Open access peer-reviewed chapter

Natural Products for Salmonellosis: Last Decade Research

Written By

Nancy Jannet Ruiz-Pérez, Jaime Sánchez-Navarrete and Julia D. Toscano-Garibay

Submitted: 02 November 2020 Reviewed: 25 January 2021 Published: 01 March 2021

DOI: 10.5772/intechopen.96207

From the Edited Volume

Salmonella spp. - A Global Challenge

Edited by Alexandre Lamas, Patricia Regal and Carlos Manuel Franco

Chapter metrics overview

460 Chapter Downloads

View Full Metrics

Abstract

Salmonellosis is a disease of great relevance in terms of public health given the economic and social impact that causes both in developing and highly industrialized countries. Due to its transmission mechanism, it affects hundreds or thousands of people every year and is considered an acute disease of worldwide distribution. Causative agent of salmonellosis is salmonella specie which are small gram-negative bacilli and facultative intracellular pathogen of the Enterobacteriaceae family. Multidrug resistance is reported more frequently in strains of salmonella, raising the necessity of new strategies to combat its spread and to treat the disease. Natural products (NPs) derived from traditional medicine knowledge have become an important resource to this end. In this chapter, we present a summary of information published from 2010 to 2020, as a sample of the potentiality of NPs as agents for Salmonellosis. This search was not exhaustive, rather, we aim to obtain a random sample of information using the simplest terms on the matter of natural products for salmonellosis, hopefully, as a reference source for interested researchers.

Keywords

  • salmonella
  • antibacterial activity
  • natural products
  • anti-salmonella
  • Salmonellosis

1. Introduction

Salmonellosis is a disease of great relevance in terms of public health given the economic and social impact that causes both in developing and highly industrialized countries. Due to its transmission mechanism, it affects hundreds or thousands of people every year and is considered an acute disease of worldwide distribution [1] with variations in the frequency of serotypes from one country to another [2], being notably more frequent in areas that have not reached adequate sanitation and hygiene conditions or that do not have enough resources and public health infrastructure. There is no distinction in the occurrence of salmonellosis by sex, age, or social and economic status with high incidence at the extremes of life, being the most vulnerable groups, children under 5yo, adults over 60 years of age and immunocompromised individuals [3, 4]. On the other hand, it is also a seasonal disease, so incidence is higher on periods of increased environmental temperature like spring and summer, showing a decrease in autumn and winter [5].

The raise in salmonellosis at any part of the world is of maximum relevance. For example, an incidence of 0.78–3.8 million cases per year has been estimated in the United States. Natural reservoir is made up of domestic animals (dogs and cats), wild animals (reptiles such as iguanas and turtles) as well as humans (carriers, convalescent). Transmission is through food (with or without manufacture) and water contaminated with human or animal feces and from individual to individual. Salmonellosis presents as sporadic cases or as outbreaks with variable affectations. Incidence rate is dose-dependent in function of the disseminated serotype and is determined by incubation period, symptoms and severity.

Causative agent of salmonellosis are salmonella species, numerous disease outbreaks are related to the consumption of eggs, chicken meat and other raw products (mainly dairy). For instance, in an outbreak of enteric salmonellosis serotype Typhimurium (n = 99) induced by consumption of roast porcine meat in an institution for the mentally ill in Konagua it was shown that the incubation period was between 10–12 hours and that the supply of antibiotics prolonged excreta periods. Salmonellosis due to Salmonella enterica serotype Enteritidis was detected in an interstate outbreak in the United States in the early 90’s, produced by the consumption of ice cream (224,000 cases) and in Canada due to the consumption of commercial packaged cheese (800 cases). Salmonella Javiana (n = 66) has been reported to produce outbreaks as in Boston due to the consumption of chicken sandwiches [6].

Advertisement

2. Salmonella

Salmonella belongs to the Enterobacteriaceae family, which are small gram-negative bacilli varying in sizes ranging in average from 2–3 μm in length and 0.4–0.6 μm in width. These bacilli do not form spores and possess peritrichous flagella hence are mobile microorganisms, although some genera, such as Klebsiella and Shigella, are lacking on these organelles and so on mobility. Traditional grouping classification is carried out using primary biochemical characteristics that allows a further sorting into subgroups based on antigenic structure determinants or using bacteriophage reactions. Currently, with the advances in molecular biology, the differentiation of groups and subgroups can be made using PCR technique for identification, diagnostic and epidemiological purposes.

Regarding its metabolic characteristics, salmonella grows in simple synthetic media and can use unique carbon sources, such as glucose in a fermentative way with the subsequent formation of acids and/or gases, reducing nitrates and nitrites, rendering oxidase negative reaction. Salmonella also tests positive for methyl red, hydrogen sulfide, indole-ornithine motility (MIO medium), lysine decarboxylase, arginine dihydrolase, ornithine decarboxylase, gas from glucose, and fermentation of numerous carbohydrates such as rhamnose, arabinose, mannitol, etc.

Most enteric microorganisms are resistant to inhibition by the action of certain bacteriostatic dyes, the selective media containing these compounds facilitate considerably isolation from fecal samples, salmonella is less sensitive than coliform microorganisms against citrate inhibition action; for instance, SS (Salmonella-Shigella) agar containing both citrate and bile salts is therefore used as a selective medium for the culture of pathogenic species [7, 8].

Advertisement

3. Classification

Although controversial and evolving, there is a salmonella nomenclature used by the Centers for Disease Control and Prevention (CDC) and recommended by the Collaborating Center of the World Health Organization (WHO), which according to the differences in their 16S rRNA sequence analysis classifies this genus into two species, Salmonella enterica and Salmonella bongori. S. enterica can also be further classified into six subspecies mainly found in mammals and is responsible for 99% of infections in humans and warm-blooded animals. On the other hand, S. bongori is predominantly environmental and on cold-blooded animals [9].

3.1 Classification according to Kauffmann-White

Since decades ago, classification of salmonella finalizing at the species level are based on its antigenic structure. Although certain strains that have the same antigenic activity could present different metabolic reactions (biotype variants or serotypes), this sorting method is generally accepted and is actively in use.

Surface antigen studies are based on H, O, K and Vi antigens. H is denominated surface or flagellar antigen and participates in host immune response, O (aka somatic antigen) is a lipopolysaccharide located in the cell membrane, K is a capsular antigen and Vi antigen is a subtype of K antigen associated to virulence [9] and the obtention of antisera containing antibodies against all these fractions allows the identification of salmonella species. More than 2,500 serotypes have been identified related to the H, O, K and Vi antigens [10] as a result of the numerous absorption tests and cross-reactions studies carried out in Denmark and England by Kauffman and White. Currently, large centers in Copenhagen, London, and Atlanta have the necessary collections of specific antisera for salmonellas typing. In most testing and diagnostic laboratories, salmonella strains are identified and classified by their fermentative characteristics and agglutination reactions using group-specific antisera.

In Mexico, for example, a study for the classification and identification of salmonella serotypes at public and private health centers and hospitals analyzed 24,394 salmonella strains isolated from different sources, 15,843 (64.9%) of human origin and 8,551 (35.1%) non-human demonstrating the usefulness of Kauffmann-White scheme and using antisera produced at the National Institute of Diagnosis and Reference (INDRE) in accordance with the Center for Disease Control and Prevention, Atlanta (GA), showing that most frequent serotypes both in human and non-human samples were S. Typhimurium, S. Enteritidis, S. Derby, S. Agona and S. Anatum. From the epidemiological point of view, it is interesting to identify which are the circulating and emerging serotypes to implement prevention strategies [8].

Advertisement

4. Pathogenicity

Salmonella spp. is a highly pathogenic microorganism that presents different pathogenicity mechanisms including adherence, invasiveness, colonization and growth, toxicity and tissue damage [11]. It is a facultative intracellular pathogen causing moderate to severe infections, or even compromising systemic infections risking patients’ lives, depending on the serotype, virulence, inoculum and immunological state of involved host, and all of this using only a mixture of toxins and other virulence factors.

Clinical manifestations in humans include enteric fevers, acute gastroenteritis and septicemia in extreme cases. Prototypical enteric fevers are caused by Salmonella Typhi, this is also known as typhoid fever, after its incubation period (7–14 days), symptoms such as anorexia, headache, followed by general malaise and fever may occur. The interaction patient-causative agent is essential for the progression of the disease, salmonella must find a microhabitat suitable for its establishment, multiplication and virulence factors expression.

Salmonella produces at least three toxins: enterotoxin, lipopolysaccharide endotoxin (LPS), and cytotoxin. Enterotoxigenicity, which is a property present in many serotypes of this microorganism, including S. Typhi, is expressed a few hours after contact with the host cell. The pathogenicity mechanisms by which salmonella induces diarrhea and septicemia have not yet been clearly elucidated, but it appears to be a complex phenomenon involving numerous virulence factors such as those mentioned above.

The specific virulence factors are encoded by a group of genes for the formation of pathogenicity islands (SPI), with G + C percentages differing from the average of the bacterial genome. Direct repeats are present at the filament ends, carrying genes that encode mobility factors such as integrases, transposases or insertion sequences and are frequently inserted on tRNA. This suggests that they have been obtained from other species by horizontal transfer or by plasmids. There are numerous genes that participate in the invasion and that are present in salmonellas, genes that code for the synthesis of proteins related to the translocation of effector molecules within the cytoplasm of the host cell. Today, it is known that salmonella has five islands of pathogenicity: SPI-1, SPI-2, SPI-3, SPI-4 and SPI-5 [10].

Advertisement

5. Mechanisms of resistance

Drug resistance and worldwide incidence of salmonella infections has been increasingly reported. For example, it has been observed a high incidence among humans, livestock and poultry of Salmonella enterica serotype [4, [5],12:i:-], with variants ranging from sensitive- to multi-drug resistant, since the 1990s. Other examples include a strain of Salmonella enterica discovered on 2015 that was provided with the gene mcr-1 of plasmid-mediated colistin resistance and clinical isolates from Portugal, China and United Kingdom observed in 2016 with this same gene [12].

Several types of salmonella with multi-drug resistance (MDR) are capable of generating diverse types of plasmids, with gene cassettes that provide the property of resistance against antibiotics such as chloramphenicol, tetracycline, ampicillin, and streptomycin [13, 14]. The chromosomal mutation in the regions that determine the resistance to quinolones of the gyrA gene are responsible for the appearance of salmonella serotypes with little susceptibility to ciprofloxacin [15]. On the other hand, the mutated genes that code for extended spectrum β-lactamases, are responsible for the serotypes that have begun to develop resistance to cephalosporins [16].

Resistance not only by salmonella, but by other microorganisms are currently a public health problem worldwide, which threatens the prevention, control and treatment of innumerable infectious diseases, having as expected consequences in terms of health and economic impact. This problem was recognized by the World Health Organization and in 2001 this organization published the Global Strategy for the Containment of Antimicrobial Resistance, publicizing interventionist actions to delay the appearance and to reduce the spread of resistant microorganisms [17]. For 2012, WHO proposed a series of actions such as strengthening health services and epidemiological surveillance, regulated use of antimicrobials in hospitals and in communities, promoting the development of new drugs and appropriate vaccines, among others [18]. This problem is one of the reasons for the development of new alternatives, being natural products derived from traditional medicine, one of the most used resources.

Advertisement

6. Traditional medicine and natural products

The origin of Natural and Traditional Medicine is indisputably linked both to human history and to its fight for survival [19]. Written evidence on plants being used as remedies for disease is as ancient as Mesopotamian tablets, and from there, a nearly endless number of registers in all cultures, supports its essential role on human well-being. Currently, traditional medicine has been delineated as the use of products of natural origin for health preservation, having the so-called Natural Products (NPs) at its focus.

NPs are broadly defined as small molecules produced by a living organism. This definition comprises a wide variety of compounds including the synthesized during basic metabolism (primary metabolites) or as by-products of it (secondary metabolites). Lipids, carbohydrates, proteins and nucleic acids are part of the first kind of NPs, while smaller molecules such as alkaloids, tannins, saponins and flavonoids are examples of secondary metabolites. Many of the latter does not seem to have a metabolic or evolutionary function for the parental organism, but regardless to that, its utility as drugs, preservatives, dyes, food additives and/or antibiotics is undeniable. Its application to counteract the pathogenic microorganisms affecting our specie, alongside side-effects and resistance to antibacterial drugs, is undoubtedly enough motivation for the current formalization and systematization of traditional knowledge, with methodological studies being carried out very frequently nowadays.

There has been an important upturn in the study of compounds of natural origin during the last decade, supported on ethnopharmacological information, folkloric reputation, traditional uses and the existence of previous evidence, and also based on NPs chemical composition and its chemotaxonomic classification. This explosion of information has been enriched primarily through the obtention and separation of crude extracts, essential oils, and/or other types of preparations that are subsequently analyzed for possible biological activities of metabolites or secondary products. Modern experimental strategies have included bioassays (mainly in vitro), development of NP libraries, production of active compounds in cell or tissue cultures, genetic manipulation of organisms, natural combinatorial chemistry, etc. [20]. NPs, being originated in living organisms, are essentially complex mixtures contained within cellular structures, hence the first step into the study of its properties is the separation of such structures. This first step is called extraction, and is generally carried out by liquid solvents at room temperature and atmospheric pressure, along with other well-known and widely used techniques such as steam distillation and the use of supercritical fluids or pressurized gases [21]. The proper choice of an extraction step is necessarily based on the nature, origin and composition of the product to be studied, taking into account the characteristics of the possible solvents (innokenty, reactivity, etc.), toxicity of secondary products, product sufficiency needs and evaluation methods to be followed afterwards, as a whole this step should result suitable to fulfill the objective of a research. Second and third steps are the setting of an adequate model for biological efficacy assessment and the elucidation of individual bioactive components.

In this chapter, we enlisted natural products frequently reported against salmonella from bacteria (Table 1), fungus (Table 2), animal (Table 3), plant (Table 4) or combined (Table 5) origin, organized on a chronologically descending order according to publishing date. To get a glimpse on the universe of information that NPs research has become, we made a fast search on two commonly used and easily accessible databases (PubMed and Google scholar) for the terms: salmonella, anti-salmonella, salmonellosis, natural product and antibacterial activity, alone or in combinations. Search results without the terms salmonella or salmonellosis were excluded. From the remaining registers, we selected those corresponding to experimental reports where the extraction step was performed and thoroughly described by authors. Studies on isolated or synthetic NPs were not included and research on infection or tissue damage protection after salmonella colonization were also excluded. Review articles or abstracts were not considered, although we accounted congress and meeting proceedings where useful data were present. NPs and bioactive principles were registered according to the molecules isolated by the authors and/or in contrast to the literature. This search was not exhaustive, rather, we aim to obtain a random sample of information using the simplest terms on the matter of natural products for salmonellosis.

Parental organismOriginExtraction methodSegment usedBioactive compound(s)LocationSalmonella serovarYearRef
Lactobacillus plantarum ZJ316Bacteriaculture supernatant filtration (methanol/acetonitrile)bacilliL-phenyl lactic acidChinaSalmonella Paratyphi-A (CMCC 50093), Salmonella Paratyphi-B (CMCC 50094), Salmonella enterica subsp. enterica (ATCC 14028), Salmonella enterica subsp. arizonae (CMCC(B) 47001), Salmonella choleraesuis (ATCC 13312), and Salmonella Typhimurium (CMCC 50015)2020[22]
Lectin (Bifidobacterium adolescentis) from bee honeyBacteriacrude and purified extractshoneylectinIraqSalmonella Typhi (clinical isolates)2019[23]
Lactobacillus salivarius, L. casei B1, L. plantarum, L. delbrueckii and L. delbrueckiiBacteriaco-cultureco-culturenot specifiedBeninSalmonella spp., Salmonella Typhimurium (ATCC 14028)2019[24]
Lactococcus lactis subsp.lactis (CNRZ 1427)Bacterianot specifiednot specifiedspecific microbial enzymes, perox-ide, weak organic acids anti-bacterial peptides, secretion of bacteriocins protease productionAlgeriaSalmonella spp. (veterinary isolate). Mice tests2014[25]
Streptomyces sppBacteriacrude proteinmicrobial cellsnot specifiedIndiaSalmonella Enteritidis2014[26]

Table 1.

Summary of frequently reported natural products from bacteria origin against salmonella.

Parental organismOriginExtraction methodSegment usedBioactive compound(s)LocationSalmonella serovarYearRef
Lentinus edodesFungusfermenting/Black rice bran culturemyceliabioprocessed polysaccharideKoreaSalmonella Typhimurium (SL1344)2018[27]
Coriolus versicolorFungusmethanolic extractnot specified (probably full fungi body)phenolics, polysaccharides, β-glucans, α-glucans, proteinsSerbiaSalmonella Enteritidis (ATCC 13076)2016[28]
Pleorotus ostreatus (oyster mushroom)Fungusethanolic extractnot specified (probably full fungi body)not specifiedGermanySalmonella Typhi2015[29]
Ganoderma lucidumFungusethanolic, methanolic, acetone and aqueous extractsfruiting bodiesnot specifiedIndiaSalmonella Typhi (MTCC-531)2010[30]
Lentinus tuberregiumFungusHexane, Dichloromethane, Chloroform and Ethylacetate extractsnot specified (probably full fungi body)not specifiedIndiaSalmonella Flerineri (M-1457) Salmonella Typhi (M-733)2010[31]
Pichia pastoris X-33YeastYPD broth supplemented with 1 mg.mL − 1 pancreatin, 0.2% bile salts, and pH adjusted 8 with 0.1 N NaOHyeast cellnot specifiedBrazilSalmonella Typhimurium (strain 29630)2015[32]

Table 2.

Summary of frequently reported natural products from fungi origin against salmonella.

Parental organismOriginExtraction methodSegment usedBioactive compound(s)LocationSalmonella serovarYearRef
ApitoxinAnimalcrude apitoxinapitoxinMelittin, adolapin, apamin or MCD-peptide, phospholipase A2 or hyaluronidase, histamine, epinephrineEcuadorSalmonella Anatum, Salmonella enterica subsp. arizonae, Salmonella Bardo, Salmonella Bredeney, Salmonella Dabou, Salmonella Drac, Salmonella Enteritidis, Salmonella Infantis, Salmonella Isangi, Salmonella Montevideo, Salmonella Mbandaka, Salmonella Ndolo, Salmonella Newport, Salmonella Rissen, S. enterica subespecie salamae, Salmonella Seftenberg, S. Stanleyville, S. Thompson and Salmonella Typhimurium2020[33]
ApitoxinAnimalcrude apitoxinapitoxinMelittin, adolapin, apamin or MCD-peptide, phospholipase A2 or hyaluronidase, histamine, epinephrineEcuadorSalmonella Newport, Salmonella Isangi, Salmonella enterica subsp. salame, Salmonella Bardo, Salmonella Infantis, Salmonella Montevideo, Salmonella Stanleyville, Salmonella Ndolo, Salmonella Dabou, Salmonella Typhimurium, Salmonella Enteritidis2019[34]
Masske butterAnimallactic isolatesmicrobial cellslactic acidIranSalmonella enterica2019[35]
PropolisAnimalethanolic extractpropolisflavonoids, alkaloids, terpenoids, steroids, saponins, and tanninsIndonesiaSalmonella spp.2019[36]
Sarconesiopsis magellanicaAnimalRP-HPLClarvaeSarconesinColombiaSalmonella enterica (ATCC 13314)2018[37]
Dadih dadihAnimalice creambuffalo milk yogurtnot specifiedIndonesiaSalmonella Typhimurium2017[38]
Donkey’s milkAnimalno extractionmilknot specifiedSerbiaSalmonella Enteritidis (ATCC 13076) and Salmonella Typhimurium (ATCC 14028)2017[39]
Colla corii asiniAnimalaqueous and ethanolic extractsdonkey-hide gelatinglycine, alanine, aspartic acid, glutamic acid, β-amino isobutyric acidKoreaSalmonella Typhimurium (KCTC 1926)2017[40]
Bovine natural antibodiesAnimalantibodiesserumantibodiesThe NetherlandsSalmonella Typhimurium (SL3261)2016[41]
PropolisAnimalethanolic extractspropolisphenolic acid components. Sinergy with cefiximeIndiaSalmonella Typhimurium (MTCC 98)2016[42]
Anguilla spp.Animalaqueous dilutionmucusnot specifiedIndonesiaSalmonella Typhi2016[43]
PropolisAnimalnot specifiedpropolisphenolic compounds (flavonoids)ChileSalmonella Enteritidis2015[44]
HoneysAnimalaqueous dilutionhoneynot specifiedPakistanSalmonella Typhi2015[45]
Platelet rich plasmaAnimalwhole bloodthrombin PRP/CaCl2 PRPprobably antimicrobial peptidesIranSalmonella enterica2014[46]
HoneyAnimalaqueous dilutionhoneynot specifiedRomaniaSalmonella Enteritidis (ATCC 13076)2014[47]
Donkey’s milkAnimalno extractionmilknot specifiedSerbiaSalmonella Enteritidis (ATCC 13076), Salmonella Typhimurium (ATCC 14028), Salmonella Livingstone2014[48]
PropolisAnimalethanolic, methanolic and aqueous extractspropolisterpenoids, flavonoids, alkaloids, phenols, tannins and saponinsIndiaSalmonella Typhimurium2013[49]
Slovenian PropolisAnimal70% and 96% ethanolpropolisphenolic compounds (probably a synergy)SloveniaSalmonella Typhimurium (14028), Salmonella Enteritidis (ZM138)2012[50]
Shrimp ChitosanAnimalacetic acid 1%shrimpnot specifiedBangladeshSalmonella Parathypi2011[51]
Honeyanimalsaline dilutionhoneynot specifiedGreeceSalmonella Typhimurium Salmonella enterica subsp.enterica (ATCC 13311) and Salmonella Typhimurium and Salmonella2011[52]
PropolisAnimalethanolic extractpropolisquercetin, chrysin, 4′,5-dihydroxy-7-methoxyflavonone and 3,4′,7-trimethoxyflavononeTurkeySalmonella Enteritidis (ATCC 13076)2011[53]
HoneyAnimalaqueous dilutionhoneynot specifiedIndiaSalmonella enterica serovar Typhi2010[54]

Table 3.

Summary of frequently reported natural products from animal origin against salmonella.

Parental organismOriginExtraction methodSegment usedBioactive compound(s)LocationSalmonella serovarYearRef
Zanthoxylum Acanthopodium DCPlantn-hexane and ethyl acetate extractFruitflavonoids, alkaloids, and saponinsIndonesiaSalmonella Typhi2020[55]
Aleurites moluccanaPlantmethanol extractsstem barkscopoletinIndonesiaSalmonella Typhimurium2020[56]
Combre tummicranthum; Acacianilotica and Phyllanthus pentandrusPlantaqueous, ethanol and chloroform extractsleavestannins, flavonoids, saponins, sterols, triterpenes, alkaloids, anthocyanes and free anthraquinonesNigerSalmonella Typhimurim, Salmonella Typhi, Salmonella ParaTyphi, Salmonella Typhimurim, and Salmonella Derby2020[57]
Nauclea latifoliaPlantethyl acetate and methanolleavestannins, flavonoids and anthraquinones (all are highly polar and polyphenolic) as secondary metabolites but steroids were absentIndonesiaSalmonella Typhi (clinical isolates, MDR)2020[58]
Hippobroma longifloraPlantethanolic extractsleavesalkaloids, flavonoids and saponinsSalmonella Typhi2020[59]
Biarum bovei (cardin)Plantethanol 50% (ultrasound)leavesNerrel, flavonoids and nercernerrelIranSalmonella Enteritidis (CMCC 50041)2020[60]
Trema orientalis L. Blumae (anggrung)Plantmethanol extractsleavesalkaloid, flavonoids, tannins, terpenoids, steroids, saponin, phenolicIndonesiaSalmonella spp.2020[61]
Agave tequilana Weber var. azulPlantflourleavesFructansMexicoSalmonella Typhimurium2020[62]
Clerodendrum fragrans Vent WilldPlantmethanol, ethyl acetate and n-hexane (chromatography)leavesTannins and flavonoidsIndonesiaSalmonella enterica (ATCC 14028)2020[63]
Canarium schweinfurthiiPlanthydro-ethanolic extract followed by chloroform and ethyl acetatestem barkmaniladiol, scopoletin, ethyl gallate and Gallic acidCameroonSalmonella Typhi, Salmonella Enteritidis and Salmonella Typhimurium (clinical isolates) and Salmonella Typhi (ATCC6539)2020[64]
Garcinia kola and Alchornea cordifoliaPlanthydro-ethanolic and methanolic extractsleaves, root and stem barkAnthocyanins, Flavonoids, Glycosides, Phenols, Tannins, Triterpenoids and SteroidsCameroonS. Typhi (collection), S. Typhimurium and S. Enteritidis (clinical isolates)2020[65]
Ziziphus lotus and Ziziphus mauritianasPlantmethanolic extractsleaves, fruits and seedsQuinic acid, p-coumaric acid, rutin and quercitrinTunisiaSalmonella Typhimurium (NRLB4420)2020[66]
Rhododendron arboreum and Justicia adhatodaPlantethanolic and methanolic extractsleavesoleanadien-3β-ethan-3-oateNepalSalmonella enterica subsp. enterica (ATCC 13076)2020[67]
Uvaria chamae, Lantana camara and Phyllantus amarusPlantaqueous and ethanolic extractsleaves and rootnot specifiedBeninSalmonella Typhimurium ATCC 14028 and Salmonella spp. (isolates)2020[68]
Vitis vinifera var. AlbariñoPlanthydro-organic extraction (patented)fruitHOL: catechin, epicate-chin and isoquercetin. HOP: phologlucinic acid, miquelianin, rutin, inkaempferol and caftaric acidSpainSalmonella enterica subsp.enterica (CECT 554)2020[69]
Citrus hystrixPlantethanolic extractpeelnot specifiedIndonesiaSalmonella Typhimurium2020[70]
Olive oilPlantethanolic extractfruitpolyphenol extractsChinaSalmonella Typhimurium (ATCC 14028)2020[71]
Agrimonia pilosa Ledeb, Iris domestica (L.) Goldblatt and Mabb, Anemone chinensis Bunge,Plantaqueous extractsherb, rhizome, root and tubernot specifiedChinaSalmonella Enteritidis (NCTC 0074, 1F6144, LE103 and QA04/19)2020[72]
Litsea cubebaPlantessential oilfruit2,6-octadienal, 3,7-dimethyl-, 2,6-octadien-1-ol, 3,7-dimethyl-, and Z-2,6-octadien-1-ol, 3,7-dimethyl, Z-2,6-Octadienal, 3,7-dimethyl-, Z-citralChinaSalmonella enterica (CGMCC 1.755)2020[73]
Quercus infectoria, Phyllanthus emblicaPlantaqueous, methanolic and ethanolic extractsgall, fruithexadecanoid acid, 9-octadecenoic acid, octadecenoic acid, 2-tert buil-4-isopropil-5 metylphenolIndiaSalmonella Enteritidis and Salmonella Typhi2020[74]
Capparis deciduaPlantmethanolic extractwhole plantnot specifiedPakistanSalmonella Typhi2020[75]
Detarium microcarpum Guill. & Perr.Plantethanolic extractleaves, twigs, roots, and root barkflavonoids, sterols, triterpenes, glucosides, coumarins, and saponinsCameroonSalmonella Typhi (ATCC 19430), Salmonella Enteritidis (ATCC 13076)2020[76]
Tetrapleura tetrapteraPlantethanolic extractstemcitral, acetic acid, limonene, butanol, 2-hydroxyl-3 butanone, Cis-Verbenol Trans-Verbenol, α-Terpinyl acetate, butanoic acid, 2-methyl butanolGhanaSalmonella Enteritidis (CICC 21482) and Salmonella Typhimurium (CICC 21483)2020[77]
Ocimum gratissimumPlantaqueous and ethanolic extractsleavesalkaloid, tannins, oxalate, flavonoids and essential oilNigeriaSamonella Typhi and Salmonella ParaTyphi (clinical isolates)2019[78]
Aeollanthus pubescensPlantessential oil (aqueous)leavesthymol and carvacrol (anti-radical activity)NigeriaSalmonella spp. (multidrug resistant isolate)2019[79]
Annona muricata L.Plantethanol extractsflowersecondary metabolites such as alkaloids, phenolic and flavonoidIndonesiaSalmonella Enteritidis2019[80]
Rhodomyrtus tomentosa (Ait) HasskPlantN-hexane, ethyl acetate, ethanolleavesphenols and flavonoidsIndonesiaSalmonella Typhi2019[81]
Morinda lucidaPlantacetone and aqueous extractsleavesnot specifiedSouth africaSalmonella enterica subsp. enterica including S. enterica serovar Gallinarum, Dublin, choleraesuis, Braenderup, Idikan, Kottbus, Typhimurium and Enteritidis2019[82]
Zanthoxylum acanthopodium DC (andaliman)Plantethanol extractsfruitsaponin, tannin, steroid and alkaloidIndonesiaSalmonella Typhi2019[83]
Physalis peruviana LPlantethanol extractsberries and leavesPhenolic compounds (1-hexanol, eucalyptol and 4-terpenol)EcuadorSalmonella spp. (clinical isolates)2019[84]
Carica papaya L.Plant70% ethanol, followed by n-hexane, ethyl acetate and waterseedsalkaloids, flavonoids, terpenoids and saponinsIndonesiaSalmonella Typhi (ATCC 1408)2019[85]
Psidium guajavaPlantmethanol and aqueous extractsleaves and stem barkalkaloid, saponin, phenol, flavonoids, glycoside, anthraquinones, terpenoid and tanninNigeriaSalmonella Typhi (clinical isolates)2019[86]
Artocarpus heterophyllus. Lamk.Plantethanol extractsleavesSaponin, flavonoids, terpenoid/steroids and tanninIndonesiaSalmonella Typhi2019[87]
Sesbiana grandiflora L. PressPlant90% ethanol followed by n-hexane, ethyl acetate and aqueous extractionleavesSaponin, flavonoids, terpenoid, alkaloids and tanninIndonesiaSalmonella Typhi2020[88]
Myristica fragransPlantaqueous extractseedsmethane, oxybis [dichloro-, 1H-Cyclopenta [c] furan-3-(3aH)-one,6,6a-dihydro-1-(1,3-dioxolan-2-yl)-,(3aR, 1-t, Octadecane, 6-methyl-, Heptadecane, 2,6,10,14-tetramethyl-, BIS (2-Ethylhextl) phthalate, 4H-Pyran-4-one,2,3-dihydro-3,5-dihydroxy- 6-methyl-, 3,4-Dichlorophenethylamine and 1,4-Benzenediol, 2-bromo-IndiaMDR Salmonella Typhi isolates (MCASMZU1–13)2020[89]
Kalanchoe brasiliensis Cambess.Planthydroethanolic extractleavesflavones and flavonols (3-hydroxyflavones or flavonols with substituted 3-hydroxyl groups (methylated or glycosylated))BrazilSalmonella Gastroenteritis2019[90]
White mustardPlantessential oilessential oilnot specified. Synergic with carvacrol and thymolUSASalmonella Typhimurium2019[91]
Quercus variabilis BlumePlant70% ethanol followed by petroleum ether, ethyl acetate, n-butanol and watervalonia and shellellagic acid, theophylline, caffeic acid and tannin acidChinaSalmonella Paratyphi A, Salmonella Typhimurium and Salmonella Enteritidis2019[92]
Melia azedarachPlantethanol, ethylacetate, hexane, dichloromethane and methanol extractsleavesnot specifiedSyriaSalmonella Typhi2019[93]
Ocotea minarumPlant80% ethanol followed by hexane and ethyl acetateleaves and stem barkcaffeic acid, p-coumaric acid, rosmarinic acid, quercetin and luteolinBrazilSalmonella Typhimurium (14028), Salmonella Enteritidis (13076)2019[94]
Zingiber zerumbetPlantethanolic extractrhizomeAlkaloids, terpenoids, and tanninsIndonesiaS. Enteritidis (ATCC 31194) and Salmonella Typhimurium (ATCC 23564)2019[95]
Annona muricataPlantethanolic extractleavesflavonoids, alkaloids, terpenoids, saponins, coumarins, lactones,IndonesiaSalmonella Typhimurium (FNCC-0050)2019[96]
Ligustrum lucidum Ait, Lysimachia christinae Hance, Mentha piperita Linn and Cinnamomum cassia PreslPlantaqueous extractsfruits, whole plants, leaves, and barksphenolic acid and flavonoidChinaS. Typhimurium (ST21) (used for prevent contracting infection)2019[97]
Pectin of Spondias dulcisPlantaqua, ethanolFruit peeloligosaccharidesCameroonSalmonella Typhimurium (ATTC 2680), Salmonella Typhimurium (ATTC 2488) and Salmonella choleraesuis2019[98]
Acacia farnesianaPlanthexanic, chloroform, methanolic and aqueous extractsfruitsmethylgallate, gallicacid and (2S)-naringenin-7-O-β-glucopyranosideMexicoSalmonella Enteritidis (ATCC857)2019[99]
Adansonia digitataPlantaqueous, ethanolic and chloroform extractleaves and stem barkalkaloid, flavonoids and tanninNigeriaSalmonella Typhi (clinical isolate)2018[100]
Cassia occidentalisPlantaqueous extractleavessaponin, flavonoids, and tannins, glycoside, cardiac glycosides, steroids, saponin glycoside, anthraquinones and volatile oil (trace)NigeriaSalmonella Typhimurium2018[101]
Benincasa hispida Thunb (Bligo fruit)Plantethanol extracts (96, 70 and 50%)fruitnot specified (probably a polar molecule)IndonesiaSalmonella Typhi2018[102]
Citrus sinensis (L) OsbeckPlantaqueous and ethanol (80%) extractspeelalkaloid, tannin, saponin, glycoside, flavonoid, terpenoid, and PhenolsNigeriaSalmonella Typhi (clinical isolate)2018[103]
Cinammomum cassiaPlantSodium bisulfite (1:1), petroleum etheroilcinnamaldehydeIndonesiaSalmonella Typhi2018[104]
Piper aduncum subsp. ossanum (C. DC.) Saralegui, Piper aduncum L. subsp. aduncum, Mentha piperita L., Mentha spicata L., Ocimum basilicum var. genovese L. Ocimum gratissimum L., Rosmarinus officinalis L., Thymus vulgaris L., Melaleuca quinquenervia (Cav) S.T. Blake, Eugenia axillaris L., Citrus sinensis (L.) Osbeck, Citrus paradisi Macfad, Curcuma longa L., Lippia graveolens (Kunth)Plantessential oil (aqueous)not specifiedProbably trans-cinamaldehyde, carvacrol, eugenol and acid 2,4 dihydroxybenzoicCubaSalmonella Typhimurium (ATCC14028), Salmonella enterica subsp. enterica CENLAC (S02, S04, S06, S08, S10), Salmonella enterica (Sc1) isolated from a pig2018[105]
Jacaranda micranthaPlantaqueos and 70% ethanolextractleavesphenolic compounds, tannins, flavones and saponinsBrazilSalmonella choleraesuis (ATCC 10708) and Salmonella spp. (food isolated)2018[106]
Allium sativum and Zataria multiflora BoissPlantaqueous oil extractbulb and whole plantAllicin and thymolEgyptSalmonella Typhimurium, Salmonella Anatum, Salmonella Lagos and Salmonella Kentucky2018[107]
Cinnamomum zeylanicum, Eugenia caryophyllata, Origanum vulgare, Thymus vulgaris and Thymus zygisPlantessential oilbark, bud, flowering plant, leaves and flowerscinnamaldehyde, linalool, eugenol, eugenyl acetate, b-Caryophyllene, carvacrol, thymol, y-Terpinene, geraniol and p-Cymene.SpainSalmonella Typhimurium (ATCC14028), Salmonella Typhimurium and Salmonella Enteritidis2018[108]
Citrus medica, Citrus limon and Citrus microcarpaPlantjuice (pure extract)fruitcitric acid, hesperidin, carvacrol and thymolKoreaSalmonella Typhimurium (ATCC 14028, 19585, and DT104 Killercow)2018[109]
Equisetum telmateiaPlantethanolic extract followed by petroleum ether, dichloromethane (DCM), ethyl acetate (EtAc) and n-Butanol (n-BuOH). Supercritical extractstemKaempferol 3-O-(6”-O-acetylglucoside), 5-O-Caffeoyl shikimic acid, CatechinIranSalmonella Typhi (PTCC 1609)2018[110]
Thymus vulgaris L., Rosmarinus officinalis L.Plantessential oilsleavesa-pinene, Thymol, Oxygenated monoterpenes, monoterpene hydrocarbons, borneol, 1,8-cineoleMoroccoSalmonella Typhimurium (ATCC 14028)2018[111]
Gracilaria verrucosaPlant (algae)aqueous, methanolic and ethanolic extractswhole plantcarvacrol, p-cymene and y-terpineneIndonesiaSalmonella Typhimurium2018[112]
Sterculia spp.Plantethanolic extractbarkflavonoids, alkaloids and saponinsIndonesiaSalmonella Typhi2018[113]
Nigella sativaPlantaqueous and methanolic extracts and oilseednot specifiedPakistanSalmonella enterica2018[114]
Rice hull smoke extractPlantpyrolysis of rice hulls followed by liquefactionhull161 components, bioactive unknownKoreaSalmonella Typhimurium (CCARM8107)2018[115]
Basil, ginger, hyssop, caraway, juniper, and sagePlantessential oilsseveralestragole, cis-pinocamphone, alpha-pinene (in juniper EO), a-thujone (in sage EO), carvone (in caraway EO) and curcumene (in ginger EO)SerbiaSalmonella enterica2017[116]
Ipomoea aquaticaPlantethanolic and methanolic extractsleavesflavonoidsMalaysiaSalmonella Typhi2017[117]
Andrographis paniculataPlantmethanolic, ethanolic and acetone extractsleavesnot specifiedIndiaSalmonella Typhi (clinical isolates)2017[118]
Senna occidentalisPlantmethanolic extractroot and leavesflavonoid, tannins, saponins, cardial glycosideNigeriaSalmonella Typhi2017[119]
Grewia flavaPlantacetone, methanolic, acetylacetate and aqueous extractsberries, leaves, bark and rootspelargonidin 3,5-diglucoside, naringenin-7-O-β-D-glucoside, tannins, catechins, and cyanidin-3-glucoside, betulin, lupeol, lupenone and friedelin.SouthSalmonella Typhimurium (ATCC 14028)2017[120]
Acacia mearnsii De Wild., Aloe arborescens Mill., A. striata Haw., Cyathula uncinulata (Schrad.) Schinz, Eucomis autumnalis (Mill.) Chitt., E. comosa (Houtt.) Wehrh., Hermbstaedtia odorata (Burch. ex Moq.) T.Cooke, Hydnora africana Thunb, Hypoxis latifolia Wight, Pelargonium sidoides DC, Psidium guajava L and Schizocarphus nervosus (Burch.) van der MerwePlantacetone extractbark, leaves, bulb, tuber, root and cormsquercetin-3-O-a-l-arabinopyranoside (P. guajava)South AfricaSalmonella Isangi, Salmonella Typhi, Salmonella Typhimurium2017[121]
Holarrhena floribundaPlantethanolic and methanolic extractsleavesAlkaloidsTogoSalmonella Typhi (clinical strains)2017[122]
Zanthoxylum caribaeum Lam.Plantethanolic, methanolic, hexanic, acetone, dichloromethanic, ethylacetate and aqueous extractsleavesGermacrene-D, a-Panasinsene and b-SelineneBrazilSalmonella enterica2017[123]
Rosmarinus officinalisPlantessential oilnot specifiednot specifiedIranSalmonella Typhimurium (PTCC 1609)2017[124]
Myristica fragansaqueous extractsseedmethane, oxybisIndiaSalmonella Typhi2017[125]
Cajanus cajan (Gandul)Plantmethanolic extractleavesflavonoids, phenolics, and steroids (naringenin)IndonesiaSalmonella Thypi2017[126]
Vitex donianaPlantaqueous and methanolic extractsstem-bark and leavesphytochemicals alkaloid, saponin, tannin, anthraquinone, flavonoid, phenols, terpenoid andglycosideNigeriaSalmonella Typhi2017[127]
Hibiscus sabdariffaPlantaqueous waterflower calyxnot specifiedMexicoSalmonella Typhimurium and Typhi2017[128]
Ziziphora clinopodioidesPlantessential oilleavesnisinIranSalmonella Typhimurium (ATCC 14028)2017[129]
Tinospora cordifoliaPlantaqueous and methanolic extractsstemnot specifiedIndiaS. Typhimurium (ATCC 23564)2017[130]
Sonchus arvensis L. (tempuyung)Plantethanol extractsleavesflavonoids and triterpenoidsIndonesiaSalmonella Typhi2016[131]
Heliotropium filifolium(Miers) Reiche and of Heliotropium sinuatum(Miers)Plantresinous exudate (CH2Cl2) and hexane-ethyl acetate step gradientfresh parts (cuticular components)(Filifolinol) (naringenin, 3-O-methylgalanginand pinocembrin)ChileSalmonella Typhimurium (ATCC 14028)2016[132]
Punica granatum, oak, Thymus vulgaris and Cinnamomum zeylanicumPlantethanolic and chloroformic extractspeel, oak trunk, thyme fruit and cortexgallocatechins, delphinidin, cyanidin, gallicacid,ellagic acid, pelargonidin and sitosterol; hymol, carvacrol and flavonoids; cynamaldheide; (4,5-Di-o-galloyl (+) –protoquercitol) and compound III (3,5-Di-o-galloyl (+)-protoquercitoIraqSalmonella Typhimurium (chicken isolate)2016[133]
Scutellariae radixPlantethanol extracts followed by petroleum ether (PEF), chloroform (CF), ethyl acetate (EAF) and n-butanol (BF)rootbaicalin, wogonoside, baicalein and wogoninChinaSalmonella Typhimurium (CMCC 50041)2016[134]
Rhus typhina and Achillea sintenisiiPlantnot specifiedaerial and root partsnot specifiedPortugalSalmonella Typhimurium LT22016[135]
Holarrhena antidysentrica (Ha) and Andrographis paniculata (Ap)Planthydroethanolic extractleaves and stemalkaloids, flavonoids, saponin, terpenes, phenols, tannins, glycosides carotenoids, anthraquinones, reducing sugars, phlobatannins, sterolsIndiaSalmonella Typhimurium (MTCC 733)2016[136]
Black tea (Kombucha)PlantInfusion/fermentationleavesCatechin and isorhamnetinIndiaSalmonella Typhimurium (NCT 572)2016[137]
Curcuma longaPlant96% ethanol/essential oilrhizomessaponin, tannins, alkaloids and flavonoids (probably curcumin and derivatives)ColombiaSalmonella spp. (nosocomial isolates)2016[138]
Harungana madagascariensisPlantaqueous infusionleavesnot specifiedCameroonSalmonella Typhimurium2016[139]
Piper retrofractum, Phyllanthus emblica, Terminalia chebula, Terminalia bellirica, Piper sarmentosum, Plumbago indica, Piper leptostachyum, Piper nigrum, Zingiber officinale, Piper betle, Garcinia mangostana and Caesal piniasappanPlant95% ethanolfruits, root, stem, rhizome, leaves husk, peduncle and woodPlumbagin, Piperine, Eugenol, Myristicin, Gingerol, Shogaol and BrazilinThailandSalmonella spp. (piglet isolates)2016[140]
Punica granatumPlantethanolic extracts and peel flourpeel, seedsellagic acid or ellagic acid derivatives, ellagitannins and HHDP-gallagyl-hexosideSpainSalmonella Anatum, Salmonella Typhimurium2016[141]
Abrus precatorius L.Plantaaqueous extractsleaves, seed and rootsteroids, saponins, phenolics, tannins, flavonoids, terpenoids and alkaloidsNigeriaSalmonella Typhi2016[142]
Piliostigma thonningiiPlanthexane and aqueous extractsleavesTannins, terpenoids, flavonoids, alkaloids, steroids and phenolsNigeriaSalmonella Typhi2015[143]
Baillonella toxispermaPlantethyl acetate, acetone, methanol and hydro-ethanol mixture (2: 8) extractsleaves and stem barkterpenoids, tannins, flavonoids, phenols, saponins, steroids and cardiac glycosides.CameroonSalmonella Typhi2015[144]
Wood vinegarPlantvinegarnatural vinegarnot specified (probably pH 4.15–4.59)ThailandSalmonella Enteritidis (DMST15676) Salmonella Typhimurium (DMST17242)2015[145]
Aristolochia indica, Carica papaya, Eclipta alba and Phyllanthus amarusPlantmethanol extractsleavesn-Hexadecanoic acidIndiaSalmonella Typhi (clinical isolate)2015[146]
Curry: Capsicum annuum, Citrus hystrix, Cuminum cyminum L., Allium ascalonicum L., Allium sativum, Cybopogon citratus, Alpinia galangal, ando coconut milkPlantwater, UHT coconut milk, and fresh coconut milk were used as extractants. Also ethanolic and aquous extracts (Garlic)fruit, leaves and peelnot specifiedThailandSalmonella Enteritidis2015[147]
Portulaca oleraceaPlantethanol extractsleavesprobably quercetinThailandSalmonella Typhi2015[148]
Eucalyptus, mint, cinnamon, garlic, thymusPlantoilbark and leavesprobably cinnamaldehide/thymolEgyptSalmonella Enteritidis, Salmonella Charity and Salmonella Remiremont (chicken isolates)2015[149]
Piper crocatum (Red betel vine)Plant70% ethanol, followed by n-hexane, ethyl acetate, chloroform and methanolleavessaponin and flavonoidsIndonesiaSalmonella Typhi2015[150]
Dionisya revolutaPlantmethanol extractsaerial partsnot specifiedIranSalmonella Enteritidis2015[151]
Achyranthes asperaPlantmethanolic extracts followed by chloroform, n-hexane, n-butanol, ethyl acetate and waterleavesPhenolic compounds, oils, saponins, flavonoids, alkaloids and tanninsPakistanSalmonella Typhi (ATCC 19430)2015[152]
Alocasia brisbanensis, Canavalia rosea, Corymbia intermedia, Hibbertia scandens, Ipomoea brasiliensis, Lophostemon suaveolens, Syncarpia glomulifera, Smilax australis and Smilax glyciphyllaPlanthydro-ethanolic (80%) and aqueous extractsnot specifiedL. suaveolens leaves: α-pinene, β-caryophyllene, aromadendrene, globulol and spathulenol; S. glomulifera: α-pinene, aromadendrene and globulol; S. glomulifera leaves wax: eucalyptin and S. glomulifera bark: betulinic acid, oleanolic acid-3-acetate and ursolic acid-3-acetate.AustraliaSalmonella typhimurium—Group B (clinical isolate)2015[153]
Citrus sinensisPlantethanol, methanol, chloroform, and diethyl etherpeelsaponins, terpenoids, slkaloids, flavonoids, tannins and cardiac glycosidesPakistanSalmonella Typhimurium (isolated from spoiled fish)2015[154]
Nigella sativaPlantessential oilseedthymoquinone, p-cymene, a-phellandrene, a-pinene, b-pinen, cis-carveol, trans-anethole, thymol, alongipinene and longifoleneArabia and IndiaSalmonella Paratyphi A, Salmonella Enteritidis, Salmonella Typhimurium, Salmonella Heidelberg, Salmonella Agona, Salmonella bongori2015[155]
Allium sativum L.Plantaqueous extractsbulbnot specifiedSouth KoreaSalmonella Typhimurium2015[156]
Spirulina platensisPlant (algae)ethanolic and chloroform extractscell extractsnot specifiedBangladeshSalmonella Typhi and Salmonella Paratyphi2015[157]
Curri = Capsicum annuum, Citrus hystrix, Cuminum cyminum L., Allium ascalonicum L., Allium sativum, Cybopogon citratus, Alpinia galangal, ando coconut milkPlantnot specifiedfruit, peel, seed, bulb, stem, rhizomeespecificados por compuesto, reportes previosThailandSalmonella Typhimurium (DT104b)2015[158]
Vitex donianaPlantethanolic and Acetone extractsleave, stem bark and roottannin, saponins, flavonoid, carbohydrate, glycoside, protein and steroidNigeriaSalmonella Typhi2015[159]
Polygonum odoratumPlantessential oilleavesDodecanal 55.49%, Decanal 11.57%, Pentacosane 7.26%, p-Anis aldehyde 6.35% mainlyThailandSalmonella choleraesuis subsp. choleraesuis (ATCC 35640)2015[160]
Kelussia odoratissimaPlantaqueous and ethanolic extractsleavesnot specifiedIranSalmonella typhimurium (ATCC 14028)2014[161]
Coptidis rhizoma (CR), Houttuyniae herba, Taraxaci herba, Glycyrrhizae radix, Puerariae radix, and Rhizoma dioscoreaePlantaqueous infusionherbsberberine, ginsenoside Rb1, and glycyrrhizinChinaSalmonella Typhimurium (ATCC 6994) and ST21 (pig carrier)2014[162]
Nymphea tetragonaPlant50% methanol followed by dichloromethane, ethyl acetate, and butanolbody and rootDFNTE: hydrocarbons (46.46%); EFNTE: methyl gallate (70.44%), 1, 2, 3-benzenetriol or pyrogallol (20.61%), and 6, 8-dimethylbenzocyclooctene (5.90%); BFNTE: 2-hydrazinoquinoline (57.61%), pyro-gallol (20.09%), and methyl gallate (12.77%)KoreaSalmonella Typhimurium (QC strain KTCC2515 and clinical isolates ST171, ST482, ST688, and ST21)2014[163]
Virgin coconut oil and palm kernel oilPlantessential oilfruit and seednot specifiedIndonesiaSalmonella Typhi (ATCC 786)2014[164]
Virgin Coconut OilPlantoilfruitnot specifiedIndonesiaSalmonella Typhi (ATCC 00786) and Salmonella Typhimurium (ATCC 14028)2014[165]
Piper nigrum L.Plantethanolic extracts and chloroform extractsfruit and seedtannins, alkaloids and Cardiac glycosides, and tannins, alkaloids and flavonoidsIndiaSalmonella Typhi2014[166]
Morus alba var. Alba, Morus alba var. Rosa and Morus rubraPlanthydromethanolic and aqueous extractsleaves and stemphenolics and flavonoidsTunisiaSalmonella Typhimurium (ATCC 14028)2014[167]
Khaya senegalensisPlantethanolic, methanolic and aquous extractsstem barksaponins, tannins, reducing sugar, aldehyde, phlobatannins, flavonoids, terpenoids, alkaloids, cardiac glycoside and anthroquinonesNigeriaSalmonella Typhi2014[168]
Mentha longifoliaPlantEthanolic extractsleavesnot specifiedIranSalmonella Typhimurium2014[169]
Palm oil (Sania), Virgen coconut oil (Palem Mustika) and soybean oil (Mama Suka)Plantoilsseeds and fruitsnot specifiedIndonesiaSalmonella Typhi (ATCC 19943)2014[170]
HeliotropiumPlantmethanolic extract, 2nd extraction with petroleum ether, ethylacetate and chloroform and aqueousaerial partsnot specifiedIranSalmonella Enteritidis (ATCC 13311)2014[171]
Woad, heartleaf houttuynia herb, baical skullcap, coptidis, andrographitis,Plantaqueos extractbark, leaves, root, rhizome and fruitnot specifiedChinaSalmonella Typhimurium2013[172]
K. senegalensis bark and leaves, S. alexandrina leaves, S. argel leaves, T. indica L. fruits and T. foenum, graecum seedsPlantmethanolic extractbark, leaves and seednot specifiedSudanSalmonella Typhi(ATCC19430) and Salmonella Paratyphyphi-A (ATCC 9150 / SARb42)2013[173]
Phylanthus amarusPlantaqueous and ethanolic extractsleavesPhyllanthin, Nirtetralin, Linalool, phytolIndiaSalmonella Typhi2013[174]
Carissa opacaPlant95% methanol followed by n-hexane, ethyl acetate, chloroform, butanol and waterfruitsorientin, isoquercetin, myricetin and apigenin (and probably other secondary metabolites)PakistanSalmonella typhy (ATCC 0650)2013[175]
Mangifera indicaPlantacetone extractleavesmangiferinPakistanSalmonella Typhi (clinical isolates) and Salmonella (ATCC 14028)2013[176]
Sinapis alba L.Plantessential oilseeds4-hydroxybenzyl isothiocyanateUSASalmonella spp. (isolates) Salmonella Typhimurium (ATCC 14028), Salmonella Abaetuba and Salmonella Dessau2013[177]
Origanum vulgarePlantessential oilseednot specifiedUSASalmonella Newport (LAJ160311)2013[178]
Annona comosus and Citrus senensisPlantethanolic extractpeelalkaloids, flavonoids, saponins, tanninsNigeriaSalmonella paratyphi-B, and Salmonella Typhi2013[179]
Carthamus nctoricus L., Poncirus trifollata Raf., Scutellaria balcalensis Georgi, Prunus sargentii, Cucurbita moschata, Allium cepa L., Portulaca oleracea L., Xanthium strumarium L., Duchesnea chrysantha, Cudrania tricuspidata and Juniperus chinensisPlantethanolic extractleaves, peelnot specifiedKoreaSalmonella Gallinarum2013[180]
Herba pogostemonisPlantaqueous extractleavesacetol,D-sphignosin, 5-aminoimidazole-1-carboxyamie, caffeic acid,chlorogenic acid, neohesperedin,O-acetylsalicylic acid, quinic acid,3,4-dihydroxybenzoic acid, andDL-hydroxyphenylglycolKoreaSalmonella Typhimurium (ATCC140)2012[181]
Enicostemma littoralePlantchloroform, methanol and acetone by soxhlet apparatusleaves, stem and rootnot specifiedIndiaSalmonella Typhi2012[182]
Hibiscus rosa-sinensisPlantaqueous and ethanolic extractsflower extractcyanidin, quercetin, hentriacontane, calcium oxalate, thiamine, riboflavin, niacin and ascorbic acidsIndiaSalmonella spp.2012[183]
Capsicum annuum and Capsicum frutescensPlantaqueous and methanolic extractsfruitalkaloids, flavonoids, polyphenols, and sterolsIvory CoastSalmonella Typhimurium (ATCC 13311)2012[184]
Coriandrum sativam (L.)Plantessential oilfruit dryBicycle(4.1.0),heptanes,3,7,7-trimethyl-(1a,6a,3a), propanoic acid,2-methyl-3,7-dimethyl octadiennyl ester,(E)-, 2- undecenal, 2-Napthalenemethanol, decahydro-a,a,4a-trimethyl-8-methylene- [2R-(2a,4aa,8aa)]IndiaSalmonella Typhi2012[185]
Berberis baluchistanica, Seriphidium quettense, Iphionaaucheri, Ferula costataPlantcrude methanol extractsroots, aerial partsnot specifiedPakistanSalmonella Typhimurium2012[186]
Oenothera roseaPlantaqueous and ethanolic extractsaerial partsnot specifiedMexicoSalmonella Enteritidis (clinical isolate)2012[187]
Ocimum gratissimum and Gongronema latifoliumPlantaqueous and ethanolic extractsleaves and stemnot specifiedNigeriaSalmonella Typhi2012[188]
Curry: Capsicum annuum, Citrus hystrix, Cuminum cyminum L., Allium ascalonicum L., Allium sativum, Cybopogon citratus, Alpinia galangal, ando coconut milkPlantKaeng Kathi (UHT coconut milkfruit, peel, seed, bulb, stem, rhizomenot specifiedIndonesiaSalmonella Typhimurium U302 (DT104b)2012[189]
Averrhoa bilimbi LinnPlantethanolic extractleavesnot specifiedIndonesiaSalmonella Typhi2012[190]
Ocimum gratissimumPlantethanol extractsleavesalkaloids, cardiac glycosides, saponins, tannins and steroidsNigeriaSalmonella Typhi (clinical isolates)2011[191]
Ardisia elliptica ThumbPlant95% ethanolfruitanythocyanins and syringic acidThailandSalmonella sp.2011[192]
QuercusPlantethanol by soxhlet apparatusacornnot specifiedIranSalmonella Typhi (MDR)2011[193]
Sonchus spp. (6 sp) S. arvensis, S. oleraceus, S. Lingianus, S. Brachyotus, S. asper, S. uliginosusPlantmethanolic extractaerial partsphenols and flavonoidsChinaSalmonella enterica2011[194]
York cabbage, Brussels sprouts, broccoli and white cabbagePlantmethanolic extractwhole plantHydroxybenzoic acid, hydroxycinnamic acid, flavone, polymethoxylated flavone, glycosylated flavonoid and anthocyaninIrelandSalmonella Abony (NCTC 6017)2011[195]
Achyrocline satureioidesPlantethanolic extractaerial parts23-methyl-6-OdesmethylauricepyroneArgentinaSalmonella Enteritidis2011[196]
Trapa bispinosa RoxbPlantmethanolic extractfruitnot specifiedBangladeshSalmonella Typhi2011[197]
Acalypha indicaPlantmethanolic extractleaves and rootsnot specifiedIndiaSalmonella Typhi2011[198]
Punica granatumPlantethanolic extractpeelnot specifiedKoreaSalmonella Typhi (ATCC 19943), S. Dublin (ATCC 39184), S. Derby (ATCC 6960), S. choleraesuis (ATCC 7001) y S. Gallinarum (ATCC 9184), S. Enteritidis, S. Typhimurium, S. Gallinarum y S. Paratyphi A2011[199]
Punica granatum L.. Eugenia jambolana Lam., Eugenia uniflora L., Caryophyllus aromaticus L., Psidium araca Raddi, Achyrocline satureioides (Lam.), Rosmarinus officinalis L., Cynara scolymus L., Salvia officinalis L., Laurus nobilis L., Bidens pilosa L., Baccharis trimera (Less.) DC, Plectranthus barbatus Andrews, Sonchus oleraceus L., Mikania glomerata Spreng., Taraxacum officinale F.H. Wigg, Emiia sonchifolia (L) DC, Plantago australis Lam., Maytenus ilicifolia (Schrad) Planch, Aloe arborescens Mill., Malva sylvestris L.Planthydromethanolic extractsleaves, fruit, package content, aerial and flowered aerial portions.not specifiedBrazilSalmonella Agona, Salmonella Anatum, Salmonella Cerro, CerroCubana, Salmonella Derby, Salmonella Enteritidis, Salmonell Give, Salmonella Heidelberg, Salmonella Infantis, Salmonella London, Salmonella Manhattan, Salmonella Meleagridis, Salmonella Montevideo, Salmonella Newport, Salmonella Oranienburg, Salmonella Panama, Salmonella Pullorum, Salmonella Typhimurium2011[200]
Cucurbita pepoPlantmethanolic and ethanolic extractsseedsaponins, flavonoids, Tannins, alkaloids, and steroidsNigeriaSalmonella Typhi2011[201]
Aloe veraPlantmethanolic and ethanolic extractsleavesAnthraquinone, Alkaloids, Saponins, Balsams, Flavonoids and TanninsNigeriaSalmonella Typhi2011[202]
Gynostemma pentaphyllumPlantethanolic extractleave, stemnot specifiedThailandSalmonella Typhi Salmonella Typhimurium2011[203]
Terminalia stenostachya y TerminaliaspinosaPlantdichloromethanic, methanolic, acetone and ethanolic extractsstem barks and rootsnot specifiedTanzaniaSalmonella Typhi2011[204]
Hofmeisteria schaffneriPlantinfusion and essential oilaerial partshofmeisterin III, thymyl isovalerate and 8,9-epoxy-10-acetoxythymyl angelateMexicoSalmonella Typhi (ATCC9992)2011[205]
Ficus polita Vahl.Plantmethanolic extractrootseuphol-3- O -cinamato C 39 H 56 O 2, lupeol C 30 H 50 O, taraxar-14-eno C30 H 50 O 1CameroonSalmonella Typhi (ATCC6539)2011[206]
Aegle marmelos (L.) Corr. Serr. (Rutaceae), Cassia fistula L., Moringa oleifera Lam., Melia azedarach L., Bombax ceiba L. and Brassica rapa ssp. campestris L.Plantaqueous and methanolic extractsvegetables, seedsnot specifiedPakistanSalmonella Typhi2011[207]
75 plants (Healianthus annum Linn.)Plantethanolic extractsleavesnot specifiedIndiaSalmonella Typhosa2010[208]
Syzygium cuminiPlantaqueous and ethanolic extractsleavesflavonoids, alkaloids,IndiaSalmonella Enteritidis, Salmonella Typhi, Salmonella Typhi A,Salmonella paraTyphi A, Salmonella paraTyphiB2010[209]
Black pepper (Piper nigrum Linn.)Plantacetone extract; dichloromethanic extract;fruitpiperineIndiaSalmonella Typhi2010[210]
Abrus precatorius L.Plantmethanolic and petroleum ether extractleaves, seeds and rootsMethanolic and petroleum ether extractIndiaSalmonella Typhi, Salmonella Paratyphi A, Salmonella Paratyphi B2010[211]
Psidium guajavaPlantmethanolic extractleavesflavonoids: morin-3-Olyxoside, morin-3-O-arabinoside, quercetin-3-Oarabinoside and quercetin. Anthocyans, alkaloids, tannins, and terpenoids.ThailandSalmonella enterica (ATTC 8326)2010[212]
Origanum vulgare L.Plantessential oilsaerial partsnot specifiedTurkeySalmonella Enteritidis RSKK 96046,2010[213]
Tectona grandisPlantmethanolic extractleavesnot specifiedIndiaSalmonella Typhimurium (MTCC 982010[214]
Ocimum canum, Acalypha indica, Eclipta alba and Lawsonia inermisPlantchloroform and methanolwhole plantnot specifiedIndiaSalmonella paraTyphi2010[215]
Adiantum capillus-veneris L.
(Adiantaceae), Adiantum incisum forsk. (Adiantaceae), Adiantum lunulatum Burm. F. (Adiantaceae), Actiniopteris radiata (Swartz.), Enlace (Actiniopteridaceae), Araiostegia pseudocystopteris Copel. (Davalliaceae), Athyrium pectinatum (Wall ex Mett.) T. Moore (Athyriaceae), Chelienthes albomarginata Clarke (Sinopteridaceae), Cyclosorus dentatus (Forsk.) Ching (Thelypteridaceae), Dryopteris cochleata (Don.) C. Chr. (Dryopteridaceae), hipodematio crenatum (Forsk.) Kuhn (Hypodematiaceae), Marsilea minuta L. (Marsileaceae) y Tectaria coadunata (J. Smith)
Plantaqueous and methanolic extractsleavesnot specifiedIndiaSalmonella arizonae (MTCC No. 660), Salmonella Typhi (MTCC No. 734)2010[216]
Ecklonia cavaPlant (algae)EtOH followed by n-hexane, CH2Cl2, EtOAc, n-BuOH (10 g) and aqueousnot specified (probably full algae)EckolKoreaSalmonella Typhi (ATCC 19943), Salmonella Dublin (ATCC 39184), Salmonella Derby (ATCC 6960), Salmonella choleraesuis (ATCC 7001), Salmonella Gallinarum (ATCC 9184), Salmonella Enteritidis, Salmonella Typhimurium, S. Gallinarum, and Salmonella Paratyphi A2010[217]
Thymus vulgaris L., Ocimum basilicum L., Coriandrum sativum L., Rosmarinus officinalis L., Salvia officinalis L., Foeniculum vulgare L., Mentha spicata L., Carum carvi L.Plantessential oilnot specifiednot specifiedRomaniaSalmonella enterica serovar Enteritidis Cantacuzino CICC10878, Salmonellaenterica serovar Enteritidis2010[218]
Pikutbenjakul = Piper longum, Piper sarmentosum, Piper interruptum, Plumbago indica y ZingiberPlantethanolic extractnot specifiednot specifiedThailandSalmonella sp. Salmnella typhy amd salmonella Typhimurium2010[219]
Quercus infectoria, Kaempferia galanga, Coptis chinensis and Glycyrrhiza uralensisPlantDMSOgalls, roots, rhizomes,not specifiedThailandSalmonella Typhi (DMST 5784)2010[220]
EugenolPlantessential oil of cloveflower extract177 peaks and HHDP-gallagyl-hexosideIndonesiaSalmonella Typhi2010[221]
Sida rhombifolia Linn.Plantmethanolic extractnot especifiedpolyphenols, alkaloids and steroidsCameroonSalmonella Typhi, Salmonella Enteritidis2010[222]

Table 4.

Summary of frequently reported natural products from plant origin against salmonella.

Parental organismOriginExtraction methodSegment usedBioactive compound(s)LocationSalmonella serovarYearRef
Goat milk kefir (Lactococcus cremoris, Streptococcus cremorisBacteria and Yeastno extractionmicrobial cellslactic acid, ethanol and CO2, diacetyl acetaldehyde, ethyl andIndonesiaSalmonella Typhimurium (ATCC 14028)2019[223]
Epicoccum nigrum, Entada abyssinicaFungus and plantethyl acetate extractleavesnot specifiedCameroonSalmonella Typhimurium2017[224]
Origanum vulgare, Lactococcus lactis (Nisin), EDTAPlant and Bacteriaessential oilseedscarvacrol, p-cymene and y-terpineneBrazilSalmonella Enteritidis2016[225]
Allium sativum, Nigella sativa, Azadirachta indica, Ficus carica, Trigonella foenum-graecum and honeyPlant and Animalaqueous extractsbulb, seed, leaves and fruitnot specifiedPakistanSalmonella spp.2014[226]
Apis mellipodae honey and Allium sativumAnimal and plantmacerated and aqueous dilutionhoney/bulbHoney: high, osmolarity, hydrogen peroxidase, acidity and Allium sativum: allicinEthiopiaSalmonella Typhi (clinical isolate) and Salmonella spp. (NCTC 8385)2013[227]

Table 5.

Summary of reported natural products of combined origins against salmonella.

All these works were developed on all continents, being Asia the most active, followed by Africa, America, Europe and Oceania (Figure 1A and B). It is noteworthy that much of the research was developed in equatorial locations where biodiversity is abundant. Country-wise, there is a remarkable number of publications from India and Indonesia, where incidence of salmonella is high. The map constructed for the distribution of publishing frequencies, in fact, resulted fairly similar to a previously reported salmonella incidence map (Figure 1A versus [9]). The number of articles per year showed an upward trend though it stabilizes in the last five years (Figure 1C).

Figure 1.

(A) Distribution map of publishing frequencies. (B) Continental frequency. (C) Publications per year.

The spectrum of biological activities evaluated are as diverse as the application to which they are oriented, from the study of antimutagenic, antioxidant, anticancer, anthelmintic, antiviral, antifungal activities to its antibacterial potential, being its activity against salmonella spp. one of the most studied activities.

The analysis of the last decade research render studies exploring the antibacterial activity against salmonella serovars of crude extracts and essential oils, from compounds of natural origin, as well as their components. A wide variety of these NPs have been evaluated from commercial formulations, products of animal origin such as honey, propolis, milk and chitosan, through complete plants and/or their components (roots, stem, leaves and flowers), up until products of microbial metabolism as crude protein extracts, membrane and cell wall glycosides, natural antibiotic peptides (nisin). Several chemical compounds such as water, ethanol, methanol, acetone, formaldehyde, hexane, ethyl acetate and chloroform were used as solvents by direct maceration extraction rather than vapor distillation or more complex methods.

Nonetheless, we believe the description of methodological conditions could further standardized with the inclusion of a fixed set of data. According to our observation, the list of items enlisted in Table 6 could be a minimal checklist when performing NP research.

Animal speciesVegetable speciesMicroorganismsSolventsBioactive compound
Identification of genus and, if possible, speciesGeographical siteIdentification of genus, and speciesExplanation for its selectionIsolation technique
Harvesting dataReference strain identificationNo-reactivity assessmentStructure determination method (MS–GC, for instance)
Ethnobiological identificationIdentification of origin:
  • Clinical isolate

  • Food

  • Soil…

No-interference assessment
Identification by PCRNo-toxicity assessment

Table 6.

Checklist proposed for NPs research.

Advertisement

7. Conclusions

Salmonellosis, caused by salmonella serovars, is still an uneradicated disease both in industrialized and developing countries. Multidrug resistance is a phenomenon increasingly widespread and alternative tools for disease control are urgently necessary. Natural products research based on traditional medicine is nowadays a consolidated study field full of vitality, salmonella research in particular has an upward trend with work being develop worldwide. Authors cited within this chapter explored biological activities of local organisms for the solution of salmonellosis for their communities, although a minority showed interested in foreign resources or commercial formulations. We observed a higher number of active researches on countries with diverse and abundant natural resources coincidentally also with high salmonellosis incidence. Even though our search is a minimal sample from the whole work being published on NPs and salmonellosis, it reveals certain features of the field.

Most of the works displayed in here are initial screening in vitro studies, maybe due to the scarce number of sources for funding in vivo applications. In perspective, NPs studies for clinical applications is a potential goal in order to control this disease.

Advertisement

Acknowledgments

Authors acknowledge Hospital Juarez of Mexico for giving the facilities for writing this chapter. This work was developed with no funding.

Advertisement

Conflict of interest

Authors declare no conflict of interests.

References

  1. 1. Gutiérrez-Cogco L, González-Bonilla C, Giono-Cerezo S, Beltrán LG. Principal serotypes of Salmonella identified in 10703 strains in Mexico from 1982 to 1993. Rev Latinoam Microbiol. 1994;36(4):221–6
  2. 2. De Jong B, Ekdahl K. The comparative burden of salmonellosis in the European Union member states, associated and candidate countries. BMC Public Health. 2006;6(1):4
  3. 3. SSA. Boletin de Epidemiología [Internet]. Secretaria de Salud. 1999. Available from: https://www.gob.mx/salud/acciones-y-programas/boletin-epidemiologia-1999
  4. 4. Direccion General Epidemiologia. Direccion General de epidemiología [Internet]. Sistema Nacional de Vigilancia epidemiologica. 1994. Available from: https://www.sinave.gob.mx/
  5. 5. Goldberg MB, Rubin RH. The spectrum of Salmonella infection. Infect Dis Clin North Am. 1988;2(3):571–598
  6. 6. Chin J. El control de las enfermedades transmisibles. Pan American Health Org; 2001
  7. 7. Davis BD, Dulbecco R, Eisen HN, Ginsberg HS, Wood Jr WB. Principles of microbiology and immunology. Princ Microbiol Immunol. 1968;41
  8. 8. Gutiérrez-Cogco L, Montiel-Vázquez E, Aguilera-Pérez P, González-Andrade M del C. Serotipos de Salmonella identificados en los servicios de salud de México. Salud Publica Mex. 2000;42:490–495
  9. 9. Eng S-K, Pusparajah P, Ab Mutalib N-S, Ser H-L, Chan K-G, Lee L-H. Salmonella: a review on pathogenesis, epidemiology and antibiotic resistance. Front Life Sci. 2015;8(3):284–293
  10. 10. CAE. Evaluación del riesgo asociado a la presencia de los serovares zoonóticos de Salmonella en huevo fresco producido en la CAE Asociado a la infección alimentaria en la población por consumo de huevo fresco [Internet]. 2008. Available from: http://www.elika.net/datos/riesgos/Archivo20/2008-05-Salmonella WEB.pdf
  11. 11. Polotsky Y, Dragunsky E, Khavkin TH. Morphologic Evaluation of the Pathogenesis of Bacterial Enteric Infections-Part II. Crit Rev Microbiol. 1994;20(3):185–208
  12. 12. Arnott A, Wang Q, Bachmann N, Sadsad R, Biswas C, Sotomayor C, et al. Multidrug-Resistant Salmonella enterica 4,[5], 12: i:-Sequence Type 34, New South Wales, Australia, 2016–2017. Emerg Infect Dis. 2018;24(4):751
  13. 13. Guerra B, Soto SM, Argüelles JM, Mendoza MC. Multidrug resistance is mediated by large plasmids carrying a class 1 integron in the emergent Salmonella enterica serotype [4, 5, 12: i:−]. Antimicrob Agents Chemother. 2001;45(4):1305–1308
  14. 14. Guerra B, Soto S, Helmuth R, Mendoza MC. Characterization of a self-transferable plasmid from Salmonella enterica serotype Typhimurium clinical isolates carrying two integron-borne gene cassettes together with virulence and drug resistance genes. Antimicrob Agents Chemother. 2002;46(9):2977–2981
  15. 15. Chiu C-H, Wu T-L, Su L-H, Chu C, Chia J-H, Kuo A-J, et al. The emergence in Taiwan of fluoroquinolone resistance in Salmonella enterica serotype Choleraesuis. N Engl J Med. 2002;346(6):413–419
  16. 16. Carattoli A, Tosini F, Giles WP, Rupp ME, Hinrichs SH, Angulo FJ, et al. Characterization of plasmids carrying CMY-2 from expanded-spectrum cephalosporin-resistant Salmonella strains isolated in the United States between 1996 and 1998. Antimicrob Agents Chemother. 2002;46(5):1269–72
  17. 17. (WHO) WHO. WHO Global Strategy for Containment of Antimicrobial Resistance (WHO/CDS/CSR/DRS/2001.2 a). 2001. Geneva World Heal Organ. 2013;
  18. 18. Organization WH. The evolving threat of antimicrobial resistance. Options action Geneva WHO Libr Cat Data. 2012;
  19. 19. Plain Pazos C, Pérez de Alejo Plain A, Rivero Viera Y. La Medicina Natural y Tradicional como tratamiento alternativo de múltiples enfermedades. Rev Cuba Med Gen Integr. 2019;35(2)
  20. 20. Sarker SD, Nahar L. An introduction to natural products isolation. Methods Mol Biol. 2012;864:1–25
  21. 21. Houghton P, Raman A. Laboratory handbook for the fractionation of natural extracts. Springer Science & Business Media; 2012
  22. 22. Zhou Q, Gu R, Li P, Lu Y, Chen L, Gu Q. Anti-Salmonella mode of action of natural l-phenyl lactic acid purified from Lactobacillus plantarum ZJ316. Appl Microbiol Biotechnol. :1–10
  23. 23. Kadhem BM, Mater HN, Alsaadi LG, Mahdi LH, Auda IG, Zwain AH, et al. Antibacterial Activity of a novel Lectin produced by bee honey Bifidobacterium adolescentis against Multidrug Resistant Salmonella typhi. J Pharm Sci Res. 2019;11(3):1102–1106
  24. 24. Agbankpe AJ, Dougnon TV, Balarabe R, Deguenon E, Baba-Moussa L. In vitro assessment of antibacterial activity from Lactobacillus spp. strains against virulent Salmonella species isolated from slaughter animals in Benin. Vet World. 2019;12(12):1951
  25. 25. Najett M, Fadela C, Snoussi M, Abderrahim C. The antibacterial activity expressed in vitro and in vivo by Lactococcus lactis subsp. lactis CNRZ 1427 against Salmonella sp. South Asian J Exp Biol [Internet]. 2014;4(5):240–6. Available from: http://sajeb.org/index.php/sajeb/article/view/19513/9681
  26. 26. Francis PM, Manickam R, Venkataesan BP. Crude protein extract of Actinobacteria exhibits antibacterial activity against Salmonella typhi. Int J Curr Microbiol App Sci. 2014;3(7):319–326
  27. 27. Kim SP, Lee SJ, Nam SH, Friedman M. The composition of a bioprocessed shiitake (Lentinus edodes) mushroom mycelia and rice bran formulation and its antimicrobial effects against Salmonella enterica subsp. enterica serovar Typhimurium strain SL1344 in macrophage cells and in mice. BMC Complement Altern Med. 2018 Dec;18(1):322
  28. 28. Matijašević D, Pantić M, Rašković B, Pavlović V, Duvnjak D, Sknepnek A, et al. The antibacterial activity of Coriolus versicolor methanol extract and its effect on ultrastructural changes of Staphylococcus aureus and Salmonella Enteritidis. Front Microbiol. 2016;7:1226
  29. 29. Meilina L, Hanizar E, Sari DNR. Antibacterial Activity of Pleurotus ostreatus grey oyster Variety Against Pathogen Bacterial of Salmonella typhi. Explor Conserv Biodivers. 2015;48
  30. 30. Quereshi S, Pandey AK, Sandhu SS. Evaluation of antibacterial activity of different Ganoderma lucidum extracts. J Sci Res. 2010;3:9–13
  31. 31. Manjunathan J, Kaviyarasan V. Solvent based effectiveness of antibacterial activity of edible mushroom Lentinus tuberregium (Fr.). Int J PharmTech Res. 2010;2(3):1910–1912
  32. 32. França RC, Conceição FR, Mendonça M, Haubert L, Sabadin G, de Oliveira PD, et al. Pichia pastoris X-33 has probiotic properties with remarkable antibacterial activity against Salmonella Typhimurium. Appl Microbiol Biotechnol. 2015;99(19):7953–7961
  33. 33. Lamas A, Arteaga V, Regal P, Vázquez B, Miranda JM, Cepeda A, et al. Antimicrobial activity of five apitoxins from apis mellifera on two common foodborne pathogens. Antibiotics. 2020;9(7):1–9
  34. 34. Arteaga V, Lamas A, Regal P, Vázquez B, Miranda JM, Cepeda A, et al. Antimicrobial activity of apitoxin from Apis mellifera in Salmonella enterica strains isolated from poultry and its effects on motility, biofilm formation and gene expression. Microb Pathog. 2019;137:103771
  35. 35. Nasrollahzadeh A, Khomeiri M, Mahmoudi M. Genetic identification and evaluation of antibacterial activity of lactic isolates derived from Masske butter against pathogenic bacteria Staphylococcus aureus and Salmonella enterica. Food Sci Technol. 2019;16(93):23–33
  36. 36. Hasan Z. Antibacterial activity of propolis Trigona spp. from bukittinggi west Sumatera against Salmonella sp. Chem Prog. 2019;4(2)
  37. 37. Díaz-Roa A, Patarroyo MA, Bello FJ, Da Silva PIJ. Sarconesin: Sarconesiopsis magellanica Blowfly Larval Excretions and Secretions With Antibacterial Properties. Front Microbiol. 2018;9:2249
  38. 38. Rezvi S, Putra AE, Faadhila T. In Vivo Antibacterial Activity of Dadih and Dadih Ice Cream Toward Salmonella typhimurium Development. Ann Glob Heal. 2017;83(1)
  39. 39. Šarić L, Pezo L, Šarić B, Plavšić D, Jovanov P, Karabasil N, et al. Calcium-dependent antibacterial activity of donkey’s milk against Salmonella. Ann Microbiol. 2017;67(2):185–194
  40. 40. Park K, Lee M, Oh T, Kim K-Y, Ma J. Antibacterial activity and effects of Colla corii asini on Salmonella typhimurium invasion in vitro and in vivo. BMC Complement Altern Med. 2017;17(1):520
  41. 41. van Altena SEC, Peen MA, van der Linden FH, Parmentier HK, Savelkoul HFJ, Tijhaar EJ. Bovine natural antibodies in antibody-dependent bactericidal activity against Escherichia coli and Salmonella Typhimurium and risk of mastitis. Vet Immunol Immunopathol [Internet]. 2016;171:21–7. Available from: http://dx.doi.org/10.1016/j.vetimm.2016.01.009
  42. 42. Kalia P, Kumar NR, Harjai K. Studies on the therapeutic effect of propolis along with standard antibacterial drug in Salmonella enterica serovar Typhimurium infected BALB/c mice. BMC Complement Altern Med. 2016 Nov;16(1):485
  43. 43. Nurtamin T, Nurman RY, Hafizah I. Antibacterial Activity of Eel (Anguilla spp.) Mucus against Salmonella typhi. Indones Biomed J. 2016;8(3):179–182
  44. 44. Nina N, Quispe C, Jiménez-Aspee F, Theoduloz C, Feresín GE, Lima B, et al. Antibacterial activity, antioxidant effect and chemical composition of propolis from the Región del Maule, Central Chile. Molecules. 2015;20(10):18144–18167
  45. 45. Hussain MB, Hannan A, Akhtar N, Fayyaz GQ, Imran M, Saleem S, et al. Evaluation of the antibacterial activity of selected Pakistani honeys against multi-drug resistant Salmonella typhi. BMC Complement Altern Med. 2015;15(1):32
  46. 46. Mahdizade E, Mohabatkar H, Behbahani M. Antibacterial activity of platelet rich plasma against Salmonella enterica. Iran J Public Health. 2014;43(2):225
  47. 47. Vica ML, Glevitzky M, Dumitrel G-A, Junie LM, Popa M. Antibacterial activity of different natural honeys from Transylvania, Romania. J Environ Sci Heal Part B. 2014;49(3):176–181
  48. 48. Šarić LĆ, Šarić BM, Mandic AI, Tomic J, Torbica A, Nedeljkovic N, et al. Antibacterial activity of donkey milk against Salmonella. Agro FOOD Ind Hi Tech. 2014;25:5
  49. 49. Kalia P, Kumar NR, Harjai K. Phytochemical screening and antibacterial activity of different extracts of propolis. Int J Pharm Biol Res. 2013;3(6):219–222
  50. 50. Mavri A, Abramovič H, Polak T, Bertoncelj J, Jamnik P, Smole Možina S, et al. Chemical properties and antioxidant and antimicrobial activities of Slovenian propolis. Chem Biodivers. 2012 Aug;9(8):1545–1558
  51. 51. Islam MDM, Masum SM, Mahbub KR. In vitro antibacterial activity of shrimp chitosan against salmonela paratyphi and staphylococcus aureus. J Bangladesh Chem Soc. 2011;24(2):185–190
  52. 52. Voidarou C, Alexopoulos A, Plessas S, Karapanou A, Mantzourani I, Stavropoulou E, et al. Antibacterial activity of different honeys against pathogenic bacteria. Anaerobe. 2011;17(6):375–379
  53. 53. Temiz A, Şener A, Tüylü Aö, Sorkun K, saliH B. Antibacterial activity of bee propolis samples from different geographical regions of Turkey against two foodborne pathogens, Salmonella enteritidis and Listeria monocytogenes. Turkish J Biol. 2011;35(4):503–511
  54. 54. Mandal S, DebMandal M, Pal NK, Saha K. Antibacterial activity of honey against clinical isolates of Escherichia coli, Pseudomonas aeruginosa and Salmonella enterica serovar Typhi. Asian Pac J Trop Med. 2010;3(12):961–964
  55. 55. Susanti N, Situmorang E, Fitri W. Effectiveness of the Antibacterial Activity of n-Hexane Andaliman (Zanthoxylum Acanthopodium DC) Extract Against Bacillus subtilis, Salmonella typhi, and Staphylococcus aureus. J Phys Conf Ser. 2020;1462(1)
  56. 56. Prabowo WC, Agustina R. Antibacterial Activity of Scopoletin from Stem Bark of Aleurites moluccana Against Salmonella typhi Wisnu. J Trop Pharm Chem. 2020;5(1):29–32
  57. 57. Sanda A, Kader A, Maârouhi IM, Oumarou SS. Evaluation of antibacterial activity from extract of three plant species on strains of salmonella in niger. WORLD J Pharm Pharm Sci. 2020;9(3):462–481
  58. 58. Okunye O, Idowu P, Kolade T. Antibacterial activity of crude extracts of the leaves of Nauclea latifolia Smith (Rubiaceae) and some selected conventional antibiotics on clinical isolates of Salmonella typhi. Ann Heal Res. 2020;6(3):258–264
  59. 59. Anjelina SH. Antibacterial Activity of Ethanolic Extract of Kitolod (Hippobromalongiflora) Leaf Against Staphylococcus aureus and Salmonella typhi. Asian J Pharm Res Dev. 2020;8(1):52–54
  60. 60. Kordjazi A, Farahmandfar R. Antibacterial activity of hydroalcoholic extract of Cardin leaf on Listeria monocytogenes, Salmonella enteritidis and Pseudomonas aeruginosa. Food Sci Technol. 2020;16(97):29–35
  61. 61. Wijaya EB. Antibacterial Activity Test of Trema orientalis L. Blumae (Anggrung) Granule Extract Against Bacteria Salmonella sp with The Wet Granulation Method. Indones Nat Res … [Internet]. 2020;5(1):45–53. Available from: http://journal.uta45jakarta.ac.id/index.php/INRPJ/article/view/1751
  62. 62. Martínez-Ortega EA, López-Briones JS, Rodríguez-Hernández G, Ramírez-Orozco RE, Franco-Robles E. Antibacterial activity of agave fructans against Salmonella typhimurium. Nat Prod Res [Internet]. 2020;34(18):2639–41. Available from: https://doi.org/10.1080/14786419.2018.1548446
  63. 63. Simorangkir M, Maha AP. Antibacterial Activity And Phytochemical Screening From Chromatography Fraction Of Ethanol Extract Of Sarang Banua (Clerodendrum fragrans Vent Willd) Against Salmonella enterica. Indones J Chem Sci Technol. 2020;3(2):42–48
  64. 64. Sokoudjou JB, Atolani O, Njateng GSS, Khan A, Tagousop CN, Bitombo AN, et al. Isolation, characterization and in vitro anti-salmonellal activity of compounds from stem bark extract of Canarium schweinfurthii. BMC Complement Med Ther. 2020 Oct;20(1):316
  65. 65. Djague F, Lunga PK, Toghueo KRM, Melogmo DYK, Fekam BF. Garcinia kola (Heckel) and Alchornea cordifolia (Schumach. & Thonn.) Müll. Arg. from Cameroon possess potential antisalmonellal and antioxidant properties. PLoS One. 2020;15(8):e0237076
  66. 66. Yahia Y, Benabderrahim MA, Tlili N, Bagues M, Nagaz K. Bioactive compounds, antioxidant and antimicrobial activities of extracts from different plant parts of two Ziziphus Mill. species. PLoS One [Internet]. 2020;15(5):1–16. Available from: http://dx.doi.org/10.1371/journal.pone.0232599
  67. 67. Joshi B, Panda SK, Jouneghani RS, Liu M, Parajuli N, Leyssen P, et al. Antibacterial, Antifungal, Antiviral, and Anthelmintic Activities of Medicinal Plants of Nepal Selected Based on Ethnobotanical Evidence. Evid Based Complement Alternat Med. 2020;2020:1043471
  68. 68. Legba B, Dougnon V, Chabi Y, Gbaguidi C, Aniambossou A, Deguenon E, et al. Evaluation of in-vivo anti-Salmonella activity of Uvaria chamae, Lantana camara and Phyllantus amarus used in Benin, West Africa. BMC Vet Res. 2020 Feb;16(1):49
  69. 69. Rama J-LR, Mallo N, Biddau M, Fernandes F, de Miguel T, Sheiner L, et al. Exploring the powerful phytoarsenal of white grape marc against bacteria and parasites causing significant diseases. Environ Sci Pollut Res Int. 2020 Jan;
  70. 70. Ulhaq ZS, Hendyatama TH, Hameed F, Santosaningsih D. Antibacterial activity of Citrus hystrix toward Salmonella spp. infection. Enferm Infecc Microbiol Clin. 2020;
  71. 71. Guo L, Gong S, Wang Y, Sun Q, Duo K, Fei P. Antibacterial activity of olive oil polyphenol extract against Salmonella Typhimurium and Staphylococcus aureus: Possible Mechanisms. Foodborne Pathog Dis. 2020;17(6):396–403
  72. 72. McMurray RL, Ball MEE, Tunney MM, Corcionivoschi N, Situ C. Antibacterial Activity of Four Plant Extracts Extracted from Traditional Chinese Medicinal Plants against Listeria monocytogenes, Escherichia coli, and Salmonella enterica subsp. enterica serovar Enteritidis. Microorganisms. 2020;8(6):962
  73. 73. Mei C, Wang X, Chen Y, Wang Y, Yao F, Li Z, et al. Antibacterial activity and mechanism of Litsea cubeba essential oil against food contamination by Escherichia coli and Salmonella enterica. J Food Saf. 2020;e12809
  74. 74. Nair A, Balasaravanan T, Jadhav S, Mohan V, Kumar C. Harnessing the antibacterial activity of Quercus infectoria and Phyllanthus emblica against antibiotic-resistant Salmonella Typhi and Salmonella Enteritidis of poultry origin. Vet World. 2020;13(7):1388
  75. 75. Mirza AS, Baig MT, Huma A, Ibrahim S, Shahid U, Jabeen A, et al. Antibacterial activity of methanol extract of Capparis decidua edgew (forssk.) against Staphylococcus aureus, Bacillus cereus,Salmonella typhi, and Escherichia coli. Pharmacophore. 2020;11(4)
  76. 76. Mbock MA, Fouatio WF, Kamkumo RG, Fokou PVT, Tsofack FN, Lunga P-K, et al. In vitro and in vivo anti-salmonella properties of hydroethanolic extract of Detarium microcarpum Guill. & Perr.(Leguminosae) root bark and LC-MS-based phytochemical analysis. J Ethnopharmacol. 2020;113049
  77. 77. Agyemang K, Ofori Donkor P, Ayim I, Adzitey F, Lin L, Cui H. Antibacterial activity and mechanism of Tetrapleura tetraptera stem extract against Salmonella strains and its application in raw chicken meat. J Food Process Preserv. 2020;e14489
  78. 78. Jodi SM, Farouq AA, Magashi AM, Muomora GD, Nata’ala MK, Gambo A, et al. Phytochemical Properties and Antibacterial Activity of Leaf Extract of Ocimum gratissimum on Salmonella Species. J Adv Biol Biotechnol. 2019;22(2):1–8
  79. 79. Nestor AO, Cyrille BK, Philippe S, Mahudro Y, Gwladys KS, Yannick A, et al. Antibacterial Activity of Essential Oil of Aeollanthus pubescens on Multidrug Resistant Strains of Salmonella and Escherichia coli Isolated from Laying Hens Farming in Benin. Adv Microbiol. 2019;9(09):804
  80. 80. Zuraidawati Z, Dewi M, Darmawi D, Sugito S, Hamzah A, Winaruddin W. 18. Phytochemistry and Antibacterial Activity Test of Ethanol Extracts of Soursop flower (Annona muricata L.) against Salmonella enteritidis. J Med Vet. 2019;13(1):132–137
  81. 81. Salni S, Marisa H. Evaluation on Antibacterial Activity of Karamunting Leaf Extract (Rhodomyrtus tomentosa (Ait) Hassk) with Various Solvents to Shigella Dysenteriae and Salmonella typhi. Malaysian J Fundam Appl Sci. 2019;15(5):671–674
  82. 82. Olawuwo OS, Aro AO, Erhabor JO, Eloff JN, McGaw LJ. The in vitro antibacterial activity and safety of Morinda lucida leaf extracts against Salmonella serovars relevant in livestock infections. Planta Med. 2019;85(18):PV-13
  83. 83. Sihombing NS, Sihombing F, Juwitaningsih T, Roza D, Pasaribu DM. Antibacterial Activity Analysis of Zanthoxylum acanthopodium DC Extract on Bacteria of Bacillus Subtilis, and Salmonella Typhi. In: AISTSSE 2018: Proceedings of The 5th Annual International Seminar on Trends in Science and Science Education, AISTSSE 2018, 18-19 October 2018, Medan, Indonesia. European Alliance for Innovation; 2019. p. 221
  84. 84. Favian Bayas-Morejón, Angélica Tigre, Ma. Bernarda Ruilova, Oderay Merino, Miriam Merino, Moisés Arreguín, Sonia Salazar, Riveliño Ramón, José Sánchez-Morales, Luis Verdezoto, Iván Moreno And Cecilia Gómez. Antibacterial Activity of Uvilla (Physalis peruviana L) Extracts Against Salmonella Sp. Strains. Asian J Microbiol Biotechnol Environ Sci [Internet]. 2019;21((November Suppl.) : 2019):S32–7. Available from: www.infostat.ar
  85. 85. Hidayati DN, Hidayati N, Evinda E, Fitriana NR, Kusumadewi AP. Antibacterial activity of fractions from papaya seeds (Carica papaya L.) extract against Escherichia coli and Salmonella typhi and the contributing compounds. Pharmaciana. 2019;9(1):183–190
  86. 86. Abdullah MS, Nas FS, Ali M. Antibacterial Activity of Psidium guajava Leaf and Stem Bark Extracts against Clinical Isolates of Staphylococcus aureus and Salmonella typhi
  87. 87. Siahaan D, Gurning K, Iksen. Uji Aktivitas Antibakteri Ekstrak Etanol Daun Nangka (Artocarpus heterophyllus Lamk) Terhadap Bakteri Staphylococcus aureus, Escherichia coli, Staphylococcus epidermis dan Salmonella typhi. J Pharm Sci. 2019;2(2):49–54
  88. 88. Arimaswati A, Safitri Woaw, Hartati H. Aktivitas Antibakteri Ekstrak Daun Turi (Sesbania grandiflora (L.)Press) terhadap Pertumbuhan Bakteri Salmonella thypi dan Streptococcus mutans (Antibacterial Activity of Turi Leaf Extract (Sesbania grandiflora (L.) Press) against Salmonella thypi and Str. Medula. 2020;7(1)
  89. 89. Balakrishnan S, Ibrahim KS, Duraisamy S, Sivaji I, Kandasamy S, Kumarasamy A, et al. Antiquorum sensing and antibiofilm potential of biosynthesized silver nanoparticles of Myristica fragrans seed extract against MDR Salmonella enterica serovar Typhi isolates from asymptomatic typhoid carriers and typhoid patients. Environ Sci Pollut Res Int. 2020 Jan;27(3):2844–2856
  90. 90. Mayorga OAS, da Costa YFG, da Silva JB, Scio E, Ferreira ALP, de Sousa OV, et al. Kalanchoe brasiliensis Cambess., a Promising Natural Source of Antioxidant and Antibiotic Agents against Multidrug-Resistant Pathogens for the Treatment of Salmonella Gastroenteritis. Oxid Med Cell Longev. 2019;2019:9245951
  91. 91. Porter JA, Monu EA. Evaluating the Antimicrobial Efficacy of White Mustard Essential Oil Alone and in Combination with Thymol and Carvacrol against Salmonella. J Food Prot. 2019 Dec;82(12):2038–2043
  92. 92. Zhou D, Liu Z-H, Wang D-M, Li D-W, Yang L-N, Wang W. Chemical composition, antibacterial activity and related mechanism of valonia and shell from Quercus variabilis Blume (Fagaceae) against Salmonella paratyphi a and Staphylococcus aureus. BMC Complement Altern Med. 2019 Oct;19(1):271
  93. 93. Mwale C, Makunike KN, Mangoyi R. Antibacterial Activity of Melia azedarach Leaves against Salmonella typhi and Streptococcus pneumoniae. Int Ann Sci. 2019;8(1):47–53
  94. 94. Rodrigues AB, de Almeida-Apolonio AA, Alfredo TM, Dantas FG da S, Campos JF, Cardoso CAL, et al. Chemical Composition, Antimicrobial Activity, and Antioxidant Activity of Ocotea minarum (Nees & Mart.) Mez. Oxid Med Cell Longev. 2019;2019:5736919
  95. 95. Rahayu ID, Widodo W, Prihartini I, Winaya A. Antibacterial activity of ethanolic extracts from Zingiber zerumbet rhizome against Salmonella spp. Biodiversitas J Biol Divers. 2019;20(11)
  96. 96. Maesaroh U, Martien R, Dono ND. Antibacterial activity and characterization of Annona muricata Linn leaf extract-nanoparticles against Escherichia coli FNCC-0091 and Salmonella typhimurium FNCC-0050. In: IOP Conference Series: Earth and Environmental Science. IOP Publishing; 2019. p. 12055
  97. 97. Chang C-H, Fu J-H, Su C-H, Yin M-C, Hsu Y-M. Four spices prevent mice from contracting Salmonella enterica serovar Typhimurium. Exp Ther Med. 2019;18(4):2956
  98. 98. Zofou D, Shu GL, Foba-Tendo J, Tabouguia MO, Assob J-CN. In vitro and in vivo anti-Salmonella evaluation of pectin extracts and hydrolysates from “Cas Mango”(Spondias dulcis). Evidence-Based Complement Altern Med. 2019;2019
  99. 99. Hernández-García E, García A, Garza-González E, Avalos-Alanís FG, Rivas-Galindo VM, Rodríguez-Rodríguez J, et al. Chemical composition of Acacia farnesiana (L) wild fruits and its activity against Mycobacterium tuberculosis and dysentery bacteria. J Ethnopharmacol. 2019 Feb;230:74–80
  100. 100. Abdallah M, Ali M. Antibacterial Activity of Leaf and Stem Bark Extracts of Adansonia Digitata Against Escherichia Coli and Salmonella Typhi Grown in Potiskum, Yobe State Nigeria. Ann Microbiol Infect Dis. 2018;1(4):1–7
  101. 101. Bagega AI, Usman AA, Dankaka SM, Amina M, Mani AU. Biorem Sci Tech. Antibacterial Activity and Phytochemical Analysis of Cassia occidentalis Leaf Extract on Salmonella Typhimurium. 2018;6(2):5–8
  102. 102. Mubarak F, Sartini S, Purnawanti D. Effect of Ethanol Concentration on Antibacterial Activity of Bligo Fruit Extract (Benincasa hispida Thunb) to Salmonella typhi. Indones J Pharm Sci Technol. 2018;5(3):76
  103. 103. Ali M, Aureus S, Typhi S. Phytochemical Screening and Antibacterial Activity of Citrus Sinensis Peel Extracts on Clinical Isolates of Staphylococcus Aureus and Salmonella Typhi. J Allied Pharm Sci. 2018;50–54
  104. 104. Ngurah BIG., Tokan MK, Saputra A. Characterization of Cinnamadehyde Compound Isolated from Cinnamon Oil and Its Salmonella Typhy. J Appl Chem Sci. 2018;5(2):469–472
  105. 105. Rubio A, Travieso M del C, Riverón Y, Martínez A, Peña J, Espinosa I, et al. Actividad antibacteriana de aceites esenciales de plantas cultivadas en Cuba sobre cepas de Salmonella enterica. Rev Salud Anim. 2018;40(3):1–10
  106. 106. Drebes T, Ethur EM, Avancini CAM. Triagem Fitoquímica e ativdiade antibacteriana dos extratos aquosos e hidroalcoólicos brutos de Jacaranda micrantha Staphylococcus coagulase positiva e Salmonella spp. padrões e isoladas em produtos de. Arch Vet Sci [Internet]. 2018;23(2):27–39. Available from: https://revistas.ufpr.br/veterinary/article/view/51197
  107. 107. El-Azzouny MM, El-Demerdash AS, Seadawy HG, Abou-Khadra SH. Antimicrobial Effect of Garlic (Allium sativum) and Thyme (Zataria multiflora Boiss) Extracts on Some Food Borne Pathogens and Their Effect on Virulence Gene Expression. Cell Mol Biol (Noisy-le-grand). 2018 Jul;64(10):79–86
  108. 108. Solarte AL, Astorga RJ, de Aguiar FC, De Frutos C, Barrero-Domínguez B, Huerta B. Susceptibility Distribution to Essential Oils of Salmonella enterica Strains Involved in Animal and Public Health and Comparison of the Typhimurium and Enteritidis Serotypes. J Med Food. 2018 Sep;21(9):946–950
  109. 109. Chung D, Cho TJ, Rhee MS. Citrus fruit extracts with carvacrol and thymol eliminated 7-log acid-adapted Escherichia coli O157:H7, Salmonella typhimurium, and Listeria monocytogenes: A potential of effective natural antibacterial agents. Food Res Int. 2018 May;107:578–588
  110. 110. Yeganegi M, Tabatabaei Yazdi F, Mortazavi SA, Asili J, Alizadeh Behbahani B, Beigbabaei A. Equisetum telmateia extracts: Chemical compositions, antioxidant activity and antimicrobial effect on the growth of some pathogenic strain causing poisoning and infection. Microb Pathog. 2018 Mar;116:62–67
  111. 111. Fadil M, Fikri-Benbrahim K, Rachiq S, Ihssane B, Lebrazi S, Chraibi M, et al. Combined treatment of Thymus vulgaris L., Rosmarinus officinalis L. and Myrtus communis L. essential oils against Salmonella typhimurium: Optimization of antibacterial activity by mixture design methodology. Eur J Pharm Biopharm. 2018;126:211–220
  112. 112. Dayuti S. Antibacterial activity of red algae (Gracilaria verrucosa) extract against Escherichia coli and Salmonella typhimurium. In: IOP Conference Series: Earth and Environmental Science. IOP Publishing; 2018. p. 12074
  113. 113. Kapitan LAV. Antibacterial activity test of ethyl ascetic fraction ethanol extract faloak tree bark (Sterculia sp.) on Salmonella thyposa bacteria. In: Proceeding 1st International Conference Health Polytechnic of Kupang. 2018. p. 510–518
  114. 114. Ashraf S, Anjum AA, Ahmad A, Firyal S, Sana S, Latif AA. In vitro activity of Nigella sativa against antibiotic resistant Salmonella enterica. Environ Toxicol Pharmacol. 2018;58:54–58
  115. 115. Kim SP, Lee SJ, Nam SH, Friedman M. Mechanism of Antibacterial Activities of a Rice Hull Smoke Extract (RHSE) Against Multidrug-Resistant Salmonella Typhimurium In Vitro and in Mice. J Food Sci. 2018 Feb;83(2):440–445
  116. 116. Kocić-Tanackov S, Blagojev N, Suturović I, Dimić G, Pejin J, Tomović V, et al. Antibacterial activity of essential oils against Escherichia coil, Salmonella enterica and Listeria monocytogenes. J Food Saf Food Qual Fur Leb. 2017;68(4):88–95
  117. 117. Padmavathy A, Rasny MRM, Reyadh R, Khan J. Evaluation of Antibacterial Activity of Different Extracts of Ipomoea Aquatica Leaves against Escherichia Coli and Salmonella Typhi. J Manag Sci. 2017;15(2)
  118. 118. Farooq U, Sharma Y. Antibacterial Activity of Andrographis paniculata against Salmonella typhi. UGC Approv List J Abstr Index by NISCAIR Indian Sci Abstr Website www ujpah. 2017;17
  119. 119. Ummasalma AS, Yakubu M. Antibacterial activity of root and leaves extracts of Senna occidentalis against Salmonella typhi. Katsina J Nat Appl Sci. 2017;6(1):36–41
  120. 120. Lamola SM, Dzoyem JP, Botha F, van Wyk C. Anti-bacterial, free radical scavenging activity and cytotoxicity of acetone extracts of Grewia flava. Afr Health Sci. 2017 Sep;17(3):790–796
  121. 121. Bisi-Johnson MA, Obi CL, Samuel BB, Eloff JN, Okoh AI. Antibacterial activity of crude extracts of some South African medicinal plants against multidrug resistant etiological agents of diarrhoea. BMC Complement Altern Med. 2017 Jun;17(1):321
  122. 122. Hoekou YP, Tchacondo T, Karou SD, Yerbanga RS, Achoribo E, Da O, et al. Therapeutic potentials of ethanolic extract of leaves of Holarrhena floribunda (g. Don) dur. And schinz (Apocynaceae). African J Tradit Complement Altern Med AJTCAM. 2017;14(2):227–233
  123. 123. Souza JG de L de, Toledo AG, Santana CB, Santos CV dos, Mallmann AP, Silva JPB da, et al. Chemical composition and antibacterial activity of essential oil and leaf extracts of Zanthoxylum caribaeum Lam. against serotypes of Salmonella. Rev Bras Saúde e Produção Anim. 2017;18(3):446–453
  124. 124. Hadian M, Rajaei A, Mohsenifar A, Tabatabaei M. Encapsulation of Rosmarinus officinalis essential oils in chitosan-benzoic acid nanogel with enhanced antibacterial activity in beef cutlet against Salmonella typhimurium during refrigerated storage. LWT. 2017;84:394–401
  125. 125. Balakrishnan S, Sivaji I, Kandasamy S, Duraisamy S, Kumar NS, Gurusubramanian G. Biosynthesis of silver nanoparticles using Myristica fragrans seed (nutmeg) extract and its antibacterial activity against multidrug-resistant (MDR) Salmonella enterica serovar Typhi isolates. Environ Sci Pollut Res. 2017;24(17):14758–14769
  126. 126. Agus S, Achmadi SS, Mubarik NR. Antibacterial activity of naringenin-rich fraction of pigeon pea leaves toward Salmonella thypi. Asian Pac J Trop Biomed. 2017;7(8):725–728
  127. 127. Ali M, Aminu F, Ibrahim IS. In-vitro assessment of antibacterial activity and phytochemical screening of Vitex doniana on clinical isolate of Salmonella typhi. IN-VITRO. 2017;3(1)
  128. 128. Rangel-Vargas E, Gutiérrez-Alcántara EJ, Gómez-Aldapa CA, Falfán-Cortés RN, Segovia-Cruz JA, Salas-Rangel LP, et al. Antibacterial activity of roselle calyx extracts, sodium hypochlorite, colloidal silver and acetic acid against multidrug-resistant salmonella serotypes isolated from coriander. J Food Saf. 2017;37(2):e12320
  129. 129. Shahbazi Y, Shavisi N, Mohebi E. Antibacterial activity of Ziziphora clinopodioides essential oil and nisin against Bacillus subtilis and Salmonella Typhimurium in commercial barley soup. Bulg J Vet Med. 2017;20(1)
  130. 130. Alsuhaibani S, Khan MA. Immune-stimulatory and therapeutic activity of Tinospora cordifolia: Double-edged sword against salmonellosis. J Immunol Res. 2017;2017
  131. 131. Yanuarisa R, Agustina D, Santosa A. Antibacterial Activity of Ethanolic Extract from Tempuyung Leaf (Sonchus arvensis L.) againts Salmonella typhi by In Vitro Study. J Agromedicine Med Sci. 2016;2(2):1
  132. 132. Parra M, Valenzuela B, Soto S, Modak B. Antibacterial activity of cuticular components from heliotropium species, against staphylococcus aureus and salmonella tiphymurium. Bol Latinoam y del Caribe Plantas Med y Aromat. 2016;15(6):422–428
  133. 133. Abdal-hadei Ali Al-Nasrawi H. Antibacterial Activity of Some Medicinal Plants Extracts Against Escherichia Coli and Salmonella Typhimurium Isolated From Domestic Chicken in Al-Qadissiya Province. Basrah J Vet Res. 2016;15(2):192–210
  134. 134. Xu J-F, Hou Y-Y, Chen L. Antibacterial Activity of Scutellariae Radix Extracts and the Bioactive Compounds against E.coli and Salmonella. 2016;1056–1065
  135. 135. Barreiros RM. Tests of antibacterial activity by naphthoquinones derivatives and extracts from Rhus typhina and Achillea sintenisii in Salmonella typhimurium LT2. 2016
  136. 136. Tanwar A, Chawla R, Chakotiya AS, Thakur P, Goel R, Basu M, et al. Effect of Holarrhena antidysentrica (Ha) and Andrographis paniculata (Ap) on the biofilm formation and cell membrane integrity of opportunistic pathogen Salmonella typhimurium. Microb Pathog. 2016 Dec;101:76–82
  137. 137. Bhattacharya D, Bhattacharya S, Patra MM, Chakravorty S, Sarkar S, Chakraborty W, et al. Antibacterial Activity of Polyphenolic Fraction of Kombucha Against Enteric Bacterial Pathogens. Curr Microbiol. 2016 Dec;73(6):885–896
  138. 138. Méndez Álvarez N, Angulo Ortíz A, Contreras Martínez O. [In vitro antibacterial activity of Curcuma longa (Zingiberaceae) against nosocomial bacteria in Montería, Colombia]. Rev Biol Trop. 2016 Sep;64(3):1201–1208
  139. 139. Kengni F, Fodouop SPC, Tala DS, Djimeli MN, Fokunang C, Gatsing D. Antityphoid properties and toxicity evaluation of Harungana madagascariensis Lam (Hypericaceae) aqueous leaf extract. J Ethnopharmacol. 2016 Feb;179:137–145
  140. 140. Ketpanyapong W, Itharat A. Antibacterial Activity of Thai Medicinal Plant Extracts Against Microorganism Isolated from Post-Weaning Diarrhea in Piglets. J Med Assoc Thai. 2016 Jul;99 Suppl 4:S203–S210
  141. 141. Gullon B, Pintado ME, Pérez-Álvarez JA, Viuda-Martos M. Assessment of polyphenolic profile and antibacterial activity of pomegranate peel (Punica granatum) flour obtained from co-product of juice extraction. Food Control. 2016;59:94–98
  142. 142. Sunday OJ, Babatunde SK, Ajiboye AE, Adedayo RM, Ajao MA, Ajuwon BI. Evaluation of phytochemical properties and in-vitro antibacterial activity of the aqueous extracts of leaf, seed and root of Abrus precatorius Linn. against Salmonella and Shigella. Asian Pac J Trop Biomed. 2016;6(9):755–759
  143. 143. Ewansiha JU, Okafor AC, Doughari J, Busari MB. Antibacterial activity of the leaf extract of Piliostigma thonningii against Salmonella typhi and Shigella dysenteriae. Adv Med Plant Res. 2015;3(October):151–154
  144. 144. Fodouop M, Tamo SPB, Pegnyemb DE, Etoa FX, de Paula RA, Barbosa AAT, et al. In vitro antibacterial activity of Baillonella toxisperma (Pierre) extracts against Staphylococcus aureus, Salmonella typhi, Proteus mirabilis and Bacillus cereus F3748. African J Microbiol Res. 2015;9(39):2088–2094
  145. 145. Sirimongkolvorakul S, Paditporn K, Lertpatarakomol R. Antibacterial activity of wood vinegar against Salmonella Enteritidis and Salmonella Typhimurium Sunisa. In: Climate Smart Sustainable Animal Agriculture for Food Security. 2015. p. 3
  146. 146. Rajathangam C, Gobu P, Jeyadevan J. Screening of medicinal plants for their potential antibacterial activity against Salmonella typhi. 2015;2(1):75–82
  147. 147. Yasurin P, Saenghiruna T. In-vitro individual antibacterial activity of Thai red curry paste ingredients against Salmonella enterica Enteritidis (human) and Listeria monocytogenes 10403S. Biomed Pharmacol J. 2015;8(1):1–8
  148. 148. Sakinah EN, Mufida DC. Antibacterial activity of ethanol leaf extract of purslane ( Portulaca oleracea) against Salmonella typhi and Shigella dysentriae. 2015;
  149. 149. Abd El Tawab A, El -Hofy F, Belih S, El Shemy M. Antibacterial activity of some medicinal plant oils against Escherichia coli and Salmonella species in -vitro. Benha Vet Med J. 2015;28(2):163–168
  150. 150. Rachmawaty FJ, Tamhid H., Hidayah R. Antibacterial activity comparison between the fraction of ethyl acetate, chloroform and methanol of red betel vine (Piper crocatum) leaves ethanol extract toward Salmon. 2015
  151. 151. Ahani M, Rahimifsard N, Shojaii A. Antibacterial activity of Ddfferent extracts Of Aerial Parts Of Dionysia Revoluta Boiss. against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella Enteritidis, Enterococcus Maryam. In 2015
  152. 152. Khuda F, Iqbal Z, Khan A, Zakiullah, Shah WA, Shah Y, et al. Report: Antibacterial and antifungal activities of leaf extract of Achyranthes aspera (Amaranthaceae) from Pakistan. Pak J Pharm Sci. 2015 Sep;28(5):1797–1800
  153. 153. Packer J, Naz T, Harrington D, Jamie JF, Vemulpad SR. Antimicrobial activity of customary medicinal plants of the Yaegl Aboriginal community of northern New South Wales, Australia: a preliminary study. BMC Res Notes. 2015 Jun;8:276
  154. 154. Mehmood B, Dar KK, Ali S, Awan UA, Nayyer AQ, Ghous T, et al. Short communication: in vitro assessment of antioxidant, antibacterial and phytochemical analysis of peel of Citrus sinensis. Pak J Pharm Sci. 2015 Jan;28(1):231–239
  155. 155. Sarwar A, Latif Z. GC–MS characterisation and antibacterial activity evaluation of Nigella sativa oil against diverse strains of Salmonella. Nat Prod Res. 2015;29(5):447–451
  156. 156. Lee S-Y, Nam S-H, Lee H-J, Son S-E, Lee H-J. Antibacterial activity of aqueous Garlic extract against Escherichia coli O157: H7, Salmonella typhi murium and Staphylococcus aureus. J Food Hyg Saf. 2015;30(2):210–216
  157. 157. Ahsan S, Arefin MS, Munshi JL, Begum MN, Maliha M, Rahman S, et al. In vitro antibacterial activity of Spirulina platensis extracts against clinical isolates of Salmonella enterica serovars Typhi and Paratyphi (SUBP03). Stamford J Microbiol. 2015;5(1):22–25
  158. 158. Sapabguy C, Yasurin P. Natural antibacterial activity of Thai red curry paste in coconut milk based curry; Kang-Kati, model on Salmonella sp. and Listeria monocytogenes. Walailak J Sci Technol. 2015;12(5):473–480
  159. 159. Kuta FA, Onochei I, Garba S, Damisa D. an in-vitro and in-vivo Antibacterial activity of Vitexdoniana crude extracts on Salmonella typhi. IJSRSET; 2015
  160. 160. Fujita K, Chavasiri W, Kubo I. Anti-Salmonella Activity of Volatile Compounds of Vietnam Coriander. Phyther Res. 2015;29(7):1081–1087
  161. 161. Tabatabaei Yazdi F, Heidari Sureshjani M, Alizadeh Behbahani B, Mortazavi SA. In-vitro antibacterial activity of aqueous and ethanolic extracts of Kelussia odoratissima on Salmonella typhimurium. In: 4th national congress on agriculture & aquatic & food. 2014
  162. 162. Chang C-H, Yu B, Su C-H, Chen DS, Hou Y-C, Chen Y-S, et al. Coptidis rhizome and Si Jun Zi Tang can prevent Salmonella enterica serovar Typhimurium infection in mice. PLoS One. 2014;9(8):e105362
  163. 163. Hossain MA, Park J-Y, Kim J-Y, Suh J-W, Park S-C. Synergistic effect and antiquorum sensing activity of Nymphaea tetragona (water lily) extract. Biomed Res Int. 2014;2014:562173
  164. 164. Loung FS, Silalahi J, Suryanto D. Antibacterial activity of enzymatic hydrolyzed of virgin coconut oil and palm kernel oil against Staphylococcus aureus, Salmonella thypi and Escherichia coli. Int J PharmTech Res. 2014;6(2):628–633
  165. 165. Harahap U, Silalahi J. Antibacterial activity of enzymatic hydrolysis of Virgin Coconut Oil against Salmonella. Int J PharmTech Res. 2014;6(2):589–599
  166. 166. Ganesh P, Kumar RS, Saranraj P. Phytochemical analysis and antibacterial activity of Pepper (Piper nigrum L.) against some human pathogens. Cent Eur J Exp Biol. 2014;3(2):36–41
  167. 167. Thabti I, Elfalleh W, Tlili N, Ziadi M, Campos MG, Ferchichi A. Phenols, flavonoids, and antioxidant and antibacterial activity of leaves and stem bark of Morus species. Int J food Prop. 2014;17(4):842–854
  168. 168. Ugoh SC, Agarry OO, Garba SA. Studies on the antibacterial activity of Khaya senegalensis [(Desr.) A. Juss)] stem bark extract on Salmonella enterica subsp. enterica serovar Typhi [(ex Kauffmann and Edwards) Le Minor and Popoff]. Asian Pac J Trop Biomed. 2014;4:S279–S283
  169. 169. Bakht J, Shaheen S, Shafi M. Antimicrobial potentials of Mentha longifolia by disc diffusion method. Pak J Pharm Sci. 2014;27(4)
  170. 170. Silalahi J, Manurung R, Sitompul E. Antibacterial Activity of Hydrolyzed Oils of Different Fatty Acid Composition against Salmonella Thypi and Lactobacillus plantarum. Int J PharmTech Res. 2014;7(2):233–237
  171. 171. Rahimifard N, Bagheri E, Asgarpanah G, Kabiri Balajadeh B, Yazdi HR. Antibacterial activity of total extract, petroleum ether, chloroform, ethyl acetate and aqueous fractions of aerial parts of Heliotropium bacciferum. J Med Plants. 2014;4(52):122–135
  172. 172. ZHANG D, CHEN Y, NAN H, DU T, FU X, LIU M. Measurement of antibacterial activity of 10 Chinese herbal medicines against Salmonella isolated from pullorum disease. Chinese J Vet Med. 2013;3
  173. 173. Hassouna RA, Khalid AS, Khalid HS. In vitro Antibacterial Activity of Five Sudanese Medicinal Plants Against Salmonella species. Univ Africa J Sci. 2013;36–56
  174. 174. Dabanka CP. Antibacterial Activity of Phyllanthusamarus (Schumand Thonn) Extract against Salmonella Typhicausative Agent Of Typhoid Fever. KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY; 2013
  175. 175. Sahreen S, Khan MR, Khan RA, Shah NA. Estimation of flavoniods, antimicrobial, antitumor and anticancer activity of Carissa opaca fruits. BMC Complement Altern Med. 2013 Dec;13:372
  176. 176. Hannan A, Asghar S, Naeem T, Ikram Ullah M, Ahmed I, Aneela S, et al. Antibacterial effect of mango (Mangifera indica Linn.) leaf extract against antibiotic sensitive and multi-drug resistant Salmonella typhi. Pak J Pharm Sci. 2013 Jul;26(4):715–719
  177. 177. David JRD, Ekanayake A, Singh I, Farina B, Meyer M. Effect of white mustard essential oil on inoculated Salmonella sp. in a sauce with particulates. J Food Prot. 2013 Apr;76(4):580–587
  178. 178. Moore-Neibel K, Gerber C, Patel J, Friedman M, Jaroni D, Ravishankar S. Antimicrobial activity of oregano oil against antibiotic-resistant Salmonella enterica on organic leafy greens at varying exposure times and storage temperatures. Food Microbiol. 2013;34(1):123–129
  179. 179. Lawal D, Yunusa I, Bala I. A Study of the Phytochemical Properties and Synergistic Antibacterial Activity of Annona comosus (LINN) Merr. Peel and Citrus sinensis Peel Extracts on Aeromonas hydrophila and Salmonella species. Bayero J Pure Appl Sci. 2013;6(1):40–45
  180. 180. Ham Y-J, Yang J-H, Na C-S. Screening of antibacterial activity against to Staphylococcus aureus, Listeria monocytogens, Mannhemia haemolytica and Salmonella gallinarum using different plant extracts. Korean J Org Agric. 2013;21(1):105–113
  181. 181. Kim SP, Moon E, Nam SH, Friedman M. Composition of Herba Pogostemonis water extract and protection of infected mice against Salmonella Typhimurium-induced liver damage and mortality by stimulation of innate immune cells. J Agric Food Chem. 2012 Dec;60(49):12122–12130
  182. 182. Abirami P, Gomathinayagam M, Panneerselvam R. Preliminary study on the antimicrobial activity of Enicostemma littorale using different solvents. Asian Pac J Trop Med. 2012 Jul;5(7):552–555
  183. 183. Ruban P, Gajalakshmi K. In vitro antibacterial activity of Hibiscus rosa–sinensis flower extract against human pathogens. Asian Pac J Trop Biomed. 2012;2(5):399–403
  184. 184. Koffi-Nevry R, Kouassi KC, Nanga ZY, Koussémon M, Loukou GY. Antibacterial activity of two bell pepper extracts: Capsicum annuum L. and Capsicum frutescens. Int J food Prop. 2012;15(5):961–971
  185. 185. Suganya S, Bharathidasan R, Senthilkumar G, Madhanraj P, Panneerselvam A. Antibacterial activity of essential oil extracted from Coriandrum sativam (L.) and GC-MS analysis. J Chem Pharm Res. 2012;4(3):1846–1850
  186. 186. Kakar SA, Tareen RB, Kakar MA, Jabeen H, Kakar SUR, Al-Kahraman Y, et al. Screening of antibacterial activity of four medicinal plants of Balochistan-Pakistan. Pak J Bot. 2012;44:245–250
  187. 187. Gomez-Flores R, Reyna-Martínez R, Tamez-Guerra P, Quintanilla-Licea R. Antibacterial activity of Oenothera rosea (L’Hér) leaf extracts. J Adv Med Med Res. 2012;396–404
  188. 188. Bankole HA, Anjorin AA, Kazeem MI, Ogbeche ME, Agbafor U. Antibacterial activity of Ocimum gratissimum AND Gongronema latifolium ON Staphylococcus aureus AND Salmonella typhi. East African J Sci Technol. 2012;2(1):114–128
  189. 189. Lazuardi I, Saenghiruna T, Yasurin P. Natural antimicrobial activity of Thai red curry’s herbs on Salmonella typhimurium DT104b. AU J Technol. 2012;16(1):1–6
  190. 190. Hasdiana F, Kuswarini S, Koendhari EB. Antibacterial activity of Belimbing wuluh (Averrhoa Bilimbi Linn) extract on Salmonella Typhi growth. Folia Medica Indones. 2012;48(4):144
  191. 191. Adewumi AAJ, Aina VO, Saratu AS, Nkechi LU. Antibacterial activity of crude extract of Ocinum gratissimum (African basil) on clinical strains of Escherichia coli, Salmonella typhi and Klebsiella pneumoniae. J Pharm Allied Sci. 2011;8(3):1348–1354
  192. 192. Dejsungkranont M. Development of anti-Salmonella activity natural colorant powder from ripe fruits of Ardisia elliptica Thumb. 2011;
  193. 193. Mohebi R, Ghafourian S, Sekawi Z, Khosravi A, Galehdari EA, Hushmandfar R, et al. In vitro and in vivo antibacterial activity of acorn herbal extract against some Gram-negative and Gram-positive bacteria. Roum Arch Microbiol Immunol. 2011;70(4):149–152
  194. 194. Xia D-Z, Yu X-F, Zhu Z-Y, Zou Z-D. Antioxidant and antibacterial activity of six edible wild plants (Sonchus spp.) in China. Nat Prod Res. 2011;25(20):1893–1901
  195. 195. Jaiswal AK, Rajauria G, Abu-Ghannam N, Gupta S. Phenolic composition, antioxidant capacity and antibacterial activity of selected Irish Brassica vegetables. Nat Prod Commun. 2011;6(9):1934578X1100600923
  196. 196. Joray MB, del Rollán MR, Ruiz GM, Palacios SM, Carpinella MC. Antibacterial activity of extracts from plants of central Argentina—isolation of an active principle from Achyrocline satureioides. Planta Med. 2011;77(01):95–100
  197. 197. Razvy MA, Faruk MO, Hoque MA. Environment friendly antibacterial activity of water chestnut fruits. J Biodivers Environ Sci. 2011;1(1):26–34
  198. 198. Shanmugapriya R, Ramanathan T, Thirunavukkarasu P. Evaluation of antioxidant potential and antibacterial activity of Acalypha indica Linn. using in vitro model. Asian J Biomed Pharm Sci. 2011;1(1)
  199. 199. Choi J-G, Kang O-H, Lee Y-S, Chae H-S, Oh Y-C, Brice O-O, et al. In vitro and in vivo antibacterial activity of Punica granatum peel ethanol extract against Salmonella. Evidence-Based Complement Altern Med. 2011;2011
  200. 200. Voss-Rech D, Klein CS, Techio VH, Scheuermann GN, Rech G, Fiorentin L. Antibacterial activity of vegetal extracts against serovars of Salmonella. Ciência Rural. 2011;41(2):314–320
  201. 201. Chonoko UG, Rufai AB. Phytochemical screening and antibacterial activity of Cucurbita pepo (Pumpkin) against Staphylococcus aureus and Salmonella typhi. Bayero J Pure Appl Sci. 2011;4(1):145–147
  202. 202. Kuta FA, Damisa D, Adabara NU, Bello IM, Samuel S. Antibacterial activity of Aloe vera plant extract against Salmonella typhi. Extraction. 2011;6(1):83–86
  203. 203. Srichana D, Taengtip R, Kondo S. Antimicrobial activity of Gynostemma pentaphyllum extracts against fungi producing aflatoxin and fumonisin and bacteria causing diarrheal disease. Southeast Asian J Trop Med Public Heal. 2011;42(3):704
  204. 204. Mbwambo ZH, Erasto P, Nondo ROS, Innocent E, Kidukuli AW. Antibacterial and cytotoxic activities of Terminalia stenostachya and Terminalia spinosa. Tanzan J Health Res. 2011;13(2):103–105
  205. 205. Pérez-Vásquez A, Capella S, Linares E, Bye R, Angeles-López G, Mata R. Antimicrobial activity and chemical composition of the essential oil of Hofmeisteria schaffneri. J Pharm Pharmacol. 2011;63(4):579–586
  206. 206. Kuete V, Kamga J, Sandjo LP, Ngameni B, Poumale HMP, Ambassa P, et al. Antimicrobial activities of the methanol extract, fractions and compounds from Ficus polita Vahl.(Moraceae). BMC Complement Altern Med. 2011;11(1):1–6
  207. 207. Ali NH, Faizi S, Kazmi SU. Antibacterial activity in spices and local medicinal plants against clinical isolates of Karachi, Pakistan. Pharm Biol. 2011;49(8):833–839
  208. 208. Yadav HL, Yadav RN, Gupta A, Akram J, Saxena AR. Investigations on antibacterial activity of higher plants against the human pathogenic bacterium Salmonella typhosa. Indian J Sci Res. 2010;1(2):111–115
  209. 209. Gowri SS, Vasantha K. Phytochemical screening and antibacterial activity of Syzygium cumini (L.)(Myrtaceae) leaves extracts. Int J Pharm Tech Res. 2010;2(2):1569–1573
  210. 210. Karsha PV, Lakshmi OB. Antibacterial activity of black pepper (Piper nigrum Linn.) with special reference to its mode of action on bacteria. 2010;
  211. 211. Mistry K, Mehta M, Mendpara N, Gamit S, Shah G. Determination of antibacterial activity and MIC of crude extract of Abrus precatorius L. Adv Biotech. 2010;10(2):25–27
  212. 212. Rattanachaikunsopon P, Phumkhachorn P. Contents and antibacterial activity of flavonoids extracted from leaves of Psidium guajava. J Med Plants Res. 2010;4(5):393–396
  213. 213. Özkalp B, Sevgi F, Özcan M, Özcan MM. The antibacterial activity of essential oil of oregano (Origanum vulgare L.). J Food Agric Env. 2010;8(2):6–8
  214. 214. Purushotham KG, Arun P, Jayarani JJ, Vasnthakumari R, Sankar L, Reddy BR. Synergistic in vitro antibacterial activity of Tectona grandis leaves with tetracycline. Int J pharmtech Res. 2010;2(1):519–523
  215. 215. Devi K, Karthikai GD, Thirumaran G, Arumugam R, Anantharaman P. Antibacterial activity of selected medicinal plants from Parangipettai coastal regions; Southeast coast of India. Acad J Plant Sci. 2010;3:122–125
  216. 216. Parihar P, Parihar L, Bohra A. In vitro antibacterial activity of fronds (leaves) of some important pteridophytes. J Microbiol Antimicrob. 2010;2(2):19–22
  217. 217. Choi J-G, Kang O-H, Brice O-O, Lee Y-S, Chae H-S, Oh Y-C, et al. Antibacterial activity of Ecklonia cava against methicillin-resistant Staphylococcus aureus and Salmonella spp. Foodborne Pathog Dis. 2010;7(4):435–441
  218. 218. Lixandru B-E, Drăcea NO, Dragomirescu CC, Drăgulescu EC, Coldea IL, Anton L, et al. Antimicrobial activity of plant essential oils against bacterial and fungal species involved in food poisoning and/or food decay. Roum Arch Microbiol Immunol. 2010;69(4):224–230
  219. 219. Kondo S, Sattaponpan C, Phongpaichit S, Srijan A, Itharat A. Antibacterial activity of Thai medicinal plants Pikutbenjakul. J Med Assoc Thailand= Chotmaihet thangphaet. 2010;93:S131–S135
  220. 220. Mekseepralard C, Kamkaen N, Wilkinson JM. Antimicrobial and Antioxidant Activities of Traditional Thai Herbal Remedies for Aphthous Ulcers. Phytother Res. 2010;24:1514–1519
  221. 221. Devi KP, Nisha SA, Sakthivel R, Pandian SK. Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. J Ethnopharmacol. 2010;130(1):107–115
  222. 222. JP AA, Dzoyem JP, Pieme CA, Penlap VB. In vitro antibacterial activity and acute toxicity studies of aqueous-methanol extract of Sida rhombifolia Linn.(Malvaceae). BMC Complement Altern Med. 2010;10(1):40
  223. 223. Said N, Fahrodi DU, Malaka R, Maruddin F. Assessment of the antibacterial activity of goat milk kefir on Escherichia coli ATCC 8739 and Salmonella enteric subsp. enterica serovar typhimurium ATCC 14028 using a well diffusion method. In: IOP Conference Series: Earth and Environmental Science. IOP Publishing; 2019. p. 12051
  224. 224. Dzoyem JP, Melong R, Tsamo AT, Maffo T, Kapche DGWF, Ngadjui BT, et al. Cytotoxicity, antioxidant and antibacterial activity of four compounds produced by an endophytic fungus Epicoccum nigrum associated with Entada abyssinica. Rev Bras Farmacogn. 2017;27(2):251–253
  225. 225. da Silva JPL, de Souza EF, Della Modesta RC, Gomes IA, Freitas-Silva O, de Melo Franco BDG. Antibacterial activity of nisin, oregano essential oil, EDTA, and their combination against Salmonella Enteritidis for application in mayonnaise. Vigilância Sanitária em Debate Soc Ciência Tecnol. 2016;4(1):83–91
  226. 226. Khan AY, Latif Z. Screening of medicinal natural extracts for their antibacterial activity against Salmonella species. Pak J Bot. 2014;46(6):2269–2275
  227. 227. Andualem B. Combined antibacterial activity of stingless bee (Apis mellipodae) honey and garlic (Allium sativum) extracts against standard and clinical pathogenic bacteria. Asian Pac J Trop Biomed. 2013 Sep;3(9):725–731

Written By

Nancy Jannet Ruiz-Pérez, Jaime Sánchez-Navarrete and Julia D. Toscano-Garibay

Submitted: 02 November 2020 Reviewed: 25 January 2021 Published: 01 March 2021