",isbn:"978-1-80355-463-1",printIsbn:"978-1-80355-462-4",pdfIsbn:"978-1-80355-464-8",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,isSalesforceBook:!1,hash:"0c1bf8695b453c7d16f51eb4ec3c3ae6",bookSignature:"Dr. Redmond R. Shamshiri and Dr. Sanaz Shafian",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11343.jpg",keywords:"Digital Farming, Wireless Sensors, Internet-of-Things, Digital Twin, Cloud Computing, Big Data Analysis, Data Labeling, Data Sharing, Agriculture 4.0, Precision Technology, E-agriculture, Automated Farms",numberOfDownloads:37,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 10th 2021",dateEndSecondStepPublish:"November 18th 2021",dateEndThirdStepPublish:"January 17th 2022",dateEndFourthStepPublish:"April 7th 2022",dateEndFifthStepPublish:"June 6th 2022",remainingDaysToSecondStep:"6 months",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:"Dr. Shamshiri is a Member of the International Society of Precision Agriculture and a Member of the American Society of Agricultural and Biological Engineering. He is a scientist at the Leibniz-Institut für Agrartechnik und Bioökonomie working toward digitization of agriculture for food security.",coeditorOneBiosketch:"Sanaz is an Assistant Professor of Smart Farming at Virginia Tech University. Prior to this, she was an assistant professor at the University of Idaho. Her expertise lies in using advanced technologies and methodologies for economically and environmentally sustainable crops and trees monitoring and management. She integrates satellite/drone images and AI to develop methodologies for environmental monitoring, crop modeling, and water, and nutrient conservation.",coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"203413",title:"Dr.",name:"Redmond R.",middleName:null,surname:"Shamshiri",slug:"redmond-r.-shamshiri",fullName:"Redmond R. Shamshiri",profilePictureURL:"https://mts.intechopen.com/storage/users/203413/images/system/203413.png",biography:"Dr. Redmond R. Shamshiri holds a Ph.D. in agricultural automation with a focus on control systems and dynamics. He is a scientist at the Leibniz-Institut für Agrartechnik und Bioökonomie working toward digitization of agriculture for food security. His main research fields include simulation and modeling for closed-field plant production systems, LPWAN sensors, wireless control, and autonomous navigation. His work has appeared in over 100 publications, including peer-reviewed journal papers, book chapters, and conference proceedings. He is a member of the Adaptive AgroTech Consultancy Network and serves as a section editor and reviewer for various high-ranking journals in the field of smart farming.",institutionString:"Leibniz Institute of Agricultural Engineering and Bio-economy",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"7",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Leibniz Institute for Agricultural Engineering Potsdam-Bornim",institutionURL:null,country:{name:"Germany"}}}],coeditorOne:{id:"429704",title:"Dr.",name:"Sanaz",middleName:null,surname:"Shafian",slug:"sanaz-shafian",fullName:"Sanaz Shafian",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003CPbhJQAT/Profile_Picture_1629955207151",biography:"Sanaz is an Assistant Professor of Smart Farming at Virginia Tech University. Prior to this she was assistant professor at University of Idaho. Her expertise lies in remote sensing research, with a focus on using advanced technologies and methodologies for economically and environmentally sustainable crops and trees monitoring and management. She integrates satellite/drone images and AI to develop methodologies for environmental monitoring, crop modeling and water and nutrient conservation and she has published widely on these topics. She has been involved in several USDA projects. With University of Idaho, she led an educational and outreach project to initiate Precision Agriculture certificate. Sanaz is currently working on two agriculture-related projects, one mapping invasive plants in temperate forest and evaluate forest health in Virginia and another looking at developing smart tool for early detection of soybean diseases.",institutionString:"Virginia Tech",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Virginia Tech",institutionURL:null,country:{name:"United States of America"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"5",title:"Agricultural and Biological Sciences",slug:"agricultural-and-biological-sciences"}],chapters:[{id:"80738",title:"Neutron-Gamma Analysis of Soil for Digital Agriculture",slug:"neutron-gamma-analysis-of-soil-for-digital-agriculture",totalDownloads:37,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"441704",firstName:"Ana",lastName:"Javor",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/441704/images/20009_n.jpg",email:"ana.j@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors, and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"10499",title:"Next-Generation Greenhouses for Food Security",subtitle:null,isOpenForSubmission:!1,hash:"456f82c97eafad5734cd36c48e167781",slug:"next-generation-greenhouses-for-food-security",bookSignature:"Redmond R. Shamshiri",coverURL:"https://cdn.intechopen.com/books/images_new/10499.jpg",editedByType:"Edited by",editors:[{id:"203413",title:"Dr.",name:"Redmond R.",surname:"Shamshiri",slug:"redmond-r.-shamshiri",fullName:"Redmond R. Shamshiri"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6418",title:"Hyperspectral Imaging in Agriculture, Food and Environment",subtitle:null,isOpenForSubmission:!1,hash:"9005c36534a5dc065577a011aea13d4d",slug:"hyperspectral-imaging-in-agriculture-food-and-environment",bookSignature:"Alejandro Isabel Luna Maldonado, Humberto Rodríguez Fuentes and Juan Antonio Vidales Contreras",coverURL:"https://cdn.intechopen.com/books/images_new/6418.jpg",editedByType:"Edited by",editors:[{id:"105774",title:"Prof.",name:"Alejandro Isabel",surname:"Luna Maldonado",slug:"alejandro-isabel-luna-maldonado",fullName:"Alejandro Isabel Luna Maldonado"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10359",title:"Landraces",subtitle:"Traditional Variety and Natural Breed",isOpenForSubmission:!1,hash:"0600836fb2c422f7b624363d1e854f68",slug:"landraces-traditional-variety-and-natural-breed",bookSignature:"Amr Elkelish",coverURL:"https://cdn.intechopen.com/books/images_new/10359.jpg",editedByType:"Edited by",editors:[{id:"231337",title:"Dr.",name:"Amr",surname:"Elkelish",slug:"amr-elkelish",fullName:"Amr Elkelish"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"6541",title:"The Photonic Torque Microscope: Measuring Non-Conservative Force-Fields",doi:"10.5772/6923",slug:"the-photonic-torque-microscope-measuring-non-conservative-force-fields",body:'\n\t\t
\n\t\t\t
1. Introduction
\n\t\t\t
Over the last 20 years the advances of laser technology have permitted the development of an entire new field in optics: the field of optical trapping and manipulation. The focal spot of a highly focused laser beam can be used to confine and manipulate microscopic particles ranging from few tens of nanometres to few microns (Ashkin, 2000, Neuman & Block, 2004).
\n\t\t\t
Figure 1.
PFM setups with detection using forward (a) and backward (b) scattered light.
\n\t\t\t
Such an optical trap can detect and measure forces and torques in microscopic systems – a technique now known as photonic force microscope (PFM). This is a fundamental task in many areas, such as biophysics, colloidal physics and hydrodynamics of small systems.
\n\t\t\t
The PFM was devised in 1993 (Ghislain & Webb, 1993). A typical PFM comprises an optical trap that holds a probe – a dielectric or metallic particle of micrometre size, which randomly moves due to Brownian motion in the potential well formed by the optical trap – and a position sensing system. The analysis of the thermal motion provides information about the local forces acting on the particle (Berg-Sørensen & Flyvbjerg, 2004). The PFM can measure forces in the range of femtonewtons to piconewtons. This range is well below the limits of techniques based on micro-fabricated mechanical cantilevers, such as the atomic force microscope (AFM).
\n\t\t\t
However, an intrinsic limit of the PFM is that it can only deal with conservative force-fields, while it cannot measure the presence of a torque, which is typically associated with the presence of a non-conservative (or rotational) force-field.
\n\t\t\t
In this Chapter, after taking a glance at the history of optical manipulation, we will briefly review the PFM and its applications. Then, we will discuss how the PFM can be enhanced to deal with non-conservative force-fields, leading to the photonic torque microscope (PTM) (Volpe & Petrov, 2006, Volpe et al., 2007a). We will also present a concrete analysis workflow to reconstruct the force-field from the experimental time-series of the probe position. Finally, we will present three experiments in which the PTM technique has been successfully applied:
\n\t\t\t
\n\t\t\t\t\t\tCharacterization of singular points in microfluidic flows. We applied the PTM to microrheology to characterize fluid fluxes around singular points of the fluid flow (Volpe et al., 2008).
\n\t\t\t\t\t\tDetection of the torque carried by an optical beam with orbital angular momentum. We used the PTM to measure the torque transferred to an optically trapped particle by a Laguerre-Gaussian beam (Volpe & Petrov, 2006).
\n\t\t\t\t\t\tQuantitative measurement of non-conservative forces generated by an optical trap. We used the PTM to quantify the contribution of non-conservative optical forces to the optical trapping (Pesce et al., 2009).
\n\t\t
\n\t\t
\n\t\t\t
2. Brief history of optical manipulation
\n\t\t\t
Optical trapping and manipulation did not exist before the invention of the laser in 1960 (Townes, 1999). It was already known from astronomy and from early experiments in optics that light had linear and angular momentum and, therefore, that it could exert radiation pressure and torques on physical objects. Indeed, light’s ability to exert forces has been recognized at least since 1619, when Kepler’s De Cometis described the deflection of comet tails by sunrays.
\n\t\t\t
In the late XIX century Maxwell’s theory of electromagnetism predicted that the light momentum flux was proportional to its intensity and could be transferred to illuminated objects, resulting in a radiation pressure pushing objects along the propagation direction of light.
\n\t\t\t
Early exciting experiments were performed in order to verify Maxwell’s predictions. Nichols and Hull(Nichols & Hull, 1901) and Lebedev (Lebedev, 1901) succeeded in detecting radiation pressure on macroscopic objects and absorbing gases. A few decades later, in 1936, Beth reported the experimental observation of the torque on a macroscopic object resulting from interaction with light (Beth, 1936): he observed the deflection of a quartz wave plate suspended from a thin quartz fibre when circularly polarized light passed through it. These effects were so small, however, that they were not easily detected. Quoting J. H. Poynting’s presidential address to the British Physical Society in 1905, “a very short experience in attempting to measure these forces is sufficient to make one realize their extreme minuteness – a minuteness which appears to put them beyond consideration in terrestrial affairs.” (Cited in Ref. (Ashkin, 2000))
\n\t\t\t
Things changed with the invention of the laser in the 1960s (Townes, 1999). In 1970 Ashkin showed that it was possible to use the forces of radiation pressure to significantly affect the dynamics of transparent micrometre sized particles (Ashkin, 1970). He identified two basic light pressure forces: a scattering force in the direction of the incident beam and a gradient force in the direction of the intensity gradient of the beam. He showed experimentally that, using just these forces, a focused laser beam could accelerate, decelerate and even stably trap small micrometre sized particles.
\n\t\t\t
Ashkin considered a beam of power \n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tP\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t reflecting on a plane mirror: \n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\tP\n\t\t\t\t\t\t\t\t/\n\t\t\t\t\t\t\t\th\n\t\t\t\t\t\t\t\tν\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\tphotons per second strike the mirror, each carrying a momentum\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\th\n\t\t\t\t\t\t\t\tν\n\t\t\t\t\t\t\t\t/\n\t\t\t\t\t\t\t\tc\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t, where \n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\th\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t is the Planck constant, \n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tν\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\tis the light frequency and \n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tc\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t the speed of light. If they are all reflected straight back, the total change in light momentum per second is\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t2\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tP\n\t\t\t\t\t\t\t\t\t\t/\n\t\t\t\t\t\t\t\t\t\th\n\t\t\t\t\t\t\t\t\t\tν\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\th\n\t\t\t\t\t\t\t\t\t\tν\n\t\t\t\t\t\t\t\t\t\t/\n\t\t\t\t\t\t\t\t\t\tc\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t2\n\t\t\t\t\t\t\t\tP\n\t\t\t\t\t\t\t\t/\n\t\t\t\t\t\t\t\tc\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t, which, by conservation of momentum, implies that the mirror experiences an equal and opposite force in the direction of the light. This is the maximum force that one can extract from the light. Quoting Ashkin (Ashkin, 2000), “Suppose we have a laser and we focus our one watt to a small spot size of about a wavelength\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t≅\n\t\t\t\t\t\t\t\t1\n\t\t\t\t\t\t\t\tμ\n\t\t\t\t\t\t\t\tm\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t, and let it hit a particle of diameter also of\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t1\n\t\t\t\t\t\t\t\tμ\n\t\t\t\t\t\t\t\tm\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t. Treating the particle as a 100% reflecting mirror of density\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t≅\n\t\t\t\t\t\t\t\t1\n\t\t\t\t\t\t\t\tg\n\t\t\t\t\t\t\t\tm\n\t\t\t\t\t\t\t\t/\n\t\t\t\t\t\t\t\tc\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tm\n\t\t\t\t\t\t\t\t\t3\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t, we get an acceleration of the small particle\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\tA\n\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\tF\n\t\t\t\t\t\t\t\t/\n\t\t\t\t\t\t\t\tm\n\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t10\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t−\n\t\t\t\t\t\t\t\t\t\t3\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\td\n\t\t\t\t\t\t\t\ty\n\t\t\t\t\t\t\t\tn\n\t\t\t\t\t\t\t\te\n\t\t\t\t\t\t\t\ts\n\t\t\t\t\t\t\t\t/\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t10\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t−\n\t\t\t\t\t\t\t\t\t\t12\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\tg\n\t\t\t\t\t\t\t\tm\n\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t10\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t9\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\tc\n\t\t\t\t\t\t\t\tm\n\t\t\t\t\t\t\t\t/\n\t\t\t\t\t\t\t\ts\n\t\t\t\t\t\t\t\te\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tc\n\t\t\t\t\t\t\t\t\t2\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t. Thus, \n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\tA\n\t\t\t\t\t\t\t\t≅\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t10\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t6\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\tg\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t, where\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\tg\n\t\t\t\t\t\t\t\t≅\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t10\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t3\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\tc\n\t\t\t\t\t\t\t\tm\n\t\t\t\t\t\t\t\t/\n\t\t\t\t\t\t\t\ts\n\t\t\t\t\t\t\t\te\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tc\n\t\t\t\t\t\t\t\t\t2\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t, the acceleration of gravity. This is quite large and should give readily observable effects, so I tried a simple experiment. [...] It is surprising that this simple first experiment [...], intended only to show forward motion due to laser radiation pressure, ended up demonstrating not only this force but the existence of the transverse force component, particle guiding, particle separation, and stable 3D particle trapping.”
\n\t\t\t
In 1986, Ashkin and colleagues reported the first observation of what is now commonly referred to as an optical trap (Ashkin et al., 1986): a tightly focused beam of light capable of holding microscopic particles in three dimensions. One of Ashkin’s co-authors, Steven Chu, would go on to use optical tweezing in his work on cooling and trapping atoms. This research earned Chu, together with Claude Cohen-Tannoudji and William Daniel Phillips, the 1997 Nobel Prize in Physics.
\n\t\t\t
In the late 1980s, the new technology was applied to the biological sciences, starting by trapping tobacco mosaic viruses and Escherichia coli bacteria. In the early 1990s, Block, Bustamante and Spudich pioneered the use of optical trap force spectroscopy, an alternate name for PFM, to characterize the mechanical properties of biomolecules and biological motors (Block et al., 1990, Finer et al., 1994, Bustamante et al., 1994). Optical traps allowed these biophysicists to observe the forces and dynamics of nanoscale motors at the single-molecule level. Optical trap force spectroscopy has led to a deeper understanding of the nature of these force-generating molecules, which are ubiquitous in nature.
One of the most prominent uses of optical tweezers is to measure tiny forces, in the order of 100s of femtonewtons to 10s of piconewtons. A typical PFM setup comprises an optical trap to hold a probe - a dielectric or metallic particle of micrometer size - and a position sensing system. In the case of biophysical applications the probe is usually a small dielectric bead tethered to the cell or molecule under study. The probe randomly moves due to Brownian motion in the potential well formed by the optical trap. Near the centre of the trap, the restoring force is linear in the displacement. The stiffness of such harmonic potential can be calibrated using the three-dimensional position fluctuations. To measure an external force acting on the probe it suffices to measure the probe average position displacement under the action of such force and multiply it by the stiffness.
\n\t\t\t
In order to understand the PFM it is necessary to discuss these three aspects:
\n\t\t\t
the optical forces that act on the probe and produce the optical trap;
the position detection, which permits one to track the probe position with nanometre resolution and at kilohertz sampling rate;
the statistics of the Brownian motion of the probe in the trap, which are used in the calibration procedure.
\n\t\t\t
\n\t\t\t\t
3.1. Optical forces
\n\t\t\t\t
It is well known from quantum mechanics that light carries a momentum: for a photon at wavelength \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\tλ\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t the associated momentum is\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tp\n\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\th\n\t\t\t\t\t\t\t\t\t/\n\t\t\t\t\t\t\t\t\tλ\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t. For this reason, whenever an atom emits or absorbs a photon, its momentum changes according to Newton’s laws. Similarly, an object will experience a force whenever a propagating light beam is refracted or reflected by its surface. However, in most situations this force is much smaller than other forces acting on macroscopic objects so that there is no noticeable effect and, therefore, can be neglected. The objects, for which this radiation pressure exerted by light starts to be significant, weigh less than \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t1\n\t\t\t\t\t\t\t\t\tμ\n\t\t\t\t\t\t\t\t\tg\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t and their size is below 10s of microns.
\n\t\t\t\t
A focused laser beam acts as an attractive potential well for a particle. The equilibrium position lies near – but not exactly at – the focus. When the object is displaced from this equilibrium position, it experiences an attractive force towards it. In first approximation this restoring force is proportional to the displacement; in other words, optical tweezers force can generally be described by Hooke’s law:
where x is the particle’s position, x\n\t\t\t\t\t0 is the focus position and k\n\t\t\t\t\t\n\t\t\t\t\t\tx\n\t\t\t\t\t is the spring constant of the optical trap along the x -direction, usually referred to as trap stiffness. In fact, an optical tweezers creates a three-dimensional potential well, which can be approximated by three independent harmonic oscillators, one for each of the x -, y- and z-directions. If the optics are well aligned, the x and y spring constants are roughly the same, while the z spring constant is typically smaller by a factor of 5 to 10.
\n\t\t\t\t
Considering the ratio between the characteristic dimension L of the trapped object and the wavelength \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\tλ\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t of the trapping light, three different trapping regimes can be defined:
\n\t\t\t\t
the Rayleigh regimewhen\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tL\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tλ\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t;
an intermediate regimewhen \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tL\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t is comparable to\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tλ\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t;
the geometrical optics regime, when\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tL\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tλ\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t
\n\t\t\t\t
In Fig. 2 an overview of the kind of objects belonging to each of these regimes is presented, considering that the trapping wavelength is usually in the visible or near-infrared spectral region. In any of these regimes, the electromagnetic equations can be solved to evaluate the force acting on the object. However, this can be a cumbersome task. For the Rayleigh regime and geometrical optics regime approximate models have been developed. However, most of the objects that are normally trapped in optical manipulation experiments fall in the intermediate regime, where such approximations cannot be used. In particular, this is true for the probes usually used for the PFM: typically particles with diameter between 0.1 and 10 micrometres.
\n\t\t\t\t
Figure 2.
Trapping regimes and objects that are typically optically manipulated: from cells to viruses in biophysical experiments, and from atoms to colloidal particles in experimental statistical physics. The wavelength of the trapping light is usually in the visible or near-infrared.
\n\t\t\t
\n\t\t\t
\n\t\t\t\t
3.2. Position detection
\n\t\t\t\t
The three-dimensional position of the probe is typically measured through the scattering of a light beam illuminating it. This can be the same beam used for trapping or an auxiliary beam.
\n\t\t\t\t
Typically, position detection is achieved through the analysis of the interference of the forward-scattered (FS) light and unscattered (incident) light. A typical setup is shown in Fig. 1(a). The PFM with FS detection was extensively studied, for example, in Ref (Rohrbach & Stelzer, 2002).
\n\t\t\t\t
In a number of experiments, however, geometrical constraints may prevent access to the FS light, forcing one to make use of the backward-scattered (BS) light instead. This occurs, for example, in biophysical applications where one of the two faces of a sample holder needs to be coated with some specific material or in plasmonics applications where a plasmon wave needs to be coupled to one of the faces of the holder (Volpe et al., 2006). A typical setup that uses the BS light is presented in Fig. 1(b). The PFM with BS detection has been studied theoretically in Ref. (Volpe et al., 2007b) and experimentally in Ref. (Huisstede et al., 2005).
\n\t\t\t\t
Two types of photodetectors are typically used. The quadrant photodetector (QPD) works by measuring the intensity difference between the left-right and top-bottom sides of the detection plane. The position sensing detector (PSD) measures the position of the centroid of the collected intensity distribution, giving a more adequate response for non-Gaussian profiles. Note that high-speed video systems are also in use, but they do not achieve the acquisition rate available with photodetectors.
\n\t\t\t
\n\t\t\t
\n\t\t\t\t
3.3. Brownian motion of an optically trapped particle
\n\t\t\t\t
Assuming a very low Reynolds number regime (Happel & Brenner, 1983), the Brownian motion of the probe in the optical trap is described by a set of Langevin equations:
where \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tr\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t[\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\ty\n\t\t\t\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\tz\n\t\t\t\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t]\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tT\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t is the probe position, \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tγ\n\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t6\n\t\t\t\t\t\t\t\t\tπ\n\t\t\t\t\t\t\t\t\tR\n\t\t\t\t\t\t\t\t\tη\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\tits friction coefficient, R its radius, \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\tη\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\tthe medium viscosity, K the stiffness matrix, \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t2\n\t\t\t\t\t\t\t\t\t\t\tD\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tγ\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t[\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\th\n\t\t\t\t\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\th\n\t\t\t\t\t\t\t\t\t\t\t\t\t\ty\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\th\n\t\t\t\t\t\t\t\t\t\t\t\t\t\tz\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t]\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tT\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\ta vector of independent white Gaussian random processes describing the Brownian forces, \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tD\n\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tk\n\t\t\t\t\t\t\t\t\t\tB\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tT\n\t\t\t\t\t\t\t\t\t/\n\t\t\t\t\t\t\t\t\tγ\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\tthe diffusion coefficient, T the absolute temperature and \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tk\n\t\t\t\t\t\t\t\t\t\tB\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t the Boltzmann constant. The orientation of the coordinate system can be chosen in such a way that the restoring forces are independent in the three directions, i.e.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tK\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\td\n\t\t\t\t\t\t\t\t\ti\n\t\t\t\t\t\t\t\t\ta\n\t\t\t\t\t\t\t\t\tg\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tk\n\t\t\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tk\n\t\t\t\t\t\t\t\t\t\t\t\ty\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tk\n\t\t\t\t\t\t\t\t\t\t\t\tz\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t. In such reference frame the stochastic differential Eqs. (2) are separated and, without loss of generality, the treatment can be restricted to the x-projection of the system.
\n\t\t\t\t
When a constant and homogeneous external force \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tf\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\te\n\t\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t acting on the probe produces a shift in its equilibrium position in the trap, its value can be obtained as:
where \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t〈\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t is the probe mean displacement from the equilibrium position.
\n\t\t\t\t
There are several straightforward methods to experimentally measure the trap parameters – trap stiffness and conversion factor between voltage and length – and, therefore, the force exerted by the optical tweezers on an object, without the need for a theoretical reference model of the electromagnetic interaction between the particle and the laser beam. The most commonly employed ones are the drag force method, the equipartition method, the potential analysis method and the power spectrum or correlation method (Visscher et al., 1996, Berg-Sørensen & Flyvbjerg, 2004). The latter, in particular, is usually considered the most reliable one. Experimentally the trap stiffness can be found by fitting the autocorrelation function (ACF) of the Brownian motion in the trap obtained from the measurements to the theoretical one, which reads
The PFM measures a constant force acting on the probe. This implies that the force-field to be measured has to be invariable (homogeneous) on the scale of the Brownian motion of the trapped probe, i.e. in a range of 10s to 100s of nanometres depending on the trapping stiffness. In particular, as we will see, this condition implicates that the force-field must be conservative, excluding the possibility of a rotational component.
\n\t\t\t
Figure 3.
Examples of physical systems that produce force-fields that cannot be correctly probed with a classical PFM, because they vary on the scale of the Brownian motion of the trapped probe (a possible range is indicated by the red bars): (a) forces produced by a surface plasmon polariton in the presence of a patterned surface on a 50nm radius dielectric particle (adapted from Ref. (Quidant et al., 2005)); (b) trapping potential for 10nm diameter dielectric particle near a 10nm wide gold tip in water illuminated by a 810nm monochromatic light beam (adapted from Ref. (Novotny et al., 1997)); and (c) force-field acting on a 500nm radius dielectric particle in the focal plane of a highly focused Laguerre-Gaussian beam (adapted from Ref. (\n\t\t\t\t\t\t\tVolpe & Petrov, 2006\n\t\t\t\t\t\t)).
\n\t\t\t
However, there are cases where these assumptions are not fulfilled. The force-field can vary in the nanometre scale, for example, considering the radiation forces exerted on a dielectric particle by a patterned optical near-field landscape at an interface decorated with resonant gold nanostructures (Quidant et al., 2005) (Fig. 3 (a)), the nanoscale trapping that can be achieved near a laser-illuminated tip (Novotny et al., 1997) (Fig. 3(b)), the optical forces produced by a beam which carries orbital angular momentum (Volpe & Petrov, 2006) (Fig. 3(c)), or in the presence of fluid flows (Volpe et al., 2008). In order to deal with these cases, we need a deeper understanding of the Brownian motion of the optically trapped probe in the trapping potential.
\n\t\t\t
In the following we will discuss the Brownian motion near an equilibrium point in a force-field and we will see how this permits us to develop a more powerful theory of the PFM: the Photonic Torque Microscope (PTM). Full details can be found in Ref. (Volpe et al., 2007a).
\n\t\t\t
\n\t\t\t\t
4.1. Brownian motion near an equilibrium position
\n\t\t\t\t
In the presence of an external force-field\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tf\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\te\n\t\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tr\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t, Eq. (2) can be written in the form:
where the total force acting on the probe \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tf\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tr\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tf\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\te\n\t\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tr\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t−\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tK\n\t\t\t\t\t\t\t\t\t\tr\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t depends on the position of the probe itself, but does not vary over time.
\n\t\t\t\t
The force \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tf\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tr\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t[\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\tf\n\t\t\t\t\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tr\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\tf\n\t\t\t\t\t\t\t\t\t\t\t\t\t\ty\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tr\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t]\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tT\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t can be expanded in Taylor series up to the first order around an arbitrary point r0:
where \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tf\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\tr\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t0\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t and \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tJ\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\tr\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t0\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t are the zeroth-order and first-order expansion coefficients, i.e. the force-field value at the point \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tr\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t0\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t and the Jacobian of the force-field calculated in\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tr\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t0\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t. In the following we will assume, without loss of generality,\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tr\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t0\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t0\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t.
\n\t\t\t\t
In a PFM the probe is optically trapped and, therefore, it diffuses due to Brownian motion in the total force-field (the sum of the optical trapping force and external force-fields). If\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tf\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\tr\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t0\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t≠\n\t\t\t\t\t\t\t\t\t0\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t, the probe experiences a shift in the direction of the force and, after a transient time has elapsed, the particle settles down in a new equilibrium position of the total force-field, such that\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tf\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\tr\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t0\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t0\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t. As we have already seen, the measurement of this shift allows one to evaluate the homogeneous force acting on the probe in the standard PFM and, therefore, the zeroth order term of the Taylor expansion. In the following we will assume this to be null and study the statistics of the Brownian motion near the equilibrium point can be analyzed in order to reconstruct the force-field up to its first-order approximation.
\n\t\t\t
\n\t\t\t
\n\t\t\t\t
4.2. Conservative and rotational components of the force-field
\n\t\t\t\t
The first order approximation to Eq. (5) near an equilibrium point of the force-field, \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tr\n\t\t\t\t\t\t\t\t\t\t\t⌣\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t0\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t, is:
where\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tr\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t[\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\ty\n\t\t\t\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t]\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tT\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t, \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\th\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t[\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\th\n\t\t\t\t\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\th\n\t\t\t\t\t\t\t\t\t\t\t\t\t\ty\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t]\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tT\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\tand \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tJ\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t0\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t is the Jacobian calculated at the equilibrium point.
\n\t\t\t\t
According to the Helmholtz theorem, any force-field can be separated into its conservative (irrotational) and non-conservative (rotational or solenoidal) components. With simple algebraic passages, the Jacobian J0 can be written as the sum of two matrices:
It is easy to show that Jc is the conservative component of the force-field and that Jnc is the rotational component.
\n\t\t\t\t
The two components can be easily identified if the coordinate system is chosen such that\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t∂\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tf\n\t\t\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t0\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t∂\n\t\t\t\t\t\t\t\t\t\t\ty\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t−\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t∂\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tf\n\t\t\t\t\t\t\t\t\t\t\t\ty\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t0\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t∂\n\t\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t. In this case, the Jacobian J0 normalized by the friction coefficient \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\tγ\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t reads:
where\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tk\n\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t/\n\t\t\t\t\t\t\t\t\tγ\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t, \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t\t\ty\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tk\n\t\t\t\t\t\t\t\t\t\ty\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t/\n\t\t\t\t\t\t\t\t\tγ\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t, \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tk\n\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t−\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t∂\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tf\n\t\t\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t0\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t∂\n\t\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t, \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tk\n\t\t\t\t\t\t\t\t\t\ty\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t−\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t∂\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tf\n\t\t\t\t\t\t\t\t\t\t\t\ty\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t0\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t∂\n\t\t\t\t\t\t\t\t\t\t\ty\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\tand \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tΩ\n\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tγ\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t−\n\t\t\t\t\t\t\t\t\t\t\t1\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t∂\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tf\n\t\t\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t0\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t∂\n\t\t\t\t\t\t\t\t\t\t\ty\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t−\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tγ\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t−\n\t\t\t\t\t\t\t\t\t\t\t1\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t∂\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tf\n\t\t\t\t\t\t\t\t\t\t\t\ty\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t0\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t∂\n\t\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t. In Eq. (11) the rotational component, which is invariant under a coordinate rotation, is represented by the non-diagonal terms of the matrix: \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\tΩ\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\tis the value of the constant angular velocity of the probe rotation around the z-axis due to the presence of the rotational force-field. The conservative component, instead, is represented by the diagonal terms of the Jacobian and is centrally symmetric with respect to the origin. Without loss of generality, it can be imposed that the stiffness of the trapping potential is higher along the x-axis, i.e. \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tk\n\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tk\n\t\t\t\t\t\t\t\t\t\ty\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\tand, therefore,\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t\t\ty\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t.
\n\t\t\t
\n\t\t\t
\n\t\t\t\t
4.3. Stability study
\n\t\t\t\t
The conditions for the stability of the equilibrium point are
where \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t+\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t\t\t\t\t\t\ty\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t/\n\t\t\t\t\t\t\t\t\t\t2\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t and\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t−\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t\t\t\t\t\t\ty\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t/\n\t\t\t\t\t\t\t\t\t\t2\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t. The fundamental condition required to achieve the stability is\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t0\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t. Assuming that this condition is satisfied, the behaviour of the optically trapped probe can be explored as a function of the parameters \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tΩ\n\t\t\t\t\t\t\t\t\t/\n\t\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t and\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t\t/\n\t\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t. The stability diagram is shown in Fig. 4(a).
\n\t\t\t\t
The standard PFM corresponds to \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t0\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t and\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tΩ\n\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t0\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t. When a rotational term is added, i.e. \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tΩ\n\t\t\t\t\t\t\t\t\t≠\n\t\t\t\t\t\t\t\t\t0\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\tand\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t0\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t, the system remains stable. When there is no rotational contribution to the force-field (\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tΩ\n\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t0\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t) the equilibrium point becomes unstable as soon as\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t\t≥\n\t\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t. This implicates that \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t\t\ty\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t0\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t and, therefore, the probe is not confined in the \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\ty\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t-direction any more. In the presence of a rotational component (\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tΩ\n\t\t\t\t\t\t\t\t\t≠\n\t\t\t\t\t\t\t\t\t0\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t) the stability region becomes larger; the equilibrium point now becomes unstable only for\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t\t≥\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t\t\t\t\t2\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t−\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tΩ\n\t\t\t\t\t\t\t\t\t\t\t\t2\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t.
\n\t\t\t\t
Figure 4.
a) Stability diagram. Assuming φ > 0, the stability of the system is shown as a function of the parameters \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tΩ\n\t\t\t\t\t\t\t\t\t\t\t/\n\t\t\t\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t and\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t\t\t\t/\n\t\t\t\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t. The white region satisfies the stability conditions in Eq. (12). The dashed lines represent the \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t|\n\t\t\t\t\t\t\t\t\t\t\tΩ\n\t\t\t\t\t\t\t\t\t\t\t|\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t and \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t curves. The dots represent the parameters that are further investigated in Figs. 4(b) and 5. (b) Brownian motion near an equilibrium point. The arrows show the force-field vectors for various values of the parameters \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tΩ\n\t\t\t\t\t\t\t\t\t\t\t/\n\t\t\t\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t and\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t\t\t\t/\n\t\t\t\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t. The shadowed areas show the probability distribution function (PDF) of the probe position in the corresponding force-field.
\n\t\t\t\t
Some examples of possible force-fields are presented in Fig. 4(b). When \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tΩ\n\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t0\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t the probe movement can be separated along two orthogonal directions. As the value of \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t increases, the probability density function (PDF) of the probe position becomes more and more elliptical, until for \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t\t≥\n\t\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t the probe is confined only along the x-direction and the confinement along the y-direction is lost.
If\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t0\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t, the increase in \n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tΩ\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t induces a bending of the force-field lines and the probe movements along the \n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t- and \n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\ty\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t-directions are not independent any more. For values of\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\tΩ\n\t\t\t\t\t\t\t\t≥\n\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t, the rotational component of the force-field becomes dominant over the conservative one. This is particularly clear when\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t≠\n\t\t\t\t\t\t\t\t0\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t: the presence of a rotational component masks the asymmetry in the conservative one, since the PDF assumes a more rotationally symmetric shape.
\n\t\t\t
\n\t\t\t\t
4.4. The photonic torque microscope
\n\t\t\t\t
The most powerful analysis method to characterize the stiffness of an optical trap is based on the study of the correlation functions - or, equivalently, of the power spectral density - of the probe position time-series. In order to derive the theory for the PTM, the correlation matrix for the general case of Eq. (5) will be first derived in the coordinate system considered in the previous section, where the conservative and rotational components are readily separated. Then, the same matrix will be given in a generic coordinate system and some invariant functions that are independent on its orientation will be identified.
\n\t\t\t\t
\n\t\t\t\t\tCorrelation matrix. The correlation matrix of the probe motion near an equilibrium position can be calculated from the solutions of Eq. (5). The full derivation is presented in Ref. (Volpe et al., 2007a). The correlation matrix results:
In Fig. 5(a) these correlation functions are plotted for different ratios of the force-field conservative and rotational components.
\n\t\t\t\t
For the case\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t0\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t, the auto-correlation functions (ACFs) are \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tr\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tr\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\ty\n\t\t\t\t\t\t\t\t\t\t\ty\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tD\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\te\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t−\n\t\t\t\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t\t\t\t|\n\t\t\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\t|\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tcos\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\tΩ\n\t\t\t\t\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t/\n\t\t\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t and cross-correlation functions (CCFs) are \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tr\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\t\ty\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t−\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tr\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\ty\n\t\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tD\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\te\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t−\n\t\t\t\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t\t\t\t|\n\t\t\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\t|\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tsin\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\tΩ\n\t\t\t\t\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t/\n\t\t\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t. Their zeros are at \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\tn\n\t\t\t\t\t\t\t\t\tΩ\n\t\t\t\t\t\t\t\t\t/\n\t\t\t\t\t\t\t\t\tπ\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t and \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tn\n\t\t\t\t\t\t\t\t\t\t\t+\n\t\t\t\t\t\t\t\t\t\t\t0.5\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tΩ\n\t\t\t\t\t\t\t\t\t/\n\t\t\t\t\t\t\t\t\tπ\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t respectively, with \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\tn\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t integer. However, when the rotational term is smaller than the conservative one (\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tΩ\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t), the zeros are not distinguishable due to the rapid exponential decay of the correlation functions. As the rotational component becomes greater than the conservative one (\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tΩ\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t), a first zero appears in the ACFs and CCFs and, as \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\tΩ\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t increases even further, the number of oscillation grows. Eventually, for \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tΩ\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t the sinusoidal component becomes dominant. The conservative component manifests itself as an exponential decay of the magnitude of the ACFs and CCFs.
\n\t\t\t\t
Figure 5.
a) Autocorrelation and cross-correlation functions. Autocorrelation and cross-correlation functions for various values of the parameters \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tΩ\n\t\t\t\t\t\t\t\t\t\t\t/\n\t\t\t\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t and\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t\t\t\t/\n\t\t\t\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t: \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tr\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t(black continuous line), \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tr\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\ty\n\t\t\t\t\t\t\t\t\t\t\t\t\ty\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t(black dotted line), \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tr\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\t\t\t\ty\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t(blue continuous line) and \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tr\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\ty\n\t\t\t\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t (blue dotted line). (b) Invariant functions: \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tS\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\tA\n\t\t\t\t\t\t\t\t\t\t\t\t\tC\n\t\t\t\t\t\t\t\t\t\t\t\t\tF\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\tand\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tD\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\tC\n\t\t\t\t\t\t\t\t\t\t\t\t\tC\n\t\t\t\t\t\t\t\t\t\t\t\t\tF\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t. These functions, independent from the choice of the reference system, are presented for various values of the parameters \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tΩ\n\t\t\t\t\t\t\t\t\t\t\t/\n\t\t\t\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t and\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t\t\t\t/\n\t\t\t\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t: \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tS\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\tA\n\t\t\t\t\t\t\t\t\t\t\t\t\tC\n\t\t\t\t\t\t\t\t\t\t\t\t\tF\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t(black line) and \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tD\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\tC\n\t\t\t\t\t\t\t\t\t\t\t\t\tC\n\t\t\t\t\t\t\t\t\t\t\t\t\tF\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t (blue line).
When\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\tΩ\n\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t0\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t, the movements of the probe along the \n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t- and \n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\ty\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t-directions are independent. The ACFs are \n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tr\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tD\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\te\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t−\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t|\n\t\t\t\t\t\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t|\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t/\n\t\t\t\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t and\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tr\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\ty\n\t\t\t\t\t\t\t\t\t\ty\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tD\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\te\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t−\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\ty\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t|\n\t\t\t\t\t\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t|\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t/\n\t\t\t\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\ty\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t, while the CCFs are null,\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tr\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\ty\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tr\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\ty\n\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t0\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t. In Fig. 4(a) this case is represented by the line\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\tΩ\n\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t0\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t.
When both \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\tΩ\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t and \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t are zero, the ACFs are \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tr\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tr\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\ty\n\t\t\t\t\t\t\t\t\t\t\ty\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tD\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\te\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t−\n\t\t\t\t\t\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t\t\t\t\t\t|\n\t\t\t\t\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\t\t\t|\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t/\n\t\t\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t and the CCFs are null, i.e.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tr\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\t\ty\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tr\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\ty\n\t\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t0\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t. The corresponding force-field vectors point towards the centre and are rotationally symmetric.
\n\t\t\t\t
When both \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\tΩ\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t and \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t are nonvanishing, the effective angular frequency that enters the correlation functions is given by\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t|\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tΩ\n\t\t\t\t\t\t\t\t\t\t\t\t2\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t−\n\t\t\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t\t\t\t\t2\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t|\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t. This shows that the difference in the stiffness coefficients along the x- and y-axes effectively influences the rotational term, if this is present. A limiting case is when\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t|\n\t\t\t\t\t\t\t\t\tΩ\n\t\t\t\t\t\t\t\t\t|\n\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\tϕ\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t. This case presents a pseudo-resonance between the rotational term and the stiffness difference.
\n\t\t\t\t
\n\t\t\t\t\tCorrelation matrix in a generic coordinate system. The expressions for the ACFs and CCFs in Eq. (13) were obtained in a specific coordinate system, where the conservative and rotational component of the force-field can be readily identified. However, the experimentally acquired time-series of the probe position required for the calculation of the ACFs and CCFs are usually given in a different coordinate system, rotated with respect to the one considered in the previous subsection. If a rotated coordinate system is introduced, such that
where\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tr\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tθ\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t[\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\t\t\t\t\tθ\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\ty\n\t\t\t\t\t\t\t\t\t\t\t\t\t\tθ\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t]\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tT\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t, \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tr\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t[\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\ty\n\t\t\t\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t]\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tT\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\tand\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tR\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\tθ\n\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t[\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tcos\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tθ\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t−\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tsin\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tθ\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tsin\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tθ\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tcos\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tθ\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t]\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t, the correlation functions in the new system are given by
which in general depend on the rotation angle\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\tθ\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t.
\n\t\t\t\t
However, it is remarkable that the difference of the two CCFs, \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tD\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tC\n\t\t\t\t\t\t\t\t\t\t\tC\n\t\t\t\t\t\t\t\t\t\t\tF\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tr\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\t\ty\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tθ\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t−\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tr\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\ty\n\t\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tθ\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t, and the sum of the ACFs, \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tS\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tA\n\t\t\t\t\t\t\t\t\t\t\tC\n\t\t\t\t\t\t\t\t\t\t\tF\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tr\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tθ\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t+\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tr\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\ty\n\t\t\t\t\t\t\t\t\t\t\ty\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tθ\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t, are invariant with respect to\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\tθ\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t:
Other two combinations of the correlation functions, which are also useful for the analysis of the experimental data, namely the sum of the CCFs, \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tS\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tC\n\t\t\t\t\t\t\t\t\t\t\tC\n\t\t\t\t\t\t\t\t\t\t\tF\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tθ\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tr\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\t\ty\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tθ\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t+\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tr\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\ty\n\t\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tθ\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t, and the difference of the ACFs, \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tD\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tA\n\t\t\t\t\t\t\t\t\t\t\tC\n\t\t\t\t\t\t\t\t\t\t\tF\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tθ\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tr\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tθ\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t−\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tr\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\ty\n\t\t\t\t\t\t\t\t\t\t\ty\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tθ\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tΔ\n\t\t\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t, depend on the choice of the reference frame:
In particular, they deliver information on the orientation \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\tθ\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t of the coordinate system.
\n\t\t\t
\n\t\t\t
\n\t\t\t\t
4.5. Torque detection using brownian fluctuations
\n\t\t\t\t
We have seen that any force-field acting on a Brownian particle can be readily separated into its irrotational and rotational components. The last one, in particular, is completely defined by the value of the constant angular velocity \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\tΩ\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t of the probe rotation around the \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\tz\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t-axis. Such a rotation can be produced by the action of mechanical torque acting on the particle.
\n\t\t\t\t
Once the value of \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\tΩ\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t is known, the torque can be quantified. The constant angular velocity \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\tΩ\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t results from a balance between the torque applied to the particle and the drag torque:\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tτ\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\td\n\t\t\t\t\t\t\t\t\t\t\t\tr\n\t\t\t\t\t\t\t\t\t\t\t\ta\n\t\t\t\t\t\t\t\t\t\t\t\tg\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tr\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t×\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tF\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\td\n\t\t\t\t\t\t\t\t\t\t\t\tr\n\t\t\t\t\t\t\t\t\t\t\t\ta\n\t\t\t\t\t\t\t\t\t\t\t\tg\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\tγ\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tr\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t×\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tv\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\tγ\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tr\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t×\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t(\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tr\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t×\n\t\t\t\t\t\t\t\t\t\t\tΩ\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t, where \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tr\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t is the particle position and \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tv\n\t\t\