Plasma membrane TLRs modulate inflammatory mediators.
\r\n\tOver the years, the concept of maintenance became more comprehensive, reducing fault occurrence and increasing industrial system availability. Besides, reliability, safety, and criticality requirements were associated with the system or equipment under analysis. Maintenance strategies or schemes can be classified as corrective (run-to-break), preventive (time-based), and predictive (condition-based maintenance). Corrective maintenance is only performed after an occurrence of a fault. Therefore, it involves unexpected breakdowns, high costs, changes in the production chain, and it could lead to catastrophic events. Preventive maintenance and interventions occur based on a scheduled maintenance plan or the equipment's mean time between failures. Although it is more effective than corrective maintenance, unexpected failure may still occur by preventing most failures. Additionally, the process cost is still high, especially the costs associated with labor, inventory, and unnecessary replacement of equipment or components.
\r\n\tOn the other hand, predictive maintenance analyses the equipment condition so that a possible fault can still be identified at an early stage. Predictive maintenance aims to identify a machine anomaly so that it does not result in a fault. Such maintenance involves advanced monitoring, processing, and signal analysis techniques, which are generally performed non-invasively and, in many cases, in real-time. In the case of machines or processes, these techniques can be developed based on vibration, temperature, acoustic emission, or electrical current signal monitoring. It should be noted that monitoring such signals or parameters to verify the operating condition is called condition monitoring. Condition monitoring aims to observe the machine's current operational condition and predict its future condition, keeping it under a systematic analysis during its remaining life. In this sense, a fault condition can be detected and identified from systematic machine condition monitoring. A diagnosis procedure can be established, whereby properly investigating the fault symptoms and prognosis.
\r\n\t
\r\n\tThis book will aim to merge all these ideas in a single volume, aggregate new maintenance experiences, apply new techniques and approaches, and report field experiences to establish new maintenance processes and management paradigms.
\r\n\t
Stem cells represent an unlimited cell source because of their property of self-renewal, and they can also differentiate into almost all adult cell types thanks to their pluripotency characteristic [1]. One of the main problems of stem cell research was the invasively harvesting techniques, such as through bone marrow, adipose tissue extraction by liposuction, or blood apheresis [2]. In 2006, the discovery that adult somatic cells can be reprogrammed into the so-called induced pluripotent stem cells (iPSCs) has allowed to generate stem cell lines with minimally invasive techniques, like skin biopsy or, more recently, blood withdrawal [3]. These recent findings has led to an outstanding increase in disease mechanisms and drug screening studies involving stem cells, in particular for neurodegenerative diseases because of the impossibility to obtain neural cells from patients. The ability to reprogram patient-specific cells also opens new opportunities for the personalized medicine approach of drug discovery. Moreover, the development of 3D bioprinting provided a useful tool to generate innovative cell cultures, permitting to have a 3D model in which cells can be disposed with a controlled manner and where they can grow in a tissue-like structures [4]. Obviously, 3D bioprinting opened new possibilities in the field of tissue engineering, but it can be helpful also for disease modeling. In fact, the generation of a 3D scaffold that can resemble the human tissues will permit to study neurodegenerative diseases in the so-called brain in dish. Finally, the combination of 3D bioprinting technique with iPSC technology will permit to develop one of the most realistic and reliable in vitro cell cultures, permitting to study organoids with patients’ differentiated cells, leading to a personalized medicine approach in drug testing.
Stem cell research is considered one of the most promising areas in cell biology and regenerative medicine due to stem cells’ unique properties of self-renewing and differentiation into all types of cells. These cells represent nowadays the main tool in the regenerative medicine field because they permit to generate cells needed for transplantation in several degenerative diseases [1], such as rheumatoid arthritis [5], diabetes mellitus [6], heart failure [7], liver diseases [8], and neurological disorders [9, 10, 11]. Moreover, stem cells represent an important tool for modeling human diseases, in particular for diseases that affect cells that cannot be easily collected and cultivated. One of the biggest issues in the study of neurodegenerative diseases is the lack of good cellular models that recapitulate the mechanisms underlying their pathophysiology, and in the last decade, stem cells played a major role in the study of these diseases.
The first evidence that human stem cells, called human embryonic stem cells (hESC), could be derived from a 5-day blastocyst was reported in 1998 by Thomson and colleagues [12]. ES cells have the ability to proliferate indefinitely and are considered pluripotent cells because they can differentiate into all three germ layers (ectoderm, mesoderm, and endoderm) and, thus, they can generate all the differentiated cells of the adult [13, 14]. Despite that they helped stem cell research, they also opened many controversies because ES cells are obtained from blastocyst, killing the fertilized embryo that has the potential to generate a human being [15]. The big ethical issue on the use of hES cells encouraged researchers to understand the pathways underlying the staminality of this kind of cells.
The research done with ES cells and the finding of their highly expressed transcription factors, permitted in 2006 to induce mouse’s fibroblasts to become pluripotent, by retrovirus-mediated transduction with four transcription factors, i.e., Oct-3/4, Sox2, KLF4, and c-Myc [16]. The following studies allowed to improve the technique, permitting to generate induced pluripotent stem cells (iPSCs) from adult human cells and to reprogram cells from several tissues [15]. Moreover, it is now possible to generate iPS cells by different transduction methods (Figure 1), using different viral and nonviral constructs, as well as integrative and non-integrative system approaches [17]. The best methods to reprogram cells are the non-integrative methods, and the four main groups are available: non-integrative viral delivery, episomal delivery, RNA delivery, and protein delivery [18]. The establishment of human iPS cells has led to have an unlimited source of stem cells overcoming the ethical limit of hES cells. Moreover, iPSCs can be reprogrammed from any somatic cell line of the patients providing a way to study diseases’ mechanisms potentially for each patient, opening to the so-called personalized medicine (Figure 1). Actually, many iPSCs’ lines have been generated from patients with neurodegenerative disease, like Alzheimer’s disease (AD) [19], Parkinson’s disease (PD) [20], amyotrophic lateral sclerosis (ALS) [21], and Huntington’s disease (HD) [22].
An overview of iPSC technology. Somatic cells can be taken from several sources, like the skin, blood, and urine. There are many reprogramming strategies, and the best ones are the non-integrative strategies. iPSCs can be differentiated into diverse cell lines that can be used for disease modeling, for drug discovery, and for cell replacement therapy (the image was taken from Sharma [
Alzheimer’s disease (AD) is the most common form of dementia and is characterized by the progressive loss of memory and cognitive functions. The disease leads to a severe form of dementia that causes the death of the patient [24]. The two main hallmarks of the disease are the accumulation of amyloid beta (Aβ) plaques in the extracellular compartment and the aggregation of the tau protein in the intracellular compartment. Only 1–5% of AD cases have a genetic cause, while in the other cases, the real pathogenesis is still unknown [25].
Many groups used and performed several studies on in vitro models with neural and nonneuronal cells derived from iPSCs. For example, higher susceptibility to Aβ1–Aβ42 oligomers was found in neuronal precursors derived from iPSC (iPSCs-NSCs) of a patient with a mutation in the PSEN1 gene (PSEN1-A246E mutation) compared to sporadic AD patient and healthy control [26]. The authors concluded that neurons derived from AD iPSCs could be effective in drug screening, to develop new treatments that protect cells from the toxicity of the Aβ peptides in the AD brain [26]. A similar result was obtained with iPSC-derived neurons of sporadic AD patients and of a patient carrying the pathogenic APP-E693Δ mutation. The study shows that these cell lines produce intracellular Aβ oligomers, resulting in a good cellular model of AD [27]. iPSCs can be used to find new potential biomarkers of the disease, as suggested by Shirotani et al. that developed an innovative method on neurons differentiated from iPSCs [28]. Moreover, induced fAD mutations by genome editing of neurons derived from healthy controls could resemble the pathophysiology of the disease. A decrease in endocytosis and soma-to-axon transcytosis of LDL was found in human neurons with expression of PSEN1ΔE9 induced with genome editing technology. To confirm the potential role of iPSCs in drug discovery, the authors reported that defects were rescued by β-secretase inhibition [29]. Another study reported the generation of an Alzheimer-related protein association network using iPSCs, demonstrating that they can be used as drug screening model and finding a reduction of tau protein after treatment with an inhibitor of γ-secretase [30]. For drug testing, it is important that iPSC-derived neurons are well differentiated, because it was seen that between early and late differentiation stages, cells have different susceptibilities to drugs [31]. Genome editing technology could be used also for mutations’ correction, generating an isogenic control. For example, Pires and colleagues reported that A79V-iPSC line in combination of A79V-GC-iPSC line could be used to study pathological cellular phenotypes related to A79V mutation in PSEN [32]. Interestingly, the role of iPSCs in AD research was supported also by analyzing neurons derived from iPSCs of patients with Down syndrome that usually have a high risk of developing AD early. Authors found that such neural cells reproduce AD-like initial cellular hallmark, resulting useful for modeling this variant of AD [33]. Finally, also nonneuronal cells derived from iPSCs could be very useful in disease modeling and drug screening. Many pathological hallmarks were found aberrant in astrocytes derived from iPSCs of fAD and sAD patients suggesting that astrocytic atrophy could be a plausible mechanism for early cognitive impairment and thus opening new therapeutic strategies for AD intervention [34]. Another study reported changes in PSEN1-mutated iPSC-derived astrocytes, revealing the major role of such cells and confirming the importance to implement iPSC technology to support neurodegenerative diseases’ study [35].
These researches suggest that iPSC-derived neurons from AD patients can help not only to unravel disease’s mechanisms but also to screen new treatment and to find new possible drug targets. Moreover, the authors hypothesize that gene correction is a useful tool to generate isogenic controls or to induce AD mutations in healthy controls. Finally, iPSCs can be differentiated into glial cells, e.g., astrocytes, which in recent years gain an important role in the pathogenesis of several neurodegenerative diseases.
Parkinson’s disease (PD) is the second most common neurodegenerative disease after AD, with a prevalence of 1% out of the individuals over age 60 years and 4% of the population with an age over 85 years [36]. The most common mutations, found in about 10% of Parkinson’s patients, are present in six genes: SNCA, LRRK2, Parkin, PINK1, DJ-1, and ATP13A2 [37].
Usually, iPSCs are differentiated into dopaminergic (DA) neurons to model PD because the disease is characterized by the loss of DA neurons of the
The studies previously reported hypothesize that iPSC-derived neurons from PD patients can be very useful in the research of PD pathophysiology and to find new therapeutic targets for innovative drugs. Moreover, the possibility to differentiate iPSCs into nonneuronal cells, such as microglial and intestinal cells, will help to unravel the role of immunity response and the gastrointestinal disorder that affect PD patients.
Amyotrophic lateral sclerosis (ALS) is the most prevalent motor neuron disease and is characterized by the progressive loss of upper and lower motor neurons (MNs), leading to muscle atrophy, paralysis, and finally death usually after 2–5 years from the first diagnosis [21]. Also for ALS the cause is still unknown, but in about 5–10% of cases, several genes are found mutated, among which are SOD1, TARDPB, and FUS [46]. Moreover, in 2013 the GGGGCC-hexanucleotide repeat expansion in C9orf72 locus was found in many familial and sporadic cases of ALS [47].
MNs derived from iPSCs are the most common neural cell type used in ALS involving the use of stem cell differentiation. For example, an increase in oxidative stress and in DNA damage was found in iPSC-derived C9ORF72 MNs, confirming that the reduction of oxidative stress could help to delay patients’ death [48]. Moreover, MNs derived from iPSCs with induced mutation in FUS (P525L) were used to investigate the transcriptome and microRNA, finding an alteration of both in pathways with implications for ALS pathogenesis [49]. The role of astrocytes was also investigated in both sporadic and VCP mutant patients, suggesting that in ALS patients, the co-culture between MNs and astrocytes causes alterations in both cell types [50, 51]. Moreover, the genetic correction allowed to study pathways implicated in ALS, like Bhinge and colleagues that found that the activation of AP1 drives neurodegeneration in genetic corrected SOD1 mutant MNs [52]. Small-molecule compounds that regulate IGF-2 expression were found to increase MN resilience, screening the compounds in iPSC-derived MNs [53]. Another example is given by Egawa and colleagues that firstly generated and characterized MNs from iPSCs of patients carrying TDP-43 mutations. They found some pathological hallmark, such as short neurites and abnormal-insoluble TDP-43. Then, they tested trichostatin A, spliceostatin A, garcinol, and anacardic acid and found that the last one, an inhibitor of histone deacetylase, rescued the pathogenic abnormalities like TDP-43 mRNA [54]. All these researches suggest the increasing importance of iPSCs as model for drug screening.
These works suggest that MNs derived from iPSCs of mutated and sporadic ALS patients can be a helpful tool to study both disease mechanisms and drug screening. Several investigations can be done in iPSC-derived MN cellular models, e.g., oxidative stress, DNA damage, and transcriptome. The co-culture between astrocytes and MNs can give information about how they interact with each other and whether this interaction could have a pathophysiologic role in ALS.
Huntington’s disease (HD) is characterized by loss of neurons mainly in the caudate nucleus, the putamen, and the cerebral cortex with affection in a later stage of other areas, e.g., the hippocampus and hypothalamus [55]. Despite other neurodegenerative diseases, the cause of HD is well known; in fact it is an autosomal dominant genetic disorder caused by an expansion mutation of the trinucleotide (CAG) repeat in the HTT (IT15) gene, encoding a 350-kDa protein called Huntingtin (HTT) [56]. Even though the genetic cause is clear, the mechanisms through which mutant HTT results in the degeneration of some types of neurons are still unclear. Thus, studies on HD models are needed in order to discover treatments.
As the neurodegenerative diseases previously reported, also for HD, neurons differentiated from iPSCs of patients helped to understand the role of mutant HTT gene and the mechanisms that lead to the pathology. For example, early molecular changes in intracellular signaling, expression of oxidative stress proteins, and p53 pathway both in iPSCs and in neurons differentiated from them were reported [57]. Another study reported changes in neuronal development and adult neurogenesis, exploiting the iPSC capacity to model also embryonal development [58]. The generation of iPSCs from a patient that presents an expansion in the HTT gene without any symptom is very intriguing. The generation of iPSCs in an early stage of HD will allow to study the pathological process and the abnormal changes that lead to the pathology [59]. The possibility to differentiate iPSCs into neurons opened the possibility to discover new therapeutic targets, e.g., pre-mRNA trans-splicing modules [60]. Finally, the role of glial cells was investigated in several studies, among these who studied it were Hsiao and colleagues that reported that HD astrocytes provide less pericyte coverage by promoting angiogenesis and reducing the number of pericytes [61]. Finally, in a mouse cell model of HD, many but not all pathological hallmarks of HD were found. This result suggests that nonhuman iPSCs must be used carefully when translated into human pathology [62].
The researches previously reported highlight the importance to have a realistic model of the disease to study mechanisms that lead to neurodegeneration and iPSC-derived neurons that represent as a useful tool. They can be used also to perform a study of drug discovery and drug screening, to better understand the effect of chemicals in neurons. Moreover, the possibility to differentiate iPSCs in nonneuronal cells, such as astrocytes, helps to discover the role of glial cells in HD pathogenesis.
The term bioprinting was used for the first time in 2009 by Mironov with the release of the first issue of the journal
The use of computer-aided transfer processes for patterning and assembling living and nonliving materials with a prescribed 2D or 3D organization in order to produce bio-engineered structures serving in regenerative medicine, pharmacokinetic and basic cell biology studies.
3D bioprinting is an emerging technology, used for the manufacture and the generation of artificial tissues and organs [65], adding new approaches to tissue engineering (TE) and regenerative medicine, such as the manufacture of scaffold to support cells, as well as in situ deposition of cell suspensions [63]. Bioprinting technology has allowed to overcome several limits, such as the control of in vitro 3D biological structures and cellular distribution [66]. Bioprinting, through the use of hardware and software, has been used in particular for the design of three-dimensional structures, allowing the creation of “organoids” for biological and pharmacological studies, and to repair and replace human tissues.
Bioprinting can be distinguished on the basis of the bioink printing technique, allowing to change the printing processes according to the needs that the different cell types require: inkjet, laser, and extrusion (Figure 2) [65]. In addition to the specific printer characteristic, each bioplotter must have common functionalities. The most important is the presence of a robotic displacement system that can move along the three Cartesian axes, x, y, and, for the 3D characteristics, z. Usually, the bioink is extruded from a dispenser, but it is possible to have more dispensers, permitting to have different bioinks in the same scaffold. One of the most recent techniques allows a coaxial extrusion, with a bioink that is surrounded by a second bioink. The sterility of the printout is usually guaranteed by the presence of sterile chamber with laminar flow system. If the bioplotter is quite small, this problem could be overcome by simply placing the bioprinter under a classic cellular hood. Finally, the presence of a dedicated software for the supply of bioink and for the high-resolution control of the design of the construct to be printed is essential [65].
On the top the most used printing processes are extrusion-based (performed by piston, pneumatic method, or screw), inkjet-based operated by a piezoelectric actuator, and laser-assisted (composed of an energy-absorbing slide and a donor slide that collect the discharged bioink droplets). On the bottom the complexity of the 3D bioprinted construct, composed of a natural biocompatible material (e.G., alginate), cells, functional peptides, and other biocompatible materials. (the image was taken from Axpe and Oyen [
First, bioplotters that appeared on the market were intended for a purely industrial use, since they had a high price. The costs limited their development and related researches. With the advent of technology and knowledge of bioprinting, we have witnessed the birth of multiple models of bioplotters, each with characteristics that reflect the needs of the individual creator [12, 13], e.g., increasing the number of nozzles for simultaneous extrusion of several materials [68] and changing the type of technology that controls the nozzle.
Inkjet bioplotter was the first technique used in the 1980s in offices and then for domestic use. It was readapted around the year 2000 to be used as a biological printer, replacing the normal ink with a bioink, containing cells and biocompatible materials [69]. Droplets of the biomaterial are extruded from very small orifices, deposited on a substrate, maintaining good cell dispersion, viability, and functionality, even with different cellular types [70]. The stream can be continuous, command-driven (drop on demand), and electrodynamic. Both piezoelectric and thermal inkjet printers have been readapted for biological printing, offering many advantages in terms of simplicity, versatility, and material control, both in terms of quantity and speed in the printing process [71].
Laser-based direct writing was introduced in 1999 and is one of the most used laser-based bioprinting techniques [72]. The technique involves a layer with biological material (donor layer) and a layer that collect cells (acceptor layer) that are pushed by the laser through the first layer. The pulsation of the laser creates bubbles which in turn generate a shockwave, forcing the cells to pass from the donor layer to the acceptor layer. This technique allows to have a good resolution but has some disadvantages, such as irreversible damage to the cells because of the heat and light generated by the laser [65].
The advent of TE has allowed extrusion technology to be thoroughly studied and applied to the field of bioprinting, for the generation of living tissues. Extrusion technique includes a combination of different delivery systems combined with an automatic robotic system for extrusion and 3D printing [73]. Deposition of the material takes place through extrusion to form a cylindrical filament made of a biocompatible gelatinous material, in which the cells are encapsulated, maintaining the desired three-dimensional structure [74]. This type of extrusion can be pneumatic or mechanical. Mechanical extrusion involves the use of a piston, which guides the deposit of the material allowing a good flow control through the nozzle, or a screw, which allows the extrusion of more viscous substances, but which can cause leakage of pressure, causing damage to cells. This technique also has some limits, particularly during the development of the biomaterial which must have the right viscosity to be extruded and the ability to be easily homogenized with cell suspension and to maintain three-dimensional structure [65].
One of the fundamental elements that characterize the bioprinting process is the development of biomaterial, which must have specific characteristics: biocompatibility, printability, and ability to maintain a three-dimensional structure once printed and maintained in culture [65]. The main feature of the hydrogel, biocompatible material used as a three-dimensional support for cell growth, is the ability to be extremely hydrophilic, making it an excellent candidate in terms of biocompatibility for its use in bioprinting. It was initially used in TE because it was able to simulate the extracellular matrix, guarantying cell growth and communication [75]. Biomaterials are divided, According to their derivation, biomaterials are divided in natural or synthetic compunds. There are naturally derived polymers such as sodium alginate, gelatin, collagen, chitosan, fibrin, and GelMA [76, 77, 78] and synthetic polymers such as Pluronic®, polyethylene glycol (PEG), and polyurethanes [79, 80]. Over time, it has been seen how the natural compounds are more performing when placed in contact with the cells than the synthetic ones. Several cell types associated with different biomaterials to compose the bioink have already been used in several research areas, where cellular viability and motility have been demonstrated, as well as a spatial organization similar to in vivo tissue [81]. To create a new biomaterial, we must consider different physical, mechanical, and biological characteristics that are close to the tissue we want to recreate. Thus, researchers tend to create a combination of biomaterials for each cell type, and with well-defined printability specifications, so as to make the process as standardized and reproducible as possible, despite being a very open field and full of new developments. New-generation bioinks are now able to maintain each of these characteristics, thus improving the success in terms of bioprinting. All this is possible if particular attention is paid to the following chemical, physical, and biological properties: rheological studies (viscosity, thinning, viscoelasticity), biofunctional analysis, biodegradation, and polymerization (cytocompatibility, cell adhesion, migration, proliferation, and differentiation) [82]. One of the most important features that has different biomaterials is the ability to cross-link once the bioink has been printed, reticulating the bioink in which cells are encapsulated, without affecting the viability, the differentiation, and the capacity of migration [83]. The ability to polymerize depends on the material used; for example, collagen needs chemical cross-link, through covalent bonds that bind free amines or carboxylic groups of collagen that is able to reticulate, also through a biological process, and through the interaction with transglutaminase. Other compounds, such as sodium alginate, use an ionic cross-link: divalent cations such as Ca2+ bind to two sodium alginate residues, cross-linking the structure. UV radiation is a very promising cross-link technique given its reaction speed but with many questions regarding the possible damage induced to the cells included in the material. Other materials, such as gelatin and agarose, are heat-sensitive, so they are used during the printing process at the melting temperature and then stiffened with cooling [84, 85, 86, 87]. One of the most common types of bioink used in bioprinting techniques is the so-called cell-laden hydrogel, which includes natural hydrogels such as agarose, sodium alginate, chitosan, collagen, gelatin, fibrin, and hyaluronic acid and synthetic hydrogels such as Pluronic® and PEG. Hydrogels can be used with the most common bioplotter that mount different printing techniques, allowing the creation of bioinks that combine the advantages of the natural material with the advantages of synthetic materials [88]. Recent findings have shown also the possibility to transfect cells with target DNA or plasmid, directly during the bioprinting process [80]. A new promising method to develop bioinks is the base on decellularized extracellular matrix. This kind of bioink consists in eliminating cells from a tissue of interest, keeping intact the extracellular matrix that is then pulverized and subsequently used as bioink once dissolved in a saline buffer. Finally, the cell suspension bioinks, characterized by a print that does not have a support material, like a scaffold, are also very common. It uses aggregates of cells in culture medium, placed in mono- or multicell spheres [73]. This technique is based on the liquidity of the tissue and its fusion, such as to allow cells to assemble, merge, and create cell-to-cell interconnections [89, 90]. Organovo was the first medical research company that used this technique to create functional human tissues. They developed a liver model using parenchyma cells and an extrusion printer of their own creation [91].
In the last decade, the possibility of replacing dead cells in degenerative processes affecting the central nervous system opened the way for a more intense and accurate study of stem cells and their possibility of replacing damaged tissue [92]. It was also thought to exploit the ability of stem cells to secrete cytokines and growth factors, offering benefits such as anti-inflammatory effects, protection of neural cells, and endogenous recovery systems. Transplanting these cells into damaged sites presents various problems such as low cell survival and limited engraftment [93]. To minimize these problems, it was decided to use three-dimensional scaffold printing that mimics the complexity both from the biological and functional points of view of the tissue to be replaced [94].
The manufacture of three-dimensional prefabricated scaffolds has already given positive results in the treatment and repair of spinal and nerve damage but with a great limitation in terms of control of the external shape of the scaffold and of its internal architecture [95, 96]. These problems have been overcome with the 3D bioprinting, which leaves the operator complete freedom regarding the shape, the material, and its internal architecture. The recent developments in the field of 3D bioprinting are mostly aimed to the field of regenerative medicine, to respond to the growing demand for tissues and organs for transplants, arriving only later for this technology to be applied to basic scientific research. Until now only few studies have focused on using 3D printing applied to the creation of neural tissue compared to other widely studied tissues such as the skin, bones, heart tissue, and cartilaginous structures [97]. The few studies published so far, in which they use nerve cells in 3D printing processes [98, 99], show a poor characterization of bioinks to be used for nerve cells, due to the delicacy of the tissue to be recreated and of the characteristics necessary for the optimal growth of the nervous tissue [94]. Recently, researchers also think that the nervous tissue printed in 3D may be used for the neural regeneration, a huge possibility in the field of neurodegeneration to replace degenerated neural tissue [78, 80].
The creation of nerve tissue by bioprinting is also used for pharmacological studies, for toxicological screening, and for basic research. It is necessary to underline how this field is still in its infancy and how it is necessary to validate this model for the applications described up to now, to be sure that the model completely recapitulates the pathophysiology that we want to investigate with this tool [94] in particular with regard to neurodegenerative diseases.
In the last decade, two groundbreaking discoveries, i.e., somatic cell reprogramming into iPSCs and 3D bioprinting, changed the way to modeling diseases, in particular for those pathologies which are hard to study in simple cell cultures, such as neurodegenerative diseases. The first one is permitted to obtain neural cell cultures in few months starting from adult somatic cells, like fibroblasts and PBMCs, while 3D bioprinting consists in the print of hydrogel and cells, to generate models that imitate tissue characteristics. While iPSCs are differentiated into neurons in many papers for disease modeling, 3D bioprinting is actually used for few tissues, like the cartilage, bone, and heart. Neural 3D cell cultures are still in development, there are no target bioinks, and the studies that combine neuronal cells and 3D bioprinting are more complicated than other tissues because of the fragility of such cells. Despite this hurdle, the possibility to create an in vitro neural tissue would open many fields of research that today are unreachable, first of all the opportunity to study the 3D spatial connection between different neuronal populations and how they communicate with each other. In combination with iPSC technology, we can create a physiological model to understand physiological and pathological mechanisms and to better understand mechanisms underlying neurodegenerative diseases.
Finally, the combination between 3D bioprinting and iPSC technology will open not only new possibilities in many fields, drug screening, replacing expensive in vivo experiments, and overcoming animal models’ issues, but also personalized medicine thanks to the use of cells derived from patients. More intriguingly, the generation of a 3D neural tissue composed of patient’s cell will allow the so-called neuro-regeneration, opening the possibility to replace a degenerated tissue.
The authors declare that there is no conflict of interest.
Edema is characterized as a swelling caused by an increase of fluids in the interstitial space. Interstitial liquid deregulation causes liquid accumulation in the body with harmful consequences to tissues and organs [1, 2]. The physiologist Ernest Starling defined the interaction between the fluids forces in blood vessels. The fluid movement (FM) in the blood vessel is correlated with blood vessel wall permeability (constant Kf) and the difference between hydrostatic pressure variations (ΔP) and colloid osmotic pressure (Δπ) forces [1, 3]. The following mathematical equation (Starling’s equation) describes this interaction: FM = Kf. (ΔP- Δπ).
The liquid retention becomes harmful to tissues affecting the cellular balance and homeostasis. Several factors induce this phenomenon: hormones, plasma proteins, inflammation, infectious diseases, and disturbs in some organs [3, 4, 5]. After an injury, inflammatory mediators cause physiological reactions in the lesioned region. Some of these inflammatory molecules include interleukins (IL-1β, IL-6, and IL-18), tumor necrosis factor-alpha (TNF-α), vasodilators, arachidonic acid metabolites, nitric oxide (NO), among others [6, 7, 8]. The inflammatory agent overproduction mediates increase in vascular permeability and leukocyte recruitment, causing edema formation and hyperalgesia [2, 9].
Membrane receptors are a group of functional proteins located in the plasma and organelles membranes. These receptors are able to trigger intracellular chemical cascades [10]. Approaches in the pharmacological field investigated several plasma membrane receptors modulating inflammation [11], such as the purinergic system, TRP channels, and pattern recognition receptors (PRRs), are commonly associated with inflammatory pathways [12, 13, 14, 15, 16]. Therefore, this chapter will address the plasma membrane receptors modulation on inflammatory agents and subsequent edema formation.
Inflammation is a natural defense mechanism to Pathogen-associated molecular pattern (PAMPs) or Damage-associated molecular pattern (DAMPs) involving cells and blood vessels. In this process, local and immune cells (macrophages, neutrophils, and lymphocytes) promote the release of pro-inflammatory mediators, such as those mentioned earlier. Although the inflammatory response is a natural mechanism, this process may become harmful to tissues and organs when persistently stimulated [17, 18]. The inflammation course and edema formation are linked because edema is one of inflammation cardinal signs [2].
After a trauma or injury, intracellular components are released, modifying the inflammatory site characteristics (Figure 1). Migrant and local cells, such as mast cells and basophils, release vasoactive amines, serotonin, and histamine. These molecules initially cause increase in blood vessel permeability and vasodilation [19, 20, 21]. Thus, these vascular changes cause liquid leakage from the vascular environment. Plasma protein, such as albumin, in the extravascular medium may modulate the vascular pressures. The press alteration favors the fluid and electrolyte passage to interstitial space generating swelling [3, 22].
Inflammatory mediators are acting on vascular permeability.
Coagulation factor activation, such as the Hangeman factor, induces bradykinin and proteases synthesis stimulation. Bradykinin is a kinin involved in vascular permeability and other vascular mechanisms [23, 24, 25]. Additionally, the complement system fragments exhibit a crucial role in the immunity and vascular processes. The anaphylatoxins, such as C3a, C4a, and C5a, act on leukocyte recruitment and also in bradykinin signaling [23, 26, 27, 28, 29].
The pro-inflammatory cytokines participate in pain mechanisms and also promotes increase in vascular permeability [23]. Stamacovic [30] described cytokines participating in the central nervous system inflammation and Blood–brain barrier permeability. The increase in IL-1β, IL-6, and TNF-α may cooperate for brain edema emergence. Martin et al. [31] showed vascular increase induced by IL-1 and IFN-y in Wistar rats. IL-1β is very approached in a mechanism involving nociception and sensibility to pain, as well as bradykinin [32, 33]. Furthermore, increase of IL-1β and TNF-α induct arachidonic acid metabolites [34]. Arachidonic acid metabolites like prostaglandins, leukotrienes, prostacyclin, and thromboxane also mediate vascular changes [35]. Prostaglandins is directly involved in the modulation of pain mechanisms [9, 36].
IL-18 is another IL-1 family member involved in pain mechanisms. The IL-1β and IL-18 synthesis possess similarities in their signaling [37]. Pilat and colleagues’ study involving the IL-18 inhibition [38] showed nociception reduction in a neuropathic pain model. Besides, IL-18 is also notorious as the IFN-y-inducing factor [37, 39].
Additionally, inflammatory mediators modulate inflammatory diseases, and some data confirms this actuation in organ pathophysiology such as lung, liver, heart, and others [40, 41, 42, 43]. Thus, vital organ disturbs promote vascular fluids imbalance. Additional data about cytokines modulation at vascular mechanisms can be found in the following works [23, 44, 45].
Scientific advances provide new discoveries about plasma membrane receptors function and identity. Molecules impermeable to the membrane can selectivity cross to the intracellular environment through these receptors. Many receptors characteristics are investigated in the physicochemical field, including biophysical properties and structure. Membrane receptors generally have three classifications: receptors coupled to enzymes such as tyrosine kinase (RTKs), G protein-coupled receptors (GPCRs), and ion channels [46]. Interestingly, there is a group of membrane proteins that are widely addressed in scientific research for modulating inflammatory mediators release and search for new anti-inflammatory drugs. Based on this, the following topics exhibit some of studied plasma membrane receptors related to the inflammatory response.
The host defense against infections and tissue damage is a complex mechanism. In this process, the cells must recognize PAMPs and DAMPs to initiate a specific intracellular response against infectious agents, such as viruses and bacteria or dangerous signs, such as burn injuries [47].
The Toll-Like Receptors (TLRs) are a group of membrane proteins involved in inflammation and immunity. They act on PRRs expressed in macrophages, neutrophils, and dendritic cells [47, 48]. TLRs compose the interleukin 1 receptors superfamily (IL-1Rs) with slight structural differences. Ten TLRs subtypes were described in humans (TLR1–10), although other species may exhibit variations.
TLRs are located in different compartments in the cell. For instance, the subtypes 1, 2, 4, 5, and 6 are located at the cell plasma membrane, whereas subtypes 3, 7, 8, 9, and 10 are in the intracellular compartment, located in endosomes. [RF1] TLR2 and TLR4 are the best-studied receptors of this family [49, 50].
TLRs, when activated, are essential for the host response to harmful agents, since these receptors modulate the inflammatory mediators release. The factor nuclear kappa β (NF-kβ) and mitogen-activated protein kinase (MAPKs) are classical pathways activated by Toll-Like Receptors (Figure 2) [48]. When stimulated by a ligand, such as lipopolysaccharides (LPS), TLRs transduces the signal through adaptor molecules in the intracellular environment. Myeloid differentiation primary response 88 (MyD88) is an adaptor molecule of the interleukin- 1 receptor-associated kinases (IRKs) signaling with subsequent TNF receptor-associated factor 6 (TRAF6) activation. TRAF6 activates the growth factor β-activated kinase 1 (TAK1), which triggers an enzymatic complex associated with NF-kβ translocation to the cell nucleus. TAK1 signaling also activates the MAPKs pathway with activator protein 1 (AP-1) nuclear factor translocation. This pathway leads to various pro-inflammatory mediators transcription, such as cytokines (IL-1 family, IL-6, TNF-α),
Plasma membrane TLR signaling pathway. TLR receptor activation triggers AP-1 and NF-kβ transcription factors.
TLR activation may exhibit a crucial role in edema formation through inflammatory mediator production (Table 1). In a recent paper, Okada and colleagues [55] described brain edema reduction in a subarachnoid hemorrhage model (SAH) mouse after treatment with TAK-242, a TLR4 receptor inhibitor. The molecular mechanism by which this occur was not evaluated. However, the pathophysiology development of brain edema shows association with TLR4 function. In liver diseases, such as acute liver failure, astrocyte swelling is a notable characteristic that promotes brain edema formation. Interestingly, NF-kβ and MAPKs-induced cytokine release are crucial mechanisms for astrocyte swelling development [56, 57]. Jayakumar et al. [58] have demonstrated LPS and cytokines-induced astrocyte swelling increase. These data suggest TLR4 may be a target in the brain edema pathophysiology.Table 1 represent more data about TLR receptors in the inflammatory context.
Receptor | Ligand | Involvement in inflammation and edema | References |
---|---|---|---|
TLR1 | Tri-acyl lipopeptides | TLR1 works together with TLR2 as a heterodimer. This subtype also mediates the intracellular cytokines transcription | [47, 52] |
TLR2 | Peptidoglycan | TLR2 signaling intracellular transcription of inflammatory mediators Cytokine gene expression such as IL-1β, TNF-α, and IL-6 decrease in TLR2 Knock out mice in vascular injury model TLR2 plays a role in mast cells degranulation and cytokine release stimulated by peptidoglycan | [47, 53, 54] |
TLR4 | LPS | TLR4 activation leads to inflammatory mediators transcription involved in pain and edema, such as LPS induces astrocyte swelling and brain edema pathogenesis. TLR4 also increases TNF-α and IL-1β in LPS-induced mast cells | [47, 50, 54, 55, 56, 57, 58] |
TLR5 | Flagellin | TLR5 can be activated by high mobility group box 1 (HMGB1), a protein that plays a role in inflammation. The HMGB1 action on TLR5 induced the pro-inflammatory mediators intracellular signaling. TLR5 also plays a protective role in intestinal cells. | [47, 52, 59] |
TLR6 | Di-acyl lipopeptides | TLR6 functions are interacting with TLR2 and TLR4 as a heterodimer. | [47, 52] |
Plasma membrane TLRs modulate inflammatory mediators.
Histamine constitutes an essential molecule in cell biology, edema pathophysiology, and the inflammatory process. The histamine synthesis occurs with the amino acid L-histidine decarboxylation through the histidine decarboxylase enzyme (HDC). Other inflammatory mediators can lead to increase HDC activity, such as IL-1 cytokines [60]. Histamine synthesis occurs in different body cells, although this production primordially occurs in mast cells and basophils [61]. In these cells, histamine is stored in cytoplasmatic granules and released according to the stimulus presented. Histamine interacts with GPCRs membrane receptors classified as histamine receptors (HRs) and divided into four subtypes: HR1, HR2, HR3, and HR4 (Table 2) [61].
Receptor | Ligand | Involvement in inflammation and edema | References |
---|---|---|---|
HR1 | Histamine | HR1 is involved in allergic response HR1 influences MPAK signaling and modulates Th1 response. | [61, 62, 63] |
HR2 | Histamine | HR2 modulates Th2 response HR2 regulates IL-10 and antinociceptive activity | [61, 62, 64] |
HR3 | Histamine | HR3 exhibits an essential role in neuronal inflammation and neuropathic pain. HR3 inhibition has been shown to be beneficial in inflammation and edema stimulated by formalin | [61, 65] |
HR4 | Histamine | HR4 also participates in MAPK signaling. HR4 inhibition shows to reduce neutrophil infiltration, edema, and hyperalgesia in acute inflammation | [60, 63, 66, 67] |
Histamine receptors.
The histamine action is remarkable in the vascular modulation mechanism, including vascular permeability increase. HRs actuate as a second messenger, leading to intracellular signal and cytokine synthesis [68]. A study by Delaunois and co-authors [69] showed a protective HR3 agonist role in pulmonary edema stimulated by inflammation-promoting molecules. In addition, HR3 stimulation appears to play a significant role in perfusion in post-burn tissues [70]. HRs also participate in the mechanisms related to antinociception [61].
Among HRs, HR4 has become a new antihistamines studies target. The HR4 activation triggers MAPK, which leads to pro-inflammatory mediators synthesis [60]. Coruzzi and collaborates [66] showed promising results in inhibiting paw edema by HR4 in acute inflammation. After carrageenan-induced edema, two selective HR4 inhibitors, JNJ7777120, and VUF6002, respectively, were evaluated. Inhibition by JNJ7777120 after two hours of carrageenan induction has shown notable values compared to VUF6002. Another study using JNJ7777120 described the anti-nociceptive role in a pain inflammation model through HR4 antagonism. Additionally, HR4 inhibition decreases neutrophilic influx to stimulated area pretreated with JNJ7777120 [67]. These findings suggest HR4 with a crucial role in edema and pain mechanism.
Diseases involving the psychiatric area have been widely addressed in scientific research, such as depression. [RF2] Factors involving mood and mental disorders, include serotonin, a critical functional amine in this disease. Interestingly, serotonin regulates inflammatory signaling, playing a role in vascular permeability. Therefore, serotonin becomes a multifunctional molecule modulating many body processes [71, 72, 73].
5-hydroxytryptamine (5-HT), serotonin is synthesized from the amino acid tryptophan. The enzymes tryptophan hydroxylase and tryptophan decarboxylase are responsible for 5-HT production. Serotonin may be found in various body tissues, such as enterochromaffin, platelets, brain, and lung [71]. 5-HT interacts with membrane receptors (5-HT receptors), divided into seven families (5-HT1–7), where these receptors are GPCRs, except for 5HT3, which belongs to ion channels. These receptors possess fourteen subtypes: 5-HT1 (A, B, D, E, and F), 5-HT2 (A, B, and C), 5-HT3 (A, B), 5-HT4, 5-HT5 (A), 5-HT6, and 5-HT7 [74, 75].
The 5-HT role in other systems has been studied over the years. During inflammation, 5-HT plays an essential role in vascular permeability, as well as histamine, in addition to participating in pro-inflammatory mediator production [72]. In this context, serotonergic receptor subtypes act on inflammation process biochemistry. 5-HT7 is influential in peripheral inflammatory modulation, according to Albayrak and co-authors [76]. The 5-HT7 participates in the nociception mechanism with other 5-HT receptors, such as 5-HT1 and 5-HT2 [77, 78]. The 5-HT2 subtype (A) subtype also modulates the inflammatory process. Nishiyama studies [79] have demonstrated a role for 5-HT2A in cytokines synthesis during an inflammation model induced by endotoxin shock. The 5-HT2A inhibition reduced TNF-α, IL-1β, IL-8, and IL-6 levels. Interestingly, IL-10 levels (cytokine with anti-inflammatory function) increased due to 5-HT2A inhibition. Additionally, 5-HT2A shows to play a function in body temperature control [80]. These data demonstrate a relevant role for 5-HT2A receptors in inflammation pathophysiology (Table 3).
Receptor | Ligand | Involvement in inflammation and edema | References |
---|---|---|---|
5-HT1 | Serotonin | 5-HT1 receptors stimulation induces a role in neurogenic inflammation Intrathecal 5-HT1A, 5-HT1B, and 5-HT1D receptor agonists administration decreased the peripheral inflammatory edema induced by carrageenan. | [81, 82] |
5-HT2 | Serotonin | 5-HT2A subtype inhibition increased IL-10 in inflammation induced by shock with endotoxins. 5-HT2A receptor activation decrease TNF-α-induced inflammation 5-HT2A regulates the body temperature 5-HT2B subtype shows the immunomodulatory function in dendritic cells | [79, 80, 83, 84] |
5-HT3 | Serotonin | 5-HT3 inhibition decreased inflammatory cytokines and neutrophilic action in a colitis model 5-HT3 decreases pain in carrageenan-induced inflammation | [72, 85, 86] |
5-HT4 | Serotonin | Spinal 5-HT4 receptor antagonism decreased hyperalgesia effects 5-HT4 induced IL-1β and IL-8 release in mature dendritic cells. | [72, 87, 88] |
5-HT5 | Serotonin | Intrathecal administration appears to show an anti-nociceptive role for spinal 5-HT5A receptors | [89, 90] |
5-HT6 | Serotonin | Like 5-HT4, 5-HT6 receptor antagonism is also beneficial in hyperalgesia | [87, 91] |
5-HT7 | Serotonin | 5-HT7 receptor stimulation has an anti-inflammatory role in the periphery carrageenan-induced inflammation 5-HT7 agonist decreased Like 5-HT4, 5-HT7 activation also induces IL-1β and IL-8 secretion in dendritic cells. | [76, 88, 92] |
Serotonin receptors.
The purinergic system is a group of transmembrane proteins activated by extracellular purine ligands, such as adenosine and other derivatives, adenosine triphosphate and diphosphate (ATP and ADP). Interestingly, when the ATP molecule is found in elevated concentration in the extracellular environment (eATP), this nucleotide may become a DAMP and regulates the inflammatory process. Purinergic receptors are formed by two groups (P1 and P2) differing in structure and activation ligands on mammalian cells [93, 94].
The adenosine molecule activates the P1 group and possesses four subtypes (A1, A2a, A2b, and A3). The P1 group comprises GPCRs receptors, and the P2 group is extensive and divided into two families, P2X and P2Y. The P2X receptors form ATP-activated ion channel receptors with seven subtypes (P2X1–7). P2Y receptors are GPCRs, like the P1 group. Interestingly, ATP and their derivatives activate the P2Y receptors, although, pyrimidine molecules, such as uridine diphosphate (UDP and UDP-glucose), also modulate some subtypes activation. This family consists in eight subtypes (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P213, and P2Y14) in mammals. The purinergic receptors participate in inflammation and immune response and are expressed in several tissues [14].
In the purinergic group, the receptor of great scientific notoriety is the P2X7 receptor (P2X7R), addressed in several mechanisms, such as cell death and inflammatory cytokines release [14]. P2X7R have the capacity to increase membrane permeability for large solutes after prolonged ATP activation. The prolonged P2X7R stimulation induces a pore opening that allows the molecules of up to 900 Da. This mechanism highlights the P2X7R as a pore-forming protein, similar to other membrane receptors, such as some TRP channels [95].
However, a striking P2X7R feature is the participation in the maturation of IL-1 cytokine family (IL-1β and IL-18) release. The IL-1β and IL-18 production and maturation require two signaling mechanisms, one mediated by pattern recognition receptors (via TLRs family activation) and a second by a danger signal, such as eATP. The activation of TLRs induces nuclear transcription through NF-kβ of the immature forms of these cytokines (ProIL-1β and ProIL-18), concluding the first stage.The eATP activates the P2X7R, beginning the cascade signaling that compose the Nod-like receptor protein-3 (NLRP3) inflammasome complex with subsequent IL-1β and IL-18 maturation and release [48, 96]. The following figure illustrates this mechanism more clearly (Figure 3).
IL-1β and IL-18 synthesis after P2X7R activation. The first signaling occurs with the ProIL-1β and ProIL-18 transcription after TLRs receptor activation (TLR4). The second signal arrives with the eATP stimulating the P2X7R. The receptor activation induces the NLRP3 inflammasome complex, and finally, IL-1β and IL-18 conversion for mature form.
The IL-1β inhibition in inflammation and pain has been addressed in several inflammation studies. Experiments in vivo using P2X7R antagonist have demonstrated improvements in the swelling caused by inflammation in a model of paw edema [97, 98]. The pain sensibility mechanism is linked to vascular permeability, causing edema [2]. Furthermore, P2X7R inhibition reduces pro-inflammatory cytokines, such as IL-1β and other mediators, since the P2X7R is responsible for these mechanisms [96]. Additionally, the P2X4 receptor has participated in IL-1β and IL-18 signaling based on Chen et al. [99]. Further, other purinergic receptors data in edema and inflammation have already been approached in the literature (Table 4).
Receptor | Ligand | Involvement in inflammation and edema | References |
---|---|---|---|
A1R | Adenosine | A1R receptor stimulation increased leukocyte recruitment and edema formation in acute pancreatitis disease. A1R participates in pulmonary inflammation and influence vascular permeability through inflammatory cytokines release in monocytes and neutrophils | [100, 101] |
A2R | Adenosine | A2aR decreases cytokine synthesis (IFN-γ, IL-4, and IL-2) in lymphocytes and influence platelet aggregation. A2bR mediates several pro-inflammatory cytokines (IL-1β, TNF-α) synthesis In contrast, A2bR also exerts an anti-inflammatory action, as observed for IL-10 release in macrophages. | [101] |
A3R | Adenosine | A3R stimulation induces histamine and serotonin release and inflammation in rat paw. A3R seems to mediate benefits in control hyperalgesia | [102, 103] |
P2X4R | ATP | P2X4 induces IL-1β and IL-18 cytokines maturation through NRLP3 inflammasome P2X4R is involved in prostaglandin E2 release and pain | [14, 99, 104] |
P2X7R | ATP | P2X7R activation produces cytokines, such as IL-1β and IL-18 maturation through NRLP3 inflammasome and TNF-α P2X7R regulates prostaglandin E2 release P2X7R antagonism reversed edema and hyperalgesia P2X7R stimulation leads to vascular bed inflammation through IL-1β release | [14, 96, 97, 98, 105, 106] |
P2YR | ATP/UDP/UDP-glucose | P2Y1R, P2Y2R, and P2Y6R are associated with leukocyte chemotaxis. P2Y1R, together with P2Y12R, have a function in platelet aggregation Like P2X7R, P2Y6R activation in endothelial cells promotes vascular inflammation and fluids leakage. | [107, 108, 109] |
Purinergic receptors.
The physiological mechanisms of pain and temperature stimuli indicate the transient receptor potential (TRP) as a target in this regard [110]. The TRP channels superfamily is constituted of transmembrane cationic ionotropic receptors. In mammals, six subfamilies classify the TRP channels into two groups. The first group: TRPC (canonical), TRPV (vanilloid), TRPA (ankyrin), and TRPM (melastatin). The second group is composed of TRPML (mucolipin) and TRPP (polycystic). This chapter will discuss the most addressed subfamilies in the scientific literature: TRPV, TRPM, and TRPA based on their involvement in inflammation and pain. These subfamilies are classified in TRPV1–6, TRPM1–8, and TRPA1 receptors [111, 112].
TRPV1 is the most studied TRP channel because of its noxious heat and inflammation perception. TRPV1 is a pore-forming protein, like P2X7R and other TRPs, such as TRPV2–4, TRPA1, and TRPM8 (Table 5). All these channels promote pore opening, and molecules flux up to 900 Da [117]. Capsaicin is one TRPV1 receptor agonist and plays a critical role in nociception pathogenesis [124].
Receptor | Ligand | Involvement in inflammation and edema | References |
---|---|---|---|
TRPV1 | Capsaicin/Protons/Heat sensor | TRPV1 channel is involved in the release of the neuropeptide like substance P in sensory fibers Capsaicin administration showed painful effects in mouse paws, which were diminished by TRPV1 inhibitors TRPV1 increased intracellular Ca+2 concentration inducing the cytokines transcription such as IL-1β and TNF-α through the NF-kβ pathway In the endotoxin-induced lung injury model, TRPV1 reduced the pro-inflammatory cytokines levels | [113, 114, 115, 116] |
TRPV4 | 4α-Phorbol 12,13-didecanoate/Osmotic sensor | TRPV4 activation in vascular endothelial cells caused an increase in vascular permeability. TRPV4 is sensitive to hypo-osmotic stress in chondrocytes | [117, 118, 119] |
TRPA1 | Allyl Isothiocyanate (AITC)/Cold sensor | Like TRPV1 channels, TRPA1 acts on neuropeptides molecules regulation and nociception. TRPA1 induced edema in an acute inflammation model using AITC TRPA1 stimulation by AITC has been shown to influence the | [113, 116, 120] |
TRPM8 | Menthol/Eucalyptol/Cold sensor | TRPM8 channels inhibited edema and inflammation by decreasing pro-inflammatory cytokines (TNF-α and IL-1β) Menthol produced analgesic effects on inflammatory pain through the TRPM8 channel | [16, 121, 122, 123] |
Transient receptors potential.
The TRPV1 receptor (heat sensor) together with TRPA1 (cold sensor) can modulate the neuropeptide molecules release like substance P. This molecule encompasses many biochemical processes involved in inflammation, such as histamine and serotonin released by mast cells, which leads to increased vascular permeability and hyperalgesia [113]. Hoffmeister and co-authors [125] described a reversion in edema and pain caused by monosodium urate crystals after TRPV1 inhibition. These findings may be associated with the mechanism mentioned above with TRPV1 participation. Additionally, TRPV1 and TRPA1 receptor inhibition decreased pro-inflammatory cytokines levels, such as TNF-α, IL-1β, and IL-6 in an endotoxin-induced lung injury model [114]. Interestingly, Li et al. [115] demonstrated TRPV1 activation associated with NF-kβ phosphorylation through the intracellular Ca2+ influx. Based on this data, TRPV1 receptors play a critical role in the modulation of the pro-inflammatory cytokines.
Another notorious receptor involved in the low temperatures detection in conjunction with TRPA1 is the TRPM8 receptor. TRPM8 exhibits an essential role in neuropathic pain and anti-inflammatory effects [111]. TRPM8 is the most studied receptor in cold physiology. TRPM8 activation reverses the hyperalgesia caused by TRPV1 and TRPA1 stimuli [16]. Experiments using eucalyptol, a TRPM8 agonist, show promising results in reducing pro-inflammatory cytokines in paw edema [121]. Studies with cold therapy can have analgesic and anti-edema effects [122]. These findings make the TRPM8 receptor a target in this context.
A large quantity of plasma membrane receptors modulates the inflammation and immune response processes. In this work, we discuss the membrane receptor groups as therapeutic targets for inflammation and edema processes. The connection between the receptor systems is vast, and the response can vary according to the stimulus. Thus, other receptors can fit this context, such as cholinergic, dopaminergic, and adrenergic receptors. These are other examples of membrane receptors that can also be addressed in this context [126, 127, 128].
Additionally, bradykinin also promotes a role in vascular permeability. Bradykinin receptors divide into B1, and B2 (GPCRs) play a crucial role in edema pathogenesis [129, 130]. Further, cytokines receptors are also involved in inflammation mechanisms, such as IL-1 family and TNF-α receptor [131].
The inflammatory process (edema, cell migration, pain, and other) treatment mainly uses non-steroidal anti-inflammatory drugs (NSAIDs) and corticosteroids. NSAIDs inhibit eicosanoid metabolites produced for the COX pathway, whereas corticosteroids are based on hormones released by the endocrine glands [132]. On the other hand, the more serious problem with these drugs is their prolonged use in treatments, presenting toxicity to organs. Based on this, the membrane receptors discussed in this chapter are promisor candidates for inflammation treatment. In addition, some classes possess agonists and antagonists commercially available among these receptors, such as 5-HT receptors and HRs.
Interestingly, clinical trials have already been realized and described in the literature concerning other membrane receptor types for reducing inflammatory diseases and their symptoms (Table 6). Therefore, we highlight four receptors discussed in this chapter with great potential in modulating the inflammation (TLR4, HR4, P2X7R, and TRPV1).
Receptor | Compound | Disease | Clinical study | Results | References |
---|---|---|---|---|---|
TLR4 | NI-0101 | Rheumatoid arthritis (RA) | Phase II | Insufficient therapeutic effects | [133] |
HR4 | JNJ-39758979 | Asthma | Phase IIa | Potential in patients with eosinophilic inflammation | [134] |
Toreforant | RA | Phase IIa and IIb | No improvement in Phase IIb study | [135] | |
Eosinophilic asthma | Phase IIa | No significant effects on the applied dose | [136] | ||
ZPL-3893787 | Atopic dermatites (DA) | Phase IIa | Improvement in skin lesions | [137] | |
P2X7R | AZD9056 | RA | Phase IIa and IIb | Insufficient therapeutic effects | [138] |
Crohn’s disease (DC) | Phase IIa | Good effects in improving symptoms in moderate and severe DC | [139] | ||
CE-224.535 | RA | Phase IIa | Insufficient therapeutic effects | [140] | |
TRPV1 | JNJ-38893777 | Not available | Phase I | Tolerable and safe for future investigations | [141] |
PAC-14028 | DA | Phase IIb | Effectiveness for the treatment of mild and moderate AD | [142] |
Receptor antagonist compounds highlighted in clinical trials for inflammatory diseases.
The inflammation field encompasses broad aspects, such as chemical mediators (cytokines, vasoactive amines, and lipid mediators), pain, and edema. The plasma membrane receptors influence on the inflammatory process is widely explored in scientific research. Concerning data discussed in this chapter, membrane receptors are promising and directly involved in the inflammatory mediators modulation in the edema and hyperalgesia pathophysiology. Thus, these new data open a horizon in the search for new pharmacological targets with anti-edema and analgesic effects in the therapeutic perspective of the inflammatory process.
We grateful the Coordination of Superior Level Staff Improvement (CAPES) – Finance Code 001, Oswaldo Cruz Institute (IOC), and Post-graduation of Sciences and Biotechnology PPBI), and Federal Fluminense University (UFF). This work was supported by CNPq (National Council of Research of Brazil) (RXF holds a grant with Fellowship Process Number 308755/2018-9), CP holds a grant from the Brazilian agency CNPq. FAPERJ (Research Support Foundation of the State of Rio de Janeiro) (JCNE (Young Scientist from Our State) with Fellowship process number E-26/203.246/2017) and Emergent Group of Research from Rio de Janeiro (E-26/211.025/2019).
The authors declare no conflict of interest.
Place any other declarations, such as “Notes”, “Thanks”, etc. in before the References section. Assign the appropriate heading.
.
",metaTitle:"Order Print Copies - Terms",metaDescription:".",metaKeywords:null,canonicalURL:"page/order-print-copies-terms/",contentRaw:'[{"type":"htmlEditorComponent","content":"Orders have to be prepaid in advance and before printing. We accept payment in GBP, EUR and USD. Payments can be made by bank transfer or cheque, by credit card (Visa, MasterCard, American Express, Discover Card) and PayPal worldwide online payments system. In accordance with the best security practice, we do not accept card orders via email.
\\n\\nThe combined printing and delivery times for orders vary from 12-20 business days, depending on the printed quantity and destination. This period does not include any customs clearance difficulties that may arise and that are beyond our control. Once your order has been printed and shipped, you will receive a confirmation email that includes your DHL tracking number. You can then track your order at www.dhl.com.
\\n\\nMy order has not arrived, what do I do?
\\n\\nIf you do not receive your order within 30 days, please contact us to inquire about the shipping status at orders@intechopen.com.
\\n\\nPOD products are non-returnable and non-refundable, except in the event of poor print quality or an error in quantity. If we delivered the item to you in error or the item is faulty, please contact us. Inspect your order carefully when it arrives. Any problems should be immediately reported to orders@intechopen.com.
\\n\\nTaxes: Residents of European Union countries need to add a Book Value-Added Tax of 5%. Institutions and companies, registered as VAT taxable entities in their own EU member state, will not pay VAT by providing us their VAT registration number. This is made possible by the EU reverse charge method.
\\n\\nCustoms: Shipping costs do not include any duties, taxes or clearing charges levied by the destination country. These charges are the responsibility of the customer and will vary from country to country.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Orders have to be prepaid in advance and before printing. We accept payment in GBP, EUR and USD. Payments can be made by bank transfer or cheque, by credit card (Visa, MasterCard, American Express, Discover Card) and PayPal worldwide online payments system. In accordance with the best security practice, we do not accept card orders via email.
\n\nThe combined printing and delivery times for orders vary from 12-20 business days, depending on the printed quantity and destination. This period does not include any customs clearance difficulties that may arise and that are beyond our control. Once your order has been printed and shipped, you will receive a confirmation email that includes your DHL tracking number. You can then track your order at www.dhl.com.
\n\nMy order has not arrived, what do I do?
\n\nIf you do not receive your order within 30 days, please contact us to inquire about the shipping status at orders@intechopen.com.
\n\nPOD products are non-returnable and non-refundable, except in the event of poor print quality or an error in quantity. If we delivered the item to you in error or the item is faulty, please contact us. Inspect your order carefully when it arrives. Any problems should be immediately reported to orders@intechopen.com.
\n\nTaxes: Residents of European Union countries need to add a Book Value-Added Tax of 5%. Institutions and companies, registered as VAT taxable entities in their own EU member state, will not pay VAT by providing us their VAT registration number. This is made possible by the EU reverse charge method.
\n\nCustoms: Shipping costs do not include any duties, taxes or clearing charges levied by the destination country. These charges are the responsibility of the customer and will vary from country to country.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6581},{group:"region",caption:"Middle and South America",value:2,count:5888},{group:"region",caption:"Africa",value:3,count:2381},{group:"region",caption:"Asia",value:4,count:12507},{group:"region",caption:"Australia and Oceania",value:5,count:1006},{group:"region",caption:"Europe",value:6,count:17528}],offset:12,limit:12,total:132501},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"-dateEndThirdStepPublish"},books:[{type:"book",id:"9985",title:"Geostatistics",subtitle:null,isOpenForSubmission:!0,hash:"423cb3896195a618c4acb493ce4fd23d",slug:null,bookSignature:"Prof. Jeffrey M. Yarus, Dr. Marko Maucec, Dr. Timothy C. Coburn and Associate Prof. Michael Pyrcz",coverURL:"https://cdn.intechopen.com/books/images_new/9985.jpg",editedByType:null,editors:[{id:"78011",title:"Prof.",name:"Jeffrey M.",surname:"Yarus",slug:"jeffrey-m.-yarus",fullName:"Jeffrey M. Yarus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12144",title:"Mycorrhiza - New Insights",subtitle:null,isOpenForSubmission:!0,hash:"dddc237ff52d11c9acbfbd488686336b",slug:null,bookSignature:"Dr. Rodrigo De Sousa",coverURL:"https://cdn.intechopen.com/books/images_new/12144.jpg",editedByType:null,editors:[{id:"297508",title:"Dr.",name:"Rodrigo",surname:"De Sousa",slug:"rodrigo-de-sousa",fullName:"Rodrigo De Sousa"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12176",title:"Oligonucleotides - Overview and Applications",subtitle:null,isOpenForSubmission:!0,hash:"365b4a84e87d26bcb24b7183814fba04",slug:null,bookSignature:"Dr. Arghya Sett",coverURL:"https://cdn.intechopen.com/books/images_new/12176.jpg",editedByType:null,editors:[{id:"301899",title:"Dr.",name:"Arghya",surname:"Sett",slug:"arghya-sett",fullName:"Arghya Sett"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11757",title:"Nanorods - Synthesis, Properties, Toxicity and Applications",subtitle:null,isOpenForSubmission:!0,hash:"fb27f444442e8f039b560beae93e6873",slug:null,bookSignature:"Prof. Tejendra Kumar Gupta",coverURL:"https://cdn.intechopen.com/books/images_new/11757.jpg",editedByType:null,editors:[{id:"345089",title:"Prof.",name:"Tejendra Kumar",surname:"Gupta",slug:"tejendra-kumar-gupta",fullName:"Tejendra Kumar Gupta"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12043",title:"Biodegradation - New Insights",subtitle:null,isOpenForSubmission:!0,hash:"8241477a4a935c8c292902d2768f4581",slug:null,bookSignature:"Dr. Vasudeo Zambare and Dr. Mohd Fadhil Md Din",coverURL:"https://cdn.intechopen.com/books/images_new/12043.jpg",editedByType:null,editors:[{id:"174690",title:"Dr.",name:"Vasudeo",surname:"Zambare",slug:"vasudeo-zambare",fullName:"Vasudeo Zambare"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11848",title:"Immunosuppression and Immunomodulation",subtitle:null,isOpenForSubmission:!0,hash:"ed8e45c9b1a36b2e913208c4d37dbc7f",slug:null,bookSignature:"Dr. Rajeev K. Tyagi, Dr. Prakriti Sharma and Dr. Praveen Sharma",coverURL:"https://cdn.intechopen.com/books/images_new/11848.jpg",editedByType:null,editors:[{id:"201069",title:"Dr.",name:"Rajeev",surname:"Tyagi",slug:"rajeev-tyagi",fullName:"Rajeev Tyagi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12178",title:"Hemiptera - Recent Updates",subtitle:null,isOpenForSubmission:!0,hash:"daf49271b1a1a8fe6ca15063ba065765",slug:null,bookSignature:"Dr. Hamadttu El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/12178.jpg",editedByType:null,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",surname:"El-Shafie",slug:"hamadttu-el-shafie",fullName:"Hamadttu El-Shafie"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11815",title:"Pediatric Oral Health - New Insights",subtitle:null,isOpenForSubmission:!0,hash:"e55e88cf5885a68cdf470925b35cbbd8",slug:null,bookSignature:"Prof. Mandeep Singh Virdi",coverURL:"https://cdn.intechopen.com/books/images_new/11815.jpg",editedByType:null,editors:[{id:"89556",title:"Prof.",name:"Mandeep",surname:"Virdi",slug:"mandeep-virdi",fullName:"Mandeep Virdi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12206",title:"Antibiotic Resistance - New Insights",subtitle:null,isOpenForSubmission:!0,hash:"708d9c997d91bdbe75c55cb5d9f7b526",slug:null,bookSignature:"Dr. Ghulam Mustafa",coverURL:"https://cdn.intechopen.com/books/images_new/12206.jpg",editedByType:null,editors:[{id:"298756",title:"Dr.",name:"Ghulam",surname:"Mustafa",slug:"ghulam-mustafa",fullName:"Ghulam Mustafa"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11447",title:"Swarm Intelligence - Recent Advances and Current Applications",subtitle:null,isOpenForSubmission:!0,hash:"f68e3c3430a74fc7a7eb97f6ea2bb42e",slug:null,bookSignature:"Dr. Marco Antonio Aceves Fernandez",coverURL:"https://cdn.intechopen.com/books/images_new/11447.jpg",editedByType:null,editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11521",title:"Internal Combustion Engines - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"99cc881bcb3efe05085f2728ccbeab6b",slug:null,bookSignature:"Prof. Akaehomen Akii Ibhadode",coverURL:"https://cdn.intechopen.com/books/images_new/11521.jpg",editedByType:null,editors:[{id:"253342",title:"Prof.",name:"Akaehomen",surname:"Ibhadode",slug:"akaehomen-ibhadode",fullName:"Akaehomen Ibhadode"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11896",title:"Stoichiometry - New Findings and Advances",subtitle:null,isOpenForSubmission:!0,hash:"6b32a0fe0d3c175fa3982d3836fc422b",slug:null,bookSignature:"Dr. Brajesh Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/11896.jpg",editedByType:null,editors:[{id:"176093",title:"Dr.",name:"Brajesh",surname:"Kumar",slug:"brajesh-kumar",fullName:"Brajesh Kumar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:42},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:6},{group:"topic",caption:"Chemistry",value:8,count:21},{group:"topic",caption:"Computer and Information Science",value:9,count:20},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:60},{group:"topic",caption:"Environmental Sciences",value:12,count:8},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:27},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:123},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:11},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:411},popularBooks:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10351",title:"Enhanced Liposuction",subtitle:"New Perspectives and Techniques",isOpenForSubmission:!1,hash:"f08ed6de16da357614586c5b58ed4dfa",slug:"enhanced-liposuction-new-perspectives-and-techniques",bookSignature:"Diane Irvine Duncan",coverURL:"https://cdn.intechopen.com/books/images_new/10351.jpg",editors:[{id:"279869",title:"Dr.",name:"Diane Irvine",middleName:null,surname:"Duncan",slug:"diane-irvine-duncan",fullName:"Diane Irvine Duncan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10779",title:"21st Century Nanostructured Materials",subtitle:"Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture",isOpenForSubmission:!1,hash:"72c67f97f9bef68200df115b5fd79884",slug:"21st-century-nanostructured-materials-physics-chemistry-classification-and-emerging-applications-in-industry-biomedicine-and-agriculture",bookSignature:"Phuong V. Pham",coverURL:"https://cdn.intechopen.com/books/images_new/10779.jpg",editors:[{id:"236073",title:"Dr.",name:"Phuong",middleName:"Viet",surname:"Pham",slug:"phuong-pham",fullName:"Phuong Pham"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4386},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3665,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1713,editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",publishedDate:"April 28th 2022",numberOfDownloads:2481,editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1107,editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3307,editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3266,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1868,editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",publishedDate:"May 4th 2022",numberOfDownloads:856,editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1704,editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7489,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8737",title:"Rabies Virus at the Beginning of 21st Century",subtitle:null,isOpenForSubmission:!1,hash:"49cce3f548da548c718c865feb343509",slug:"rabies-virus-at-the-beginning-of-21st-century",bookSignature:"Sergey Tkachev",coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10861",title:"Furan Derivatives",subtitle:"Recent Advances and Applications",isOpenForSubmission:!1,hash:"fdfc39cecd82f91b0effac994f75c877",slug:"furan-derivatives-recent-advances-and-applications",bookSignature:"Anish Khan, Mohammed Muzibur Rahman, M. Ramesh, Salman Ahmad Khan and Abdullah Mohammed Ahmed Asiri",coverURL:"https://cdn.intechopen.com/books/images_new/10861.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"293058",title:"Dr.",name:"Anish",middleName:null,surname:"Khan",slug:"anish-khan",fullName:"Anish Khan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10870",title:"Ultrasound Imaging",subtitle:"Current Topics",isOpenForSubmission:!1,hash:"2f0bc3733ab226d67fa73759ef0e12ad",slug:"ultrasound-imaging-current-topics",bookSignature:"Felix Okechukwu Erondu",coverURL:"https://cdn.intechopen.com/books/images_new/10870.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"68312",title:"Prof.",name:"Felix",middleName:null,surname:"Okechukwu Erondu",slug:"felix-okechukwu-erondu",fullName:"Felix Okechukwu Erondu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11392",title:"Leadership in a Changing World",subtitle:"A Multidimensional Perspective",isOpenForSubmission:!1,hash:"86a6d33cf601587e591064ce92effc02",slug:"leadership-in-a-changing-world-a-multidimensional-perspective",bookSignature:"Muhammad Mohiuddin, Bilal Khalid, Md. Samim Al Azad and Slimane Ed-dafali",coverURL:"https://cdn.intechopen.com/books/images_new/11392.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10400",title:"The Application of Ant Colony Optimization",subtitle:null,isOpenForSubmission:!1,hash:"f4fdfd07ee1ab99fb7c740d6d0c144c6",slug:"the-application-of-ant-colony-optimization",bookSignature:"Ali Soofastaei",coverURL:"https://cdn.intechopen.com/books/images_new/10400.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"257455",title:"Dr.",name:"Ali",middleName:null,surname:"Soofastaei",slug:"ali-soofastaei",fullName:"Ali Soofastaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10915",title:"Leadership",subtitle:"New Insights",isOpenForSubmission:!1,hash:"0d72e79892f2a020cee66a52d09de5a4",slug:"leadership-new-insights",bookSignature:"Mário Franco",coverURL:"https://cdn.intechopen.com/books/images_new/10915.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"105529",title:"Dr.",name:"Mário",middleName:null,surname:"Franco",slug:"mario-franco",fullName:"Mário Franco"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10683",title:"Technological Innovations and Advances in Hydropower Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ce7ad8768bd2cad155470fe1fd883f4",slug:"technological-innovations-and-advances-in-hydropower-engineering",bookSignature:"Yizi Shang, Ling Shang and Xiaofei Li",coverURL:"https://cdn.intechopen.com/books/images_new/10683.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"349630",title:"Dr.",name:"Yizi",middleName:null,surname:"Shang",slug:"yizi-shang",fullName:"Yizi Shang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7102",title:"Pneumonia",subtitle:null,isOpenForSubmission:!1,hash:"9fd70142814192dcec58a176749f1b60",slug:"pneumonia",bookSignature:"Nima Rezaei",coverURL:"https://cdn.intechopen.com/books/images_new/7102.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1072",title:"Anaplastology",slug:"anaplastology",parent:{id:"190",title:"Oncology",slug:"medicine-oncology"},numberOfBooks:2,numberOfSeries:0,numberOfAuthorsAndEditors:74,numberOfWosCitations:28,numberOfCrossrefCitations:21,numberOfDimensionsCitations:46,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"1072",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"5231",title:"Prostate Cancer",subtitle:"Leading-edge Diagnostic Procedures and Treatments",isOpenForSubmission:!1,hash:"99ab241dee1141397af0cc73d25cb2f1",slug:"prostate-cancer-leading-edge-diagnostic-procedures-and-treatments",bookSignature:"Ravinder Mohan",coverURL:"https://cdn.intechopen.com/books/images_new/5231.jpg",editedByType:"Edited by",editors:[{id:"58197",title:"Prof.",name:"Ravinder",middleName:null,surname:"Mohan",slug:"ravinder-mohan",fullName:"Ravinder Mohan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"777",title:"Prostate Cancer",subtitle:"From Bench to Bedside",isOpenForSubmission:!1,hash:"d5a01877eb8f560e8aeee899be80f547",slug:"prostate-cancer-from-bench-to-bedside",bookSignature:"Philippe E. Spiess",coverURL:"https://cdn.intechopen.com/books/images_new/777.jpg",editedByType:"Edited by",editors:[{id:"64476",title:"Dr.",name:"Philippe E.",middleName:null,surname:"Spiess",slug:"philippe-e.-spiess",fullName:"Philippe E. Spiess"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"24224",doi:"10.5772/27021",title:"Epidermal Growth Factor Receptor (EGFR) Phosphorylation, Signaling and Trafficking in Prostate Cancer",slug:"epidermal-growth-factor-receptor-egfr-phosphorylation-signaling-and-trafficking-in-prostate-cancer",totalDownloads:5482,totalCrossrefCites:4,totalDimensionsCites:10,abstract:null,book:{id:"777",slug:"prostate-cancer-from-bench-to-bedside",title:"Prostate Cancer",fullTitle:"Prostate Cancer - From Bench to Bedside"},signatures:"Yao Huang and Yongchang Chang",authors:[{id:"68588",title:"Dr.",name:"Yao",middleName:null,surname:"Huang",slug:"yao-huang",fullName:"Yao Huang"},{id:"117341",title:"Dr.",name:"Yongchang",middleName:null,surname:"Chang",slug:"yongchang-chang",fullName:"Yongchang Chang"}]},{id:"51052",doi:"10.5772/64016",title:"Targeted Therapy for Metastatic Prostate Cancer with Radionuclides",slug:"targeted-therapy-for-metastatic-prostate-cancer-with-radionuclides",totalDownloads:1623,totalCrossrefCites:5,totalDimensionsCites:9,abstract:"Progression to androgen-independent status is the main cause of death in patients with metastatic prostate cancer. Prostate-specific membrane antigen (PSMA) is anchored in the cell membrane of prostate epithelial cells. PSMA is highly expressed on prostate epithelial cells and strongly upregulated in prostate cancer. Therefore, it is an appropriate target for diagnosis and therapy of prostate cancer and its metastases. There is growing knowledge about promising response and low toxicity profile of radioligand therapy of metastatic castration-resistant prostate cancer using Lutetium-177-labeled PSMA ligands. For patients with only bone metastases, there are different radionuclides which have been used for decades. In this chapter, different methods of targeted radionuclide therapy of metastatic prostate cancer are described.",book:{id:"5231",slug:"prostate-cancer-leading-edge-diagnostic-procedures-and-treatments",title:"Prostate Cancer",fullTitle:"Prostate Cancer - Leading-edge Diagnostic Procedures and Treatments"},signatures:"Hojjat Ahmadzadehfar",authors:[{id:"80495",title:"Prof.",name:"Hojjat",middleName:null,surname:"Ahmadzadehfar; Md, MSc",slug:"hojjat-ahmadzadehfar-md-msc",fullName:"Hojjat Ahmadzadehfar; Md, MSc"}]},{id:"24230",doi:"10.5772/27296",title:"Evaluation of Phyllanthus, for Its Anti-Cancer Properties",slug:"evaluation-of-phyllanthus-for-its-anti-cancer-properties",totalDownloads:3680,totalCrossrefCites:1,totalDimensionsCites:5,abstract:null,book:{id:"777",slug:"prostate-cancer-from-bench-to-bedside",title:"Prostate Cancer",fullTitle:"Prostate Cancer - From Bench to Bedside"},signatures:"Yin-Quan Tang and Shamala Devi Sekaran",authors:[{id:"69612",title:"Prof.",name:"Shamala Devi",middleName:null,surname:"Sekaran",slug:"shamala-devi-sekaran",fullName:"Shamala Devi Sekaran"},{id:"69617",title:"Dr.",name:"Yin Quan",middleName:null,surname:"Tang",slug:"yin-quan-tang",fullName:"Yin Quan Tang"}]},{id:"24218",doi:"10.5772/25607",title:"Effective Methodologies for Statistical Inference on Microarray Studies",slug:"effective-methodologies-for-statistical-inference-on-microarray-studies",totalDownloads:1446,totalCrossrefCites:2,totalDimensionsCites:3,abstract:null,book:{id:"777",slug:"prostate-cancer-from-bench-to-bedside",title:"Prostate Cancer",fullTitle:"Prostate Cancer - From Bench to Bedside"},signatures:"Makoto Aoshima and Kazuyoshi Yata",authors:[{id:"63901",title:"Prof.",name:"Makoto",middleName:null,surname:"Aoshima",slug:"makoto-aoshima",fullName:"Makoto Aoshima"},{id:"69218",title:"Dr.",name:"Kazuyoshi",middleName:null,surname:"Yata",slug:"kazuyoshi-yata",fullName:"Kazuyoshi Yata"}]},{id:"51764",doi:"10.5772/64670",title:"Samarium-153 Therapy and Radiation Dose for Prostate Cancer",slug:"samarium-153-therapy-and-radiation-dose-for-prostate-cancer",totalDownloads:1754,totalCrossrefCites:2,totalDimensionsCites:3,abstract:"Prostate cancer (PC) is one of the most frequent malignancies in Western countries. At initial diagnosis, bone metastases are present in 15–30% of cases. These metastases cause some complications including bone fracture, hypercalcemia, and bone pain, which significantly affect patients’ quality of life. Radionuclide treatment was created as an alternative to external palliative radiotherapy in the treatment of bone pain arising from bone metastasis of PC. The basic principle of the radionuclide treatment of pain is that the uptake of radioactive material is kept in a high amount that is enough to constitute a proper clinical impact in the tumor, and it is kept at a low dose enough to avoid the occurrence of significant adverse effects in other organs (commonly in the bone marrow). Samarium-153 ethylenediaminetetramethylenephosphonic acid (153Sm-EDTMP) is a radiopharmaceutical compound that has an affinity for skeletal tissue and concentrates in areas of increased bone turnover, localizes in the skeleton, and is excreted via glomerular filtration. Medical staff preparing and administering radiopharmaceuticals in nuclear medicine, whether for diagnostic imaging or for therapeutic application, may receive significant radiation doses to their hands, particularly the fingers. Sm-153 treatment can be used as an effective and safe treatment alternative in the management of metastatic bone pain. Radiation protection of the public and the environment after Sm-153 EDTMP therapy is important.",book:{id:"5231",slug:"prostate-cancer-leading-edge-diagnostic-procedures-and-treatments",title:"Prostate Cancer",fullTitle:"Prostate Cancer - Leading-edge Diagnostic Procedures and Treatments"},signatures:"Yasemin Parlak, Gul Gumuser and Elvan Sayit",authors:[{id:"181431",title:"Ph.D.",name:"Yasemin",middleName:null,surname:"Parlak",slug:"yasemin-parlak",fullName:"Yasemin Parlak"}]}],mostDownloadedChaptersLast30Days:[{id:"50862",title:"Oligometastatic Disease in Prostate Cancer: Advances in Diagnosis and Treatment",slug:"oligometastatic-disease-in-prostate-cancer-advances-in-diagnosis-and-treatment",totalDownloads:1731,totalCrossrefCites:0,totalDimensionsCites:1,abstract:"Prostate cancer (PC) is the second most common cancer in men and the fifth leading cause of death in men worldwide in 2012 [1]. Oligometastatic disease is defined as the presence of five or fewer metastatic or recurrent lesions that could be treated by local therapy to achieve long‐term survival or cure [2]. Androgen deprivation therapy is currently the accepted treatment of metastatic PC. However, the identification of oligometastatic disease in PC with the improvements in diagnostic imaging has lead to early treatment of these isolated metastases showing some benefit [3]. In this chapter, we aim to discuss the newer modalities used in the identification of oligometastatic disease in PC and the advances in treatment.",book:{id:"5231",slug:"prostate-cancer-leading-edge-diagnostic-procedures-and-treatments",title:"Prostate Cancer",fullTitle:"Prostate Cancer - Leading-edge Diagnostic Procedures and Treatments"},signatures:"Weranja Ranasinghe and Raj Persad",authors:[{id:"70411",title:"Mr.",name:"Weranja",middleName:null,surname:"Ranasinghe",slug:"weranja-ranasinghe",fullName:"Weranja Ranasinghe"},{id:"70414",title:"Mr.",name:"Raj",middleName:null,surname:"Persad",slug:"raj-persad",fullName:"Raj Persad"}]},{id:"51764",title:"Samarium-153 Therapy and Radiation Dose for Prostate Cancer",slug:"samarium-153-therapy-and-radiation-dose-for-prostate-cancer",totalDownloads:1754,totalCrossrefCites:2,totalDimensionsCites:3,abstract:"Prostate cancer (PC) is one of the most frequent malignancies in Western countries. At initial diagnosis, bone metastases are present in 15–30% of cases. These metastases cause some complications including bone fracture, hypercalcemia, and bone pain, which significantly affect patients’ quality of life. Radionuclide treatment was created as an alternative to external palliative radiotherapy in the treatment of bone pain arising from bone metastasis of PC. The basic principle of the radionuclide treatment of pain is that the uptake of radioactive material is kept in a high amount that is enough to constitute a proper clinical impact in the tumor, and it is kept at a low dose enough to avoid the occurrence of significant adverse effects in other organs (commonly in the bone marrow). Samarium-153 ethylenediaminetetramethylenephosphonic acid (153Sm-EDTMP) is a radiopharmaceutical compound that has an affinity for skeletal tissue and concentrates in areas of increased bone turnover, localizes in the skeleton, and is excreted via glomerular filtration. Medical staff preparing and administering radiopharmaceuticals in nuclear medicine, whether for diagnostic imaging or for therapeutic application, may receive significant radiation doses to their hands, particularly the fingers. Sm-153 treatment can be used as an effective and safe treatment alternative in the management of metastatic bone pain. Radiation protection of the public and the environment after Sm-153 EDTMP therapy is important.",book:{id:"5231",slug:"prostate-cancer-leading-edge-diagnostic-procedures-and-treatments",title:"Prostate Cancer",fullTitle:"Prostate Cancer - Leading-edge Diagnostic Procedures and Treatments"},signatures:"Yasemin Parlak, Gul Gumuser and Elvan Sayit",authors:[{id:"181431",title:"Ph.D.",name:"Yasemin",middleName:null,surname:"Parlak",slug:"yasemin-parlak",fullName:"Yasemin Parlak"}]},{id:"51360",title:"Rehabilitation of Patients with Prostate Cancer",slug:"rehabilitation-of-patients-with-prostate-cancer",totalDownloads:1628,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Cancer rehabilitation involves helping an individual with cancer to regain maximum psychological, physical, cognitive, social, and vocational functioning with the limits up to disease and its treatments in an interdisciplinary team concept. Prostate cancer is one of the most frequent male malignancies in the world. Prostate cancer treatment options have the risk of some side effects including loss of muscle strength, fatigue, pain, urinary incontinence, erectile dysfunction, cognitive problems, decrease in bone density, weight loss, gynecomastia, and hot flushes with stress-related psychosocial problems. Relative to other cancers, the prognosis of men with prostate cancer is much better and the potential treatment-related side effects have important implications which can affect the health-related quality of life (QOL) of this population. Recent studies support the efficiency of multimodal treatment to recognize, prevent, and increase functional recovery with an interdisciplinary rehabilitation team which includes physical and occupational therapists. This chapter describes briefly cancer rehabilitation and rehabilitation approaches at every stage of patients with prostate cancer for minimizing the morbidity rate associated with prostate cancer treatment to increase occupational participation and improve QOL.",book:{id:"5231",slug:"prostate-cancer-leading-edge-diagnostic-procedures-and-treatments",title:"Prostate Cancer",fullTitle:"Prostate Cancer - Leading-edge Diagnostic Procedures and Treatments"},signatures:"Meral Huri, Burcu Semin Akel and Sedef Şahin",authors:[{id:"171525",title:"Dr.",name:"Meral",middleName:null,surname:"Huri",slug:"meral-huri",fullName:"Meral Huri"},{id:"183078",title:"Dr.",name:"Burcu Semin",middleName:null,surname:"Akel",slug:"burcu-semin-akel",fullName:"Burcu Semin Akel"},{id:"183079",title:"Ph.D.",name:"Sedef",middleName:null,surname:"Şahin",slug:"sedef-sahin",fullName:"Sedef Şahin"}]},{id:"51717",title:"Maspin Expression and its Metastasis Suppressing Function in Prostate Cancer",slug:"maspin-expression-and-its-metastasis-suppressing-function-in-prostate-cancer",totalDownloads:1493,totalCrossrefCites:2,totalDimensionsCites:3,abstract:"Mammary Serine Protease Inhibitor (Maspin) is a unique member of the serpin family with tumor suppressive properties. Maspin is a secreted protein encoded by a class II tumor suppressor gene, expressed in normal prostate luminal and basal cells but reduced or absent in prostate cancer. Currently, there is a consensus that maspin expression in prostate cancer is an indicator of a better prognosis and is a predictive marker for therapeutic response in prostate cancer. Experimental evidence consistently indicates that maspin suppresses tumor growth, invasion, and metastasis and promotes apoptosis in cancer cells. In this chapter, we discuss regulation of maspin expression, binding partners of maspin, and pathways through which maspin exerts its tumor suppressive properties. In addition, we summarize the progress that investigators have made in clarifying the role of maspin in prostate cancer biology and in assessing its role as a diagnostic marker and therapeutic agent.",book:{id:"5231",slug:"prostate-cancer-leading-edge-diagnostic-procedures-and-treatments",title:"Prostate Cancer",fullTitle:"Prostate Cancer - Leading-edge Diagnostic Procedures and Treatments"},signatures:"Eswar Shankar, Mario Candamo, Gregory T. MacLennan and Sanjay\nGupta",authors:[{id:"182205",title:"Dr.",name:"Sanjay",middleName:null,surname:"Gupta",slug:"sanjay-gupta",fullName:"Sanjay Gupta"},{id:"187577",title:"Dr.",name:"Eswar",middleName:null,surname:"Shankar",slug:"eswar-shankar",fullName:"Eswar Shankar"},{id:"187578",title:"Mr.",name:"Mario",middleName:null,surname:"Candamo",slug:"mario-candamo",fullName:"Mario Candamo"},{id:"187579",title:"Prof.",name:"Gregory",middleName:null,surname:"MacLennan",slug:"gregory-maclennan",fullName:"Gregory MacLennan"}]},{id:"50734",title:"Genetic Association Studies on Prostate Cancer",slug:"genetic-association-studies-on-prostate-cancer",totalDownloads:1444,totalCrossrefCites:0,totalDimensionsCites:1,abstract:"The modern research on molecular basis of prostate cancer (PCa) development includes studies aiming to identify potential genetic markers which could be used in diagnostics and/or monitoring of PCa. Genome-wide association studies (GWASs) have identified over 75 variants associated with PCa risk. One of the major PCa-related regions identified through GWASs is found to be a segment of 8q24. Other important PCa-susceptibility regions are 17q12, 17q24, 10q11, and 19q13. Candidate-gene based approach has also provided evidence of association between PCa risk and genetic variants located in functionally significant genes (both protein-coding and noncoding RNA genes) involved in normal prostatic cell growth, malignant transformation, or in the development of metastases. Nevertheless, the success of these studies is questionable, since numerous candidates for PCa-susceptibility variants were identified, but these results failed to replicate. The main aim of both types of genetic association studies on PCa is the identification of potential PCa genetic markers which could be used for constructing reliable algorithms for evaluating the risk for PCa development and/or PCa progression.",book:{id:"5231",slug:"prostate-cancer-leading-edge-diagnostic-procedures-and-treatments",title:"Prostate Cancer",fullTitle:"Prostate Cancer - Leading-edge Diagnostic Procedures and Treatments"},signatures:"Zorana Nikolić, Dušanka Savić Pavićević and Goran Brajušković",authors:[{id:"182450",title:"Prof.",name:"Goran",middleName:null,surname:"Brajuskovic",slug:"goran-brajuskovic",fullName:"Goran Brajuskovic"}]}],onlineFirstChaptersFilter:{topicId:"1072",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:8,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:286,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:9,numberOfPublishedChapters:101,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"10",title:"Physiology",doi:"10.5772/intechopen.72796",issn:"2631-8261",scope:"Modern physiology requires a comprehensive understanding of the integration of tissues and organs throughout the mammalian body, including the cooperation between structure and function at the cellular and molecular levels governed by gene and protein expression. While a daunting task, learning is facilitated by identifying common and effective signaling pathways mediated by a variety of factors employed by nature to preserve and sustain homeostatic life. \r\nAs a leading example, the cellular interaction between intracellular concentration of Ca+2 increases, and changes in plasma membrane potential is integral for coordinating blood flow, governing the exocytosis of neurotransmitters, and modulating gene expression and cell effector secretory functions. Furthermore, in this manner, understanding the systemic interaction between the cardiovascular and nervous systems has become more important than ever as human populations' life prolongation, aging and mechanisms of cellular oxidative signaling are utilised for sustaining life. \r\nAltogether, physiological research enables our identification of distinct and precise points of transition from health to the development of multimorbidity throughout the inevitable aging disorders (e.g., diabetes, hypertension, chronic kidney disease, heart failure, peptic ulcer, inflammatory bowel disease, age-related macular degeneration, cancer). With consideration of all organ systems (e.g., brain, heart, lung, gut, skeletal and smooth muscle, liver, pancreas, kidney, eye) and the interactions thereof, this Physiology Series will address the goals of resolving (1) Aging physiology and chronic disease progression (2) Examination of key cellular pathways as they relate to calcium, oxidative stress, and electrical signaling, and (3) how changes in plasma membrane produced by lipid peroxidation products can affect aging physiology, covering new research in the area of cell, human, plant and animal physiology.",coverUrl:"https://cdn.intechopen.com/series/covers/10.jpg",latestPublicationDate:"May 14th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:11,editor:{id:"35854",title:"Prof.",name:"Tomasz",middleName:null,surname:"Brzozowski",slug:"tomasz-brzozowski",fullName:"Tomasz Brzozowski",profilePictureURL:"https://mts.intechopen.com/storage/users/35854/images/system/35854.jpg",biography:"Prof. Dr. Thomas Brzozowski works as a professor of Human Physiology and is currently Chairman at the Department of Physiology and is V-Dean of the Medical Faculty at Jagiellonian University Medical College, Cracow, Poland. His primary area of interest is physiology and pathophysiology of the gastrointestinal (GI) tract, with the major focus on the mechanism of GI mucosal defense, protection, and ulcer healing. He was a postdoctoral NIH fellow at the University of California and the Gastroenterology VA Medical Center, Irvine, Long Beach, CA, USA, and at the Gastroenterology Clinics Erlangen-Nuremberg and Munster in Germany. He has published 290 original articles in some of the most prestigious scientific journals and seven book chapters on the pathophysiology of the GI tract, gastroprotection, ulcer healing, drug therapy of peptic ulcers, hormonal regulation of the gut, and inflammatory bowel disease.",institutionString:null,institution:{name:"Jagiellonian University",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:7,paginationItems:[{id:"10",title:"Animal Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/10.jpg",editor:{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"306970",title:"Mr.",name:"Amin",middleName:null,surname:"Tamadon",slug:"amin-tamadon",fullName:"Amin Tamadon",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002oHR5wQAG/Profile_Picture_1623910304139",institutionString:null,institution:{name:"Bushehr University of Medical Sciences",institutionURL:null,country:{name:"Iran"}}},{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null},{id:"245306",title:"Dr.",name:"María Luz",middleName:null,surname:"Garcia Pardo",slug:"maria-luz-garcia-pardo",fullName:"María Luz Garcia Pardo",profilePictureURL:"https://mts.intechopen.com/storage/users/245306/images/system/245306.png",institutionString:null,institution:{name:"Miguel Hernandez University",institutionURL:null,country:{name:"Spain"}}},{id:"283315",title:"Prof.",name:"Samir",middleName:null,surname:"El-Gendy",slug:"samir-el-gendy",fullName:"Samir El-Gendy",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRduYQAS/Profile_Picture_1606215849748",institutionString:null,institution:{name:"Alexandria University",institutionURL:null,country:{name:"Egypt"}}}]},{id:"11",title:"Cell Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/11.jpg",editor:{id:"133493",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",profilePictureURL:"https://mts.intechopen.com/storage/users/133493/images/3091_n.jpg",biography:"Prof. Dr. Angel Catalá \r\nShort Biography Angel Catalá was born in Rodeo (San Juan, Argentina). He studied \r\nchemistry at the Universidad Nacional de La Plata, Argentina, where received aPh.D. degree in chemistry (Biological Branch) in 1965. From\r\n1964 to 1974, he worked as Assistant in Biochemistry at the School of MedicineUniversidad Nacional de La Plata, Argentina. From 1974 to 1976, he was a Fellowof the National Institutes of Health (NIH) at the University of Connecticut, Health Center, USA. From 1985 to 2004, he served as a Full Professor oBiochemistry at the Universidad Nacional de La Plata, Argentina. He is Member ofthe National Research Council (CONICET), Argentina, and Argentine Society foBiochemistry and Molecular Biology (SAIB). His laboratory has been interested for manyears in the lipid peroxidation of biological membranes from various tissues and different species. Professor Catalá has directed twelve doctoral theses, publishedover 100 papers in peer reviewed journals, several chapters in books andtwelve edited books. Angel Catalá received awards at the 40th InternationaConference Biochemistry of Lipids 1999: Dijon (France). W inner of the Bimbo PanAmerican Nutrition, Food Science and Technology Award 2006 and 2012, South AmericaHuman Nutrition, Professional Category. 2006 award in pharmacology, Bernardo\r\nHoussay, in recognition of his meritorious works of research. Angel Catalá belongto the Editorial Board of Journal of lipids, International Review of Biophysical ChemistryFrontiers in Membrane Physiology and Biophysics, World Journal oExperimental Medicine and Biochemistry Research International, W orld Journal oBiological Chemistry, Oxidative Medicine and Cellular Longevity, Diabetes and thePancreas, International Journal of Chronic Diseases & Therapy, International Journal oNutrition, Co-Editor of The Open Biology Journal.",institutionString:null,institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"186048",title:"Prof.",name:"Ines",middleName:null,surname:"Drenjančević",slug:"ines-drenjancevic",fullName:"Ines Drenjančević",profilePictureURL:"https://mts.intechopen.com/storage/users/186048/images/5818_n.jpg",institutionString:null,institution:{name:"University of Osijek",institutionURL:null,country:{name:"Croatia"}}},{id:"187859",title:"Prof.",name:"Kusal",middleName:"K.",surname:"Das",slug:"kusal-das",fullName:"Kusal Das",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBDeQAO/Profile_Picture_1623411145568",institutionString:"BLDE (Deemed to be University), India",institution:null},{id:"79615",title:"Dr.",name:"Robson",middleName:null,surname:"Faria",slug:"robson-faria",fullName:"Robson Faria",profilePictureURL:"https://mts.intechopen.com/storage/users/79615/images/system/79615.png",institutionString:null,institution:{name:"Oswaldo Cruz Foundation",institutionURL:null,country:{name:"Brazil"}}},{id:"84459",title:"Prof.",name:"Valerie",middleName:null,surname:"Chappe",slug:"valerie-chappe",fullName:"Valerie Chappe",profilePictureURL:"https://mts.intechopen.com/storage/users/84459/images/system/84459.jpg",institutionString:null,institution:{name:"Dalhousie University",institutionURL:null,country:{name:"Canada"}}}]},{id:"12",title:"Human Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/12.jpg",editor:{id:"195829",title:"Prof.",name:"Kunihiro",middleName:null,surname:"Sakuma",slug:"kunihiro-sakuma",fullName:"Kunihiro Sakuma",profilePictureURL:"https://mts.intechopen.com/storage/users/195829/images/system/195829.jpg",biography:"Professor Kunihiro Sakuma, Ph.D., currently works in the Institute for Liberal Arts at the Tokyo Institute of Technology. He is a physiologist working in the field of skeletal muscle. He was awarded his sports science diploma in 1995 by the University of Tsukuba and began his scientific work at the Department of Physiology, Aichi Human Service Center, focusing on the molecular mechanism of congenital muscular dystrophy and normal muscle regeneration. His interest later turned to the molecular mechanism and attenuating strategy of sarcopenia (age-related muscle atrophy). His opinion is to attenuate sarcopenia by improving autophagic defects using nutrient- and pharmaceutical-based treatments.",institutionString:null,institution:{name:"Tokyo Institute of Technology",institutionURL:null,country:{name:"Japan"}}},editorTwo:null,editorThree:{id:"331519",title:"Dr.",name:"Kotomi",middleName:null,surname:"Sakai",slug:"kotomi-sakai",fullName:"Kotomi Sakai",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000031QtFXQA0/Profile_Picture_1637053227318",biography:"Senior researcher Kotomi Sakai, Ph.D., MPH, works at the Research Organization of Science and Technology in Ritsumeikan University. She is a researcher in the geriatric rehabilitation and public health field. She received Ph.D. from Nihon University and MPH from St.Luke’s International University. Her main research interest is sarcopenia in older adults, especially its association with nutritional status. Additionally, to understand how to maintain and improve physical function in older adults, to conduct studies about the mechanism of sarcopenia and determine when possible interventions are needed.",institutionString:null,institution:{name:"Ritsumeikan University",institutionURL:null,country:{name:"Japan"}}},editorialBoard:[{id:"213786",title:"Dr.",name:"Henrique P.",middleName:null,surname:"Neiva",slug:"henrique-p.-neiva",fullName:"Henrique P. Neiva",profilePictureURL:"https://mts.intechopen.com/storage/users/213786/images/system/213786.png",institutionString:null,institution:{name:"University of Beira Interior",institutionURL:null,country:{name:"Portugal"}}},{id:"39275",title:"Prof.",name:"Herbert Ryan",middleName:null,surname:"Marini",slug:"herbert-ryan-marini",fullName:"Herbert Ryan Marini",profilePictureURL:"https://mts.intechopen.com/storage/users/39275/images/9459_n.jpg",institutionString:null,institution:{name:"University of Messina",institutionURL:null,country:{name:"Italy"}}},{id:"196218",title:"Dr.",name:"Pasquale",middleName:null,surname:"Cianci",slug:"pasquale-cianci",fullName:"Pasquale Cianci",profilePictureURL:"https://mts.intechopen.com/storage/users/196218/images/system/196218.png",institutionString:null,institution:{name:"University of Foggia",institutionURL:null,country:{name:"Italy"}}}]},{id:"13",title:"Plant Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/13.jpg",editor:{id:"332229",title:"Prof.",name:"Jen-Tsung",middleName:null,surname:"Chen",slug:"jen-tsung-chen",fullName:"Jen-Tsung Chen",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000031RJmlQAG/Profile_Picture_1600760167494",biography:"Dr. Jen-Tsung Chen is currently a professor at the National University of Kaohsiung in Taiwan. He teaches cell biology, genomics, proteomics, medicinal plant biotechnology, and plant tissue culture in college. Dr. Chen's research interests are bioactive compounds, chromatography techniques, in vitro culture, medicinal plants, phytochemicals, and plant biotechnology. He has published over 60 research papers, reviewed over 260 manuscripts, and edited at least 150 papers in international peer-review journals.",institutionString:null,institution:{name:"National University of Kaohsiung",institutionURL:null,country:{name:"Taiwan"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"313856",title:"Dr.",name:"Christophe",middleName:"F.E.",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano",profilePictureURL:"https://mts.intechopen.com/storage/users/313856/images/system/313856.png",institutionString:"University of Orléans",institution:{name:"University of Orléans",institutionURL:null,country:{name:"France"}}},{id:"33993",title:"Dr.",name:"Jose Carlos",middleName:null,surname:"Jimenez-Lopez",slug:"jose-carlos-jimenez-lopez",fullName:"Jose Carlos Jimenez-Lopez",profilePictureURL:"https://mts.intechopen.com/storage/users/33993/images/system/33993.jpg",institutionString:null,institution:{name:"Spanish National Research Council",institutionURL:null,country:{name:"Spain"}}},{id:"191770",title:"Dr.",name:"Mohamed A.",middleName:null,surname:"El-Esawi",slug:"mohamed-a.-el-esawi",fullName:"Mohamed A. El-Esawi",profilePictureURL:"https://mts.intechopen.com/storage/users/191770/images/system/191770.jpeg",institutionString:null,institution:{name:"Tanta University",institutionURL:null,country:{name:"Egypt"}}},{id:"247858",title:"Dr.",name:"Saddam",middleName:null,surname:"Hussain",slug:"saddam-hussain",fullName:"Saddam Hussain",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSF2aQAG/Profile_Picture_1625658281836",institutionString:null,institution:{name:"University of Agriculture Faisalabad",institutionURL:null,country:{name:"Pakistan"}}}]}]},overviewPageOFChapters:{paginationCount:43,paginationItems:[{id:"81796",title:"Apoptosis-Related Diseases and Peroxisomes",doi:"10.5772/intechopen.105052",signatures:"Meimei Wang, Yakun Liu, Ni Chen, Juan Wang and Ye Zhao",slug:"apoptosis-related-diseases-and-peroxisomes",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81723",title:"Peroxisomal Modulation as Therapeutic Alternative for Tackling Multiple Cancers",doi:"10.5772/intechopen.104873",signatures:"Shazia Usmani, Shadma Wahab, Abdul Hafeez, Shabana Khatoon and Syed Misbahul Hasan",slug:"peroxisomal-modulation-as-therapeutic-alternative-for-tackling-multiple-cancers",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81638",title:"Aging and Neuropsychiatric Disease: A General Overview of Prevalence and Trends",doi:"10.5772/intechopen.103102",signatures:"Jelena Milić",slug:"aging-and-neuropsychiatric-disease-a-general-overview-of-prevalence-and-trends",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81566",title:"New and Emerging Technologies for Integrative Ambulatory Autonomic Assessment and Intervention as a Catalyst in the Synergy of Remote Geocoded Biosensing, Algorithmic Networked Cloud Computing, Deep Learning, and Regenerative/Biomic Medicine: Further Real",doi:"10.5772/intechopen.104092",signatures:"Robert L. Drury",slug:"new-and-emerging-technologies-for-integrative-ambulatory-autonomic-assessment-and-intervention-as-a-",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}}]},overviewPagePublishedBooks:{paginationCount:11,paginationItems:[{type:"book",id:"7264",title:"Calcium and Signal Transduction",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7264.jpg",slug:"calcium-and-signal-transduction",publishedDate:"October 24th 2018",editedByType:"Edited by",bookSignature:"John N. Buchholz and Erik J. Behringer",hash:"e373a3d1123dbd45fddf75d90e3e7c38",volumeInSeries:1,fullTitle:"Calcium and Signal Transduction",editors:[{id:"89438",title:"Dr.",name:"John N.",middleName:null,surname:"Buchholz",slug:"john-n.-buchholz",fullName:"John N. Buchholz",profilePictureURL:"https://mts.intechopen.com/storage/users/89438/images/6463_n.jpg",biography:"Full Professor and Vice Chair, Division of Pharmacology, Loma Linda University, School of Medicine. He received his B.S. Degree in Biology at La Sierra University, Riverside California (1980) and a PhD in Pharmacology from Loma Linda University School of Medicine (1988). Post-Doctoral Fellow at University of California, Irvine, College of Medicine 1989-1992 with a focus on autonomic nerve function in blood vessels and the impact of aging on the function of these nerves and overall blood vessel function. Twenty years of research funding and served on NIH R01 review panels, Editor-In-Chief of Edorium Journal of Aging Research. Serves as a peer reviewer for biomedical journals. Military Reserve Officer serving with the 100 Support Command, 100 Troop Command, 40 Infantry Division, CA National Guard.",institutionString:null,institution:{name:"Loma Linda University",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"6925",title:"Endoplasmic Reticulum",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6925.jpg",slug:"endoplasmic-reticulum",publishedDate:"April 17th 2019",editedByType:"Edited by",bookSignature:"Angel Català",hash:"a9e90d2dbdbc46128dfe7dac9f87c6b4",volumeInSeries:2,fullTitle:"Endoplasmic Reticulum",editors:[{id:"196544",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",profilePictureURL:"https://mts.intechopen.com/storage/users/196544/images/system/196544.jpg",biography:"Angel Catalá studied chemistry at Universidad Nacional de La Plata, Argentina, where he received a Ph.D. in Chemistry (Biological Branch) in 1965. From 1964 to 1974, he worked as an Assistant in Biochemistry at the School of Medicine at the same university. From 1974 to 1976, he was a fellow of the National Institutes of Health (NIH) at the University of Connecticut, Health Center, USA. From 1985 to 2004, he served as a Full Professor of Biochemistry at the Universidad Nacional de La Plata. He is a member of the National Research Council (CONICET), Argentina, and the Argentine Society for Biochemistry and Molecular Biology (SAIB). His laboratory has been interested for many years in the lipid peroxidation of biological membranes from various tissues and different species. Dr. Catalá has directed twelve doctoral theses, published more than 100 papers in peer-reviewed journals, several chapters in books, and edited twelve books. He received awards at the 40th International Conference Biochemistry of Lipids 1999 in Dijon, France. He is the winner of the Bimbo Pan-American Nutrition, Food Science and Technology Award 2006 and 2012, South America, Human Nutrition, Professional Category. In 2006, he won the Bernardo Houssay award in pharmacology, in recognition of his meritorious works of research. Dr. Catalá belongs to the editorial board of several journals including Journal of Lipids; International Review of Biophysical Chemistry; Frontiers in Membrane Physiology and Biophysics; World Journal of Experimental Medicine and Biochemistry Research International; World Journal of Biological Chemistry, Diabetes, and the Pancreas; International Journal of Chronic Diseases & Therapy; and International Journal of Nutrition. He is the co-editor of The Open Biology Journal and associate editor for Oxidative Medicine and Cellular Longevity.",institutionString:"Universidad Nacional de La Plata",institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}}]},{type:"book",id:"6924",title:"Adenosine Triphosphate in Health and Disease",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6924.jpg",slug:"adenosine-triphosphate-in-health-and-disease",publishedDate:"April 24th 2019",editedByType:"Edited by",bookSignature:"Gyula Mozsik",hash:"04106c232a3c68fec07ba7cf00d2522d",volumeInSeries:3,fullTitle:"Adenosine Triphosphate in Health and Disease",editors:[{id:"58390",title:"Dr.",name:"Gyula",middleName:null,surname:"Mozsik",slug:"gyula-mozsik",fullName:"Gyula Mozsik",profilePictureURL:"https://mts.intechopen.com/storage/users/58390/images/system/58390.png",biography:"Gyula Mózsik MD, Ph.D., ScD (med), is an emeritus professor of Medicine at the First Department of Medicine, Univesity of Pécs, Hungary. He was head of this department from 1993 to 2003. His specializations are medicine, gastroenterology, clinical pharmacology, clinical nutrition, and dietetics. His research fields are biochemical pharmacological examinations in the human gastrointestinal (GI) mucosa, mechanisms of retinoids, drugs, capsaicin-sensitive afferent nerves, and innovative pharmacological, pharmaceutical, and nutritional (dietary) research in humans. He has published about 360 peer-reviewed papers, 197 book chapters, 692 abstracts, 19 monographs, and has edited 37 books. He has given about 1120 regular and review lectures. He has organized thirty-eight national and international congresses and symposia. He is the founder of the International Conference on Ulcer Research (ICUR); International Union of Pharmacology, Gastrointestinal Section (IUPHAR-GI); Brain-Gut Society symposiums, and gastrointestinal cytoprotective symposiums. He received the Andre Robert Award from IUPHAR-GI in 2014. Fifteen of his students have been appointed as full professors in Egypt, Cuba, and Hungary.",institutionString:"University of Pécs",institution:{name:"University of Pecs",institutionURL:null,country:{name:"Hungary"}}}]},{type:"book",id:"8008",title:"Antioxidants",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8008.jpg",slug:"antioxidants",publishedDate:"November 6th 2019",editedByType:"Edited by",bookSignature:"Emad Shalaby",hash:"76361b4061e830906267933c1c670027",volumeInSeries:5,fullTitle:"Antioxidants",editors:[{id:"63600",title:"Prof.",name:"Emad",middleName:null,surname:"Shalaby",slug:"emad-shalaby",fullName:"Emad Shalaby",profilePictureURL:"https://mts.intechopen.com/storage/users/63600/images/system/63600.png",biography:"Dr. Emad Shalaby is a professor of biochemistry on the Biochemistry Department Faculty of Agriculture, Cairo University. He\nreceived a short-term scholarship to carry out his post-doctoral\nstudies abroad, from Japan International Cooperation Agency\n(JICA), in coordination with the Egyptian government. Dr.\nShalaby speaks fluent English and his native Arabic. He has 77\ninternationally published research papers, has attended 15 international conferences, and has contributed to 18 international books and chapters.\nDr. Shalaby works as a reviewer on over one hundred international journals and is\non the editorial board of more than twenty-five international journals. He is a member of seven international specialized scientific societies, besides his local one, and\nhe has won seven prizes.",institutionString:"Cairo University",institution:{name:"Cairo University",institutionURL:null,country:{name:"Egypt"}}}]}]},openForSubmissionBooks:{paginationCount:4,paginationItems:[{id:"11445",title:"Multi-Agent Technologies and Machine Learning",coverURL:"https://cdn.intechopen.com/books/images_new/11445.jpg",hash:"d980826615baa6e33456e2a79064c5e8",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"March 29th 2022",isOpenForSubmission:!0,editors:[{id:"265237",title:"Prof.",name:"Igor",surname:"Sheremet",slug:"igor-sheremet",fullName:"Igor Sheremet"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11446",title:"Industry 4.0 - Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11446.jpg",hash:"be984f45b90c1003798661ef885d8a34",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 12th 2022",isOpenForSubmission:!0,editors:[{id:"303193",title:"Dr.",name:"Meisam",surname:"Gordan",slug:"meisam-gordan",fullName:"Meisam Gordan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11448",title:"Artificial Neural Networks - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11448.jpg",hash:"e57ff97a39cfc6fe68a1ac62b503dbe9",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 3rd 2022",isOpenForSubmission:!0,editors:[{id:"22866",title:"Dr.",name:"Chi Leung Patrick",surname:"Hui",slug:"chi-leung-patrick-hui",fullName:"Chi Leung Patrick Hui"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11447",title:"Swarm Intelligence - Recent Advances and Current Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11447.jpg",hash:"f68e3c3430a74fc7a7eb97f6ea2bb42e",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 14th 2022",isOpenForSubmission:!0,editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:17,paginationItems:[{id:"81751",title:"NanoBioSensors: From Electrochemical Sensors Improvement to Theranostic Applications",doi:"10.5772/intechopen.102552",signatures:"Anielle C.A. Silva, Eliete A. Alvin, Lais S. de Jesus, Caio C.L. de França, Marílya P.G. da Silva, Samaysa L. Lins, Diógenes Meneses, Marcela R. Lemes, Rhanoica O. Guerra, Marcos V. da Silva, Carlo J.F. de Oliveira, Virmondes Rodrigues Junior, Renata M. Etchebehere, Fabiane C. de Abreu, Bruno G. Lucca, Sanívia A.L. Pereira, Rodrigo C. Rosa and Noelio O. Dantas",slug:"nanobiosensors-from-electrochemical-sensors-improvement-to-theranostic-applications",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81766",title:"Evolution of Organoids in Oncology",doi:"10.5772/intechopen.104251",signatures:"Allen Thayakumar Basanthakumar, Janitha Chandrasekhar Darlybai and Jyothsna Ganesh",slug:"evolution-of-organoids-in-oncology",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81678",title:"Developmental Studies on Practical Enzymatic Phosphate Ion Biosensors and Microbial BOD Biosensors, and New Insights into the Future Perspectives of These Biosensor Fields",doi:"10.5772/intechopen.104377",signatures:"Hideaki Nakamura",slug:"developmental-studies-on-practical-enzymatic-phosphate-ion-biosensors-and-microbial-bod-biosensors-a",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hideaki",surname:"Nakamura"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81547",title:"Organoids and Commercialization",doi:"10.5772/intechopen.104706",signatures:"Anubhab Mukherjee, Aprajita Sinha, Maheshree Maibam, Bharti Bisht and Manash K. Paul",slug:"organoids-and-commercialization",totalDownloads:28,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81412",title:"Mathematical Morphology and the Heart Signals",doi:"10.5772/intechopen.104113",signatures:"Taouli Sidi Ahmed",slug:"mathematical-morphology-and-the-heart-signals",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81360",title:"Deep Learning Algorithms for Efficient Analysis of ECG Signals to Detect Heart Disorders",doi:"10.5772/intechopen.103075",signatures:"Sumagna Dey, Rohan Pal and Saptarshi Biswas",slug:"deep-learning-algorithms-for-efficient-analysis-of-ecg-signals-to-detect-heart-disorders",totalDownloads:31,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81294",title:"Applications of Neural Organoids in Neurodevelopment and Regenerative Medicine",doi:"10.5772/intechopen.104044",signatures:"Jing Gong, Jiahui Kang, Minghui Li, Xiao Liu, Jun Yang and Haiwei Xu",slug:"applications-of-neural-organoids-in-neurodevelopment-and-regenerative-medicine",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81318",title:"Retinal Organoids over the Decade",doi:"10.5772/intechopen.104258",signatures:"Jing Yuan and Zi-Bing Jin",slug:"retinal-organoids-over-the-decade",totalDownloads:38,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81068",title:"Characteristic Profiles of Heart Rate Variability in Depression and Anxiety",doi:"10.5772/intechopen.104205",signatures:"Toshikazu Shinba",slug:"characteristic-profiles-of-heart-rate-variability-in-depression-and-anxiety",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80691",title:"Applications of Quantum Mechanics, Laws of Classical Physics, and Differential Calculus to Evaluate Source Localization According to the Electroencephalogram",doi:"10.5772/intechopen.102831",signatures:"Kristin S. Williams",slug:"applications-of-quantum-mechanics-laws-of-classical-physics-and-differential-calculus-to-evaluate-so",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}}]},subseriesFiltersForOFChapters:[{caption:"Bioinformatics and Medical Informatics",value:7,count:13,group:"subseries"}],publishedBooks:{paginationCount:8,paginationItems:[{type:"book",id:"10859",title:"Data Mining",subtitle:"Concepts and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10859.jpg",slug:"data-mining-concepts-and-applications",publishedDate:"March 30th 2022",editedByType:"Edited by",bookSignature:"Ciza Thomas",hash:"63a4e514e537d3962cf53ef1c6b9d5eb",volumeInSeries:8,fullTitle:"Data Mining - Concepts and Applications",editors:[{id:"43680",title:"Prof.",name:"Ciza",middleName:null,surname:"Thomas",slug:"ciza-thomas",fullName:"Ciza Thomas",profilePictureURL:"https://mts.intechopen.com/storage/users/43680/images/system/43680.jpeg",institutionString:null,institution:{name:"Government of Kerala",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10651",title:"Machine Learning",subtitle:"Algorithms, Models and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10651.jpg",slug:"machine-learning-algorithms-models-and-applications",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Jaydip Sen",hash:"6208156401c496e0a4ca5ff4265324cc",volumeInSeries:7,fullTitle:"Machine Learning - Algorithms, Models and Applications",editors:[{id:"4519",title:"Prof.",name:"Jaydip",middleName:null,surname:"Sen",slug:"jaydip-sen",fullName:"Jaydip Sen",profilePictureURL:"https://mts.intechopen.com/storage/users/4519/images/system/4519.jpeg",institutionString:"Praxis Business School",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9869",title:"Self-Driving Vehicles and Enabling Technologies",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9869.jpg",slug:"self-driving-vehicles-and-enabling-technologies",publishedDate:"September 22nd 2021",editedByType:"Edited by",bookSignature:"Marian Găiceanu",hash:"fd451ca2e4785ef098e04b7d695a18d9",volumeInSeries:6,fullTitle:"Self-Driving Vehicles and Enabling Technologies",editors:[{id:"169608",title:"Prof.",name:"Marian",middleName:null,surname:"Găiceanu",slug:"marian-gaiceanu",fullName:"Marian Găiceanu",profilePictureURL:"https://mts.intechopen.com/storage/users/169608/images/system/169608.png",institutionString:'"Dunarea de Jos" University of Galati',institution:{name:'"Dunarea de Jos" University of Galati',institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9958",title:"Artificial Intelligence",subtitle:"Latest Advances, New Paradigms and Novel Applications",coverURL:"https://cdn.intechopen.com/books/images_new/9958.jpg",slug:"artificial-intelligence-latest-advances-new-paradigms-and-novel-applications",publishedDate:"September 1st 2021",editedByType:"Edited by",bookSignature:"Eneko Osaba, Esther Villar, Jesús L. Lobo and Ibai Laña",hash:"39648fbfdaa11385097d62b1f13aad54",volumeInSeries:5,fullTitle:"Artificial Intelligence - Latest Advances, New Paradigms and Novel Applications",editors:[{id:"221364",title:"Dr.",name:"Eneko",middleName:null,surname:"Osaba",slug:"eneko-osaba",fullName:"Eneko Osaba",profilePictureURL:"https://mts.intechopen.com/storage/users/221364/images/system/221364.jpg",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",institutionString:"Tecnalia Research & Innovation",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Evolutionary Computation",value:25,count:1},{group:"subseries",caption:"Machine Learning and Data Mining",value:26,count:3},{group:"subseries",caption:"Applied Intelligence",value:22,count:4}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1},{group:"publicationYear",caption:"2021",value:2021,count:3},{group:"publicationYear",caption:"2020",value:2020,count:2},{group:"publicationYear",caption:"2019",value:2019,count:2}],authors:{paginationCount:302,paginationItems:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/198499/images/system/198499.jpeg",biography:"Dr. Daniel Glossman-Mitnik is currently a Titular Researcher at the Centro de Investigación en Materiales Avanzados (CIMAV), Chihuahua, Mexico, as well as a National Researcher of Level III at the Consejo Nacional de Ciencia y Tecnología, Mexico. His research interest focuses on computational chemistry and molecular modeling of diverse systems of pharmacological, food, and alternative energy interests by resorting to DFT and Conceptual DFT. He has authored a coauthored more than 255 peer-reviewed papers, 32 book chapters, and 2 edited books. He has delivered speeches at many international and domestic conferences. He serves as a reviewer for more than eighty international journals, books, and research proposals as well as an editor for special issues of renowned scientific journals.",institutionString:"Centro de Investigación en Materiales Avanzados",institution:{name:"Centro de Investigación en Materiales Avanzados",country:{name:"Mexico"}}},{id:"76477",title:"Prof.",name:"Mirza",middleName:null,surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/76477/images/system/76477.png",biography:"Dr. Mirza Hasanuzzaman is a Professor of Agronomy at Sher-e-Bangla Agricultural University, Bangladesh. He received his Ph.D. in Plant Stress Physiology and Antioxidant Metabolism from Ehime University, Japan, with a scholarship from the Japanese Government (MEXT). Later, he completed his postdoctoral research at the Center of Molecular Biosciences, University of the Ryukyus, Japan, as a recipient of the Japan Society for the Promotion of Science (JSPS) postdoctoral fellowship. He was also the recipient of the Australian Government Endeavour Research Fellowship for postdoctoral research as an adjunct senior researcher at the University of Tasmania, Australia. Dr. Hasanuzzaman’s current work is focused on the physiological and molecular mechanisms of environmental stress tolerance. Dr. Hasanuzzaman has published more than 150 articles in peer-reviewed journals. He has edited ten books and written more than forty book chapters on important aspects of plant physiology, plant stress tolerance, and crop production. According to Scopus, Dr. Hasanuzzaman’s publications have received more than 10,500 citations with an h-index of 53. He has been named a Highly Cited Researcher by Clarivate. He is an editor and reviewer for more than fifty peer-reviewed international journals and was a recipient of the “Publons Peer Review Award” in 2017, 2018, and 2019. He has been honored by different authorities for his outstanding performance in various fields like research and education, and he has received the World Academy of Science Young Scientist Award (2014) and the University Grants Commission (UGC) Award 2018. He is a fellow of the Bangladesh Academy of Sciences (BAS) and the Royal Society of Biology.",institutionString:"Sher-e-Bangla Agricultural University",institution:{name:"Sher-e-Bangla Agricultural University",country:{name:"Bangladesh"}}},{id:"187859",title:"Prof.",name:"Kusal",middleName:"K.",surname:"Das",slug:"kusal-das",fullName:"Kusal Das",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBDeQAO/Profile_Picture_1623411145568",biography:"Kusal K. Das is a Distinguished Chair Professor of Physiology, Shri B. M. Patil Medical College and Director, Centre for Advanced Medical Research (CAMR), BLDE (Deemed to be University), Vijayapur, Karnataka, India. Dr. Das did his M.S. and Ph.D. in Human Physiology from the University of Calcutta, Kolkata. His area of research is focused on understanding of molecular mechanisms of heavy metal activated low oxygen sensing pathways in vascular pathophysiology. He has invented a new method of estimation of serum vitamin E. His expertise in critical experimental protocols on vascular functions in experimental animals was well documented by his quality of publications. He was a Visiting Professor of Medicine at University of Leeds, United Kingdom (2014-2016) and Tulane University, New Orleans, USA (2017). For his immense contribution in medical research Ministry of Science and Technology, Government of India conferred him 'G.P. Chatterjee Memorial Research Prize-2019” and he is also the recipient of 'Dr.Raja Ramanna State Scientist Award 2015” by Government of Karnataka. He is a Fellow of the Royal Society of Biology (FRSB), London and Honorary Fellow of Karnataka Science and Technology Academy, Department of Science and Technology, Government of Karnataka.",institutionString:"BLDE (Deemed to be University), India",institution:null},{id:"243660",title:"Dr.",name:"Mallanagouda Shivanagouda",middleName:null,surname:"Biradar",slug:"mallanagouda-shivanagouda-biradar",fullName:"Mallanagouda Shivanagouda Biradar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243660/images/system/243660.jpeg",biography:"M. S. Biradar is Vice Chancellor and Professor of Medicine of\nBLDE (Deemed to be University), Vijayapura, Karnataka, India.\nHe obtained his MD with a gold medal in General Medicine and\nhas devoted himself to medical teaching, research, and administrations. He has also immensely contributed to medical research\non vascular medicine, which is reflected by his numerous publications including books and book chapters. Professor Biradar was\nalso Visiting Professor at Tulane University School of Medicine, New Orleans, USA.",institutionString:"BLDE (Deemed to be University)",institution:{name:"BLDE University",country:{name:"India"}}},{id:"289796",title:"Dr.",name:"Swastika",middleName:null,surname:"Das",slug:"swastika-das",fullName:"Swastika Das",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/289796/images/system/289796.jpeg",biography:"Swastika N. Das is Professor of Chemistry at the V. P. Dr. P. G.\nHalakatti College of Engineering and Technology, BLDE (Deemed\nto be University), Vijayapura, Karnataka, India. She obtained an\nMSc, MPhil, and PhD in Chemistry from Sambalpur University,\nOdisha, India. Her areas of research interest are medicinal chemistry, chemical kinetics, and free radical chemistry. She is a member\nof the investigators who invented a new modified method of estimation of serum vitamin E. She has authored numerous publications including book\nchapters and is a mentor of doctoral curriculum at her university.",institutionString:"BLDEA’s V.P.Dr.P.G.Halakatti College of Engineering & Technology",institution:{name:"BLDE University",country:{name:"India"}}},{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/248459/images/system/248459.png",biography:"Akikazu Takada was born in Japan, 1935. After graduation from\nKeio University School of Medicine and finishing his post-graduate studies, he worked at Roswell Park Memorial Institute NY,\nUSA. He then took a professorship at Hamamatsu University\nSchool of Medicine. In thrombosis studies, he found the SK\npotentiator that enhances plasminogen activation by streptokinase. He is very much interested in simultaneous measurements\nof fatty acids, amino acids, and tryptophan degradation products. By using fatty\nacid analyses, he indicated that plasma levels of trans-fatty acids of old men were\nfar higher in the US than Japanese men. . He also showed that eicosapentaenoic acid\n(EPA) and docosahexaenoic acid (DHA) levels are higher, and arachidonic acid\nlevels are lower in Japanese than US people. By using simultaneous LC/MS analyses\nof plasma levels of tryptophan metabolites, he recently found that plasma levels of\nserotonin, kynurenine, or 5-HIAA were higher in patients of mono- and bipolar\ndepression, which are significantly different from observations reported before. In\nview of recent reports that plasma tryptophan metabolites are mainly produced by\nmicrobiota. He is now working on the relationships between microbiota and depression or autism.",institutionString:"Hamamatsu University School of Medicine",institution:{name:"Hamamatsu University School of Medicine",country:{name:"Japan"}}},{id:"137240",title:"Prof.",name:"Mohammed",middleName:null,surname:"Khalid",slug:"mohammed-khalid",fullName:"Mohammed Khalid",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/137240/images/system/137240.png",biography:"Mohammed Khalid received his B.S. degree in chemistry in 2000 and Ph.D. degree in physical chemistry in 2007 from the University of Khartoum, Sudan. He moved to School of Chemistry, Faculty of Science, University of Sydney, Australia in 2009 and joined Dr. Ron Clarke as a postdoctoral fellow where he worked on the interaction of ATP with the phosphoenzyme of the Na+/K+-ATPase and dual mechanisms of allosteric acceleration of the Na+/K+-ATPase by ATP; then he went back to Department of Chemistry, University of Khartoum as an assistant professor, and in 2014 he was promoted as an associate professor. In 2011, he joined the staff of Department of Chemistry at Taif University, Saudi Arabia, where he is currently an assistant professor. His research interests include the following: P-Type ATPase enzyme kinetics and mechanisms, kinetics and mechanisms of redox reactions, autocatalytic reactions, computational enzyme kinetics, allosteric acceleration of P-type ATPases by ATP, exploring of allosteric sites of ATPases, and interaction of ATP with ATPases located in cell membranes.",institutionString:"Taif University",institution:{name:"Taif University",country:{name:"Saudi Arabia"}}},{id:"63810",title:"Prof.",name:"Jorge",middleName:null,surname:"Morales-Montor",slug:"jorge-morales-montor",fullName:"Jorge Morales-Montor",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/63810/images/system/63810.png",biography:"Dr. Jorge Morales-Montor was recognized with the Lola and Igo Flisser PUIS Award for best graduate thesis at the national level in the field of parasitology. He received a fellowship from the Fogarty Foundation to perform postdoctoral research stay at the University of Georgia. He has 153 journal articles to his credit. He has also edited several books and published more than fifty-five book chapters. He is a member of the Mexican Academy of Sciences, Latin American Academy of Sciences, and the National Academy of Medicine. He has received more than thirty-five awards and has supervised numerous bachelor’s, master’s, and Ph.D. students. Dr. Morales-Montor is the past president of the Mexican Society of Parasitology.",institutionString:"National Autonomous University of Mexico",institution:{name:"National Autonomous University of Mexico",country:{name:"Mexico"}}},{id:"217215",title:"Dr.",name:"Palash",middleName:null,surname:"Mandal",slug:"palash-mandal",fullName:"Palash Mandal",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/217215/images/system/217215.jpeg",biography:null,institutionString:"Charusat University",institution:null},{id:"49739",title:"Dr.",name:"Leszek",middleName:null,surname:"Szablewski",slug:"leszek-szablewski",fullName:"Leszek Szablewski",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49739/images/system/49739.jpg",biography:"Leszek Szablewski is a professor of medical sciences. He received his M.S. in the Faculty of Biology from the University of Warsaw and his PhD degree from the Institute of Experimental Biology Polish Academy of Sciences. He habilitated in the Medical University of Warsaw, and he obtained his degree of Professor from the President of Poland. Professor Szablewski is the Head of Chair and Department of General Biology and Parasitology, Medical University of Warsaw. Professor Szablewski has published over 80 peer-reviewed papers in journals such as Journal of Alzheimer’s Disease, Biochim. Biophys. Acta Reviews of Cancer, Biol. Chem., J. Biomed. Sci., and Diabetes/Metabol. Res. Rev, Endocrine. He is the author of two books and four book chapters. He has edited four books, written 15 scripts for students, is the ad hoc reviewer of over 30 peer-reviewed journals, and editorial member of peer-reviewed journals. Prof. Szablewski’s research focuses on cell physiology, genetics, and pathophysiology. He works on the damage caused by lack of glucose homeostasis and changes in the expression and/or function of glucose transporters due to various diseases. He has given lectures, seminars, and exercises for students at the Medical University.",institutionString:"Medical University of Warsaw",institution:{name:"Medical University of Warsaw",country:{name:"Poland"}}},{id:"173123",title:"Dr.",name:"Maitham",middleName:null,surname:"Khajah",slug:"maitham-khajah",fullName:"Maitham Khajah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/173123/images/system/173123.jpeg",biography:"Dr. Maitham A. Khajah received his degree in Pharmacy from Faculty of Pharmacy, Kuwait University, in 2003 and obtained his PhD degree in December 2009 from the University of Calgary, Canada (Gastrointestinal Science and Immunology). Since January 2010 he has been assistant professor in Kuwait University, Faculty of Pharmacy, Department of Pharmacology and Therapeutics. His research interest are molecular targets for the treatment of inflammatory bowel disease (IBD) and the mechanisms responsible for immune cell chemotaxis. He cosupervised many students for the MSc Molecular Biology Program, College of Graduate Studies, Kuwait University. Ever since joining Kuwait University in 2010, he got various grants as PI and Co-I. He was awarded the Best Young Researcher Award by Kuwait University, Research Sector, for the Year 2013–2014. He was a member in the organizing committee for three conferences organized by Kuwait University, Faculty of Pharmacy, as cochair and a member in the scientific committee (the 3rd, 4th, and 5th Kuwait International Pharmacy Conference).",institutionString:"Kuwait University",institution:{name:"Kuwait University",country:{name:"Kuwait"}}},{id:"195136",title:"Dr.",name:"Aya",middleName:null,surname:"Adel",slug:"aya-adel",fullName:"Aya Adel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/195136/images/system/195136.jpg",biography:"Dr. Adel works as an Assistant Lecturer in the unit of Phoniatrics, Department of Otolaryngology, Ain Shams University in Cairo, Egypt. Dr. Adel is especially interested in joint attention and its impairment in autism spectrum disorder",institutionString:"Ain Shams University",institution:{name:"Ain Shams University",country:{name:"Egypt"}}},{id:"94911",title:"Dr.",name:"Boulenouar",middleName:null,surname:"Mesraoua",slug:"boulenouar-mesraoua",fullName:"Boulenouar Mesraoua",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94911/images/system/94911.png",biography:"Dr Boulenouar Mesraoua is the Associate Professor of Clinical Neurology at Weill Cornell Medical College-Qatar and a Consultant Neurologist at Hamad Medical Corporation at the Neuroscience Department; He graduated as a Medical Doctor from the University of Oran, Algeria; he then moved to Belgium, the City of Liege, for a Residency in Internal Medicine and Neurology at Liege University; after getting the Belgian Board of Neurology (with high marks), he went to the National Hospital for Nervous Diseases, Queen Square, London, United Kingdom for a fellowship in Clinical Neurophysiology, under Pr Willison ; Dr Mesraoua had also further training in Epilepsy and Continuous EEG Monitoring for two years (from 2001-2003) in the Neurophysiology department of Zurich University, Switzerland, under late Pr Hans Gregor Wieser ,an internationally known epileptologist expert. \n\nDr B. Mesraoua is the Director of the Neurology Fellowship Program at the Neurology Section and an active member of the newly created Comprehensive Epilepsy Program at Hamad General Hospital, Doha, Qatar; he is also Assistant Director of the Residency Program at the Qatar Medical School. \nDr B. Mesraoua's main interests are Epilepsy, Multiple Sclerosis, and Clinical Neurology; He is the Chairman and the Organizer of the well known Qatar Epilepsy Symposium, he is running yearly for the past 14 years and which is considered a landmark in the Gulf region; He has also started last year , together with other epileptologists from Qatar, the region and elsewhere, a yearly International Epilepsy School Course, which was attended by many neurologists from the Area.\n\nInternationally, Dr Mesraoua is an active and elected member of the Commission on Eastern Mediterranean Region (EMR ) , a regional branch of the International League Against Epilepsy (ILAE), where he represents the Middle East and North Africa(MENA ) and where he holds the position of chief of the Epilepsy Epidemiology Section; Dr Mesraoua is a member of the American Academy of Neurology, the Europeen Academy of Neurology and the American Epilepsy Society.\n\nDr Mesraoua's main objectives are to encourage frequent gathering of the epileptologists/neurologists from the MENA region and the rest of the world, promote Epilepsy Teaching in the MENA Region, and encourage multicenter studies involving neurologists and epileptologists in the MENA region, particularly epilepsy epidemiological studies. \n\nDr. Mesraoua is the recipient of two research Grants, as the Lead Principal Investigator (750.000 USD and 250.000 USD) from the Qatar National Research Fund (QNRF) and the Hamad Hospital Internal Research Grant (IRGC), on the following topics : “Continuous EEG Monitoring in the ICU “ and on “Alpha-lactoalbumin , proof of concept in the treatment of epilepsy” .Dr Mesraoua is a reviewer for the journal \"seizures\" (Europeen Epilepsy Journal ) as well as dove journals ; Dr Mesraoua is the author and co-author of many peer reviewed publications and four book chapters in the field of Epilepsy and Clinical Neurology",institutionString:"Weill Cornell Medical College in Qatar",institution:{name:"Weill Cornell Medical College in Qatar",country:{name:"Qatar"}}},{id:"282429",title:"Prof.",name:"Covanis",middleName:null,surname:"Athanasios",slug:"covanis-athanasios",fullName:"Covanis Athanasios",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/282429/images/system/282429.jpg",biography:null,institutionString:"Neurology-Neurophysiology Department of the Children Hospital Agia Sophia",institution:null},{id:"190980",title:"Prof.",name:"Marwa",middleName:null,surname:"Mahmoud Saleh",slug:"marwa-mahmoud-saleh",fullName:"Marwa Mahmoud Saleh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/190980/images/system/190980.jpg",biography:"Professor Marwa Mahmoud Saleh is a doctor of medicine and currently works in the unit of Phoniatrics, Department of Otolaryngology, Ain Shams University in Cairo, Egypt. She got her doctoral degree in 1991 and her doctoral thesis was accomplished in the University of Iowa, United States. Her publications covered a multitude of topics as videokymography, cochlear implants, stuttering, and dysphagia. She has lectured Egyptian phonology for many years. Her recent research interest is joint attention in autism.",institutionString:"Ain Shams University",institution:{name:"Ain Shams University",country:{name:"Egypt"}}},{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259190/images/system/259190.png",biography:"Dr. Naqvi is a radioanalytical chemist and is working as an associate professor of analytical chemistry in the Department of Chemistry, Government College University, Faisalabad, Pakistan. Advance separation techniques, nuclear analytical techniques and radiopharmaceutical analysis are the main courses that he is teaching to graduate and post-graduate students. In the research area, he is focusing on the development of organic- and biomolecule-based radiopharmaceuticals for diagnosis and therapy of infectious and cancerous diseases. Under the supervision of Dr. Naqvi, three students have completed their Ph.D. degrees and 41 students have completed their MS degrees. He has completed three research projects and is currently working on 2 projects entitled “Radiolabeling of fluoroquinolone derivatives for the diagnosis of deep-seated bacterial infections” and “Radiolabeled minigastrin peptides for diagnosis and therapy of NETs”. He has published about 100 research articles in international reputed journals and 7 book chapters. Pakistan Institute of Nuclear Science & Technology (PINSTECH) Islamabad, Punjab Institute of Nuclear Medicine (PINM), Faisalabad and Institute of Nuclear Medicine and Radiology (INOR) Abbottabad are the main collaborating institutes.",institutionString:"Government College University",institution:{name:"Government College University, Faisalabad",country:{name:"Pakistan"}}},{id:"58390",title:"Dr.",name:"Gyula",middleName:null,surname:"Mozsik",slug:"gyula-mozsik",fullName:"Gyula Mozsik",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/58390/images/system/58390.png",biography:"Gyula Mózsik MD, Ph.D., ScD (med), is an emeritus professor of Medicine at the First Department of Medicine, Univesity of Pécs, Hungary. He was head of this department from 1993 to 2003. His specializations are medicine, gastroenterology, clinical pharmacology, clinical nutrition, and dietetics. His research fields are biochemical pharmacological examinations in the human gastrointestinal (GI) mucosa, mechanisms of retinoids, drugs, capsaicin-sensitive afferent nerves, and innovative pharmacological, pharmaceutical, and nutritional (dietary) research in humans. He has published about 360 peer-reviewed papers, 197 book chapters, 692 abstracts, 19 monographs, and has edited 37 books. He has given about 1120 regular and review lectures. He has organized thirty-eight national and international congresses and symposia. He is the founder of the International Conference on Ulcer Research (ICUR); International Union of Pharmacology, Gastrointestinal Section (IUPHAR-GI); Brain-Gut Society symposiums, and gastrointestinal cytoprotective symposiums. He received the Andre Robert Award from IUPHAR-GI in 2014. Fifteen of his students have been appointed as full professors in Egypt, Cuba, and Hungary.",institutionString:"University of Pécs",institution:{name:"University of Pecs",country:{name:"Hungary"}}},{id:"277367",title:"M.Sc.",name:"Daniel",middleName:"Martin",surname:"Márquez López",slug:"daniel-marquez-lopez",fullName:"Daniel Márquez López",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/277367/images/7909_n.jpg",biography:"Msc Daniel Martin Márquez López has a bachelor degree in Industrial Chemical Engineering, a Master of science degree in the same área and he is a PhD candidate for the Instituto Politécnico Nacional. His Works are realted to the Green chemistry field, biolubricants, biodiesel, transesterification reactions for biodiesel production and the manipulation of oils for therapeutic purposes.",institutionString:null,institution:{name:"Instituto Politécnico Nacional",country:{name:"Mexico"}}},{id:"196544",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/196544/images/system/196544.jpg",biography:"Angel Catalá studied chemistry at Universidad Nacional de La Plata, Argentina, where he received a Ph.D. in Chemistry (Biological Branch) in 1965. From 1964 to 1974, he worked as an Assistant in Biochemistry at the School of Medicine at the same university. From 1974 to 1976, he was a fellow of the National Institutes of Health (NIH) at the University of Connecticut, Health Center, USA. From 1985 to 2004, he served as a Full Professor of Biochemistry at the Universidad Nacional de La Plata. He is a member of the National Research Council (CONICET), Argentina, and the Argentine Society for Biochemistry and Molecular Biology (SAIB). His laboratory has been interested for many years in the lipid peroxidation of biological membranes from various tissues and different species. Dr. Catalá has directed twelve doctoral theses, published more than 100 papers in peer-reviewed journals, several chapters in books, and edited twelve books. He received awards at the 40th International Conference Biochemistry of Lipids 1999 in Dijon, France. He is the winner of the Bimbo Pan-American Nutrition, Food Science and Technology Award 2006 and 2012, South America, Human Nutrition, Professional Category. In 2006, he won the Bernardo Houssay award in pharmacology, in recognition of his meritorious works of research. Dr. Catalá belongs to the editorial board of several journals including Journal of Lipids; International Review of Biophysical Chemistry; Frontiers in Membrane Physiology and Biophysics; World Journal of Experimental Medicine and Biochemistry Research International; World Journal of Biological Chemistry, Diabetes, and the Pancreas; International Journal of Chronic Diseases & Therapy; and International Journal of Nutrition. He is the co-editor of The Open Biology Journal and associate editor for Oxidative Medicine and Cellular Longevity.",institutionString:"Universidad Nacional de La Plata",institution:{name:"National University of La Plata",country:{name:"Argentina"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",slug:"francisco-javier-martin-romero",fullName:"Francisco Javier Martin-Romero",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",biography:"Francisco Javier Martín-Romero (Javier) is a Professor of Biochemistry and Molecular Biology at the University of Extremadura, Spain. He is also a group leader at the Biomarkers Institute of Molecular Pathology. Javier received his Ph.D. in 1998 in Biochemistry and Biophysics. At the National Cancer Institute (National Institute of Health, Bethesda, MD) he worked as a research associate on the molecular biology of selenium and its role in health and disease. After postdoctoral collaborations with Carlos Gutierrez-Merino (University of Extremadura, Spain) and Dario Alessi (University of Dundee, UK), he established his own laboratory in 2008. The interest of Javier's lab is the study of cell signaling with a special focus on Ca2+ signaling, and how Ca2+ transport modulates the cytoskeleton, migration, differentiation, cell death, etc. He is especially interested in the study of Ca2+ channels, and the role of STIM1 in the initiation of pathological events.",institutionString:null,institution:{name:"University of Extremadura",country:{name:"Spain"}}},{id:"217323",title:"Prof.",name:"Guang-Jer",middleName:null,surname:"Wu",slug:"guang-jer-wu",fullName:"Guang-Jer Wu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/217323/images/8027_n.jpg",biography:null,institutionString:null,institution:null},{id:"148546",title:"Dr.",name:"Norma Francenia",middleName:null,surname:"Santos-Sánchez",slug:"norma-francenia-santos-sanchez",fullName:"Norma Francenia Santos-Sánchez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/148546/images/4640_n.jpg",biography:null,institutionString:null,institution:null},{id:"272889",title:"Dr.",name:"Narendra",middleName:null,surname:"Maddu",slug:"narendra-maddu",fullName:"Narendra Maddu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/272889/images/10758_n.jpg",biography:null,institutionString:null,institution:null},{id:"242491",title:"Prof.",name:"Angelica",middleName:null,surname:"Rueda",slug:"angelica-rueda",fullName:"Angelica Rueda",position:"Investigador Cinvestav 3B",profilePictureURL:"https://mts.intechopen.com/storage/users/242491/images/6765_n.jpg",biography:null,institutionString:null,institution:null},{id:"88631",title:"Dr.",name:"Ivan",middleName:null,surname:"Petyaev",slug:"ivan-petyaev",fullName:"Ivan Petyaev",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Lycotec (United Kingdom)",country:{name:"United Kingdom"}}},{id:"423869",title:"Ms.",name:"Smita",middleName:null,surname:"Rai",slug:"smita-rai",fullName:"Smita Rai",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Integral University",country:{name:"India"}}},{id:"424024",title:"Prof.",name:"Swati",middleName:null,surname:"Sharma",slug:"swati-sharma",fullName:"Swati Sharma",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Integral University",country:{name:"India"}}},{id:"439112",title:"MSc.",name:"Touseef",middleName:null,surname:"Fatima",slug:"touseef-fatima",fullName:"Touseef Fatima",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Integral University",country:{name:"India"}}},{id:"424836",title:"Dr.",name:"Orsolya",middleName:null,surname:"Borsai",slug:"orsolya-borsai",fullName:"Orsolya Borsai",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca",country:{name:"Romania"}}},{id:"422262",title:"Ph.D.",name:"Paola Andrea",middleName:null,surname:"Palmeros-Suárez",slug:"paola-andrea-palmeros-suarez",fullName:"Paola Andrea Palmeros-Suárez",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Guadalajara",country:{name:"Mexico"}}}]}},subseries:{item:{id:"8",type:"subseries",title:"Bioinspired Technology and Biomechanics",keywords:"Bioinspired Systems, Biomechanics, Assistive Technology, Rehabilitation",scope:'Bioinspired technologies take advantage of understanding the actual biological system to provide solutions to problems in several areas. Recently, bioinspired systems have been successfully employing biomechanics to develop and improve assistive technology and rehabilitation devices. The research topic "Bioinspired Technology and Biomechanics" welcomes studies reporting recent advances in bioinspired technologies that contribute to individuals\' health, inclusion, and rehabilitation. Possible contributions can address (but are not limited to) the following research topics: Bioinspired design and control of exoskeletons, orthoses, and prostheses; Experimental evaluation of the effect of assistive devices (e.g., influence on gait, balance, and neuromuscular system); Bioinspired technologies for rehabilitation, including clinical studies reporting evaluations; Application of neuromuscular and biomechanical models to the development of bioinspired technology.',coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",hasOnlineFirst:!1,hasPublishedBooks:!0,annualVolume:11404,editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",slug:"adriano-andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",biography:"Dr. Adriano de Oliveira Andrade graduated in Electrical Engineering at the Federal University of Goiás (Brazil) in 1997. He received his MSc and PhD in Biomedical Engineering respectively from the Federal University of Uberlândia (UFU, Brazil) in 2000 and from the University of Reading (UK) in 2005. He completed a one-year Post-Doctoral Fellowship awarded by the DFAIT (Foreign Affairs and International Trade Canada) at the Institute of Biomedical Engineering of the University of New Brunswick (Canada) in 2010. Currently, he is Professor in the Faculty of Electrical Engineering (UFU). He has authored and co-authored more than 200 peer-reviewed publications in Biomedical Engineering. He has been a researcher of The National Council for Scientific and Technological Development (CNPq-Brazil) since 2009. He has served as an ad-hoc consultant for CNPq, CAPES (Coordination for the Improvement of Higher Education Personnel), FINEP (Brazilian Innovation Agency), and other funding bodies on several occasions. He was the Secretary of the Brazilian Society of Biomedical Engineering (SBEB) from 2015 to 2016, President of SBEB (2017-2018) and Vice-President of SBEB (2019-2020). He was the head of the undergraduate program in Biomedical Engineering of the Federal University of Uberlândia (2015 - June/2019) and the head of the Centre for Innovation and Technology Assessment in Health (NIATS/UFU) since 2010. He is the head of the Postgraduate Program in Biomedical Engineering (UFU, July/2019 - to date). He was the secretary of the Parkinson's Disease Association of Uberlândia (2018-2019). Dr. Andrade's primary area of research is focused towards getting information from the neuromuscular system to understand its strategies of organization, adaptation and controlling in the context of motor neuron diseases. His research interests include Biomedical Signal Processing and Modelling, Assistive Technology, Rehabilitation Engineering, Neuroengineering and Parkinson's Disease.",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null,series:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343"},editorialBoard:[{id:"49517",title:"Prof.",name:"Hitoshi",middleName:null,surname:"Tsunashima",slug:"hitoshi-tsunashima",fullName:"Hitoshi Tsunashima",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTP4QAO/Profile_Picture_1625819726528",institutionString:null,institution:{name:"Nihon University",institutionURL:null,country:{name:"Japan"}}},{id:"425354",title:"Dr.",name:"Marcus",middleName:"Fraga",surname:"Vieira",slug:"marcus-vieira",fullName:"Marcus Vieira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003BJSgIQAX/Profile_Picture_1627904687309",institutionString:null,institution:{name:"Universidade Federal de Goiás",institutionURL:null,country:{name:"Brazil"}}},{id:"196746",title:"Dr.",name:"Ramana",middleName:null,surname:"Vinjamuri",slug:"ramana-vinjamuri",fullName:"Ramana Vinjamuri",profilePictureURL:"https://mts.intechopen.com/storage/users/196746/images/system/196746.jpeg",institutionString:"University of Maryland, Baltimore County",institution:{name:"University of Maryland, Baltimore County",institutionURL:null,country:{name:"United States of America"}}}]},onlineFirstChapters:{paginationCount:0,paginationItems:[]},publishedBooks:{paginationCount:6,paginationItems:[{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",publishedDate:"March 23rd 2022",editedByType:"Edited by",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",hash:"8b43add5389ba85743e0a9491e4b9943",volumeInSeries:27,fullTitle:"Vitamin K - Recent Topics on the Biology and Chemistry",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9759",title:"Vitamin E in Health and Disease",subtitle:"Interactions, Diseases and Health Aspects",coverURL:"https://cdn.intechopen.com/books/images_new/9759.jpg",slug:"vitamin-e-in-health-and-disease-interactions-diseases-and-health-aspects",publishedDate:"October 6th 2021",editedByType:"Edited by",bookSignature:"Pınar Erkekoglu and Júlia Scherer Santos",hash:"6c3ddcc13626110de289b57f2516ac8f",volumeInSeries:22,fullTitle:"Vitamin E in Health and Disease - Interactions, Diseases and Health Aspects",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoğlu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoğlu",profilePictureURL:"https://mts.intechopen.com/storage/users/109978/images/system/109978.jpg",institutionString:"Hacettepe University",institution:{name:"Hacettepe University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7004",title:"Metabolomics",subtitle:"New Insights into Biology and Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/7004.jpg",slug:"metabolomics-new-insights-into-biology-and-medicine",publishedDate:"July 1st 2020",editedByType:"Edited by",bookSignature:"Wael N. Hozzein",hash:"35a30d8241442b716a4aab830b6de28f",volumeInSeries:16,fullTitle:"Metabolomics - New Insights into Biology and Medicine",editors:[{id:"189233",title:"Prof.",name:"Wael N.",middleName:"Nabil",surname:"Hozzein",slug:"wael-n.-hozzein",fullName:"Wael N. Hozzein",profilePictureURL:"https://mts.intechopen.com/storage/users/189233/images/system/189233.jpeg",institutionString:"Beni-Suef University",institution:{name:"Beni-Suef University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6967",title:"Prebiotics and Probiotics",subtitle:"Potential Benefits in Nutrition and Health",coverURL:"https://cdn.intechopen.com/books/images_new/6967.jpg",slug:"prebiotics-and-probiotics-potential-benefits-in-nutrition-and-health",publishedDate:"March 4th 2020",editedByType:"Edited by",bookSignature:"Elena Franco-Robles and Joel Ramírez-Emiliano",hash:"11781d6b1c070edcf204518e632033be",volumeInSeries:8,fullTitle:"Prebiotics and Probiotics - Potential Benefits in Nutrition and Health",editors:[{id:"219102",title:"Dr.",name:"Elena",middleName:null,surname:"Franco-Robles",slug:"elena-franco-robles",fullName:"Elena Franco-Robles",profilePictureURL:"https://mts.intechopen.com/storage/users/219102/images/system/219102.jpg",institutionString:"Universidad de Guanajuato",institution:{name:"Universidad de Guanajuato",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8292",title:"Oral Health by Using Probiotic Products",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8292.jpg",slug:"oral-health-by-using-probiotic-products",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Razzagh Mahmoudi",hash:"327e750e83634800ace02fe62607c21e",volumeInSeries:5,fullTitle:"Oral Health by Using Probiotic Products",editors:[{id:"245925",title:"Dr.",name:"Razzagh",middleName:null,surname:"Mahmoudi",slug:"razzagh-mahmoudi",fullName:"Razzagh Mahmoudi",profilePictureURL:"https://mts.intechopen.com/storage/users/245925/images/system/245925.jpg",institutionString:"Qazvin University of Medical Sciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.jpg",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:8,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:286,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:9,numberOfPublishedChapters:101,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"4",title:"Fungal Infectious Diseases",scope:"Fungi are ubiquitous and there are almost no non-pathogenic fungi. Fungal infectious illness prevalence and prognosis are determined by the exposure between fungi and host, host immunological state, fungal virulence, and early and accurate diagnosis and treatment. \r\nPatients with both congenital and acquired immunodeficiency are more likely to be infected with opportunistic mycosis. Fungal infectious disease outbreaks are common during the post- disaster rebuilding era, which is characterised by high population density, migration, and poor health and medical conditions.\r\nSystemic or local fungal infection is mainly associated with the fungi directly inhaled or inoculated in the environment during the disaster. The most common fungal infection pathways are human to human (anthropophilic), animal to human (zoophilic), and environment to human (soilophile). Diseases are common as a result of widespread exposure to pathogenic fungus dispersed into the environment. \r\nFungi that are both common and emerging are intertwined. In Southeast Asia, for example, Talaromyces marneffei is an important pathogenic thermally dimorphic fungus that causes systemic mycosis. Widespread fungal infections with complicated and variable clinical manifestations, such as Candida auris infection resistant to several antifungal medicines, Covid-19 associated with Trichoderma, and terbinafine resistant dermatophytosis in India, are among the most serious disorders. \r\nInappropriate local or systemic use of glucocorticoids, as well as their immunosuppressive effects, may lead to changes in fungal infection spectrum and clinical characteristics. Hematogenous candidiasis is a worrisome issue that affects people all over the world, particularly ICU patients. CARD9 deficiency and fungal infection have been major issues in recent years. Invasive aspergillosis is associated with a significant death rate. Special attention should be given to endemic fungal infections, identification of important clinical fungal infections advanced in yeasts, filamentous fungal infections, skin mycobiome and fungal genomes, and immunity to fungal infections.\r\nIn addition, endemic fungal diseases or uncommon fungal infections caused by Mucor irregularis, dermatophytosis, Malassezia, cryptococcosis, chromoblastomycosis, coccidiosis, blastomycosis, histoplasmosis, sporotrichosis, and other fungi, should be monitored. \r\nThis topic includes the research progress on the etiology and pathogenesis of fungal infections, new methods of isolation and identification, rapid detection, drug sensitivity testing, new antifungal drugs, schemes and case series reports. It will provide significant opportunities and support for scientists, clinical doctors, mycologists, antifungal drug researchers, public health practitioners, and epidemiologists from all over the world to share new research, ideas and solutions to promote the development and progress of medical mycology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",keywords:"Emerging Fungal Pathogens, Invasive Infections, Epidemiology, Cell Membrane, Fungal Virulence, Diagnosis, Treatment"},{id:"5",title:"Parasitic Infectious Diseases",scope:"Parasitic diseases have evolved alongside their human hosts. In many cases, these diseases have adapted so well that they have developed efficient resilience methods in the human host and can live in the host for years. Others, particularly some blood parasites, can cause very acute diseases and are responsible for millions of deaths yearly. Many parasitic diseases are classified as neglected tropical diseases because they have received minimal funding over recent years and, in many cases, are under-reported despite the critical role they play in morbidity and mortality among human and animal hosts. The current topic, Parasitic Infectious Diseases, in the Infectious Diseases Series aims to publish studies on the systematics, epidemiology, molecular biology, genomics, pathogenesis, genetics, and clinical significance of parasitic diseases from blood borne to intestinal parasites as well as zoonotic parasites. We hope to cover all aspects of parasitic diseases to provide current and relevant research data on these very important diseases. In the current atmosphere of the Coronavirus pandemic, communities around the world, particularly those in different underdeveloped areas, are faced with the growing challenges of the high burden of parasitic diseases. At the same time, they are faced with the Covid-19 pandemic leading to what some authors have called potential syndemics that might worsen the outcome of such infections. Therefore, it is important to conduct studies that examine parasitic infections in the context of the coronavirus pandemic for the benefit of all communities to help foster more informed decisions for the betterment of human and animal health.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",keywords:"Blood Borne Parasites, Intestinal Parasites, Protozoa, Helminths, Arthropods, Water Born Parasites, Epidemiology, Molecular Biology, Systematics, Genomics, Proteomics, Ecology"},{id:"6",title:"Viral Infectious Diseases",scope:"The Viral Infectious Diseases Book Series aims to provide a comprehensive overview of recent research trends and discoveries in various viral infectious diseases emerging around the globe. The emergence of any viral disease is hard to anticipate, which often contributes to death. A viral disease can be defined as an infectious disease that has recently appeared within a population or exists in nature with the rapid expansion of incident or geographic range. This series will focus on various crucial factors related to emerging viral infectious diseases, including epidemiology, pathogenesis, host immune response, clinical manifestations, diagnosis, treatment, and clinical recommendations for managing viral infectious diseases, highlighting the recent issues with future directions for effective therapeutic strategies.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",keywords:"Novel Viruses, Virus Transmission, Virus Evolution, Molecular Virology, Control and Prevention, Virus-host Interaction"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of che