Pesticides losses, quality and health risks of wine.
\r\n\tThe WHO classification in 2007; was based on the histogenesis and cell origin of the tumor. In the latest classification made in 2016; to better characterize the tumor and obtain better data on its prognosis; The combination of molecular and genetic biomarkers and histopathological features of the tumor was used. Despite all current treatment approaches, the median survival time is around 12 months in most GBM patients. Compared with the situation of some types of successfully treated cancers; the survival time of GBM patients is not at an acceptable level today. In the treatment of CNS tumors; surgery, chemotherapy, and radiation treatments (x-rays, gamma rays, electron and proton beams) are used. The therapeutic potential of chemotherapy; New strategies are needed to increase drug concentration at the diseased site, as this largely depends on the ability of the chemotherapeutic agent to achieve effective concentrations at tumor localization. Based on our better understanding of the genetic and molecular characteristics of CNS tumors; Targeted therapies, including vaccines, and treatment protocols such as immunotherapy are promising developments.
\r\n\r\n\tThis book supposes to be written by many authors who have an internationally honored place in their field to share their ideas about the treatment of CNS tumors. Surgery, Radiotherapy, Chemotherapy and Antiangiogenic Therapy Protocols, Immunotherapy, Molecular Therapy, Specific target-agents therapy with Nanoparticles and Gene Therapy for CNS tumors among the book chapters.
\r\n\tIn these sections; there are many practical pieces of information that can help the students who graduated from the Medicine Faculty and specialist doctors who are interested in Neurosurgery.
Type 2 diabetes (T2D) is characterized by hyperglycemia which occurs due to impaired insulin production and reduced pancreatic beta cell population during insulin resistance. Most diabetes patients are able to compensate increasing insulin resistance by increasing insulin production. Now the decrease in insulin secretion occurs due to increased beta cell apoptosis, and the reason behind apoptosis remains endoplasmic reticulum stress, mitochondrial dysfunction and inflammation. Since a long time T2D and pancreatic cancer have been associated and development of diabetes is related to occurrence of pancreatic cancer. The causes behind association of T2D with pancreatic cancer may be chronic inflammation and common progenitor cells for endocrine and exocrine pancreas, however still more research is needed in this field, and every detail about diabetes and pancreatic cancer must be studied [1].
Firstly, Type 2 diabetes is the third most possible risk factor for pancreatic cancer after obesity and cigarette smoking. Studies have shown that chronic type 2 diabetes increases risk of pancreatic cancer by 1.5- to 2.0-fold. Prediagnostic assessment of glucose and insulin levels may help in early diagnosis. The reasons behind development of diabetes-associated pancreatic cancer remain insulin resistance, hyperglycemia, hyperinsulinemia, and inflammation. On the other hand, people diagnosed with Type 2 diabetes may be part of a population of pancreatic cancer patients who have been detected earlier. There are several signaling pathways regulating metabolic processes which dictate cell proliferation and tumor growth. Better insight on the different mechanisms common in Type 2 diabetes and pancreatic cancer can be helpful in the development of new biomarkers and potent preventive or therapeutic strategies [1].
Ductal adenocarcinoma of pancreas is the fifth major cause of death in cancer in developed countries after lung, stomach, colorectal and breast cancer. 23% of the patients can live for 1 year after diagnosis and 6% of the patients have a 5-year survival rate due to advanced stage of cancer at the time of the diagnosis. Ductal adenocarcinoma of pancreas is also the thirteenth most common type of cancer and eight most common cause of cancer-related deaths. Here it must be mentioned that 80% of pancreatic cancer patients have been ailing with Type 2 diabetes or compromised glucose tolerance at the time of diagnosis [2, 3, 4].
Patients with ductal adenocarcinoma of pancreas and also Type 2 diabetes, have a record of diagnosis of diabetes less than 24 months before the diagnosis of ductal adenocarcinoma of pancreas in 74–88% of cases [5]. It means that Type 2 diabetes and ductal adenocarcinoma of pancreas show “dual causality,” while chronic Type 2 diabetes remains a risk factor for the development of ductal adenocarcinoma of pancreas and, on the other hand, ductal adenocarcinoma of pancreas is also presumed to be a cause for Type 2 diabetes in many cases.
The Centre for Disease Control and Prevention recorded that ~29 million people in the U.S. suffered from Type 2 diabetes in 2014, while about 8 million of these patients have not yet been diagnosed. Also, ~86 million adults in the U.S. are known to be prediabetic, having a fasting plasma glucose level of 100–125 mg/dL, a 2-h plasma glucose level of 140–199 mg/dL, or a glycohemoglobin (HbA1c) level of 5.7–6.4% [6]. The global increase of ductal adenocarcinoma of pancreas further escalates the need to understand the pathophysiology of Type 2 diabetes. Chronic Type 2 diabetes is established to be a risk factor for ductal adenocarcinoma of pancreas [7]. Type 2 diabetes is also linked with obesity, and obesity also increases the risk for developing ductal adenocarcinoma of pancreas [8]. Type 2 diabetes is also associated with defective insulin function since insulin fails to suppress hepatic glucose release. As a result, peripheral glucose utilization mainly by skeletal muscle, is compromised, with initial increase in insulin levels since the beta cells try to overcome insulin resistance by producing more insulin [9]. With chronic Type 2 diabetes, beta cells undergo failure leading to apoptosis and decreased beta cell mass [10]. Patients with obesity and Type 2 diabetes are likely to suffer for long time periods with high intrapancreatic insulin levels due to beta cell compensation to overcome the increasing insulin demand and to maintain glucose homeostasis. Insulin is released into the circulation by beta cells through intrapancreatic portal circulation that also supplies blood to acinar and ductal cells near the islets. Acinar and ductal cells neighboring the islets may also get blood supply from intrapancreatic portal circulation [11]. This close association allows high levels of islet hormones to directly get supplied to acinar and ductal cells, resulting in proxicrine effects on insulin receptors present on acinar cells and also on insulin like growth factor-I receptors in any differentiated cells in the region, enhancing survival and proliferation of the cells. Hence, intrapancreatic hyperinsulinemia, arising due to obesity and insulin resistance in prediabetic patients or in early diabetic patients contribute to increased risk in ductal adenocarcinoma of pancreas.
Compromised glycemic control is also associated with increased levels of advanced glycation end products (AGE) which activate RAGE, a receptor for AGE [12]. RAGE receptor belongs to the immunoglobulin super family and can bind to several ligands apart from AGE, including some proinflammatory cytokines that have role in inflammation and ductal adenocarcinoma of pancreas [12]. Also, activation of RAGE contributes to obesity and inflammation [13]. Excess of activation of RAGE also contribute to the higher prognosis of ductal adenocarcinoma of pancreas in Type 2 diabetes.
The mechanism behind the association of Type 2 diabetes and pancreatic cancer is elaborate and include metabolic, hormonal, and immunological modifications that regulate tumor growth (Figure 1). The most presumed mechanisms behind the association between Type 2 diabetes and pancreatic cancer are insulin resistance, compensatory hyperinsulinemia and increased levels of circulating insulin-like growth factors (IGFs). In-vivo studies showed that islet cell turnover, linked with insulin resistance, is important for pancreatic cancer. Like, in hamsters, islet cell proliferation increase pancreatic ductal cancer [14], while destruction of islet cells by streptozotocin or alloxan impede pancreatic cancer prevalence [15, 16]. Also, biguanide metformin treatment inhibit the creation of pancreatic tumors by N-nitrosobis-(2-oxopropyl) amine, a potent pancreatic carcinogen. High-fat containing diet in hamsters normalize the islet cell turnover rate [17]. Pancreatic β-cells become hyperactive, their mass increase which together led to insulin over secretion to combat insulin resistance. The exocrine part of pancreatic tissue is exposed to much higher level of local insulin concentrations than the amount of insulin in the circulation of hyperinsulinemic patients. Insulin also acts as a growth-promoting hormone which increases cell proliferation. Hence, insulin not only promotes cell proliferation but also increases uptake of glucose [18], and both of these processes are important for development and progression of tumor. Moreover, insulin increases the availability of insulin like growth factors by decreasing hepatic production of binding proteins for insulin like growth factors [19, 20]. The two main properties of insulin like growth factor-1 (IGF-1) are mitogenic and antiapoptotic activities which increase growth of cells expressing insulin as well as IGF-1 receptor (IGF1R). Here it must be noted that IGF-1 and IGF1R are overexpressed in pancreatic cancer cells [21]. Also, IGF-1 regulated signal transduction elevates proliferation, invasion, and expression of different mediators of angiogenesis and decrease apoptosis of pancreatic cancer cells as well [22, 23, 24]. IGF1R-induced signal transduction also activates several intracellular signal pathways, like Ras/Raf/mitogen-activated protein kinase and phosphoinositide-3 kinase/Akt/mammalian target of rapamycin (mTOR) pathways [25]. Decreased levels of IGF binding protein 1 can predict increased risk of pancreatic cancer [26]. Unusual glucose metabolism can also predict presence of tumor cells, since most tumors have upregulated insulin-independent glucose uptake mechanisms while, diabetic animals with β-cell destruction induced by alloxan show reduced tumor growth [27]. This suggests that hyperglycemia has no role in increasing neoplastic growth in insulin deficiency. High dietary glycemic index increases the risk of pancreatic cancer due to deleterious effects of high postprandial glucose and increasing insulin demands [28]. Type 2 diabetes and diabetes associated obesity increase the risk of pancreatic cancer due to increased oxidative stress and inflammation during type 2 diabetes and also due to the link between oxidative stress and insulin resistance [29, 30, 31, 32]. Antioxidant supplementation with vitamin E or α-lipoic acid can be preventive or curative in insulin resistance [33, 34]. Moreover, postprandial hyperglycemia directly increases oxidative stress leading to overproduction of superoxide by the mitochondrial electron-transport chain [35]. Impairment of the cellular redox state reduces tyrosine phosphorylation and elevates serine phosphorylation of insulin receptor substrate 1, which leads to impaired insulin-signaling pathway [35]. Moreover, obesity and macronutrient intake activate inflammatory signaling pathways [36, 37], and glucose and fat intake stimulate inflammation by increasing oxidative stress and the activating transcriptional factors such as nuclear factor-κB, activating protein-1 and early growth response-1 [38, 39, 40]. Also, adipose tissues may act as an endocrine organs to regulate the release of fatty acids, hormones, and cytokines like tumor necrosis factor-α, interleukin-6, and resistin [41].
Association between diabetes and pancreatic cancer [
Adipocytokines, which are secreted from adipocytes, are mainly involved in apoptosis, development, metabolism, innate immunity and inflammation. Proinflammatory cytokines are known to stimulate angiogenesis, tumor progression, and metastasis. During obesity or Typ2 2 diabetes altered levels or dysfunctions of many molecules like leptin [42], IGF-1 [43], and peroxisome proliferator-activated receptor-γ [44], lead to development of pancreatic cancer by impeding immune system.
Several genome-wide studies have shown new genetic variants that increase the risk of diabetes, and some of the susceptible loci already established in Type 2 diabetes are known to be involved in differentiation and development [45]. NR5A2 (or LRH1) is one such pancreatic cancer susceptibility gene identified in genome-wide association studies [46]. NR5A2 is a direct target of pancreatic duodenal homeobox (PDX-1) gene in pancreatic development and differentiation [47]. It regulates the expression of developmental genes, like transcription factors hepatocyte nuclear factor (HNF)-3β, HNF-4α, and HNF-1β. On the other hand, NR5A2 expression is regulated by HNF-3β and HNF-1, so the case is regulated both ways. PDX-1 is necessary for pancreatic development and also for casual function of β-cell and secretion of insulin [48]. Mutations in HNF-1β gene is associated with maturity-onset diabetes in the young people [49]. Better insight about the function of NR5A2 gene in the progression and development of pancreatic cancer can be helpful in curbing the risk of diabetes-linked pancreatic cancer and also decipher the genetic mechanisms behind Type 2 diabetes and pancreatic cancer.
Several clinical and epidemiological studies associate the risk of ductal adenocarcinoma of pancreas to chronic Type 2 diabetes and chronic pancreatitis (CP). The genetic reasons of susceptibility among all these three diseases are quite variant however, some reasons are common. The mechanism behind the function of these genes and how they influence susceptibility is not common because of the difference in methodology of identification of the genes. Interestingly, all three diseases share these characteristics: 1) all patients have a report of family history or familial clustering, which indicate shared genetic or environmental influence, 2) difference in age of patients at the time diagnosis is due to familial risk, and 3) analyzing Mendelian segregation prove that in some families there are some hereditary components which demonstrate the common features of the gene [11]. Apart from genetics factors, there are epidemiological factors like obesity in diabetes, alcohol intake in chronic pancreatitis, and smoking in ductal adenocarcinoma of pancreas that may work with genetic factors to increase the risk. Several approaches have been evolved to discover these susceptibility genes, from family-based case control studies and cohort studies, from where a list of candidate genes is identified, and large-scale genome-wide association studies (GWAS) are conducted to search for single nucleotide polymorphisms (SNPs) or next-generation sequencing. The genetic basis of Type 2 diabetes is characterized as polygenic, having implication of over 50 genes [50]. Any single major gene cannot explain the genetic risk of Type 2 diabetes except in some rare cases [51]. However, chronic pancreatitis and ductal adenocarcinoma of pancreas can be explained by mutations in some major genes. Genome-wide association studies (GWAS) have identified many low-penetrance common SNPs which are associated with risk of ductal adenocarcinoma of pancreas. Among all these three diseases, Type 2 diabetes has been studied in detail, which depict that Type 2 diabetes is a multifactorial disease and is genetically complex. Variants of more than 50 genes have been studied which increase genetic risk. These genes are divided into some having modest effect like PPARG and KDNJ11, and others having strong association like TCF7L2, WFS1, HDF1B, FTO, CDKN2A, and SLC20A8. New strategies have been developed which have characterized the genetic basis of the disease through subclinical or related phenotypes by predisposition of the genes [52]. Since Type 2 diabetes is a polygenic risk model, each genetic variant has a small effect. These genetic variants improve risk assessment from common risk factors like age, sex, family history and BMI (Body Mass Index) [53]. Family-based studies and data on pathophysiology of chronic pancreatitis facilitate success in explaining the genetic heterogeneity [54]. Most of the variations in susceptibility are due to acute and chronic pancreatitis being related to genetic variations among patients. Alcohol was considered to be the primary reason behind genetic contributions but after the discovery of PRSS1, CFTR, and SPINK1 variants which associated with pancreatitis the reasons have been resolved [55]. Hence, no single factor can cause pancreatitis, and majority of cases having acute and chronic pancreatitis have multiple variants of a gene, or multiple genes having epistatic interactions, or genetic factors coupled with environmental cues.
The genetic predisposition to ductal adenocarcinoma of pancreas is difficult due to the poor collection and analysis of biospecimens from patients owing to their low survival rate. Alike Type 2 diabetes and chronic pancreatitis, ductal adenocarcinoma of pancreas is also genetically heterogeneous. The identification of susceptibility genes has led to discovery of some rare gene mutations which are associated with cancer syndromes linked with common single nucleotide polymorphisms (SNPs). Study designs on family hierarchy and case-controls have led to discovery of mutations in known syndrome-associated genes, like BRCA1, BRCA2, CDKN2A, and CFTR. Moreover, next-generation sequencing has led to identification of additional mutations like PALB2 [56] and ATM [57]. Patients with sporadic ductal adenocarcinoma of pancreas carry germline mutations in major genes [58] and it changes the present knowledge for risk assessment. Large numbers of sporadic cases of ductal adenocarcinoma of pancreas and healthy subjects have exposed SNPs in chromosomal regions containing ABO, TERT, and CLPTM1L and other genes. Nevertheless, risk modeling using GWAS SNPs cannot provide sufficient genetic information that can improve prediction of pancreatic cancer [59].
Obesity is linked with an elevated risk of cancer, including pancreatic cancer [60]. The observed increase in pancreatic cancer epidemiology and deaths can be partially attributed to obesity taking the form of an endemic disease. Obesity can lead to pancreatic cancer, insulin resistance, hyperinsulinemia and inflammation by many possible ways [61]. Pancreatic cancer development can be attenuated in genetically engineered mouse model by using nonsteroidal anti-inflammatory drugs, which indicate that tissue inflammation plays an important role in this disease [62]. Tissue inflammation during obesity creates a perfect microenvironment for tumor initiation and promotion. Besides obesity, increase in BMI and visceral adiposity bears a strong link with metabolic diseases and gastrointestinal cancers, together with pancreatic cancer [63]. The accumulation of adipose tissue near the pancreas (peri-pancreatic depot) lead to an enhanced proinflammatory reaction in response to high-fat or high-calorie containing diet compared to peri-gonadal depot [64]. The association between adipose tissue depot-specific reactions to diet-induced obesity and the effect of these adipose tissue depots on cancer development is very crucial to understand the connection between body condition and risk of cancer. Moreover, high-fat or high-calorie containing diet increases the progression of pancreatic intraepithelial neoplasia, which is a known precursor of ductal adenocarcinoma of pancreas, and this accelerates the incidence of pancreatic cancer in an invasive and metastatic manner in conditional KrasG12D mouse model [65, 66].
To be specific, prevalence of Type 2 diabetes among ductal adenocarcinoma of pancreas patients is really very high. Type 2 diabetes is found in 47% of ductal adenocarcinoma of pancreas patients compared with only 7% of healthy subjects, and a normal fasting glucose occurs in 59% of healthy subjects, while it is found only in 14% of ductal adenocarcinoma of pancreas patients [5] (Figure 2). In 74% of ductal adenocarcinoma of pancreas patients with diabetes, diabetes is diagnosed within 24 months before the diagnosis of ductal adenocarcinoma of pancreas [67]. This remarks that in most of the patients, new-onset diabetes is due to the tumor and this diagnosis of diabetes may be a useful “biomarker” for the diagnosis of ductal adenocarcinoma of pancreas. Although known risk factors for Type 2 diabetes like obesity, age and family history of diabetes are also the common risk factors in case of risk factors for ductal adenocarcinoma of pancreas, the occurrence of Type 2 diabetes in ductal adenocarcinoma of pancreas is pretty higher than the occurrence of Type 2 diabetes among all other common types of cancer. Type 2 diabetes is found in 68% of patients with ductal adenocarcinoma of pancreas while it occurs in 14.8–23.5% of patients with breast, colon, lung, and prostate cancers [68]. Also, insulin resistance is common in patients with both ductal adenocarcinoma of pancreas and Type 2 diabetes, while many patients with ductal adenocarcinoma of pancreas undergo weight loss. Deteriorating glycemic control along with weight loss occurs in ductal adenocarcinoma of pancreas along with its incidence in Type 2 diabetes. These common characteristics give alert to the clinicians for the possibility of ductal adenocarcinoma of pancreas -associated diabetes. New-onset diabetes associated with ductal adenocarcinoma of pancreas can be cured after tumor resection, if there are enough islets left in the pancreatic tissue. Several reports show that Type 2 diabetes improves after resection of pancreatic tumors [69]. 57% of the patients with new-onset diabetes get cured of diabetes post operation of pancreatic tumors, while all of ductal adenocarcinoma of pancreas patients with long-standing diabetes cannot be cured of diabetes even after pancreatic resection [5] (Figure 3). These data strongly support that new-onset diabetes is associated with ductal adenocarcinoma of pancreas and it can be a paraneoplastic phenomenon, where malignancy interferes with insulin secretion or insulin function, finally leading to Type 2 diabetes. Numerous studies have tried to identify the mechanisms behind Type 2 diabetes caused by ductal adenocarcinoma of pancreas or the genomic and protein markers of Type 2 diabetes caused by ductal adenocarcinoma of pancreas. Connexin 26, a gap junction protein, is highly overexpressed in islets of ductal adenocarcinoma of pancreas patients with Type 2 diabetes [70], and a pancreatic ductal adenocarcinoma -derived S-100A8 N-terminal peptide is a diabetogenic agent [71, 72] which is also upregulated patients with ductal adenocarcinoma of pancreas associated with new-onset diabetes. Vanin-1 and matrix metalloproteinase 9 can also act as predictors of ductal adenocarcinoma of pancreas associated diabetes [73]. Vanin-1, is also overexpressed during inflammation, which means that mediators of inflammation play an important role in damaged islet function and insulin function in ductal adenocarcinoma of pancreas. Pancreatic Polypeptide (PP) release increases in Type 2 diabetes, and a deficit in PP response due to nutrient ingestion can transform into new-onset diabetes caused by pancreatic exocrine disease. Basal and meal-stimulated PP release significantly decreases in patients with diabetes associated with ductal adenocarcinoma of pancreas localized in the head of pancreas in comparison to patients with Type 2 diabetes [11].
Prevalence of type 2 diabetes in ductal pancreatic adenocarcinoma [
Prevalence of type 2 diabetes after pancreaticoduodenectomy for ductal pancreatic adenocarcinoma [
Some researchers say that diabetes does not contribute to earlier diagnosis or clinical features or tumor size or prognosis of pancreatic cancer [74], although, previous studies had established that diabetes can predict pancreatic cancer [75]. A study compared diabetic and non-diabetic patients and observed a worse overall mortality and median survival in diabetic patients [76]. In another study, patients with diabetes had a better overall survival [77]. On the other hand, Type 2 diabetes is known to confer a poor survival in ductal adenocarcinoma of pancreas patients [78]. Actually, gender and mean age of the patients in these two studies regulated the number of comorbidities, time of diabetes and also time for development of complications in diabetes [75]. Use of preventive medicine, frequent clinical follow-up and earlier diagnosis of ductal pancreatic adenocarcinoma can generate a better median survival.
The explanation of hormonal [79], paracrine [21] and autocrine [22, 23] mediators of pancreatic cancer and its association with new-onset diabetes can be helpful in pathogenesis and showing new therapeutic targets. A better explanation of the epidemiology of pancreatic cancer, is poorly controlled diabetes or it can be an intrinsically genetic [8] or epigenetic [80, 81, 82] or immunologic [83, 84] or gastrointestinal microbiota [85, 86] or tissue microenvironment which are characteristic of Type 2 diabetes [87, 88, 89] patients progressing towards pancreatic cancer.
The various techniques like gene sequencing, lymphocyte flow cytometry, mRNA profiling, PCR studies and microbe identification microarray from Type 2 diabetes patients in different stages of progression can help in early diagnosis and prevent diabetic complications in pancreatic cancer and diabetes. Molecular biomarkers can be very crucial to diagnose patients with new-onset diabetes who should be tested with endoscopic ultrasound for identifying pancreatic cancer [75]. Hyperinsulinemia can negatively predict value development of new-onset diabetes associated with pancreatic cancer if all other hormonal, paracrine or autocrine factors play against development of insulin resistance [75].
Metformin, a well-known medication for Type 2 diabetes, improves survival in pancreatic cancer patients and has prognostic effects [90]. The knowledge available on the mechanism of action of metformin helps in the understanding of the ductal adenocarcinoma of the pancreas cancer pathways [75].
Deregulated systemic physiology is the effect of disruption of energy homeostasis, and metabolic processes within the cells of a pancreatic tumor can also be knowledgeable [91]. Malignant cells of a pancreatic tumor, have alterations that are mediated by both oncogene-driven programs and also by the rare physiology of tumor. Pancreatic tumors have a dense, fibrotic stroma which inhibits vascular function and also disrupts delivery of nutrients and oxygen [92]. Mutant Kras expression regulates metabolic networks facilitating redox balance, bioenergetics, and anabolic metabolism for better survival and cell proliferation under these poor circumstances [93, 94, 95]. Nutrients recycled by autophagy fuel these pathways [96, 97] and also the nutrients scavenged by nonspecific bulk extracellular space engulfment or by micropinocytosis [98] as well as overexpressed nutrient importers help in regulating these pathways [93, 99]. Together, the regulation of metabolism of pancreatic cancer cells are controlled by oncogene-driven pathways, and they engage nutrient scavenging mechanisms as well as improve nutrient utilization to overcome the problems of insufficient vascularization [91].
Malignant cells constitute 10% of the total cellular content of a pancreatic tumor [92]. As a result, the non-malignant cells help in shaping the metabolic condition and facilitate tumor growth [91]. These processes can be divided into 2 types: First, the cooperative reactions between non-malignant cells and malignant cells support the metabolism in cancer cells, and second, the reaction between malignant and non-malignant cells is competitive and it happens between tumor cells and the antitumor immune reaction [100].
One main cooperative reaction is the nutrient exchange pathway that occurs between pancreatic cancer cells and activated pancreatic stellate cells (PSCs) [101]. Pancreatic cancer cells are known to induce autophagy in the PSCs. As a result, protein breakdown occurs through autophagy and nonessential amino acids are released. Now, the pancreatic cancer cells engulf alanine and utilize it to in mitochondrial metabolism and also in the biosynthesis of cellular building blocks. Here it must be mentioned that alanine can be used in metabolism in replacement of glucose and glutamine, and the biosynthetic substrates also aid in cancer cell metabolism. If this metabolic crosstalk pathway is blocked or inhibited by suppressing autophagy particularly in the PSCs then it can lead to a dramatic decrease in tumor growth. Interestingly, pancreatic tumors can suppress immune responses and are highly resistant to immunotherapies [102]. Local nutrient depletion and waste accumulation indeed play important roles in aiding tumor immune suppression [100]. Moreover, Cytotoxic T-cells, are intrinsically less apt at obtaining nutrients than oncogene-driven cells, and they are compelled to compete for the limited nutrients like carbohydrates and amino acids, in a tumor microenvironment, and later result in defective antitumor immune response. The compromised antitumor T-cell response in melanoma and sarcoma is directly connected with glucose deprivation [103, 104], while high titres of lactate aid in the polarization of anti-inflammatory macrophages [105]. Mutant Kras-expressing pancreatic cancer cells vigorously consume glucose and then release lactate (so-called, Warburg metabolism) [93], and all of these mechanisms result in suppressed immune function in pancreatic cancer. Moreover, M2 type anti-inflammatory macrophages and cancer cells can exhaust tumors of amino acids such as arginine and tryptophan [106]. These processes also restrict antitumor T-cell responses and aids the differentiation of T-cells into anti-inflammatory T-regulatory cells.
Premorbid obesity unpleasantly influences ductal adenocarcinoma of pancreas associated mortality in a dose-dependent manner [107, 108]. A high BMI is also linked with an increased risk of ductal adenocarcinoma of pancreas [107, 108]. The etiology of obesity-linked diseases starts with excess energy and deposition of triglyceride in the adipose tissue. This excess of triglyceride cannot be completely deposited in the adipose tissue, hence ectopic fat deposition occurs in various organs like liver and pancreas. Triglyceride deposition in the liver leads to oxidative stress and inflammation, resulting in cirrhosis, steatohepatitis and hepatocellular carcinoma. Similar mechanisms occur in the pancreas. Free fatty acids and inflammatory mediators remain in high amounts in the pancreas of obese high fat fed mice [109], and this accelerates tumor growth [110]. Fat depots in liver and pancreas increase in obese individuals. After bariatric surgery, weight loss occurs, and hepatic and pancreatic fats rapidly disappear [111]. After weight loss, insulin resistance and circulatory levels of inflammatory factors also rapidly normalize [112]. Weight loss occurring after bariatric surgery decreases cancer mortality by 40–60% [113, 114]. Also, the risk of ductal adenocarcinoma of pancreas is significantly lower among the patients who have undergone bariatric surgery [115]. Nevertheless, bariatric surgery is restricted to individuals with high obesity (mean BMI >40 kg/m2). Substantial weight loss (mean > 30% total body weight) occurs in these individuals after bariatric surgery. Moreover, intentional weight loss by bariatric surgery or changes in lifestyle or pharmacotherapy or less invasive surgical or endoscopic procedures also helps in reducing the risk of cancer in obese patients [115].
BMI is a well-known marker for adiposity, and can also be linked with insulin resistance, metabolic syndrome and gastrointestinal malignancies, like ductal adenocarcinoma of pancreas [116]. Highly inflamed visceral adipose tissue (VAT) in obese patients remains the main reason behind metabolic dysfunction and gastrointestinal cancer due to the close proximity of the visceral organs with the portal system. VAT has a high correlation with occurrence of ductal adenocarcinoma of pancreas. Interestingly, conditional KRasG12D (KC) mice fed high-fat and high calorie containing diet gained more weight than the standard diet fed mice and ended up developing hyperinsulinemia and hyperleptinemia with extensive VAT expansion and high inflammation [64, 65, 117]. These obese KC mice had highly inflamed pancreas and were more prone to develop ductal adenocarcinoma of pancreas than the control mice fed on standard diet and this occurred in the male mice, which meant that the sex hormones had a role in it [117]. Interestingly, the increased incidence of pancreatic ductal adenocarcinoma in obese KC mice was largely seen in male mice, suggesting a role for sex hormones in this process, since the female mice gained more adipose tissue subcutaneously [64, 65, 117].
Human microbiome has gained a lot of popularity recently to tackle prevention, as well as early diagnosis, and treatment of ductal adenocarcinoma of pancreas, since many diseases have now started to be linked with composition of microbiome [118, 119, 120]. The composition of microbiome also interferes with development of ductal adenocarcinoma of pancreas and its relation with diabetes, obesity, and inflammation [121]. Ductal adenocarcinoma of pancreas is an inflammation-mediated cancer and gut microbiome can stimulate chronic inflammation via changes in molecular pattern recognition receptors. These pattern recognition receptors and their downstream signaling cascade leads to the incidence of inflammation-mediated cancers. These bacteria regulate the efficiency of calorie absorption in the intestines and hence lead to obesity. Many diseases like Type 2 diabetes, obesity, and chronic pancreatitis are linked with chronic inflammation, which also result in ductal adenocarcinoma of pancreas [122]. Moreover, alteration of oral microbiome increases risk of ductal adenocarcinoma of pancreas, and it can be a useful biomarker of the disease. Specific abundance in certain oral bacteria and gut microbiome in pancreatic secretions or fecal matter may be associated with risk of ductal adenocarcinoma of pancreas, hence these knowledges can help in preventing or in early diagnosis of ductal adenocarcinoma of pancreas [122].
As already mentioned above, chronic inflammation in pancreas or chronic pancreatitis is a major reason behind ductal adenocarcinoma of pancreas. Activated PSCs play a key role in progression of chronic pancreatitis. Activation of PSCs is also increased by cytokines secreted from injured acinar and immune cells. The mechanisms underlying triggering of macrophages and survive the fibrotic processes by reacting with PSCs, if interfered end in suppression of inflammation and fibrosis in chronic pancreatitis [123]. Alcohol and smoking are also potent risk factors for chronic pancreatitis and ductal adenocarcinoma of pancreas. IL-22 signaling during inflammation and cross talk between immune cells and PSCs is one of the signaling involved in smoking-induced progression of chronic pancreatitis [124]. The other pathways that are behind progression of ductal adenocarcinoma of pancreas are IL-6 and histone deacetylases in immune and cancer cell interactions, which together mean that immune signals are key factors in promoting pancreatitis and pancreatic cancer progression [125]. However, most cases of ductal adenocarcinoma of pancreas are resistant to immunotherapies treatment with immune checkpoint antibodies because inflammatory processes are important in promoting the malignant transformation, growth, and metastasis of pancreatic cancer. For example, Kras mutations stimulate profuse cytokine and chemokine secretion in tumor epithelial cells and recruit immune cells like macrophages, dendritic cells (DCs), and myeloid-derived suppressive cells, all of which stimulate tumor growth and progression. So, all these cells need to be reprogrammed in ductal adenocarcinoma of pancreas to create a favorable immunostimulatory environment for efficient immunotherapy. Since, ductal adenocarcinoma of pancreas is often followed by metastatic relapse even after complete surgical pancreatic resection, the newly developed cancer cells fail in immunotherapy, which means that a better knowledge about the factors affecting metastasis is important for the development of more effective immunotherapies and treatments [126]. Early metastases are linked with dense networks of CD11b + CD11c + MHC-II + CD24 + CD64 and low F4/80 cells, and all of these cells develop from monocytes and aid in promoting metastasis by increasing regulatory T-cells and suppressing the development of cytotoxic T-cells. Phenotypically similar dendritic cells are seen to accumulate at primary and secondary sites in pancreatic portions of ductal adenocarcinoma of pancreas patients [127]. Dendritic cells can be reprogrammed into immunostimulatory antigen-presenting cells in tumor metastasis, which is one of the most popular immunotherapeutic strategies at present. Another strategy is based on the availability of tumor-binding immunoglobulin G antibodies along with some dendritic cell-stimulating molecules which help the enable tumor-associated dendritic cells to uptake, process, and present a variety of tumor antigens to T-cells. Then the T-cells proliferate and attack the tumors throughout the host. This technique can eradicate metastases, and also primary tumors in many types of cancers, including ductal adenocarcinoma of pancreas by overcoming tumor-mediated immunosuppression [128]. But the tumor cells tend to enter into the circulation and metastasize and end up colonizing distant organs [129]. Metastatic ductal adenocarcinoma of pancreas has many epigenetic modifications in the primary tumor. While the cancer cells circulate in clusters and colonize different organs, the establishment of a new premetastatic niche in a new organ includes proinflammatory processes, exosomes and immune cells [130]. All of this information can help in developing new therapeutic approaches targeting different agents for primary ductal adenocarcinoma of pancreas and also in its metastasis.
Ductal adenocarcinoma of pancreas is a very challenging malignancy with a high incidence and high lethality. Moreover, the disease has intricate relationships with diabetes and obesity. Type 2 diabetes has its own risks and can be both a risk factor for ductal adenocarcinoma of pancreas as well as an early manifestation of the disease. Obesity is also strongly associated with increasing risk of ductal adenocarcinoma of pancreas. However, every detail about all these diseases and their association is not fully understood, particularly the specific mechanisms that contribute to ductal adenocarcinoma of pancreas are not clear, which makes the diagnosis and treatment of ductal adenocarcinoma of pancreas very difficult. Hence present research is targeted in bringing out all the minute details and the mechanisms to tame this malignancy and preferably find a cure or a preventive mechanism or at least a better biomarker in near future.
AM is thankful to the Science & Engineering Research Board (SERB), Department of Science & Technology, Govt. of India, for her JRF fellowship (Grant No. ECR/2017/001028/LS). The author is thankful to Dr. Rakesh Kundu, Chandrani Fouzder, Snehasis Das and Dipanjan Chattopadhyay for technical assistance and constant encouragement.
The author declares no conflict of interest.
The author thanks to the Head of the Department of Zoology, for providing the assistance in the research work.
Grapevine (
Grapes are known to poses high amounts of carbohydrates and this makes them very vulnerable to damage by diverse fungal pests and insects [2]. High susceptibility to biotic stress of grape varieties can led to important economic loses, reduction of wine quality and undesirable sensory characteristics. Vines and grapes can be affected by a large number of diseases, such as downy mildew (
The use of pesticides in vineyard is a conventional and ancient agricultural practice, which brings many benefits but, unfortunately, some disadvantages as well. Concerns regarding the exposition over a long period of time to pesticide residues present in wines have gained attention in the scientific community. In some cases, inappropriate agricultural practices are used during the application of these active substances in the vineyard. As a result, the amount of pesticide residues on grapes at harvest time exceeds the permitted level by national and international regulations. Alongside with the environmental risks, high amounts of pesticide residues may influence the quality of grapes and wines. Constant consumption of wine or grapes (and indirectly of pesticide residues), can provoke health issues to many consumers. Therefore, it is crucial to monitor the presence of pesticides and regulate their amount in grapes in order to prevent potential health risks. In the European Union, the maximum residue levels (MRLs) of pesticides permitted in products of vegetable origin intended for human consumption is establishes by Regulation 396/2005/EC [6]. Also, the MRLs limits and the analysis methods are regulated by various internationals directives [6, 7]. In grapes, the MRLs for pesticide residues often range between 0.01 mg/kg and 5 mg/kg depending on the pesticide, but in some cases higher limits are allowed.
Pesticide residues on grapes may be transferred during winemaking in the juice/must and later to the wine. This means a toxicological risk to consumers despite the fact that winemaking processes (crushing, pressing, fermentation, filtration and stabilization, etc.) can considerably decrease pesticides residues from wines [8]. Each phytosanitary product used in vineyards has a different mode of action which may explain the differences that were observed during analysis. Pesticide residues stability during fermentation and fining stages are factors of concern during winemaking. In red wine production, the maceration-fermentation stage take place in contact with grape skins, leading to greater residue amounts in raw wine. These types of residues can be adsorbed into solid state during fermentation or filtered out in the fining stages.
Grapes and wines are an indispensable part of people’s lifestyle. The world surface devoted to the culture of grapevine is 7.3 million ha, and in Europe is 3.3 million ha [9]. Within the EU, according to the latest available data for 2020, Spain has the topmost area cultivated with vines (961 thousands of hectares-kha), followed by France (797 kha), Italy (719 kha), Portugal (194 kha), Romania (190 kha), Germany (103 kha). World wine consumption in 2020 was estimated at 260 million hectolitres (mhl) and in the EU at 165 mhl. Wine consumption was very high for USA-33.0 mhl, France-24.7 mhl, Germany-19.8 mhl, China-12.4 mhl, Spain-9.6 mhl, Portugal-4.6 mhl, Romania-3.8 mhl, Belgium-2.6 mhl and Switzerland-2.6 mhl [9].
The possible impact of pesticide residues on winemaking stages is a complex subject, and one that has a limited number of literature reports. The influence of pesticide residues on the grapes is a potential source of oenological concerns and can induce wine spoilage and undesired outcomes. The fermentation stage can be disturbed due to the active ingredients of pesticide residues in the must and thus, the quality and structure of wine can be negatively impacted. Pesticide residues can inhibit the yeast activity at the enzyme level and block the cellular metabolic processes of the yeast, leading to problems during the fermentation stage. Pesticide residues impacts on grapes can be influenced by the content of pesticides used in the vineyard, spraying method, spraying time, number of applications and the time difference between last application and harvest.
The morphology, size, and quality requirements of agricultural products are different, thus, influencing the overall content of pesticide residues. In winemaking stages, residues are transferred from the grapes to the wine, in accordance with the physical–chemical properties of their active ingredients, such as vapor pressure, solubility, boiling point, and octanol–water partition coefficient [10]. Processing of grapes using established winemaking techniques can influence the content of residues found in the juice and wine, but it is well established that, in general, wines have lower concentrations than must or grapes [11]. Environmental conditions such as sunlight, temperature and humidity can play a significant role in the kinetic and dynamic behavior of pesticides. In addition, other techniques for reducing pesticides are grape storage and washing processes that can minimize their potential adverse repercussion on human health.
A European Union recent report showed that pesticide residues could be found in more than 86% of grapes; moreover, multiple residues were reported in over 68% of tested samples (in total 2181 table grape samples) [12]. Under these conditions, it is highly recommended to speed up the pesticide residues analysis and come up with reliable, cheap and easy to use methods for identification, quantification and removal of such compounds from grapes, juices and wines.
Pesticides have a great variety of chemical structures, with diverse action mechanisms and applications. Nowadays, pesticides are presented in a large range of commercially products, with above 800 active components, belonging to more than 100 classes.
Pesticides can be classified bases on the pest type (A) and the origin (B) (Figure 1). In the first group of pesticides (A) are included: (1) herbicides, substances used to manage unwanted plant growth or to destroy weeds; (2) insecticides, used to kill infesting insects; (3) fungicides, used to control the propagation of fungi; (4) rodenticides that kill rodents; and (5) nematicides which kill nematodes or adversely affect nematodes. In the second group (B), pesticides can be categorized as chemical (synthetic) and biopesticides (biological or biorationals). The most outspread groups of pesticides are organochlorines, carbamates, pyrethroids and organophosphates. Organochlorines are the first important synthetic organic pesticides that belongs to the class of persistent organic pollutants (POPs). Biopesticides can be separated into two classes, that are, biochemical (hormones, enzymes, pheromones, natural insects, etc.) and microbial (viruses, bacteria, fungi, etc.).
Classification of pesticides.
Another classification of pesticides is based on the mode of action or mode of entry. Based on this, pesticides can be differentiated as non systemic, systemic, stomach poison, broad spectrum, disinfectant, nonselective, nerve poison, protectants and repellents. Moreover, pesticides can be classified using their acute toxicity. WHO [13] grouped them in Class Ia = extremely hazardous, Class Ib = highly hazardous, Class II = moderately hazardous, Class III = Slightly hazardous, and Class U=Unlikely to present acute hazards.
Organochlorines (OCs) were among the frequently used pesticides in agriculture, and presented a high toxicity, with hazardous and bio-accumulation properties [14]. These types of pesticides are carcinogenic, persistent in the cycle of environmental degradation, belonging to group of chlorinated hydrocarbons. Moreover, they have high lipophilicity, low polarity and solubility in aqueous medium. OCs are forbidden and no longer used for agriculture in Europe, America and other countries. Organochlorines were substituted with other synthetic compounds such as carbamates, pyrethroids and organophosphorus. These synthetic compounds have a low price, low persistence in nature, high capacity to eliminate a vast number of pests.
The organophosphates and carbamates lead to disturbance in the normal functioning of the central nervous system (CNS), inhibiting the enzyme acetylcholinesterase (AChE) in (CNS) of humans and insects [15]. Organophosphates are widespread contaminants and are correlated with important toxicological threats to the soil, aquatic ecosystems and human health [16].
Pyrethroids are obtained from natural chrysanthemum ester containing natural chemicals, name as pyrethrins [17]. The synthetic pyrethroids have a longer environmental stability and half-life when as compared to the natural form. They have a particular insecticidal activity with reduced toxicity, operation by lagging the voltage gated sodium channel in the neuronal membrane.
Use of such pesticides in modern agriculture is regarded as beneficial for pest control, although residues accumulated in raw products or beverages are extremely dangerous to both human health and the environment. Consumption of wines that may contain residues of pesticides has a strong impact on human health, and may cause muscle weakness, respiratory disorder, paralysis, cancer, etc. [18, 19].
Grape growing and wine production are very complex processes, which start in the vineyard, continue in the winery and end in the consumer’s glass. The environmental components, encompassing soil, topography, weather and climate have major impacts on vines growing and grape quality. Management practices in vineyards influence the accumulation of pesticide residues that can potentially affect the final wine chemical composition. Harvesting, transportation and transfer of grapes into the winery and later on the winemaking processes, can modify pesticide residues and gradually reduce or eliminate them.
Pesticide management techniques are constantly changing in accordance with the consumers and policy requirements. The promotion of sustainable viticulture and reduction of chemical inputs in vineyards arises new challenges and concerns for the entire viti-vinicultural sector.
Environmental conditions such as sunlight, temperature, soil, humidity and climate play a significant role in the kinetic and dynamic behavior of pesticides and grapes. Global warming is a key factor that provokes an increase in the accumulation of soluble solids in grapes, in combination with a lower amount of anthocyanins and acidity. As a cascading phenomenon, this slows, or even blocks fermentations and may lead to large economic losses in the winery. In addition, climate change presents a deep effect on the vine phenology, grape composition, winemaking stages, wine chemistry and microbiology and finally on the sensory attributes. Chemical composition of wines, aroma compounds, polyphenolic compounds, color, sensorial characteristics are all affected by the management of vineyards.
Management of vineyard is coordinated by humans and based on their decisions, many components may be affected. Grape quality is dependent on rows orientation, their training system, density, the calendar for pruning, trimming, fungicide treatments, or the way in which soil surface is managed, which comprise its tillage, the manipulation of the canopy structure and nitrogen fertilization [20]. High quality grape berries are influenced by the microclimate, sunlight and water levels. The light influences the evolution of grape volatile compounds, through the amount of light absorbed by the vine leaf area that determines the rate of photosynthesis. All these components generate an uneven distribution of favorable factors that may led to a high fluctuation of grape quality across different years.
Canopy management includes a series of common techniques, such as the plucking of leaves and head trimming. The first technique improves the microclimate of clusters, provides better fruit maturation, decreasing grapevine diseases incidence [21]. The second one, decrease transpiration and induces the lignification of the plant, balances the growth of branches and insulation within the foliage. Thus, wines resulted from defoliated grapes have higher fruity notes.
In order to obtain a high-quality wine, it is mandatory to have healthy grapes in the winemaking process. Vine growers have to be very careful in the prevention of parasite attacks in vineyards. Phytosanitary treatments used for common vine diseases such as botrytis, powdery mildew or downy mildew may provoke important problems during winemaking. Residues on grapes can be passed to the must and affect the selection and development of yeast strains [8]. Yeast can decrease the pesticides content in the wine. The persistence of pesticides depends on various factors such as the chemical characteristics of active ingredients, photodegradation, thermo-degradation and enzymatic degradation [22].
One of the essential pilons of the horticultural sciences for the control of insect-pests during the second half of XX century is Integrated Pest Management (IPM). There are various strategies to decrease the presence of pesticide residues in wine, such as treatments with sulfur, copper, or plant extracts as alternatives to synthetic products. Another strategy includes scheduled dosages and installation of a meteorological station to relay real-time weather data by General Packet Radio Service (GPRS) connection [23].
In the European Union [24] the use of copper fungicides in organic agriculture is restricted, being limited to 6 kg ha−1per year [25]. Vallejo et al. [23] found that “weather station” was the most effective to decrease pesticide with wine-growing ecosystem.
IPM is considered as an environmentally friendly approach that can ensure sustainable production, constant yields and high-quality horticultural products [26, 27].
Sustainable agriculture is a key objective of the European Union and a focus of its sustainable development policies. Suitable remedial measures aim to decrease occurrence of pesticides toxicity and other health issues correlated with pesticides. Normally it employs mechanical, cultural and biological methods; allows use of chemical pesticides only when it is required; if possible, bio-pesticide usage, bio-control and indigenous advanced [27]. Some strategies to reduce pesticide residues are presented below and in (Figure 2A and B):
Rational use of pesticides present advantages that include decreased expenses, decreased environmental impacts and increased safety (Figure 2A) [28].
Organic strategy is used to increase organic cycles in horticulture, to preserve and improve extended soil fertility, to decrease all types of hazard provoked by pesticides extensive use.
Awareness of workers: there is an urgent requirement to instruct the farmers and workers regarding the use of pesticides, their toxicity, and the risks of critical pesticide poisoning.
Sustainable systems can decrease horticultural pesticide using the efficiency–substitution–redesign framework —precision and smart farming, substituting chemical inputs with biocontrol agents or mechanical weed control and improving the current cropping system.
Genomics and new plant breeding techniques provide huge potential to increase the speed and technical opportunities in the development of resistant cultivars; plant breeding is a long and complex process, which is often unable to keep pace with the rapid evolution of pathogens or the emergence of new pests — processes that are increasingly driven by globalization and climate change [29].
Artificial intelligence in agriculture can help identification and classification of weeds, pests and diseases exactly and efficiently; photos taken by drones or from tractor-mounted spraying boots allow targeted spraying and decrease the overall applied pesticide quantities.
Strategies used to remove pesticides in vineyards. A) Rational use of pesticides in the vineyards. B) Integrated pest management stategies.
A limited number of scientific reports could be found in the literature, regarding the influence of pesticides on the polyphenolic compounds in beverages. In the last years, studies on beer [30, 31, 32] and wine [33, 34, 35] chemical compositions have been published.
Dugo et al. [33] investigated the phenolic compounds of grapes and wines, after the use of pesticide treatments in the vineyard. Their results indicated that the antioxidant activity of wines was correlated to the content of phenolic compounds. In contrast, each individual phenolic compound was not homogeneous, and the contents were not correlated to various pesticide treatments.
Navarro et al. [30, 31] noticed on beers samples important differences in the total polyphenolic amount after fermentation for samples that contains residues of pesticides. Major reductions were recorded for propiconazole, 70.8%, myclobutanil, 43.0%, fenitrothion, 13.6%, and trifluralin, 6.8%, when compared to the control. Moreover, fenarinol, malathion, methidathion, nuarimol and pendimethalin were not influence by pesticide residues.
In 2011, Navarro et al. [32] observed that not significant differences on the total polyphenolic amount of beer after fermentation with fungicides. In contrast, statistical differences were noticed for the values of color intensity (lower) and tint (higher) in beer.
Recently, Briz-Cid et al. [34] reported that treatment with mepanipyrim decreased 1.2 times the level in monomeric anthocyanin, while polymeric forms increased 1.3 times. Also, after treatment with iprovalicarb the content in the monomeric anthocyanin increased by around 30%. Malvidin derivatives have been affected significantly, increasing up to 42%. Mulero et al. [35] noticed small changes of less than 10%. In his study, quinoxyfen and kresoxim-methyl have provoked the biggest increase in total anthocyanin, while the famoxadone, trifoxystrobin and fenhexamid reduced the anthocyanin content. No significant differences in antioxidant activity were observed. Similarly, Mulero et al. [35] reported that presence of pesticide residues did not influence the antioxidant activity in red wines.
In general, the treatment with fungicides did not change very much the concentrations of monomeric anthocyanins or flavan-3-ol monomers in wine [36]. Exceptions have been reported for treatments with boscalid + kresoxim-methyl which increased the amount of flavonoid groups with 58% and 36%, respectively. Mulero et al. [35] presented similar results for Monastrell wines from grapes treated with kresoxim-methyl. The treatment with quinoxyfen indicates an increase of phenolic compounds in wines when compared with control sample. In opposite, when trifloxystrobin was used it was observed a lower total content in phenolic compounds.
Castro-Sobrino et al. [37] indicated that the use of pesticides does not have an effect on anthocyanins. However, tetraconazole use led to a decrease of these compounds.
Wines represent a very complex matrix that contains hundreds of volatile aroma compounds. Aroma compounds originate from: i) varietal aroma that come from the vine and is released in the wine during the fermentation process. The most powerful varietal aromas are terpenoids, varietal thiols and methoxypyrazines; ii) fermentative aroma as a result of the synthesis of important volatile compounds through
Pesticides | Pesticides losses | Quality and health risks of wine | Ref. |
---|---|---|---|
Iprovalicarb Mepanipyrim Tetraconazole | The fungicides mepanipyrim and tetraconazole exhibited a high dissipation rate during the winemaking process (93–98%); about 10–18% of iprovalicarb remained in wine. | The total content in the monomeric anthocyanin of iprovalicarb treatment increased by about 30%. Fungicides in wine do not only poses a health risk but also can alter fermentation and hence the quality of the wine | [34] |
Metrafenone Boscalid + kresoxim-methyl Fenhexamid Mepanipyrim | no data | Presence of boscalid + kresoxim-methyl residues in must impairs the sensory quality of the resulting wine by diminishing its brightness and aroma. It increased the contents in monomeric anthocyanins (58%) and flavan-3-ols (36%), and also color lightness (20%), but decreased the contribution of the ripe (42%) and fresh fruits (59%) odorant series. | [35] |
Fenhexamid Kresoxim-methyl Fluquinconazole Famoxadon Trifloxystrobin Quinoxyfen | no data | Wines from grapes treated with quinoxyfen shows an increase of phenolic compounds than the control. In contrast, the wine obtained from grapes treated with trifloxystrobin showed lower total concentration of phenolic compounds. | [36] |
Mepanipyrim (Mep) Tetraconazole (Tetra) | no data | No effects on anthocyanins for mepanipyrim treatments were observed. A decrease of these pigments was registered when Tetra and Tetra-Form were applied; moreover Tetra-Form reduced phenolic compounds. | [37] |
Tebuconazole | no data | The presence of residual levels of tebuconazole had no effect on varietal aroma compounds, terpene and higher-alcohol concentrations were essentially not changed; by contrast, C6-alcohol, ester and aldehyde concentrations differed significantly. | [42] |
Mepanipyrim Tetraconazole | no data | Mep residues affected the release of varietal aroma compounds from their grape precursors, Tetra residues mainly affected the aroma biosynthesis pathways of the ethanol producing yeasts. Presence of Mep residues in grape must could contribute to wines having higher “floral” and “spicy” notes and lower “fruity” nuances while the presence of Tetra residues can contribute to wines having higher “floral and lactic” nuances. | [43] |
Benalaxyl, Iprovalicarb, Pyraclostrobin | no data | Reduced the varietal aroma of wines attributed to geraniol. Increase in the fruity aroma due to several ethyl esters and acetates | [45] |
Quinoxyfen | 79–82% fungicide removal by alcoholic fermentation. | Quinoxyfen led to significantly lower ethylic ester levels. The addition of the fungicide did not seriously inhibit biomass production. A slight decrease of ethanol production in terms of both absolute value and conversion yield of ethanol produced per sugar consumed was, however, observed when the quinoxyfen concentration was increased. | [47] |
Fenamidone, Pyraclostrobin, Trifloxystrobin | After winemaking, fenamidone, pyraclostrobin, and trifloxystrobin were not detected in the wine, but they were present in the cake and lees. | These three active ingredients could be used in a planning to obtain residue-free wines. | [48] |
Iprovalicarb, Indoxacarb, Boscalid | Winemaking showed a complete transfer of all pesticide from grapes to the must, while in wine the residues were negligible due to the adsorbing effect of lees and pomace. | No risks of quality and safety defects. | [49] |
Cyprodinil, Fludioxonil, Pyrimethanil, Quinoxyfen | Fludioxonil decreased most quickly during winemaking without maceration, whereas the decrease of pyrimethanil was the slowest in all cases. During carbonic maceration winemaking, the decay constant of cyprodinil was greater than that of the other pesticides. | The winemaker can also choose which winemaking process to follow depending on the residues. | [50] |
Carbendazim, Chlorothalonil, Fenarimol, Metalaxyl, Procymidone, Triadimenol Carbaryl, Chlorpyrifos, Dicofol | After malolactic fermentation the concentrations of the active compounds chlorpyrifos (70%) and dicofol (30–40%) were the most significantly reduced. | In the case of dicofol, a substantial slowing of malolactic fermentation was observed when this compound was present at high concentration. Dicofol had a major inhibitory effect on the catabolism of malic acid (6–13% was metabolized), whereas chlorothalonil, chlorpyrifos, and fenarimol had only a minor effect (76–84% was metabolized). | [51] |
Pesticides losses, quality and health risks of wine.
Wine aroma can vary depending on the geographic area and terroir, viticultural practices, winemaking processes, type of aging and bottling. Moreover, other factors that have impact on the aroma compounds can interact with proteins, oxygen, polyphenols, polysaccharides, and thus modifying the sensorial characteristics of wines. A correct and controlled management of various methods or conditions of winemaking can help improve wine quality thorough removing the unwanted aroma compounds, the residues of pesticides or heavy metals, microbial contamination or oxidation, etc.
Reports suggested that the residual content of cyazofamid, famoxadone, mandipropamid and valifenalate was not affected by the synthesis of alcohols [39]. Similar results were published by other authors, regarding the chlorpyrifos, fenarimol, mancozeb, metalaxyl, penconazole, vinclozolin, fluquinconazole, kresoxim-methyl, quinoxyfen and trifloxystrobin in red wines [40] and with fludioxonil and pyrimethanil in white wines [41]. Interesting, opposite impacts were noticed for other pesticide categories. In red wines, a significant decrease of alcohols was observed when famoxadone, fenhexamid and tebuconazole were used [40, 42]. Contrasting, in white wines an increase of cis-3-hexen-1-ol content was observed in the presence of cyprodinil [41]. The same trend was noticed for tetraconazole in wines, in which the levels of cis-3-hexen-1-ol also increased with 55% [43].
A pesticides treatment that included fluxilazole showed that, in white wines, the content of isoamyl alcohols and 2-phenylethanol was increased with a direct correlation to the dose [44]. Moreover, other studies observed in white wines a decrease of 2-methyl-1- propanol and 3-methyl-1-propanol when fosetyl-A, mancozeb and iprovalicarb were used [45]. Results concerning the decrease of alcohols concentrations in the presence of some pesticides can be attributed to lower assimilation of the amino acid precursor by yeast or modifications in the biosynthesis of amino acids. However, a decrease in the quality of wine was noticed due to considerable increases in isoamyl alcohols contents [40, 41]. González-Álvarez et al. [39] reported no significant differences in the alcohols level between control sample and wines treated with chlorpyrifos, cyazofamid, famoxadone, fenarimol, mancozeb, mandipropamid, metalaxyl, penconazole, valifenalate and vinclozolin.
The level of aldehydes increased slowly in the wine aging stage by effect of the oxidation of alcohols. The principal aldehydes that could be found in wines are benzaldehyde and phenylethanal [46]. Until now, results indicate that pesticides utilization do not influence the aldehyde contents [42]. However, in red wine, fenhexamid seems to be responsible for the increased content of benzaldehyde [40].
Sieiro-Sampedro et al. [43] founded that mepanipyrim influence the release of varietal aroma compounds while tetraconazole have a major impact on the aroma biosynthesis pathways of the ethanol producing yeasts. According to the OAV, the mepanipyrim could offer to wines higher spicy and floral nuances and lower fruity note whereas tetraconazole leads to higher floral and lactic notes. Mepanipyrim (Mepp) and Mep-Form generated a positive increase of the geraniol content, between 27 and 41%, benzyl alcohol between 91 and 177%, benzaldehyde between 51 and 111% and
The effect of cyprodinil, fludioxonil and pyrimethanil presented lower levels of hexanoate, ethyl octanoate and ethyl decanoate in white wines [41]. Also, grapes treated with quinoxyfen, kresomin-methyl and trifloxystrobin have decreased the content of ethyl dodecanoate and diethyl succinate in wines [45]. García et al. [41] observed an increased content of isoamyl acetate in the presence of cyprodinil, fludioxonil, chlorpyrifos, feranimol and vinclozolin. The level of ethyl acetate increased also when chlorpyrifos were used, whereas decreased its content with famoxadone and fenhexamid [40]. Other studies did not notice differences in ethyl ester and acetate levels in control sample and grapes treated with cyazofamid, famoxadone, mandipropamid and valifenalate [39]. Similarly, Noguerol-Pato [42] reported no significant variations, caused by treatments with tebuconazole, in the level of isopentyl acetate and most ethyl esters found in Mencía wines. On the other hand, residues of other pesticides seemed to increase the content of isopentyl acetate [45, 40].
Oliva et al. [40] reported that treatment with some pesticides (famoxadone, fenhexamid, fluquinconazole, kresoxim-methyl, quinoxyfen and trifloxystrobin) presented an increase of terpenoic class in red wine comparative with control sample. Another study by González-Álvarez et al. [39] showed that cyazofamid and famoxadone treatments have a major impact in the synthesis of trans, trans-farnesol of white wines. Also, three fungicides (benalaxyl, iprovalicarb and pyraclostrobin) have altered the geraniol synthesis [45]. On the contrary, Noguerol-Pato et al. [42] observed that tebuconazole caused no important changes in the terpenoic content of red wines.
The treatment with famoxadone and cymoxanil led to a reduction in the content of isovaleric, caproic and caprylic acids, while valifenalate and cyazofamid increased the content of capric acid, according to González-Álvarez et al. [39]. In another study, the quinoxyfen, kresoxim-methyl, famoxadone, trifloxystrobin, fluquinconazole and fenhexamid content decreased the acid concentration in red wines compared with control sample [40].
Pesticide residues in grapes and by-products can be a major concern to human health. The majority of grape products are consumed raw or slightly processed [52]. It is imperative to identify processes that are able to decrease and remove the pesticide residues from all horticultural products.
Certain processes, like washing [53], peeling [54], or cooking [55] have been reported in literature as good methods to decrease the content of pesticide residues and also reduce the risk of exposure to these phytosanitary products. However, some horticultural crops such as grapes are not subjected to a washing stage in their industrial processing line, and they are not peeled or cooked previous to consumption. Commonly, grapes are treated followed a phytosanitary scheme in the vineyard, harvested and then directly subjected to the winemaking process.
Proactive removal of pesticide residues from grapes and wines can be done by using decontamination techniques, classified as physical, physical–chemical and oenological methods (Figure 3). Apart from the classic methods used for reducing pesticide residues, the application of new or emergent technologies such as pulsed electric field (PEF) or ultrasounds, in the grapes and wines, is a current research hotspot.
Removal of pesticides from grapes and wines.
Physical methods partially eliminate pesticide residues from grapes and wines are used on a small scale in the wine industry. Most of these techniques are not economically feasible for most small to medium size winemakers, even if nowadays, the modern beverage processing technologies aim at beverages safety and sustainable production.
Zhang et al. [57] reported that PEF method in apple juice can reduce the content of diazinon and dimethoate. The efficacity of PEF can be improved with increased process time and the strength of the electric field. Efficient removal of diazinon (47.6%) and dimethoate (34.7%) was realized when using 20 kV cm − 1 for 260 μs.
Delsart et al. [58] studied the impact of the same treatment on vinclozolin, pyrimethanil, procymidone, and cyprodinil in wine samples. Results revealed that PEF method can decrease the fungicide content and the major factors of influence were the electrical field strength and used energy level.
Ultrasonic dishwasher is a recent technique used in elimination pesticides from fruits and vegetables [59]. Ultrasonic waves provoke a phenomenon such as cavitations, which leads to the fast formation and violent collapse of micron-sized bubbles in a liquid medium. This method with tiny implosions that ensure the cleaning power, using the ultrasonic washing, was not exploited to its maximum potential. In a recent study, Zhou et al. [60] investigated the ultrasonic washing process to eliminate pesticides from grapes. Washing with the ultrasonic dishwasher proved to be more efficient for pesticides removal. Results showed residues decreased rates between 72.1% and 100% on grapes when comparing with normal water washing.
Another very promising emerging technology used for grape products is
One of the known methods for pesticides removal is the chemical adsorption. This method is described as eco-friendly, low production of by-product waste and cost-effectiveness. Various types of adsorbents such as clay, activated carbon, biochar and nanoparticles have been used for the adsorption of pesticides from grapes and wines. Adsorption techniques can be chemical, as bonding through ion-dipole interactions, weak Van Der Waals, forces, dipole–dipole, cation exchange and strong covalent bonding or physical adsorption [63]. Effective removal of pesticide residues depends on the pesticides concentrations, the wine fining agents, the type of compounds and the dosage.
Ozone can be used in various forms such as dry, watery and moist during the decontamination method. O3 in the beverage processes is used as an oxidant for pesticide content reduction. The percentage of pesticide removal depends on the ozone characteristics and not only on the chemical pesticides composition. Thus, it is obvious that specific conditions are necessary for the effectiveness of the ozonation process. The elimination of pesticides is influenced by different conditions of application (pH, temperature and humidity), organic matter content, ozone concentration, production rate and form of application (aqueous and gaseous) [68].
The principle of this technique consists of ozone generation by the passage of air, or oxygen gas through a high-voltage electrical discharge or by ultraviolet light irradiation [69]. The product of ozone degradation is oxygen; thus, it leaves no residues on treated items. There are other possible benefits of ozone, like the elimination of mycotoxins [65], pesticide residues and microbiological control of food products [70].
In 2015, Dordevic and Durovic-Pejcev [71] affirmed that juice processing may eliminate the pesticide amounts by using washing/cleaning, pulp-removing, pressing, squeezing, clarification (like centrifugation, enzymatic treatment and filtering) and heat treatment (like boiling, pasteurization and sterilization). Botondi et al. [72] suggested to utilize ozone fumigation postharvest, in order to analyze microorganisms and evaluate the influence on polyphenols, anthocyanins and cell wall enzymes during the grape dehydration for wine production. Ozone treatments decreased yeasts and fungi by 50%. Moreover, a treatment that used shock ozone fumigation before dehydration decreased the microbial count during dehydration without influencing the polyphenol and carotenoid amounts. In 2018, Karaca [73] studied the removal of pesticides from grapes by exposing fruits in ozone-enriched air. Gaseous ozone rich atmosphere led to a 2.8-fold higher removal of azoxystrobin fungicide than control sample. Both phases, gaseous and aqueous ozone techniques displayed 67.4% and 78.9% decrease of chlorothalonil residues from table grapes [74]. The differences in the efficacity of pesticide residues may be assigned to the diversity in the structure of the pesticides.
Sen et al. [75] studied the influences of activated carbon with low, middle, high doses on the removal of vinclozolin, penconazole, endosulfan, imazalil, nuarimol and tetradifon used in viticulture. The amount of imazalil decreased in white wine with middle and high doses of activated carbon, but low dose of activated carbon removed 92.96% of imazalil. This result can be associated to the high adsorption surface of carbon and to the limited interference from the wine chemical compounds.
Nicolini et al. [76] investigated whether small amount of pesticide residues can be removed adding a low dose of activated carbon during fermentation. AC decreased up to 130 μg/L of fungicides in the white wine samples studied. Results obtained in wines fermented with activated carbon had 30–80% lower fungicides as compared to the control. An exception was found in the case of iprovalicarb which did not significantly decreased.
Sen et al. [75] reported that bentonite had a major effect on decreasing the concentrations of imazalil (96–98%), endosulfan (81–87%), and penconazole (84–95%). However, bentonite influence on nuarimol and tetradifon was limited, removing between 15 and 33% and 25–39%, respectively. Bentonite had no influence on the elimination of vinclozolin. Ruediger et al. [79] has shown that 500 and 2500 mg/l of bentonite eliminated a large amount of pesticides from white wines. The authors have found that there was not a clear effect of an increased dose of bentonite on triadimenol and metalaxyl.
Navarro et al. [80] showed that filtration of wines, previously clarified with bentonite and gelatin, lead to the removal of 2% metalaxyl, 7% fenarimol, 25% penconazole and 28% vinclozolin. During maceration stage, the rate remaining of chlorpyrifos, penconazole and metalaxyl was 90%, while the percentage of fenarimol, vinclozolin and mancozeb was lower (74–67%).
Likas et al. [81] reported that processing of treated grapes into wine almost removed residues for flufenoxuron and lufenuron resulting in residue-free wine, whereas tebufenozide was found in wine at concentrations from 0.13 to 0.26 mg/L. Among the fining agents used, bentonite, potassium caseinate, gelatine–silicon dioxide and polyvinylpolypyrrolidone did not actually eliminate residues from wine, while charcoal very effectively removed tebufenozide residues. The pesticide residues in grapes presented a low removal for 42 days after phytosanitary treatment, with dissipation rates varying from 0.011 to 0.018 mg/kg day. The pesticide residues have shown for 0.27 mg/kg for flufenoxuron, lufenuron and 0.68 mg/kg for tebufenozide, and their concentrations were lower than the maximum residue limits (MRLs).
Venkatachalapathy et al. [83] studied the pesticide removal efficacy, when using chitosan fining agent in grape juice during the clarification stage. In this study, pesticide removal efficiency of chitosan ranged from 54–72% at 0.05% chitosan concentration, and increased up to 86–98%, when higher chitosan concentration was used (up to 0.5%). Results showed that 0.05% chitosan had the highest pesticide removal efficiency (72%), when compared other clarifiers. Also, investigations showed that the optimal pesticide elimination was achieved using chlorpyrifos (98%) and ethion (97%) at chitosan for 1 h incubation continued by phorate (96%), fenthion (95%), fenitrothion (94%) and diazinon (86%) at chitosan for 2 h incubation time.
In recent years, a new carbon rich adsorbent (38–80%),
Grape pomace (GP) is a by-product of various grape based manufacturing processes, such as juice, jam-making, wines, etc. The GP biomass represents around 20–30% of the residual biomass of grapes. European countries reported GP wastes of about 1,200 tons per year. Yoon et al. [86] investigates in his work the adsorptive comportment and mechanisms of grape pomace-derived biochar (GP-BC). Pesticide cymoxanil removal rates were assessed during this study. Biochar produced at 350°C achieved the maximum adsorption capacity of 161 mg CM/g BC at pH 7 for cymoxanil. Thus, cymoxanil adsorption was attributed to the combined influences of metal and hydrophilic interaction.
Angioni et al. [49] has researched the transfer from grapes to wines during the entire winemaking process for some pesticides. The concentrations found in grapes were under limits set by the EU, having the amounts 0.81, 0.43, and 4.23 mg/kg for iprovalicarb, indoxacarb, and boscalid, respectively. The obtained results showed that all pesticides have been transferred from grapes to the must, whereas in wines the residues were insignificant. For pesticides, the clarification stage presented a good elimination of these toxic compounds from wines.
Winemaking processes have the potential to remove, degrade or decrease pesticides content in grapes. This is achieved mainly through stages of winemaking, such as pressing, filtration, adsorption or through microbial processes occurring during the fermentation stage [87, 88].
In the first stages of winemaking, in pressing and maceration process, the pesticide residues on grapes are decreased notably. Thus, a considerable amount of toxic compounds remain in the cake and lees, and a small quantity migrates into the must [89]. In the next stage, in alcoholic and malolactic fermentation, yeasts destroy some part of pesticide residues. Another important stage in which takes place the reduction of pesticide residues is the clarification step [90].
Pan et al. [91] found that the whole process can reduce the zoxamide residue in red and white wines. Peeling process has an important influence on the decrease of zoxamide, because a high content of this pesticide was retained by the grape skin. These results can provide more accurate risk assessments of zoxamide during winemaking process. Pazzirota et al. [92] found that pesticide distributions over the different stages of winemaking process were clearly dependent on the affinities of pesticides to organic or aqueous fractions in the process. The pesticide contents decreased from grape to wine. Decreases from fermentation stage during maceration are due to pesticide affinities for solid residues present in the sample for cyprodinil and imazalil.
Yeast have the ability to decrease pesticide residues from wines, by degradation and/or adsorption. The removal of pesticides during winemaking has been widely studied [93]. In this process, the main agent for adsorption is the yeast cell wall, containing polysaccharides as basic building blocks. It has been shown that the principal fraction of mannoproteins is released in the first week after the alcoholic fermentation has finished. In this stage the dominant adsorptive action is noticed. Also, at the end of the alcoholic fermentation,
Elimination of pesticides by degradation is an uncommon process. Yeast have the ability to degrade some pesticides from the pyrethoid class and insecticides thiophosphates class [95]. During fermentation, yeasts partially degraded quinoxyfen and adsorbed it completely [89]. It is been shown by Cabras et al. [89] that fenhexamid did not affect alcoholic fermentation, whereas a great content of pyrimethanil (10 mg/L) was found to significantly diminish the anaerobic growth of
Increased population, higher demand from quality beverages, rapid climatic changes and the need for more phytosanitary treatments constitute to a wine industry that has to focus more on sustainable practices, high grape yields and minimized health risks. Conservator winemakers that use adequate agricultural practices can limit potential negative effects that are linked to higher pesticide concentration in wines. However, the high pressure of climatic conditions, increased pathogen virulence and mutations into new variants can increase the quantities of pesticides needed in vineyards and led to potential human health risks. Large pesticide quantities may affect negatively the water and soil quality, leading to undesired effects on the animals, plants and human communities.
Different techniques have been used successfully to remove pesticide residues form grapes and wines. Technologies such as pulsed electric field (PEF), ultrasounds (US), microfiltration, ozone (O3), adsorbents used during pressing, fermentation and filtration are nowadays implemented by many winemakers. However, preventive methods applied directly from vineyards and emergent technologies should be utilized to produce grapes with tiny amounts of pesticides. Effective pesticide management requires actions supported by a very clear and transparent legal system and toxicity regulations.
Integrated pest management strategies could provide a more efficient control of pesticides use and limit the residues. Utilization of precision spraying and local treatments can reduce the pesticide residues negative impact on the environment and potential human health risks.
This work was supported by a grant of the Romanian Ministry of Education and Research, CNCS – UEFISCDI, project number PN-III-P1-1.1-PD-2019-0652, within PNCDI III.
IntechOpen Compacts provide a mid-length publishing format which bridges the gap between journal articles, book chapters and monographs, and cover content across all scientific disciplines. Compacts are the preferred publishing option for brief research reports on new topics, in-depth case studies, dissertations, or essays exploring new ideas, issues or broader topics on the research subject.
",metaTitle:"IntechOpen Compacts",metaDescription:"IntechOpen Compacts present a mid-length publishing format which bridges the gap between journal articles, book chapters, and monographs and covers content across all scientific disciplines.",metaKeywords:null,canonicalURL:"/page/compacts",contentRaw:'[{"type":"htmlEditorComponent","content":"Without sacrificing the quality of carefully edited and produced peer-reviewed content, Compacts are published as part of IntechOpen’s book collection but on a faster schedule, typically 4-6 weeks after acceptance. With an average of 132,000 visitors per week, publishing in Compacts not only guarantees high visibility but also facilitates international content sharing. As a fully Open Access publisher, the utilization of a CC BY NC 4.0 license means that other researchers will never have to pay permission fees and can adapt, use, and further build upon the material published in Compacts, eliminating any barriers to the further development of scientific research.
\\n\\nCOMPACTS-SHORT FORM MONOGRAPH
\\n\\nCOST
\\n\\n4,000 GBP Compacts Monograph - Short Form
\\n\\nThe final price will depend on the volume of the publication and includes project management, editorial and peer-review services, technical editing, language copyediting, cover design, book layout, book promotion and ISBN assignment.
\\n\\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate applicable in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\\n\\nOptional Services
\\n\\nIntechOpen has collaborated with Enago, through its sister company, Ulatus – one of the world’s leading providers of book translation services. The services are designed to convey the essence of your work seamlessly to readers from across the globe in their own language. Enago’s expert translators incorporate cultural nuances in translations to make the content relevant for local audiences while retaining the original meaning and style. With a high degree of linguistic and subject expertise, Enago translators are equipped to handle all complex and multiple overlapping themes encompassed in a single book to deliver a superior quality of translation.
\\n\\nIntechOpen Authors that wish to use this service will receive a 20% discount on all translation work. For more information or a quote, please visit: https://www.enago.com/intech.
\\n\\nFUNDING
\\n\\nWe feel that financial barriers should never prevent researchers from publishing their research. Please consult our Open Access Funding page to explore funding opportunities and learn more about how you can finance your IntechOpen publication.
\\n\\nBENEFITS
\\n\\nPUBLISHING PROCESS STEPS
\\n\\nSee a complete overview and description of the steps involved in the publishing process here.
\\n\\nSEND YOUR PROPOSAL
\\n\\nIf you are interested in publishing your book with IntechOpen, please submit your book proposal by completing the Publishing Proposal Form.
\\n\\nNot sure if this is the right option for you? Please refer back to the main Publish with IntechOpen page or feel free to contact us directly at book.department@intechopen.com
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Without sacrificing the quality of carefully edited and produced peer-reviewed content, Compacts are published as part of IntechOpen’s book collection but on a faster schedule, typically 4-6 weeks after acceptance. With an average of 132,000 visitors per week, publishing in Compacts not only guarantees high visibility but also facilitates international content sharing. As a fully Open Access publisher, the utilization of a CC BY NC 4.0 license means that other researchers will never have to pay permission fees and can adapt, use, and further build upon the material published in Compacts, eliminating any barriers to the further development of scientific research.
\n\nCOMPACTS-SHORT FORM MONOGRAPH
\n\nCOST
\n\n4,000 GBP Compacts Monograph - Short Form
\n\nThe final price will depend on the volume of the publication and includes project management, editorial and peer-review services, technical editing, language copyediting, cover design, book layout, book promotion and ISBN assignment.
\n\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate applicable in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\n\nOptional Services
\n\nIntechOpen has collaborated with Enago, through its sister company, Ulatus – one of the world’s leading providers of book translation services. The services are designed to convey the essence of your work seamlessly to readers from across the globe in their own language. Enago’s expert translators incorporate cultural nuances in translations to make the content relevant for local audiences while retaining the original meaning and style. With a high degree of linguistic and subject expertise, Enago translators are equipped to handle all complex and multiple overlapping themes encompassed in a single book to deliver a superior quality of translation.
\n\nIntechOpen Authors that wish to use this service will receive a 20% discount on all translation work. For more information or a quote, please visit: https://www.enago.com/intech.
\n\nFUNDING
\n\nWe feel that financial barriers should never prevent researchers from publishing their research. Please consult our Open Access Funding page to explore funding opportunities and learn more about how you can finance your IntechOpen publication.
\n\nBENEFITS
\n\nPUBLISHING PROCESS STEPS
\n\nSee a complete overview and description of the steps involved in the publishing process here.
\n\nSEND YOUR PROPOSAL
\n\nIf you are interested in publishing your book with IntechOpen, please submit your book proposal by completing the Publishing Proposal Form.
\n\nNot sure if this is the right option for you? Please refer back to the main Publish with IntechOpen page or feel free to contact us directly at book.department@intechopen.com
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6601},{group:"region",caption:"Middle and South America",value:2,count:5906},{group:"region",caption:"Africa",value:3,count:2400},{group:"region",caption:"Asia",value:4,count:12541},{group:"region",caption:"Australia and Oceania",value:5,count:1008},{group:"region",caption:"Europe",value:6,count:17561}],offset:12,limit:12,total:132763},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"17"},books:[{type:"book",id:"11461",title:"Advances in Nanowires Synthesis and Applications to Sensing Technologies \ufeff",subtitle:null,isOpenForSubmission:!0,hash:"94ce46811974b75b5efded35f161ea18",slug:null,bookSignature:"Dr. Felix Kutsanedzie, Dr. Annavaram Viswadevarayalu, Dr. Akwasi Akomeah Agyekum and Dr. Isaac Asempah",coverURL:"https://cdn.intechopen.com/books/images_new/11461.jpg",editedByType:null,editors:[{id:"443651",title:"Dr.",name:"Felix",surname:"Kutsanedzie",slug:"felix-kutsanedzie",fullName:"Felix Kutsanedzie"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11462",title:"Recent Developments in Nanofibers Research",subtitle:null,isOpenForSubmission:!0,hash:"a255898117275990dffe83c75a9f815d",slug:null,bookSignature:"Dr. Maaz Khan",coverURL:"https://cdn.intechopen.com/books/images_new/11462.jpg",editedByType:null,editors:[{id:"107765",title:"Dr.",name:"Maaz",surname:"Khan",slug:"maaz-khan",fullName:"Maaz Khan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11463",title:"Silver Nanoparticles - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"eadac73f609da20167ba128e077b1669",slug:null,bookSignature:"Dr. Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/11463.jpg",editedByType:null,editors:[{id:"107375",title:"Dr.",name:"Eram",surname:"Sharmin",slug:"eram-sharmin",fullName:"Eram Sharmin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11464",title:"Carbon Nanotubes - Recent Advances, New Perspectives and Potential Applications",subtitle:null,isOpenForSubmission:!0,hash:"ce526ec78ed00c4f5f08ffb4548ff388",slug:null,bookSignature:"Prof. Mohammed Muzibur Rahman, Dr. Abdullah Mohammed Ahmed Asiri and Prof. Mohammad Asaduzzaman Chowdhury",coverURL:"https://cdn.intechopen.com/books/images_new/11464.jpg",editedByType:null,editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11465",title:"Nanogenerators and Self-Powered Systems",subtitle:null,isOpenForSubmission:!0,hash:"d52edc8b54e3451fe151b38cb4c9aee9",slug:null,bookSignature:"Dr. Bhaskar Dudem and Dr. Vivekananthan Venkateswaran",coverURL:"https://cdn.intechopen.com/books/images_new/11465.jpg",editedByType:null,editors:[{id:"315573",title:"Dr.",name:"Bhaskar",surname:"Dudem",slug:"bhaskar-dudem",fullName:"Bhaskar Dudem"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11754",title:"Nanozymes - Simulation, Design, and Applications",subtitle:null,isOpenForSubmission:!0,hash:"7d040dd70e3021d1c7da668be1263616",slug:null,bookSignature:"D.Sc. Rafael Vargas-Bernal",coverURL:"https://cdn.intechopen.com/books/images_new/11754.jpg",editedByType:null,editors:[{id:"182114",title:"D.Sc.",name:"Rafael",surname:"Vargas-Bernal",slug:"rafael-vargas-bernal",fullName:"Rafael Vargas-Bernal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11755",title:"Nanoclay - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"b716126dd284217d47a657db8ae22ef4",slug:null,bookSignature:"Dr. Walid Oueslati",coverURL:"https://cdn.intechopen.com/books/images_new/11755.jpg",editedByType:null,editors:[{id:"176192",title:"Dr.",name:"Walid",surname:"Oueslati",slug:"walid-oueslati",fullName:"Walid Oueslati"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11756",title:"Quantum Dots - Recent Advances, New Perspectives and Contemporary Applications",subtitle:null,isOpenForSubmission:!0,hash:"0dd5611c62c91569bd2819e68852002a",slug:null,bookSignature:"Prof. Jagannathan Thirumalai",coverURL:"https://cdn.intechopen.com/books/images_new/11756.jpg",editedByType:null,editors:[{id:"99242",title:"Prof.",name:"Jagannathan",surname:"Thirumalai",slug:"jagannathan-thirumalai",fullName:"Jagannathan Thirumalai"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11757",title:"Nanorods - Synthesis, Properties, Toxicity and Applications",subtitle:null,isOpenForSubmission:!0,hash:"fb27f444442e8f039b560beae93e6873",slug:null,bookSignature:"Prof. Tejendra Kumar Gupta",coverURL:"https://cdn.intechopen.com/books/images_new/11757.jpg",editedByType:null,editors:[{id:"345089",title:"Prof.",name:"Tejendra Kumar",surname:"Gupta",slug:"tejendra-kumar-gupta",fullName:"Tejendra Kumar Gupta"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11986",title:"Advances in Nanosheets",subtitle:null,isOpenForSubmission:!0,hash:"dcc5e4b27db4514b2dd77680e0467793",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11986.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12259",title:"Nanopores",subtitle:null,isOpenForSubmission:!0,hash:"4edd25d3a964c3fb822b1c3495781503",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12259.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:5},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:21},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:62},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:29},{group:"topic",caption:"Mathematics",value:15,count:10},{group:"topic",caption:"Medicine",value:16,count:122},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:11},popularBooks:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10351",title:"Enhanced Liposuction",subtitle:"New Perspectives and Techniques",isOpenForSubmission:!1,hash:"f08ed6de16da357614586c5b58ed4dfa",slug:"enhanced-liposuction-new-perspectives-and-techniques",bookSignature:"Diane Irvine Duncan",coverURL:"https://cdn.intechopen.com/books/images_new/10351.jpg",editors:[{id:"279869",title:"Dr.",name:"Diane Irvine",middleName:null,surname:"Duncan",slug:"diane-irvine-duncan",fullName:"Diane Irvine Duncan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10779",title:"21st Century Nanostructured Materials",subtitle:"Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture",isOpenForSubmission:!1,hash:"72c67f97f9bef68200df115b5fd79884",slug:"21st-century-nanostructured-materials-physics-chemistry-classification-and-emerging-applications-in-industry-biomedicine-and-agriculture",bookSignature:"Phuong V. Pham",coverURL:"https://cdn.intechopen.com/books/images_new/10779.jpg",editors:[{id:"236073",title:"Dr.",name:"Phuong",middleName:"Viet",surname:"Pham",slug:"phuong-pham",fullName:"Phuong Pham"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4389},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3340,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1845,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1096,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:995,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3791,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:2982,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",publishedDate:"May 18th 2022",numberOfDownloads:559,editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",publishedDate:"May 18th 2022",numberOfDownloads:546,editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",publishedDate:"May 18th 2022",numberOfDownloads:539,editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",publishedDate:"May 18th 2022",numberOfDownloads:535,editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"184",title:"Immunology, Allergology and Rheumatology",slug:"immunology-allergology-and-rheumatology",parent:{id:"16",title:"Medicine",slug:"medicine"},numberOfBooks:78,numberOfSeries:0,numberOfAuthorsAndEditors:2141,numberOfWosCitations:1043,numberOfCrossrefCitations:597,numberOfDimensionsCitations:1589,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"184",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10426",title:"Inflammation in the 21st Century",subtitle:null,isOpenForSubmission:!1,hash:"73637d19c1b71e285a3483d6df1c2e0f",slug:"inflammation-in-the-21st-century",bookSignature:"Vijay Kumar, Alexandro Aguilera Salgado and Seyyed Shamsadin Athari",coverURL:"https://cdn.intechopen.com/books/images_new/10426.jpg",editedByType:"Edited by",editors:[{id:"63844",title:"Dr.",name:"Vijay",middleName:null,surname:"Kumar",slug:"vijay-kumar",fullName:"Vijay Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11031",title:"Rheumatoid Arthritis",subtitle:null,isOpenForSubmission:!1,hash:"b27b90045995c761c0d2f975e895c5d4",slug:"rheumatoid-arthritis",bookSignature:"Hechmi Toumi",coverURL:"https://cdn.intechopen.com/books/images_new/11031.jpg",editedByType:"Edited by",editors:[{id:"196403",title:"Prof.",name:"Hechmi",middleName:null,surname:"Toumi",slug:"hechmi-toumi",fullName:"Hechmi Toumi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10312",title:"Graves' Disease",subtitle:null,isOpenForSubmission:!1,hash:"c5b62e83b942e3b6efb47e69ac55f386",slug:"graves-disease",bookSignature:"Robert Gensure",coverURL:"https://cdn.intechopen.com/books/images_new/10312.jpg",editedByType:"Edited by",editors:[{id:"16515",title:"Dr.",name:"Robert",middleName:null,surname:"Gensure",slug:"robert-gensure",fullName:"Robert Gensure"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9848",title:"Antimicrobial Immune Response",subtitle:null,isOpenForSubmission:!1,hash:"81f326b26578dca756e003ba6980add0",slug:"antimicrobial-immune-response",bookSignature:"Maria del Mar Ortega-Villaizan and Veronica Chico",coverURL:"https://cdn.intechopen.com/books/images_new/9848.jpg",editedByType:"Edited by",editors:[{id:"254101",title:"Dr.",name:"Maria Del Mar",middleName:null,surname:"Ortega-Villaizan",slug:"maria-del-mar-ortega-villaizan",fullName:"Maria Del Mar Ortega-Villaizan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9104",title:"Lupus",subtitle:"Need to Know",isOpenForSubmission:!1,hash:"3bf7e412a25b5e723ece6658aaf36917",slug:"lupus-need-to-know",bookSignature:"Reem Hamdy A. Mohammed",coverURL:"https://cdn.intechopen.com/books/images_new/9104.jpg",editedByType:"Edited by",editors:[{id:"36290",title:"Prof.",name:"Reem Hamdy A.",middleName:null,surname:"Mohammed",slug:"reem-hamdy-a.-mohammed",fullName:"Reem Hamdy A. Mohammed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8959",title:"Innate Immunity in Health and Disease",subtitle:null,isOpenForSubmission:!1,hash:"cea4f56328f9d1ee0c6f1486a12afa23",slug:"innate-immunity-in-health-and-disease",bookSignature:"Shailendra K. Saxena and Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/8959.jpg",editedByType:"Edited by",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena"}],equalEditorOne:{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash",profilePictureURL:"https://mts.intechopen.com/storage/users/287184/images/system/287184.jpg",biography:"Dr. Hridayesh Prakash is a fellow of the Royal Society of Biology, London. Currently, he is an associate professor at the Institute of Virology and Immunology, Amity University, NOIDA. He has expertise in innate immunity with a special interest in macrophage immunobiology, tumor immunology/immunotherapy, cell-based immunotherapies, pulmonary infection biology, and radiation biology. \n\nDr. Prakash conducts research to exploit various immunotherapeutics for managing persistent bacterial and viral Infections and gastric cancer. He is unraveling the therapeutic potential of M1 effector macrophages against solid tumors. He is also studying various mechanisms that certain pathogens like Helicobacter pylori, Chlamydia, and Mycobacteria are exploiting for polarizing M1 effector macrophages towards the M2 phenotype during chronic and persistent infections. Under this major objective, he is now validating the therapeutic impact of M1 effector macrophages for the control of persistent infection-driven cancer (adenocarcinoma) progression. \n\nDr. Prakash is also exploring the palliative potential of macrophages against autoimmunity and chronic inflammatory disorders like IBD, radio-pneumonitis, pulmonary fibrosis, and radiation syndrome.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10585",title:"Interleukins",subtitle:"The Immune and Non-Immune Systems’ Related Cytokines",isOpenForSubmission:!1,hash:"6d4ebb087fdb199287bc765704246b60",slug:"interleukins-the-immune-and-non-immune-systems-related-cytokines",bookSignature:"Payam Behzadi",coverURL:"https://cdn.intechopen.com/books/images_new/10585.jpg",editedByType:"Edited by",editors:[{id:"45803",title:"Ph.D.",name:"Payam",middleName:null,surname:"Behzadi",slug:"payam-behzadi",fullName:"Payam Behzadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editedByType:"Edited by",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9607",title:"Immunosuppression",subtitle:null,isOpenForSubmission:!1,hash:"9e4a6d6f6a85696f31c1afb3edba3306",slug:"immunosuppression",bookSignature:"Xuehui He",coverURL:"https://cdn.intechopen.com/books/images_new/9607.jpg",editedByType:"Edited by",editors:[{id:"284559",title:"Dr.",name:"Xuehui",middleName:null,surname:"He",slug:"xuehui-he",fullName:"Xuehui He"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8860",title:"Rheumatoid Arthritis",subtitle:"Other Perspectives towards a Better Practice",isOpenForSubmission:!1,hash:"c54266db62a1e6965367d1de6481f8cf",slug:"rheumatoid-arthritis-other-perspectives-towards-a-better-practice",bookSignature:"Reem Hamdy A. Mohammed",coverURL:"https://cdn.intechopen.com/books/images_new/8860.jpg",editedByType:"Edited by",editors:[{id:"36290",title:"Prof.",name:"Reem Hamdy A.",middleName:null,surname:"Mohammed",slug:"reem-hamdy-a.-mohammed",fullName:"Reem Hamdy A. Mohammed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7539",title:"Connective Tissue Disease",subtitle:"Current State of the Art",isOpenForSubmission:!1,hash:"392aff20e98be42f46dd35a6bf02e392",slug:"connective-tissue-disease-current-state-of-the-art",bookSignature:"Akira Takeda",coverURL:"https://cdn.intechopen.com/books/images_new/7539.jpg",editedByType:"Edited by",editors:[{id:"202405",title:"Dr.",name:"Akira",middleName:null,surname:"Takeda",slug:"akira-takeda",fullName:"Akira Takeda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7853",title:"Cytokines",subtitle:null,isOpenForSubmission:!1,hash:"8f4e8633673d74a52a8394aa6c7b68f2",slug:"cytokines",bookSignature:"Payam Behzadi",coverURL:"https://cdn.intechopen.com/books/images_new/7853.jpg",editedByType:"Edited by",editors:[{id:"45803",title:"Ph.D.",name:"Payam",middleName:null,surname:"Behzadi",slug:"payam-behzadi",fullName:"Payam Behzadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:78,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"21681",doi:"10.5772/20747",title:"Inflammatory Response and Acute Phase Proteins in the Transition Period of High-Yielding Dairy Cows",slug:"inflammatory-response-and-acute-phase-proteins-in-the-transition-period-of-high-yielding-dairy-cows",totalDownloads:3137,totalCrossrefCites:11,totalDimensionsCites:39,abstract:null,book:{id:"534",slug:"acute-phase-proteins-as-early-non-specific-biomarkers-of-human-and-veterinary-diseases",title:"Acute Phase Proteins as Early Non-Specific Biomarkers of Human and Veterinary Diseases",fullTitle:"Acute Phase Proteins as Early Non-Specific Biomarkers of Human and Veterinary Diseases"},signatures:"Erminio Trevisi, Massimo Amadori, Ivonne Archetti, Nicola Lacetera and Giuseppe Bertoni",authors:[{id:"40371",title:"Dr.",name:"Massimo",middleName:null,surname:"Amadori",slug:"massimo-amadori",fullName:"Massimo Amadori"},{id:"47776",title:"Prof.",name:"Erminio",middleName:null,surname:"Trevisi",slug:"erminio-trevisi",fullName:"Erminio Trevisi"},{id:"47777",title:"Dr.",name:"Ivonne",middleName:null,surname:"Archetti",slug:"ivonne-archetti",fullName:"Ivonne Archetti"},{id:"47778",title:"Prof.",name:"Nicola",middleName:null,surname:"Lacetera",slug:"nicola-lacetera",fullName:"Nicola Lacetera"},{id:"47779",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Bertoni",slug:"giuseppe-bertoni",fullName:"Giuseppe Bertoni"}]},{id:"54555",doi:"10.5772/67790",title:"Catalytic Antibodies in Norm and Systemic Lupus Erythematosus",slug:"catalytic-antibodies-in-norm-and-systemic-lupus-erythematosus",totalDownloads:1420,totalCrossrefCites:5,totalDimensionsCites:29,abstract:"Systemic lupus erythematosus (SLE) is known as a systemic polyethiologic diffuse autoimmune disease characterized by connective tissue disorganization and the paramount damage of skin and visceral capillaries. Usually, SLE symptoms include high fever, hair loss, mouth ulcers, chest pain, swollen lymph nodes, painful and swollen joints, increased fatigue, and appearance of red rash more often on the face. The exact reason of SLE appearance is not really clear. Detection of catalytic Abs (abzymes) was shown to be the earliest indicator of different AI disease development. Some abzymes are cytotoxic and can play a dangerous negative role in the pathogenesis of AI diseases. SLE is characterized by the appearance of abzymes with several different catalytic functions including hydrolysis of peptides and proteins, DNA, RNA, and oligosaccharides. In addition, monoclonal SLE abzymes are characterized by extraordinary diversity in the affinity to the substrates, physicochemical and catalytic characteristics, optimal conditions of catalysis, cytotoxicity, etc. Production of abzymes in SLE mice is associated with changes in the differentiation of hematopoietic stem cells of bone marrow, increase in lymphocyte proliferation, and significant suppression of cell apoptosis in different organs. In this chapter, abzymes with different catalytic activities in SLE are described.",book:{id:"5875",slug:"lupus",title:"Lupus",fullTitle:"Lupus"},signatures:"Georgy A. Nevinsky",authors:[{id:"47119",title:"Dr.",name:"Georgy",middleName:null,surname:"Nevinsky",slug:"georgy-nevinsky",fullName:"Georgy Nevinsky"}]},{id:"41491",doi:"10.5772/54703",title:"Oxidative Stress and Antioxidants in the Risk of Osteoporosis — Role of the Antioxidants Lycopene and Polyphenols",slug:"oxidative-stress-and-antioxidants-in-the-risk-of-osteoporosis-role-of-the-antioxidants-lycopene-and-",totalDownloads:3588,totalCrossrefCites:8,totalDimensionsCites:27,abstract:null,book:{id:"3516",slug:"topics-in-osteoporosis",title:"Topics in Osteoporosis",fullTitle:"Topics in Osteoporosis"},signatures:"L.G. Rao and A.V. Rao",authors:[{id:"82663",title:"Dr.",name:"Venketeshwer",middleName:null,surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"},{id:"163766",title:"Dr.",name:"Leticia",middleName:null,surname:"Rao",slug:"leticia-rao",fullName:"Leticia Rao"}]},{id:"41756",doi:"10.5772/55642",title:"Andrographolide a New Potential Drug for the Long Term Treatment of Rheumatoid Arthritis Disease",slug:"andrographolide-a-new-potential-drug-for-the-long-term-treatment-of-rheumatoid-arthritis-disease",totalDownloads:6054,totalCrossrefCites:1,totalDimensionsCites:23,abstract:null,book:{id:"3397",slug:"innovative-rheumatology",title:"Innovative Rheumatology",fullTitle:"Innovative Rheumatology"},signatures:"María A. Hidalgo, Juan L. Hancke, Juan C. Bertoglio and Rafael A. Burgos",authors:[{id:"159637",title:"Dr.",name:"Rafael",middleName:null,surname:"Burgos",slug:"rafael-burgos",fullName:"Rafael Burgos"},{id:"161003",title:"Dr.",name:"María A.",middleName:null,surname:"Hidalgo",slug:"maria-a.-hidalgo",fullName:"María A. Hidalgo"},{id:"161004",title:"Dr.",name:"Juan L.",middleName:null,surname:"Hancke",slug:"juan-l.-hancke",fullName:"Juan L. Hancke"},{id:"166639",title:"Dr.",name:"Juan C.",middleName:null,surname:"Bertoglio",slug:"juan-c.-bertoglio",fullName:"Juan C. Bertoglio"}]},{id:"21456",doi:"10.5772/18241",title:"Haptoglobin and Hemopexin in Heme Detoxification and Iron Recycling",slug:"haptoglobin-and-hemopexin-in-heme-detoxification-and-iron-recycling",totalDownloads:4103,totalCrossrefCites:5,totalDimensionsCites:20,abstract:null,book:{id:"234",slug:"acute-phase-proteins-regulation-and-functions-of-acute-phase-proteins",title:"Acute Phase Proteins",fullTitle:"Acute Phase Proteins - Regulation and Functions of Acute Phase Proteins"},signatures:"Deborah Chiabrando, Francesca Vinchi, Veronica Fiorito and Emanuela Tolosano",authors:[{id:"30837",title:"Prof.",name:"Emanuela",middleName:null,surname:"Tolosano",slug:"emanuela-tolosano",fullName:"Emanuela Tolosano"},{id:"48270",title:"Dr.",name:"Deborah",middleName:null,surname:"Chiabrando",slug:"deborah-chiabrando",fullName:"Deborah Chiabrando"},{id:"48271",title:"Dr.",name:"Francesca",middleName:null,surname:"Vinchi",slug:"francesca-vinchi",fullName:"Francesca Vinchi"},{id:"48272",title:"Dr.",name:"Veronica",middleName:null,surname:"Fiorito",slug:"veronica-fiorito",fullName:"Veronica Fiorito"}]}],mostDownloadedChaptersLast30Days:[{id:"64747",title:"Bone Development and Growth",slug:"bone-development-and-growth",totalDownloads:5897,totalCrossrefCites:9,totalDimensionsCites:19,abstract:"The process of bone formation is called osteogenesis or ossification. After progenitor cells form osteoblastic lines, they proceed with three stages of development of cell differentiation, called proliferation, maturation of matrix, and mineralization. Based on its embryological origin, there are two types of ossification, called intramembranous ossification that occurs in mesenchymal cells that differentiate into osteoblast in the ossification center directly without prior cartilage formation and endochondral ossification in which bone tissue mineralization is formed through cartilage formation first. In intramembranous ossification, bone development occurs directly. In this process, mesenchymal cells proliferate into areas that have high vascularization in embryonic connective tissue in the formation of cell condensation or primary ossification centers. This cell will synthesize bone matrix in the periphery and the mesenchymal cells continue to differentiate into osteoblasts. After that, the bone will be reshaped and replaced by mature lamellar bone. Endochondral ossification will form the center of primary ossification, and the cartilage extends by proliferation of chondrocytes and deposition of cartilage matrix. After this formation, chondrocytes in the central region of the cartilage start to proceed with maturation into hypertrophic chondrocytes. After the primary ossification center is formed, the marrow cavity begins to expand toward the epiphysis. Then the subsequent stages of endochondral ossification will take place in several zones of the bone.",book:{id:"7156",slug:"osteogenesis-and-bone-regeneration",title:"Osteogenesis and Bone Regeneration",fullTitle:"Osteogenesis and Bone Regeneration"},signatures:"Rosy Setiawati and Paulus Rahardjo",authors:null},{id:"65210",title:"Introductory Chapter: Concept of Human Leukocyte Antigen (HLA)",slug:"introductory-chapter-concept-of-human-leukocyte-antigen-hla-",totalDownloads:2714,totalCrossrefCites:2,totalDimensionsCites:5,abstract:null,book:{id:"7140",slug:"human-leukocyte-antigen-hla-",title:"Human Leukocyte Antigen (HLA)",fullTitle:"Human Leukocyte Antigen (HLA)"},signatures:"Batool Mutar Mahdi",authors:[{id:"77656",title:"Dr.",name:"Batool Mutar",middleName:null,surname:"Mahdi",slug:"batool-mutar-mahdi",fullName:"Batool Mutar Mahdi"}]},{id:"21456",title:"Haptoglobin and Hemopexin in Heme Detoxification and Iron Recycling",slug:"haptoglobin-and-hemopexin-in-heme-detoxification-and-iron-recycling",totalDownloads:4106,totalCrossrefCites:5,totalDimensionsCites:20,abstract:null,book:{id:"234",slug:"acute-phase-proteins-regulation-and-functions-of-acute-phase-proteins",title:"Acute Phase Proteins",fullTitle:"Acute Phase Proteins - Regulation and Functions of Acute Phase Proteins"},signatures:"Deborah Chiabrando, Francesca Vinchi, Veronica Fiorito and Emanuela Tolosano",authors:[{id:"30837",title:"Prof.",name:"Emanuela",middleName:null,surname:"Tolosano",slug:"emanuela-tolosano",fullName:"Emanuela Tolosano"},{id:"48270",title:"Dr.",name:"Deborah",middleName:null,surname:"Chiabrando",slug:"deborah-chiabrando",fullName:"Deborah Chiabrando"},{id:"48271",title:"Dr.",name:"Francesca",middleName:null,surname:"Vinchi",slug:"francesca-vinchi",fullName:"Francesca Vinchi"},{id:"48272",title:"Dr.",name:"Veronica",middleName:null,surname:"Fiorito",slug:"veronica-fiorito",fullName:"Veronica Fiorito"}]},{id:"79657",title:"Introductory Chapter: The Journey of Inflammation and Inflammatory Disease Research - Past, Present, and Future",slug:"introductory-chapter-the-journey-of-inflammation-and-inflammatory-disease-research-past-present-and-",totalDownloads:102,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"10426",slug:"inflammation-in-the-21st-century",title:"Inflammation in the 21st Century",fullTitle:"Inflammation in the 21st Century"},signatures:"Vijay Kumar",authors:[{id:"63844",title:"Dr.",name:"Vijay",middleName:null,surname:"Kumar",slug:"vijay-kumar",fullName:"Vijay Kumar"}]},{id:"48112",title:"Classifications and Definitions of Normal Joints",slug:"classifications-and-definitions-of-normal-joints",totalDownloads:2553,totalCrossrefCites:4,totalDimensionsCites:5,abstract:null,book:{id:"4520",slug:"osteoarthritis-progress-in-basic-research-and-treatment",title:"Osteoarthritis",fullTitle:"Osteoarthritis - Progress in Basic Research and Treatment"},signatures:"Xiaoming Zhang, Darryl Blalock and Jinxi Wang",authors:[{id:"70899",title:"Prof.",name:"Jinxi",middleName:null,surname:"Wang",slug:"jinxi-wang",fullName:"Jinxi Wang"}]}],onlineFirstChaptersFilter:{topicId:"184",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"10",title:"Physiology",doi:"10.5772/intechopen.72796",issn:"2631-8261",scope:"Modern physiology requires a comprehensive understanding of the integration of tissues and organs throughout the mammalian body, including the cooperation between structure and function at the cellular and molecular levels governed by gene and protein expression. While a daunting task, learning is facilitated by identifying common and effective signaling pathways mediated by a variety of factors employed by nature to preserve and sustain homeostatic life. \r\nAs a leading example, the cellular interaction between intracellular concentration of Ca+2 increases, and changes in plasma membrane potential is integral for coordinating blood flow, governing the exocytosis of neurotransmitters, and modulating gene expression and cell effector secretory functions. Furthermore, in this manner, understanding the systemic interaction between the cardiovascular and nervous systems has become more important than ever as human populations' life prolongation, aging and mechanisms of cellular oxidative signaling are utilised for sustaining life. \r\nAltogether, physiological research enables our identification of distinct and precise points of transition from health to the development of multimorbidity throughout the inevitable aging disorders (e.g., diabetes, hypertension, chronic kidney disease, heart failure, peptic ulcer, inflammatory bowel disease, age-related macular degeneration, cancer). With consideration of all organ systems (e.g., brain, heart, lung, gut, skeletal and smooth muscle, liver, pancreas, kidney, eye) and the interactions thereof, this Physiology Series will address the goals of resolving (1) Aging physiology and chronic disease progression (2) Examination of key cellular pathways as they relate to calcium, oxidative stress, and electrical signaling, and (3) how changes in plasma membrane produced by lipid peroxidation products can affect aging physiology, covering new research in the area of cell, human, plant and animal physiology.",coverUrl:"https://cdn.intechopen.com/series/covers/10.jpg",latestPublicationDate:"May 14th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:11,editor:{id:"35854",title:"Prof.",name:"Tomasz",middleName:null,surname:"Brzozowski",slug:"tomasz-brzozowski",fullName:"Tomasz Brzozowski",profilePictureURL:"https://mts.intechopen.com/storage/users/35854/images/system/35854.jpg",biography:"Prof. Dr. Thomas Brzozowski works as a professor of Human Physiology and is currently Chairman at the Department of Physiology and is V-Dean of the Medical Faculty at Jagiellonian University Medical College, Cracow, Poland. His primary area of interest is physiology and pathophysiology of the gastrointestinal (GI) tract, with the major focus on the mechanism of GI mucosal defense, protection, and ulcer healing. He was a postdoctoral NIH fellow at the University of California and the Gastroenterology VA Medical Center, Irvine, Long Beach, CA, USA, and at the Gastroenterology Clinics Erlangen-Nuremberg and Munster in Germany. He has published 290 original articles in some of the most prestigious scientific journals and seven book chapters on the pathophysiology of the GI tract, gastroprotection, ulcer healing, drug therapy of peptic ulcers, hormonal regulation of the gut, and inflammatory bowel disease.",institutionString:null,institution:{name:"Jagiellonian University",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"3",title:"Bacterial Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/3.jpg",isOpenForSubmission:!1,editor:null,editorTwo:null,editorThree:null},{id:"4",title:"Fungal Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",isOpenForSubmission:!0,editor:{id:"174134",title:"Dr.",name:"Yuping",middleName:null,surname:"Ran",slug:"yuping-ran",fullName:"Yuping Ran",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9d6QAC/Profile_Picture_1630330675373",biography:"Dr. Yuping Ran, Professor, Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China. Completed the Course Medical Mycology, the Centraalbureau voor Schimmelcultures (CBS), Fungal Biodiversity Centre, Netherlands (2006). International Union of Microbiological Societies (IUMS) Fellow, and International Emerging Infectious Diseases (IEID) Fellow, Centers for Diseases Control and Prevention (CDC), Atlanta, USA. Diploma of Dermatological Scientist, Japanese Society for Investigative Dermatology. Ph.D. of Juntendo University, Japan. Bachelor’s and Master’s degree, Medicine, West China University of Medical Sciences. Chair of Sichuan Medical Association Dermatology Committee. General Secretary of The 19th Annual Meeting of Chinese Society of Dermatology and the Asia Pacific Society for Medical Mycology (2013). In charge of the Annual Medical Mycology Course over 20-years authorized by National Continue Medical Education Committee of China. Member of the board of directors of the Asia-Pacific Society for Medical Mycology (APSMM). Associate editor of Mycopathologia. Vice-chief of the editorial board of Chinses Journal of Mycology, China. Board Member and Chair of Mycology Group of Chinese Society of Dermatology.",institutionString:null,institution:{name:"Sichuan University",institutionURL:null,country:{name:"China"}}},editorTwo:null,editorThree:null},{id:"5",title:"Parasitic Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",isOpenForSubmission:!0,editor:{id:"67907",title:"Dr.",name:"Amidou",middleName:null,surname:"Samie",slug:"amidou-samie",fullName:"Amidou Samie",profilePictureURL:"https://mts.intechopen.com/storage/users/67907/images/system/67907.jpg",biography:"Dr. Amidou Samie is an Associate Professor of Microbiology at the University of Venda, in South Africa, where he graduated for his PhD in May 2008. He joined the Department of Microbiology the same year and has been giving lectures on topics covering parasitology, immunology, molecular biology and industrial microbiology. He is currently a rated researcher by the National Research Foundation of South Africa at category C2. He has published widely in the field of infectious diseases and has overseen several MSc’s and PhDs. His research activities mostly cover topics on infectious diseases from epidemiology to control. His particular interest lies in the study of intestinal protozoan parasites and opportunistic infections among HIV patients as well as the potential impact of childhood diarrhoea on growth and child development. He also conducts research on water-borne diseases and water quality and is involved in the evaluation of point-of-use water treatment technologies using silver and copper nanoparticles in collaboration with the University of Virginia, USA. He also studies the use of medicinal plants for the control of infectious diseases as well as antimicrobial drug resistance.",institutionString:null,institution:{name:"University of Venda",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null},{id:"6",title:"Viral Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",isOpenForSubmission:!0,editor:{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:4,paginationItems:[{id:"81821",title:"Pneumococcal Carriage in Jordanian Children and the Importance of Vaccination",doi:"10.5772/intechopen.104999",signatures:"Adnan Al-Lahham",slug:"pneumococcal-carriage-in-jordanian-children-and-the-importance-of-vaccination",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"81813",title:"Schistosomiasis: Discovery of New Molecules for Disease Treatment and Vaccine Development",doi:"10.5772/intechopen.104738",signatures:"Andressa Barban do Patrocinio",slug:"schistosomiasis-discovery-of-new-molecules-for-disease-treatment-and-vaccine-development",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"New Horizons for Schistosomiasis Research",coverURL:"https://cdn.intechopen.com/books/images_new/10829.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"81644",title:"Perspective Chapter: Ethics of Using Placebo Controlled Trials for Covid-19 Vaccine Development in Vulnerable Populations",doi:"10.5772/intechopen.104776",signatures:"Lesley Burgess, Jurie Jordaan and Matthew Wilson",slug:"perspective-chapter-ethics-of-using-placebo-controlled-trials-for-covid-19-vaccine-development-in-vu",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"80546",title:"Streptococcal Skin and Skin-Structure Infections",doi:"10.5772/intechopen.102894",signatures:"Alwyn Rapose",slug:"streptococcal-skin-and-skin-structure-infections",totalDownloads:48,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}}]},overviewPagePublishedBooks:{paginationCount:13,paginationItems:[{type:"book",id:"6667",title:"Influenza",subtitle:"Therapeutics and Challenges",coverURL:"https://cdn.intechopen.com/books/images_new/6667.jpg",slug:"influenza-therapeutics-and-challenges",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"105e347b2d5dbbe6b593aceffa051efa",volumeInSeries:1,fullTitle:"Influenza - Therapeutics and Challenges",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}]},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}]},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",slug:"current-topics-in-neglected-tropical-diseases",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"61c627da05b2ace83056d11357bdf361",volumeInSeries:3,fullTitle:"Current Topics in Neglected Tropical Diseases",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}]},{type:"book",id:"7839",title:"Malaria",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",slug:"malaria",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Fyson H. Kasenga",hash:"91cde4582ead884cb0f355a19b67cd56",volumeInSeries:4,fullTitle:"Malaria",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga",profilePictureURL:"https://mts.intechopen.com/storage/users/86725/images/system/86725.jpg",biography:"Dr. Kasenga is a graduate of Tumaini University, Kilimanjaro Christian Medical College, Moshi, Tanzania and Umeå University, Sweden. He obtained a Master’s degree in Public Health and PhD in Public Health and Epidemiology. He has a background in Clinical Medicine and has taken courses at higher diploma levels in public health from University of Transkei, Republic of South Africa, and African Medical and Research Foundation (AMREF) in Nairobi, Kenya. Dr. Kasenga worked in different places in and outside Malawi, and has held various positions, such as Licensed Medical Officer, HIV/AIDS Programme Officer, HIV/AIDS resource person in the International Department of Diakonhjemet College, Oslo, Norway. He also managed an Integrated HIV/AIDS Prevention programme for over 5 years. He is currently working as a Director for the Health Ministries Department of Malawi Union of the Seventh Day Adventist Church. Dr. Kasenga has published over 5 articles on HIV/AIDS issues focusing on Prevention of Mother to Child Transmission of HIV (PMTCT), including a book chapter on HIV testing counseling (currently in press). Dr. Kasenga is married to Grace and blessed with three children, a son and two daughters: Happy, Lettice and Sungani.",institutionString:"Malawi Adventist University",institution:{name:"Malawi Adventist University",institutionURL:null,country:{name:"Malawi"}}}]}]},openForSubmissionBooks:{paginationCount:7,paginationItems:[{id:"11476",title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",hash:"8d41fa5f3a5da07469bbc121594bfd3e",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"March 24th 2022",isOpenForSubmission:!0,editors:[{id:"335401",title:"Prof.",name:"Margherita",surname:"Mori",slug:"margherita-mori",fullName:"Margherita Mori"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11460",title:"Pluralistic Approaches for Conservation and Sustainability in Biodiversity",coverURL:"https://cdn.intechopen.com/books/images_new/11460.jpg",hash:"ab014f8ed1669757335225786833e9a9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 22nd 2022",isOpenForSubmission:!0,editors:[{id:"101105",title:"Dr.",name:"Gopal",surname:"Shukla",slug:"gopal-shukla",fullName:"Gopal Shukla"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11475",title:"Food Security Challenges and Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11475.jpg",hash:"090302a30e461cee643ec49675c811ec",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 5th 2022",isOpenForSubmission:!0,editors:[{id:"292145",title:"Dr.",name:"Muhammad",surname:"Haseeb Ahmad",slug:"muhammad-haseeb-ahmad",fullName:"Muhammad Haseeb Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11450",title:"Environmental Impacts of COVID-19 Pandemic on the World",coverURL:"https://cdn.intechopen.com/books/images_new/11450.jpg",hash:"a58c7b02d07903004be70f744f2e1835",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 10th 2022",isOpenForSubmission:!0,editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11477",title:"Public Economics - New Perspectives and Uncertainty",coverURL:"https://cdn.intechopen.com/books/images_new/11477.jpg",hash:"a8e6c515dc924146fbd2712eb4e7d118",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"May 27th 2022",isOpenForSubmission:!0,editors:[{id:"414400",title:"Dr.",name:"Habtamu",surname:"Alem",slug:"habtamu-alem",fullName:"Habtamu Alem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11457",title:"Forest Degradation Under Global Change",coverURL:"https://cdn.intechopen.com/books/images_new/11457.jpg",hash:"8df7150b01ae754024c65d1a62f190d9",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 1st 2022",isOpenForSubmission:!0,editors:[{id:"317087",title:"Dr.",name:"Pavel",surname:"Samec",slug:"pavel-samec",fullName:"Pavel Samec"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11474",title:"Quality of Life Interventions - Magnitude of Effect and Transferability",coverURL:"https://cdn.intechopen.com/books/images_new/11474.jpg",hash:"5a6bcdaf5ee144d043bcdab893ff9e1c",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 2nd 2022",isOpenForSubmission:!0,editors:[{id:"245319",title:"Ph.D.",name:"Sage",surname:"Arbor",slug:"sage-arbor",fullName:"Sage Arbor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:43,paginationItems:[{id:"81796",title:"Apoptosis-Related Diseases and Peroxisomes",doi:"10.5772/intechopen.105052",signatures:"Meimei Wang, Yakun Liu, Ni Chen, Juan Wang and Ye Zhao",slug:"apoptosis-related-diseases-and-peroxisomes",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81723",title:"Peroxisomal Modulation as Therapeutic Alternative for Tackling Multiple Cancers",doi:"10.5772/intechopen.104873",signatures:"Shazia Usmani, Shadma Wahab, Abdul Hafeez, Shabana Khatoon and Syed Misbahul Hasan",slug:"peroxisomal-modulation-as-therapeutic-alternative-for-tackling-multiple-cancers",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81638",title:"Aging and Neuropsychiatric Disease: A General Overview of Prevalence and Trends",doi:"10.5772/intechopen.103102",signatures:"Jelena Milić",slug:"aging-and-neuropsychiatric-disease-a-general-overview-of-prevalence-and-trends",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81566",title:"New and Emerging Technologies for Integrative Ambulatory Autonomic Assessment and Intervention as a Catalyst in the Synergy of Remote Geocoded Biosensing, Algorithmic Networked Cloud Computing, Deep Learning, and Regenerative/Biomic Medicine: Further Real",doi:"10.5772/intechopen.104092",signatures:"Robert L. Drury",slug:"new-and-emerging-technologies-for-integrative-ambulatory-autonomic-assessment-and-intervention-as-a-",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"81576",title:"Carotenoids in Thermal Adaptation of Plants and Animals",doi:"10.5772/intechopen.104537",signatures:"Ivan M. Petyaev",slug:"carotenoids-in-thermal-adaptation-of-plants-and-animals",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Ivan",surname:"Petyaev"}],book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"81358",title:"New Insights on Carotenoid Production by Gordonia alkanivorans Strain 1B",doi:"10.5772/intechopen.103919",signatures:"Tiago P. Silva, Susana M. Paixão, Ana S. Fernandes, José C. Roseiro and Luís Alves",slug:"new-insights-on-carotenoid-production-by-gordonia-alkanivorans-strain-1b",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"81298",title:"Roles of Extracellular Vesicles in Cancer Metastasis",doi:"10.5772/intechopen.103798",signatures:"Eman Helmy Thabet",slug:"roles-of-extracellular-vesicles-in-cancer-metastasis",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Extracellular Vesicles - Role in Diseases, Pathogenesis and Therapy",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81290",title:"Musculoskeletal Abnormalities Caused by Cystic Fibrosis",doi:"10.5772/intechopen.104591",signatures:"Mark Lambrechts",slug:"musculoskeletal-abnormalities-caused-by-cystic-fibrosis",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Advances in Skeletal Muscle Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11675.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81286",title:"Potassium Derangements: A Pathophysiological Review, Diagnostic Approach, and Clinical Management",doi:"10.5772/intechopen.103016",signatures:"Sairah Sharif and Jie Tang",slug:"potassium-derangements-a-pathophysiological-review-diagnostic-approach-and-clinical-management",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"81246",title:"Role of Carotenoids in Cardiovascular Disease",doi:"10.5772/intechopen.102750",signatures:"Arslan Ahmad, Sakhawat Riaz, Muhammad Shahzaib Nadeem, Umber Mubeen and Khadija Maham",slug:"role-of-carotenoids-in-cardiovascular-disease",totalDownloads:27,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}}]},subseriesFiltersForOFChapters:[{caption:"Plant Physiology",value:13,count:5,group:"subseries"},{caption:"Human Physiology",value:12,count:13,group:"subseries"},{caption:"Cell Physiology",value:11,count:25,group:"subseries"}],publishedBooks:{paginationCount:13,paginationItems:[{type:"book",id:"7102",title:"Pneumonia",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7102.jpg",slug:"pneumonia",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Nima Rezaei",hash:"9fd70142814192dcec58a176749f1b60",volumeInSeries:13,fullTitle:"Pneumonia",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",institutionURL:null,country:{name:"Iran"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9615",title:"Chikungunya Virus",subtitle:"A Growing Global Public Health Threat",coverURL:"https://cdn.intechopen.com/books/images_new/9615.jpg",slug:"chikungunya-virus-a-growing-global-public-health-threat",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Jean Engohang-Ndong",hash:"c960d94a63867dd12a8ab15176a3ff06",volumeInSeries:12,fullTitle:"Chikungunya Virus - A Growing Global Public Health Threat",editors:[{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",institutionString:"Kent State University",institution:{name:"Kent State University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9619",title:"Epstein-Barr Virus",subtitle:"New Trends",coverURL:"https://cdn.intechopen.com/books/images_new/9619.jpg",slug:"epstein-barr-virus-new-trends",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Emmanuel Drouet",hash:"a2128c53becb6064589570cbe8d976f8",volumeInSeries:11,fullTitle:"Epstein-Barr Virus - New Trends",editors:[{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",institutionString:null,institution:{name:"Grenoble Alpes University",institutionURL:null,country:{name:"France"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9525",title:"Insights Into Drug Resistance in Staphylococcus aureus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9525.jpg",slug:"insights-into-drug-resistance-in-staphylococcus-aureus",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Amjad Aqib",hash:"98bb6c1ddb067da67185c272f81c0a27",volumeInSeries:10,fullTitle:"Insights Into Drug Resistance in Staphylococcus aureus",editors:[{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9614",title:"Advances in Candida albicans",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9614.jpg",slug:"advances-in-candida-albicans",publishedDate:"November 17th 2021",editedByType:"Edited by",bookSignature:"Xinhui Wang",hash:"31d6882518ca749b12715266eed0a018",volumeInSeries:9,fullTitle:"Advances in Candida albicans",editors:[{id:"296531",title:"Dr.",name:"Xinhui",middleName:null,surname:"Wang",slug:"xinhui-wang",fullName:"Xinhui Wang",profilePictureURL:"https://mts.intechopen.com/storage/users/296531/images/system/296531.jpg",institutionString:"Qinghai Normal University",institution:{name:"University of Luxembourg",institutionURL:null,country:{name:"Luxembourg"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9528",title:"Current Topics and Emerging Issues in Malaria Elimination",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9528.jpg",slug:"current-topics-and-emerging-issues-in-malaria-elimination",publishedDate:"July 21st 2021",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"7f178329cc42e691efe226b32f14e2ea",volumeInSeries:8,fullTitle:"Current Topics and Emerging Issues in Malaria Elimination",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9613",title:"Dengue Fever in a One Health Perspective",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9613.jpg",slug:"dengue-fever-in-a-one-health-perspective",publishedDate:"October 28th 2020",editedByType:"Edited by",bookSignature:"Márcia Aparecida Sperança",hash:"77ecce8195c11092230b4156df6d83ff",volumeInSeries:7,fullTitle:"Dengue Fever in a One Health Perspective",editors:[{id:"176579",title:"Ph.D.",name:"Márcia Aparecida",middleName:null,surname:"Sperança",slug:"marcia-aparecida-speranca",fullName:"Márcia Aparecida Sperança",profilePictureURL:"https://mts.intechopen.com/storage/users/176579/images/system/176579.jpg",institutionString:"Federal University of ABC",institution:{name:"Universidade Federal do ABC",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7981",title:"Overview on Echinococcosis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7981.jpg",slug:"overview-on-echinococcosis",publishedDate:"April 22nd 2020",editedByType:"Edited by",bookSignature:"Fethi Derbel and Meriem Braiki",hash:"24dee9209f3fd6b7cd28f042da0076f0",volumeInSeries:6,fullTitle:"Overview on Echinococcosis",editors:[{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",institutionString:"Clinique les Oliviers",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7887",title:"Hepatitis B and C",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7887.jpg",slug:"hepatitis-b-and-c",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Luis Rodrigo",hash:"8dd6dab483cf505d83caddaeaf497f2c",volumeInSeries:5,fullTitle:"Hepatitis B and C",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo",profilePictureURL:"https://mts.intechopen.com/storage/users/73208/images/system/73208.jpg",institutionString:"University of Oviedo",institution:{name:"University of Oviedo",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7839",title:"Malaria",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",slug:"malaria",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Fyson H. Kasenga",hash:"91cde4582ead884cb0f355a19b67cd56",volumeInSeries:4,fullTitle:"Malaria",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga",profilePictureURL:"https://mts.intechopen.com/storage/users/86725/images/system/86725.jpg",institutionString:"Malawi Adventist University",institution:{name:"Malawi Adventist University",institutionURL:null,country:{name:"Malawi"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",slug:"current-topics-in-neglected-tropical-diseases",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"61c627da05b2ace83056d11357bdf361",volumeInSeries:3,fullTitle:"Current Topics in Neglected Tropical Diseases",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Bacterial Infectious Diseases",value:3,count:2},{group:"subseries",caption:"Parasitic Infectious Diseases",value:5,count:4},{group:"subseries",caption:"Viral Infectious Diseases",value:6,count:7}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:2},{group:"publicationYear",caption:"2021",value:2021,count:4},{group:"publicationYear",caption:"2020",value:2020,count:3},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:230,paginationItems:[{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/61139/images/system/61139.png",biography:"Dr. Sergey Tkachev is a senior research scientist at the Institute of Fundamental Medicine and Biology, Kazan Federal University, Russia, and at the Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia. He received his Ph.D. in Molecular Biology with his thesis “Genetic variability of the tick-borne encephalitis virus in natural foci of Novosibirsk city and its suburbs.” His primary field is molecular virology with research emphasis on vector-borne viruses, especially tick-borne encephalitis virus, Kemerovo virus and Omsk hemorrhagic fever virus, rabies virus, molecular genetics, biology, and epidemiology of virus pathogens.",institutionString:"Russian Academy of Sciences",institution:{name:"Russian Academy of Sciences",country:{name:"Russia"}}},{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/310962/images/system/310962.jpg",biography:"Amlan K. Patra, FRSB, obtained a Ph.D. in Animal Nutrition from Indian Veterinary Research Institute, India, in 2002. He is currently an associate professor at West Bengal University of Animal and Fishery Sciences. He has more than twenty years of research and teaching experience. He held previous positions at the American Institute for Goat Research, The Ohio State University, Columbus, USA, and Free University of Berlin, Germany. His research focuses on animal nutrition, particularly ruminants and poultry nutrition, gastrointestinal electrophysiology, meta-analysis and modeling in nutrition, and livestock–environment interaction. He has authored around 175 articles in journals, book chapters, and proceedings. Dr. Patra serves on the editorial boards of several reputed journals.",institutionString:null,institution:{name:"West Bengal University of Animal and Fishery Sciences",country:{name:"India"}}},{id:"53998",title:"Prof.",name:"László",middleName:null,surname:"Babinszky",slug:"laszlo-babinszky",fullName:"László Babinszky",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/53998/images/system/53998.png",biography:"László Babinszky is Professor Emeritus, Department of Animal Nutrition Physiology, University of Debrecen, Hungary. He has also worked in the Department of Animal Nutrition, University of Wageningen, Netherlands; the Institute for Livestock Feeding and Nutrition (IVVO), Lelystad, Netherlands; the Agricultural University of Vienna (BOKU); the Institute for Animal Breeding and Nutrition, Austria; and the Oscar Kellner Research Institute for Animal Nutrition, Rostock, Germany. In 1992, Dr. Babinszky obtained a Ph.D. in Animal Nutrition from the University of Wageningen. His main research areas are swine and poultry nutrition. He has authored more than 300 publications (papers, book chapters) and edited four books and fourteen international conference proceedings.",institutionString:"University of Debrecen",institution:{name:"University of Debrecen",country:{name:"Hungary"}}},{id:"201830",title:"Dr.",name:"Fernando",middleName:"Sanchez",surname:"Davila",slug:"fernando-davila",fullName:"Fernando Davila",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/201830/images/5017_n.jpg",biography:"I am a professor at UANL since 1988. My research lines are the development of reproductive techniques in small ruminants. We also conducted research on sexual and social behavior in males.\nI am Mexican and study my professional career as an engineer in agriculture and animal science at UANL. Then take a masters degree in science in Germany (Animal breeding). Take a doctorate in animal science at the UANL.",institutionString:null,institution:{name:"Universidad Autónoma de Nuevo León",country:{name:"Mexico"}}},{id:"309250",title:"Dr.",name:"Miguel",middleName:null,surname:"Quaresma",slug:"miguel-quaresma",fullName:"Miguel Quaresma",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/309250/images/9059_n.jpg",biography:"Miguel Nuno Pinheiro Quaresma was born on May 26, 1974 in Dili, Timor Island. He is married with two children: a boy and a girl, and he is a resident in Vila Real, Portugal. He graduated in Veterinary Medicine in August 1998 and obtained his Ph.D. degree in Veterinary Sciences -Clinical Area in February 2015, both from the University of Trás-os-Montes e Alto Douro. He is currently enrolled in the Alternative Residency of the European College of Animal Reproduction. He works as a Senior Clinician at the Veterinary Teaching Hospital of UTAD (HVUTAD) with a role in clinical activity in the area of livestock and equine species as well as to support teaching and research in related areas. He teaches as an Invited Professor in Reproduction Medicine I and II of the Master\\'s in Veterinary Medicine degree at UTAD. Currently, he holds the position of Chairman of the Portuguese Buiatrics Association. He is a member of the Consultive Group on Production Animals of the OMV. He has 19 publications in indexed international journals (ISIS), as well as over 60 publications and oral presentations in both Portuguese and international journals and congresses.",institutionString:"University of Trás-os-Montes and Alto Douro",institution:{name:"University of Trás-os-Montes and Alto Douro",country:{name:"Portugal"}}},{id:"38652",title:"Dr.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",biography:"Rita Payan Carreira earned her Veterinary Degree from the Faculty of Veterinary Medicine in Lisbon, Portugal, in 1985. She obtained her Ph.D. in Veterinary Sciences from the University of Trás-os-Montes e Alto Douro, Portugal. After almost 32 years of teaching at the University of Trás-os-Montes and Alto Douro, she recently moved to the University of Évora, Department of Veterinary Medicine, where she teaches in the field of Animal Reproduction and Clinics. Her primary research areas include the molecular markers of the endometrial cycle and the embryo–maternal interaction, including oxidative stress and the reproductive physiology and disorders of sexual development, besides the molecular determinants of male and female fertility. She often supervises students preparing their master's or doctoral theses. She is also a frequent referee for various journals.",institutionString:null,institution:{name:"University of Évora",country:{name:"Portugal"}}},{id:"283019",title:"Dr.",name:"Oudessa",middleName:null,surname:"Kerro Dego",slug:"oudessa-kerro-dego",fullName:"Oudessa Kerro Dego",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/283019/images/system/283019.png",biography:"Dr. Kerro Dego is a veterinary microbiologist with training in veterinary medicine, microbiology, and anatomic pathology. Dr. Kerro Dego is an assistant professor of dairy health in the department of animal science, the University of Tennessee, Institute of Agriculture, Knoxville, Tennessee. He received his D.V.M. (1997), M.S. (2002), and Ph.D. (2008) degrees in Veterinary Medicine, Animal Pathology and Veterinary Microbiology from College of Veterinary Medicine, Addis Ababa University, Ethiopia; College of Veterinary Medicine, Utrecht University, the Netherlands and Western College of Veterinary Medicine, University of Saskatchewan, Canada respectively. He did his Postdoctoral training in microbial pathogenesis (2009 - 2015) in the Department of Animal Science, the University of Tennessee, Institute of Agriculture, Knoxville, Tennessee. Dr. Kerro Dego’s research focuses on the prevention and control of infectious diseases of farm animals, particularly mastitis, improving dairy food safety, and mitigation of antimicrobial resistance. Dr. Kerro Dego has extensive experience in studying the pathogenesis of bacterial infections, identification of virulence factors, and vaccine development and efficacy testing against major bacterial mastitis pathogens. Dr. Kerro Dego conducted numerous controlled experimental and field vaccine efficacy studies, vaccination, and evaluation of immunological responses in several species of animals, including rodents (mice) and large animals (bovine and ovine).",institutionString:"University of Tennessee at Knoxville",institution:{name:"University of Tennessee at Knoxville",country:{name:"United States of America"}}},{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",biography:"Juan Carlos Gardón Poggi received University degree from the Faculty of Agrarian Science in Argentina, in 1983. Also he received Masters Degree and PhD from Córdoba University, Spain. He is currently a Professor at the Catholic University of Valencia San Vicente Mártir, at the Department of Medicine and Animal Surgery. He teaches diverse courses in the field of Animal Reproduction and he is the Director of the Veterinary Farm. He also participates in academic postgraduate activities at the Veterinary Faculty of Murcia University, Spain. His research areas include animal physiology, physiology and biotechnology of reproduction either in males or females, the study of gametes under in vitro conditions and the use of ultrasound as a complement to physiological studies and development of applied biotechnologies. Routinely, he supervises students preparing their doctoral, master thesis or final degree projects.",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null},{id:"125292",title:"Dr.",name:"Katy",middleName:null,surname:"Satué Ambrojo",slug:"katy-satue-ambrojo",fullName:"Katy Satué Ambrojo",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/125292/images/system/125292.jpeg",biography:"Katy Satué Ambrojo received her Veterinary Medicine degree, Master degree in Equine Technology and doctorate in Veterinary Medicine from the Faculty of Veterinary, CEU-Cardenal Herrera University in Valencia, Spain. She is a Full Professor at the Department of Medicine and Animal Surgery at the same University. She developed her research activity in the field of Endocrinology, Hematology, Biochemistry and Immunology of horses. She is a scientific reviewer of several international journals : American Journal of Obstetrics and Gynecology, Comparative Clinical Pathology, Veterinary Clinical Pathology, Journal of Equine Veterinary Science, Reproduction in Domestic Animals, Research Veterinary Science, Brazilian Journal of Medical and Biological Research, Livestock Production Science and Theriogenology. Since 2014, she has been the Head of the Clinical Analysis Laboratory of the Hospital Clínico Veterinario from the Faculty of Veterinary, CEU-Cardenal Herrera University.",institutionString:"CEU-Cardenal Herrera University",institution:{name:"CEU Cardinal Herrera University",country:{name:"Spain"}}},{id:"309529",title:"Dr.",name:"Albert",middleName:null,surname:"Rizvanov",slug:"albert-rizvanov",fullName:"Albert Rizvanov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/309529/images/9189_n.jpg",biography:'Albert A. Rizvanov is a Professor and Director of the Center for Precision and Regenerative Medicine at the Institute of Fundamental Medicine and Biology, Kazan Federal University (KFU), Russia. He is the Head of the Center of Excellence “Regenerative Medicine” and Vice-Director of Strategic Academic Unit \\"Translational 7P Medicine\\". Albert completed his Ph.D. at the University of Nevada, Reno, USA and Dr.Sci. at KFU. He is a corresponding member of the Tatarstan Academy of Sciences, Russian Federation. Albert is an author of more than 300 peer-reviewed journal articles and 22 patents. He has supervised 11 Ph.D. and 2 Dr.Sci. dissertations. Albert is the Head of the Dissertation Committee on Biochemistry, Microbiology, and Genetics at KFU.\nORCID https://orcid.org/0000-0002-9427-5739\nWebsite https://kpfu.ru/Albert.Rizvanov?p_lang=2',institutionString:"Kazan Federal University",institution:{name:"Kazan Federal University",country:{name:"Russia"}}},{id:"210551",title:"Dr.",name:"Arbab",middleName:null,surname:"Sikandar",slug:"arbab-sikandar",fullName:"Arbab Sikandar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/210551/images/system/210551.jpg",biography:"Dr. Arbab Sikandar, PhD, M. Phil, DVM was born on April 05, 1981. He is currently working at the College of Veterinary & Animal Sciences as an Assistant Professor. He previously worked as a lecturer at the same University. \nHe is a Member/Secretory of Ethics committee (No. CVAS-9377 dated 18-04-18), Member of the QEC committee CVAS, Jhang (Regr/Gen/69/873, dated 26-10-2017), Member, Board of studies of Department of Basic Sciences (No. CVAS. 2851 Dated. 12-04-13, and No. CVAS, 9024 dated 20/11/17), Member of Academic Committee, CVAS, Jhang (No. CVAS/2004, Dated, 25-08-12), Member of the technical committee (No. CVAS/ 4085, dated 20,03, 2010 till 2016).\n\nDr. Arbab Sikandar contributed in five days hands-on-training on Histopathology at the Department of Pathology, UVAS from 12-16 June 2017. He received a Certificate of appreciation for contributions for Popularization of Science and Technology in the Society on 17-11-15. He was the resource person in the lecture series- ‘scientific writing’ at the Department of Anatomy and Histology, UVAS, Lahore on 29th October 2015. He won a full fellowship as a principal candidate for the year 2015 in the field of Agriculture, EICA, Egypt with ref. to the Notification No. 12(11) ACS/Egypt/2014 from 10 July 2015 to 25th September 2015.; he received a grant of Rs. 55000/- as research incentives from Director, Advanced Studies and Research, UVAS, Lahore upon publications of research papers in IF Journals (DR/215, dated 19-5-2014.. He obtained his PhD by winning a HEC Pakistan indigenous Scholarship, ‘Ph.D. fellowship for 5000 scholars – Phase II’ (2av1-147), 17-6/HEC/HRD/IS-II/12, November 15, 2012. \n\nDr. Sikandar is a member of numerous societies: Registered Veterinary Medical Practitioner (life member) and Registered Veterinary Medical Faculty of Pakistan Veterinary Medical Council. The Registration code of PVMC is RVMP/4298 and RVMF/ 0102.; Life member of the University of Veterinary and Animal Sciences, Lahore, Alumni Association with S# 664, dated: 6-4-12. ; Member 'Vets Care Organization Pakistan” with Reference No. VCO-605-149, dated 05-04-06. :Member 'Vet Crescent” (Society of Animal Health and Production), UVAS, Lahore.",institutionString:"University of Veterinary & Animal Science",institution:{name:"University of Veterinary and Animal Sciences",country:{name:"Pakistan"}}},{id:"311663",title:"Dr.",name:"Prasanna",middleName:null,surname:"Pal",slug:"prasanna-pal",fullName:"Prasanna Pal",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/311663/images/13261_n.jpg",biography:null,institutionString:null,institution:{name:"National Dairy Research Institute",country:{name:"India"}}},{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",country:{name:"United Kingdom"}}},{id:"283315",title:"Prof.",name:"Samir",middleName:null,surname:"El-Gendy",slug:"samir-el-gendy",fullName:"Samir El-Gendy",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRduYQAS/Profile_Picture_1606215849748",biography:"Samir El-Gendy is a Professor of anatomy and embryology at the faculty of veterinary medicine, Alexandria University, Egypt. Samir obtained his PhD in veterinary science in 2007 from the faculty of veterinary medicine, Alexandria University and has been a professor since 2017. Samir is an author on 24 articles at Scopus and 12 articles within local journals and 2 books/book chapters. His research focuses on applied anatomy, imaging techniques and computed tomography. Samir worked as a member of different local projects on E-learning and he is a board member of the African Association of Veterinary Anatomists and of anatomy societies and as an associated author at local and international journals. Orcid: https://orcid.org/0000-0002-6180-389X",institutionString:null,institution:{name:"Alexandria University",country:{name:"Egypt"}}},{id:"246149",title:"Dr.",name:"Valentina",middleName:null,surname:"Kubale",slug:"valentina-kubale",fullName:"Valentina Kubale",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/246149/images/system/246149.jpg",biography:"Valentina Kubale is Associate Professor of Veterinary Medicine at the Veterinary Faculty, University of Ljubljana, Slovenia. Since graduating from the Veterinary faculty she obtained her PhD in 2007, performed collaboration with the Department of Pharmacology, University of Copenhagen, Denmark. She continued as a post-doctoral fellow at the University of Copenhagen with a Lundbeck foundation fellowship. She is the editor of three books and author/coauthor of 23 articles in peer-reviewed scientific journals, 16 book chapters, and 68 communications at scientific congresses. Since 2008 she has been the Editor Assistant for the Slovenian Veterinary Research journal. She is a member of Slovenian Biochemical Society, The Endocrine Society, European Association of Veterinary Anatomists and Society for Laboratory Animals, where she is board member.",institutionString:"University of Ljubljana",institution:{name:"University of Ljubljana",country:{name:"Slovenia"}}},{id:"258334",title:"Dr.",name:"Carlos Eduardo",middleName:null,surname:"Fonseca-Alves",slug:"carlos-eduardo-fonseca-alves",fullName:"Carlos Eduardo Fonseca-Alves",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/258334/images/system/258334.jpg",biography:"Dr. Fonseca-Alves earned his DVM from Federal University of Goias – UFG in 2008. He completed an internship in small animal internal medicine at UPIS university in 2011, earned his MSc in 2013 and PhD in 2015 both in Veterinary Medicine at Sao Paulo State University – UNESP. Dr. Fonseca-Alves currently serves as an Assistant Professor at Paulista University – UNIP teaching small animal internal medicine.",institutionString:null,institution:{name:"Universidade Paulista",country:{name:"Brazil"}}},{id:"245306",title:"Dr.",name:"María Luz",middleName:null,surname:"Garcia Pardo",slug:"maria-luz-garcia-pardo",fullName:"María Luz Garcia Pardo",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/245306/images/system/245306.png",biography:"María de la Luz García Pardo is an agricultural engineer from Universitat Politècnica de València, Spain. She has a Ph.D. in Animal Genetics. Currently, she is a lecturer at the Agrofood Technology Department of Miguel Hernández University, Spain. Her research is focused on genetics and reproduction in rabbits. The major goal of her research is the genetics of litter size through novel methods such as selection by the environmental sensibility of litter size, with forays into the field of animal welfare by analysing the impact on the susceptibility to diseases and stress of the does. Details of her publications can be found at https://orcid.org/0000-0001-9504-8290.",institutionString:null,institution:{name:"Miguel Hernandez University",country:{name:"Spain"}}},{id:"41319",title:"Prof.",name:"Lung-Kwang",middleName:null,surname:"Pan",slug:"lung-kwang-pan",fullName:"Lung-Kwang Pan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/41319/images/84_n.jpg",biography:null,institutionString:null,institution:null},{id:"201721",title:"Dr.",name:"Beatrice",middleName:null,surname:"Funiciello",slug:"beatrice-funiciello",fullName:"Beatrice Funiciello",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/201721/images/11089_n.jpg",biography:"Graduated from the University of Milan in 2011, my post-graduate education included CertAVP modules mainly on equines (dermatology and internal medicine) and a few on small animal (dermatology and anaesthesia) at the University of Liverpool. After a general CertAVP (2015) I gained the designated Certificate in Veterinary Dermatology (2017) after taking the synoptic examination and then applied for the RCVS ADvanced Practitioner status. After that, I completed the Postgraduate Diploma in Veterinary Professional Studies at the University of Liverpool (2018). My main area of work is cross-species veterinary dermatology.",institutionString:null,institution:null},{id:"291226",title:"Dr.",name:"Monica",middleName:null,surname:"Cassel",slug:"monica-cassel",fullName:"Monica Cassel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/291226/images/8232_n.jpg",biography:'Degree in Biological Sciences at the Federal University of Mato Grosso with scholarship for Scientific Initiation by FAPEMAT (2008/1) and CNPq (2008/2-2009/2): Project \\"Histological evidence of reproductive activity in lizards of the Manso region, Chapada dos Guimarães, Mato Grosso, Brazil\\". Master\\\'s degree in Ecology and Biodiversity Conservation at Federal University of Mato Grosso with a scholarship by CAPES/REUNI program: Project \\"Reproductive biology of Melanorivulus punctatus\\". PhD\\\'s degree in Science (Cell and Tissue Biology Area) \n at University of Sao Paulo with scholarship granted by FAPESP; Project \\"Development of morphofunctional changes in ovary of Astyanax altiparanae Garutti & Britski, 2000 (Teleostei, Characidae)\\". She has experience in Reproduction of vertebrates and Morphology, with emphasis in Cellular Biology and Histology. She is currently a teacher in the medium / technical level courses at IFMT-Alta Floresta, as well as in the Bachelor\\\'s degree in Animal Science and in the Bachelor\\\'s degree in Business.',institutionString:null,institution:null},{id:"442807",title:"Dr.",name:"Busani",middleName:null,surname:"Moyo",slug:"busani-moyo",fullName:"Busani Moyo",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Gwanda State University",country:{name:"Zimbabwe"}}},{id:"423023",title:"Dr.",name:"Yosra",middleName:null,surname:"Soltan",slug:"yosra-soltan",fullName:"Yosra Soltan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Alexandria University",country:{name:"Egypt"}}},{id:"349788",title:"Dr.",name:"Florencia Nery",middleName:null,surname:"Sompie",slug:"florencia-nery-sompie",fullName:"Florencia Nery Sompie",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Sam Ratulangi University",country:{name:"Indonesia"}}},{id:"345713",title:"Dr.",name:"Csaba",middleName:null,surname:"Szabó",slug:"csaba-szabo",fullName:"Csaba Szabó",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Debrecen",country:{name:"Hungary"}}},{id:"345719",title:"Mrs.",name:"Márta",middleName:null,surname:"Horváth",slug:"marta-horvath",fullName:"Márta Horváth",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Debrecen",country:{name:"Hungary"}}},{id:"420151",title:"Prof.",name:"Novirman",middleName:null,surname:"Jamarun",slug:"novirman-jamarun",fullName:"Novirman Jamarun",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Andalas University",country:{name:"Indonesia"}}},{id:"420149",title:"Dr.",name:"Rusmana",middleName:"Wijaya Setia",surname:"Wijaya Setia Ningrat",slug:"rusmana-wijaya-setia-ningrat",fullName:"Rusmana Wijaya Setia Ningrat",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Andalas University",country:{name:"Indonesia"}}},{id:"339759",title:"Mr.",name:"Abu",middleName:null,surname:"Macavoray",slug:"abu-macavoray",fullName:"Abu Macavoray",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Njala University",country:{name:"Sierra Leone"}}},{id:"339758",title:"Prof.",name:"Benjamin",middleName:null,surname:"Emikpe",slug:"benjamin-emikpe",fullName:"Benjamin Emikpe",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ibadan",country:{name:"Nigeria"}}},{id:"339760",title:"Mr.",name:"Moinina Nelphson",middleName:null,surname:"Kallon",slug:"moinina-nelphson-kallon",fullName:"Moinina Nelphson Kallon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Njala University",country:{name:"Sierra Leone"}}}]}},subseries:{item:{id:"25",type:"subseries",title:"Evolutionary Computation",keywords:"Genetic Algorithms, Genetic Programming, Evolutionary Programming, Evolution Strategies, Hybrid Algorithms, Bioinspired Metaheuristics, Ant Colony Optimization, Evolutionary Learning, Hyperparameter Optimization",scope:"Evolutionary computing is a paradigm that has grown dramatically in recent years. This group of bio-inspired metaheuristics solves multiple optimization problems by applying the metaphor of natural selection. It so far has solved problems such as resource allocation, routing, schedule planning, and engineering design. Moreover, in the field of machine learning, evolutionary computation has carved out a significant niche both in the generation of learning models and in the automatic design and optimization of hyperparameters in deep learning models. This collection aims to include quality volumes on various topics related to evolutionary algorithms and, alternatively, other metaheuristics of interest inspired by nature. For example, some of the issues of interest could be the following: Advances in evolutionary computation (Genetic algorithms, Genetic programming, Bio-inspired metaheuristics, Hybrid metaheuristics, Parallel ECs); Applications of evolutionary algorithms (Machine learning and Data Mining with EAs, Search-Based Software Engineering, Scheduling, and Planning Applications, Smart Transport Applications, Applications to Games, Image Analysis, Signal Processing and Pattern Recognition, Applications to Sustainability).",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",hasOnlineFirst:!1,hasPublishedBooks:!0,annualVolume:11421,editor:{id:"136112",title:"Dr.",name:"Sebastian",middleName:null,surname:"Ventura Soto",slug:"sebastian-ventura-soto",fullName:"Sebastian Ventura Soto",profilePictureURL:"https://mts.intechopen.com/storage/users/136112/images/system/136112.png",biography:"Sebastian Ventura is a Spanish researcher, a full professor with the Department of Computer Science and Numerical Analysis, University of Córdoba. Dr Ventura also holds the positions of Affiliated Professor at Virginia Commonwealth University (Richmond, USA) and Distinguished Adjunct Professor at King Abdulaziz University (Jeddah, Saudi Arabia). Additionally, he is deputy director of the Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI) and heads the Knowledge Discovery and Intelligent Systems Research Laboratory. He has published more than ten books and over 300 articles in journals and scientific conferences. Currently, his work has received over 18,000 citations according to Google Scholar, including more than 2200 citations in 2020. In the last five years, he has published more than 60 papers in international journals indexed in the JCR (around 70% of them belonging to first quartile journals) and he has edited some Springer books “Supervised Descriptive Pattern Mining” (2018), “Multiple Instance Learning - Foundations and Algorithms” (2016), and “Pattern Mining with Evolutionary Algorithms” (2016). He has also been involved in more than 20 research projects supported by the Spanish and Andalusian governments and the European Union. He currently belongs to the editorial board of PeerJ Computer Science, Information Fusion and Engineering Applications of Artificial Intelligence journals, being also associate editor of Applied Computational Intelligence and Soft Computing and IEEE Transactions on Cybernetics. Finally, he is editor-in-chief of Progress in Artificial Intelligence. He is a Senior Member of the IEEE Computer, the IEEE Computational Intelligence, and the IEEE Systems, Man, and Cybernetics Societies, and the Association of Computing Machinery (ACM). Finally, his main research interests include data science, computational intelligence, and their applications.",institutionString:null,institution:{name:"University of Córdoba",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,series:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403"},editorialBoard:[{id:"111683",title:"Prof.",name:"Elmer P.",middleName:"P.",surname:"Dadios",slug:"elmer-p.-dadios",fullName:"Elmer P. Dadios",profilePictureURL:"https://mts.intechopen.com/storage/users/111683/images/system/111683.jpg",institutionString:"De La Salle University",institution:{name:"De La Salle University",institutionURL:null,country:{name:"Philippines"}}},{id:"106873",title:"Prof.",name:"Hongwei",middleName:null,surname:"Ge",slug:"hongwei-ge",fullName:"Hongwei Ge",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Dalian University of Technology",institutionURL:null,country:{name:"China"}}},{id:"171056",title:"Dr.",name:"Sotirios",middleName:null,surname:"Goudos",slug:"sotirios-goudos",fullName:"Sotirios Goudos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9IuQAK/Profile_Picture_1622623673666",institutionString:null,institution:{name:"Aristotle University of Thessaloniki",institutionURL:null,country:{name:"Greece"}}},{id:"15895",title:"Assistant Prof.",name:"Takashi",middleName:null,surname:"Kuremoto",slug:"takashi-kuremoto",fullName:"Takashi Kuremoto",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLrqQAG/Profile_Picture_1625656196038",institutionString:null,institution:{name:"Nippon Institute of Technology",institutionURL:null,country:{name:"Japan"}}},{id:"125844",title:"Prof.",name:"Wellington",middleName:"Pinheiro Dos",surname:"Santos",slug:"wellington-santos",fullName:"Wellington Santos",profilePictureURL:"https://mts.intechopen.com/storage/users/125844/images/4878_n.jpg",institutionString:null,institution:{name:"Federal University of Pernambuco",institutionURL:null,country:{name:"Brazil"}}}]},onlineFirstChapters:{paginationCount:17,paginationItems:[{id:"81647",title:"Diabetes and Epigenetics",doi:"10.5772/intechopen.104653",signatures:"Rasha A. Alhazzaa, Thomas Heinbockel and Antonei B. Csoka",slug:"diabetes-and-epigenetics",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"81099",title:"SK Channels and Heart Disease",doi:"10.5772/intechopen.104115",signatures:"Katherine Zhong, Shawn Kant, Frank Sellke and Jun Feng",slug:"sk-channels-and-heart-disease",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80967",title:"Hot on the Trail of Skin Inflammation: Focus on TRPV1/TRPV3 Channels in Psoriasis",doi:"10.5772/intechopen.103792",signatures:"Lisa S. Martin, Emma Fraillon, Fabien P. Chevalier and Bérengère Fromy",slug:"hot-on-the-trail-of-skin-inflammation-focus-on-trpv1-trpv3-channels-in-psoriasis",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80952",title:"TRPV Family Ion Channels in the Mammary Epithelium: Role in Normal Tissue Homeostasis and along Breast Cancer Progression",doi:"10.5772/intechopen.103665",signatures:"Sari Susanna Tojkander",slug:"trpv-family-ion-channels-in-the-mammary-epithelium-role-in-normal-tissue-homeostasis-and-along-breas",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80484",title:"The Use of Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC) to Study Ivermectin-Mediated Molecular Pathway Changes in Human Ovarian Cancer Cells",doi:"10.5772/intechopen.102092",signatures:"Na Li and Xianquan Zhan",slug:"the-use-of-stable-isotope-labeling-with-amino-acids-in-cell-culture-silac-to-study-ivermectin-mediat",totalDownloads:80,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80157",title:"Structural Determinants for Ligand Accommodation in Voltage Sensors",doi:"10.5772/intechopen.102094",signatures:"Abigail García-Morales, Aylin López-Palestino and Daniel Balleza",slug:"structural-determinants-for-ligand-accommodation-in-voltage-sensors",totalDownloads:87,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"79690",title:"Mitochondrial Channels and their Role in Cardioprotection",doi:"10.5772/intechopen.101127",signatures:"Keerti Mishra and Min Luo",slug:"mitochondrial-channels-and-their-role-in-cardioprotection",totalDownloads:84,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"79031",title:"Isolation and Expansion of Mesenchymal Stem/Stromal Cells, Functional Assays and Long-Term Culture Associated Alterations of Cellular Properties",doi:"10.5772/intechopen.100286",signatures:"Chenghai Li",slug:"isolation-and-expansion-of-mesenchymal-stem-stromal-cells-functional-assays-and-long-term-culture-as",totalDownloads:77,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"78960",title:"Two-Dimensional and Three-Dimensional Cell Culture and Their Applications",doi:"10.5772/intechopen.100382",signatures:"Sangeeta Ballav, Ankita Jaywant Deshmukh, Shafina Siddiqui, Jyotirmoi Aich and Soumya Basu",slug:"two-dimensional-and-three-dimensional-cell-culture-and-their-applications",totalDownloads:250,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"78812",title:"Nanotechnology Application and Intellectual Property Right Prospects of Mammalian Cell Culture",doi:"10.5772/intechopen.99146",signatures:"Harikrishnareddy Rachamalla, Anubhab Mukherjee and Manash K. Paul",slug:"nanotechnology-application-and-intellectual-property-right-prospects-of-mammalian-cell-culture",totalDownloads:120,totalCrossrefCites:1,totalDimensionsCites:1,authors:null,book:{title:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"78274",title:"A Brief Concept of Cell Culture: Challenges, Prospects and Applications",doi:"10.5772/intechopen.99387",signatures:"Md. Salauddin",slug:"a-brief-concept-of-cell-culture-challenges-prospects-and-applications",totalDownloads:174,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"78415",title:"Epigenetic",doi:"10.5772/intechopen.99964",signatures:"Mehmet Ünal",slug:"epigenetic",totalDownloads:136,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"77443",title:"Cyanobacterial Phytochromes in Optogenetics",doi:"10.5772/intechopen.97522",signatures:"Sivasankari Sivaprakasam, Vinoth Mani, Nagalakshmi Balasubramaniyan and David Ravindran Abraham",slug:"cyanobacterial-phytochromes-in-optogenetics",totalDownloads:184,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"75979",title:"Spatiotemporal Regulation of Cell–Cell Adhesions",doi:"10.5772/intechopen.97009",signatures:"Brent M. Bijonowski",slug:"spatiotemporal-regulation-of-cell-cell-adhesions",totalDownloads:171,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"76646",title:"Functional Mechanism of Proton Pump-Type Rhodopsins Found in Various Microorganisms as a Potential Effective Tool in Optogenetics",doi:"10.5772/intechopen.97589",signatures:"Jun Tamogami and Takashi Kikukawa",slug:"functional-mechanism-of-proton-pump-type-rhodopsins-found-in-various-microorganisms-as-a-potential-e",totalDownloads:197,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"76510",title:"Evolution of Epigenome as the Blueprint for Carcinogenesis",doi:"10.5772/intechopen.97379",signatures:"Zeenat Farooq, Ambreen Shah, Mohammad Tauseef, Riyaz A. Rather and Mumtaz Anwar",slug:"evolution-of-epigenome-as-the-blueprint-for-carcinogenesis",totalDownloads:190,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}}]},publishedBooks:{paginationCount:10,paginationItems:[{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9753",title:"Terpenes and Terpenoids",subtitle:"Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/9753.jpg",slug:"terpenes-and-terpenoids-recent-advances",publishedDate:"July 28th 2021",editedByType:"Edited by",bookSignature:"Shagufta Perveen and Areej Mohammad Al-Taweel",hash:"575689df13c78bf0e6c1be40804cd010",volumeInSeries:21,fullTitle:"Terpenes and Terpenoids - Recent Advances",editors:[{id:"192992",title:"Prof.",name:"Shagufta",middleName:null,surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen",profilePictureURL:"https://mts.intechopen.com/storage/users/192992/images/system/192992.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",slug:"oxidoreductase",publishedDate:"February 17th 2021",editedByType:"Edited by",bookSignature:"Mahmoud Ahmed Mansour",hash:"852e6f862c85fc3adecdbaf822e64e6e",volumeInSeries:19,fullTitle:"Oxidoreductase",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour",profilePictureURL:"https://mts.intechopen.com/storage/users/224662/images/system/224662.jpg",institutionString:"King Saud bin Abdulaziz University for Health Sciences",institution:{name:"King Saud bin Abdulaziz University for Health Sciences",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8094",title:"Aflatoxin B1 Occurrence, Detection and Toxicological Effects",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8094.jpg",slug:"aflatoxin-b1-occurrence-detection-and-toxicological-effects",publishedDate:"June 3rd 2020",editedByType:"Edited by",bookSignature:"Xi-Dai Long",hash:"44f4ad52d8a8cbb22ef3d505d6b18027",volumeInSeries:14,fullTitle:"Aflatoxin B1 Occurrence, Detection and Toxicological Effects",editors:[{id:"202142",title:"Prof.",name:"Xi-Dai",middleName:null,surname:"Long",slug:"xi-dai-long",fullName:"Xi-Dai Long",profilePictureURL:"https://mts.intechopen.com/storage/users/202142/images/system/202142.jpeg",institutionString:"Youjiang Medical University for Nationalities",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8004",title:"Nitrogen Fixation",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8004.jpg",slug:"nitrogen-fixation",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Everlon Cid Rigobelo and Ademar Pereira Serra",hash:"02f39c8365ba155d1c520184c2f26976",volumeInSeries:11,fullTitle:"Nitrogen Fixation",editors:[{id:"39553",title:"Prof.",name:"Everlon",middleName:"Cid",surname:"Rigobelo",slug:"everlon-rigobelo",fullName:"Everlon Rigobelo",profilePictureURL:"https://mts.intechopen.com/storage/users/39553/images/system/39553.jpg",institutionString:"São Paulo State University",institution:{name:"Sao Paulo State University",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8028",title:"Flavonoids",subtitle:"A Coloring Model for Cheering up Life",coverURL:"https://cdn.intechopen.com/books/images_new/8028.jpg",slug:"flavonoids-a-coloring-model-for-cheering-up-life",publishedDate:"March 11th 2020",editedByType:"Edited by",bookSignature:"Farid A. Badria and Anthony Ananga",hash:"6c33178a5c7d2b276d2c6af4255def64",volumeInSeries:10,fullTitle:"Flavonoids - A Coloring Model for Cheering up Life",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8170",title:"Chemical Properties of Starch",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8170.jpg",slug:"chemical-properties-of-starch",publishedDate:"March 11th 2020",editedByType:"Edited by",bookSignature:"Martins Emeje",hash:"0aedfdb374631bb3a33870c4ed16559a",volumeInSeries:9,fullTitle:"Chemical Properties of Starch",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Emeje",slug:"martins-emeje",fullName:"Martins Emeje",profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",institutionURL:null,country:{name:"Nigeria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8019",title:"Alginates",subtitle:"Recent Uses of This Natural Polymer",coverURL:"https://cdn.intechopen.com/books/images_new/8019.jpg",slug:"alginates-recent-uses-of-this-natural-polymer",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Leonel Pereira",hash:"61ea5c1aef462684a3b2215631b7dbf2",volumeInSeries:7,fullTitle:"Alginates - Recent Uses of This Natural Polymer",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira",profilePictureURL:"https://mts.intechopen.com/storage/users/279788/images/system/279788.jpg",institutionString:"University of Coimbra",institution:{name:"University of Coimbra",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8504",title:"Pectins",subtitle:"Extraction, Purification, Characterization and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/8504.jpg",slug:"pectins-extraction-purification-characterization-and-applications",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Martin Masuelli",hash:"ff1acef627b277c575a10b3259dd331b",volumeInSeries:6,fullTitle:"Pectins - Extraction, Purification, Characterization and Applications",editors:[{id:"99994",title:"Dr.",name:"Martin",middleName:"Alberto",surname:"Masuelli",slug:"martin-masuelli",fullName:"Martin Masuelli",profilePictureURL:"https://mts.intechopen.com/storage/users/99994/images/system/99994.jpg",institutionString:"National University of San Luis",institution:{name:"National University of San Luis",institutionURL:null,country:{name:"Argentina"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",institutionString:"Kogakuin University",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/77174",hash:"",query:{},params:{id:"77174"},fullPath:"/chapters/77174",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()