\n
3.1 Delay renewal case
\n
The mathematical expectation of total claims plays an important role in the determination of the pure premium, in addition to giving a measure of the central tendency of its distribution. The moments centered at the average of order 2, 3 and 4 are the other moments usually considered because they usually give a good indication of the pace of distribution, and these give us respectively a measure of the dispersion of the distribution around its mean, a measure of the asymmetry and flattening of the distribution considered.
\n
Moments, whether simple, joined or conditional, may eventually be used to construct approximations of the distribution of the DCDPRV.
\n
Theorem 3.1
\n
The Laplace transform of the mth moment of \n\n\n\n\nZ\nd\n\n\nt\n\n\n\nt\n≥\n0\n\n\n\n is given by:
\n
\n\n\n\n\n\n\n\nπ\n˜\n\n\n\nZ\nd\n\nm\n\n\nr\n\n\n\n\n=\n\n\n1\n+\n\n\nλ\n2\n\n\nr\n+\nm\nδ\n\n\n+\n\n\n\nλ\n1\n\n−\n\nλ\n2\n\n\n\nr\n+\nm\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n\n\nu\n˜\n\n\nm\n\n\nr\n\n\n\n\n\n\n=\n\nλ\n1\n\n\n\n1\n+\n\n\nλ\n2\n\n\nr\n+\nm\nδ\n\n\n+\n\n\n\nλ\n1\n\n−\n\nλ\n2\n\n\n\nr\n+\nm\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n\n\n\n\n\n×\n\n∑\n\nj\n=\n0\n\n\nm\n−\n1\n\n\n\n\n\n\nm\n\n\n\n\nj\n\n\n\n\n\n\n\n\n\n\nμ\n\nm\n−\nj\n\n\n−\nθ\n\n\n\nμ\n\nm\n−\nj\n\n′\n\n−\n\nμ\n\nm\n−\nj\n\n\n\n\n\n\n\n\nλ\n1\n\n+\nm\nδ\n+\nr\n\n\n+\n\n\n2\nθ\n\n\n\nμ\n\nm\n−\nj\n\n′\n\n−\n\nμ\n\nm\n−\nj\n\n\n\n\n\n\n2\n\nλ\n1\n\n+\nm\nδ\n+\nr\n\n\n\n\n\n\n\nπ\n˜\n\n\n\nZ\no\n\n\nj\n\n\n\nr\n\n\n\n\n\nE5
\n
where
\n
\n\n\n\nπ\n˜\n\n\nZ\nd\n\nm\n\n\nr\n\n=\n\n\nu\n˜\n\nm\n\n\nr\n\n+\n\n\nλ\n2\n\nm\nδ\n\n\n\nu\n˜\n\nm\n\n\nr\n\n×\n\nL\n\nτ\n1\n\n\n\nm\nδ\nr\n\n+\n\n\n\nλ\n1\n\n−\n\nλ\n2\n\n\n\nm\nδ\n+\n\nλ\n1\n\n\n\n\n\nu\n˜\n\nm\n\n×\n\nL\n\nτ\n1\n\n\n\n\nm\nδ\n+\n\nλ\n1\n\n\nr\n\n.\n\nE6
\n
\nProof\n
\n
Conditioning on the arrival of the first claim leads to
\n
\n\n\n\n\n\n\nπ\n\nZ\nd\n\nm\n\n\nt\n\n\n\n\n=\nE\n\n\n\nZ\nm\n\n\nt\n\n\n\n\n\n\n\n\n=\nE\n\n\nE\n\n\n\n\n\n\ne\n\n−\nδ\ns\n\n\n\nX\n1\n\n+\n\ne\n\n−\nδ\ns\n\n\n\nZ\no\n\n\n\nt\n−\ns\n\n\n\n\nm\n\n\n\n\nτ\n1\n\n=\ns\n\n\n\n\n\n\n\n\n\n\n\n=\n\n∑\n\nj\n=\n0\n\n\nm\n−\n1\n\n\n\n\n\n\nm\n\n\n\n\nj\n\n\n\n\n\n∫\n0\nt\n\n \n\nf\n\nτ\n1\n\n\n\ns\n\n\ne\n\n−\nm\nδ\ns\n\n\nE\n\n\n\nX\n\nm\n−\nj\n\n\n\n\n\nτ\n1\n\n=\ns\n\n\n\n\n\nπ\n\nZ\no\n\n\nj\n\n\n\n\nt\n−\ns\n\n\nds\n\n\n\n\n\n\n+\n\n∫\n0\nt\n\n \n\nf\n\nτ\n1\n\n\n\ns\n\n\ne\n\n−\nm\nδ\ns\n\n\n\nπ\n\nZ\no\n\nm\n\n\n\nt\n−\ns\n\n\nds\n.\n\n\n\n\nE7
\n
We have
\n
\n\n\n\n\nE\n\n\n\nX\n\nm\n−\nj\n\n\n\n\n\nτ\n1\n\n=\ns\n\n\n\n\n\n\n\n=\n\n∫\n0\n∞\n\n\nx\n\nm\n−\nj\n\n\n\nf\n\nX\n\n\n\nτ\n1\n\n=\ns\n\n\n\n\n\nx\n\ndx\n\n\n\n\n\n=\n\n∫\n0\n∞\n\n\nx\n\nm\n−\nj\n\n\n\n\n1\n+\nθ\n\n\n1\n−\n2\n\nF\nX\n\n\nx\n\n\n\n\n\n1\n−\n2\n\nF\n\nτ\n1\n\n\n\ns\n\n\n\n\n\n\nf\nX\n\n\nx\n\ndx\n\n\n\n\n\n=\nE\n\n\nX\n\nm\n−\nj\n\n\n\n+\nθ\n\n∫\n0\n∞\n\n\nx\n\nm\n−\nj\n\n\n\n\n1\n−\n2\n\nF\nX\n\n\nx\n\n\n\n\n\n1\n−\n2\n\nF\n\nτ\n1\n\n\n\ns\n\n\n\n\nf\nX\n\n\nx\n\ndx\n\n\n\n\n\n=\nE\n\n\nX\n\nm\n−\nj\n\n\n\n+\nθ\n\n∫\n0\n∞\n\n\nx\n\nm\n−\nj\n\n\n\n\n2\n−\n2\n\nF\nX\n\n\nx\n\n\n\n\n\n1\n−\n2\n\nF\n\nτ\n1\n\n\n\ns\n\n\n\n\nf\nX\n\n\nx\n\ndx\n\n\n\n\n\n\n−\nθ\n\n∫\n0\n∞\n\n\nx\n\nm\n−\nj\n\n\n\n\n1\n−\n2\n\nF\n\nτ\n1\n\n\n\ns\n\n\n\n\nf\nX\n\n\nx\n\ndx\n\n\n\n\n\n=\nE\n\n\nX\n\nm\n−\nj\n\n\n\n\n\n1\n−\nθ\n\n\n1\n−\n2\n\nF\n\nτ\n1\n\n\n\ns\n\n\n\n\n\n\n\n\n\n\n\n+\nθ\n\n\n1\n−\n2\n\nF\n\nτ\n1\n\n\n\ns\n\n\n\n\n∫\n0\n∞\n\n\n\nm\n−\nj\n\n\n\nx\n\nm\n−\nj\n\n\n\n\n1\n−\n\nF\n\nτ\n1\n\n\n\ns\n\n\n\ndx\n.\n\n\n\n\nE8
\n
We let,
\n
\n\n\n\n\n\nμ\n\nm\n−\nj\n\n′\n\n\n\n\n=\nE\n\n\n\nX\n′\n\n\nm\n−\nj\n\n\n\n=\n\n∫\n0\n∞\n\n\n\nm\n−\nj\n\n\n\nx\n\nm\n−\nj\n−\n1\n\n\n\n\n\n1\n−\n\nF\nX\n\n\nx\n\n\n\n2\n\ndx\n\n\n\n\n\n\n<\n\n∫\n0\n∞\n\n\n\nm\n−\nj\n\n\n\nx\n\nm\n−\nj\n−\n1\n\n\n\n\n1\n−\n\nF\nX\n\n\nx\n\n\n\ndx\n=\nE\n\n\nX\n\nm\n−\nj\n\n\n\n<\n∞\n\n\n\n\nE9
\n
such that the above equation becomes
\n
\n\nE\n\n\n\nX\n\nm\n−\nj\n\n\n\n\n\nτ\n1\n\n=\ns\n\n\n\n\n=\n\nμ\n\nm\n−\nj\n\n\n+\nθ\n\n\n1\n−\n2\n\nF\n\nτ\n1\n\n\n\ns\n\n\n\n\n\n\nμ\n\nm\n−\nj\n\n′\n\n−\n\nμ\n\nm\n−\nj\n\n\n\n\n.\n\nE10
\n
\n\n\n\n\n\n\nπ\n\nZ\nd\n\nm\n\n\nt\n\n\n\n\n=\nE\n\n\n\nZ\nm\n\n\nt\n\n\n\n\n\n\n\n\n=\nE\n\n\nE\n\n\n\n\n\n\ne\n\n−\nδs\n\n\n\nX\n1\n\n+\n\ne\n\n−\nδs\n\n\n\nZ\no\n\n\n\nt\n−\ns\n\n\n\n\nm\n\n\n\n\nτ\n1\n\n=\ns\n\n\n\n\n\n\n\n\n\n\n\n=\n\n∑\n\nj\n=\n0\n\n\nm\n−\n1\n\n\n\n\n\n\nm\n\n\n\n\nj\n\n\n\n\n\n∫\n0\nt\n\n \n\nf\n\nτ\n1\n\n\n\ns\n\n\ne\n\n−\nm\nδ\ns\n\n\n\n\n\nμ\n\nm\n−\nj\n\n\n+\nθ\n\n\n1\n−\n2\n\nF\n\nτ\n1\n\n\n\ns\n\n\n\n\n\n\nμ\n\nm\n−\nj\n\n′\n\n−\n\nμ\n\nm\n−\nj\n\n\n\n\n\n\n\nπ\n\nZ\no\n\nj\n\n\n\nt\n−\ns\n\n\nds\n\n\n\n\n\n\n+\n\n∫\n0\nt\n\n \n\nf\n\nτ\n1\n\n\n\ns\n\n\ne\n\n−\nm\nδ\ns\n\n\n\nπ\n\nZ\no\n\nm\n\n\n\nt\n−\ns\n\n\nds\n.\n\n\n\n\n
\n
Let us \n\n\n∫\n0\nt\n\n\nf\n\nτ\n1\n\n\n\ns\n\n\ne\n\n−\nm\nδ\ns\n\n\nds\n=\n\nH\nδ\n\n\nt\n\n\n, \n\n\n∫\n0\nt\n\n\nf\n\nτ\n2\n\n\n\ns\n\n\ne\n\n−\nm\nδ\ns\n\n\nds\n=\n\nI\nδ\n\n\nt\n\n\n then
\n
\n\n\n\n\n\nπ\n\nZ\nd\n\nm\n\n\nt\n\n\n\n\n=\n\n∑\n\nj\n=\n0\n\n\nm\n−\n1\n\n\n\n\n\n\nm\n\n\n\n\nj\n\n\n\n\n\n∫\n0\nt\n\n \n\nf\n\nτ\n1\n\n\n\ns\n\n\ne\n\n−\nm\nδ\ns\n\n\n\n\n\nμ\n\nm\n−\nj\n\n\n+\nθ\n\n\n1\n−\n2\n\nF\n\nτ\n1\n\n\n\ns\n\n\n\n\n\n\nμ\n\nm\n−\nj\n\n′\n\n−\n\nμ\n\nm\n−\nj\n\n\n\n\n\n\n\nπ\n\nZ\no\n\n\nj\n\n\n\n\nt\n−\ns\n\n\nds\n\n\n\n\n\n\n+\n\nH\nm\nδ\n\n∗\n\nπ\n\n\nZ\no\n\n\n.\n\n\nm\n\n\n\n\n\n\n=\n\nu\nm\n\n+\n\nH\nm\nδ\n\n∗\n\n\n\nu\nm\n\n+\n\nI\nm\nδ\n\n∗\n\nπ\n\n\nZ\no\n\n\n.\n\n\nm\n\n\n\n\n\n\n\n\n=\n\nu\nm\n\n+\n\nH\nm\nδ\n\n∗\n\nu\nm\n\n+\n\nH\nm\nδ\n\n∗\n\nI\nm\nδ\n\n∗\n\nπ\n\n\nZ\no\n\n\n.\n\n\nm\n\n\n\n\n\n\n=\n\nu\nm\n\n+\n\nH\nm\nδ\n\n∗\n\nu\nm\n\n+\n\nH\nm\nδ\n\n∗\n\nI\nm\nδ\n\n∗\n\n\n\nu\nm\n\n+\n\nI\nm\nδ\n\n∗\n\nπ\n\n\nZ\no\n\n\n.\n\n\nm\n\n\n\n\n\n\n\n\n=\n\nu\nm\n\n+\n\nH\nm\nδ\n\n∗\n\nu\nm\n\n+\n\nu\nm\n\n∗\n\n∑\n\nk\n=\n1\n\n∞\n\n\nH\nm\nδ\n\n∗\n\nI\nm\nδ\n\n∗\n\nk\n\n\n\n\nt\n\n=\n\nu\nm\n\n+\n\nu\nm\n\n∗\n\n∑\n\nk\n=\n0\n\n∞\n\n\nH\nm\nδ\n\n∗\n\nI\nm\nδ\n\n∗\n\nk\n\n\n\n\nt\n\n\n\n\n\n\n=\n\nu\nm\n\n+\n\n∫\n0\nt\n\n\nu\nm\n\n\n\nt\n−\ns\n\n\n\ne\n\n−\nm\nδ\ns\n\n\n\ndm\nd\n\n\ns\n\n,\n\n\n\n\nE11
\n
where \n\n\nu\nm\n\n\nt\n\n=\n\n∑\n\nj\n=\n0\n\n\nm\n−\n1\n\n\n\n\n\n\nm\n\n\n\n\nj\n\n\n\n\n\n∫\n0\nt\n\n\nf\n\nτ\n1\n\n\n\ns\n\n\ne\n\n−\nm\nδ\ns\n\n\n\n\n\nμ\nj\n\n+\nθ\n\n\n1\n−\n2\n\nF\n\nτ\n1\n\n\n\ns\n\n\n\n\n\n\nμ\nj\n′\n\n−\n\nμ\nj\n\n\n\n\n\n\nπ\n\nZ\no\n\n\nm\n−\nj\n\n\n\n\nt\n−\ns\n\n\nds\n\n.
\n
We consider the case where the canonical random variable \n\n\nτ\n2\n\n\n has an Exponential distribution with parameter \n\n\nλ\n2\n\n>\n0\n\n and \n\n\nτ\n1\n\n\n has an Exponential distribution with parameter \n\n\nλ\n1\n\n>\n0\n\n.
\n
That is, we have:
\n
\n\n\nf\n\nτ\n1\n\n\n\nt\n\n=\n\nλ\n1\n\n\ne\n\n−\n\nλ\n1\n\nt\n\n\n,\n\nf\n\nτ\n2\n\n\n\nt\n\n=\n\nλ\n2\n\n\ne\n\n−\n\nλ\n2\n\nt\n\n\n,\n\nL\n\nτ\n1\n\n\n\n\nλ\n1\n\ns\n\n=\n\n∫\n0\n∞\n\n\ne\n\n−\nsv\n\n\n\nf\n\nτ\n1\n\n\n\nv\n\ndv\n=\n\n\n\nλ\n1\n\n\n\nλ\n1\n\n+\ns\n\n\n\n,\n\nL\n\nτ\n2\n\n\n\n\nλ\n2\n\ns\n\n=\n\n\n\nλ\n2\n\n\n\nλ\n2\n\n+\ns\n\n\n\n.\n\n
\n
\n\n\nm\nd\n\n\nt\n\n=\n\nλ\n2\n\nt\n+\n\n\n\nλ\n1\n\n−\n\nλ\n2\n\n\n\nλ\n1\n\n\n\n\n1\n−\n\ne\n\n\nλ\n1\n\nt\n\n\n\n\n\nE12
\n
The mth moment of \n\n\nZ\nd\n\n\nt\n\n\n is then given by,
\n
\n\n\n\n\n\nπ\n\nZ\nd\n\nm\n\n\nt\n\n\n\n\n=\n\nu\nm\n\n+\n\n∫\n0\nt\n\n\nu\nm\n\n\n\nt\n−\ns\n\n\n\ne\n\n−\nm\nδ\ns\n\n\n\ndm\nd\n\n\ns\n\n\n\n\n\n\n=\n\nu\nm\n\n+\n\nλ\n2\n\n\n∫\n0\nt\n\n\nu\nm\n\n\n\nt\n−\ns\n\n\n\ne\n\n−\nm\nδ\ns\n\n\nd\n\ns\n\n+\n\n\n\nλ\n1\n\n−\n\nλ\n2\n\n\n\n\n∫\n0\nt\n\n\nu\nm\n\n\n\nt\n−\ns\n\n\n\ne\n\n−\n\n\nm\nδ\n+\n\nλ\n1\n\n\n\ns\n\n\nd\n\ns\n\n\n\n\n\n\n=\n\nu\nm\n\n+\n\n\nλ\n2\n\nm\nδ\n\n\n∫\n0\nt\n\n\nu\nm\n\n\n\nt\n−\ns\n\n\nm\nδ\n\ne\n\n−\nm\nδ\ns\n\n\nd\n\ns\n\n+\n\n\n\nλ\n1\n\n−\n\nλ\n2\n\n\n\nm\nδ\n+\n\nλ\n1\n\n\n\n\n∫\n0\nt\n\n\nu\nm\n\n\n\nt\n−\ns\n\n\n\n\nm\nδ\n+\n\nλ\n1\n\n\n\n\ne\n\n−\n\n\nm\nδ\n+\n\nλ\n1\n\n\n\ns\n\n\nd\n\ns\n\n\n\n\n\nE13
\n
Taking the Laplace transform of the above equation, we get:
\n
\n\n\n\nπ\n˜\n\n\nZ\nd\n\nm\n\n\nr\n\n=\n\n\nu\n˜\n\nm\n\n\nr\n\n+\n\n\nλ\n2\n\nm\nδ\n\n\n\nu\n˜\n\nm\n\n\nr\n\n×\n\nL\n\nτ\n1\n\n\n\nm\nδ\nr\n\n+\n\n\n\nλ\n1\n\n−\n\nλ\n2\n\n\n\nm\nδ\n+\n\nλ\n1\n\n\n\n\n\nu\n˜\n\nm\n\n×\n\nL\n\nτ\n1\n\n\n\n\nm\nδ\n+\n\nλ\n1\n\n\nr\n\n\nE14
\n
But,
\n
\n\n\n\n\n\nu\nm\n\n\nt\n\n\n\n\n=\n\n∑\n\nj\n=\n0\n\n\nm\n−\n1\n\n\n\n\n\n\nm\n\n\n\n\nj\n\n\n\n\n\n∫\n0\nt\n\n \n\nf\n\nτ\n1\n\n\n\ns\n\n\ne\n\n−\nm\nδ\ns\n\n\n\n\n\nμ\nj\n\n+\nθ\n\n\n1\n−\n2\n\nF\n\nτ\n1\n\n\n\ns\n\n\n\n\n\n\nμ\nj\n′\n\n−\n\nμ\nj\n\n\n\n\n\n\nπ\n\nZ\no\n\n\nm\n−\nj\n\n\n\n\nt\n−\ns\n\n\nds\n\n\n\n\n\n=\n\n∑\n\nj\n=\n0\n\n\nm\n−\n1\n\n\n\n\n\n\nm\n\n\n\n\nj\n\n\n\n\n\n∫\n0\nt\n\n\nλ\n1\n\n\ne\n\n−\n\nλ\n1\n\ns\n\n\n\ne\n\n−\nm\nδ\ns\n\n\n\n\n\nμ\nj\n\n+\nθ\n\n\n2\n\ne\n\n−\n\nλ\n1\n\ns\n\n\n−\n1\n\n\n\n\n\nμ\nj\n′\n\n−\n\nμ\nj\n\n\n\n\n\n\nπ\n\nZ\no\n\n\nm\n−\nj\n\n\n\n\nt\n−\ns\n\n\nds\n\n\n\n\n\n=\n\n\n\nλ\n1\n\n\n\n\nμ\nj\n\n−\nθ\n\n\n\nμ\nj\n′\n\n−\n\nμ\nj\n\n\n\n\n\n\n\n\nλ\n1\n\n+\nm\nδ\n\n\n\n∑\n\nj\n=\n0\n\n\nm\n−\n1\n\n\n\n\n\n\nm\n\n\n\n\nj\n\n\n\n\n\n∫\n0\nt\n\n\n\n\nλ\n1\n\n+\nm\nδ\n\n\n\ne\n\n−\n\n\n\nλ\n1\n\n+\nm\nδ\n\n\ns\n\n\n\nπ\n\nZ\no\n\n\nm\n−\nj\n\n\n\n\nt\n−\ns\n\n\nds\n\n\n\n\n\n\n+\n2\nθ\n\n\n\nλ\n1\n\n\n\n\nμ\nj\n′\n\n−\n\nμ\nj\n\n\n\n\n\n2\n\nλ\n1\n\n+\nm\nδ\n\n\n\n∑\n\nj\n=\n0\n\n\nm\n−\n1\n\n\n\n\n\n\nm\n\n\n\n\nj\n\n\n\n\n\n∫\n0\nt\n\n\n\n2\n\nλ\n1\n\n+\nm\nδ\n\n\n\ne\n\n−\n\n\n2\n\nλ\n1\n\n+\nm\nδ\n\n\ns\n\n\n\nπ\n\nZ\no\n\n\nm\n−\nj\n\n\n\n\nt\n−\ns\n\n\nds\n\n\n\n\nE15
\n
Then the Laplace transform of \n\n\nu\nm\n\n\nt\n\n\n, at \n\nr\n\n, will give:
\n
\n\n\n\nu\n˜\n\nm\n\n\nr\n\n=\n\nλ\n1\n\n\n∑\n\nj\n=\n0\n\n\nm\n−\n1\n\n\n\n\n\n\nm\n\n\n\n\nj\n\n\n\n\n\n\n\n\n\n\nμ\nj\n\n−\nθ\n\n\n\nμ\nj\n′\n\n−\n\nμ\nj\n\n\n\n\n\n\n\nλ\n1\n\n+\nm\nδ\n+\nr\n\n\n+\n\n\n2\nθ\n\n\n\nμ\nj\n′\n\n−\n\nμ\nj\n\n\n\n\n\n2\n\nλ\n1\n\n+\nm\nδ\n+\nr\n\n\n\n\n\n\n\nπ\n˜\n\n\n\nZ\no\n\n\nm\n−\nj\n\n\n\nr\n\n\nE16
\n
Substituting Eq. (14) into Eq. (13), we have:
\n
\n\n\n\n\n\n\n\nπ\n˜\n\n\n\nZ\nd\n\nm\n\n\nr\n\n=\n\n\n1\n+\n\n\nλ\n2\n\n\nr\n+\nm\nδ\n\n\n+\n\n\n\nλ\n1\n\n−\n\nλ\n2\n\n\n\nr\n+\nm\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n\n\nu\n˜\n\n\nm\n\n\nr\n\n\n\n\n\n=\n\nλ\n1\n\n\n\n1\n+\n\n\nλ\n2\n\n\nr\n+\nm\nδ\n\n\n+\n\n\n\nλ\n1\n\n−\n\nλ\n2\n\n\n\nr\n+\nm\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n∑\n\nj\n=\n0\n\n\nm\n−\n1\n\n\n\n\n\n\nm\n\n\n\n\nj\n\n\n\n\n\n\n\n\n\n\nμ\nj\n\n−\nθ\n\n\n\nμ\nj\n′\n\n−\n\nμ\nj\n\n\n\n\n\n\n\nλ\n1\n\n+\nm\nδ\n+\nr\n\n\n+\n\n\n2\nθ\n\n\n\nμ\nj\n′\n\n−\n\nμ\nj\n\n\n\n\n\n2\n\nλ\n1\n\n+\nm\nδ\n+\nr\n\n\n\n\n\n\n\nπ\n˜\n\n\n\nZ\no\n\n\nm\n−\nj\n\n\n\nr\n\n\n\n\n\nE17
\n
Solving the above equation for the ordinary case, where \n\n\n\n\nτ\n2\n\n\n\nk\n≥\n2\n\n\n∼\n\nτ\n2\n\n\n, we have:
\n
\n\n\n\n\n\n\n\n\nπ\n˜\n\n\n\nZ\no\n\nm\n\n\nr\n\n\n\n\n=\n\n\n\nλ\n2\n\n\nμ\nm\n\n\n\nr\n\n\nr\n+\nδm\n+\n\nλ\n2\n\n\n\n\n\n+\n\n\nλ\n2\n\n\n\nr\n+\nδm\n+\n\nλ\n2\n\n\n\n\n\n∑\n\nk\n=\n1\n\n\nm\n−\n1\n\n\n\nC\nm\nk\n\n\n\nμ\nk\n\n\n\n\nπ\n˜\n\n\n\nZ\no\n\n\n\nm\n−\nk\n\n\n\n\nr\n\n\n\n\n\n\n\n+\nθ\n\n\n\nμ\nm\n′\n\n−\n\nμ\nm\n\n\n\n\n\n\nλ\n2\n\n\n\nr\n+\nδm\n\n\n\n\nr\n\n\nr\n+\nδm\n+\n\nλ\n2\n\n\n\n\n\nr\n+\nδm\n+\n2\n\nλ\n2\n\n\n\n\n\n\n\n\n\n\n\n+\nθ\n\n\n\nλ\n2\n\n\n\nr\n+\nδm\n\n\n\n\n\n\nr\n+\nδm\n+\n\nλ\n2\n\n\n\n\n\nr\n+\nδm\n+\n2\n\nλ\n2\n\n\n\n\n\n\n∑\n\nk\n=\n1\n\n\nm\n−\n1\n\n\n\nC\nm\nk\n\n\n\n\nμ\nk\n′\n\n−\n\nμ\nk\n\n\n\n\n\n\nπ\n˜\n\n\n\nZ\no\n\n\n\nm\n−\nk\n\n\n\n\nr\n\n\n\n\n\n\n\n+\n\n\nλ\n2\n\n\n\nr\n+\nδm\n+\n\nλ\n2\n\n\n\n\n\n\n\nπ\n˜\n\n\n\nZ\n0\n\nm\n\n\nr\n\n\n\n\n\nE18
\n
Rearranging the above equation, we will get
\n
\n\n\n\n\n\n\n\n\nπ\n˜\n\n\n\nZ\no\n\nm\n\n\nr\n\n\n\n\n=\n\n\n\nλ\n2\n\n\nμ\nm\n\n\n\nr\n\n\nr\n+\nδm\n\n\n\n\n+\n\n\nλ\n2\n\n\n\nr\n+\nδm\n\n\n\n\n∑\n\nk\n=\n1\n\n\nm\n−\n1\n\n\n\nC\nm\nk\n\n\n\nμ\nk\n\n\n\n\nπ\n˜\n\n\n\nZ\no\n\n\n\nm\n−\nk\n\n\n\n\nr\n\n\n\n\n\n\n\n+\nθ\n\n\n\nλ\n2\n\n\n\n\nμ\nm\n′\n\n−\n\nμ\nm\n\n\n\n\n\nr\n\n\nr\n+\nδm\n+\n2\n\nλ\n2\n\n\n\n\n\n+\nθ\n\n\nλ\n2\n\n\n\nr\n+\nδm\n+\n2\n\nλ\n2\n\n\n\n\n\n∑\n\nk\n=\n1\n\n\nm\n−\n1\n\n\n\nC\nm\nk\n\n\n\n\nμ\nk\n′\n\n−\n\nμ\nk\n\n\n\n\n\n\nπ\n˜\n\n\n\nZ\no\n\n\n\nm\n−\nk\n\n\n\n\nr\n\n\n\n\n\nE19
\n
Corollary 3.1
\n
The first moment of \n\n\n\n\nZ\nd\n\n\nt\n\n\n\nt\n≥\n0\n\n\n\n is given by:
\n
\n\n\n\n\n\nπ\n\nZ\nd\n\n\n\nt\n\n\n\n\n=\n\n\nθ\n\nλ\n1\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\n\n\nλ\n2\n\n+\nδ\n\n\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n\nδ\n+\n2\n\nλ\n2\n\n\n\n\n\n+\n\n\n\nλ\n1\n\n\n\n\nλ\n2\n\n+\nδ\n\n\n\n\nδ\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n\n\nμ\n1\n\n\n\n\n\n\n\n\n\n+\n\n\nθ\n\nλ\n1\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\n\n\n\nλ\n1\n\n−\n\nλ\n2\n\n\n\n\nλ\n1\n\n−\n2\n\nλ\n2\n\n\n\n\n−\n\n\n\nλ\n1\n\n−\n\nλ\n2\n\n\n\n\nμ\n1\n\n\n\n\n1\n\nδ\n+\n\nλ\n1\n\n\n\n\ne\n\n−\n\n\nδ\n+\n\nλ\n1\n\n\n\nt\n\n\n\n\n\n\n\n\n−\nθ\n\nλ\n1\n\n\n1\n\nδ\n+\n2\n\nλ\n2\n\n\n\n\n\nλ\n2\n\n\n\nλ\n1\n\n−\n2\n\nλ\n2\n\n\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\ne\n\n−\n\n\nδ\n+\n2\n\nλ\n2\n\n\n\nt\n\n\n\n\n\n\n\n\n−\n2\nθ\n\nλ\n1\n\n\n1\n\nδ\n+\n2\n\nλ\n1\n\n\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\ne\n\n−\n\n\nδ\n+\n2\n\nλ\n1\n\n\n\nt\n\n\n−\n\n\nλ\n2\n\nδ\n\n\nμ\n1\n\n\ne\n\n−\nδt\n\n\n\n\n\n\nE20
\n
\nProof:
\n
From Theorem 3.1, we have:
\n
\n\n\n\n\n\n\n\nπ\n˜\n\n\n\nZ\nd\n\n\n\nr\n\n\n\n\n=\n\n\n\nλ\n1\n\n\nμ\n1\n\n\n\nr\n\n\nr\n+\nδ\n+\n\nλ\n1\n\n\n\n\n\n+\n\n\nλ\n1\n\n\n\nr\n+\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n\nπ\n˜\n\n\n\nZ\n0\n\n\n\nr\n\n\n\n\n\n\n\n+\nθ\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\n\n\nλ\n1\n\n\n\nr\n+\nδ\n\n\n\n\nr\n\n\nr\n+\nδ\n+\n\nλ\n1\n\n\n\n\n\nr\n+\nδ\n+\n2\n\nλ\n1\n\n\n\n\n\n\n\n\n\nE21
\n
From Bargès et al. [8], we have
\n
\n\n\n\n\nπ\n˜\n\n\n\nZ\no\n\n\n\nr\n\n=\n\n\n\nλ\n2\n\n\nμ\n1\n\n\n\nr\n\n\nr\n+\nδ\n\n\n\n\n+\nθ\n\n\n\nλ\n2\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\n\nr\n\n\nr\n+\nδ\n+\n2\n\nλ\n2\n\n\n\n\n\n\nE22
\n
Substituting Eq. (22) into Eq. (21), yields
\n
\n\n\n\n\n\n\n\nπ\n˜\n\n\n\nZ\nd\n\n\n\nr\n\n\n\n\n=\n\n\n\nλ\n1\n\n\nμ\n1\n\n\n\nr\n\n\nr\n+\nδ\n+\n\nλ\n1\n\n\n\n\n\n+\n\n\nλ\n1\n\n\n\nr\n+\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n\n\n\nλ\n2\n\n\nμ\n1\n\n\n\nr\n\n\nr\n+\nδ\n\n\n\n\n\n+\nθ\n\n\n\nλ\n2\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\n\nr\n\n\nr\n+\nδ\n+\n2\n\nλ\n2\n\n\n\n\n\n\n\n\n\n\n\n\n\n+\nθ\n\nλ\n1\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\n\n\nr\n+\nδ\n\n\n\nr\n\n\nr\n+\nδ\n+\n\nλ\n1\n\n\n\n\n\nr\n+\nδ\n+\n2\n\nλ\n1\n\n\n\n\n\n\n\n\n\n\n=\n\n\n\n\n\nλ\n1\n\n\nλ\n2\n\n\n\nr\n\n\nr\n+\nδ\n\n\n\n\nr\n+\nδ\n+\n\nλ\n1\n\n\n\n\n\n+\n\n\nλ\n1\n\n\nr\n\n\nr\n+\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n\n\nμ\n1\n\n\n\n\n\n\n\n+\nθ\n\nλ\n1\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\n\n\n\nλ\n2\n\n\nr\n\n\nr\n+\nδ\n+\n\nλ\n1\n\n\n\n\n\nr\n+\nδ\n+\n2\n\nλ\n2\n\n\n\n\n\n+\n\n\nr\n+\nδ\n\n\nr\n\n\nr\n+\nδ\n+\n\nλ\n1\n\n\n\n\n\nr\n+\nδ\n+\n2\n\nλ\n1\n\n\n\n\n\n\n\n\n\n\n\nE23
\n
with
\n
\n\n\n\nλ\n1\n\n\nr\n\n\nr\n+\nδ\n+\n\nλ\n1\n\n\n\n\n\n=\n\n\nλ\n1\n\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n.\n\n1\nr\n\n−\n\n\nλ\n1\n\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n.\n\n1\n\n\nr\n+\nδ\n+\n\nλ\n1\n\n\n\n\n\nE24
\n
\n\n\n\n\nλ\n1\n\n\nλ\n2\n\n\n\nr\n\n\nr\n+\nδ\n\n\n\n\nr\n+\nδ\n+\n\nλ\n1\n\n\n\n\n\n=\n\n\n\nλ\n1\n\n\nλ\n2\n\n\n\nδ\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n\n.\n\n1\nr\n\n+\n\n\nλ\n2\n\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n.\n\n1\n\n\nr\n+\nδ\n+\n\nλ\n1\n\n\n\n\n−\n\n\nλ\n2\n\nδ\n\n.\n\n1\n\n\nr\n+\nδ\n\n\n\n\nE25
\n
\n\n\n\n\n\n\nλ\n2\n\n\nr\n\n\nr\n+\nδ\n+\n\nλ\n1\n\n\n\n\n\nr\n+\nδ\n+\n2\n\nλ\n2\n\n\n\n\n\n\n\n\n=\n\n\nλ\n2\n\n\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n\nδ\n+\n2\n\nλ\n2\n\n\n\n\n\n\n1\nr\n\n\n\n\n\n\n\n+\n\n\nλ\n2\n\n\n\nλ\n1\n\n−\n2\n\nλ\n2\n\n\n\n\n\n\n1\n\nδ\n+\n\nλ\n1\n\n\n\n\n1\n\nr\n+\nδ\n+\n\nλ\n1\n\n\n\n−\n\n1\n\nδ\n+\n2\n\nλ\n2\n\n\n\n\n1\n\nr\n+\nδ\n+\n2\n\nλ\n2\n\n\n\n\n\n\n\n\n\nE26
\n
\n\n\n\n\n\n\nr\n+\nδ\n\n\nr\n\n\nr\n+\nδ\n+\n\nλ\n1\n\n\n\n\n\nr\n+\nδ\n+\n2\n\nλ\n1\n\n\n\n\n\n\n\n\n=\n\nδ\n\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n\nδ\n+\n2\n\nλ\n1\n\n\n\n\n\n\n1\nr\n\n\n\n\n\n\n\n+\n\n1\n\nδ\n+\n\nλ\n1\n\n\n\n\n1\n\nr\n+\nδ\n+\n\nλ\n1\n\n\n\n−\n\n2\n\nδ\n+\n2\n\nλ\n1\n\n\n\n\n1\n\nr\n+\nδ\n+\n2\n\nλ\n1\n\n\n\n\n\n\n\nE27
\n
Substituting Eqs. (24), (25), (26) and (27) into Eq. (23), yields:
\n
\n\n\n\n\n\n\n\nπ\n˜\n\n\n\nZ\nd\n\n\n\nr\n\n\n\n\n=\n\nμ\n1\n\n\n\n\n\nλ\n1\n\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n.\n\n1\nr\n\n−\n\n\nλ\n1\n\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n.\n\n1\n\n\nr\n+\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n\n\n\n\n\n\n+\nθ\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\n\n\n\n\n\nλ\n2\n\n\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n\nδ\n+\n2\n\nλ\n2\n\n\n\n\n\n\n1\nr\n\n\n\n\n\n+\n\n\nλ\n2\n\n\n\nλ\n1\n\n−\n2\n\nλ\n2\n\n\n\n\n\n\n1\n\nδ\n+\n\nλ\n1\n\n\n\n\n1\n\nr\n+\nδ\n+\n\nλ\n1\n\n\n\n−\n\n1\n\nδ\n+\n2\n\nλ\n2\n\n\n\n\n1\n\nr\n+\nδ\n+\n2\n\nλ\n2\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n+\nθ\n\nλ\n1\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\n\n\n\n\nδ\n\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n\nδ\n+\n2\n\nλ\n1\n\n\n\n\n\n\n1\nr\n\n\n\n\n\n+\n\n1\n\nδ\n+\n\nλ\n1\n\n\n\n\n1\n\nr\n+\nδ\n+\n\nλ\n1\n\n\n\n−\n\n2\n\nδ\n+\n2\n\nλ\n1\n\n\n\n\n1\n\nr\n+\nδ\n+\n2\n\nλ\n1\n\n\n\n\n\n\n\n\n\n\n\n\n\n+\n\nμ\n1\n\n\n\n\n\n\nλ\n1\n\n\nλ\n2\n\n\n\nδ\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n\n.\n\n1\nr\n\n+\n\n\nλ\n2\n\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n.\n\n1\n\n\nr\n+\nδ\n+\n\nλ\n1\n\n\n\n\n−\n\n\nλ\n2\n\nδ\n\n.\n\n1\n\n\nr\n+\nδ\n\n\n\n\n\n\n\n\n\nE28
\n
Rearranging the above equation, will give
\n
\n\n\n\n\n\nπ\n\nZ\nd\n\n\n\nt\n\n\n\n\n=\n\n\nθ\n\nλ\n1\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\n\n\nλ\n2\n\n+\nδ\n\n\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n\nδ\n+\n2\n\nλ\n2\n\n\n\n\n\n+\n\n\n\nλ\n1\n\n\n\n\nλ\n2\n\n+\nδ\n\n\n\n\nδ\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n\n\nμ\n1\n\n\n\n\n1\nr\n\n\n\n\n\n\n\n+\n\n\nθ\n\nλ\n1\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\n\n\n\nλ\n1\n\n−\n\nλ\n2\n\n\n\n\nλ\n1\n\n−\n2\n\nλ\n2\n\n\n\n\n−\n\n\n\nλ\n1\n\n−\n\nλ\n2\n\n\n\n\nμ\n1\n\n\n\n\n1\n\nδ\n+\n\nλ\n1\n\n\n\n\n1\n\nr\n+\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n\n\n\n−\nθ\n\nλ\n1\n\n\n1\n\nδ\n+\n2\n\nλ\n2\n\n\n\n\n\nλ\n2\n\n\n\nλ\n1\n\n−\n2\n\nλ\n2\n\n\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\n1\n\nr\n+\nδ\n+\n2\n\nλ\n2\n\n\n\n\n\n\n\n\n\n−\n2\nθ\n\nλ\n1\n\n\n1\n\nδ\n+\n2\n\nλ\n1\n\n\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\n1\n\nr\n+\nδ\n+\n2\n\nλ\n1\n\n\n\n−\n\n\nλ\n2\n\nδ\n\n\nμ\n1\n\n\n1\n\nr\n+\nδ\n\n\n\n\n\n\nE29
\n
Remark 1
\n
If \n\n\nλ\n1\n\n=\n\nλ\n2\n\n\n then Eq. (29) becomes
\n
\n\n\n\n\n\n\n\nπ\n˜\n\n\n\nZ\nd\n\n\n\nr\n\n\n\n\n=\n\n\nθ\nλ\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\n\n1\n\nδ\n+\n2\nλ\n\n\n\n+\n\nλ\nδ\n\n\nμ\n1\n\n\n\n\n1\nr\n\n\n\n\n\n\n\n−\n\n1\n\nδ\n+\n2\nλ\n\n\nθλ\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\n1\n\nr\n+\nδ\n+\n2\nλ\n\n\n−\n\nλ\nδ\n\n\nμ\n1\n\n\n1\n\n\nr\n+\nδ\n\n\n\n\n\n\n\n\n=\n\nλ\nδ\n\n\nμ\n1\n\n\n\n\n1\nr\n\n−\n\n1\n\nr\n+\nδ\n\n\n\n\n+\nθλ\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\n\n1\n\nδ\n+\n2\nλ\n\n\n\n\n\n\n1\nr\n\n−\n\n1\n\nr\n+\nδ\n+\n2\nλ\n\n\n\n\n\n\n\n\n\n=\n\n\nλμ\n1\n\n\nr\n\n\nr\n+\nδ\n\n\n\n\n+\n\n\nλθ\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\n\nr\n\n\nr\n+\nδ\n+\n2\nλ\n\n\n\n\n,\n\n\n\n\nE30
\n
which is exactly the result of Bargès et al. [8].
\n
The inverse of the Laplace transform in Eq. (29) will give
\n
\n\n\n\n\n\nπ\n\nZ\nd\n\n\n\nt\n\n\n\n\n=\n\n\nθ\n\nλ\n1\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\n\n\nλ\n2\n\n+\nδ\n\n\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n\nδ\n+\n2\n\nλ\n2\n\n\n\n\n\n+\n\n\n\nλ\n1\n\n\nλ\n2\n\n+\n\nλ\n1\n\nδ\n\n\nδ\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n\n\nμ\n1\n\n\n\n\n\n\n\n\n\n+\n\n\nθ\n\nλ\n1\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\n\n\n\nλ\n2\n\n\n\nλ\n1\n\n−\n2\n\nλ\n2\n\n\n\n+\n1\n\n\n+\n\n\n\nλ\n2\n\n−\n\nλ\n1\n\n\n\n\nμ\n1\n\n\n\n\n1\n\nδ\n+\n\nλ\n1\n\n\n\n\ne\n\n−\n\n\nδ\n+\n\nλ\n1\n\n\n\nt\n\n\n\n\n\n\n\n\n−\nθ\n\nλ\n1\n\n\n1\n\nδ\n+\n2\n\nλ\n2\n\n\n\n\n\nλ\n2\n\n\n\nλ\n1\n\n−\n2\n\nλ\n2\n\n\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\ne\n\n−\n\n\nδ\n+\n2\n\nλ\n2\n\n\n\nt\n\n\n\n\n\n\n\n\n−\n2\nθ\n\nλ\n1\n\n\n1\n\nδ\n+\n2\n\nλ\n1\n\n\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\ne\n\n−\n\n\nδ\n+\n2\n\nλ\n1\n\n\n\nt\n\n\n−\n\n\nλ\n2\n\nδ\n\n\nμ\n1\n\n\ne\n\n−\nδt\n\n\n\n\n\n\nE31
\n
Remarks 2
\n
If \n\nθ\n=\n0\n\n and \n\n\nλ\n1\n\n≠\n\nλ\n2\n\n\n then
\n
\n\n\n\n\n\nπ\n\nZ\nd\n\n\n\nt\n\n\n\n\n=\n\n\n\n\nλ\n1\n\nδ\n\n\n\n\n\nλ\n2\n\n+\nδ\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n−\n\n\nλ\n2\n\nδ\n\n\ne\n\n−\nδt\n\n\n\n\n\nμ\n1\n\n+\n\n\n\n\nλ\n2\n\n−\n\nλ\n1\n\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n\nμ\n1\n\n\ne\n\n−\n\n\nδ\n+\n\nλ\n1\n\n\n\nt\n\n\n\n\n\n\n\n=\n\nλ\n2\n\n\n\n\n1\n−\n\ne\n\n−\nδt\n\n\n\nδ\n\n\n\nμ\n1\n\n+\n\n\n\nλ\n1\n\n−\n\nλ\n2\n\n\n\n\n\n\n1\n−\n\ne\n\n−\n\n\nδ\n+\n\nλ\n1\n\n\n\nt\n\n\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n\nμ\n1\n\n\n\n\n\n\n=\n\n\n\nλ\n2\n\n\n\na\n¯\n\n\nt\n\nδ\n\n\n\n+\n\n\n\nλ\n1\n\n−\n\nλ\n2\n\n\n\n\n\na\n¯\n\n\nt\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n\n\nμ\n1\n\n\n\n\n\nE32
\n
which is exactly the result of Léveillé et al. [15].
\n
If \n\n\nλ\n1\n\n=\n\nλ\n2\n\n\n and \n\nθ\n≠\n0\n\n then
\n
\n\n\n\n\n\nπ\n\nZ\no\n\n\n\nt\n\n\n\n\n=\n\n\nθλ\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\n1\n\n\nδ\n+\n2\n\nλ\n2\n\n\n\n\n+\n\nλ\nδ\n\n\nμ\n1\n\n\n\n\n\n\n\n\n\n−\nθλ\n\n1\n\nδ\n+\n2\nλ\n\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\ne\n\n−\n\n\nδ\n+\n2\nλ\n\n\nt\n\n\n−\n\nλ\nδ\n\n\nμ\n1\n\n\ne\n\n−\nδt\n\n\n\n\n\n\n\n=\n\nλ\nδ\n\n\n\n1\n−\n\ne\n\n−\nδt\n\n\n\n\n\nμ\n1\n\n+\nθλ\n\n\n\n1\n−\n\ne\n\n−\n\n\nδ\n+\n2\nλ\n\n\nt\n\n\n\n\nδ\n+\n2\nλ\n\n\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\n\n\n\nE33
\n
which is exactly the result of Bargès et al. [8].
\n
If \n\n\nλ\n1\n\n=\n\nλ\n2\n\n\n and \n\nθ\n=\n0\n\n then
\n
\n\n\nπ\n\nZ\no\n\n\n\nt\n\n=\n\nλ\nδ\n\n\n\n1\n−\n\ne\n\n−\nδt\n\n\n\n\n\nμ\n1\n\n=\nλ\n\n\na\n¯\n\n\nt\n\nδ\n\n\n\n\nμ\n1\n\n,\n\nE34
\n
which is exactly the result of Léveillé et al. [15].
\n
Corollary 3.2
\n
The second moment of \n\n\n\n\nZ\nd\n\n\nt\n\n\n\nt\n≥\n0\n\n\n\n is given by the following development:
\n
The result in Theorem 3.1 when \n\nn\n=\n2\n\n gives:
\n
\n\n\n\n\n\n\n\n\nπ\n˜\n\n\n\nZ\nd\n\n2\n\n\nr\n\n\n\n\n=\n\n\n2\n\nλ\n1\n\n\n\n\nλ\n1\n\n−\n\nλ\n2\n\n\n\n\n\nr\n\n\nr\n+\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\nr\n+\n2\nδ\n+\n2\n\nλ\n1\n\n\n\n\n\n\n\n\n1\nr\n\n\nμ\n2\n\n+\n2\n\nμ\n1\n\n\n\nπ\n˜\n\n\nZ\no\n\n\n\nr\n\n\n\n\n\n\n\n\n\n+\n\n\nλ\n1\n\n\n\nr\n+\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n\n\n\n\nr\n+\n2\nδ\n\n\n\n\nr\n+\n2\nδ\n+\n2\n\nλ\n2\n\n\n\n\n\n\nλ\n2\n\n\n\nr\n+\n2\nδ\n+\n2\n\nλ\n1\n\n\n\n\n\n+\n1\n\n\n\n\n\nπ\n˜\n\n\n\nZ\n0\n\n2\n\n\nr\n\n,\n\n\n\n\nE35
\n
From Bargès et al. [8], we have.
\n
\n\n\n\nπ\n˜\n\n\nZ\no\n\n\n\nr\n\n=\n\n\n\nλ\n2\n\n\n\nμ\n1\n\n\n\nr\n\n\nr\n+\nδ\n\n\n\n\n\n+\nθ\n\n\n\nλ\n2\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\n\nr\n\n\nr\n+\nδ\n+\n2\n\nλ\n2\n\n\n\n\n\n\nE36
\n
and
\n
\n\n\n\n\n\n\n\nπ\n˜\n\n\n\nZ\no\n\n2\n\n\nr\n\n\n\n\n=\n\n\n\nλ\n2\n\n\nμ\n2\n\n\n\nr\n\n\nr\n+\n2\nδ\n\n\n\n\n\n+\nθ\n\n\n\nλ\n2\n\n\n\n\nμ\n2\n′\n\n−\n\nμ\n2\n\n\n\n\n\nr\n\n\nr\n+\n2\nδ\n+\n2\n\nλ\n2\n\n\n\n\n\n\n\n\n\n\n\n+\n\n\n2\n\nλ\n2\n2\n\n\n\nμ\n1\n2\n\n\n\nr\n\n\nr\n+\nδ\n\n\n\n\nr\n+\n2\nδ\n\n\n\n\n\n+\n\n\n2\n\nθλ\n2\n2\n\n\n\nμ\n1\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\n\nr\n\n\nr\n+\nδ\n+\n2\n\nλ\n2\n\n\n\n\n\nr\n+\n2\nδ\n\n\n\n\n+\n\n\n2\n\nθλ\n2\n2\n\n\nμ\n1\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\n\nr\n\n\nr\n+\n2\nδ\n+\n2\n\nλ\n2\n\n\n\n\n\nr\n+\nδ\n\n\n\n\n\n\n\n\n\n\n+\n\n\n2\n\nθ\n2\n\n\nλ\n2\n2\n\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n2\n\n\n\nr\n\n\nr\n+\nδ\n+\n2\n\nλ\n2\n\n\n\n\n\nr\n+\n2\nδ\n+\n2\n\nλ\n2\n\n\n\n\n\n\n\n\n\nE37
\n
Substituting Eqs. (39) and (40) into Eq. (38), yields:
\n
\n\n\n\n\n\n\n\n\nπ\n˜\n\n\n\nZ\nd\n\n2\n\n\nr\n\n\n\n\n=\n\n\n2\n\nλ\n1\n\n\n\n\nλ\n1\n\n−\n\nλ\n2\n\n\n\n\n\nr\n\n\nr\n+\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\nr\n+\n2\nδ\n+\n2\n\nλ\n1\n\n\n\n\n\n\n\n\n1\nr\n\n\nμ\n2\n\n+\n2\n\nμ\n1\n\n\n\n\n\n\nλ\n2\n\n\n\nμ\n1\n\n\n\nr\n\n\nr\n+\nδ\n\n\n\n\n\n+\nθ\n\n\n\nλ\n2\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\n\nr\n\n\nr\n+\nδ\n+\n2\n\nλ\n2\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n+\n\n\nλ\n1\n\n\n\nr\n+\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n\n\n\n\nr\n+\n2\nδ\n\n\n\n\nr\n+\n2\nδ\n+\n2\n\nλ\n2\n\n\n\n\n\n\nλ\n2\n\n\n\nr\n+\n2\nδ\n+\n2\n\nλ\n1\n\n\n\n\n\n+\n1\n\n\n\n\n\n\n\n\n×\n\n\n\n\n\n\n\nλ\n2\n\n\nμ\n2\n\n\n\nr\n\n\nr\n+\n2\nδ\n\n\n\n\n\n+\nθ\n\n\n\nλ\n2\n\n\n\n\nμ\n2\n′\n\n−\n\nμ\n2\n\n\n\n\n\nr\n\n\nr\n+\n2\nδ\n+\n2\n\nλ\n2\n\n\n\n\n\n\n\n\n\n+\n\n\n2\n\nλ\n2\n2\n\n\n\nμ\n1\n2\n\n\n\nr\n\n\nr\n+\nδ\n\n\n\n\nr\n+\n2\nδ\n\n\n\n\n\n+\n\n\n2\n\nθλ\n2\n2\n\n\n\nμ\n1\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\n\nr\n\n\nr\n+\nδ\n+\n2\n\nλ\n2\n\n\n\n\n\nr\n+\n2\nδ\n\n\n\n\n+\n\n\n2\n\nθλ\n2\n2\n\n\nμ\n1\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\n\nr\n\n\nr\n+\n2\nδ\n+\n2\n\nλ\n2\n\n\n\n\n\nr\n+\nδ\n\n\n\n\n\n\n\n\n+\n\n\n2\n\nθ\n2\n\n\nλ\n2\n2\n\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n2\n\n\n\nr\n\n\nr\n+\nδ\n+\n2\n\nλ\n2\n\n\n\n\n\nr\n+\n2\nδ\n+\n2\n\nλ\n2\n\n\n\n\n\n\n\n\n\n,\n\n\n\n\nE38
\n
and rearranging Eq. (38), will give:
\n
\n\n\n\n\n\n\n\nπ\n˜\n\n\n\nZ\nd\n\n2\n\n\nr\n\n\n\n\n=\n\n\n\nλ\n1\n\n\nμ\n2\n\n\n\nr\n\n\nr\n+\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\n+\n\n\n2\n\nλ\n1\n\n\nλ\n2\n\n\nμ\n1\n2\n\n\n\nr\n\n\nr\n+\nδ\n\n\n\n\nr\n+\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n+\n\n\n2\nθ\n\nλ\n1\n\n\nλ\n2\n\n\nμ\n1\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\n\nr\n\n\nr\n+\nδ\n+\n2\n\nλ\n2\n\n\n\n\n\nr\n+\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n\n\n\n\n\n+\nθ\n\nλ\n1\n\n\n\n\nμ\n2\n′\n\n−\n\nμ\n2\n\n\n\n\n\n\nr\n+\n2\nδ\n\n\n\nr\n\n\nr\n+\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\nr\n+\n2\nδ\n+\n2\n\nλ\n1\n\n\n\n\n\n\n\n\n\n\n\n+\n2\nθ\n\nλ\n1\n\n\nλ\n2\n\n\nμ\n1\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\n\n\nr\n+\n2\nδ\n\n\n\nr\n\n\nr\n+\nδ\n\n\n\n\nr\n+\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\nr\n+\n2\nδ\n+\n2\n\nλ\n1\n\n\n\n\n\n\n\n\n\n\n\n+\n2\n\nθ\n2\n\n\nλ\n1\n\n\nλ\n2\n\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n2\n\n\n\n\nr\n+\n2\nδ\n\n\n\nr\n\n\nr\n+\nδ\n+\n2\n\nλ\n2\n\n\n\n\n\nr\n+\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\nr\n+\n2\nδ\n+\n2\n\nλ\n1\n\n\n\n\n\n+\n\nλ\n1\n\n\nλ\n2\n\n\nμ\n2\n\n\n1\n\nr\n\n\nr\n+\n2\nδ\n\n\n\n\nr\n+\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n\n\n\n\n\n\n+\nθ\n\nλ\n1\n\n\nλ\n2\n\n\n\n\nμ\n2\n′\n\n−\n\nμ\n2\n\n\n\n\n1\n\nr\n\n\nr\n+\n2\nδ\n+\n2\n\nλ\n2\n\n\n\n\n\nr\n+\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\n+\n2\n\nλ\n1\n\n\nλ\n2\n2\n\n\nμ\n1\n2\n\n\n1\n\nr\n\n\nr\n+\nδ\n\n\n\n\nr\n+\n2\nδ\n\n\n\n\nr\n+\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n\n\n\n\n\n\n+\n2\nθ\n\nλ\n1\n\n\nλ\n2\n2\n\n\nμ\n1\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\n1\n\nr\n\n\nr\n+\nδ\n+\n2\n\nλ\n2\n\n\n\n\n\nr\n+\n2\nδ\n\n\n\n\nr\n+\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n\n\n\n\n\n\n+\n2\n\nθλ\n2\n2\n\n\nλ\n1\n\n\nμ\n1\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\n1\n\nr\n\n\nr\n+\n2\nδ\n+\n2\n\nλ\n2\n\n\n\n\n\nr\n+\nδ\n\n\n\n\nr\n+\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n\n\n\n\n\n+\n2\n\nθ\n2\n\n\nλ\n2\n2\n\n\nλ\n1\n\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n2\n\n\n1\n\nr\n\n\nr\n+\nδ\n+\n2\n\nλ\n2\n\n\n\n\n\nr\n+\n2\nδ\n+\n2\n\nλ\n2\n\n\n\n\n\nr\n+\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\n,\n\n\n\n\n\nE39
\n
which can be simplified to
\n
\n\n\n\nπ\n˜\n\n\nZ\nd\n\n2\n\n\nr\n\n=\n\n\nγ\n0\n\nr\n\n+\n\n\nγ\n1\n\n\nr\n+\nδ\n\n\n\n+\n\n\nγ\n2\n\n\nr\n+\n2\nδ\n\n\n+\n\n\nγ\n3\n\n\nr\n+\n2\nδ\n+\n\nλ\n1\n\n\n\n+\n\n\nγ\n4\n\n\nr\n+\nδ\n+\n2\n\nλ\n2\n\n\n\n+\n\n\nγ\n5\n\n\nr\n+\n2\nδ\n+\n2\n\nλ\n1\n\n\n\n+\n\n\nγ\n6\n\n\nr\n+\n2\nδ\n+\n2\n\nλ\n2\n\n\n\n,\n\nE40
\n
with,
\n
\n\n\n\n\n\nγ\n0\n\n=\n\n\n\n\n\n\n\nλ\n1\n\n\nμ\n2\n\n\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n+\n\n\n2\n\nλ\n1\n\n\nλ\n2\n\n\nμ\n1\n2\n\n\n\nδ\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\n+\n\n\n2\nθ\n\nλ\n1\n\n\nλ\n2\n\n\nμ\n1\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\n\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\nδ\n+\n2\n\nλ\n2\n\n\n\n\n\n+\n\n\n\nθδλ\n1\n\n\n\n\nμ\n2\n′\n\n−\n\nμ\n2\n\n\n\n\n\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n\n\n\n+\n\n\n2\nθ\n\nλ\n1\n\n\nλ\n2\n\n\nμ\n1\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\n\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n\n+\n\n\n2\n\nδθ\n2\n\n\nλ\n1\n\n\nλ\n2\n\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n2\n\n\n\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n\nδ\n+\n2\n\nλ\n2\n\n\n\n\n\n+\n\n\n\nλ\n1\n\n\nλ\n2\n\n\nμ\n2\n\n\n\n2\nδ\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n\n\n\n+\n\n\nθ\n\nλ\n1\n\n\nλ\n2\n\n\n\n\nμ\n2\n′\n\n−\n\nμ\n2\n\n\n\n\n\n2\n\n\nδ\n+\n\nλ\n2\n\n\n\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\n+\n\n\n\nλ\n1\n\n\nλ\n2\n2\n\n\nμ\n1\n2\n\n\n\n\nδ\n2\n\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\n+\n\n\nθ\n\nλ\n1\n\n\nλ\n2\n2\n\n\nμ\n1\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\n\nδ\n\n\nδ\n+\n2\n\nλ\n2\n\n\n\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n\n\n\n+\n\n\nθ\n\nλ\n1\n\n\nλ\n2\n2\n\n\nμ\n1\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\n\nδ\n\n\nδ\n+\n\nλ\n2\n\n\n\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\n+\n\n\n\nθ\n2\n\n\nλ\n1\n\n\nλ\n2\n2\n\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n2\n\n\n\n2\n\n\nδ\n+\n2\n\nλ\n2\n\n\n\n\n\nδ\n+\n\nλ\n2\n\n\n\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nE41
\n
\n\n\nγ\n1\n\n=\n\n\n−\n\n\n2\n\nλ\n1\n\n\nλ\n2\n\n\nμ\n1\n2\n\n\n\nδ\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n\n−\n\n\n2\nθ\n\nλ\n1\n\n\nλ\n2\n\n\nμ\n1\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\n\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n\nδ\n+\n2\n\nλ\n1\n\n\n\n\n\n−\n\n\n2\n\nλ\n1\n\n\nλ\n2\n2\n\n\nμ\n1\n2\n\n\n\n\nδ\n2\n\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n\n−\n\n\n2\nθ\n\nλ\n1\n\n\nλ\n2\n2\n\n\nμ\n1\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\n\nδ\n\n\nδ\n+\n2\n\nλ\n2\n\n\n\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n\n\nE42
\n
\n\n\nγ\n2\n\n=\n\n\n−\n\n\n\nλ\n2\n\n\nμ\n2\n\n\n\n2\nδ\n\n\n+\n\n\n\nλ\n2\n2\n\n\nμ\n1\n2\n\n\n\nδ\n2\n\n\n+\n\n\n\nθλ\n2\n2\n\n\nμ\n1\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\n\nδ\n\n\nδ\n−\n2\n\nλ\n2\n\n\n\n\n\n\n\n\nE43
\n
\n\n\n\n\n\nγ\n3\n\n=\n\n\n\n\n−\n\n\n\nλ\n1\n\n\nμ\n2\n\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n+\n\n\n2\n\nλ\n1\n\n\nλ\n2\n\n\nμ\n1\n2\n\n\n\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n\n+\n\n\n2\nθ\n\nλ\n1\n\n\nλ\n2\n\n\nμ\n1\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\n\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\n\nλ\n1\n\n+\nδ\n−\n2\n\nλ\n2\n\n\n\n\n\n+\n\n\nθ\n\nλ\n1\n\n\n\n\nμ\n2\n′\n\n−\n\nμ\n2\n\n\n\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n\n−\n\n\n2\nθ\n\nλ\n1\n\n\nλ\n2\n\n\nμ\n1\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\n\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n\n−\n\n\n2\n\nθ\n2\n\n\nλ\n1\n\n\nλ\n2\n\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n2\n\n\n\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\n\nλ\n1\n\n+\nδ\n−\n2\n\nλ\n2\n\n\n\n\n\n+\n\n\n\nλ\n2\n\n\nμ\n2\n\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n\n+\n\n\nθ\n\nλ\n1\n\n\nλ\n2\n\n\n\n\nμ\n2\n′\n\n−\n\nμ\n2\n\n\n\n\n\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\n\nλ\n1\n\n−\n2\n\nλ\n2\n\n\n\n\n\n−\n\n\n2\n\nλ\n2\n2\n\n\nμ\n1\n2\n\n\n\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n\n−\n\n\n2\n\nθλ\n2\n2\n\n\nμ\n1\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\n\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\n\nλ\n1\n\n+\nδ\n−\n2\n\nλ\n2\n\n\n\n\n\n\n\n\n\n+\n\n\n2\nθ\n\nλ\n1\n\n\nλ\n2\n2\n\n\nμ\n1\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\n\n\n\n2\n\nλ\n2\n\n−\n\nλ\n1\n\n\n\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\n+\n\n\n2\n\nθ\n2\n\n\nλ\n1\n\n\nλ\n2\n2\n\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n2\n\n\n\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\n\nλ\n1\n\n+\nδ\n−\n2\n\nλ\n2\n\n\n\n\n\n2\n\nλ\n2\n\n−\n\nλ\n1\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nE44
\n
\n\n\n\n\n\nγ\n4\n\n=\n\n\n\n\n\n\n−\n2\nθ\n\nλ\n1\n\n\nλ\n2\n\n\nμ\n1\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\n\n\n\nδ\n+\n2\n\nλ\n2\n\n\n\n\n\n\nλ\n1\n\n+\nδ\n−\n2\n\nλ\n2\n\n\n\n\n\n+\n\n\n2\n\nθ\n2\n\n\nλ\n1\n\n\nλ\n2\n\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n2\n\n\n\n2\n\nλ\n2\n\n−\nδ\n\n\n\n\n\n\nδ\n+\n2\n\nλ\n2\n\n\n\n\n\n\nλ\n1\n\n+\nδ\n−\n2\n\nλ\n2\n\n\n\n\n\n2\n\nλ\n1\n\n−\n2\n\nλ\n2\n\n+\nδ\n\n\n\n\n\n\n\n\n−\n\n\n2\nθ\n\nλ\n1\n\n\nλ\n2\n2\n\n\nμ\n1\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\n\n\n\nδ\n+\n2\n\nλ\n2\n\n\n\n\n\nδ\n−\n2\n\nλ\n2\n\n\n\n\n\n\nλ\n1\n\n+\nδ\n−\n2\n\nλ\n2\n\n\n\n\n\n−\n\n\n2\n\nθ\n2\n\n\nλ\n1\n\n\nλ\n2\n2\n\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n2\n\n\n\nδ\n\n\nδ\n+\n2\n\nλ\n2\n\n\n\n\n\n\nλ\n1\n\n+\nδ\n−\n2\n\nλ\n2\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nE45
\n
\n\n\n\n\n\nγ\n5\n\n=\n\n\n−\n\n\nθ\n\nλ\n1\n\n\n\n\nμ\n2\n′\n\n−\n\nμ\n2\n\n\n\n\n\nδ\n+\n\nλ\n1\n\n\n\n+\n\n\n2\nθ\n\nλ\n1\n\n\nλ\n2\n\n\nμ\n1\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\n\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n\nδ\n+\n2\n\nλ\n1\n\n\n\n\n\n−\n\n\n2\n\nθ\n2\n\n\nλ\n1\n\n\nλ\n2\n\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n2\n\n\n\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n\n2\n\nλ\n1\n\n−\nδ\n−\n2\n\nλ\n2\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nE46
\n
\n\n\n\n\n\nγ\n6\n\n=\n−\n\n\nθ\n\nλ\n1\n\n\nλ\n2\n\n\n\n\nμ\n2\n′\n\n−\n\nμ\n2\n\n\n\n\n\n2\n\n\nδ\n+\n\nλ\n2\n\n\n\n\n\n\nλ\n1\n\n−\n2\n\nλ\n2\n\n\n\n\n\n+\n\n\nθ\n\nλ\n1\n\n\nλ\n2\n2\n\n\nμ\n1\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\n\n\n\nδ\n+\n\nλ\n2\n\n\n\n\n\nδ\n+\n2\n\nλ\n2\n\n\n\n\n\n\nλ\n1\n\n−\n2\n\nλ\n2\n\n\n\n\n\n+\n\n\n\nθ\n2\n\n\nλ\n1\n\n\nλ\n2\n2\n\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n2\n\n\n\nδ\n\n\nδ\n+\n\nλ\n2\n\n\n\n\n\n\nλ\n1\n\n−\n2\n\nλ\n2\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nE47
\n
Remark 2
\n
When
\n
\n\n\nλ\n1\n\n=\n\nλ\n2\n\n\n
\n
\n\n\n\n\n\n\n\nπ\n˜\n\n\n\nZ\nd\n\n2\n\n\nr\n\n\n\n\n=\n\n\n2\n\nλ\n2\n\n\nμ\n2\n\n\n\nr\n\n\nr\n+\nδ\n\n\n\n\nr\n+\n2\nδ\n\n\n\n\n+\n\n\n2\n\nθλ\n2\n\n\nμ\n1\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\n\nr\n\n\nr\n+\nδ\n+\n2\nλ\n\n\n\n\nr\n+\n2\nδ\n\n\n\n\n\n\n\n\n\n\n+\n\n\nλμ\n2\n\n\nr\n\n\nr\n+\n2\nδ\n\n\n\n\n\n+\n\n\nθλ\n\n\n\nμ\n2\n′\n\n−\n\nμ\n2\n\n\n\n\n\nr\n\n\nr\n+\n2\nδ\n+\n2\nλ\n\n\n\n\n\n\n\n\n\n\n\n\n2\n\nθλ\n2\n\n\nμ\n1\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\n\nr\n\n\nr\n+\nδ\n\n\n\n\nr\n+\n2\nδ\n+\n2\nλ\n\n\n\n\n+\n\n\n2\n\nθ\n2\n\n\nλ\n2\n\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n2\n\n\n\nr\n\n\nr\n+\nδ\n+\n2\nλ\n\n\n\n\nr\n+\n2\nδ\n+\n2\nλ\n\n\n\n\n,\n\n\n\n\nE48
\n
which is exactly the result of Bargès et al. [8].
\n
The Laplace transform in Eq. (49), is a combination of terms of the form:
\n
\n\n\ng\n˜\n\n\nr\n\n=\n\n1\n\nr\n\n\n\nα\n1\n\n+\nr\n\n\n\n\n\nα\n2\n\n+\nr\n\n\n…\n\n\n\nα\nn\n\n+\nr\n\n\n\n\n,\n\nE49
\n
with \n\ng\n\n a function defined for all non-negative real numbers. As described in the proof of Theorem 1.1 in Baeumer [16], each of these terms can be expressed as a combinations of partial fraction such as \n\n\ng\n˜\n\n\nr\n\n=\n\nγ\n0\n\n\n1\nr\n\n+\n\nγ\n1\n\n\n1\n\n\nα\n1\n\n+\nr\n\n\n+\n…\n+\n\nγ\nn\n\n\n1\n\n\nα\nn\n\n+\nr\n\n\n\n where.
\n
\n\n\n\nγ\n0\n\n=\n\n1\n\n\nα\n1\n\n…\n\nα\nn\n\n\n\n\n, for \n\ni\n=\n1\n,\n…\n,\nn\n\n, \n\n\nγ\ni\n\n=\n−\n\n1\n\nα\ni\n\n\n\n∏\n\nj\n=\n1\n,\nj\n≠\ni\n\n\n\n1\n\n\nα\nj\n\n−\n\nα\ni\n\n\n\n\n.
\n
Since the inverse Laplace transform of \n\n\n1\n\n\nα\ni\n\n+\nr\n\n\n\n is \n\n\ne\n\n−\n\nα\ni\n\nt\n\n\n\n, it is easy to invert \n\n\ng\n˜\n\n\n and obtain
\n
\n\ng\n\nt\n\n=\n\nγ\n0\n\n+\n\nγ\n1\n\n\ne\n\n−\n\nα\n1\n\nt\n\n\n+\n\nγ\n2\n\n\ne\n\n−\n\nα\n2\n\nt\n\n\n+\n…\n+\n\nγ\nn\n\n\ne\n\n−\n\nα\nn\n\nt\n\n\n.\n\nE50
\n
Using Eq. (49) in Eq. (53), it results that
\n
\n\n\nπ\n\nZ\nd\n\n2\n\n\nt\n\n=\n\nγ\n0\n\n+\n\nγ\n1\n\n\ne\n\n−\nδt\n\n\n+\n\nγ\n2\n\n\ne\n\n−\n2\nδt\n\n\n+\n\nγ\n3\n\n\ne\n\n−\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\nt\n\n\n+\n\nγ\n4\n\n\ne\n\n−\n\n\nδ\n+\n2\n\nλ\n2\n\n\n\nt\n\n\n+\n\nγ\n5\n\n\ne\n\n−\n\n\n2\nδ\n+\n2\n\nλ\n1\n\n\n\nt\n\n\n+\n\nγ\n6\n\n\ne\n\n−\n\n\n2\nδ\n+\n2\n\nλ\n2\n\n\n\nt\n\n\n,\nt\n≥\n0\n,\n\nE51
\n
where \n\n\n\n\nγ\ni\n\n\n\ni\n∈\n\n0\n1\n2\n…\n6\n\n\n\n\n are given by equation Eq. (50).
\n
Remarks
\n
If \n\nθ\n=\n0\n\n then
\n
\n\n\n\n\n\nγ\n0\n\nθ\n=\n0\n\n\n\n\n\n=\n\n\n\nλ\n1\n\n\nμ\n2\n\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n+\n\n\n2\n\nλ\n1\n\n\nλ\n2\n\n\nμ\n1\n2\n\n\n\nδ\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\n+\n\n\n\nλ\n1\n\n\nλ\n2\n\n\nμ\n2\n\n\n\n2\nδ\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\n+\n\n\n\nλ\n1\n\n\nλ\n2\n2\n\n\nμ\n1\n2\n\n\n\n\nδ\n2\n\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n\n\n\n\n=\n\n\nλ\n1\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n2\nδ\n+\n\nλ\n2\n\n\n\n2\nδ\n\n\n\n\nμ\n2\n\n+\n\n\n\nλ\n1\n\n\nλ\n2\n\n\n\nδ\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n\n\n2\nδ\n+\n\nλ\n2\n\n\nδ\n\n\n\nμ\n1\n2\n\n\n\n\n\n\n=\n\n\n\nλ\n1\n\n\n\n2\nδ\n+\n\nλ\n2\n\n\n\n\n\n2\nδ\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n\n\nμ\n2\n\n+\n\n\n2\n\nλ\n2\n\n\nμ\n1\n2\n\n\nδ\n\n\n\n,\n\n\n\n\nE52
\n
\n
\n\n\nγ\n1\n\nθ\n=\n0\n\n\n=\n−\n\n\n2\n\nλ\n1\n\n\nλ\n2\n\n\nμ\n1\n2\n\n\n\nδ\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n\n−\n\n\n2\n\nλ\n1\n\n\nλ\n2\n2\n\n\nμ\n1\n2\n\n\n\n\nδ\n2\n\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n\n=\n−\n\n\n2\n\nλ\n1\n\n\nλ\n2\n\n\nμ\n1\n2\n\n\n\nδ\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n\n1\n+\n\n\nλ\n2\n\nδ\n\n\n\n,\n\nγ\n2\n\nθ\n=\n0\n\n\n=\n\n\n\nλ\n2\n2\n\n\nμ\n1\n2\n\n\n\nδ\n2\n\n\n−\n\n\n\nλ\n2\n\n\nμ\n2\n\n\n\n2\nδ\n\n\n\nE53
\n\n
\n\n\n\n\n\nγ\n3\n\nθ\n=\n0\n\n\n\n\n\n=\n−\n\n\n\nλ\n1\n\n\nμ\n2\n\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n+\n\n\n2\n\nλ\n1\n\n\nλ\n2\n\n\nμ\n1\n2\n\n\n\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n\n+\n\n\n\nλ\n2\n\n\nμ\n2\n\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n−\n\n\n2\n\nλ\n2\n2\n\n\nμ\n1\n2\n\n\n\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n\n\n\n\n=\n\n\n\n\n\nλ\n2\n\n−\n\nλ\n1\n\n\n\n\nμ\n2\n\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n+\n\n\n2\n\nλ\n2\n\n\n\n\nλ\n1\n\n−\n\nλ\n2\n\n\n\n\nμ\n1\n2\n\n\n\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n\n,\n\n\n\n\nE54
\n
\n\n\nγ\n4\n\nθ\n=\n0\n\n\n=\n\nγ\n5\n\nθ\n=\n0\n\n\n=\n\nγ\n6\n\nθ\n=\n0\n\n\n.\n\nE55
\n
Then,
\n
\n\n\n\n\n\nπ\n\nZ\nd\n\n2\n\n\nt\n\n\n\n\n=\n\n\n\nλ\n1\n\n\n\n2\nδ\n+\n\nλ\n2\n\n\n\n\n\n2\nδ\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n\n\nμ\n2\n\n+\n\n\n2\n\nλ\n2\n\n\nμ\n1\n2\n\n\nδ\n\n\n\n−\n\n\n2\n\nλ\n1\n\n\nλ\n2\n\n\nμ\n1\n2\n\n\n\nδ\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n\n1\n+\n\n\nλ\n2\n\nδ\n\n\n\n\ne\n\n−\nδt\n\n\n\n\n\n\n\n\n+\n\n\n\n\n\nλ\n2\n2\n\n\nμ\n1\n2\n\n\n\nδ\n2\n\n\n−\n\n\n\nλ\n2\n\n\nμ\n2\n\n\n\n2\nδ\n\n\n\n\n\ne\n\n−\n2\nδt\n\n\n+\n\n\n\n1\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\n\nλ\n2\n\n−\n\nλ\n1\n\n\n\n\nμ\n2\n\n+\n\n\n2\n\nλ\n2\n\n\n\n\nλ\n1\n\n−\n\nλ\n2\n\n\n\n\nμ\n1\n2\n\n\n\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n\n\ne\n\n−\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\nt\n\n\n\n\n\n\n\n=\n\n\n\n\n\nλ\n1\n\n\n\n2\nδ\n+\n\nλ\n2\n\n\n\n\n\n2\nδ\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\n−\n\n\nλ\n2\n\n\n2\nδ\n\n\n\ne\n\n−\n2\nδt\n\n\n+\n\n\n\n\nλ\n2\n\n−\n\nλ\n1\n\n\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\ne\n\n−\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\nt\n\n\n\n\n\nμ\n2\n\n\n\n\n\n\n\n+\n\n\n\n\n\nλ\n2\n\n\nλ\n1\n\n\n\n2\nδ\n+\n\nλ\n2\n\n\n\n\n\n\nδ\n2\n\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\n−\n\n\n2\n\nλ\n1\n\n\nλ\n2\n\n\n\nδ\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n\n1\n+\n\n\nλ\n2\n\nδ\n\n\n\n\ne\n\n−\nδt\n\n\n+\n\n\nλ\n2\n2\n\n\nδ\n2\n\n\n\ne\n\n−\n2\nδt\n\n\n+\n\n\n2\n\nλ\n2\n\n\n\n\nλ\n1\n\n−\n\nλ\n2\n\n\n\n\n\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n\n\ne\n\n−\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\nt\n\n\n\n\n\nμ\n1\n2\n\n\n\n\n\n\n=\n\n\n\n\n\nλ\n1\n\n\n\n2\nδ\n+\n\nλ\n2\n\n\n\n\n\n2\nδ\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\n−\n\n\nλ\n2\n\n\n2\nδ\n\n\n\n\n1\n−\n2\nδ\n\n\na\n¯\n\n\nt\n\n\n2\nδ\n\n\n\n\n\n\n+\n\n\n\n\nλ\n2\n\n−\n\nλ\n1\n\n\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\n1\n−\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\na\n¯\n\n\nt\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n\n\n\n\nμ\n2\n\n\n\n\n\n\n\n+\n\n\n\n\n\nλ\n2\n\n\nλ\n1\n\n\n\n2\nδ\n+\n\nλ\n2\n\n\n\n\n\n\nδ\n2\n\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\n−\n\n\n2\n\nλ\n1\n\n\nλ\n2\n\n\n\nδ\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n\n1\n+\n\n\nλ\n2\n\nδ\n\n\n\n\ne\n\n−\nδt\n\n\n+\n2\n\n\nλ\n2\n2\n\n\nδ\n2\n\n\n\ne\n\n−\n2\nδt\n\n\n−\n\n\nλ\n2\n2\n\n\nδ\n2\n\n\n\ne\n\n−\n2\nδt\n\n\n\n\n\nμ\n1\n2\n\n\n\n\n\n\n\n+\n\n\n\n\n2\n\nλ\n2\n\n\n\n\nλ\n1\n\n−\n\nλ\n2\n\n\n\n\n\nδ\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n\n−\n\n\n2\n\nλ\n2\n\n\n\n\nλ\n1\n\n−\n\nλ\n2\n\n\n\n\n\nδ\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n\n\nμ\n1\n2\n\n\ne\n\n−\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\nt\n\n\n\n\n\n\n\n=\n\n\n\nλ\n2\n\n\n\na\n¯\n\n\nt\n\n\n2\nδ\n\n\n\n\n+\n\n\n\nλ\n1\n\n−\n\nλ\n2\n\n\n\n\n\na\n¯\n\n\nt\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n\n\nμ\n2\n\n\n\n\n\n\n\n+\n\n\n\n\n\nλ\n2\n\n\nλ\n1\n\n\n\n2\nδ\n+\n\nλ\n2\n\n\n\n\n\n\nδ\n2\n\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\n−\n\n\n2\n\nλ\n1\n\n\nλ\n2\n\n\n\nδ\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n\n1\n+\n\n\nλ\n2\n\nδ\n\n\n\n\ne\n\n−\nδt\n\n\n+\n2\n\n\nλ\n2\n2\n\n\nδ\n2\n\n\n\ne\n\n−\n2\nδt\n\n\n−\n\n\nλ\n2\n2\n\n\nδ\n2\n\n\n\n\n1\n−\n2\nδ\n\n\na\n¯\n\n\nt\n\n\n2\nδ\n\n\n\n\n\n\n\n\n\nμ\n1\n2\n\n\n\n\n\n\n\n+\n\n\n2\n\nλ\n2\n\n\n\n\nλ\n1\n\n−\n\nλ\n2\n\n\n\n\n\nδ\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n\n\ne\n\n−\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\nt\n\n\n\nμ\n1\n2\n\n−\n\n\n2\n\nλ\n2\n\n\n\n\nλ\n1\n\n−\n\nλ\n2\n\n\n\n\n\n1\n−\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\na\n¯\n\n\nt\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n\n\nμ\n1\n2\n\n\n\nδ\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n\n\n\n\n=\n\n\n\nλ\n2\n\n\n\na\n¯\n\n\nt\n\n\n2\nδ\n\n\n\n\n+\n\n\n\nλ\n1\n\n−\n\nλ\n2\n\n\n\n\n\na\n¯\n\n\nt\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n\n\nμ\n2\n\n+\n\n\n2\n\nλ\n2\n\n\nδ\n\n\n\n\nλ\n2\n\n\n\na\n¯\n\n\nt\n\n\n2\nδ\n\n\n\n\n+\n\n\n\nλ\n1\n\n−\n\nλ\n2\n\n\n\n\n\na\n¯\n\n\nt\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n\n\nμ\n1\n2\n\n\n\n\n\n\n\n−\n\ne\nδt\n\n\n\n\n\n2\n\nλ\n1\n\n\nλ\n2\n\n\n\nδ\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n\n1\n+\n\n\nλ\n2\n\nδ\n\n\n\n−\n2\n\n\nλ\n2\n2\n\n\nδ\n2\n\n\n\ne\n\n−\nδt\n\n\n+\n\n\n2\n\nλ\n2\n\n\n\n\nλ\n1\n\n−\n\nλ\n2\n\n\n\n\n\nδ\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n\n\ne\n\n−\n\n\nδ\n+\n\nλ\n1\n\n\n\nt\n\n\n\n\n\n\n\n\nE56
\n
\n\n\n\n\n\nπ\n\nZ\nd\n\n2\n\n\nt\n\n\n\n\n=\n\n\n\nλ\n2\n\n\n\na\n¯\n\n\nt\n\n\n2\nδ\n\n\n\n\n+\n\n\n\nλ\n1\n\n−\n\nλ\n2\n\n\n\n\n\na\n¯\n\n\nt\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n\n\nμ\n2\n\n+\n\n\n2\n\nλ\n2\n\n\nδ\n\n\n\n\nλ\n2\n\n\n\na\n¯\n\n\nt\n\n\n2\nδ\n\n\n\n\n+\n\n\n\nλ\n1\n\n−\n\nλ\n2\n\n\n\n\n\na\n¯\n\n\nt\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n\n\nμ\n1\n2\n\n\n\n\n\n\n\n−\n\ne\nδt\n\n\n\n\n\n2\n\nλ\n1\n\n\nλ\n2\n\n\n\nδ\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n\n1\n+\n\n\nλ\n2\n\nδ\n\n\n\n−\n2\n\n\nλ\n2\n2\n\n\nδ\n2\n\n\n\ne\n\n−\nδt\n\n\n+\n\n\n2\n\nλ\n2\n\n\n\n\nλ\n1\n\n−\n\nλ\n2\n\n\n\n\n\nδ\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n\n\ne\n\n−\n\n\nδ\n+\n\nλ\n1\n\n\n\nt\n\n\n\n\n\n\n\n\n\n=\n\n\n\nλ\n2\n\n\n\na\n¯\n\n\nt\n\n\n2\nδ\n\n\n\n\n+\n\n\n\nλ\n1\n\n−\n\nλ\n2\n\n\n\n\n\na\n¯\n\n\nt\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n\n\nμ\n2\n\n+\n\n\n2\n\nλ\n2\n\n\nδ\n\n\n\n\nλ\n2\n\n\n\na\n¯\n\n\nt\n\n\n2\nδ\n\n\n\n\n+\n\n\n\nλ\n1\n\n−\n\nλ\n2\n\n\n\n\n\na\n¯\n\n\nt\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n\n\nμ\n1\n2\n\n\n\n\n\n\n\n−\n\ne\nδt\n\n\n\n\n\n2\n\nλ\n1\n\n\nλ\n2\n\n\n\nδ\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n\n1\n+\n\n\nλ\n2\n\nδ\n\n\n\n−\n2\n\n\nλ\n2\n2\n\n\nδ\n2\n\n\n\n\n1\n−\nδ\n\n\na\n¯\n\n\nt\n\n\n2\nδ\n\n\n\n\n\n\n+\n\n\n2\n\nλ\n2\n\n\n\n\nλ\n1\n\n−\n\nλ\n2\n\n\n\n\n\nδ\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n\n1\n−\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n\na\n¯\n\n\nt\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n=\n\n\n\nλ\n2\n\n\n\na\n¯\n\n\nt\n\n\n2\nδ\n\n\n\n\n+\n\n\n\nλ\n1\n\n−\n\nλ\n2\n\n\n\n\n\na\n¯\n\n\nt\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n\n\nμ\n2\n\n+\n\n\n2\n\nλ\n2\n\n\nδ\n\n\n\n\nλ\n2\n\n\n\na\n¯\n\n\nt\n\n\n2\nδ\n\n\n\n\n+\n\n\n\nλ\n1\n\n−\n\nλ\n2\n\n\n\n\n\na\n¯\n\n\nt\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n\n\nμ\n1\n2\n\n\n\n\n\n\n\n−\n\n\n2\n\nλ\n2\n\n\nδ\n\n\ne\nδt\n\n\n\n\n\nλ\n2\n\n\n\na\n¯\n\n\nt\n\nδ\n\n\n\n+\n\n\n\nλ\n1\n\n−\n\nλ\n2\n\n\n\n\n\na\n¯\n\n\nt\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n\n\n\n\n\n\n\n=\n\n\n\nλ\n2\n\n\n\na\n¯\n\n\nt\n\n\n2\nδ\n\n\n\n\n+\n\n\n\nλ\n1\n\n−\n\nλ\n2\n\n\n\n\n\na\n¯\n\n\nt\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n\n\nμ\n2\n\n\n\n\n\n\n\n+\n\n\n2\n\nλ\n2\n\n\nδ\n\n\n\n\nλ\n2\n\n\n\na\n¯\n\n\nt\n\n\n2\nδ\n\n\n\n\n+\n\n\n\nλ\n1\n\n−\n\nλ\n2\n\n\n\n\n\na\n¯\n\n\nt\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\n−\n\ne\nδt\n\n\n\n\n\nλ\n2\n\n\n\na\n¯\n\n\nt\n\nδ\n\n\n\n+\n\n\n\nλ\n1\n\n−\n\nλ\n2\n\n\n\n\n\na\n¯\n\n\nt\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n\n\n\n\n\nμ\n1\n2\n\n.\n\n\n\n\nE57
\n
To finally have:
\n
\n\n\n\n\n\nπ\n\nZ\nd\n\n2\n\n\nt\n\n\n\n\n=\n\n\n\nλ\n2\n\n\n\na\n¯\n\n\nt\n\n\n2\nδ\n\n\n\n\n+\n\n\n\nλ\n1\n\n−\n\nλ\n2\n\n\n\n\n\na\n¯\n\n\nt\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n\n\nμ\n2\n\n\n\n\n\n\n\n+\n\n\n2\n\nλ\n2\n\n\nδ\n\n\n\n\nλ\n2\n\n\n\na\n¯\n\n\nt\n\n\n2\nδ\n\n\n\n\n+\n\n\n\nλ\n1\n\n−\n\nλ\n2\n\n\n\n\n\na\n¯\n\n\nt\n\n\n2\nδ\n+\n\nλ\n1\n\n\n\n\n\n−\n\ne\nδt\n\n\n\n\n\nλ\n2\n\n\n\na\n¯\n\n\nt\n\nδ\n\n\n\n+\n\n\n\nλ\n1\n\n−\n\nλ\n2\n\n\n\n\n\na\n¯\n\n\nt\n\n\nδ\n+\n\nλ\n1\n\n\n\n\n\n\n\n\n\n\n\nμ\n1\n2\n\n,\n\n\n\n\nE58
\n
which is exactly the result of Léveillé et al.[15].
\n
If \n\n\nλ\n1\n\n=\n\nλ\n2\n\n\n then
\n
\n\n\n\n\n\nγ\n0\n\n\nλ\n1\n\n=\n\nλ\n2\n\n\n\n\n\n\n=\n\n\nλμ\n2\n\n\n2\nδ\n\n\n+\n\n\n\nλ\n2\n\n\nμ\n1\n2\n\n\n\nδ\n2\n\n\n+\n\n\n\n\nθλ\n2\n\n\nδ\n\n\nδ\n+\nλ\n\n\n\n\n+\n\n\nθλ\n2\n\n\nδ\n\n\nδ\n+\n2\nλ\n\n\n\n\n\n\n\nμ\n1\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n+\n\n\nθλ\n\n\n\nμ\n2\n′\n\n−\n\nμ\n2\n\n\n\n\n\n2\n\n\nδ\n+\nλ\n\n\n\n\n\n\n\n\n\n\n+\n\n\n\nθ\n2\n\n\nλ\n2\n\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n2\n\n\n\n\n\nδ\n+\nλ\n\n\n\n\nδ\n+\n2\nλ\n\n\n\n\n,\n\n\n\n\n\n\n\n\n\nE59
\n
\n\n\n\nγ\n1\n\n\nλ\n1\n\n=\n\nλ\n2\n\n\n\n=\n−\n\n\n2\n\nλ\n2\n\n\nμ\n1\n2\n\n\n\nδ\n2\n\n\n−\n\n\n2\n\nθλ\n2\n\n\nμ\n1\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\n\nδ\n\n\nδ\n+\n2\nλ\n\n\n\n\n\n, \n\n\nγ\n2\n\n\nλ\n1\n\n=\n\nλ\n2\n\n\n\n=\n−\n\n\nλμ\n2\n\n\n2\nδ\n\n\n+\n\n\n\nλ\n2\n\n\nμ\n1\n2\n\n\n\nδ\n2\n\n\n+\n\n\n\nθλ\n2\n\n\nμ\n1\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\n\nδ\n\n\nδ\n−\n2\nλ\n\n\n\n\n\n,\n\n\nγ\n3\n\n\nλ\n1\n\n=\n\nλ\n2\n\n\n\n=\n0\n\n(60)
\n
\n\n\n\n\n\nγ\n4\n\n\nλ\n1\n\n=\n\nλ\n2\n\n\n\n=\n−\n\n\n2\n\nθλ\n2\n\n\nμ\n1\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\n\n\n\nδ\n+\n2\nλ\n\n\n\n\nδ\n−\n2\nλ\n\n\n\n\n−\n\n\n2\n\nθ\n2\n\n\nλ\n2\n\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n2\n\n\n\nδ\n\n\nδ\n+\n2\nλ\n\n\n\n\n,\n\n\n\n\n\n\n\n\n\nE61
\n
\n\n\nγ\n5\n\n\nλ\n1\n\n=\n\nλ\n2\n\n\n\n=\n−\n\n\nθλ\n\n\n\nμ\n2\n′\n\n−\n\nμ\n2\n\n\n\n\n\nδ\n+\nλ\n\n\n+\n\n\n2\n\nθλ\n2\n\n\nμ\n1\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\n\n\n\nδ\n+\nλ\n\n\n\n\nδ\n+\n2\nλ\n\n\n\n\n+\n\n\n2\n\nθ\n2\n\n\nλ\n2\n\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n2\n\n\n\nδ\n\n\nδ\n+\nλ\n\n\n\n\n,\n\nE62
\n
\n\n\nγ\n6\n\n\nλ\n1\n\n=\n\nλ\n2\n\n\n\n=\n\n\nθλ\n\n\n\nμ\n2\n′\n\n−\n\nμ\n2\n\n\n\n\n\n2\n\n\nδ\n+\nλ\n\n\n\n\n−\n\n\n\nθλ\n2\n\n\nμ\n1\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\n\n\n\nδ\n+\nλ\n\n\n\n\nδ\n+\n2\nλ\n\n\n\n\n−\n\n\n\nθ\n2\n\n\nλ\n2\n\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n2\n\n\n\nδ\n\n\nδ\n+\nλ\n\n\n\n\n\n.\n\nE63
\n
Then,
\n
\n\n\n\n\n\nπ\n\nZ\nd\n\n2\n\n\nt\n\n\n\n\n=\n\nλμ\n2\n\n\n\n\n1\nδ\n\n−\n\n\ne\n\n−\nδt\n\n\n\n2\nδ\n\n\n\n\n+\nθλ\n\n\n\nμ\n2\n′\n\n−\n\nμ\n2\n\n\n\n\n\n\n1\n\n2\nλ\n+\n2\nδ\n\n\n−\n\n\ne\n\n−\n\n\n2\nλ\n+\n2\nδ\n\n\nt\n\n\n\n2\nλ\n+\n2\nδ\n\n\n\n\n\n\n\n\n\n\n+\n2\n\nλ\n2\n\n\nμ\n1\n2\n\n\n\n\n1\n\n2\n\nδ\n2\n\n\n\n−\n\n\ne\n\n−\nδt\n\n\n\nδ\n2\n\n\n+\n\n\ne\n\n−\n2\nδt\n\n\n\n2\n\nδ\n2\n\n\n\n\n\n\n\n\n\n\n\n+\n2\n\nθλ\n2\n\n\nμ\n1\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\n\n\n1\n\n2\nδ\n\n\n2\nλ\n+\nδ\n\n\n\n\n−\n\n\ne\n\n−\n\n\n2\nλ\n+\nδ\n\n\nt\n\n\n\n\n\n2\nλ\n+\nδ\n\n\n\n\n−\n2\nλ\n+\nδ\n\n\n\n\n+\n\n\ne\n\n−\n2\nδt\n\n\n\n2\nδ\n\n\n−\n2\nλ\n+\nδ\n\n\n\n\n\n\n\n\n\n\n\n\n+\n2\n\nθλ\n2\n\n\nμ\n1\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n\n\n\n1\n\nδ\n\n\n2\nλ\n+\n2\nδ\n\n\n\n\n−\n\n\ne\n\n−\nδt\n\n\n\nδ\n\n\n2\nλ\n+\nδ\n\n\n\n\n+\n\n\ne\n\n−\n\n\n2\nλ\n+\n2\nδ\n\n\nt\n\n\n\n\n\n2\nλ\n+\n2\nδ\n\n\n\n\n2\nλ\n+\nδ\n\n\n\n\n\n\n\n\n\n\n\n\n+\n2\n\nθ\n2\n\n\nλ\n2\n\n\n\n\n\nμ\n1\n′\n\n−\n\nμ\n1\n\n\n\n2\n\n\n\n\n1\n\n\n\n2\nλ\n+\nδ\n\n\n\n\n2\nλ\n+\n2\nδ\n\n\n\n\n−\n\n\ne\n\n−\n\n\n2\nλ\n+\nδ\n\n\nt\n\n\n\nδ\n\n\n2\nλ\n+\nδ\n\n\n\n\n+\n\n\ne\n\n−\n\n\n2\nλ\n+\n2\nδ\n\n\nt\n\n\n\nδ\n\n\n2\nλ\n+\n2\nδ\n\n\n\n\n\n\n\n\n\n\nE64
\n
which is exactly the result of Bargès et al. [8].
\n
If \n\n\nλ\n1\n\n=\n\nλ\n2\n\n\n and \n\nθ\n=\n0\n\n then
\n
\n\n\nπ\n\nZ\no\n\n2\n\n\nt\n\n=\nλ\n\n\na\n¯\n\n\nt\n\n\n2\nδ\n\n\n\n\n\nμ\n2\n\n+\n\n\n\nλ\n\n\na\n¯\n\n\nt\n\n\n2\nδ\n\n\n\n\n\nμ\n1\n\n\n\n2\n\n,\n\nE65
\n
which is exactly the result of Léveillé et al. [15].
\n
Remark 3.1
\n
Noting for \n