Naser"}]},{id:"49999",doi:"10.5772/62205",title:"Fabrication and Properties of Zinc Composite Coatings for Mitigation of Corrosion in Coastal and Marine Zone",slug:"fabrication-and-properties-of-zinc-composite-coatings-for-mitigation-of-corrosion-in-coastal-and-mar",totalDownloads:1695,totalCrossrefCites:3,totalDimensionsCites:4,abstract:"Deterioration of metals and alloys during service due to corrosion and wear phenomena shortens materials’ life span and structural integrity particularly in aggressive environments such as coastal and marine. This degradation also limits the use of these materials in most industrial applications. Therefore, the improvement of the quality of these materials in order to combat these challenges in industry remains critical. Surface modification techniques are employed to enhance materials’ properties to enable better performance and to extend their applications in demanding environments. Electrodeposition has been a useful method developed to improve the corrosion and mechanical properties of materials. In the present contribution, ample knowledge about electrodeposition of Zn composite/nanocomposite coatings and their characteristics are reviewed to address coastal and marine degradation of metals and alloys.",book:{id:"5096",slug:"applied-studies-of-coastal-and-marine-environments",title:"Applied Studies of Coastal and Marine Environments",fullTitle:"Applied Studies of Coastal and Marine Environments"},signatures:"Patricia A.I. Popoola, Nicholus Malatji and Ojo Sunday Fayomi",authors:[{id:"169258",title:"Dr.",name:"Patricia",middleName:null,surname:"Popoola",slug:"patricia-popoola",fullName:"Patricia Popoola"},{id:"174331",title:"Dr.",name:"Ojo Sunday",middleName:null,surname:"Fayomi",slug:"ojo-sunday-fayomi",fullName:"Ojo Sunday Fayomi"},{id:"176997",title:"Mr.",name:"Nicholus",middleName:null,surname:"Malatji",slug:"nicholus-malatji",fullName:"Nicholus Malatji"}]}],mostDownloadedChaptersLast30Days:[{id:"49582",title:"Geological Evolution of Coastal and Marine Environments off the Campania Continental Shelf Through Marine Geological Mapping - The Example of the Cilento Promontory",slug:"geological-evolution-of-coastal-and-marine-environments-off-the-campania-continental-shelf-through-m",totalDownloads:1418,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"The geological evolution of coastal and marine environments offshore the Cilento Promontory through marine geological mapping is discussed here. The marine geological map n. 502 “Agropoli,” located offshore the Cilento Promontory (southern Italy), is described and put in regional geologic setting. The study area covers water depths ranging between 30 and 200 m isobaths. The geologic map has been constructed in the frame of a research program financed by the National Geological Survey of Italy (CARG Project), finalized to the construction of an up-to-date cartography of the Campania region. Geological and geophysical data on the continental shelf and slope offshore the southern Campania region have been acquired in an area bounded northward by the Gulf of Salerno and southward by the Gulf of Policastro. A high-resolution multibeam bathymetry has permitted the construction of a digital elevation model (DEM). Sidescan sonar profiles have also been collected and interpreted, and their merging with bathymetric data has allowed for the realization of the base for the marine geologic cartography. The calibration of geophysical data has been attempted through sea-bottom samples. The morpho-structures and the seismic sequences overlying the outcrops of acoustic basement reported in the cartographic representation have been studied in detail using single-channel seismics. The interpretation of seismic profiles has been a support for the reconstruction of the stratigraphic and structural setting of the Quaternary continental shelf successions and the outcrops of rocky acoustic basement in correspondence to the Licosa Cape morpho-structural high. These areas result from the seaward prolongation of the stratigraphic and structural units, widely cropping out in the surrounding emerged sector of the Cilento Promontory. The cartographic approach is based on the recognition of laterally coeval depositional systems, interpreted in the frame of system tracts of the Late Quaternary depositional sequence.",book:{id:"5096",slug:"applied-studies-of-coastal-and-marine-environments",title:"Applied Studies of Coastal and Marine Environments",fullTitle:"Applied Studies of Coastal and Marine Environments"},signatures:"Gemma Aiello and Ennio Marsella",authors:[{id:"100661",title:"Dr.",name:"Gemma",middleName:null,surname:"Aiello",slug:"gemma-aiello",fullName:"Gemma Aiello"}]},{id:"49642",title:"Engineering Tools for the Estimation of Dredging-Induced Sediment Resuspension and Coastal Environmental Management",slug:"engineering-tools-for-the-estimation-of-dredging-induced-sediment-resuspension-and-coastal-environme",totalDownloads:2264,totalCrossrefCites:1,totalDimensionsCites:6,abstract:"In recent years, increasing attention has been paid to environmental impacts that may result from resuspension, sedimentation and increase in concentration of chemicals during dredging activities. Dredging dislodges and resuspends bottom sediments that are not captured by dredge-head movements. Resuspended sediments are advected far from the dredging site as a dredging plume and the increase in the suspended solid concentration (SSC) can strongly differ, in time and space, depending on site and operational conditions. Well-established international guidelines often include numerical modelling applications to support environmental studies related to dredging activities. Despite the attention that has been focused on this issue, there is a lack of verified predictive techniques of plume dynamics at progressive distances from the different dredging sources, as a function of the employed dredging techniques and work programs, i.e., spatial and temporal variation of resuspension source. This chapter illustrates predictive techniques to estimate the SSC arising from dredges with different mechanisms of sediment release and to assess the spatial and temporal variability of the resulting plume in estuarine and coastal areas. Predictive tools are aimed to support technical choices during planning and operational phases and to better plan the location and frequency of environmental monitoring activities during dredging execution.",book:{id:"5096",slug:"applied-studies-of-coastal-and-marine-environments",title:"Applied Studies of Coastal and Marine Environments",fullTitle:"Applied Studies of Coastal and Marine Environments"},signatures:"Iolanda Lisi, Marcello Di Risio, Paolo De Girolamo and Massimo\nGabellini",authors:[{id:"15209",title:"Prof.",name:"Marcello",middleName:null,surname:"Di Risio",slug:"marcello-di-risio",fullName:"Marcello Di Risio"},{id:"116232",title:"Dr.",name:"Massimo",middleName:null,surname:"Gabellini",slug:"massimo-gabellini",fullName:"Massimo Gabellini"},{id:"176998",title:"Ph.D.",name:"Iolanda",middleName:null,surname:"Lisi",slug:"iolanda-lisi",fullName:"Iolanda Lisi"},{id:"177000",title:"Prof.",name:"Paolo",middleName:null,surname:"De Girolamo",slug:"paolo-de-girolamo",fullName:"Paolo De Girolamo"}]},{id:"50060",title:"Depositional Environment of Phosphorites of the Sonrai Basin, Lalitpur District, Uttar Pradesh, India",slug:"depositional-environment-of-phosphorites-of-the-sonrai-basin-lalitpur-district-uttar-pradesh-india",totalDownloads:1779,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Phosphates are regarded as one of the most important fertilizer minerals used by man. In Sonrai basin of Lalitpur the phosphorites are found to occur as lenticular and detached bodies throughout the Formation of the Bijawar Group. Individual bodies range from a few meters to about 4 km in length, and width varies from thin bands to about 125 meter with P2O5 concentration ranging from 10 to 20%. The Paleoproterozoic Bijawar Group are overlain by the Archaean Bundelkhand Basement Complex and underlain by Vindhyan Supergroup. The occurrence of phosphorites is confined to the Sonrai Formation which consists of massive to brecciated phosphorite within the lower reddish shales, with at least three bands identified. Megascopic study reveals that the brecciated phosphorite is reddish brown in color and fine to medium grained with angular fragments of chert and quartz embedded in a groundmass of iron oxides and secondary silica intercalated with minor veins of chert and iron oxides. The phosphorite horizon in the Lalitpur area is associated with pink to white brecciated massive quartzite, shale, dolomite and limestone of the basal unit. The concentration trends of certain major oxides indicate that the phosphorites are more enriched in CaO, P2O5 and SiO2 than Al2O3, Fe2O3, TiO2, Na2O and K2O. The concentration trends of trace elements reveal that the phosphorites are moderately enriched in Co, Zn, Zr, Pb, U than in Sc, Ba, V, Cr, Ni, , Rb, Sr, Y and Th. The dispersion patter, correlation coefficient and mutual relationship of significant major oxides represented by plotted diagrams, indicate that SiO2, CaO, MgO are antipathetically related with P2O5. The relationship suggests a gradual replacement among these oxides during diagenesis. High values of P2O5 and CaO in the phosphorites indicate more concentration of apatite constituent. The difference in geochemical behavior of CaO and MgO may be due to ionic substitution of Ca+2 by MgO+2 in the apatite crystal lattice during alkaline environment of the basin. The strong negative relationship between P2O5 with Fe2O3 in phosphorites may be due to leaching and/mild weathering of iron from the ores and reprecipitation along with P2O5 in the pore spaces, cavities/voids, veins, etc in highly oxidizing marine environment of the basin. The minimum evidence of organic matter, absence of sulphide minerals and lower concentration of V, Ni, and Cu suggest that the phosphorites were deposited in an oxidizing environment with slightly anaerobic to highly aerobic facies.",book:{id:"5096",slug:"applied-studies-of-coastal-and-marine-environments",title:"Applied Studies of Coastal and Marine Environments",fullTitle:"Applied Studies of Coastal and Marine Environments"},signatures:"Shamim A. Dar and K. F. Khan",authors:[{id:"176685",title:"Dr.",name:"Shamim",middleName:"A",surname:"Dar",slug:"shamim-dar",fullName:"Shamim Dar"},{id:"181312",title:"Dr.",name:"K.F",middleName:null,surname:"Khan",slug:"k.f-khan",fullName:"K.F Khan"},{id:"181314",title:"Dr.",name:"Saif A",middleName:null,surname:"Khan",slug:"saif-a-khan",fullName:"Saif A Khan"}]},{id:"49930",title:"Monitoring the Coastal Environment Using Remote Sensing and GIS Techniques",slug:"monitoring-the-coastal-environment-using-remote-sensing-and-gis-techniques",totalDownloads:2632,totalCrossrefCites:7,totalDimensionsCites:10,abstract:"The coastal zone has been of importance for economic development and ecological restoration due to their rich natural resources and vulnerable ecosystems. Remote sensing techniques have proven to be powerful tools for the monitoring of the Earth’s surface and atmosphere on a global, regional, and even local scale, by providing important coverage, mapping and classification of land cover features such as vegetation, soil, water and forests. This chapter introduced the methods for monitoring the coastal environment using remote sensing and GIS techniques. Case studies of port expansion monitoring in typical coastal regions, together with the coastal environment changes analysis were also presented.",book:{id:"5096",slug:"applied-studies-of-coastal-and-marine-environments",title:"Applied Studies of Coastal and Marine Environments",fullTitle:"Applied Studies of Coastal and Marine Environments"},signatures:"Dong Jiang, Mengmeng Hao and Jingying Fu",authors:[{id:"25222",title:"Dr.",name:"Dong",middleName:null,surname:"Jiang",slug:"dong-jiang",fullName:"Dong Jiang"},{id:"176843",title:"Dr.",name:"Jingying",middleName:null,surname:"Fu",slug:"jingying-fu",fullName:"Jingying Fu"},{id:"176844",title:"MSc.",name:"Mengmeng",middleName:null,surname:"Hao",slug:"mengmeng-hao",fullName:"Mengmeng Hao"}]},{id:"49825",title:"Management of Marine Protected Zones – Case Study of Bahrain, Arabian Gulf",slug:"management-of-marine-protected-zones-case-study-of-bahrain-arabian-gulf",totalDownloads:2872,totalCrossrefCites:1,totalDimensionsCites:4,abstract:"Coastal and marine environments in Bahrain are characterized by a variety of habitats, including seagrass beds, coral reefs, and mangroves that support some of the most endangered species such as dugongs and turtles. Marine Protected Areas (MPAs) are considered the most advocated approach for marine conservation. Several MPAs have been established in Bahrain. This study explores the ecological and legal contexts of MPAs in Bahrain and evaluates the effectiveness of these MPAs in achieving their conservation goals. Although MPAs are contributing to the protection of critical coastal and marine habitats and their associated flora and fauna, there is yet further need to strengthen efforts on conserving coastal and marine environments in Bahrain. Effectiveness of MPAs in Bahrain could be enhanced by developing management plans, implementing the necessary regulatory measures, and investing in long-term monitoring and research programs. Findings of this study could contribute to wider regional and international experience of the effectiveness of MPAs in protecting important coastal and marine environments.",book:{id:"5096",slug:"applied-studies-of-coastal-and-marine-environments",title:"Applied Studies of Coastal and Marine Environments",fullTitle:"Applied Studies of Coastal and Marine Environments"},signatures:"Humood A. Naser",authors:[{id:"50322",title:"Dr.",name:"Humood",middleName:null,surname:"Naser",slug:"humood-naser",fullName:"Humood Naser"}]}],onlineFirstChaptersFilter:{topicId:"789",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],testimonialsList:[]},series:{item:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403",scope:"Artificial Intelligence (AI) is a rapidly developing multidisciplinary research area that aims to solve increasingly complex problems. In today's highly integrated world, AI promises to become a robust and powerful means for obtaining solutions to previously unsolvable problems. This Series is intended for researchers and students alike interested in this fascinating field and its many applications.",coverUrl:"https://cdn.intechopen.com/series/covers/14.jpg",latestPublicationDate:"May 18th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:9,editor:{id:"218714",title:"Prof.",name:"Andries",middleName:null,surname:"Engelbrecht",slug:"andries-engelbrecht",fullName:"Andries Engelbrecht",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRNR8QAO/Profile_Picture_1622640468300",biography:"Andries Engelbrecht received the Masters and PhD degrees in Computer Science from the University of Stellenbosch, South Africa, in 1994 and 1999 respectively. He is currently appointed as the Voigt Chair in Data Science in the Department of Industrial Engineering, with a joint appointment as Professor in the Computer Science Division, Stellenbosch University. Prior to his appointment at Stellenbosch University, he has been at the University of Pretoria, Department of Computer Science (1998-2018), where he was appointed as South Africa Research Chair in Artifical Intelligence (2007-2018), the head of the Department of Computer Science (2008-2017), and Director of the Institute for Big Data and Data Science (2017-2018). In addition to a number of research articles, he has written two books, Computational Intelligence: An Introduction and Fundamentals of Computational Swarm Intelligence.",institutionString:null,institution:{name:"Stellenbosch University",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:6,paginationItems:[{id:"22",title:"Applied Intelligence",coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",isOpenForSubmission:!0,editor:{id:"27170",title:"Prof.",name:"Carlos",middleName:"M.",surname:"Travieso-Gonzalez",slug:"carlos-travieso-gonzalez",fullName:"Carlos Travieso-Gonzalez",profilePictureURL:"https://mts.intechopen.com/storage/users/27170/images/system/27170.jpeg",biography:"Carlos M. Travieso-González received his MSc degree in Telecommunication Engineering at Polytechnic University of Catalonia (UPC), Spain in 1997, and his Ph.D. degree in 2002 at the University of Las Palmas de Gran Canaria (ULPGC-Spain). He is a full professor of signal processing and pattern recognition and is head of the Signals and Communications Department at ULPGC, teaching from 2001 on subjects on signal processing and learning theory. His research lines are biometrics, biomedical signals and images, data mining, classification system, signal and image processing, machine learning, and environmental intelligence. He has researched in 52 international and Spanish research projects, some of them as head researcher. He is co-author of 4 books, co-editor of 27 proceedings books, guest editor for 8 JCR-ISI international journals, and up to 24 book chapters. He has over 450 papers published in international journals and conferences (81 of them indexed on JCR – ISI - Web of Science). He has published seven patents in the Spanish Patent and Trademark Office. He has been a supervisor on 8 Ph.D. theses (11 more are under supervision), and 130 master theses. He is the founder of The IEEE IWOBI conference series and the president of its Steering Committee, as well as the founder of both the InnoEducaTIC and APPIS conference series. He is an evaluator of project proposals for the European Union (H2020), Medical Research Council (MRC, UK), Spanish Government (ANECA, Spain), Research National Agency (ANR, France), DAAD (Germany), Argentinian Government, and the Colombian Institutions. He has been a reviewer in different indexed international journals (<70) and conferences (<250) since 2001. He has been a member of the IASTED Technical Committee on Image Processing from 2007 and a member of the IASTED Technical Committee on Artificial Intelligence and Expert Systems from 2011. \n\nHe has held the general chair position for the following: ACM-APPIS (2020, 2021), IEEE-IWOBI (2019, 2020 and 2020), A PPIS (2018, 2019), IEEE-IWOBI (2014, 2015, 2017, 2018), InnoEducaTIC (2014, 2017), IEEE-INES (2013), NoLISP (2011), JRBP (2012), and IEEE-ICCST (2005)\n\nHe is an associate editor of the Computational Intelligence and Neuroscience Journal (Hindawi – Q2 JCR-ISI). He was vice dean from 2004 to 2010 in the Higher Technical School of Telecommunication Engineers at ULPGC and the vice dean of Graduate and Postgraduate Studies from March 2013 to November 2017. He won the “Catedra Telefonica” Awards in Modality of Knowledge Transfer, 2017, 2018, and 2019 editions, and awards in Modality of COVID Research in 2020.\n\nPublic References:\nResearcher ID http://www.researcherid.com/rid/N-5967-2014\nORCID https://orcid.org/0000-0002-4621-2768 \nScopus Author ID https://www.scopus.com/authid/detail.uri?authorId=6602376272\nScholar Google https://scholar.google.es/citations?user=G1ks9nIAAAAJ&hl=en \nResearchGate https://www.researchgate.net/profile/Carlos_Travieso",institutionString:null,institution:{name:"University of Las Palmas de Gran Canaria",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"23",title:"Computational Neuroscience",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",isOpenForSubmission:!0,editor:{id:"14004",title:"Dr.",name:"Magnus",middleName:null,surname:"Johnsson",slug:"magnus-johnsson",fullName:"Magnus Johnsson",profilePictureURL:"https://mts.intechopen.com/storage/users/14004/images/system/14004.png",biography:"Dr Magnus Johnsson is a cross-disciplinary scientist, lecturer, scientific editor and AI/machine learning consultant from Sweden. \n\nHe is currently at Malmö University in Sweden, but also held positions at Lund University in Sweden and at Moscow Engineering Physics Institute. \nHe holds editorial positions at several international scientific journals and has served as a scientific editor for books and special journal issues. \nHis research interests are wide and include, but are not limited to, autonomous systems, computer modeling, artificial neural networks, artificial intelligence, cognitive neuroscience, cognitive robotics, cognitive architectures, cognitive aids and the philosophy of mind. \n\nDr. Johnsson has experience from working in the industry and he has a keen interest in the application of neural networks and artificial intelligence to fields like industry, finance, and medicine. \n\nWeb page: www.magnusjohnsson.se",institutionString:null,institution:{name:"Malmö University",institutionURL:null,country:{name:"Sweden"}}},editorTwo:null,editorThree:null},{id:"24",title:"Computer Vision",coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",isOpenForSubmission:!0,editor:{id:"294154",title:"Prof.",name:"George",middleName:null,surname:"Papakostas",slug:"george-papakostas",fullName:"George Papakostas",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002hYaGbQAK/Profile_Picture_1624519712088",biography:"George A. Papakostas has received a diploma in Electrical and Computer Engineering in 1999 and the M.Sc. and Ph.D. degrees in Electrical and Computer Engineering in 2002 and 2007, respectively, from the Democritus University of Thrace (DUTH), Greece. Dr. Papakostas serves as a Tenured Full Professor at the Department of Computer Science, International Hellenic University, Greece. Dr. Papakostas has 10 years of experience in large-scale systems design as a senior software engineer and technical manager, and 20 years of research experience in the field of Artificial Intelligence. Currently, he is the Head of the “Visual Computing” division of HUman-MAchines INteraction Laboratory (HUMAIN-Lab) and the Director of the MPhil program “Advanced Technologies in Informatics and Computers” hosted by the Department of Computer Science, International Hellenic University. He has (co)authored more than 150 publications in indexed journals, international conferences and book chapters, 1 book (in Greek), 3 edited books, and 5 journal special issues. His publications have more than 2100 citations with h-index 27 (GoogleScholar). His research interests include computer/machine vision, machine learning, pattern recognition, computational intelligence. \nDr. Papakostas served as a reviewer in numerous journals, as a program\ncommittee member in international conferences and he is a member of the IAENG, MIR Labs, EUCogIII, INSTICC and the Technical Chamber of Greece (TEE).",institutionString:null,institution:{name:"International Hellenic University",institutionURL:null,country:{name:"Greece"}}},editorTwo:null,editorThree:null},{id:"25",title:"Evolutionary Computation",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",isOpenForSubmission:!0,editor:{id:"136112",title:"Dr.",name:"Sebastian",middleName:null,surname:"Ventura Soto",slug:"sebastian-ventura-soto",fullName:"Sebastian Ventura Soto",profilePictureURL:"https://mts.intechopen.com/storage/users/136112/images/system/136112.png",biography:"Sebastian Ventura is a Spanish researcher, a full professor with the Department of Computer Science and Numerical Analysis, University of Córdoba. Dr Ventura also holds the positions of Affiliated Professor at Virginia Commonwealth University (Richmond, USA) and Distinguished Adjunct Professor at King Abdulaziz University (Jeddah, Saudi Arabia). Additionally, he is deputy director of the Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI) and heads the Knowledge Discovery and Intelligent Systems Research Laboratory. He has published more than ten books and over 300 articles in journals and scientific conferences. Currently, his work has received over 18,000 citations according to Google Scholar, including more than 2200 citations in 2020. In the last five years, he has published more than 60 papers in international journals indexed in the JCR (around 70% of them belonging to first quartile journals) and he has edited some Springer books “Supervised Descriptive Pattern Mining” (2018), “Multiple Instance Learning - Foundations and Algorithms” (2016), and “Pattern Mining with Evolutionary Algorithms” (2016). He has also been involved in more than 20 research projects supported by the Spanish and Andalusian governments and the European Union. He currently belongs to the editorial board of PeerJ Computer Science, Information Fusion and Engineering Applications of Artificial Intelligence journals, being also associate editor of Applied Computational Intelligence and Soft Computing and IEEE Transactions on Cybernetics. Finally, he is editor-in-chief of Progress in Artificial Intelligence. He is a Senior Member of the IEEE Computer, the IEEE Computational Intelligence, and the IEEE Systems, Man, and Cybernetics Societies, and the Association of Computing Machinery (ACM). Finally, his main research interests include data science, computational intelligence, and their applications.",institutionString:null,institution:{name:"University of Córdoba",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"26",title:"Machine Learning and Data Mining",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",isOpenForSubmission:!0,editor:{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null},{id:"27",title:"Multi-Agent Systems",coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",isOpenForSubmission:!0,editor:{id:"148497",title:"Dr.",name:"Mehmet",middleName:"Emin",surname:"Aydin",slug:"mehmet-aydin",fullName:"Mehmet Aydin",profilePictureURL:"https://mts.intechopen.com/storage/users/148497/images/system/148497.jpg",biography:"Dr. Mehmet Emin Aydin is a Senior Lecturer with the Department of Computer Science and Creative Technology, the University of the West of England, Bristol, UK. His research interests include swarm intelligence, parallel and distributed metaheuristics, machine learning, intelligent agents and multi-agent systems, resource planning, scheduling and optimization, combinatorial optimization. Dr. Aydin is currently a Fellow of Higher Education Academy, UK, a member of EPSRC College, a senior member of IEEE and a senior member of ACM. In addition to being a member of advisory committees of many international conferences, he is an Editorial Board Member of various peer-reviewed international journals. He has served as guest editor for a number of special issues of peer-reviewed international journals.",institutionString:null,institution:{name:"University of the West of England",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:17,paginationItems:[{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79345",title:"Application of Jump Diffusion Models in Insurance Claim Estimation",doi:"10.5772/intechopen.99853",signatures:"Leonard Mushunje, Chiedza Elvina Mashiri, Edina Chandiwana and Maxwell Mashasha",slug:"application-of-jump-diffusion-models-in-insurance-claim-estimation-1",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81557",title:"Object Tracking Using Adapted Optical Flow",doi:"10.5772/intechopen.102863",signatures:"Ronaldo Ferreira, Joaquim José de Castro Ferreira and António José Ribeiro Neves",slug:"object-tracking-using-adapted-optical-flow",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"81558",title:"Thresholding Image Techniques for Plant Segmentation",doi:"10.5772/intechopen.104587",signatures:"Miguel Ángel Castillo-Martínez, Francisco Javier Gallegos-Funes, Blanca E. Carvajal-Gámez, Guillermo Urriolagoitia-Sosa and Alberto J. Rosales-Silva",slug:"thresholding-image-techniques-for-plant-segmentation",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}}]},overviewPagePublishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:null}]},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",institutionURL:null,country:{name:"Romania"}}}]},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]}]},openForSubmissionBooks:{paginationCount:5,paginationItems:[{id:"11576",title:"Malaria - Recent Advances, and New Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11576.jpg",hash:"5a01644fb0b4ce24c2f947913d154abe",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 26th 2022",isOpenForSubmission:!0,editors:[{id:"76041",title:"Prof.",name:"Pier Paolo",surname:"Piccaluga",slug:"pier-paolo-piccaluga",fullName:"Pier Paolo Piccaluga"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11577",title:"Tick-Borne Diseases - A Review and an Update of Knowledge on Infections in Human and Animal Population",coverURL:"https://cdn.intechopen.com/books/images_new/11577.jpg",hash:"3d72ae651ee2a04b2368bf798a3183ca",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 29th 2022",isOpenForSubmission:!0,editors:[{id:"51521",title:"Prof.",name:"Elisa",surname:"Pieragostini",slug:"elisa-pieragostini",fullName:"Elisa Pieragostini"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11570",title:"Influenza - New Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11570.jpg",hash:"157b379b9d7a4bf5e2cc7a742f155a44",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 10th 2022",isOpenForSubmission:!0,editors:[{id:"139889",title:"Dr.",name:"Seyyed Shamsadin",surname:"Athari",slug:"seyyed-shamsadin-athari",fullName:"Seyyed Shamsadin Athari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11569",title:"Bacterial Sexually Transmitted Infections - New Findings, Diagnosis, Treatment, and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/11569.jpg",hash:"069d6142ecb0d46d14920102d48c0e9d",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"May 31st 2022",isOpenForSubmission:!0,editors:[{id:"189561",title:"Dr.",name:"Mihaela Laura",surname:"Vica",slug:"mihaela-laura-vica",fullName:"Mihaela Laura Vica"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11568",title:"Staphylococcal Infections - Recent Advances and Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11568.jpg",hash:"92c881664d1921c7f2d0fee34b78cd08",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 1st 2022",isOpenForSubmission:!0,editors:[{id:"59719",title:"Dr.",name:"Jaime",surname:"Bustos-Martínez",slug:"jaime-bustos-martinez",fullName:"Jaime Bustos-Martínez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{},subseriesFiltersForOFChapters:[],publishedBooks:{},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{}},subseries:{item:{id:"87",type:"subseries",title:"Economics",keywords:"Globalization, Economic integration, Growth and development, International trade, Environmental development, Developed countries, Developing countries, Technical innovation, Knowledge management, Political economy analysis, Banking and financial markets",scope:"\r\n\tThe topic on Economics is designed to disseminate knowledge around broad global economic issues. Original submissions will be accepted in English for applied and theoretical articles, case studies and reviews about the specific challenges and opportunities faced by the economies and markets around the world. The authors are encouraged to apply rigorous economic analysis with significant policy implications for developed and developing countries. Examples of subjects of interest will include, but are not limited to globalization, economic integration, growth and development, international trade, environmental development, country specific comparative analysis, technical innovation and knowledge management, political economy analysis, and banking and financial markets.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/87.jpg",hasOnlineFirst:!1,hasPublishedBooks:!1,annualVolume:11971,editor:{id:"327730",title:"Prof.",name:"Jaime",middleName:null,surname:"Ortiz",slug:"jaime-ortiz",fullName:"Jaime Ortiz",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002zaOKZQA2/Profile_Picture_1642145584421",biography:"Dr. Jaime Ortiz holds degrees from Chile, the Netherlands, and the United States. He has held tenured faculty, distinguished professorship, and executive leadership appointments in several universities around the world. Dr. Ortiz has previously worked for international organizations and non-government entities in economic and business matters, and he has university-wide globalization engagement in more than thirty-six countries. He has advised, among others, the United Nations Development Program, Inter-American Development Bank, Organization of American States, Pre-investment Organization of Latin America and the Caribbean, Technical Cooperation of the Suisse Government, and the World Bank. Dr. Ortiz is the author, co-author, or editor of books, book chapters, textbooks, research monographs and technical reports, and refereed journal articles. He is listed in Who’s Who in the World, Who’s Who in America, Who’s Who in Finance and Business, Who’s Who in Business Higher Education, Who’s Who in American Education, and Who’s Who Directory of Economists. Dr. Ortiz has been a Fulbright Scholar and an MSI Leadership Fellow with the W.K. Kellogg Foundation. His teaching interests revolve around global economies and markets while his research focuses on topics related to development and growth, global business decisions, and the economics of technical innovation.",institutionString:null,institution:{name:"University of Houston",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null,series:{id:"22",title:"Business, Management and Economics",doi:"10.5772/intechopen.100359",issn:null},editorialBoard:[{id:"104262",title:"Dr.",name:"Chee-Heong",middleName:null,surname:"Quah",slug:"chee-heong-quah",fullName:"Chee-Heong Quah",profilePictureURL:"https://mts.intechopen.com/storage/users/104262/images/system/104262.jpg",institutionString:null,institution:{name:"University of Malaya",institutionURL:null,country:{name:"Malaysia"}}},{id:"236659",title:"Prof.",name:"Monica Violeta",middleName:null,surname:"Achim",slug:"monica-violeta-achim",fullName:"Monica Violeta Achim",profilePictureURL:"https://mts.intechopen.com/storage/users/236659/images/system/236659.jpg",institutionString:null,institution:{name:"Babeș-Bolyai University",institutionURL:null,country:{name:"Romania"}}},{id:"202039",title:"Dr.",name:"Nahanga",middleName:null,surname:"Verter",slug:"nahanga-verter",fullName:"Nahanga Verter",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCwtQAG/Profile_Picture_1643101901237",institutionString:null,institution:{name:"Mendel University Brno",institutionURL:null,country:{name:"Czech Republic"}}},{id:"107745",title:"Emeritus Prof.",name:"Panagiotis E.",middleName:null,surname:"Petrakis",slug:"panagiotis-e.-petrakis",fullName:"Panagiotis E. Petrakis",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRzzaQAC/Profile_Picture_1644221136992",institutionString:null,institution:{name:"National and Kapodistrian University of Athens",institutionURL:null,country:{name:"Greece"}}},{id:"196259",title:"Dr.",name:"Ryan Merlin",middleName:null,surname:"Yonk",slug:"ryan-merlin-yonk",fullName:"Ryan Merlin Yonk",profilePictureURL:"https://mts.intechopen.com/storage/users/196259/images/system/196259.jpg",institutionString:null,institution:{name:"American Institute for Economic Research",institutionURL:null,country:{name:"United States of America"}}}]},onlineFirstChapters:{},publishedBooks:{paginationCount:4,paginationItems:[{type:"book",id:"9528",title:"Current Topics and Emerging Issues in Malaria Elimination",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9528.jpg",slug:"current-topics-and-emerging-issues-in-malaria-elimination",publishedDate:"July 21st 2021",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"7f178329cc42e691efe226b32f14e2ea",volumeInSeries:8,fullTitle:"Current Topics and Emerging Issues in Malaria Elimination",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7981",title:"Overview on Echinococcosis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7981.jpg",slug:"overview-on-echinococcosis",publishedDate:"April 22nd 2020",editedByType:"Edited by",bookSignature:"Fethi Derbel and Meriem Braiki",hash:"24dee9209f3fd6b7cd28f042da0076f0",volumeInSeries:6,fullTitle:"Overview on Echinococcosis",editors:[{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",institutionString:"Clinique les Oliviers",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7839",title:"Malaria",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",slug:"malaria",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Fyson H. Kasenga",hash:"91cde4582ead884cb0f355a19b67cd56",volumeInSeries:4,fullTitle:"Malaria",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga",profilePictureURL:"https://mts.intechopen.com/storage/users/86725/images/system/86725.jpg",institutionString:"Malawi Adventist University",institution:{name:"Malawi Adventist University",institutionURL:null,country:{name:"Malawi"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",slug:"current-topics-in-neglected-tropical-diseases",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"61c627da05b2ace83056d11357bdf361",volumeInSeries:3,fullTitle:"Current Topics in Neglected Tropical Diseases",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.jpg",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/77262",hash:"",query:{},params:{id:"77262"},fullPath:"/chapters/77262",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()