## Abstract

In the last few years, several groups have proposed and developed their own platforms demonstrating quantum-limited linear parametric amplification, with evident applications in quantum information and computation, electrical and optical metrology, radio astronomy, and basic physics concerning axion detection. Here, we propose a short review on the physics behind parametric amplification via metamaterials composed by coplanar waveguides embedding several Josephson junctions. We present and compare different schemes that exploit the nonlinearity of the Josephson current-phase relation to mix the so-called signal, idler, and pump tones. The chapter then presents and compares three different theoretical models, developed in the last few years, to predict the dynamics of these nonlinear systems in the particular case of a 4-wave mixing process and under the degenerate undepleted pump assumption. We will demonstrate that, under the same assumption, all the results are comparable in terms of amplification of the output fields.

### Keywords

- superconductivity
- metamaterial
- Josephson effect
- parametric amplification
- microwave photonics

## 1. Introduction

In the last decade, microwave quantum electronics received a substantial boost by the advancements in superconducting circuits and dilution refrigerators technologies. These platforms allow experiments to be easily carried out in the mK regime, where the detection and manipulation of signals in the range

Solid state microwave quantum electronics is founded on a building block that has no analogous in quantum optics: the Josephson junction [2]. This, in fact, is a unique nondissipative and nonlinear component that represents the key element of a large series of quantum experiments.

Furthermore, microwave quantum electronics allows the exploration of the so-called ultrastrong coupling regime [3], hard to be reached in quantum optics, and it is worth mentioning that nonlinear resonator can be exploited to access relativistic quantum effects and quantum vacuum effects. To give an example, the Lamb shift [4] effect has been observed in superconducting artificial atom [5], while the dynamical Casimir effect [6, 7] has been promoted by properly engineered superconducting waveguide [8].

From the very beginning, superconducting electronics has been pushed by the strong interest coming from the quantum computation and information community. However, it has been only recently shown that a new concept of 1D metamaterial with embedded several Josephson junctions enables strong photon-photon on-chip interactions [9], allowing experimentalists to engineer dispersion relations that drive the waves traveling along artificial waveguides [10, 11]. These concepts and technologies allow the control and tunability of the wave mixing process. As an example, a weak signal traveling in a metamaterial can interact with a strong pump tone at a different frequency, activating the so-called parametric amplification [12]. The class of devices where these phenomena are promoted is commonly known as traveling-wave Josephson parametric amplifiers (TWJPA) and represents the solid state analogous to optical

It has been shown that TWJPAs can act as quantum parametric amplifiers by reaching the so-called quantum limit [14]. With the purpose of a comparison to the state-of-the-art commercially available low-noise amplifiers, these latter can operate at

The capability to beat the quantum limit is related to the so-called phase-sensitive amplification process, where the metamaterial can operate in degenerate mode (degenerate parametric amplifier, DPA), acting on two waves (signal and idler) at the same frequency (

It should be evident how superconducting electronics not only has demonstrated to be an ideal platform for microwave quantum parametric amplification but also has pushed forward the research field focusing on the generation of nonclassical radiation with attractive potential applications in metrology and quantum information processing.

## 2. Historical evolution of the traveling-wave parametric amplifiers

The theory of a new concept of microwave amplifier was developed by Cullen [12] in 1959. In his paper, Cullen showed a novel mechanism of periodic transfer of power between a pump tone and a signal traveling in a transmission line composed of a voltage dependent capacitance per unit length. A nonlinear component of an RLC circuit can change periodically the resonance frequency of the whole system, leading to a novel way of making broadband amplification, the so-called parametric amplification. In Figure 1, we report two toy models for parametric amplification in mechanical systems with their electrical counterparts.

One of the first realizations of Cullen’s idea was made by Mavaddat et al. in 1962 [19]. The signal line was basically a low pass filter, in which the shunt elements were similar varactor diodes. There, the nonlinearity was given by the specific capacitance-voltage relation of the varactor diodes, which is highly nonlinear for relative small voltage values. In this pioneering experiment, a gain of 10 dB and a bandwidth of 3 MHz were shown.

After the theorizing and the subsequent discovery of the Josephson effect [2], it was understood that an easy way to embed a nonlinear component into a transmission line and simultaneously reduce losses was to build a nonlinear inductance made of superconducting material, exploiting a Josephson junction as a source of nonlinearity following the vanguard idea by Sweeny and Mahler [13]. There, the parametric amplifier was modeled by a first-order small-signal theory with the same approach adopted to predict the behavior of GaAsFET transmission line amplifiers. The proposed design consisted of a superconducting thin-film niobium transmission line, composed by a coplanar waveguide integrating a large number of Josephson junctions.

The first realization of a traveling-wave parametric amplifier embedding a series of Josephson junctions was possible due to the PARTS process developed at IBM [9]. Exploiting niobium/aluminum technology, Yurke et al. [20] reported the construction and characterization of a coplanar waveguide, in which the central trace was composed by an array of 1000 Josephson junctions. The experiment was there performed in reflection mode, by terminating one end of the device with a short, leading to a relative high gain of 16 dB but a narrow bandwidth of 125 MHz and a noise temperature of 0.5 ± 0.1 K. The mismatch between the theoretical model and the experimental data has resulted in the understanding of a lack of a complete description of the physics behind this device when working in a small-signal regime. The study of the collective behavior of groups of Josephson junctions forming a transmission line has been an active field of study of several theoretical works [21, 22]. Subsequently, the use of numerical analysis [23] helped in clarifying how wave propagation acts inside this kind of transmission line, giving information on cutoff propagation, dispersive behavior, and shock-wave formation. An analytical model of a Josephson traveling-wave amplifier of greater complexity was developed by Yaakobi et al. [24]. There, a transmission line made of a series of capacitively shunted Josephson junctions was considered.

One of the main limitations concerning the maximum achievable gain, common to all the TWJPAs concepts, is represented by the phase mismatch between the different tones into the line. In particular, it has to be noticed that even though the incoming waves can be in phase, photon-photon interactions between different tones (cross-phase modulation) or the same tone (self-phase modulation) lead to a modification of the phase of the traveling tones themselves. Indeed, quantum mechanically speaking, the power transport between the pump and the signal waves takes place through a photon energy conversion between the pump and the signal. This means that for an efficient energy exchange, conservation of both energy and momentum needs to take place. The latter condition is the corpuscular analogous to the phase matching requirement between the different electromagnetic waves. An engineering solution to overcome this problem is represented by the so-called resonant phase matching (RPM) [11]. O’Brien et al. analyzed this method theoretically on a simple transmission line made of a series of Josephson junctions capacitively shunted to ground operating in the so-called 4-wave mixing (4WM) regime. In their model, they shunted the transmission line with several LC resonators with a resonance frequency slightly above the pump tone. Doing this, they were able to show the rise of a stop band in the dispersion relation, which is able to re-phase the pump with the signal tones by changing the pump wave vector, favoring the wave mixing.

O’Brien’s design was realized not long after [10] using Al technology. In their design, the unit cell of the transmission line was composed by three single nonlinear Josephson cells, the shunt capacitor was made using low-loss amorphous silicon dielectric and a resonator was placed after each group of 17 unit cells. The device showed a maximum gain of 12 dB over a 4 GHz bandwidth centered on

A similar design was adopted by Macklin et al. [14] to prove experimentally the capability of a TWJPA combined with the RPM technique to be used as a reliable tool for qubits readout. In this paper, the TWJPA, based on Nb technology and a different RPM periodicity, was first characterized, showing a gain of 20 dB over a 3 GHz bandwidth. Moreover, the quantum efficiency of the amplifier was tested when coupled with a 3D transmon qubit, leading to an efficiency value of

Another option to solve the mismatch problem was suggested by Bell and Samlov [26], who proposed a self-phase matching transmission line embedding a series of asymmetric superconducting quantum interference devices (SQUIDs). The remarkable feature of this design is that it does not need any resonant circuit to achieve phase matching. This TWJPA is indeed able to tune the nonlinearity of its SQUIDs just through the use of an external magnetic field. Zhang et al. realized that this design [27] proves the wide tunability on positive and negative values of the Kerr nonlinearity by a magnetic flux and its capability to assist phase matching in the 4WM process. The 4WM process is intrinsically affected by phase mismatch because it takes origin from a cubic (Kerr-like) nonlinearity of the current-phase relation of the SQUIDs composing the TWJPA, getting unwanted effects from self-phase and cross-phase modulations.

Zorin showed [28] that by embedding a chain of rf-SQUIDs into a coplanar waveguide, it is possible to tune both the second and third order nonlinearities of their phase-current relation. This is a totally a novel approach to the TWJPA, since the possibility to use a quadratic term as a source of nonlinearity, allows to work in the 3-Wave Mixing regime (3WM), as theorized by Cullen 57 years before. It is well-known that 3WM has several advantages when compared to 4WM. Firstly, it allows to operate with a minimal phase mismatch. Secondly, it requires a lesser pump power to achieve the same amplification per unit length. Eventually, it separates signal and idler from pump tones, easing the engineering of the experimental setup by removing the requirement of heavy filtering in the middle of the amplification band. A proof of principle based on the Zorin’s layout [29] showed a gain reaching 11 dB over a 3 GHz bandwidth.

A step forward in controlling the metamaterial nonlinearities was attempted by Miano et al. [30] achieving an independent tune of both second and third order terms in the current-phase relation by adjusting the bias current in some inductive circuits surrounding the transmission line. This technology takes the name of symmetric traveling-wave parametric amplifier (STWPA), its peculiarity arising from the symmetric arrangement of the rf-SQUIDs that compose the transmission line. This device concept represents the state-of-the-art in the field, allowing the exploration a wide portion of the control parameters space, leading to a maximum estimated gain of 17 dB and a 4 GHz bandwidth.

## 3. Theoretical models for a 4WM process in a TWJPA

In the last decade, different theoretical models have been developed to predict the behavior of an electric transmission line containing an array of Josephson junctions, employed as nonlinear elements. In this section, we will focus on those models developed to predict the behavior of a TWJPA in the particular case of a 4WM process, under undepleted degenerate pump approximation (i.e., assuming that the power held by the pump wave is at first approximation constant and larger than the one owned by the signal and the idler). We will firstly focus on the classical theory proposed by Yaakobi et al. in 2013 [24] and O’Brien et al. in 2014 [11], in which the behavior of the transmission line is derived imposing the current conservation in the system. This starting assumption leads to the definition of a partial differential nonlinear equation that can be turned into a system of coupled mode equations, providing the expression of the amplitude of the pump, signal, and idler tones along the transmission line. Subsequently, we will discuss two different quantum approaches for the description of the parametric amplifier dynamics. The first one, proposed by Grimsmo and Blais in 2017 [31], exploits a Hamiltonian based on continuous-mode operators to derive, in an interaction picture frame, a device’s output field. The second one instead, proposed by van der Reep in 2019 [32], derives a system of coupled mode equations for the creation and annihilation quantum operators starting from a Hamiltonian based on discrete-mode operators.

The theories presented in this chapter will be based on a series of simplifying assumptions, whose experimental realization could be difficult to be obtained. For instance, in a real device, the undepleted pump approximation is hardly respected along the entire extension of the device because, along the line, the pump tone transfers a non-negligible amount of energy to the signal and idler one. The depletion effects, resulting in a reduction of the gain and of the dynamics-range of the amplifier, have been studied both in a classical and quantum frame [28, 33].

In all of these models, a lossless electrical circuit composed by the repetition of an elementary cell, whose structure is shown in Figure 2, is taken into account. In order to standardize the notations, we assume that the Josephson junctions embedded in the transmission line are identical (i.e., they have the same critical current * n*-th junction can be expressed through the nonlinear relation

where

where * h* the Planck constant and

*the elementary charge), whereas*e

*-th node of the circuit. The phase at the*n

*-th node (*n

*-th node, and vice versa, through the relation*n

Furthermore, we define * n*-th Josephson junction and

where

The energy stored in the * n*-th Josephson junction can be expressed, using the definitions given in Eqs. (1) and (2), as

under the assumption that

where

Finally, we assume identical coupling capacitances

### 3.1 The classical theoretical model

In this subsection, we will present the main steps for the derivation of the classical model presented in [11, 24]. Under proper assumption, this model allows to determine analytically the amplitude of the signal’s and idler’s waves along the transmission line.

Expressing the current flowing through each branch of the circuit presented in Figure 2 in terms of absolute phases * n*-th node (i.e.,

where the last term derives from the first-order approximation of the nonlinear behavior of the Josephson’s inductance.

Assuming the length * a* of the elementary cell is much smaller than the wave lengths of the propagating waves

*can be replaced by a continuous position*n

*along the line (i.e.,*x

In this way, it is possible to define a nonlinear differential equation for the continuous absolute phase

In the case of a weakly nonlinear medium, the dispersion law can be derived from Eq. (9), considering the left-hand side being equal to zero and imposing a plane-wave solution

The solutions of Eq. (9) can be expressed, as shown by O’Brien et al. [11], in the form of a superposition of three waves (pump, signal, and idler) whose amplitudes are complex functions of the position along the line:

The case of a 4WM process with a degenerate pump can be taken into account by imposing the frequency matching condition

where

while the coupling constants

Expressing the complex amplitudes

it can be demonstrated that, working under the undepleted pump approximation

where

The total gain of an amplifier, composed by the repetition of

### 3.2 Quantum Hamiltonian model based on continuous-mode operators

A standard method to treat quantum superconducting circuits is represented by the lumped element approach [34]. In this latter, the Hamiltonian of the quantum circuit is straightforwardly derived from its classical counterpart by promoting fields to operators and properly imposing commutating relations. In this view, one can proceed by deriving the Lagrangian of a TWJPA composed by the repetition of N unitary cells, under first nonlinear order approximation, as

where

where

where

From Eq. (21), one can easily derive the Euler-Lagrange equation whose form, for

The Hamiltonian of the system can be derived from the Lagrangian by taking into account

where the term

This Hamiltonian can be converted to its quantum form promoting the field

In direct analogy with Eq. (11), one can express the flux operator in terms of continuous-mode functions [34], such as

where the subscript

(where the zero-point energy, which does not influence the dynamics of the amplifier, has been omitted).

Using the expansion of

In the expressions of these contributions, the fast rotating terms and the highly phase mismatched left-moving field have been neglected:

describes the cross-phase modulation,

describes the broadband squeezing, and

describes the self-phase modulation.

The function

Assuming the nonlinear Hamiltonian

where

Working in the monochromatic degenerate pump limit

and

where

Similar to the previous classical treatment, one can introduce the co-rotating framework by replacing the field operators with

In this framework, one can derive the following differential equation

and

where

where

If a state moves inside a TWJPA of length

### 3.3. Quantum Hamiltonian model based on discrete-mode operators

An alternative approach for the derivation of the quantum dynamics of a TWJPA is the one proposed in [32]. In this model, the quantum Hamiltonian for a 4WM parametric amplifier is expressed as the integral, along an arbitrary quantization length

under the assumption that

Therefore, the quantum Hamiltonian of the system can be expressed, with an approximation to the first nonlinear order, as

where

(here

Before defining the flux operator, it is necessary to define an effective inductance

Using the telegrapher’s equation [37], the discrete-mode current operator, under slowly varying amplitude approximation (

Therefore, the flux operator can be expressed as

The recursive relation deriving from Eq. (49) can be solved iteratively. Exploiting a power series expansion of the sine function and considering just the first order of interaction, it results that

where

Substituting Eqs. (46) and (50) in Eq. (45), and limiting the expression to the first nonlinear order, the Hamiltonian for a 4WM amplifiers turns up

where

Neglecting the constant zero-point energy and assuming a strong degenerate classical pump (as shown in [36])

it is possible to approximate the Hamiltonian in Eq. (52) to the second order in

where

represents the quantum self-phase modulation (when

Starting from the Hamiltonian

In [32], the hypothesis under which the classical coupled mode equations Eqs. (12) and (13) can be obtained from Eqs. (57) and (58) is described in detail.

Moving to a co-rotating frame (

where

whose solutions are

where the exponential complex gain factor is defined as

If a state spends a time

To make the results of this last treatment, in which the operators are expressed as a function of the time, comparable with the previous ones, in which the operators are expressed as a function of the space coordinate, we need to take into account the phase velocity of the tones. It turns out that:

where

### 3.4. Models comparison

The three exponential complex gain factors (

It is important to observe that in Eqs. (17), (41), and (61), the last term is always equal to zero in the case of a zero initial idler amplitude. In such a case, and under the hypothesis of a perfect phase matching (

## 4. Conclusions

In the present chapter, we have presented the state-of-the-art of the experimental evidences in the field of Josephson junctions-based traveling-wave metamaterials through a historical review in Section 2. Moreover, in Section 3, we have reported three different theoretical approaches for the prediction of a TJWPA dynamics, in the particular case of a 4WM process. Assuming similar simplifying hypothesis, like the use of a classical undepleted degenerate pump, the presence of slowly varying fields along the transmission line and approximating the nonlinearities of the system up to the first order, a similar expression for the signal amplitude (or field annihilation/creation operators in the case of quantum theories) expressed in a co-rotating frame, is derived in the three treatments. Although the results of the quantum theories are similar to the classical ones, the description of the system dynamics with a quantum theory grants the possibility to evaluate photon-number distributions, squeezing effects and averages, standard deviations or higher-order moments of the measurements operators, taking into account the commutation relations between operators explicitly. For instance, detailed calculations of the output state of a TWJPA in the case of a single-photon input state and in the case of a coherent input state are presented in [32].

## Acknowledgments

The author would like to thank Luca Callegaro for the stimulating discussion. This work was partially funded by the Joint Research Project PARAWAVE of the European Metrology Programme for Innovation and Research (EMPIR). This project has received funding from the EMPIR program co-financed by the Participating States and from the European Unions’ Horizon 2020 research and innovation program.

## References

- 1.
Devoret MH, Schoelkopf RJ. Superconducting circuits for quantum information: An outlook. Science. 2013; 339 :1169. DOI: 10.1126/science.1231930 - 2.
Josephson BD. Possible new effects in superconductive tunneling. Physics Letters. 1962; 1 (7):251-253. DOI: 10.1016/0031-9163(62)91369-0 - 3.
Niemczyk T et al. Circuit quantum electrodynamics in the ultrastrong-coupling regime. Nature Physics. 2010; 6 :772776. DOI: 10.1038/NPHYS1730 - 4.
Lamb WE, Retherford RC. Fine structure of the hydrogen atom by a microwave method. Physics Review. 1947; 72 :241. DOI: 10.1103/PhysRev.72.241 - 5.
Fragner A, Goppl M, Fink JM, Baur M, Bianchetti R, Leek PJ, et al. Resolving vacuum fluctuations in an electrical circuit by measuring the Lamb shift. Science. 2008; 322 :1357. DOI: 10.1126/science.1164482 - 6.
Moore GT. Quantum theory of the electromagnetic field in a variable-length one-dimensional cavity. Journal of Mathematical Physics. 1970; 11 :2679. DOI: 10.1063/1.1665432 - 7.
Fulling SA, Davies PCW. Radiation from a moving mirror in two dimensional space-time: Conformal anomaly. Proceedings of the Royal Society A. 1976; 348 :393. DOI: 10.1098/rspa.1976.0045 - 8.
Wilson C et al. Observation of the dynamical Casimir effect in a superconducting circuit. Nature. 2011; 479 :376379. DOI: 10.1038/nature10561 - 9.
Ketchen MB et al. Subm, planarized, NbAlOxNb Josephson process for 125 mm wafers developed in partnership with Si technology. Applied Physics Letters. 1991; 59 :2609. DOI: 10.1063/1.106405 - 10.
White TC, al e. Traveling wave parametric amplifier with Josephson junctions using minimal resonator phase matching. Applied Physics Letters. 2015; 106 :242601. DOI: 10.1063/1.4922348 - 11.
O’Brien K, Macklin C, Siddiqi I, Zhang X. Resonant phase matching of Josephson junction traveling wave parametric amplifiers. Physical Review Letters. 2014; 113 :157001. DOI: 10.1103/PhysRevLett.113.157001 - 12.
Cullen AL. Theory of the travelling-wave parametric amplifier. Proceedings of the IEE - Part B: Electronic and Communication Engineering. 1959; 32 (107):101-107. DOI: 10.1049/pi-b-2.1960.0085 - 13.
Sweeny M, Mahler R. A travelling-wave parametric amplifier utilizing Josephson junctions. IEEE Transactions on Magnetics. 1985; 21 (2):654-655. DOI: 10.1109/TMAG.1985.1063777 - 14.
Macklin C, OBrien K, Hover D, Schwartz ME, Bolkhovsky V, Zhang X, et al. A nearquantum-limited Josephson traveling-wave parametric amplifier. Science. 2015; 350 (6258):307-310. DOI: 10.1126/science.aaa8525 - 15.
Walls DF, Milburn GJ. Quantum Optics. 2nd ed. Berlin: Springer; 2008 - 16.
Einstein A, Podolsky B, Rosen N. Can quantum-mechanical description of physical reality be considered complete? Physics Review. 1935; 47 :777. DOI: 10.1103/PhysRev.47.777 - 17.
Reid MD, Drummond PD. Quantum correlations of phase in nondegenerate parametric oscillation. Physical Review Letters. 1988; 60 :2731. DOI: 10.1103/PhysRevLett.60.2731 - 18.
Butikov EI. Parametric resonance in a linear oscillator at square-wave modulation. European Journal of Physics. 2005; 26 :157174. DOI: 10.1088/0143-0807/26/1/016 - 19.
Mavaddat R, Hyde FJ. Investigation of an experimental travelling-wave parametric amplifier. Proceedings of the IEE - Part B: Electronic and Communication Engineering. 1962; 109 (47):405. DOI: 10.1049/pi-b-2.1962.0225 - 20.
Yurke B, Roukes ML, Movshovich R, Pargellis AN. A low noise series array Josephson junction parametric amplifier. Applied Physics Letters. 1996; 69 :3078. DOI: 10.1063/1.116845 - 21.
van der Zant HSJ, Berman D, Orlando TP. Fiske modes in one-dimensional parallel Josephson-junction arrays. Physical Review B. 1994; 49 :18. DOI: 10.1103/PhysRevB.49.12945 - 22.
Caputo P, Darula M, Ustinov AV, Kohlstedt H. Fluxon dynamics in discrete Josephson transmission lines with stacked junctions. Journal of Applied Physics. 1997; 81 :309. DOI: 10.1063/1.364110 - 23.
Mohebbi HR, Hamed Majedi A. Analysis of series-connected discrete Josephson transmission line. IEEE Transactions on Microwave Theory and Techniques. 2009; 57 :8. DOI: 10.1109/TMTT.2009.2025413 - 24.
Yaakobi O, Friedland L, Macklin C, Siddiqi I. Parametric amplification in Josephson junction embedded transmission lines. Physical Review B. 2013; 87 :144301. DOI: 10.1103/PhysRevB.87.144301 - 25.
Tan BK, Yassin G. Design of a uniplanar resonance phase-matched Josephson travelling-wave parametric amplifier. In: 10th UK-Europe-China Workshop on Millimetre Waves and Terahertz Technologies (UCMMT); September 11–13, 2017; Liverpool. New York: IEEE; 2017. pp. 1-4 - 26.
Bell MT, Samolov A. Traveling-wave parametric amplifier based on a chain of coupled asymmetric SQUIDs. Physical Review Applied. 2015; 4 :024014. DOI: 10.1103/PhysRevApplied.4.024014 - 27.
Zhang W, Huang W, Gershenson ME, Bell MT. Josephson metamaterial with a widely tunable positive or negative Kerr constant. Physical Review Applied. 2017; 8 :051001. DOI: 10.1103/PhysRevApplied.8.051001 - 28.
Zorin AB. Josephson traveling-wave parametric amplifier with three-wave mixing. Physical Review Applied. 2016; 6 :034006. DOI: 10.1103/PhysRevApplied.6.034006 - 29.
Zorin AB, Khabipov M, Dietel J, Dolata R. Traveling-wave parametric amplifier based on three-wave mixing in a Josephson Metamaterial. In: 2017 16th International Superconductive Electronics Conference (ISEC); June 12–16, 2017; Naples. New York: IEEE; 2017. pp. 1-3 - 30.
Miano A, Mukhanov OA. Symmetric traveling wave parametric amplifier. IEEE Transactions on Applied Superconductivity. 2019; 29 :5. DOI: 10.1109/TASC.2019.2904699 - 31.
Grimsmo AL, Blais A. Squeezing and quantum state engineering with Josephson travelling wave amplifiers. npj Quantum Information. 2017; 3 :20. DOI: 10.1038/s41534-017-0020-8 - 32.
van der Reep THA. Mesoscopic Hamiltonian for Josephson traveling-wave parametric amplifiers. Physical Review A. 2019; 99 :063838. DOI: 10.1103/PhysRevA.99.063838 - 33.
Roy A, Devoret M. Quantum-limited parametric amplification with Josephson circuits in the regime of pump depletion. Physical Review B. 2018; 98 :045405. DOI: 10.1103/PhysRevB.98.045405 - 34.
Vool U, Devoret M. Introduction to quantum electromagnetic circuits. International Journal of Circuit Theory and Applications. 2017; 45 :897. DOI: 10.1002/cta.2359 - 35.
Santos DJ, Loudon R. Electromagnetic-field quantization in inhomogeneous and dispersive one-dimensional systems. Physical Review A. 1995; 52 :1538. DOI: 10.1103/PhysRevA.52.1538 - 36.
Loudon R. The Quantum Theory of Light. 3rd ed. Oxford, UK: Oxford University Press; 2000 - 37.
Pozar DM. Microwave Engineering. 4th ed. Hoboken, NJ: Wiley; 2012