Number of registered team leaders, team members, and network ties among and between them in the Steirische Eisenstrasse (Styrian region) and the Mühlviertler Alm (upper Austrian region).
\r\n\t
",isbn:"978-1-80356-678-8",printIsbn:"978-1-80356-677-1",pdfIsbn:"978-1-80356-679-5",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"6dcb071a2e978694b6b1cb9c20afc1a3",bookSignature:"Prof. Hai-Zhi Song",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11494.jpg",keywords:"Electric Field Effect, Nano-Materials, Electric Field Design, Antenna, Microelectronics, Optoelectronics, Electric Field Stimulation, Brain and Nerve, Electric Field Imaging, Atomic Electric Field, Space Science, Climate",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 22nd 2022",dateEndSecondStepPublish:"May 26th 2022",dateEndThirdStepPublish:"July 25th 2022",dateEndFourthStepPublish:"October 13th 2022",dateEndFifthStepPublish:"December 12th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"a day",secondStepPassed:!1,areRegistrationsClosed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:"A pioneering researcher in the fields of new materials, optoelectronic devices, and quantum information processing, appointed vice director of the Science and Technology Committee of SWITP, author/co-author of more than 170 research papers, and holder of 40 patents.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"196114",title:"Prof.",name:"Hai-Zhi",middleName:null,surname:"Song",slug:"hai-zhi-song",fullName:"Hai-Zhi Song",profilePictureURL:"https://mts.intechopen.com/storage/users/196114/images/system/196114.jpg",biography:"Curriculum Vitae\n\nName: Hai-Zhi Song \nGender: male\nDate of Birth: Oct. 20, 1968\nPlace of Birth: Shanxi, China\nAffiliation and Address: \nSouthwest Institute of Technical Physics\nNo.7, Section 4, Renminnan Road, Chengdu 610041, China\nAnd\nInstitute of Fundamental and Frontier Sciences,\nUniversity of Electronic Science and Technology of China,\nNo. 4, Section 2, Jianshebei Road, Chengdu 610054, China\n\nWork Phone: +86-28-68180751, +86-28-83208728\nMobile Phone: +86-158-28239155\nFax: +86-28-83201896\nE-mail: hzsong1296@163.com, hzsong@uestc.edu.cn\n \nEducation \nSept, 1990 – July, 1995:Peking University, PhD, Thesis “Visible luminescence of porous silicon and its mechanism”, Researches on hydrogen-influenced Schottky diodes and silicon-based light-emitting materials. \nSept, 1986 – July, 1990:Nanjing University, Bachelor of Science, Thesis “Study of refractory metal silicides”, Research on Ohmic contact of semiconductors.\n\nWork Experience \nJuly, 1995 – Sept. 1997: Nanjing University, Nanjing, China, Postdoctoral Researcher, Research on silicon-based light-emitting materials. \nOct, 1997 – Sept. 1998: Catholic University Leuven, Leuven, Belgium, Visiting free Researcher, Research on amorphous semiconductors. \nOct, 1998 – Sept. 2001: Tsukuba University, Tsukuba, Japan, Assistant Professor, Research on semiconductor quantum dots. \nOct, 2001 – March 2012: Fujitsu Lab. Ltd., Atsugi, Japan, Researcher/Senior Researcher, Researches on Semiconductor Quantum Dots for Quantum Information, Semiconductor Optoelectronic Materials and Devices. \nApril, 2012 – March 2014: University of Tokyo, Tokyo, Japan, Senior Researcher, Researches on Quantum Information Processing Devices. \nApril, 2014 – now: Southwest Institute of Technical Physics, Chengdu, China, Professor, Researches on Semiconductor Optoelectronic Materials and Devices. \nJune, 2015 – now: University of Electronic Science and Technology, Chengdu, China, Professor, Researches on Nanoscaled Semiconductors and Quantum Information Processing Devices.\n \nAchievements\nSystematically studied the property of porous silicon materials and verified their mechanism; found green and ultraviolet luminescence, and clarified the multiple luminescence mechanisms of nanocrystalline-silicon embedded in SiO2, which is valuable to silicon-based optoelectronic integration; realized enhanced hole mobility in amorphous silicon, verified the existence of deep trap states in amorphous selenium, providing ways to improve amorphous optoelectronic materials. \nDiscovered lateral coupling between self-assembled quantum dots (QDs) and their tuning effect to 2D electron gas; illustrated and deeply explained the metal-insulator transition in 2D ordered QD arrays, all of which are worth in optoelectronic application of semiconductor QDs. \nDeveloped Sb-free technique to double the InAs/GaAs QD density and suppress the atomic interdiffusion, helped producing 1.3 um QD lasers, which won Japanese national prizes and had been merchandized; developed 1.06 um quantum-well lasers, which have been used to produce pure-green lasers robust against high temperature. \nFound a way to access buried QDs by scanning tunneling microscope; achieved a way to prepare diluted QDs by post-annealing and clarified its mechanisms; invented a technique to control the size and site of QDs by atomic-force microscopy lithography, and an apparatus to detect single electron spin states by optically-detected magnetic resonance; designed a few types of micropillar cavities applicable to realize 1.55 um highly-efficient, even coherent (strongly coupled) InAs/InP QD single photon sources; produced fiber-integrated photon-entangled sources, all of which are very useful to the applications of QDs in quantum information processing. \nDeveloped focal-plane single-photon avalanche detectors, providing central devices for 3D laser detecting and ranging system; explored antimonide middle- and long-wavelength infrared detectors and the surface plasmon enhancement effect in such detectors; advanced the acetone-sensing function of Eu-doped SnO2 nano-belt; found Nickle Phosphide serving as a good catalyst in hydrogen-producing. Realized a series of optoelectronic quantum devices for quantum information processing, such as fiber-integrated photon-pair-entangler, chiplet heralded single photon emitter, fiber quantum memories, quantum number generator, etc.\n\nHonor and Group Memberships \nSelected Scholar of the Recruitment Program of Global Experts, China\nEditorial member of “Laser Technology”\nEditorial member of “Journal of Electronic Science and Technology”\nEditorial member of “Internal J. Mat. Sci. Appl”\nMember of APS (American Physics Society)\nMember of OSA (Optical Society of America)\nPermanent Member of China Physical Science and Technology\nPermanent Member of the Chinese Optical Society\nTechnical committee member of PIERS, organizing a series of “quantum information processing and devices” sessions\nTechnical committee member of ICICM",institutionString:"Southwest University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Southwest University",institutionURL:null,country:{name:"China"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"20",title:"Physics",slug:"physics"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"453623",firstName:"Silvia",lastName:"Sabo",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/453623/images/20396_n.jpg",email:"silvia@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"8356",title:"Metastable, Spintronics Materials and Mechanics of Deformable Bodies",subtitle:"Recent Progress",isOpenForSubmission:!1,hash:"1550f1986ce9bcc0db87d407a8b47078",slug:"solid-state-physics-metastable-spintronics-materials-and-mechanics-of-deformable-bodies-recent-progress",bookSignature:"Subbarayan Sivasankaran, Pramoda Kumar Nayak and Ezgi Günay",coverURL:"https://cdn.intechopen.com/books/images_new/8356.jpg",editedByType:"Edited by",editors:[{id:"190989",title:"Dr.",name:"Subbarayan",surname:"Sivasankaran",slug:"subbarayan-sivasankaran",fullName:"Subbarayan Sivasankaran"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"61443",title:"Generating Reality with Geosimulation Models: An Agent-Based Social-Spatial Network Modelling Perspective",doi:"10.5772/intechopen.77322",slug:"generating-reality-with-geosimulation-models-an-agent-based-social-spatial-network-modelling-perspec",body:'\nThe mutual referencing of statements is a presupposition to comprehend the stated facts in a communication situation. Be it theories or methods, descriptions or explanations, texts or maps—relationships always create, explicitly or implicitly, these nexuses with which particularities are being contextualized. Contextualization generates meaning. However, neither the creation of relationships nor the creation of meaning is grounded in objective and independent criteria, neither in science nor in everyday life. They are, on the other hand, not completely arbitrary, but depend on particular social-cultural, temporal (historical) and spatial (geographical) contexts.
\nThe referential contexts emphasize in addition how, why, and that complementarities are fundamental for comprehensive reasoning. Complementarities can be dialectic; the decisive point is that they simultaneously express a mutually excluding
For modelling geographical phenomena from a social scientific perspective, an understanding of relations and complementarities is crucial because both spatial and social facts do rely heavily on their inner-temporal dynamics and develop in time differently [1]. Social-spatial network processes and mechanisms may obey common rules of homophily or of addressing roles and positions. The quality of the processes and mechanisms, however, together with its concrete manifestations of allocations of social, cultural, economic, and spatial capital is influenced by the idiosyncratic peculiarity of their local, temporal, and community compositions.
\nWith these introductory remarks, we aim to highlight the underlying principles in the creation of meaning and intentionality derived from abstract information [2] and dedicated to be used in scientific, political and everyday-life communications. The notion of communication is used here as a means of providing us with the capability to deal with our perceived and interpreted environment in a meaningful way. This aim implies a closer look into the functions and purposes of models and quantifications, and is tied to the challenges that arise due to the referencing of complementarities, of numbers and words, of quantifications and qualifications.
\nIn contrast to the common understanding of quantities which are assumed to devaluate the individual as an abstract number and negate its qualities, it is Lewin ([3], p. 150) who appreciates the peculiarity of quantification: “It is the increased desire, and also the increased ability, to comprehend
The complementarity of quantity and quality, of quantification and qualification, is realized through translation, and this procedure must be recalled when statements and numbers as well as their manifold representations are captured and utilized. Detractors of quantification tend to create an asymmetry between the two worlds. They argue that if a qualitative phenomenon is being tied to a number it will lose its eigenvalue—the only thing that counts henceforth is its numerical value. The processes and mechanisms of its creation, their cultural, geographical or temporal differences maintain obscured [7]. Though this problem definitely exists, it is not a problem of the quantification itself but a problem of exposing the cultural, political, social and scientific circumstances of its creation. Therefore, the use of numbers and words incorporates presuppositions about what is perceived as relevant and valuable.
\nMeasurements, quantifications and models result in one or many but always concrete single cases, as has been stated above. What they bear must be contextualized. From an epistemological perspective, it is the well-known threefold “context of discovery,” “context of justification,” and “context of utilization.” Contextualization, in addition, must refer to other measurements and models in order to verify and validate model results, but also to utilize them comparatively in connection with other approaches [8]. What follows is not a competition between outcomes and paradigmatic settings but an abductive approaching to the explicit problem(s) at hand.
\nThis may sound trivial. Indeed, the claim for
The “weigh of education”: knowledge foremost consists of learnt items, being, however, then subtly transformed by learning and communication.
The “burden of tradition”: new recognition is primarily coined by already existing recognition.
The “effect of the recognition sequence”: what has been once conceptualized theoretically and/or methodologically restricts the opportunities of new concepts.
Incorporating these social factors into the evaluation of research results may help to relax the researcher from unobtainable truths and to focus more strictly on the processes and purposes of model production.
\nTaking the challenges of contextualization, translation and transformation explicitly into account would also mean having to deal with knowledge and models in a different way. The qualitative experience with social phenomena and problems feeds mainly on very subjective and local living conditions; it is, however, simultaneously an amalgamation of aggregated knowledge as “socialized subjectivity” [10]. This kind of knowledge which refers to local and subjective-social living conditions can be termed “local knowledge.” Local knowledge, though derived from a different epistemology and perspective (ethnography and natives in developing countries) [11], can be transferred to contemporary (post)modern, globalized
In addition to mutual relationships between different modes of recognition, ordering, and understanding, it is important to account for the relationships within the quantitative methodology. It can be confirmed that “calculating is existing equality of opportunity” ([12], p. 43) because societal problems such as discrimination and inequality can be—and must be—made comparable through exact differentiation and objectivation which can then be used for opinion-forming in the political arena. As long as statistical analyses are considered as an instrument among others, one would be able to agree with the above quote. If not, the “equality of opportunity” turns out to be misused as ideology, representing an interest- and power-driven inequality of opportunity, since there is no longer explicit advice for a reduction of complexity.
\nA reduction of complexity is another and inevitable step in perceiving and grasping our world. It is, however, simultaneously necessary to deal with this reduction of complexity in an explicit and deliberate way. Explicit means to not only publish the results of an analysis but also the process of its realization. Deliberate means taking a critical attitude with regard to the chosen method(s) (see, among others, [13] for a detailed description of the creation of the “risk of poverty threshold” and its implications, and [14] with delineation of measuring poverty in London in the nineteenth and twentieth century).
\nAnother problem of the internal confirmatory referencing of quantitative methods is the danger of not only making the measured values absolute but also the models and techniques applied. This problem can be phrased as “to explain the real through the impossible.” Economics can serve as an example here: “Economics creates mathematical models which could never be built in reality but are used nevertheless to compute and reduce complex economic processes to a few numbers. Here too, they try to describe the real through the impossible. […] Neoclassical economics assumes a kind of market harmony. If markets are left to their own resources then everything develops well. Dummy arguments are used to confirm this opinion by misusing mathematics in order to circulate ideology” ([15], p. 112f, translation A.K). The critical point is not that quantitative methods deal with artificial experimental settings or models, but that they immediately equate models with reality. Instead, models— through their construction and focus—
For an appropriate appreciation of quantification and modelling, a different kind of concluding translation between method and epistemology seems to be necessary. Statistics often assumes an absence of ideologies and normative values which is not true when considering the modes of acquiring, producing, and publishing data and results, respectively. The basic instruments with which we observe, describe, explain, and interpret the world are models—there is no immediate access to our spatial and social environment.
\nThis must be briefly explained. I agree with Schurz ([16], p. 56) who argues for a hypothetical-constructivist realism approach. According to this realism, our perception and imagination of reality is not
If this assumption of how reality can be accessed is true, then the role and meaning of models changes significantly. Models, then, are created, developed, and applied to generate reality, not to represent it (although representation remains one, but only one important characteristic). In so doing, they untie from an assumed objective, true or total reality which has to be imitated by applying certain sets of rules. They establish a kind of independence. Models, moreover, reduce complexity in order to make the subject matter concrete. Hence, it is not the unimaginable, opaque complexity addressed theoretically to “reality” which is under investigation in models and computationally translated to quantities. Complexity of reality is a metaphor which will act as a counterpart to models, theories and quantifications. To compare it with system theory, we can conceive of characteristics of systems because they emerge as distinct objects structurally and functionally. Initially, we are not able to talk about a system’s environment—it is just the unassigned other side of the system.
\nIf the function of a model is not to represent or imitate the complexity of an unknown reality, then a model inhabits inherently its own justification by explicitly expressing its purpose, assumptions, and ways of reducing complexity. This is quite similar to map-making by applying rules of generalization or to statistical analysis by deliberately selecting variables and techniques in order to achieve a certain result.
\nThe aim of this line of thought is to avoid absolute external reality as a reference in modelling, but instead putting the inherent purposes, assumptions, framing conditions, parameter settings, and so on in the foreground. In so doing, it is a realization of a modelling epistemology that has been claimed by several researchers, among others Epstein [17], by arguing for a “generative social science” which accounts for letting the phenomenon of interest grow in a simulation model of interacting agents, or Küppers et al. [18] who equate simulation models epistemologically with a “pragmatic construction of reality,” whereby reality emerges inside the models (further hints are given in [19]).
\nIt would therefore be more appropriate to refer to “originals” instead of “reality” which are being generated and represented by models. Originals refer to other originals and in doing so there is no need to refer to an absolute truth/reality. This is in line with Stachowiak’s [20] General Model Theory, whereby models are defined through three characteristics: (1) a model is always a representation of a natural or artificial original, and the original can itself be an original; (2) a model does not encompass all attributes of an original, but only those which seem to be relevant for the model purpose; (3) a model does not conflate with the original inherently, but depends on the purpose, thus on the questions ‘whereto,’ ‘for what and whom,’ ‘when,’ and ‘where.’
\nWithout relationships and associations, models and numbers tend to be used as ideology or sheer instruments. They become stylized facts, and the images (imaginations) they produce induce a kind of a factual inevitability. A social capital value derived from network analysis, a poverty threshold, or a correlation between voter turnout and social status is equated with reality that not even one of the parameters would represent as a single case accidentally. A related problem is given with the use of the notion of “optimization”—model optimization is often equalized with empirical optimization, misappropriating the purpose(s) and premise(s) of the model.
\nComplementary to the ideologization
The facts and problems that have been addressed so far, in order to adequately deal with models in general and geosimulation models in particular, will now be put into the context of social-spatial network modelling. The contextualization of information and the mutual transformation of complementary reference units in social network analyses are,
“Social interactions in collective human relations are commonly understood as a fundamental condition for human beings to live a satisfactory life. Establishing a personal identity and autonomy on the one hand, and trust, solidarity and commitment on the other hand require social-normative rules which function as a glue that helps agents to connect to one another. While the nature of social interaction is seen as an unquestioned fact its valuation in operational terms is much harder to achieve. One apparently and generally accepted approach to operationalize the value of social interactions is given by the theory of social capital. A huge body of theoretical reflections as well as empirical studies [21, 22] consider transferring the concept of economic capital into the social realm as a suitable methodology for coping with social relations” [23].
\n“The size and composition of social networks rely to a large part on the characteristics of the actors involved, i.e. their capabilities, needs and aspirations to collaborate with others. They also depend on the reasons for cooperation, the kinds of problems, and the (in)tangible infrastructure necessary to communicate via different channels. An important additional issue, however, comes with the nature of network mechanisms themselves – the process of how relations between actors emerge structurally and which determinants are thought to be relevant” [23]. There are several different approaches which relate the analysis of network mechanisms to social facts, one of which is dedicated to social capital.
\nBourdieu ([24], p. 248) defines social capital as “the aggregate of the actual or potential resources which are linked to possession of a durable network of more or less institutionalized relationships of mutual acquaintance and recognition.” This definition is in favor of an actor-centered and utilitarian perspective that not only presupposes an affiliation to one or many social networks as a constituent characteristic, but also assumes knowledge about the structure and function(s) of these. Networks vary significantly in size and complexity; they can be concrete and manageable as, for instance, families and cliques as well as abstract and opaque, as is the case for associations, organizations, labor markets, or electoral rolls. [25]
\nFurthermore, it is remarkable that the unit of value, the currency, is implicitly given by solidarity, reciprocity, and trust, expressed explicitly as network connections, however. “The volume of the social capital possessed by a given agent thus depends on the size of the network of connections he can effectively mobilize and on the volume of the capital (economic, cultural or symbolic) possessed in his own right by each of those to whom he is connected” [25]. This quantitative relation—the more connections one has the higher his/her social capital is—sounds odd because it makes no qualitative difference in terms of network structure (density of relations) or the nature and value of relations (positions and roles of agents, weights of directions). “Resources” within the social capital context are understood as the availability of network relationships, which are, however, not specified—neither quantitatively nor qualitatively. A functional approach to social capital differs from an actor-centered one and accounts more suitably for assigning value to social relation: “Social capital is defined by its function. It is not a single entity, but a variety of different entities having two characteristics in common: They all consist of some aspect of a social structure, and they facilitate certain actions of individuals who are within the structure” ([26], p. 302).
\nAn understanding of social capital is commonly embedded into a broader conceptualization of capitalizing social relations. While this idea is tempting with economic capital, it is less so with social capital. “The three functions of capital and money, respectively, are (i) a means of exchange, (ii) a means of value hedge and preservation, and (iii) a unit of calculation.” Accumulation may play a major role in all of these functions, but is not restricted to them. The worth of capital also stretches to the functions of distribution and circulation within a commodity and service economy [27]. Taxation and social security contributions are other examples of how capital is used. In addition, economic capital accumulation implies accumulation of both surplus and debt. The execution of all these functions requires not only a general usability of capital but also a (statistical) scale of measurement that enables comparisons and evaluations across a diverse field of objectives, and of spatial and temporal scales. All this is not given—or not sufficiently so—with social capital. It is possible to weigh and to qualify the direction of network relations, but still no adequate measures are available which account for the latent variables associated with social capital. In other words, it makes no sense to say “we must double solidarity or trust by doing X.” It would, however, be a scientifically fruitful endeavor to develop indexes of social capital—based on trust, solidarity, network relations, etc.—with the aim of investigating social networks comparatively.” [25]
\nIn so doing, a strategy of obscuring or fuzziness is not constructive as can sometimes be detected in qualitative empirical social network research. For example, Dill ([28], p. 85) claims for his own approach that a definition should be a clear and simple one: “Social capital is the sum of intangible merits and goods within a community” (translation A.K.). In fact, this definition is anything but clear and simple. What can be accepted as “intangible merits” in communities and by whom? Who or what defines communities, and why are we dealing now with communities instead of networks? Are they identical? Who is producing and who is consuming intangible goods, based on which distribution rules? How does one sum up intangible goods? This definition is different from the accumulation and the “unit of calculation” concept because it provides no clues about distributional rules (it is a simple sum), the nature of intangible goods, and the nature of communities (which is much harder to specify than talking about social networks). The distinctive property of social capital in comparison with human or economic capital is, according to Dill [28], totally idealistic nature.
\nThe following chapter presents one attempt to operationalize the qualities that are associated with social capital in quantitative terms in the context of a social-spatial network. It seeks to address the problem of team assembly mechanisms (the topological space) with its potential impacts on the spatial distribution of these teams (the chorological space) in terms of the success experienced in conducting their projects.
\nThe basic idea of the approach to translate the qualitative characteristics of social capital into quantitative properties is given with the number of face-to-face meeting opportunities. Though we are aware of the fact that the creation and continuation of social relations today are significantly influenced, or even determined, by social media technologies occupying virtual spaces, we are convinced that meeting opportunities of physically present people also have a strong impact on the process of tying relationships between them. The purpose of investigating networking mechanisms is, therefore, threefold: first, the geosimulation model simulates processes that represent the evolution of a large(r) network derived from a finite number of small(er) team networks. This evolution is thought to represent an increase of network connections, that is, an increase of social capital. Second, the model seeks to carve out the statistical meaning of our core variable
With respect to our interest of studying networking mechanisms, we argue that the evolution toward a large connected network contributes to overcoming isolated and fragmented efforts toward a common goal. Achieving synergies through effective trans-local knowledge transfer is a goal that has been investigated in (social) network analysis for some time [29, 30, 31]. In this respect, agent-based simulation is an appropriate method to explore the underlying processes that lead to these networking mechanisms [32].
\nAs a first step of this investigation, we selected and then adapted to our own needs a theoretical reference model developed by Guimera et al. [33] and made available as a NetLogo model by Bakshy and Wilensky [34]. The question raised ([33], p. 699) remains evident to some degree in our context too: “Is there a large connected cluster comprising most of the agents or is the network composed of numerous smaller clusters?” The ideal size does not necessarily correspond simply to exactly one all-encompassing network: “Successful teams evolve toward a size that is large enough to enable specialization and effective division of labor among teammates but small enough to avoid overwhelming costs of group coordination” ([33], p. 697). Where our empirical research is concerned, we are less interested in economic costs than in the creation of sustainable social interactions.
\nThese assumptions are taken as relevant premises for networking mechanisms. In so doing, our focus shifts to the parameters that influence or determine the construction of large(r) social networks that are initially small and more or less isolated due to the design of the social project. These mechanisms are understood as operators of translating social capital into quantitative units. The parameters used can be divided into three general domains: (i) actor-based parameters, (ii) linkage-based parameters and (iii) place-based parameters.
\nThe empirical case studies for which an agent-based simulation model was constructed, one which relies theoretically on the prototype model, derives from an Austrian social project entitled “Keep the Ball Rolling.” This project aims to enhance social well-being at a regional level by encouraging the local population to put into practice ideas that they are convinced are relevant. Individuals or small teams are called to submit project proposals that help reduce social injustice and promote social cohesion. Successful teams are awarded a grant to fund their projects, and in addition receive organizational support. The project started in the Lungau region (Salzburg) in 2011 and was taken up by Steirische Eisenstrasse (Styria), Mühlviertler Alm (Upper Austria), and Mostviertel Mitte (Lower Austria) regions [35, 36]. The empirical data used for the following simulation models are from the Styrian and Upper Austrian regions.
\nThe project proposals are presented by the teams at three jury meetings. The successful candidates must implement their projects within 18 months. Every jury session is followed by a public celebration where the successful projects are presented. Because the implementation of a project is supported scientifically by a team of researchers for the duration of the project, several further meetings, ranging from small informal meetings to larger stakeholder workshops, are offered. Every team leader is invited to participate in a semi-standardized questionnaire designed to obtain knowledge about the project team in terms of its size and composition.
\nThe analysis is concerned with how the number of such meetings (1) determines the team assembly mechanisms, (2) correlates with other determinants and (3) correlates with a place-based geography.
\nIn order to analyze the development of collaborative socio-spatial network structures of initially small(er) and unconnected teams in two Austrian regions, a simulation model was constructed that includes some of the general ideas of the original model [33]. However, there are a number of major differences between our model and the original one: (1) The number of teams is initialized at three time steps and not stepwise; with this adaptation, we represent the selection process of successful teams. (2) Teams can vary in size. (3) Teams can also vary in network structure, while the original model only allows the implementation of teams of three actors that are fully connected, the “Keep-The-Ball-Rolling” project does not have such restrictions. (4) Individual agents (and not only teams of three agents) are inserted as new potential collaborators; this feature will play a crucial role in the future modelling process when data sets are available that will be collected approximately 2 years after the official end of the social project (data for the Mühlviertler Alm region are currently missing, while data for the Steirische Eisenstrasse are not yet fully edited). Therefore, we do not refer to this characteristic of the model in this paper. (5) The original teams can be merged, either by a team leader (i.e., the leader of a project team) or by a team member (which is not possible in the reference model) who is selected stochastically for a new connection. This adaptation was implemented due to the nature of events that are realized during the different types of project meetings which can consist of stakeholder workshops, project presentations and informal meetings, as well as
The construction of the two regional socio-spatial network models is based on standardized questionnaires that were conducted at the beginning of the project in each region. Every team leader of a project who was awarded a grant to participate with her/his project and who took part in the survey was asked about her/his team collaborators. We also know the team leader’s home address (but not those of the collaborators, which affects the analysis). The numbers of actors and network ties are given in Table 1.
\nNumber of … | \nTeam leaders | \nTeam members | \nNetwork ties | \n
---|---|---|---|
Styrian region | \n79 | \n396 | \n441 | \n
Upper Austrian region | \n59 | \n418 | \n655 | \n
Number of registered team leaders, team members, and network ties among and between them in the Steirische Eisenstrasse (Styrian region) and the Mühlviertler Alm (upper Austrian region).
The two models are initialized with these settings of nodes and edges. In the style of the reference model, a six-dimensional parameter space is used to analyze the networking mechanisms among team leaders, team members and between them. The aim of this procedure is to detect common patterns of relevance of and relationship between the six parameters that seem to determine the behavior of social networks in terms of their structure and dynamic. Table 2 gives an overview of the parameters and the ranges of values within which the further simulation results have been analyzed.
\nParameter | \nDescription | \nInterval of analysis | \n
---|---|---|
selAgents | \nProbability of selecting agents per event who are willing to collaborate | \n[20, (30)1, 80] % | \n
selAgentType | \nProbability of selecting team leaders or team members per event who are willing to collaborate | \n[20, (30), 80] % | \n
maxSelAgents | \nPotential maximum number of agents per event who are willing to collaborate | \n[4, (4), 12] abs. | \n
conTeamLeader | \nProbability of team leaders actually connecting with other agents | \n[5, (15), 35] % | \n
conTeamMember | \nProbability of team members actually connecting with other agents | \n[0, (10), 30] % | \n
numEvents | \nNumber of events that enable the establishment of new ties over a complete simulation run | \n[1, 2, 4, 8, 16, 32, 40, 80, 160] abs. | \n
Description of parameters used in the simulation models.
Values in round brackets indicate the increment value; for example, the parameter values for
The parameter
The last parameter of Table 2,
The social network simulation models were created using NetLogo 6.0 [37]. The analysis of the modelling results has two stages: first, a statistical analysis composed of a multivariate linear regression analysis and a cluster analysis was conducted. Second, a simulation analysis consisting of representative simulation runs investigated the behavior of the social networks by considering the network parameters ‘closeness centrality’ and ‘betweenness centrality.’ Figure 1 represents the simulation process graphically. The model used here is available as an updated version at OpenABM (https://www.openabm.org/model/5583/version/1).
\nFlow diagram of the simulation model.
All possible combinations of values (that is, 3888 in this case) within the intervals of the six variables were computed, which led to 3888 mean values across all variations. These mean values were then used to compute average bivariate correlations and measurements of determination. The aim was to determine the strength and direction of relationships of the six independent variables by which the versatile network structures can be explained. The emergence of these different network structures consists of both the initial network relations of the original teams (empirical data) and the network relations created during the simulation (modeled data).
\nThe method used to create multiple regressions was “stepwise selection,” which avoids multicollinearity to some degree. Table 3 reveals that our core parameter
Dependent variable | \nMost relevant independent variable | \nR2 of most relevant independent variable | \nR2 of all included independent variables | \n
---|---|---|---|
Number of connections among team leaders (Styria) | \nNumber of events r = 0.785 | \n0.617 | \n0.759 | \n
Number of connections among team leaders (Upper Austria) | \nNumber of events r = 0.779 | \n0.606 | \n0.751 | \n
Number of connections among team members (Styria) | \nNumber of events r = 0.633 | \n0.401 | \n0.525 | \n
Number of connections among team members (Upper Austria) | \nNumber of events r = 0.623 | \n0.388 | \n0.505 | \n
Number of connections among all actors (Styria) | \nNumber of events r = 0.756 | \n0.572 | \n0.687 | \n
Number of connections among all actors (Upper Austria) | \nNumber of events r = 0.735 | \n0.540 | \n0.652 | \n
Regression patterns of the three dependent edge-related variables for the Steirische Eisenstrasse (Styria) and the Mühlviertler Alm (Upper Austria).
The cluster analysis aims to explore further structures that have been unknown so far. The cluster algorithm used here is the “Ward method,” which yields more or less evenly distributed clusters. A variation of 4–6 clusters was applied, and the solution with five clusters provided good results with respect to a good discrimination of the values and interpretation of the results. As Tables 4 and 5 illustrate for both regions in a very similar way, the highest numbers of connected agents (cluster 5 in both cases) are achieved when
Dependent variables | \nCluster 1 | \nCluster 2 | \nCluster 3 | \nCluster 4 | \nCluster 5 | \n
---|---|---|---|---|---|
number of ties among team leaders | \n700 | \n1041 | \n156 | \n1263 | \n1415 | \n
number of ties among team members | \n805 | \n2075 | \n83 | \n3402 | \n9074 | \n
number of all ties | \n2132 | \n4248 | \n497 | \n7824 | \n10,423 | \n
\n | \n | \n | \n | \n | |
numEvents | \n73 | \n118 | \n18 | \n141 | \n160 | \n
selAgents | \n58 | \n58 | \n47 | \n70 | \n73 | \n
selAgentType | \n52 | \n50 | \n51 | \n40 | \n32 | \n
maxSelAgents | \n7 | \n7 | \n6 | \n8 | \n8 | \n
conTeamLeader/conTeamMember | \n20/15 | \n20/15 | \n20/15 | \n19/13 | \n20/25 | \n
Cluster analysis results for the Styrian case study. Values represent mean values.
Dependent variables | \nCluster 1 | \nCluster 2 | \nCluster 3 | \nCluster 4 | \nCluster 5 | \n
---|---|---|---|---|---|
Number of ties among team leaders | \n184 | \n932 | \n1004 | \n1299 | \n1364 | \n
Number of ties among team members | \n141 | \n1458 | \n5293 | \n2682 | \n10,459 | \n
Number of all ties | \n817 | \n4056 | \n7229 | \n12,152 | \n12,844 | \n
\n | \n | \n | \n | \n | |
numEvents | \n22 | \n104 | \n133 | \n155 | \n160 | \n
selAgents | \n47 | \n60 | \n66 | \n70 | \n72 | \n
selAgentType | \n51 | \n51 | \n38 | \n34 | \n34 | \n
maxSelAgents | \n6 | \n7 | \n7 | \n9 | \n9 | \n
conTeamLeader/conTeamMember | \n20/15 | \n20/13 | \n20/22 | \n20/4 | \n21/25 | \n
Cluster analysis results for the upper Austrian case study. Values represent mean values.
Although
In addition to the statistical analysis, a simulation analysis was performed in order to investigate the process of the network creation. For this purpose, two common centrality measures were used, namely the closeness centrality and the betweenness centrality. Both centrality measures characterize an agent’s position or role in the entire network. In NetLogo, closeness centrality is defined as “[…] the inverse of the average of an [agent’s] distances to all other [agents]” [38]. Distances are defined as shortest paths. Betweenness centrality, by contrast, refers to the mediator function of an agent (for example, mediating communication flows). To calculate the betweenness centrality of an agent, “[…] you take every other possible pairs of [agents] and, for each pair, you calculate the proportion of shortest paths between members of the pair that passes through the current [agent]. The betweenness centrality of an [agent] is the sum of these” [38].
\nBased on typical and representative simulation runs of the abovementioned behavior space analysis in NetLogo, a data subset with 32 cases has been extracted. Extraction here means that extreme values of parameters have been excluded; for example,
Distribution of high closeness centrality agents for
Sixteen out of the 32 simulation runs were executed using a high number of meeting events (left-hand side), while the other 16 used a low number of events (right-hand side). When we compare the two graphs of Figure 2, the most obvious fact is that the variation of results with
Fluctuations for cases with
The statistical and simulation analyses reveal that the construction and (sustainable) consolidation of social networks are influenced by a high number of factors whose inter-relationships are quite complicated in terms of generating a large(r) connected network. Offering a high number of events does not automatically ensure that a high proportion of agents will gain high centrality in order to provide for efficient knowledge transfer within the social network. In fact, even only a few events can result in a reliable number of durable linkages among agents.
\nHowever, one must take the specific sequence of the three jury meetings into account. Due to the inclusion of new team leaders and team members at predefined time steps, a temporary decline in the number of agents with high betweenness and/or closeness centrality can arise. Fluctuations are large(r) if the number of events provided is high because meetings are likely to take place between jury sessions, too.
\nTherefore, the organization of events to foster collaboration is a challenging undertaking, as social network analysis has shown. The supply of opportunities to meet each other in order to exchange knowledge and experience has, in addition to its qualitative component (obligatory stakeholder meeting vs. informal team meeting), a quantitative tendency. Setting aside all the network-based determinants discussed so far, one should not forget the geographical domain, that is, the geospatial distribution of the relevant actors. In other words, a translation from a space-of-flows geography to a space-of-places geography seems appropriate.
\nFigures 3 and 4 are representative extracts of the spatial distribution of agents with high betweenness centrality (yellow) and high closeness centrality (violet), and remaining team leaders (red) for a high and low numbers of events (
Distribution of agents with high betweenness centrality (yellow) and high closeness centrality (violet) for
Distribution of agents with high betweenness centrality (yellow) and high closeness centrality (violet) for
One important conclusion that can be drawn from the distribution patterns is that the vertical structures of the social networks do not completely coincide with the structure of the places where the team leaders reside and where the projects were implemented. The initial network pattern is characterized by many small and largely unconnected teams each with one leader and a couple of members who are, of necessity, linked to the leader. This vertical structure was then reiterated as team leaders connected to one another or to other team members. Agents with high closeness and/or betweenness centrality are disproportionately more often located in municipalities with comparatively fewer implemented projects (light green colored areas). This is true both for situations with a high number of events and those with a low number. If a high number of meetings were to be offered (maps at the left-hand side), then the distribution of agents with high betweenness centrality (= important communicators) would be more even than the distribution of the projects. The result is true for the Styrian as well as the Upper Austrian study area. In fact, this statement can be extended to the situation of a low number of offered meetings if the closeness centrality (=strong ties between agents) is taken into consideration, as can be seen in the maps at the right-hand side of Figures 3 and 4. The peculiar relationship between the two geographies immediately prompts the conclusion that the decisions about adequate venues for meetings should be made by taking the whole project region into account and not concentrating mostly on the region’s larger towns.
\nAnother conclusion that can be drawn is that with a more even spatial distribution of highly centralized agents, a proper coverage of network geography and place-based geography can be achieved in terms of communications (space of flows) and localized decisions (space of places). If this is true, then local projects can benefit from each other thanks to this type of knowledge dissemination. Ultimately, personal engagement in one’s own local social environment also needs to be appreciated by rotating meeting locations across the entire region, because then “peripherally located” agents can act as hosts and can proudly present their project work in immediately visible form.
\nThe basic intention of this contribution is threefold: first, and mainly, it attempts to emphasize the epistemological purpose of models and quantities as well as quantifications. This then implies a specific justification for the creation and utilization of models. Second, the chapter relates these reasons to a concrete methodological application, which was the translation of the qualities of the concept of social capital to a possible quantitative representation. This has been done by the core variable
Our concern was to establish an understanding of models and quantitative approaches which stress their adequateness in social scientific reasoning due to their characteristics in dealing with the subjects that matter. It has been argued that models do not refer to an absolute truth or reality that they do not represent or imitate reality but create their own reality and impact by their application within scientific communities. The hypothetical-constructivist realism appears to be a proper theoretical foundation to this argument. In fact, models and numbers attempt to make phenomena we observe or deduce theoretically tractable, graspable and visible. Since many social processes designed by models cannot be perceived straightforwardly or are unobservable in principle, it is the (communicative) relationship between model builders and model users that rewards their use, which is more important than looking for and looking at an intangible truth. “Occam’s razor may still be the ultimate quest, but in many social systems, evident complexity is so great that plausibility rather than validity may be the real quest” [38].
\nThe statistical and simulation results gained some plausibility to confirm our assumption that social capital can be represented by the quantitative measure of meeting events. However, further investigations are necessary. One issue is related to the composition of the empirical sample which has to be expanded to the team members in order to detect potential connections among this group. Consequently, the structure of the original social networks can be better represented in the geosimulation network model (the issue of calibration). Another still existing problem is the one-dimensional re-presentation of social capital. An incorporation of further sorts of capital (economic, cultural) would lead to an empirically more reliable model because of the consideration of mutual correlations between them. This, in turn, would improve the model results which influence our understanding of the empirical reality (the issue of verification and validation). Finally, the geographical context—in its two dimensions of topology and chorology—ought to be investigated more deeply. What interdependencies between networks and places in terms of spatial proximity and center-periphery relationships might have an impact on the size and composition of the network, and the distribution of actors on the allocation of social capital, should be further discussed. Though an integration of these issues will definitely improve our understanding and imagination of social networks which take social capital explicitly into account, the geosimulation model presented here justifies the continuation of research on this scientific path.
\nChapters 2 and 4 are excerpts which were taken from my previous publications, cited as [23] and [39]. These excerpts have been extended and aligned to fit into the structure of this article. Permission of re-use is given. We acknowledge financial support by the Open Access Publication Fund of the University of Salzburg.
\nBangladesh’s agriculture contributed around 16% of the country’s GDP and currently employs around 45% of the country’s labor force [1]. Crop sector in Bangladesh is characterized by rice monoculture, which has led to a number of serious physical and biological problems, including nutritional impact [2]. However, recently, emphasis is also shifting from basic nutrients to balanced diets. Vegetables can play an important role by providing high nutritive value food and higher returns that eventually alleviate poverty. Due to favorable climatic and soil, a large number of vegetables are cultivated throughout the year in Bangladesh. In a view of increase in income, employment, and reduction of widespread malnutrition in Bangladesh, there is a strong need for vegetable cultivation.
Among the vegetables, tomato is one of the most important vegetables by acreage, production, yield, commercial use, and consumption. Tomato is cultivated all over the country due to its adaptability to wide range of soil and climate [3]. Its demand for both domestic and foreign markets has increased manifold due to its excellent nutritional and processing qualities [4]. In Bangladesh, congenial atmosphere remains for tomato production during low temperature winter season, that is, early November is the best time for tomato planting in Bangladesh [5]. Tomato plants are highly sensitive to hot and humid seasons. However, limited attempt has been made to overcome this high temperature barrier.
Considering the growing demand and importance of tomato, Bangladesh Agricultural Research Institute (BARI) has developed and disseminated few varieties of off-season summer tomatoes. This summer season tomato cultivation requires complex agronomic management including high labor and applications of growth regulators in addition to extended skill and knowledge. Farmers typically plant off-season tomato varieties in the middle of May and continued cultivation up to February in the following year. To protect tomato plants from monsoon rain, farmers construct a bamboo pole frame and slats to which a polyethylene hoop-shaped roof is attached [6]. The farm-level adoption of these varieties has already created a wide range of socioeconomic impacts that need to be evaluated properly to understand the output of research and development. So far, very little information is available on the impact of off-season tomato cultivation in Bangladesh.
Cultivating summer tomatoes in Bangladesh holds promise as a profitable enterprise with which farmers can augment the existing cropping patterns since only small amounts of land are required [6, 7, 8]. A study was conducted in southwestern Bangladesh to quantify the effect of training farmers on off-season vegetable cultivation. Findings indicate that training increased the net household income by about 48%. There was a significant increase in pesticide use and although there was an improvement in pesticide-handling practices, trained farmers may have been more exposed to pesticide health risk [9]. Majority of the off-season tomato growers possessed high knowledge on summer tomato cultivation. Education, land possession, annual family income, and extension contact of the farmers had a positive significant relationship with the farmers’ knowledge on summer tomato cultivation [10]. Attack by pest and disease, lack of seed at proper time, lack of agricultural credit, and high cost of production were the major constraints for the adoption of summer tomato.
From the above discussion, it is clear that impacts of off-season tomato cultivation have not been addressed well in Bangladesh. Studies only measure the profitability using a very small number of samples. Thus, the questions like “What is the impact of off-season tomato cultivation on income and food security status?” are yet to be studied empirically in Bangladesh. This chapter is a moderate effort to examine the above research question and fulfill the gaps to some extent. It is expected that the findings will help the scientists and policy makers to further develop the technology.
Summer tomato cultivation in Bangladesh is mainly constrained by the seasonality and frequent attack of diseases. During the summer, fruit settings were disrupted due to high daytime temperatures above 26°C and at night temperatures above 20°C [11]. To overcome this problem, Bangladesh Agricultural Research Institute (BARI) has developed few hybrid varieties of heat tolerant tomato, known as off-season summer tomato [6]. High to medium land is required for summer tomato cultivation. Tomato may be grown on a wide range of soil from sandy to clay. The raised bed planting can be adopted in low land tropics and high rainfall areas. Transparent poly tunnel with a height of 120-180 cm was built on the raised beds to protect the tomato plants from rain. Approximately 75 cm wide drainage channel need must be constructed between tunnels to facilitate irrigation, drainage, and other intercultural operations [6].
The present study mainly used primary data to achieve the objectives. The primary data was collected from Jashore region (Figure 1) of Bangladesh due to the higher concentration of off-season summer tomato cultivation [6, 8]. At first, summer tomato cultivating villages was selected and for those villages a complete list of the off-season summer tomato growers was prepared taking help from local agricultural extension office. From that list, a total of 100 farmers were selected randomly as growers of summer tomato to collect the information regarding off-season tomato cultivation. These farmers were trained by different organizations on management aspect of summer tomato cultivation. Besides 150 farmers who did not cultivate off-season summer tomato but had suitable land and interest in growing summer tomato were selected randomly for interview as non-growers of the technology. The non-growers grew winter tomato and also did not receive any training on summer tomato cultivation. Thus, a total of 250 farmers were selected randomly for the face-to-face interview.
Location map.
The present study employed propensity score matching (PSM), inverse probability weighting (IPW), and inverse probability weighted regression adjustment (IPWRA) techniques to achieve the objectives. PSM constructs a statistical comparison group that is based on a model of the probability of participating in the treatment, using observed characteristics [12]. According to Heckman et al. [13], the basic assumption of using a counterfactual is that the untreated samples approximate the treated sample if they had not been treated, that is, E (Y0i T = 1). The validity of PSM depends on two condition; conditional independence assumption (CIA) and sizable common support in propensity score across the growers and non-growers. The CIA argues that program outcomes are independent of program participation conditional on a set of observables (X). When CIA condition is not met, it is assumed that may be unobserved factors affect the outcome and treatment assignment, leading to a hidden bias [14]. Under the CIA, the average treatment effect on treated (ATT) was computed as:
Balancing properties need to be satisfied for PSM to be valid which implies that for observation with the same propensity score, the distribution of pretreatment characteristics must be same across growers and non-growers’ group. Another requirement for PSM is common support or overlap condition. It implies that farmers with same X values have positive probability of being both grower and non-grower. Three matching algorithms: nearest neighbor, radius matching and kernel matching were used to present the findings of the study.
IPW uses the inverse of the propensity score as weights in calculating the average value of the outcome variable [15, 16]. IPW does not match off-season tomato growers with non-growers. In IPW, farmers with low predicted probability receive a lower weight while farmers with high predicted probability of adoption receive a higher weight.
True measurement of impacts requires controlling of sample selection bias through random assignment of individuals into treatments. However, ATT from PSM and IPW can still produce biased results in the presence of mis-specification in the propensity score model [17, 18]. To overcome the problem, the present study used IPWRA which has the double-robust property that ensures consistent results as it allows the outcome and the treatment model to account for mis-specification. ATT in the IPWRA model was estimated in two steps. In the first step, we estimated the propensity scores using binary probit model and in second step, linear regression was used to estimate the ATT.
To assess the impact three outcome indicators were selected. Income from off-season tomato (Tk./ha): The sum of crop output minus the value of variable inputs (fertilizers, pesticides, seeds, hired labor, etc.) and fixed inputs. This is the net income households receive from off-season tomato cultivation (Tk. is Bangladeshi currency, 1 USD = Tk. 85). Consumption expenditure (Tk./adult): Total expenditure on consumption per adult per year was calculated. Food security status: Food security status of the farmers was assessed by using Food Consumption Score (FCS). The FCS of a household is calculated by multiplying the frequency of foods consumed in the last seven days with the weighting of each food group [19].
It is conspicuous from Figure 2 that the average yield of summer tomato was 32.45 t/ha which was significantly higher than that of the winter tomato growers. In the winter season, farmers usually received Tk 10 as selling price of per kg tomato, while in the case of summer tomato farmers they received Tk. 38 per kg, which is substantially high. Due to higher productivity and price, the gross return for off-season tomato growers was also significantly higher. Higher gross return implies higher profit. Thus, off-season tomato cultivation may reduce poverty to some extent. Figure 3 indicates that off-season tomato cultivation does not have any cost advantage. Figure 4 indicates that tunnel preparation cost, human labor cost, and growth regulators were the major cost items for off-season tomato cultivation [6, 7]. It implies that off-season tomato cultivation is cost incentive and requires higher initial investment which confirms the findings of other studies [20, 21].
Comparative yield of tomato.
Comparative cost of production.
Share of different inputs.
The off-season tomato growers received significantly higher income compared to non-growers (winter season growers) based on nearest neighbor, radius, and kernel matching (Table 1). This may be due to higher productivity and market price. Ali et al. [20] also indicated that off-season tomato cultivation is profitable. The ATT values were found to be Tk. 261,000, 253,000, and 261,000 based on nearest neighbor, radius, and kernel matching, respectively. The findings of IPW and IPWRA were similar to PSM which confirms the robustness of the results. The ATT values were Tk. 257,667, and 257,683 based on IPW and IPWRA, respectively. The income from off-season tomato cultivation can be further increased by improving management practices, such as timing of various growth regulators application [6, 22]. Thus, there is scope to raise the income reducing costs by appropriate management practice. The studies suggested that training on off-season tomato cultivation has significant impact of income [9]. Therefore, more efforts on trained farmers may also provide better results.
Models | ATT | SE | t-Value |
---|---|---|---|
PSM | |||
NN matching | 261,000*** | 20,427 | 12.78 |
Kernel matching | 253,000*** | 21,713 | 11.65 |
Radius matching | 261,000*** | 18,406 | 14.19 |
IPW | 257,667*** | 19,915 | 12.94 |
IPWRA | 257,683*** | 20,101 | 12.82 |
Impact of off-season tomato cultivation on income.
Indicates significant at 1% level.
Nearest neighbor, kernel matching, and radius matching identified 34, 98, and 98 farmers as non-growers (control), respectively.
The consumption expenditure per adult is also significantly higher for off-season tomato growers compared to non-growers based on nearest neighbor, radius, and kernel matching (Table 2). The findings of IPW and IPWRA were also similar to PSM which confirms the robustness of the results. The ATT values were found to be Tk. 8545 and 8449 based on IPW and IPWRA, respectively. Due to higher income off-season tomato growers were able to spend more on consumption. Karim et al. [7] also indicated that off-season tomato growers were able to increase their socioeconomic status due to higher income.
Models | ATT | SE | t-Value |
---|---|---|---|
PSM | |||
NN matching | 10,183*** | 2520 | 4.04 |
Kernel matching | 9346*** | 1491 | 6.26 |
Radius matching | 7584*** | 1228 | 6.17 |
IPW | 8545*** | 1410 | 6.06 |
IPWRA | 8449*** | 1425 | 5.93 |
Impact of off-season tomato cultivation on consumption expenditure.
Indicates significant at 1% level.
FCS was used as proxy to capture the impact of off-season tomato cultivation on food security of the growers. The findings of PSM analysis indicate that off-season tomato cultivation has significant effect on the FCS of the growers. FCS was significantly higher for off-season tomato growers compared to non-growers based on nearest neighbor, and radius matching (Table 3). The ATT values were 7.09 and 5.87 based on nearest neighbor and radius matching, respectively. The ATT values were also significant at the 5% level for the other two methods which confirm the robustness of the findings. Off-season tomato cultivation can be a useful way of increasing the income and food security status of the farmers. More awareness building programs and extension efforts are warranted to increase the area under off-season tomato cultivation.
Although off-season tomato cultivation is observed to be a profitable crop, but there are several constraints to its higher production. Eighty percent of the farmers reported frequent attack of insect and diseases was the major constraint that hinders the adoption and production confirm the findings of Ali et al. [20] (Table 4). High price of tunnel materials and growth hormone require high cash amount for cultivation which in turns hinder the adoption process and production. More research on off-season tomato varieties is essential to optimize the technology.
Items | Percent | Rank |
---|---|---|
Attack of insect and diseases | 80 | 1 |
High price of growth hormone | 75 | 2 |
High price of tunnel materials | 60 | 3 |
Constraints of off-season tomato cultivation.
It is evident that off-season tomato cultivation is profitable and has significant impact on the consumption expenditure and food security status of the farmers. Based on the results, a number of policy implications can be drawn. More investment in research and development is needed from both donor and government agencies to develop resistant varieties of off-season tomato since the farmers reported that frequent attack of insects and diseases was the main constraint of off-season tomato cultivation. Efforts are needed to disseminate the off-season tomato cultivation technique to different parts of the country. Cost of production is higher for off-season tomato cultivation compared to winter season tomato cultivation. Steps to diversify sources of income as well as access to low interest credit can increase the availability of capital. Higher income may have a positive effect on reducing poverty in the country. Higher consumption expenditure and food security status may play a vital role in reducing malnutrition. Thus, there is a need for promoting the role of off-season tomato cultivation in anti-poverty programs, especially in developing countries like Bangladesh.
The authors are grateful to farmers and the enumerators for their cooperation during data collection. The authors are grateful to the Social Science Research Council, Planning Division, Ministry of Planning, People’s Republic of Bangladesh for financial support to conduct the study.
The authors declare no conflict of interest.
At IntechOpen, we not only specialize in the publication of Book Chapters as part of our Edited Volumes, but also the publication and dissemination of longer manuscripts, known as Long Form Monographs. Monographs allow Authors to focus on presenting a single subject or a specific aspect of that subject and publish their research in detail.
\n\nEven if you have an area of research that does not at first sight fit within a previously defined IntechOpen project, we can still offer support and help you in publishing your individual research. Publishing your IntechOpen book in the form of a Long Form Monograph is a viable alternative.
",metaTitle:"Publish a Whole Book",metaDescription:"At IntechOpen, we not only specialize in the publication of book chapters as part of our Edited Volumes, but also the publication and dissemination of long form manuscripts, known as monographs. Monographs allow authors to focus on presenting a single subject or a specific aspect of that subject and publish their research at length.\n\nPerhaps you have an area of research that does not fit within a previously defined IntechOpen project, but rather need help in publishing your individual research? Publishing your IntechOpen book in the form of a long form monograph is a great alternative.",metaKeywords:null,canonicalURL:"/page/publish-a-whole-book",contentRaw:'[{"type":"htmlEditorComponent","content":"MONOGRAPH - LONG FORM MANUSCRIPT
\\n\\nFORMATS
\\n\\nCOST
\\n\\n10,000 GBP Monograph - Long Form
\\n\\nThe final price includes project management, editorial and peer-review services, technical editing, language copyediting, cover design, book layout, book promotion and ISBN assignment.
\\n\\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate applied in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\\n\\nOptional Services
\\n\\nIntechOpen has collaborated with Enago, through its sister brand, Ulatus, which is one of the world’s leading providers of book translation services. The services are designed to convey the essence of your work to readers from across the globe in a language they understand. Enago’s expert translators incorporate cultural nuances in translations to make the content relevant for local audiences while retaining the original meaning and style. Enago translators are equipped to handle all complex and multiple overlapping themes encompassed in a single book and their high degree of linguistic and subject expertise enables them to deliver a superior quality output.
\\n\\nIntechOpen Authors that wish to use this service will receive a 20% discount on all translation services. To find out more information or obtain a quote, please visit: https://www.enago.com/intech.
\\n\\nFUNDING
\\n\\nWe feel that financial barriers should never prevent researchers from publishing their work. Please consult our Open Access Funding page to explore funding opportunities and learn more about how you can finance your IntechOpen publication.
\\n\\nBENEFITS
\\n\\nPUBLISHING PROCESS STEPS
\\n\\nFor a complete overview of all publishing process steps and descriptions, go to How Open Access Publishing Works.
\\n\\nSEND YOUR PROPOSAL
\\n\\nIf you are interested in publishing your book with IntechOpen, please submit your book proposal by completing the Publishing Proposal Form.
\\n\\nNot sure if this is the right option for you? Please refer back to the main Publish with IntechOpen page or feel free to contact us directly at book.department@intechopen.com.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'MONOGRAPH - LONG FORM MANUSCRIPT
\n\nFORMATS
\n\nCOST
\n\n10,000 GBP Monograph - Long Form
\n\nThe final price includes project management, editorial and peer-review services, technical editing, language copyediting, cover design, book layout, book promotion and ISBN assignment.
\n\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate applied in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\n\nOptional Services
\n\nIntechOpen has collaborated with Enago, through its sister brand, Ulatus, which is one of the world’s leading providers of book translation services. The services are designed to convey the essence of your work to readers from across the globe in a language they understand. Enago’s expert translators incorporate cultural nuances in translations to make the content relevant for local audiences while retaining the original meaning and style. Enago translators are equipped to handle all complex and multiple overlapping themes encompassed in a single book and their high degree of linguistic and subject expertise enables them to deliver a superior quality output.
\n\nIntechOpen Authors that wish to use this service will receive a 20% discount on all translation services. To find out more information or obtain a quote, please visit: https://www.enago.com/intech.
\n\nFUNDING
\n\nWe feel that financial barriers should never prevent researchers from publishing their work. Please consult our Open Access Funding page to explore funding opportunities and learn more about how you can finance your IntechOpen publication.
\n\nBENEFITS
\n\nPUBLISHING PROCESS STEPS
\n\nFor a complete overview of all publishing process steps and descriptions, go to How Open Access Publishing Works.
\n\nSEND YOUR PROPOSAL
\n\nIf you are interested in publishing your book with IntechOpen, please submit your book proposal by completing the Publishing Proposal Form.
\n\nNot sure if this is the right option for you? Please refer back to the main Publish with IntechOpen page or feel free to contact us directly at book.department@intechopen.com.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6602},{group:"region",caption:"Middle and South America",value:2,count:5908},{group:"region",caption:"Africa",value:3,count:2400},{group:"region",caption:"Asia",value:4,count:12542},{group:"region",caption:"Australia and Oceania",value:5,count:1008},{group:"region",caption:"Europe",value:6,count:17561}],offset:12,limit:12,total:132766},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"11254",title:"Optical Coherence Tomography",subtitle:null,isOpenForSubmission:!0,hash:"a958c09ceaab1fc44c1dd0a817f48c92",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11254.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11438",title:"Fake News in the Era of Pandemics",subtitle:null,isOpenForSubmission:!0,hash:"bc9e4cab86c76f35cd70b39086d9b69e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11438.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11472",title:"21st Century Slavery",subtitle:null,isOpenForSubmission:!0,hash:"b341f3fc3411ced881e43ce007a892b8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11472.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11473",title:"Social Inequality",subtitle:null,isOpenForSubmission:!0,hash:"20307129f7fb39aa443d5449acb6a784",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11473.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11546",title:"Smart and Sustainable Transportation",subtitle:null,isOpenForSubmission:!0,hash:"e8ea27a1ff85cde00efcb6f6968c20f8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11546.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11554",title:"Information Systems Management",subtitle:null,isOpenForSubmission:!0,hash:"3134452ff2fdec020663f241c7a9a748",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11554.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11436",title:"Beauty",subtitle:null,isOpenForSubmission:!0,hash:"0e15ba86bab1a64f950318f3ab2584ed",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11436.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11588",title:"Autism",subtitle:null,isOpenForSubmission:!0,hash:"0c5043c6174db167599cb3f762e8bba8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11588.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11605",title:"Bamboo",subtitle:null,isOpenForSubmission:!0,hash:"378d957561b27c86b750a9c7841a5d18",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11605.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11616",title:"Foraging",subtitle:null,isOpenForSubmission:!0,hash:"955b60bb658c8d1a09dd4efc9bf6674b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11616.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11632",title:"Updated Research on Bacteriophages",subtitle:null,isOpenForSubmission:!0,hash:"d34dfa0d5d10511184f97ddaeef9936b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11632.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11645",title:"Neural Tube Defects",subtitle:null,isOpenForSubmission:!0,hash:"08d6ba70d97767769a97cfeeb52dac78",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11645.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:39},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:17},{group:"topic",caption:"Computer and Information Science",value:9,count:16},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:32},{group:"topic",caption:"Environmental Sciences",value:12,count:7},{group:"topic",caption:"Immunology and Microbiology",value:13,count:11},{group:"topic",caption:"Materials Science",value:14,count:11},{group:"topic",caption:"Mathematics",value:15,count:6},{group:"topic",caption:"Medicine",value:16,count:100},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:7},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:11},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:7},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:32},{group:"topic",caption:"Technology",value:24,count:1}],offset:12,limit:12,total:336},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3385,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1875,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3842,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3008,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1109,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1010,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3918,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",publishedDate:"May 11th 2022",numberOfDownloads:1654,editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7686,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3444,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"18",title:"Neuroscience",slug:"life-sciences-neuroscience",parent:{id:"2",title:"Life Sciences",slug:"life-sciences"},numberOfBooks:65,numberOfSeries:0,numberOfAuthorsAndEditors:1649,numberOfWosCitations:1070,numberOfCrossrefCitations:725,numberOfDimensionsCitations:1699,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"18",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10922",title:"Music in Health and Diseases",subtitle:null,isOpenForSubmission:!1,hash:"6a079df045b086b404399c5ed4ac049a",slug:"music-in-health-and-diseases",bookSignature:"Amit Agrawal, Roshan Sutar and Anvesh Jallapally",coverURL:"https://cdn.intechopen.com/books/images_new/10922.jpg",editedByType:"Edited by",editors:[{id:"100142",title:"Prof.",name:"Amit",middleName:null,surname:"Agrawal",slug:"amit-agrawal",fullName:"Amit Agrawal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10554",title:"Proprioception",subtitle:null,isOpenForSubmission:!1,hash:"e104e615fbd94caa987df3a8d8b3fb8b",slug:"proprioception",bookSignature:"José A. Vega and Juan Cobo",coverURL:"https://cdn.intechopen.com/books/images_new/10554.jpg",editedByType:"Edited by",editors:[{id:"59892",title:"Prof.",name:"José A.",middleName:null,surname:"Vega",slug:"jose-a.-vega",fullName:"José A. Vega"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9853",title:"Connectivity and Functional Specialization in the Brain",subtitle:null,isOpenForSubmission:!1,hash:"79f611488f3217579b5c84978f870863",slug:"connectivity-and-functional-specialization-in-the-brain",bookSignature:"Thomas Heinbockel and Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9853.jpg",editedByType:"Edited by",editors:[{id:"70569",title:"Dr.",name:"Thomas",middleName:null,surname:"Heinbockel",slug:"thomas-heinbockel",fullName:"Thomas Heinbockel"}],equalEditorOne:{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou",profilePictureURL:"https://mts.intechopen.com/storage/users/259308/images/system/259308.jpeg",biography:"Yongxia Zhou obtained a Ph.D. in Biomedical Imaging from the University of Southern California. Her research interest is radiology and neuroscience technology and application. She had been trained as an imaging scientist at several prestigious institutes including Columbia University, the University of Pennsylvania, and the National Institutes of Health (NIH). Her research focuses on multi-modal neuroimaging integration such as MRI/PET and EEG/MEG instrumentation to make the best use of multiple modalities for better interpretation of underlying disease mechanisms. She is the author and editor of more than twelve books for well-known publishers including IntechOpen and Nova Science. She has published more than 100 papers and abstracts in many reputed international journals and conferences and served as reviewer and editor for several academic associations.",institutionString:"University of Southern California",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"4",institution:{name:"University of Southern California",institutionURL:null,country:{name:"United States of America"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editedByType:"Edited by",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10475",title:"Smart Biofeedback",subtitle:"Perspectives and Applications",isOpenForSubmission:!1,hash:"8d2bd9997707c905959eaa41e55ba8f1",slug:"smart-biofeedback-perspectives-and-applications",bookSignature:"Edward Da-Yin Liao",coverURL:"https://cdn.intechopen.com/books/images_new/10475.jpg",editedByType:"Edited by",editors:[{id:"3875",title:"Dr.",name:"Edward Da-Yin",middleName:null,surname:"Liao",slug:"edward-da-yin-liao",fullName:"Edward Da-Yin Liao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8059",title:"Neurostimulation and Neuromodulation in Contemporary Therapeutic Practice",subtitle:null,isOpenForSubmission:!1,hash:"8cc2c649900edf37ff3374fdc96a1586",slug:"neurostimulation-and-neuromodulation-in-contemporary-therapeutic-practice",bookSignature:"Denis Larrivee and Seyed Mansoor Rayegani",coverURL:"https://cdn.intechopen.com/books/images_new/8059.jpg",editedByType:"Edited by",editors:[{id:"206412",title:"Prof.",name:"Denis",middleName:null,surname:"Larrivee",slug:"denis-larrivee",fullName:"Denis Larrivee"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8851",title:"Advances in Neural Signal Processing",subtitle:null,isOpenForSubmission:!1,hash:"a44ac118b233b29a3d5b57d61680ec38",slug:"advances-in-neural-signal-processing",bookSignature:"Ramana Vinjamuri",coverURL:"https://cdn.intechopen.com/books/images_new/8851.jpg",editedByType:"Edited by",editors:[{id:"196746",title:"Dr.",name:"Ramana",middleName:null,surname:"Vinjamuri",slug:"ramana-vinjamuri",fullName:"Ramana Vinjamuri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8751",title:"Somatosensory and Motor Research",subtitle:null,isOpenForSubmission:!1,hash:"86191c18f06e524e0f97a5534fdb2b4c",slug:"somatosensory-and-motor-research",bookSignature:"Toshiaki Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/8751.jpg",editedByType:"Edited by",editors:[{id:"70872",title:"Prof.",name:"Toshiaki",middleName:null,surname:"Suzuki",slug:"toshiaki-suzuki",fullName:"Toshiaki Suzuki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9347",title:"Neuroimaging",subtitle:"Neurobiology, Multimodal and Network Applications",isOpenForSubmission:!1,hash:"a3479e76c6ac538aac76409c9efb7e41",slug:"neuroimaging-neurobiology-multimodal-and-network-applications",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9347.jpg",editedByType:"Edited by",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8938",title:"Inhibitory Control Training",subtitle:"A Multidisciplinary Approach",isOpenForSubmission:!1,hash:"bd82354f3bba4af5421337cd42052f86",slug:"inhibitory-control-training-a-multidisciplinary-approach",bookSignature:"Sara Palermo and Massimo Bartoli",coverURL:"https://cdn.intechopen.com/books/images_new/8938.jpg",editedByType:"Edited by",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6998",title:"Synucleins",subtitle:"Biochemistry and Role in Diseases",isOpenForSubmission:!1,hash:"2b4b802fec508928ce8ab9deebd1375f",slug:"synucleins-biochemistry-and-role-in-diseases",bookSignature:"Andrei Surguchov",coverURL:"https://cdn.intechopen.com/books/images_new/6998.jpg",editedByType:"Edited by",editors:[{id:"266540",title:"Dr.",name:"Andrei",middleName:null,surname:"Surguchov",slug:"andrei-surguchov",fullName:"Andrei Surguchov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:65,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"46296",doi:"10.5772/57398",title:"Physiological Role of Amyloid Beta in Neural Cells: The Cellular Trophic Activity",slug:"physiological-role-of-amyloid-beta-in-neural-cells-the-cellular-trophic-activity",totalDownloads:5886,totalCrossrefCites:18,totalDimensionsCites:31,abstract:null,book:{id:"3846",slug:"neurochemistry",title:"Neurochemistry",fullTitle:"Neurochemistry"},signatures:"M. del C. Cárdenas-Aguayo, M. del C. Silva-Lucero, M. Cortes-Ortiz,\nB. Jiménez-Ramos, L. Gómez-Virgilio, G. Ramírez-Rodríguez, E. Vera-\nArroyo, R. Fiorentino-Pérez, U. García, J. Luna-Muñoz and M.A.\nMeraz-Ríos",authors:[{id:"42225",title:"Dr.",name:"Jose",middleName:null,surname:"Luna-Muñoz",slug:"jose-luna-munoz",fullName:"Jose Luna-Muñoz"},{id:"114746",title:"Dr.",name:"Marco",middleName:null,surname:"Meraz-Ríos",slug:"marco-meraz-rios",fullName:"Marco Meraz-Ríos"},{id:"169616",title:"Dr.",name:"Maria del Carmen",middleName:null,surname:"Cardenas-Aguayo",slug:"maria-del-carmen-cardenas-aguayo",fullName:"Maria del Carmen Cardenas-Aguayo"},{id:"169857",title:"Dr.",name:"Maria del Carmen",middleName:null,surname:"Silva-Lucero",slug:"maria-del-carmen-silva-lucero",fullName:"Maria del Carmen Silva-Lucero"},{id:"169858",title:"Dr.",name:"Maribel",middleName:null,surname:"Cortes-Ortiz",slug:"maribel-cortes-ortiz",fullName:"Maribel Cortes-Ortiz"},{id:"169859",title:"Dr.",name:"Berenice",middleName:null,surname:"Jimenez-Ramos",slug:"berenice-jimenez-ramos",fullName:"Berenice Jimenez-Ramos"},{id:"169860",title:"Dr.",name:"Laura",middleName:null,surname:"Gomez-Virgilio",slug:"laura-gomez-virgilio",fullName:"Laura Gomez-Virgilio"},{id:"169861",title:"Dr.",name:"Gerardo",middleName:null,surname:"Ramirez-Rodriguez",slug:"gerardo-ramirez-rodriguez",fullName:"Gerardo Ramirez-Rodriguez"},{id:"169862",title:"Dr.",name:"Eduardo",middleName:null,surname:"Vera-Arroyo",slug:"eduardo-vera-arroyo",fullName:"Eduardo Vera-Arroyo"},{id:"169863",title:"Dr.",name:"Rosana Sofia",middleName:null,surname:"Fiorentino-Perez",slug:"rosana-sofia-fiorentino-perez",fullName:"Rosana Sofia Fiorentino-Perez"},{id:"169864",title:"Dr.",name:"Ubaldo",middleName:null,surname:"Garcia",slug:"ubaldo-garcia",fullName:"Ubaldo Garcia"}]},{id:"58070",doi:"10.5772/intechopen.72427",title:"MRI Medical Image Denoising by Fundamental Filters",slug:"mri-medical-image-denoising-by-fundamental-filters",totalDownloads:2564,totalCrossrefCites:17,totalDimensionsCites:30,abstract:"Nowadays Medical imaging technique Magnetic Resonance Imaging (MRI) plays an important role in medical setting to form high standard images contained in the human brain. MRI is commonly used once treating brain, prostate cancers, ankle and foot. The Magnetic Resonance Imaging (MRI) images are usually liable to suffer from noises such as Gaussian noise, salt and pepper noise and speckle noise. So getting of brain image with accuracy is very extremely task. An accurate brain image is very necessary for further diagnosis process. During this chapter, a median filter algorithm will be modified. Gaussian noise and Salt and pepper noise will be added to MRI image. A proposed Median filter (MF), Adaptive Median filter (AMF) and Adaptive Wiener filter (AWF) will be implemented. The filters will be used to remove the additive noises present in the MRI images. The noise density will be added gradually to MRI image to compare performance of the filters evaluation. The performance of these filters will be compared exploitation the applied mathematics parameter Peak Signal-to-Noise Ratio (PSNR).",book:{id:"6144",slug:"high-resolution-neuroimaging-basic-physical-principles-and-clinical-applications",title:"High-Resolution Neuroimaging",fullTitle:"High-Resolution Neuroimaging - Basic Physical Principles and Clinical Applications"},signatures:"Hanafy M. Ali",authors:[{id:"213318",title:"Dr.",name:"Hanafy",middleName:"M.",surname:"Ali",slug:"hanafy-ali",fullName:"Hanafy Ali"}]},{id:"41589",doi:"10.5772/50323",title:"The Role of the Amygdala in Anxiety Disorders",slug:"the-role-of-the-amygdala-in-anxiety-disorders",totalDownloads:9671,totalCrossrefCites:4,totalDimensionsCites:28,abstract:null,book:{id:"2599",slug:"the-amygdala-a-discrete-multitasking-manager",title:"The Amygdala",fullTitle:"The Amygdala - A Discrete Multitasking Manager"},signatures:"Gina L. Forster, Andrew M. Novick, Jamie L. Scholl and Michael J. Watt",authors:[{id:"145620",title:"Dr.",name:"Gina",middleName:null,surname:"Forster",slug:"gina-forster",fullName:"Gina Forster"},{id:"146553",title:"BSc.",name:"Andrew",middleName:null,surname:"Novick",slug:"andrew-novick",fullName:"Andrew Novick"},{id:"146554",title:"MSc.",name:"Jamie",middleName:null,surname:"Scholl",slug:"jamie-scholl",fullName:"Jamie Scholl"},{id:"146555",title:"Dr.",name:"Michael",middleName:null,surname:"Watt",slug:"michael-watt",fullName:"Michael Watt"}]},{id:"26258",doi:"10.5772/28300",title:"Excitotoxicity and Oxidative Stress in Acute Ischemic Stroke",slug:"excitotoxicity-and-oxidative-stress-in-acute-ischemic-stroke",totalDownloads:7157,totalCrossrefCites:6,totalDimensionsCites:25,abstract:null,book:{id:"931",slug:"acute-ischemic-stroke",title:"Acute Ischemic Stroke",fullTitle:"Acute Ischemic Stroke"},signatures:"Ramón Rama Bretón and Julio César García Rodríguez",authors:[{id:"73430",title:"Prof.",name:"Ramon",middleName:null,surname:"Rama",slug:"ramon-rama",fullName:"Ramon Rama"},{id:"124643",title:"Prof.",name:"Julio Cesar",middleName:null,surname:"García",slug:"julio-cesar-garcia",fullName:"Julio Cesar García"}]},{id:"62072",doi:"10.5772/intechopen.78695",title:"Brain-Computer Interface and Motor Imagery Training: The Role of Visual Feedback and Embodiment",slug:"brain-computer-interface-and-motor-imagery-training-the-role-of-visual-feedback-and-embodiment",totalDownloads:1439,totalCrossrefCites:13,totalDimensionsCites:23,abstract:"Controlling a brain-computer interface (BCI) is a difficult task that requires extensive training. Particularly in the case of motor imagery BCIs, users may need several training sessions before they learn how to generate desired brain activity and reach an acceptable performance. A typical training protocol for such BCIs includes execution of a motor imagery task by the user, followed by presentation of an extending bar or a moving object on a computer screen. In this chapter, we discuss the importance of a visual feedback that resembles human actions, the effect of human factors such as confidence and motivation, and the role of embodiment in the learning process of a motor imagery task. Our results from a series of experiments in which users BCI-operated a humanlike android robot confirm that realistic visual feedback can induce a sense of embodiment, which promotes a significant learning of the motor imagery task in a short amount of time. We review the impact of humanlike visual feedback in optimized modulation of brain activity by the BCI users.",book:{id:"6610",slug:"evolving-bci-therapy-engaging-brain-state-dynamics",title:"Evolving BCI Therapy",fullTitle:"Evolving BCI Therapy - Engaging Brain State Dynamics"},signatures:"Maryam Alimardani, Shuichi Nishio and Hiroshi Ishiguro",authors:[{id:"11981",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Ishiguro",slug:"hiroshi-ishiguro",fullName:"Hiroshi Ishiguro"},{id:"231131",title:"Dr.",name:"Maryam",middleName:null,surname:"Alimardani",slug:"maryam-alimardani",fullName:"Maryam Alimardani"},{id:"231134",title:"Dr.",name:"Shuichi",middleName:null,surname:"Nishio",slug:"shuichi-nishio",fullName:"Shuichi Nishio"}]}],mostDownloadedChaptersLast30Days:[{id:"29764",title:"Underlying Causes of Paresthesia",slug:"underlying-causes-of-paresthesia",totalDownloads:192666,totalCrossrefCites:3,totalDimensionsCites:7,abstract:null,book:{id:"1069",slug:"paresthesia",title:"Paresthesia",fullTitle:"Paresthesia"},signatures:"Mahdi Sharif-Alhoseini, Vafa Rahimi-Movaghar and Alexander R. Vaccaro",authors:[{id:"91165",title:"Prof.",name:"Vafa",middleName:null,surname:"Rahimi-Movaghar",slug:"vafa-rahimi-movaghar",fullName:"Vafa Rahimi-Movaghar"}]},{id:"63258",title:"Anatomy and Function of the Hypothalamus",slug:"anatomy-and-function-of-the-hypothalamus",totalDownloads:4558,totalCrossrefCites:6,totalDimensionsCites:12,abstract:"The hypothalamus is a small but important area of the brain formed by various nucleus and nervous fibers. Through its neuronal connections, it is involved in many complex functions of the organism such as vegetative system control, homeostasis of the organism, thermoregulation, and also in adjusting the emotional behavior. The hypothalamus is involved in different daily activities like eating or drinking, in the control of the body’s temperature and energy maintenance, and in the process of memorizing. It also modulates the endocrine system through its connections with the pituitary gland. Precise anatomical description along with a correct characterization of the component structures is essential for understanding its functions.",book:{id:"6331",slug:"hypothalamus-in-health-and-diseases",title:"Hypothalamus in Health and Diseases",fullTitle:"Hypothalamus in Health and Diseases"},signatures:"Miana Gabriela Pop, Carmen Crivii and Iulian Opincariu",authors:null},{id:"57103",title:"GABA and Glutamate: Their Transmitter Role in the CNS and Pancreatic Islets",slug:"gaba-and-glutamate-their-transmitter-role-in-the-cns-and-pancreatic-islets",totalDownloads:3478,totalCrossrefCites:3,totalDimensionsCites:9,abstract:"Glutamate and gamma-aminobutyric acid (GABA) are the major neurotransmitters in the mammalian brain. Inhibitory GABA and excitatory glutamate work together to control many processes, including the brain’s overall level of excitation. The contributions of GABA and glutamate in extra-neuronal signaling are by far less widely recognized. In this chapter, we first discuss the role of both neurotransmitters during development, emphasizing the importance of the shift from excitatory to inhibitory GABAergic neurotransmission. The second part summarizes the biosynthesis and role of GABA and glutamate in neurotransmission in the mature brain, and major neurological disorders associated with glutamate and GABA receptors and GABA release mechanisms. The final part focuses on extra-neuronal glutamatergic and GABAergic signaling in pancreatic islets of Langerhans, and possible associations with type 1 diabetes mellitus.",book:{id:"6237",slug:"gaba-and-glutamate-new-developments-in-neurotransmission-research",title:"GABA And Glutamate",fullTitle:"GABA And Glutamate - New Developments In Neurotransmission Research"},signatures:"Christiane S. Hampe, Hiroshi Mitoma and Mario Manto",authors:[{id:"210220",title:"Prof.",name:"Christiane",middleName:null,surname:"Hampe",slug:"christiane-hampe",fullName:"Christiane Hampe"},{id:"210485",title:"Prof.",name:"Mario",middleName:null,surname:"Manto",slug:"mario-manto",fullName:"Mario Manto"},{id:"210486",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Mitoma",slug:"hiroshi-mitoma",fullName:"Hiroshi Mitoma"}]},{id:"35802",title:"Cross-Cultural/Linguistic Differences in the Prevalence of Developmental Dyslexia and the Hypothesis of Granularity and Transparency",slug:"cross-cultural-linguistic-differences-in-the-prevalence-of-developmental-dyslexia-and-the-hypothesis",totalDownloads:3601,totalCrossrefCites:2,totalDimensionsCites:7,abstract:null,book:{id:"673",slug:"dyslexia-a-comprehensive-and-international-approach",title:"Dyslexia",fullTitle:"Dyslexia - A Comprehensive and International Approach"},signatures:"Taeko N. Wydell",authors:[{id:"87489",title:"Prof.",name:"Taeko",middleName:"N.",surname:"Wydell",slug:"taeko-wydell",fullName:"Taeko Wydell"}]},{id:"58597",title:"Testosterone and Erectile Function: A Review of Evidence from Basic Research",slug:"testosterone-and-erectile-function-a-review-of-evidence-from-basic-research",totalDownloads:1331,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"Androgens are essential for male physical activity and normal erectile function. Hence, age-related testosterone deficiency, known as late-onset hypogonadism (LOH), is considered a risk factor for erectile dysfunction (ED). This chapter summarizes relevant basic research reports examining the effects of testosterone on erectile function. Testosterone affects several organs and is especially active on the erectile tissue. The mechanism of testosterone deficiency effects on erectile function and the results of testosterone replacement therapy (TRT) have been well studied. Testosterone affects nitric oxide (NO) production and phosphodiesterase type 5 (PDE-5) expression in the corpus cavernosum through molecular pathways, preserves smooth muscle contractility by regulating both contraction and relaxation, and maintains the structure of the corpus cavernosum. Interestingly, testosterone deficiency has relationship to neurological diseases, which leads to ED. Testosterone replacement therapy is widely used to treat patients with testosterone deficiency; however, this treatment might also induce some problems. Basic research suggests that PDE-5 inhibitors, L-citrulline, and/or resveratrol therapy might be effective therapeutic options for testosterone deficiency-induced ED. Future research should confirm these findings through more specific experiments using molecular tools and may shed more light on endocrine-related ED and its possible treatments.",book:{id:"5994",slug:"sex-hormones-in-neurodegenerative-processes-and-diseases",title:"Sex Hormones in Neurodegenerative Processes and Diseases",fullTitle:"Sex Hormones in Neurodegenerative Processes and Diseases"},signatures:"Tomoya Kataoka and Kazunori Kimura",authors:[{id:"219042",title:"Ph.D.",name:"Tomoya",middleName:null,surname:"Kataoka",slug:"tomoya-kataoka",fullName:"Tomoya Kataoka"},{id:"229066",title:"Prof.",name:"Kazunori",middleName:null,surname:"Kimura",slug:"kazunori-kimura",fullName:"Kazunori Kimura"}]}],onlineFirstChaptersFilter:{topicId:"18",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"81646",title:"Cortical Plasticity under Ketamine: From Synapse to Map",slug:"cortical-plasticity-under-ketamine-from-synapse-to-map",totalDownloads:14,totalDimensionsCites:0,doi:"10.5772/intechopen.104787",abstract:"Sensory systems need to process signals in a highly dynamic way to efficiently respond to variations in the animal’s environment. For instance, several studies showed that the visual system is subject to neuroplasticity since the neurons’ firing changes according to stimulus properties. This dynamic information processing might be supported by a network reorganization. Since antidepressants influence neurotransmission, they can be used to explore synaptic plasticity sustaining cortical map reorganization. To this goal, we investigated in the primary visual cortex (V1 of mouse and cat), the impact of ketamine on neuroplasticity through changes in neuronal orientation selectivity and the functional connectivity between V1 cells, using cross correlation analyses. We found that ketamine affects cortical orientation selectivity and alters the functional connectivity within an assembly. These data clearly highlight the role of the antidepressant drugs in inducing or modeling short-term plasticity in V1 which suggests that cortical processing is optimized and adapted to the properties of the stimulus.",book:{id:"11374",title:"Sensory Nervous System - Computational Neuroimaging Investigations of Topographical Organization in Human Sensory Cortex",coverURL:"https://cdn.intechopen.com/books/images_new/11374.jpg"},signatures:"Ouelhazi Afef, Rudy Lussiez and Molotchnikoff Stephane"},{id:"81582",title:"The Role of Cognitive Reserve in Executive Functioning and Its Relationship to Cognitive Decline and Dementia",slug:"the-role-of-cognitive-reserve-in-executive-functioning-and-its-relationship-to-cognitive-decline-and",totalDownloads:22,totalDimensionsCites:0,doi:"10.5772/intechopen.104646",abstract:"In this chapter, we explore how cognitive reserve is implicated in coping with the negative consequences of brain pathology and age-related cognitive decline. Individual differences in cognitive performance are based on different brain mechanisms (neural reserve and neural compensation), and reflect, among others, the effect of education, occupational attainment, leisure activities, and social involvement. These cognitive reserve proxies have been extensively associated with efficient executive functioning. We discuss and focus particularly on the compensation mechanisms related to the frontal lobe and its protective role, in maintaining cognitive performance in old age or even mitigating the clinical expression of dementia.",book:{id:"11742",title:"Neurophysiology",coverURL:"https://cdn.intechopen.com/books/images_new/11742.jpg"},signatures:"Gabriela Álvares-Pereira, Carolina Maruta and Maria Vânia Silva-Nunes"},{id:"81488",title:"Aggression and Sexual Behavior: Overlapping or Distinct Roles of 5-HT1A and 5-HT1B Receptors",slug:"aggression-and-sexual-behavior-overlapping-or-distinct-roles-of-5-ht1a-and-5-ht1b-receptors",totalDownloads:19,totalDimensionsCites:0,doi:"10.5772/intechopen.104872",abstract:"Distinct brain mechanisms for male aggressive and sexual behavior are present in mammalian species, including man. However, recent evidence suggests a strong connection and even overlap in the central nervous system (CNS) circuitry involved in aggressive and sexual behavior. The serotonergic system in the CNS is strongly involved in male aggressive and sexual behavior. In particular, 5-HT1A and 5-HT1B receptors seem to play a critical role in the modulation of these behaviors. The present chapter focuses on the effects of 5-HT1A- and 5-HT1B-receptor ligands in male rodent aggression and sexual behavior. Results indicate that 5-HT1B-heteroreceptors play a critical role in the modulation of male offensive behavior, although a definite role of 5-HT1A-auto- or heteroreceptors cannot be ruled out. 5-HT1A receptors are clearly involved in male sexual behavior, although it has to be yet unraveled whether 5-HT1A-auto- or heteroreceptors are important. Although several key nodes in the complex circuitry of aggression and sexual behavior are known, in particular in the medial hypothalamus, a clear link or connection to these critical structures and the serotonergic key receptors is yet to be determined. This information is urgently needed to detect and develop new selective anti-aggressive (serenic) and pro-sexual drugs for human applications.",book:{id:"10195",title:"Serotonin and the CNS - New Developments in Pharmacology and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg"},signatures:"Berend Olivier and Jocelien D.A. Olivier"},{id:"81093",title:"Prehospital and Emergency Room Airway Management in Traumatic Brain Injury",slug:"prehospital-and-emergency-room-airway-management-in-traumatic-brain-injury",totalDownloads:49,totalDimensionsCites:0,doi:"10.5772/intechopen.104173",abstract:"Airway management in trauma is critical and may impact patient outcomes. Particularly in traumatic brain injury (TBI), depressed level of consciousness may be associated with compromised protective airway reflexes or apnea, which can increase the risk of aspiration or result in hypoxemia and worsen the secondary brain damage. Therefore, patients with TBI and Glasgow Coma Scale (GCS) ≤ 8 have been traditionally managed by prehospital or emergency room (ER) endotracheal intubation. However, recent evidence challenged this practice and even suggested that routine intubation may be harmful. This chapter will address the indications and optimal method of securing the airway, prehospital and in the ER, in patients with traumatic brain injury.",book:{id:"11367",title:"Traumatic Brain Injury",coverURL:"https://cdn.intechopen.com/books/images_new/11367.jpg"},signatures:"Dominik A. Jakob, Jean-Cyrille Pitteloud and Demetrios Demetriades"},{id:"81011",title:"Amino Acids as Neurotransmitters. The Balance between Excitation and Inhibition as a Background for Future Clinical Applications",slug:"amino-acids-as-neurotransmitters-the-balance-between-excitation-and-inhibition-as-a-background-for-f",totalDownloads:19,totalDimensionsCites:0,doi:"10.5772/intechopen.103760",abstract:"For more than 30 years, amino acids have been well-known (and essential) participants in neurotransmission. They act as both neuromediators and metabolites in nervous tissue. Glycine and glutamic acid (glutamate) are prominent examples. These amino acids are agonists of inhibitory and excitatory membrane receptors, respectively. Moreover, they play essential roles in metabolic pathways and energy transformation in neurons and astrocytes. Despite their obvious effects on the brain, their potential role in therapeutic methods remains uncertain in clinical practice. In the current chapter, a comparison of the crosstalk between these two systems, which are responsible for excitation and inhibition in neurons, is presented. The interactions are discussed at the metabolic, receptor, and transport levels. Reaction-diffusion and a convectional flow into the interstitial fluid create a balanced distribution of glycine and glutamate. Indeed, the neurons’ final physiological state is a result of a balance between the excitatory and inhibitory influences. However, changes to the glycine and/or glutamate pools under pathological conditions can alter the state of nervous tissue. Thus, new therapies for various diseases may be developed on the basis of amino acid medication.",book:{id:"10890",title:"Recent Advances in Neurochemistry",coverURL:"https://cdn.intechopen.com/books/images_new/10890.jpg"},signatures:"Yaroslav R. Nartsissov"},{id:"80821",title:"Neuroimmunology and Neurological Manifestations of COVID-19",slug:"neuroimmunology-and-neurological-manifestations-of-covid-19",totalDownloads:41,totalDimensionsCites:0,doi:"10.5772/intechopen.103026",abstract:"Infection with SARS-CoV-2 is causing coronavirus disease in 2019 (COVID-19). Besides respiratory symptoms due to an attack on the broncho-alveolar system, COVID-19, among others, can be accompanied by neurological symptoms because of the affection of the nervous system. These can be caused by intrusion by SARS-CoV-2 of the central nervous system (CNS) and peripheral nervous system (PNS) and direct infection of local cells. In addition, neurological deterioration mediated by molecular mimicry to virus antigens or bystander activation in the context of immunological anti-virus defense can lead to tissue damage in the CNS and PNS. In addition, cytokine storm caused by SARS-CoV-2 infection in COVID-19 can lead to nervous system related symptoms. Endotheliitis of CNS vessels can lead to vessel occlusion and stroke. COVID-19 can also result in cerebral hemorrhage and sinus thrombosis possibly related to changes in clotting behavior. Vaccination is most important to prevent COVID-19 in the nervous system. There are symptomatic or/and curative therapeutic approaches to combat COVID-19 related nervous system damage that are partly still under study.",book:{id:"10890",title:"Recent Advances in Neurochemistry",coverURL:"https://cdn.intechopen.com/books/images_new/10890.jpg"},signatures:"Robert Weissert"}],onlineFirstChaptersTotal:17},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:288,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"24",title:"Sustainable Development",doi:"10.5772/intechopen.100361",issn:null,scope:"