Open access peer-reviewed chapter

Temperature Sensing Characteristics of Tapered Doped Fiber Amplifiers

Written By

Rafael Sanchez-Lara, Lelio de la Cruz-May, José Luis Vazquez-Avila, Daniel Enrique Ceballos-Herrera and José Alfredo Alvarez-Chavez

Submitted: June 16th, 2019 Reviewed: September 24th, 2019 Published: November 13th, 2019

DOI: 10.5772/intechopen.89894

Chapter metrics overview

647 Chapter Downloads

View Full Metrics

Abstract

We numerically analyze the temperature response of tapered doped fiber amplifiers and discuss their feasibility to be used as a sensing element in temperature fiber sensors. In particular, we consider Ytterbium (Yb) and Thulium (Tm) rare earths in the tapered doped fiber designs. We have modified the coupled propagation equations for the pump and signal radiations in order to include different taper structures and introduce the temperature dependence of the absorption and emission cross-sections of Yb and Tm ions. It was found that the temperature sensitivity of the amplified signal in Tm-doped fiber amplifiers is one order of magnitude higher than this obtained with Yb-doped fibers. Additionally, in all doped fibers, the temperature sensitivity of the signal radiation is higher for low pump powers in a co-propagating pump scheme, and it highly depends on the longitudinal shape of the taper used. Finally, for both Yb- and Tm-doped fibers, the temperature sensitivity can be increased if we use doped fiber lengths shorter than 1 m and pump powers lower than 300 mW. This study provides valuable information for the development of tapered fiber amplifiers doped with other rare earths and novel designs for doped fiber temperature sensors.

Keywords

  • ytterbium
  • thulium
  • taper
  • doped fiber
  • sensors

1. Introduction

Non-invasive sensors for temperature and strain measurements in explosive enviroments and with immunity to electromagnetic interference are constantly required. In this context, optical fibers have become a key piece to develop temperature sensors in such hazardous applications. As an example of these applications, we can mention petroleum pipeline monitoring and hydraulic fracturing evaluations [1, 2]. Consequently, many efforts have been made to improve the performance of fiber optic temperature sensors based on different principles and designs.

The development of temperature and strain fiber sensors for environmental measurements where immunity to electromagnetic interference and high personal safety are required has been studied with great interest until today. This fact has allowed the development of a large number of fiber optic temperature sensors based in different principles and desgins; among them, we can distinguish two principal groups which are based in doped [3, 4, 5, 6, 7, 8, 9, 10] and un-doped fibers [11, 12, 13, 14, 15, 16, 17]. In the first group, we have sensors that use the temperature dependence of the fluorescence lifetime and involve techniques as the fluorescence intensity ratio. In these sensors, the key parameter is the temperature dependence of the absorption and emission cross-sections of the pump and signal in the doped fiber amplifier [18, 19, 20, 21, 22]. On the other hand, the second group of temperature sensors are based on un-doped fibers, and these use principally interference techniques. As examples, we can mention sensors based on Fabry-Perot interferometers, fiber Bragg gratings, long-period gratings, optical fiber couplers, and tapered fibers [11, 12, 13, 14, 15, 16, 17]. The key parameter in these sensors is the temperature dependence of the dielectric material that modifies the modal behavior of the signal that propagates in the un-doped fiber. It consequently changes the interferometer condition and generates a power variation at the end of the fiber device. Currently, several works have been performed to improve the sensitivity of these temperature sensors employing a combination of these sensing techniques in doped and un-doped fibers, respectively. Additionally, these combinations have allowed discerning between simultaneous strain and temperature measurements [3, 4, 5, 6]. In this context, the gradual progress to develop improved temperature fiber sensors requires the necessity to explore continuously novel configurations based on the sensing techniques described above. At this point, one interesting proposal is to consider the use of a tapered fiber, amply used as a temperature fiber sensor [11, 12, 13, 14, 15, 16, 17], inscribed simultaneously in a doped fiber amplifier, which poses an additional temperature response caused by its cross-sections [3, 4, 5, 6, 7, 8, 9, 10, 18, 19, 20, 21]. At this respect, only the efficiency of pump absorption in tapered doped fiber lasers has been studied [23, 24], but a detailed analysis of its temperature response has not be performed. Therefore, in this chapter, we present an analysis of the temperature sensing characteristics of a tapered Yb- and Tm-doped fiber amplifier, and we explore its feasibility to be used as sensing element in temperature fiber sensors. In the present analysis, we study the thermal response of the tapered doped fiber with different tapered fiber structures and pump schemes to find an optimized design for temperature sensing.

Advertisement

2. Numerical simulation

We start our analysis considering first a tapered fiber section formed in a single-mode step index fiber surrounded by air. This scheme has been extensively studied in un-doped fibers showing that no changes of the transmitted power by temperature are obtained when only air is considered as surrounding media [11, 12, 13, 14]. These modifications on the transmitted power are reached when a thermochromic material surrounds the tapered fiber section. However, this situation is not considered in our study because our principal interest is to analyze the transmitted power variations caused by the temperature response of the amplified spontaneous emission in the tapered doped core.

Once air is considered as the surrounding media, we proceed to analyze the mode field expression of the fundamental core mode within the tapered fiber. The mode field expression is an important parameter in doped fiber amplifiers because it determines the core mode fraction of the pump and signal, which affects the power conversion in the doped core [23, 24, 25, 26, 27, 28]. In this study, Gaussian shapes for the pump and signal fundamental core modes were considered. Thus, we can write the transverse intensity pattern using a Gaussian envelope approximation given by [29]:

fp,sr=1πΩ2er/Ω2E1

where subscripts pand srefer to pump and signal radiations and Ωis determined by the characteristic of the fiber: the refractive indexes and radius of the core and cladding, respectively. The multiplying factor in Eq. (1) is chosen to normalize fras follows:

2πfp,srdr=1E2

For a step index fiber, Ωis approximately given by [29]:

Ω=aJ0UVUK1WK2WE3

where a is the core radius and U=ak2n12β2, W=aβ2k2n12, V=kan12n22, k=2πλ, n1and n2are the refractive indices of the active core and cladding, respectively, and βis the propagation constant of the pump or signal mode. For a given V, the value of Wcan be obtained using the empirical relationship

W=1.1428V0.996,E4

It is valid only for step index fibers. In this way, according to the pump and signal wavelengths, one can obtain the respective values of U, W, and Vusing the numerical aperture (NA) of the fiber where

NA=n12n22,E5

and subsequently the parameter Ω. This procedure is accurate for 1.5<V<2.5.

Now, we analyze the thermal effects on the tapered doped fiber considering the changes of the absorption and emission cross-section with temperature. Previous works in un-tapered fibers have reported changes in population of the energy levels in Yb-doped glasses, and the broadening of the homogeneous linewidth as temperature is increased [18, 19, 20, 21]. It results in modifications of the absorption and emission cross-sections for the signal and pump radiations. These effects may vary for each individual doped fiber due to the different glass composition, concentration of dopants and co-dopants, and the degree of structural disorder on the glass network used in different active fibers. In particular, we study the impact of variations on the cross-sections due to temperature in tapered doped fiber amplifiers. Without loss of generality, we use the absorption and emission cross-section changes with temperature reported in [18], which is a representative of several Yb-doped fibers. These changes are expressed in the following equations:

σT=σ20°C+dTE6
dσabs1064nmdT=7.781029m2°KE7
dσem1064nmdT=2.441028m2°KE8
dσabs976nmdT=dσem976nmdT=1.631027m2°KE9

where σabs1064nmand σem1064nmare the absorption and emission cross-sections for the signal wavelength and σabs976nmand σem976nmare the absorption and emission cross-sections for the pump wavelength, respectively.

In order to model a temperature-dependent tapered Yb-doped fiber amplifier, we numerically analyze the following coupled equations:

dIprzdz=σempTn2TσabspTn1TNtotIprzE10
dIsrzdz=σemsTn2TσabssTn1TNtotIsrzE11

where Iprzand Isrzare the pump and signal intensities; Ntotis the total ytterbium population; σabsp, σemp, σabss, σems, are the temperature dependent absorption and emission cross-sections of the pump and signal at 976 nm and 1064 nm, respectively; and n1T, n2Tare the temperature-dependent upper- and lower-state populations of Yb, which are given at a steady state by the following equations:

n2=Rabs+WabsRabs+Rem+Wabs+Wem+AespE12
n1=1n2E13

where Rabs=σabspIphvp, Rem=σempIphvp, Wabs=σabssIshvs, and Wem=σemsIshvs. In these equations, the ASE generation is not considered, and only effects of the taper and temperature modifications are investigated.

In order to consider the taper effects and the overlap of the pump and signal fundamental mode with the active core, we can use [29]:

Ip,s=Pp,szfp,srE14

where subscripts pand srefer to pump and signal radiations, Pp,szare the z-dependent powers at the pump and signal wavelengths, and fris given by Eq. (1). It is clear at this point that the effect of taper and temperature in parameter Ωdefined in Eq. (3) directly modifies the evolution of pump and signal intensities described in Eqs. (10) and (11).

If we consider the pump power at any value of z, we have [30]

Pp,sz=002πIp,srzrdrdϕ=2π0Ip,srzrdrE15

Then,

dPp,szdz=2π0dIp,srzrdrdzE16

Using Eqs. (14) and (16), we can rewrite Eqs. (10) and (11) as follows:

dPpzdz=2π0azσempTn2TσabspTn1TNtotfprrdrE17
dPszdz=2π0azσemsTn2TσabssTn1TNtotfsrrdrE18

On these equations, we assume that the fiber is doped with uniform Yb concentration up to the core radius “a” which depends on z. Besides, it is worth to note that n1Tand n2Tdepend on fp,srdue to their relation with Ipand Isintensities.

Once the temperature-dependent coupled equations are defined, we proceed to model a tapered Yb-doped fiber amplifier with different longitudinal tapered core shapes and different pump schemes [31] as is shown in Figure 1.

rz=1CDBzz2E19
rz=1CDBLzLz2E20

Figure 1.

Modeling scheme using tapered Yb-doped amplifiers with different tapered core shapes and with co-propagating single pump at different initial taper ends: (a) pump at the end with wider radius and (b) pump at the end with lower radius.

This model can be applied to a different doped material as the thulium; in this case Eqs. (6) to (9) must be replaced in agreement with absorption and emission cross-section changes with temperature reported in [32, 33, 34, 35]. These changes are expressed in the following equations:

σabs1600nmT=15.56x102538x1028TE21
σem1600nmT=1.8x1026+1.99x1028TE22
σabs1841nmT=1.96x1026+3.53x1028TE23
σem1841nmT=3.75x10251.57x1029TE24
Advertisement

3. Results and discussion

As a first step, we analyze the power conversion along the fiber between the pump and signal radiations for the different taper schemes described in 0. In addition, we consider the following absorption and emission cross-sections for the Yb-doped fiber amplifier at 20°C: σabsp=1.488x1024m2, σemp=1.829x1024m2, σabss=6x1027m2, and σems=3.58x1025m2, where the wavelengths 976 and 1064 nm correspond to the pump and signal radiation, respectively. In the numerical simulation, we have fixed the numerical aperture of 0.18 along the tapered fiber, and we change the temperature from 20 to 120°C. In both taper structures named Taper 1 (Figure 1a) and Taper 2 (Figure 1b,) we employ a pump power of 1 W, and the corresponding numerical results are shown in Figure 2 for each tapered structure. In this figure it is relevant to observe the behavior of the cross-point where the signal and pump conversion occurs, due to the fact that this cross-point shifts to different lengths according to temperature variations. Then, this shift is an indicative of which tapered structure is affected principally by temperature, modifying in this way the Yb-doped fiber amplifier performance. To visualize this temperature response in a better way, we proceed to analyze the amplified signal power at the end of the tapered fiber at 20°C with respect to the signal generated at different temperatures Tusing the following normalized expression:

Figure 2.

Modeling of a tapered Yb-doped amplifier. Evolution of the pump and signal radiations at two different temperature;, (a), (b) and (c) for the scheme named taper 1 at 1 W of pump power for different tapered core shapes; (d), (e), and (f) for the scheme named taper 2 at 1 W of pump power for different tapered core shapes.

Ps20°CPsT/Ps20°C.E25

We evaluate this equation for each tapered structure given in Figure 1. In the calculations we employ a fiber length = 3 m, and a pump power = 1 W. The results are shown in Figure 3. According to Figure 3, all tapered fiber structures show a high temperature sensitivity for large values of temperature. In addition, we can observe that the tapered fiber structure named Taper 2 is more sensitive to temperature for different tapered shapes. Especially, for the Taper 2 with a parabolic-1 shape, we obtain an improvement of the temperature sensitivity in the fiber amplifier.

Figure 3.

Efficiency signal conversion for different temperatures at the end of the tapered fiber.

Temperature response at different pump powers is shown in Figure 4, where temperatures of 30 and 120°C are used. The signal is calculated at the end of the tapered fiber (3 m) according to the scheme of Figure 1.

Figure 4.

Temperature behavior of the generated signal for different temperaturesT= 30 and 120°C at different pump powers:0.10.5W.

According to Figure 4, the temperature sensitivity of the signal radiation for both tapered fiber schemes shown in Figure 1 is higher as the temperature is increased, and it can be improved if we employ lower pump powers than 1 W, respectively. In particular, this increment on sensitivity highly depends on the taper shape and the pump scheme employed in the amplifier design. Additionally, this temperature sensitivity can change according to the tapered fiber length. In our calculations, the tapered length was 3 m, but other temperature sensitivities can be obtained if we consider tapered fiber length between 2 and 2.5 m, where the cross-point of the signal and pump radiations is located (See Figure 2). In this sense, further analysis needs to be performed to optimize the temperature sensitivity using different taper ratios and different taper lengths and modifying the longitudinal shape of the tapered doped fiber amplifier. Similarly, in the case of Th, we analyze the radiation conversion along the fiber between the pump and signal radiations of the different schemes described in Figure 1. The numerical aperture NA=0.18is considered constant along the taper, and the temperature is changed from 17–117°C. For both schemes shown in Figure 1, the co-propagating pump and signal power were set at 1 W and 20 mW, respectively; the corresponding results of the signal conversion for three different temperatures are shown in Figure 5 for each longitudinal tapered core shape.

Figure 5.

Modeling of a tapered Tm-doped amplifier. Evolution of the pump and signal radiations at two different temperatures,; (a), (b), and (c) for the scheme named taper 1 at 1 W of pump power for different tapered core shapes; (d), (e), and (f) for the scheme named taper 2 at 1 W of pump power for different tapered core shapes.

According to Figure 6, all tapered doped fiber amplifiers show an increasing temperature sensitivity for values starting even at 27°C and up to the maximum temperature of 117°C. The curves for “Taper 2” scheme (all in blue color) showed a saturation at around 87°C, indicating less sensitivity to temperature with respect to “Taper 1” scheme (in black color). However, this behavior could vary if we use other fiber lengths. In this context, the curves shown in Figure 5 represent a design map that could allow us to choose the taper shape and its corresponding taper length, given by the cross-point in order to improve the temperature sensitivity of the tapered doped fiber amplifier around a specific temperature value.

Figure 6.

Normalized amplified signal for different temperatures at the end of the tapered fiber withL=3m.

On the other hand, Figure 7 shows the temperature response at different pump powers for the two tapered core shapes analyzed in this work, where temperatures of 27 and 117°C are used. The signal is calculated at the end of the tapered fiber (3 m) according to the scheme of Figure 1.

Figure 7.

Temperature behavior of the generated signal for temperaturesT=300and390Kat different pump powers (0.2–1 W): (a) taper 1, parabolic 1 and 2, (b) taper 2, parabolic 1 and 2.

According to Figure 7, the temperature sensitivity of the tapered doped fiber amplifier grows as the temperature is increased, and it is higher for low values of the pump power. This is an important result to consider for the design of fiber lasers and temperature fiber sensors. Therefore, we can consider that the temperature sensitivity of the signal radiation is higher for low pump powers, and this sensitivity is different for each pump scheme and depends on the taper used. This sensitivity can vary according to the length of the fiber used. For example, these calculations were made at 3 m; however, more sensitivity changes can be obtained at shorter length, as it is shown in Figure 2. Additionally, further analysis needs to be performed to optimize the temperature sensitivity using different taper ratios and the longitudinal shape of the tapered doped fiber.

Similar results were obtained as in the case of using an Yb-doped fiber amplifier for temperature sensing. However, although the response follows a similar behavior, the results are different, the evolution of the pump and signal radiation is shifted to shorter lengths along the fiber, the efficiency signal conversion is larger, and the temperature behavior of the generated signal for different temperatures as a function of the pump power shows an increased response for the Tm-doped fiber amplifier. The sensitivity of both tapers can be compared with other kinds of sensor of temperatures using similar techniques as shown in Table 1. Table 1 compares the parameters of the authors’ tapered ytterbium- and thulium-doped fiber temperature sensors with existing ones. It can be seen that the sensitivity of the sensors is close to early work on doped silica fibers for intrinsic fiber-optic temperature sensors.

Sensing materialλpump (nm)Fluorescence wavelengths (nm)Temperature range (°C)Sensitivity (°C−1)Reference
Er: silica fiber800530/55523–6000.013[10]
Yb: silica fiber810910/103020–6000.095[31]
Nd: silica fiber807 nm820–840/895–815−50–5000.168[3]
Er: silica fiber785527–537/545–55521–960.006[8]
Yb: tapered silica fiber976106415–1200.005This work
Tm: tapered silica fiber1650184117–1170.009This work

Table 1.

Comparison of the performance of rare-earth-doped fibers and materials as temperature-sensing elements.

Advertisement

4. Conclusion

We have reported a numerical analysis of the temperature effects in tapered ytterbium and thulium-doped fiber amplifiers in co-propagation mode. We found that the tapering shape and the pump power at the input amplifier modify significantly its temperature sensitivity. In particular, the temperature sensitivity is higher as the core radius is reduced in the propagation direction (Taper 1 scheme), and it can be maximized if the tapered fiber length is equal to the propagation distance where the cross-point of the power conversion is achieved. On the other hand, the temperature sensitivity can also be incremented if we use lower pump powers at the amplifier input. Then, for temperature sensing applications, it is desirable to work using tapered doped fiber amplifiers in low pump power regimes. Our results can be extrapolated to other doped fibers and are of great interest for the improvement of high-power tapered lasers and the development of temperature fiber laser sensors.

Advertisement

Acknowledgments

The authors gratefully acknowledge UNACAR and the Optical Sciences Group at The University of Twente.

Advertisement

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1. Sukkar K, Mahmood S, Alhuda H, Jabbar N. Temperature sensing for petroleum pipelines monitoring and control using fiber optics. In: 3rd International Scientific Conference New Trends in Information Technology and Communications Applications (NTICT). Baghdad: In Cooperation with IEEE and UOITC; 2017
  2. 2. Amini S, Kavousi P, Carr TR. Application of fiber-optic temperature data analysis in hydraulic fracturing evaluation: A case study in marcellus shale. In: Unconventional Resources Technology Conference (URTeC?2017). Austin, Texas: Society of Exploration Geophysicists, American Association of Petroleum; 24-26 July 2017. pp. 2105-2115
  3. 3. Wade S, Baxter G, Collins S, Grattan K, Sun T. Simultaneous strain–temperature measurement using fluorescence from Yb-doped silica fiber. The Review of Scientific Instruments. 2000;71(6):2267-2269
  4. 4. Liu T, Fernando G, Zhang Z, Grattan K. Simultaneous strain and temperature measurements in composites using extrinsic Fabry–Perot interferometric and intrinsic rare-earth doped fiber sensors. Sensors and Actuators, A: Physical. 2000;80(3):208-215
  5. 5. Trpkovski S, Wade SA, Collins SF, Baxter GW. Er3+: Yb3+ doped fibre with embedded FBG for simultaneous measurement of temperature and longitudinal strain. Measurement Science and Technology. 2005;16(2):488
  6. 6. Jung J, Nam H, Lee JH, Park N, Lee B. Simultaneous measurement of strain and temperature by use of a single-fiber Bragg grating and an erbium-doped fiber amplifier. Applied Optics. 1999;38(13):2749-2751
  7. 7. Wade SA, Collins SF, Baxter GW. Fluorescence intensity ratio technique for optical fiber point temperature sensing. Journal of Applied Physics. 2003;94(8):4743-4756
  8. 8. Paez G, Strojnik M. Experimental results of ratio-based erbium-doped-silica temperature sensor. Optical Engineering. 2003;42(6):1805-1812
  9. 9. Maurice E, Monnom G, Dussardier B, Saïssy A, Ostrowsky D, Baxter G. Erbium-doped silica fibers for intrinsic fiber-optic temperature sensors. Applied Optics. 1995;34(34):8019-8025
  10. 10. Castrellon-Uribe J, García-Torales G. Remote temperature sensor based on the up-conversion fluorescence power ratio of an erbium-doped silica fiber pumped at 975 nm. Fiber and Integrated Optics. 2010;29(4):272-283
  11. 11. Zhu S, Xing JW, Pang FF, Wang TY. Temperature sensor based on a single-mode tapered optical fiber. Journal of Shanghai University (English Edition). 2011;15(2):101
  12. 12. Kim KT, Park KH. Fiber-optic temperature sensor based on single mode fused fiber coupler. Journal of the Optical Society of Korea. 2008;12(3):152-156
  13. 13. Prerana P, Varshney RK, Pal BP, Nagaraju B. High sensitive fiber optic temperature sensor based on a side-polished single-mode fiber coupled to a tapered multimode overlay waveguide. Journal of the Optical Society of Korea. 2010;14(4):337-341
  14. 14. Díaz-Herrera N, Navarrete M, Esteban O, González-Cano A. A fibre-optic temperature sensor based on the deposition of a thermochromic material on an adiabatic taper. Measurement Science and Technology. 2003;15(2):353
  15. 15. Villatoro J, Monzón-Hernández D, Mejía E. Fabrication and modeling of uniform-waist single-mode tapered optical fiber sensors. Applied Optics. 2003;42(13):2278-2283
  16. 16. Zhu S, Pang F, Wang T. Single-mode tapered optical fiber for temperature sensor based on multimode interference. In: Asia Communications and Photonics Conference and Exhibition (ACP’2011). Shanghai, China: Optical Society of America; 13-16 November 2011. p. 83112B
  17. 17. Monzón-Hernández D, Mora J, Perez-Millán P, Díez A, Cruz JL, Andrés MV. Temperature sensor based on the power reflected by a Bragg grating in a tapered fiber. Applied Optics. 2004;43(12):2393-2396
  18. 18. Henry LJ, Shay TM, Hult DW, Rowland KB. Thermal effects in narrow linewidth single and two tone fiber lasers. Optics Express. 2011;19(7):6164-6176
  19. 19. Vazquez-Zuniga LA, Chung S, Jeong Y. Thermal characteristics of an ytterbium-doped fiber amplifier operating at 1060 and 1080 nm. Japanese Journal of Applied Physics. 2010;49(2R):022502
  20. 20. Peng X, Dong L. Temperature dependence of ytterbium-doped fiber amplifiers. JOSA B. 2008;25(1):126-130
  21. 21. Newell T, Peterson P, Gavrielides A, Sharma M. Temperature effects on the emission properties of Yb-doped optical fibers. Optics Communication. 2007;273(1):256-259
  22. 22. Saito K, Yamamoto R, Kamiya N, Sekiya E, Barua P. Fictive temperature dependences of optical properties in Yb-doped silica glass. In: Proceeding of Spie 2008. San Diego, California, United States: International Society for Optics and Photonics; 10-14 August 2008. p. 69981-J
  23. 23. Filippov V, Chamorovskii Y, Kerttula J, Golant K, Pessa M, Okhotnikov O. Double clad tapered fiber for high power applications. Optics Express. 2008;16(3):1929-1944
  24. 24. Li L, Lou Q, Zhou J, Dong J, Wei Y, Du S, et al. High power single transverse mode operation of a tapered large-mode-area fiber laser. Optics Communication. 2008;281(4):655-657
  25. 25. Alvarez-Chavez J, Grudinin A, Nilsson J, Turner P, Clarkson W. Mode selection in high power cladding pumped fibre lasers with tapered section. In: Technical Digest. Summaries of papers presented at the Conference on Lasers and Electro-Optics (CLEO’99). Baltimore, MD, USA: Conference on Lasers and Electro-Optics IEEE; 28-28 May 1999. p. 247-248
  26. 26. Ustimchik V, Nikitov S, Chamorovskii YK. Simulation of radiation generation in an active double-clad optical tapered fiber. Journal of Communications Technology and Electronics. 2011;56(10):1249
  27. 27. Bagan V, Nikitov S, Chamorovskii YK, Shatrov A. Studying the properties of double-clad active cone optic fibers. Journal of Communications Technology and Electronics. 2010;55(10):1154-1161
  28. 28. Zhang YJ, Zhong FF, Wang YZ. Top-hat beam Tm3+ −doped fiber laser using an intracavity abrupt taper. Laser Physics. 2011 Jan;21(1):215-218. DOI: 10.1134/S1054660X11010245
  29. 29. Ghatak A, Thyagarajan K. An introduction to fiber optics. 1st ed. Cambridge: Cambridge University Press; 1998. p 576. DOI: 10.1017/CBO9781139174770
  30. 30. Alvarez-Chavez JA, Perez-Sanchez G, Ceballos-Herrera D, Rodriguez-Rodriguez J, Schreiber T. Temperature sensing characteristics of tapered Yb-doped fiber amplifiers. Optik. 2013;124(22):5818-5821
  31. 31. Sanchez-Lara R, Ceballos-Herrera D, Vazquez-Avila J, de la Cruz-May L, Martinez-Pinon F, Alvarez-Chavez J. Temperature sensing characteristics of tapered Tm3+−doped fiber amplifiers. Laser Physics. 2017;27(8):085108
  32. 32. Turri G, Sudesh V, Richardson M, Bass M, Toncelli A, Tonelli M. Temperature-dependent spectroscopic properties of Tm3+ in germanate, silica, and phosphate glasses: A comparative study. Journal of Applied Physics. 2008;103(9):093104
  33. 33. Sudesh V, Piper J, Goldys E, Seymour R. Growth, characterization, and laser potential of Tm: La2Be2O5. JOSA B. 1998;15(1):239-246
  34. 34. Agger SD, Povlsen JH. Emission and absorption cross section of thulium doped silica fibers. Optics Express. 2006;14(1):50-57
  35. 35. Payne SA, Chase L, Smith LK, Kway WL, Krupke WF. Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+. IEEE Journal of Quantum Electronics. 1992;28(11):2619-2630

Written By

Rafael Sanchez-Lara, Lelio de la Cruz-May, José Luis Vazquez-Avila, Daniel Enrique Ceballos-Herrera and José Alfredo Alvarez-Chavez

Submitted: June 16th, 2019 Reviewed: September 24th, 2019 Published: November 13th, 2019