## 1. General discussion

The themes of recent research are focused on nonlinear integral equations [1], the new numerical and adaptive methods of resolution of integral equations [2], the generalization of Fredholm integral equations [3] of second kind, integral equations in time scales and the spectral densities [3, 4], operator theories for nonsymmetric and symmetric kernels [1, 5], extension problems to Banach algebras to kernels of integral equations [5, 6, 7], singular integral equations [10], special treatments to solve Fredholm integral equations of first and second kinds, nondegenerate kernels [3, 6] and symbols of integral equations [7], topological methods for the resolution of integral equations and representation problems of operators of integral equations.

Now, well, the field of the integral equations is not finished yet, not much less with the integral equations for which the Fredholm theorem is worth [fredholm], nor with the completely continuous operators, since there exist other integral equations developed of the Hilbert theory respect to the Fredholm discussion, and studies on singular integral equations, also by Hilbert, Wiener and others [8]. Arise numerical and approximate methods on the big vastness that give the Banach algebras, even using probabilistic measures to solve some integral equations in the ambit of distributions and stochastic process. Likewise, there arise integral equations in which the proper values are corresponded to linearly independent infinite proper functions. Such is the case, for example, of the Lalesco-Picard integral equation:

in which the kernel

Likewise, as special case, for their important theory, we can treat the singular integral equations of Cauchy. This theory was created almost immediately after the Fredholm theory, and their beginning is given in the “Lecons de Mécanique Céleste” by Poincaré and Fichot [9], and to the Hilbert works on contour and boundary problems of the analytic functions theory.

A possible treatment, bringing the Cauchy ideas together with Banach algebras, is the consideration of the Calkin algebra

For other side, a general resolution method to the singular integral equations cannot be given in detail on the effective resolution of these equations, because is followed the research on a general methods to this integral equations class through certain special functions and integral transforms, which are of diverse and varied nature [5, 11]. In fact, the resolution of singular integrals considering the Hilbert transform and the Fourier transform [11] has been in the last years strongly researched. Here we only consider the intimate relation between this singular integral equations theory with the analytic functions theory and special functions related with the regularity and completeness of the solutions required.

One of the new developments on nonlinear integral equations are followed to the Hammerstein integral equations [12], which is written as

where

where the positive constant

In the aspect of the linear integral equations has been important the study of the Volterra integral equations on time scale, where have more importance the initial value problems with unbounded domains. Likewise, the development on the alternate form of a linear integral equation is given as:

where

Other studies go on to develop generalizations of integral equations of Fredholm type using Weyl fractional integral operators and the kernel as product of certain generalized functions of special functions such as the

Other developments start the probabilistic methods searching the obtaining of a solution of some integral equations of the second kind and Volterra integral equation, thinking in stochastic phenomena where is necessary determine an aleatory behavior.

## References

- 1.
Tricomi FC. Integral Equations. Interscience Publishers; 1957 - 2.
Arfken G. Neumann series, separable (degenerate) kernels. In: Mathematical Methods for Physicists. 3rd ed. Orlando, FL: Academic Press; 1985. pp. 879-890 - 3.
Ruston AF. Direct products of Banach spaces and linear functional equations. Proceedings of the London Mathematical Society. 1953; 1 (3):327-384 - 4.
Ruston AF. On the Fredholm theory of integral equations for operators belonging to the trace class of a general Banach space. Proceedings of the London Mathematical Society. 1951; 53 (2):109-124 - 5.
Kolmogorov AN, Fomin SV. Elementos de la Teoría de Funciones y del Análisis Funcional. URSS: Mir Moscú; 1975 - 6.
Polyanin AD, Manzhirov AV. Handbook of Integral Equations. Boca Raton: CRC Press; 1998 - 7.
Taylor M. Pseudo-Differential Operators (PMS-34). N.J, USA: Princeton University Press; 1981 - 8.
Muskhelishmili. Singular Integral Equations. New York, USA: Dover Publications; 2008 - 9.
Poincaré H, Fichot E. Lecons de Mécanique Céleste: Théorie Générale Des Perturbations Planétaires. Sydney, New South Wales: Wentworth Press; 1918 - 10.
Calkin JW. Two-sided ideals and congruences in the ring of bounded operators in Hilbert space. The Annals of Mathematics. 1941; 42 (4):839. DOI: 10.2307/1968771 - 11.
Titchmarsh EC. Theory of Fourier Integrals. Oxford: Oxford University Press; 1937 - 12.
Hammerstein A. Nichtlineare integralgleichungen nebst anwendungen. Acta Mathematica. 1930; 54 :117-176 - 13.
Chaurasia VBL, Singh Y. New generalization of integral equations of fredholm type using aleph-function. International Journal of Modern Mathematical Sciences. 2014; 9 (3):208-220