Main membrane lipids in
\r\n\r\n
\r\n\r\nThis project was co-financed by the European Regional Development Fund under the Operational Programme "Innovative Economy".\r\n',isbn:null,printIsbn:"978-953-51-1734-6",pdfIsbn:"978-953-51-4230-0",doi:"10.5772/59798",price:119,priceEur:129,priceUsd:155,slug:"storage-stability-of-fuels",numberOfPages:278,isOpenForSubmission:!1,isInWos:1,isInBkci:!0,hash:"bc73beb5dc74410e15c8ee19ee4de722",bookSignature:"Krzysztof Biernat",publishedDate:"February 4th 2015",coverURL:"https://cdn.intechopen.com/books/images_new/4751.jpg",numberOfDownloads:22297,numberOfWosCitations:25,numberOfCrossrefCitations:14,numberOfCrossrefCitationsByBook:1,numberOfDimensionsCitations:31,numberOfDimensionsCitationsByBook:1,hasAltmetrics:1,numberOfTotalCitations:70,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 30th 2014",dateEndSecondStepPublish:"November 20th 2014",dateEndThirdStepPublish:"February 24th 2015",dateEndFourthStepPublish:"May 25th 2015",dateEndFifthStepPublish:"June 24th 2015",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7,8",editedByType:"Edited by",kuFlag:!1,featuredMarkup:'
Archaea represents the third domain of life. Their peculiar evolutionary status conforms to their unique genotypic and phenotypic properties. Except for methanogenesis, which has not yet been described in bacteria, all central metabolic pathways discovered in archaea also exist in bacteria, although in some cases with important and novel modifications. Archaeal organisms can be either heterotrophs or autotrophs (chemio‐ or photo‐lithoautotroph) and can use a large variety of electron donors and acceptors [1]. One of the most striking features of archaea organisms is their relation with hyperthermophilicity as they are able to colonize ecological niches even above 95°C. This property relies in part on the unique structure of archaeal lipids, which are able to maintain impermeability of the cytoplasmic membrane to ions at such high temperatures. Although archaea are often believed to live in extreme environments, they can also be found in many diverse locations including even moderate environmental conditions.
The phylum
The evolutionary studies of archaea are important for understanding the origin of life and the course of evolution of the organisms that populate the earth. In the 1970s, Carl Woese’s work showed that RNA of the small subunit of the ribosome (SSU rRNA) could be used to define phylogenetic relationships, which allowed the construction of a universal tree of life [2]. From these studies emerged the discovery of archaea, demonstrating that living organisms on earth can be divided into three domains (archaea, eukarya, and bacteria). Initially, two phyla were identified in archaea:
The phylum
However, at the end of the 1990s, the phylogenies based on SSU rRNA were questioned regarding their ability to reconstruct the more ancestral speciation events, given the lack of a phylogenetic signal [4]. The phylogenetic trees, reconstructed with SSU rRNA by maximum likelihood and evaluated by bootstrap (a method to evaluate the robustness of nodes in a tree), showed that the most ancestral nodes of the phylum
The evolutionary relationships among the archaea orders have been established by the sequencing of several genomes. Petitjean et al. [6] identified 200 protein families, along with 57 ribosomal proteins and 14 RNA polymerase subunits, which represent 273 phylogenetic markers in 129 archaeal genomes. With this conserved core of archaeal genes, they inferred the phylogeny of the nodes of different orders with high robustness (statistical significance >95%). The tree topology obtained with this core of proteins is generally consistent with other topologies such as that obtained by Battistuzzia and Hedgesa [7].
The topology of these phylogenies shows that
Schematic representation of phylogenetic relationships between the orders of
The systematic studies of archaeal metabolism were undertaken soon after the first genome sequence from archaea was obtained. The initial studies contemplated metabolic reconstructions based on the presence of homologous sequences with known activities [10]. In parallel, the
The simplied scheme of
Heterotrophs from
In autotrophic organisms of
Methanogens are unable to grow in the presence of sugars, peptides or compounds of three or more carbons since they lack specific transporters for these substances [28]. However, they can use CO2 and other one‐carbon compounds, such as formate, as a carbon source. Carbon fixation proceeds via a reductive pathway of Acetyl‐CoA (Wood‐Ljungdahl pathway) where two molecules of CO2 are reduced and one molecule of Acetyl‐CoA is produced [29]. This reduction is carried out by the oxidation of two equivalents of ferredoxin and one equivalent of coenzyme F420 (a unique coenzyme from methanogenic organisms) [30]. The methanogens, by using the POR enzyme, carry out the carboxylation of Acetyl‐CoA to form pyruvate and, in this way, generate the substrates for gluconeogenesis or amino acid synthesis [31].
Methanogenesis is the main metabolic process in autotrophs from
In class II methanogens, besides the hydrogenotrophic pathway [33], two variants have also been found: acetoclastic and methylotrophic methanogenesis, both of which have a more recent evolutive origin [34]. In acetoclastic methanogenesis, one molecule of methane and one of CO2 are generated from one molecule of acetate [35, 36]. Acetate is first converted to Acetyl‐CoA by the action of the Acetyl‐CoA synthetase enzyme with a concomitant expenditure of ATP. Later, the methyl group of Acetyl‐CoA enters methanogenesis and gets reduced to generate methane in a process whose stages are shared with hydrogenotrophic methanogenesis. The electrons required to carry out the process are provided by the oxidation of the carbonyl group of Acetyl‐CoA to carbon monoxide and then to CO2 in a ferredoxin‐dependent process.
In the methylotrophic methanogenesis, methane can be produced from the methyl group of several molecules, such as methanol, methylamine, and methanethiol. A total of four methyl groups are metabolized, and three of them enter methanogenesis where they are reduced to yield three methane molecules [35, 37]. The fourth methyl group is oxidized through a process equivalent to hydrogenotrophic methanogenesis, but it occurs in reverse order, yielding CO2 and providing the electrons needed for the reduction of the other three molecules. The CO2 produced in this process, as well as the one produced in acetoclastic methanogenesis, can enter in the reductive acetyl‐CoA pathway to be destined to biomass generation.
Archaea are generally characterized by the unique structure of their membrane lipids. Their phospholipid composition mainly includes long chains of methylated isoprenoids attached to a glycerol‐1‐phosphate molecule via an ether bond, which has been suggested to contribute to the survival in extreme environments [38]. Archaeal lipids differ in isoprenoids chain length, composition, configuration, and various modifications at the polar head groups. The two main core structures are C20 sn‐2, 3‐diphytanyl glycerol diether lipid (also known as archaeal) and C40 sn‐2, 3‐diphytanyl diglyceroltetraether also known as glycerol diphytanoyl diglycerol tetraether (GDGT) or caldarchaeol. The archaeal lipids include some lipids with C25isoprenoid chain, which enables the formation of the bilayer membrane. On the other hand, in caldarchaeol, two identical or different glycerol moieties are connected by two C40 isoprenoid chains, enabling the formation of monolayer membrane (Figure 3). These membranes present a higher degree of compactness compared to the other bilayer membranes, which precludes external and internal layer fusion at high temperatures [39]. Furthermore, the ether bond typical of archaeal lipids is less susceptible to hydrolysis than the ester bonds present in bacterial lipids, which makes this kind of membrane to be more stable at high temperatures and in acidic environments. Molecular dynamic simulations have confirmed the importance of the monolayer structure in the membrane stability and determined that the presence of cyclic structures, like cyclopentane, increases membrane rigidity, rendering the membrane more resistant to mechanical stresses and high temperatures [40]. In hyperthermophilic archaea, the number of cyclic structures increases with the increase in growth temperature since the interaction between the lipids with cyclopentane is more stable. On the other hand, in psychrophilic
The structures of archaeal membrane lipids. (A) Archaeal C20. (B) Modified archaeal C25. (C) Macrocyclic archaeal. (D) Tetriol‐archaeoldiether lipids. (E) Crenarchaeol with cyclopentane and cyclohexane. (F) Caldarchaeol C40 (GDGT).
As a ubiquitous characteristic, the membrane lipids in
Archaeal and extended archaeal are the main lipids in the orders
Organism characteristic | Organism | Metabolism | Type of lipid | References | |
---|---|---|---|---|---|
Psychrophilic Mesophilic | Heterotrophic | Archaeal C20*, Archaeal extended C25**, GDGT C40 and Archaeal unsaturated (psychrophilic organisms only) | [52, 53] | ||
Thermophilic Mesophilic Psychrophilic | Autotrophic | Archaeal C20*, GDGT C40 and Archaeal unsaturated (psychrophilic organisms only) | [41, 54, 55] | ||
Hyperthermophilic | Autotrophic | Archaeal C20* with cyclic ring (the degree of cyclization increase with the increase of the T°) and unsaturated Archaeal | [56] | ||
Hyperthermophilic | Autotrophic | Archaeal C20 macrocyclic Archaeal*** | [44] | ||
Thermophilic Hyperthermophilic | Heterotrophic | Archaeal C20*, Cardarchaeol derivatives and GDGT with up to two cyclic rings | [56] | ||
Mesophilic Thermophilic | Autotrophic | Archaeal C20* or Archaeal extended C25** and GDGT‐0 | [39] | ||
Mesophilic Thermophilic | Heterotrophic | Archaeal C20*, **Archaeal extended C25** and GDGT with zero to two cyclic rings | [57] | ||
Mesophilic Thermophilic | Heterotrophic | GDGT with one to three cyclic ring | [56] |
Main membrane lipids in
**Archaeal C25 = C25 sn‐2,3‐sesterterpanyl.
***Macrocyclic Archaeal = C20 macrocyclic archaeal; GDGT = glycerol diphytanoyl glycerol tetraether; GDGT‐0 cyclic ring; GDGT‐1‐4 cyclic ring; GDGT‐5‐8 cyclic ring.
During the lipid synthesis in archaea, the isopentenyl diphosphate (IPP) and dimethyl allyl diphosphate (DMAPP) compounds serve as the building blocks of the isoprenoid chains. There are two pathways for the synthesis of these compounds: one of them corresponds to the mevalonate pathway (MVA), and the other is mevalonate‐independent, which is known as C‐methyl‐d‐erythritol‐4‐phosphate/1‐deoxy‐d‐xylulose‐5‐phosphate (MEP‐DOXP). In the MVA pathway, IPP and DMAPP are formed by the condensation of Acetyl‐CoA molecules to give 3‐hydroxy‐3‐methylglutaryl‐CoA (HMG‐CoA), which is later reduced to mevalonate and then phosphorylated and decarboxylated to form the precursor molecules of the isoprenoid chains [43]. Further,
Isoprenoid synthesis through the mevalonate‐independent pathway was described initially in eukaryotes and later in bacteria, algae, and plants. Both pathways differ in the substrates and enzymes that participate in IPP formation. For example, in the MEP‐DOXP pathway, the initial substrates for IPP formation are pyruvate and glyceraldehyde‐3P, while in the MVA pathway are acetyl‐CoA and acetoacetyl‐CoA. Another difference lies in the last three enzymes of both pathways; in the MEP‐DOXP route, they correspond to methylerythritol cyclodiphosphate (MEcPP) synthase and hydroxymethylbutenyl 4‐diphosphate (HMBPP) synthase, which are absent in the MVA route. Further, the last enzyme in the MEP‐DOXP pathway is an HMBPP reductase, which, in the other pathway, is a mevalonate‐5‐diphosphate (MVAPP) decarboxylase [45, 46].
As already mentioned, archaea thrive in many different extremes: heat, cold, acid, base, salinity, pressure, and radiation. These harsh environmental conditions imposed several restrictions to which they had to adapt during the course of their evolution. Considering these extreme environments, archaea can be divided into: halophiles, psychrophiles, thermophiles, acidophiles, and piezophiles. However, it has to be remembered that these branches frequently intersect in interesting ways.
Archaeal organisms have evolved to deal with one or more extreme conditions that have led them to accumulate the changes mostly concerned with protein structure and enzyme activity. These adaptations made them a vast repertoire of macromolecules with particular features not available in their counterparts from other organisms. This constitutes an inexhaustible source of biological molecules for industrial or biotechnological applications.
Thermophilic and hyperthermophilic archaea are found mainly in the deep ocean, hydrothermal vents, and hot water near volcanoes. According to their growth temperature, these organisms have been classified as thermophiles or hyperthermophiles. The former are those able to grow at temperatures above 50°C and the latter at 80°C or more [47]. There are diverse cellular mechanisms that make the life possible at these extreme temperatures. The expression of molecular chaperones (HsP) that help in the correct folding of proteins and enzymes accompanied with more rigid membranes and proteins than those found in mesophiles are common characteristics of this kind of organisms [39, 48, 49]. At a genomic level, it is not clear if an increase in the G+C content is indeed a characteristic of thermophilic and hyperthermophilic organisms since some mesophilic organisms do show a higher proportion of these nitrogen bases than their hyperthermophilic counterparts [47, 50]. The high thermal stability, as well as the capacity of the enzymes of these microorganisms to catalyze reactions at very high temperatures, has made them a subject of intense research. Many archaeal thermophilic and hyperthermophilic enzymes employ substrates that are different from those used by their bacterial homologs; even some of them possess novel catalytic activities not found in bacteria, which make the archaeal enzymes a promising source for biotechnological processes.
Thermophilic and hyperthermophilic archaea could be either methanogenic or nonmethanogenic organisms. The nonmethanogenic hyperthermophilic archaea belong to the orders
In general terms, the enzyme structures of thermophilic and hyperthermophilic archaea have been described as highly rigid and thermostable compared to their mesophilic homologs. The mechanisms reported to achieve this enhancement in thermostability include an increase in the number of ionic interactions, disulfide bridges, surface charges, higher oligomerization states, and a more compact hydrophobic core [51]. Although to date there are many characterized thermophilic and hyperthermophilic enzymes from the phylum
The structure of enzyme triose phosphate isomerase is characterized by TIM barrel fold, and it catalyzes the reversible interconversion of glyceraldehyde‐3P and dihydroxyacetone phosphate. In eukaryotes, bacteria, and mesophilic archaea, this enzyme is a dimer, while in thermophilic and hyperthermophilic archaea, it exists in a tetrameric form [58]. The hyperthermophilic triose phosphate isomerase from
A good example of the role of ionic interactions in the adaptation of protein structures to high temperatures is the ionic network present in a triose phosphate isomerase from
An example of the use of disulfide bridges for increased stability is the comparison between the archaeal hyperthermophilic enzyme alpha‐amylase from
Most of the archaeal organisms studied evolved to colonize low‐temperature aquatic ecosystems such as those present in Antarctic, Arctic, vast tracts of the deep sea, and also alpine regions. These organisms are called psychrophiles and can be classified in
Low temperature imposes several challenges to cellular functions such as replication, transcription, translation, and metabolic reactions crucial for the development of microorganisms. At a cellular level, the common strategies employed to cope low temperatures include, inter alia, cold shock proteins, antifreeze proteins, and an increased membrane fluidity [67]. Besides this, the protein structure should also adapt to a cold environment. Identifying the important features that confer specific thermal properties has been a subject of intense research in the last few years. Even so, to date, very few proteins from psychrophilic archaea have been studied, in contrast to a large number of proteins and enzymes from mesophilic, thermophilic, and hyperthermophilic archaea. The current studies indicate that the main feature of psychrophilic proteins and enzymes is to have a flexible structure, which could offset the energy decrease of the reaction medium, thus facilitating catalysis processes at low temperatures. Heat‐induced unfolding experiments for psychrophilic, mesophilic, and thermophilic proteins show distinct stability patterns where the unfolding of the cold‐adapted proteins occurs at lower temperatures (Tm) and gradually increases for the other groups [68]. Nonetheless, the psychrophilic enzymes do not display unusual or exotic 3D conformations and bear overall folds resembling that of their mesophilic counterparts [69]. The main challenge faced by psychrophilic enzymes is to catalyze reactions at an appropriate rate even when the low temperatures strongly diminish the rates of chemical reactions. Several reports regarding cold‐active enzymes have demonstrated that they display a much higher specific activity at low and moderate temperatures as their thermophilic counterparts [70]. This is caused by the destabilization of either the active site or the whole protein, conferring mobility and flexibility to the active site at the temperatures that tend to freeze molecular motions [71]. It is generally accepted that although other molecular traits can contribute to cold activity, the lack of selective pressure on stable proteins, in conjunction with a strong selection of highly active enzymes, is the main factors responsible for cold activity adaptation in natural environments.
The psychrophilic enzymes from archaea evolved to attain more flexible structures by adopting several mechanisms. For example, by reducing the number of charged residues present at both the protein surface and the hydrophobic core (Arg, Lys, Glu). A low content of arginine residues results in a low number of hydrogen bonds that can be formed contributing to structural flexibility. In order to compensate for the loss of charges at the protein surface and avoid aggregation, these proteins present a great proportion of noncharged polar residues such as Gln and Thr, which in turn implies a decrease in stabilizing ion pairs favoring a structural destabilization [72]. Other adaptations include the clustering of glycine residues (providing local mobility), the disappearance of proline residues in loops (providing enhanced chain flexibility between secondary structures), as well as a lower number of ion pairs, aromatic interactions, and hydrogen bonds [73]. Additionally, the hydrophobicity of the protein core and the compactness of the protein interior is usually low [73]. In summary, all aforementioned factors are attenuated in strength and number in the structures of cold‐active enzymes.
One remarkable fact about psychrophilic enzymes is that they are inactivated at the temperatures that are well below than the one at which the protein unfolds; this presents a remarkable difference from their mesophilic or thermophilic homologs. This led to the concept of a localized increase in the flexibility at the active site, which is responsible for a high but heat‐labile activity, while the other regions of the protein, not involved in catalysis, might not have low stability [74, 75]. The comparison of the experimentally measured activation energy of transition (∆G≠) of some cold‐active enzymes revealed that this parameter is systematically lower than the mesophilic proteins [74]. It has been proposed that the activation of these enzymes is facilitated by a decrease in the affinity of the enzyme for the substrate (higher level of ES) and by a possibly lower energetic level of ES≠. In many cases, the high activity of these enzymes at low temperatures has been associated with a rather open structure and also to a loss of specificity [73, 74].
The above and the other structural alterations have been reported mainly for psychrophilic enzymes from bacteria and eukarya, and there are not enough studies about psychrophilic archaeal enzymes in order to sustain that the same alternations are also responsible for cold adaptations in these organisms. A general adaptive mechanism proposed for psychrophilic enzymes from bacteria is the optimization of kcat at the expense of Km [73]. Although this mechanism is generally accepted, it cannot be generalized to archaeal enzymes considering the few cases studied. In the case of the GTPase of the elongation factor 2 (EF2) from
The biophysical and catalytic features of psychrophilic enzymes present a challenge and offer an interesting model to unravel protein evolution, folding, and dynamics. We hope that these traits along with their tremendous biotechnological potentials will bring further promising advances in the archaeal psychrophilic protein research.
Hypersaline environments are defined as those containing higher salt concentrations than seawater (>3.5% total dissolved salts). Most hypersaline bodies are thalassohaline, dominated by Na+, Ca2+, Cl−, and SO4− ions, generally bearing neutral pH. These bodies derive from the evaporation of seawater and retain the relative proportion of salts in the sea. On the other hand, there is another less common group called athalassohaline of water bodies, dominated, among others, by Ca2+, Mg2+, Cl−, and Ba−, with pH conditions ranging from acidic to alkaline, and having a nonmarine origin. Both overall salinity and ionic composition together with the conditions like temperature and nutrient availability determine the existence of highly variable hypersaline environments that can be found extending from Antarctica to alkaline hypersaline soda brines and subterranean evaporite deposits.
Halophilic microorganisms are classically categorized according to their optimal growth at different salt concentrations, and two main groups have been recognized: the extreme halophiles (optimal growth above 15% NaCl) and moderate halophiles (optimal growth 3–15% NaCl).
In archaea, the only halophilic organisms known to date belong to the phylum
How do these organisms deal with high salinity environments and what adaptations did they incorporate into their molecular machinery and proteins? Both questions have been addressed in multiple studies with the main focus on
The classical “solvation‐stabilization” model proposed for the understanding of the mechanism behind the adaptation of the halophilic proteins proposes that the stability at high salt concentrations arises from the recruitment of an orderly solvate envelope of high ionic concentration, coordinated through the abundance of carboxylate groups (Asp and Glu) at the protein surface [85]. Despite the studies that have identified an increased stability and solubility of proteins enriched in Asp and Glu residues [86], biophysical [87] and crystallographic data [88] have failed to identify such hydration layers up to the extent proposed. More recently, it has been proposed that the main change in residue composition responsible for “halophilicity” is the diminution of Lys residues [89] due to the decreased solvent accessible area. This idea was confirmed by crystallographic studies, showing that water molecules adopt more structured distributions in the vicinity of Lys residues [90].
On the other hand,
Acidophilic and acid tolerant organisms can thrive in natural, as well as man‐made, acidic environments at pH less than 4.0. These environments are usually present in the combinations with other stressors, like high temperatures, elevated concentrations of heavy metals, and salinities approaching saturation [92]. As a result,
Although some members of
One striking feature of some acidophilic proteins is their requirement of a low pH (2−5) for their optimal activity, such as alfa‐glucosidase and carboxyl esterase [96], even when the internal pH of these organisms is close to neutrality. Nevertheless, not all proteins from
A possible explanation for the optimal activity at low pH was proposed through the study of the endo‐β‐glucanase from the
Recent crystallographic studies shed some light on the mechanisms of protein stability and catalytic efficiency at low pH. The strategy of increased negative residues was not present at the same extent in the aspartate racemase from
Deep‐sea hydrothermal vents are another extreme environment colonized by archaea. In these environments, an average pressure of approximately 38 MPa is found that can reach even up to 110 MPa, hence imposing a major challenge for life. Organisms that can thrive in such extreme barometric pressure are often termed as piezophiles or barophiles. Several piezophiles have been cultured; however, they require specialized equipment in order to maintain high pressures. Thus, many studies have focused on nonculturing techniques, like genomic analysis. Besides high pressure, hydrothermal vents also have very high temperatures and indeed could be the habitat of hyperthermophiles. However, only a few hyperthermophiles are also piezophiles. To date, the only strictly piezophilic anaerobic hyperthermophilic archaeon reported is
The extreme harsh environmental conditions where extremophiles live serve as an enormous source of enzymes with peculiar properties that make them very suitable for industrial or biotechnological applications. The first commercialized enzyme was diastase, available in the market since 1830 in France. Since then, the enzyme market gained importance because they not only reduce the cost of the products but benefit the environment. In 2015, the global market for industrial enzymes reached nearly 4.9 billion and is expected to reach nearly $5.0 billion in 2016 to $6.3 billion in 2021. Food and animal feed industrial enzyme market is expected to grow to $1.9 billion and $1.6 billion in 2021, respectively (BCC Research Biotechnology report 2017). At present, most of the industrially applied enzymes show low activity and stability, which is highly disadvantageous in terms of concomitant high costs (Table 2).
Enzyme | Enzyme characteristics | Organism | Application | References |
---|---|---|---|---|
α‐Amylase | Hyperthermophilic | Bread and baking industry, Starch liquefaction and saccharification. Production of glucose, fructose for sweeteners, textile desizing, paper industry | [104] | |
Halophilic | [105] | |||
Acidophilic | Q6KZM7* | |||
Psychrophilic | Q12YQ1* | |||
Subtilisin | Hyperthermophilic | Detergents, baking, brewing and amino acid production | [106] | |
Halophilic | M0NQ93* | |||
Acidophilic | M7TYK7* | |||
Psychrophilic | K4M7H8* | |||
Esterase | Hyperthermophilic | Detergent formulations and dairy industry | [107] | |
Halophilic | [108] | |||
Acidophilic | [107] | |||
DNA polymerase | Hyperthermophilic | DNA cloning, sequencing, labeling, mutagenesis, and other purposes | [109] | |
Halophilic | [110] | |||
Acidophilic | Q9HJR0* | |||
Psychrophilic | Q12YC5* | |||
Cellulase | Hyperthermophilic | Pulp and paper, textile, laundry, biofuel production | [111] | |
Halophilic | [112] | |||
Acidophilic | Q6KZ15* | |||
Psychrophilic | Q12XZ9* | |||
β‐Glycosidase | Hyperthermophilic | Polymer degradation, color brightening, color extraction of juice, cotton products, synthesis of sugars | [113] | |
Halophilic | Q5V5G3* | |||
Acidophilic | [114] | |||
β‐Galactosidase | Hyperthermophilic | Detergent and food industries and for the production of fine chemicals | [115] | |
Halophilic | [116] | |||
Acidophilic | [117] | |||
Psychrophilic | [118] | |||
Alcohol dehydrogenase | Hyperthermophilic | Food, pharmaceutical, and fine chemicals industries | [119] | |
Halophilic | [120] | |||
Acidophilic | [121] | |||
Psychrophilic | B9LV78* | |||
Lipase | Hyperthermophilic | Detergent formulations and the dairy industry | [122] | |
Halophilic | [123] | |||
Acidophilic | Q9HJS7* |
Extremozymes and their applications in industrial and biotechnological processes.
*UniProt code.
There have been continuous efforts for expressing the genes encoding for the enzymes from extremophiles in mesophilic hosts in order to overproduce them and modify their properties to be suitable for commercial applications. In addition, archaeal enzyme expression can be achieved by using extremophilic microorganisms as hosts for autologous gene expression [124]. Integrative and shuttle vectors have been developed for
Archaeal compounds also have many applications in the pharmaceutical and alimentary industry.
There is a huge amount of information available regarding biotechnological applications of extremozymes, and therefore, this chapter made an effort to summarize the applications of these enzymes and compounds in some selected areas. Considering that very few archaeal enzymes have found their way to the market in some applications, we provided the examples of such extremophiles and the corresponding UniProt code for the homologous enzymes present in archaea (Table 2). We hope that this kind of information will be extremely valuable for future studies looking for archaeal enzymes with particular properties.
We would like to thank CONICYT for financial support: Fondecyt Postdoctorado N°3160332 to VC‐F, Fondecyt Postdoctorado N°3160376 to AH‐M, and Fondecyt Regular N°1150460 to VG.
Terahertz (THz) radiation is a small portion of the electromagnetic spectrum lying between the microwave and infrared regions. There is no precise range defining THz band, but it is most often –considered as frequencies in the range of 0.3–3.0 THz. Although sometimes it refers to 0.1–10 THz as well. The THz spectral range has drawn tremendous attention recently due to its promising applications in various domains. For example, in the field of biomedicine, THz radiation has been explored to detect various biomaterials like nucleic acids, proteins, cells and tissue applications [1, 2]. In the field of medical applications, the THz system has been demonstrated as a highly effective technique in cancer imaging, particularly for skin cancer [3, 4]. A portable real-time THz imaging system could be used to assist early detection of diseases during routine health checkups. Since many non-metallic, non-polar materials are transparent to THz radiation, scanning of humans is feasible with no health hazards. Due to this, THz radiation is widely used for security and public safety applications. THz radiation can detect concealed weapons, explosives (e.g., C-4, HMX, RDX and TNT), illicit drugs (e.g., methamphetamine and heroin), and more [1]. THz imaging has become a valuable characterization tool for non-destructive testing, process control and quality inspection for inspection of silicon solar cells, nanocomposites, polymer films and dielectric films [1, 5, 6]. Space- and ground-based THz instruments have been explored significantly in the field of astronomy. For example, the THz system is extensively used to study the origin of the universe, formation of stars and galaxies, composition of planets and planetary atmospheres, the climate and environmental balance of our planet Earth, and more [7, 8].
Despite these tremendous potential applications, the so-called THz Gap is not fulfilled to the required level due to technology requirements of high-power sources and efficient and sensitive detectors in the THz range. Semiconductor devices and circuits like transistor and frequency multipliers work well towards the low end of THz frequency, but their power level drops off precipitously as the frequency increases. These devices can be operated up to ∼1 THz with very low power. Conversely, semiconductor photonic devices like lasers can be utilized in the high-frequency THz range. Again, lasers are limited due to the non-availability of lower bandgap semiconductor materials towards low-frequency THz. The THz quantum cascade lasers (QCLs) showed promising results to fill this THz gap from 1 to 10 THz. However, QCLs required bulky cooling requirements, and reported maximum operating temperature is in the range of 150–200 K, which is too low for general applications [9, 10]. The demand for a compact, efficient and high-speed THz detector and source operating at room temperature has increased drastically. The non-availability of a room-temperature THz source and detector is a prime limitation of the modern THz system.
In this chapter, novel theoretical models and experimental techniques for the intersubband transitions (ISBT) phenomenon are illustrated for ambient THz applications. Section 2 covers the theoretical models and simulations based upon plasmonic metamaterials-assisted ISBT and describes the GaN HEMT response towards the THz spectrum. Section 3 covers the fabrication and measurement of a GaN HEMT device. Section 4 is investigates ambient temperature ISBT in a GaN HEMT device.
In this section, we present our theoretical model based on ISBT, metamaterial and plasmonic phenomena for GaN HEMT THz applications [11, 12, 13]. We proposed a combined plasmonic and metamaterial-driven ISBT phenomenon as one of the possible modes that can extend GaN HEMT operating frequency well beyond its present cut-off frequency to the THz band. ISBT is the prime mechanism to explore as a potential mechanism for THz operation, while metamaterial and plasmonic effects improve the strength of ISBT in a GaN HEMT structure. Theoretical modeling started with the role of polarization in a wurtzite semiconductor followed by the self-consistent solution of Schrodinger and Poisson equations; k.p model and Fermi Golden rule are used to compute ISBT in the GaN HEMT structure. The size and geometry of an HEMT device act as THz metamaterial (this concept is explored in-depth in Section 2.4) and it couples THz radiation to two-dimensional electron gas (2DEG) inside a triangular quantum well. Further, very small gate lengths in the range of 100–250 nm are selected for high-frequency operation of HEMT. This fine nanometric-sized gate structure of HEMT excites surface plasmon waves at the interface between the gate metallic contact and 2DEG channel in the GaN heterostructure (this concept is explored in-depth in Section 2.5). These combinations (i.e., plasmonic metamaterial-assisted ISBT) govern the THz response of the GaN HEMT device.
GaN heterostructure is generally grown on sapphire or silicon carbide (SiC) substrate. Figure 1(a) shows the most widely used GaN heterostructure, which consists of a 60-nm AlN nucleation layer, 2-μm thick undoped GaN layer, 1-nm AlN spacer layer, 20 nm-undoped Al0.3Ga0.7N barrier layer, and 3-nm Si3N4 passivation layer. Introducing a thin 1-nm AlN interlayer between AlGaN and GaN plays a crucial role. Better carrier confinement, reduced alloy scattering and enhanced conductivity are achieved by inserting a thin AlN layer [14, 15]. The cross-sectional view of the simulated GaN HEMT device by Silvaco TCAD is shown in Figure 1(b). Computation mesh to simulate the device structure is shown in Figure 1(c). In the regions beneath the gate, at the edges of the source and drain contacts and at the AlGaN/AlN/GaN interface, fine meshing is done to achieve the convergence and accuracy of the calculations. The spacing between different electrodes, namely, source to gate, gate to drain and source to drain are set to 0.9, 2.0 and 3.0 μm, respectively. Gate length is kept as 100 nm. To obtain lower gate resistance, gate geometry is selected as T-gate in simulation as well as in fabrication.
(a) GaN Heterostructure, (b) HEMT cross-sectional view and (c) HEMT mesh structure (reprinted with permission from Ref. [
Generally, high-power RF GaN HEMT is fabricated in a multi-finger configuration. Two ground-source-ground (GSG) configurations are shown in Figure 2: 2 × 150 and 8 × 150. To measure the RF performance of the device GSG configuration is widely used for HEMT fabrication. The 2 × 150 configuration contains two gate fingers with 150-micron unit gate width of the device. Similarly, the 8 × 150 configuration contains eight gate fingers with 150-micron unit gate width. To expand the device length for high-power applications, a greater number of gate fingers are used. For example, if the power handling capability of the fabricated GaN HEMT is 5 W/mm, the 2 × 150 = 0.3-mm device can be used for 1.5 W RF power. Similarly, the 8 × 150 = 1.2-mm device can be used for 6.0 W RF power. Before further discussion on plasmonic metamaterial-assisted ISBT, the following section refreshes some fundamentals about polarization in III-N (nitride) semiconductors.
Typical configurations of GaN HEMT (a) 2 gate fingers with 150 micron gate width (2 × 150) (zoom image for gate fingers visualization and (b) 8 gate fingers with 150 micron gate width (8 × 150). Representation 3.0/0.10/8/150 indicates source to drain distance 3.0 μm, 0.1 μm (100 nm) gate length, 8 fingers device with 150 μm gate width.
The nitride semiconductor materials exhibit inherent polarization properties. Having the large ionicity of the nitride bond (Ga–N, Al–N, In–N, etc.), it possesses a piezoelectric polarization (PPE) component, while the absence of the center of inversion symmetry and uniaxial nature of the crystal structure produces spontaneous polarization (PSP). Total polarization (PT) in the nitride semiconductor heterostructure is a combination of spontaneous polarization (PSP) and piezoelectric polarization (PPE), as shown in Eq. (1).
Furthermore, the strain-induced effect at the interface between two nitride semiconductors enhances piezoelectric polarization in the heterostructure. Piezoelectric polarization of the crystal is generally defined in terms of strain (ɛ) and stress (σ) components. Stress and strain are correlated in a crystal by elastic coefficient ɛij = Cij σij. The piezoelectric polarization in heterostructure grown along the z-axis (0001) is given by,
where E33, and E31 are piezoelectric coefficients, and ɛx, ɛy and ɛz are strain in x, y and z-directions, respectively. The crystal edge length and height are represented as a0 and c0 respectively in a hexagonal crystal lattice. The strain along the x, y and z-axis is given by (in-plane strain along x-axis and y-axis are assumed to be isotropic),
where a0 and c0 are the equilibrium or unstrained values of lattice constants and a and c are the strain lattice constant due to growth of heterostructure. For hexagonal lattice crystal, the strain components along ɛz and ɛx are related with elastic coefficients as per the following equation,
where C13 and C33 are the elastic constants. Substituting Eqs. (3) and (4) in Eq. (2),
The macroscopic piezoelectric polarization is defined by variations of the lattice constants a and c. The microscopic piezoelectric polarization is expressed in terms of an internal parameter u, defined as the anion–cation bond length along the z-axis (0001) [16]. Substituting elastic constant values for AlN and GaN in Eq. (5), one gets piezoelectric polarization of AlN greater than GaN. Spontaneous polarization closely depends upon crystal structure c/a ratio. The ideal c/a ratio in the hexagonal, closed-pack crystal structure is 1.633. The spontaneous polarization is found to be greater in actual crystal structures as the c/a ratio is different from its ideal value [16]. This nonideality of c/a ratio in AlN is also greater than GaN, which leads the greater spontaneous polarization. The spontaneous and piezoelectric polarization for alloy (i.e., AlGaN) is obtained by linear interpolation of the binary constituents (Vegard’s law). In summary, the spontaneous and piezoelectric polarizations for AlGaN over the whole range of compositions are larger than that of a GaN buffer layer.
The polarization-induced charge density and sheet density in the heterostructure is given by,
The polarization-induced charge density and sheet density for the case of AlGaN/GaN heterostructure is given by,
Extracted 2DEG concentration, purely due to polarization effects, is the order of ∼1013 cm−2 for nitride heterostructures. Unlike GaAs MODFET heterostructures, no doping is required in nitride heterostructures to generate 2DEG concentration, which is a great advantage of these structures.
The basic equations of physical processes are solved for every grid point in the simulation. These equations include Poisson’s equation, continuity equations and transport equations, derived from Maxwell’s equations [17]. The computation of 2DEG properties due to spontaneous and piezoelectric polarization effects is performed using a polarization model [18, 19]. An induced, strong polarization field is introduced to calculate band diagrams. To increase the reliability of simulation, measurement-based ohmic contact resistance and Schottky barrier height data were incorporated in the simulation to define source, drain and gate contacts. A low field mobility model is used to account for the temperature-dependent drift of electrons and holes separately [20]. The Shockley–Read–Hall recombination model is used to estimate the statistics of holes and electrons as well as their recombination rate. The traps/defects in the heterostructure play a crucial role in the performance of GaN devices. Accordingly, we also introduced interface traps energy level and density in the modeling. Output results were extracted by solving the basic equations for every grid point with the different biasing conditions. The variation of the drain current with respect to applied drain (Vd) and gate (Vg) biasing voltage is plotted in Figure 3. The simulated output characteristics (Id-Vd) and transfer characteristics (Id-Vg) are shown in Figure 3(a) and (b), respectively. The extracted transconductance is >350 mS/mm as shown in Figure 3(c). The extracted capacitance-gate voltage (Vg) and 2DEG density with applied gate bias are depicted in Figure 4(a) and (b), respectively.
(a) Output characteristics (id-Vd), (b) transfer characteristics (id-Vg) and (c) Transconductance of the simulated device (reprinted with permission from Ref. [
Extracted (a) CV profile and (b) 2DEG profile with applied gate voltage (reprinted with permission from Ref. [
The current gain cutoff frequency (ft) and maximum frequency of oscillations (fmax) are the two most pertinent parameters for high-speed device application. ft and fmax are extracted from small signal RF simulation. Current gain (h21) and maximum available power gain (Ga) are simulated at bias conditions Vds = 7 V and Vgs = −1.5 V and plotted with respect to frequency in Figure 5. A summary of simulated DC and RF device parameters is given in Table 1 that closely matches the corresponding process design kit (PDK) datasheet of renowned international GaN foundries.
Current gain and power gain of the simulated device (reprinted with permission from Ref. [
Simulated result | |
---|---|
Idss (A/mm) | 0.995 |
Vknee (V) | 5 |
Ron (ohm*mm) | 3.5 |
Vth (V) | −3.0 |
gm (mS/mm) | 384 |
ft (GHz) | 110 |
fmax (GHz) | 180 |
Summary of extracted DC and RF device parameters.
The cutoff frequency of field effect transistor (FET) including HEMT is defined by
The interaction between photons and electrons in the semiconductor can be expressed by the Hamiltonian,
where mo is the free electron mass, V(r) is the periodic crystal potential (in the present case it is the triangular potential function given by, V(z) = eFz), e is charge of electron, Fz is electric field, and A is vector potential of applied electromagnetic field. Hamilton can be expanded into,
Here H0 is unperturbed Hamiltonian and H′ is perturbed Hamiltonian due to the interaction of the electromagnetic wave.
Consideration of the strain effects for extraction of effective-mass Hamiltonian is of prime importance for wurtzite semiconductors. This Hamiltonian is used to derive the electronic band structures of bulk and quantum-well wurtzite semiconductors. Kane’s model is applied to derive the band-edge energies and the optical momentum-matrix elements for strained wurtzite semiconductors. We then derive the effective-mass Hamiltonian by using the k.p perturbation theory. The developed k.p model is applied to our heterostructures structures, especially quantum well via the envelope function approximation (EFA) method [33, 34]. An envelope function model is derived for electrons in a semiconductor heterostructure. The materials-dependent Hamiltonian extraction by EFA method is most suitable for abrupt semiconductor junction [35]. The finite element method [36] is used to solve the coupled multi-band Schrödinger Poison’s equation [37] numerically.
Under triangular quantum well, the solution of the wave function is given by [38, 39],
where mz* is the effective mass of electron in the GaN, Fz is the electric field in the z-direction, Ei is the eigenvalues of energy with i = 0,1,2,…. for the ground state, 1st excited state and so on. Airy (Ai) function is given by
The eigen value is given by [37, 38],
When an incident THz radiation illuminates the GaN HEMT, electrons may absorb the photon energy and jump to a higher energy subband. Carriers below Fermi energy levels were collected by drain electrode when we applied voltage between source and drain. Using Fermi’s golden rule for the transition from i state to j state, we can calculate the absorption coefficient by [34, 40],
where H′ is interaction Hamiltonian as per Eq. (10).
By applying the dipole approximation, we obtain [34, 40],
The matrix element in the above equation can be expanded in terms of interband and ISBT as follows,
Applying the envelope function matrix element in the z-direction can be written as
The dimensionless optical field strength between the two-energy state is given by [33, 38],
where
<i/z/j > can be expressed as,
with, ti and L are electric length expressed as,
By substituting Eqs. (15)–(17) in Eq. (14) we get,
By substituting i = 0 and j = 1,2,3,… oscillation strength for transition can be calculated as f01 = 0.73, f02 = 0.12, f03 = 0.045, and so on. The oscillator strength of all the transitions is sum up to 1. Calculated transition indicates that the probability for higher-level transitions is very weak.
The gradual pinning of Fermi level inside the quantum well is possible by increasing gate voltage. When gate voltage is sufficiently negative (0 > Vt > Vg), the conduction band is above the Fermi level. In this case, the channel is completely depleted of 2DEG. When the gate voltage is greater than the threshold voltage (Vg > Vt), charges start filling the channel. As the gate voltage increases, the Fermi level gradually pins inside the quantum well and 2DEG carriers are filled among allowed subbands in the channel. When gate voltage is sufficiently higher (Vg > 0 > Vt), the carrier occupies all allowed subband below the Fermi energy level. For this case, total 2DEG charges are distributed in the allowed energy subband and take participation in channel conduction. The triangular quantum-well conduction band energy profile for GaN HEMT with different gate biasing conditions is shown in Figure 6(a). Fermi energy level pinning inside the subbands of triangular quantum well with different applied gate biasing is shown in Figure 6(b)–(d). The spacing and charge filing inside the subband strongly depends upon gate-biasing voltage. In other words, the gate biasing-assisted tuning of intersubband resonance (ISR) frequency is possible in the HEMT structure.
Conduction band energy profile with different applied gate voltage and Fermi energy level with filled subband inside triangular quantum well with different applied gate biasing (b) Vg > 0 > Vt, (c) Vg = 0 > Vt and (d) 0 > Vt > Vg (reprinted with permission from Ref. [
In the simulation, we extracted up to four ISB energy levels inside the triangular quantum well. The ISR frequency as a function of applied gate-biasing field is calculated using Eq. (12) and by solving self-consistency Schrodinger–Poison solver for different gate-biasing voltage. The same are shown in Figure 7(a) and (b). The ISB tuning is one order higher in asymmetric triangular well potential as compared to the conventional square well potential. Moreover, 2DEG carrier concentration inside the GaN HEMT channel also depends upon Al composition and AlGaN barrier layer thickness. Figure 8(a) and (b) show the simulated 2DEG carrier concentration variation with AlGaN thickness and Al composition, respectively. It clearly indicates that increment in barrier layer thickness, and Al composition enhances the 2DEG density inside the channel. It further implies that manipulation in ISR is possible in GaN HEMT devices based on variation in 2DEG density, which provide tuning in the THz region.
Intersubband resonance frequency as a function of the applied field (a) calculated using
2DEG carrier concentration of AlGaN/AlN/GaN heterostructure for (a) different AlGaN thickness, (b) different Al composition in AlGaN layer (reprinted with permission from Ref. [
The combination of ISBT in semiconductor quantum wells with metamaterials shows great potential in the THz region [41, 42, 43, 44, 45, 46, 47]. There are large numbers of metamaterial structures that have been employed and demonstrated enhanced performance in the THz region. In the present modeling work, we report that the standard GSG device geometry of HEMT itself acts as a metamaterial structure. The enhancement of THz interaction with 2DEG inside the triangular quantum well is reported for GaN HEMT. The resonance mode in metamaterial structure is dynamically manipulating the carrier distribution inside the quantum well.
For the metamaterial modeling work, the GaN heterostructure and device geometry are kept identical, as shown in Figure 1. A finite difference frequency domain CST Microwave Studio simulator has been used to simulate the entire device configuration, which acts as THz metamaterial. Standard GSG configuration along with 50- to 150-micron gate width has been used for 3D electromagnetic modeling as shown in Figure 9(a)–(c). Very fine localized tetrahedral sub-meshing has been used in the active source to drain region to enhance the accuracy of calculations as shown in Figure 9(d). THz radiation (0.3–3 THz) is illuminated on the entire GSG device configuration, which includes the active GaN HEMT region as well. Table 2 shows the dimensions used in 3D EM simulation work. Three different geometries, 2 × 50, 2 × 100 and 2 × 150, have been used in the present study. The E-field of the incident THz plane wave is kept at 1 V/m for all three devices.
Three different configuration (a) 2 × 50, (b) 2 × 100 and (c) 2 × 150 of GaN HEMT and (d) GaN HEMT meshing (reprinted with permission from URSI RCRS 2020, IEEE Xplore).
Device configuration | Distance between S and D (μm) | Gate width (μm) | Gate length (nm) | Total device dimension (μm x μm) |
---|---|---|---|---|
Device A (2 x 50) | 3.0 | 50 | 100 | 350 x 400 |
Device B (2 x 100) | 3.0 | 100 | 100 | 400 x 400 |
Device C (2 x 150) | 3.0 | 150 | 100 | 450 x 400 |
Different device configurations used in simulations.
The wavelength corresponding to the entire THz spectrum (0.3 to 10 THz) is about 30–1000 micron. If the device dimension is of the order of incident radiation, it acts as an antenna. Antenna size and shape largely determine the frequency it can handle. Antenna-coupled THz source and detector show a potential advantage in the performance of devices for the THz region [48, 49, 50, 51, 52]. The dimensions of the devices as listed in Table 2 are of the order of illuminated THz radiation wavelength. These devices act as antennas, which leads to convergence of incident radiations towards the active channel region. The resultant electric field intensity inside the active channel region between source and drain is greatly enhanced. The enhancement of the field due to illumination strongly depends on the frequency of incident radiation and device dimension. For example, the electric field intensity distribution for 0.4 THz incident radiation is shown in Figure 10 (a)–(c) for three different GaN HEMT devices. Each device structure has a unique resonance response towards incident THz radiation. Similarly, the resonance response of a 2 × 100 GaN HEMT device towards incident THz radiations, namely 0.3, 0.7 and 1.75 THz, is shown in Figure 10
Electrical field enhancement for 0.4 THz incident radiation on (a) 2 × 50, (b) 2 × 100 and (c) 2 × 150 of GaN HEMT devices. Electrical field enhancement for 2 × 100 GaN HEMT device at (d) 0.3°THz, (e) 0.7°THz and (f) 1.75°THz incident radiation (reprinted with permission from URSI RCRS 2020, IEEE Xplore).
Electrical field enhancement due to illumination of terahertz radiation on GaN HEMT devices.
A plasmonic nanostructure provides unique opportunities for manipulating electromagnetic waves in the THz range. Recently many novel plasmonic nanostructure-based devices such as photoconductor antennas [52, 53], detectors [31], and plasmonic photomixers [54], QCLs [55] showed significant improvement in device performance.
For plasmonic structure simulation, the finite element frequency domain COMSOL Multiphysics numerical method has been used to solve Maxwell’s equation to predict electromagnetic interaction in each layer of the semiconductor heterostructure. Heterostructure stack, device geometry and device structure are kept identical as used in semiconductor modeling shown in Figure 1. We kept 1 V/m incident plane wave THz radiation from 0.3 to 3 THz to interact with the GaN heterostructure. The surface plasmon is generated at the interface between nanometric gate contact and heterostructure.
The field in the vicinity of the fine gate structure is drastically increased due to surface plasmon generation. Subsequently, the THz incident wave is coupled to 2DEG inside the channel. The concentration of the induced electric field is considerably enhanced in close proximity to the device gate contact electrodes. The induced electric field is approximately 5.5E+06 on the gate and 8.5E+06 V/m on the gate edge for 0.4 THz due to plasmonic structure as shown in Figure 12. As the incident frequency increases, the plasmonic-induced electric field also increases and saturates towards higher frequency as depicted in Figure 13. It was interesting to find that the plasmonic-enhanced field (∼107 V/m) is approximately one order greater than the externally applied bias field (∼104 V/cm = 106 V/m) at the gate (Figure 7).
Electrical field enhancement for 0.4°THz incident radiation on GaN HEMT device using a finite element method-based electromagnetic solver (COMSOL).
Induced electrical field due to terahertz radiation illumination on GaN HEMT device using a finite element method-based electromagnetic solver (COMSOL).
The outcome of the entire simulation activities clearly demonstrates GaN HEMT device operation in the THz range beyond its cut-off frequency. It is also shown that overall performance of GaN HEMT is governed by aggregate effects of ISBT, plasmonic structure and metamaterial behavior.
In this section we report fabrication and measurement details for experimental investigation of room-temperature, photon-induced electrical tuning of ISBT in GaN HEMT, which extends the device operating frequency well beyond its present cut-off frequency [56]. For sample fabrication, an AlGaN/AlN/GaN-based heterostructure was grown by metalorganic chemical vapor deposition (MOCVD) on 6H polytype of silicon carbide (6H-SiC) wafer. The layer sequence, thickness and composition were kept identical as used in our modeling and simulation work (Figure 1(a)). A 60-nm aluminum nitride (AlN) nucleation layer was grown on (0001) the face of a semi-insulating silicon carbide (SI–SiC) wafer. In the MOCVD growth, unintentionally doped (UID) GaN buffer layer thickness was set to ∼2 μm. On the top of the GaN buffer layer, a 1-nm AlN spacer layer followed by an undoped Al0.3Ga0.7N barrier layer was grown to form a triangular quantum well of GaN HEMT. A small 3-nm Si3N4 passivation layer was kept as a top protective layer. For the purpose of characterization of this GaN heterostructure to assess quality and properties, highly precise standard semiconductor characterization tools like Hall measurement (nanomagnetic instruments), high-resolution XRD (Bruker D8 Discover), photoluminescence (PL) system (DongWoo Optron), and others were used. Room-temperature mobility and 2DEG carrier concentration were measured using the Hall measurement method. Composition, thickness and lattice constants for heterostructure materials were extracted using HR-XRD. The growth quality was evaluated using the PL method.
A standard fabrication process flow as shown in Figure 14 was adopted for GaN HEMT device fabrication. Device-to-device isolation was performed by MESA etching using BCl3/Cl2/Ar dry plasma. An inductively coupled plasma-reactive ion etching (ICP-RIE) system was used for HEMT device isolation. Source-drain spacing was kept at 3.0 micron and electron beam lithography was used for ohmic contact (source and drain) patterning. Recess etching of the barrier AlGaN layer was required to fabricate good ohmic contacts. An optimized recessed etching process was followed to etch ∼10 nm of the AlGaN layer using BCl3/Cl2/Ar plasma. During recess, BCl3/Cl2/Ar flow rates were maintained at 20/10/10 SCCM with ICP power and RF power at 350 W and 60 W, respectively. Post recess, the sample was dipped in HCl:DI (1:10) for one minute to minimize the impact of oxidation on the surface. A Ti/Al/Ni/Au (20/210/55/45 nm) lift-off metallization scheme was selected and deposited by electron beam evaporation for ohmic contact. The sample was annealed at 870°C for 45 s under N2 atmosphere using rapid thermal annealing to form the ohmic contact [57]. The ohmic contact resistance was measured using a standard transmission line model (TLM) with the help of a semiconductor characterization system (Model Keithley 4200). Electron beam lithography was used to form a mushroom gate contact. A Ni/Au metallization scheme was selected for gate contact to achieve high Schottky barrier height. A Ni/Au (30/300 nm) stack was deposited using electron beam evaporation and lift-off technique followed by annealing at 450°C for 120 s under N2 atmosphere using rapid thermal annealing system [58]. To address the DC-RF dispersion issue, the Si3N4 passivation layer of 120-nm thickness was deposited using PECVD. Contact pad thickening was formed by 800-nm Ti/Au deposition to reduced resistive loss. The fabricated GaN HEMT wafer (1 square inch) having more than 300 GaN HEMT devices is shown in Figure 15. A sufficient number of variants are kept in fabrication in terms of device length and number of device fingers for wider statistical data. Device length varies from 50 to 300 micron (50, 100, 150, 200, 300), while number of fingers varies from 2 to 12 (2, 4, 6, 8, 10, 12). All devices have a 100-nm mushroom gate structure. The wafer also contains varieties of process control monitors (PCMs) for ohmic contact, Schottky contact, short, open and through the structure for RF measurement.
GaN HEMT fabrication flow along with the cross-sectional view of the device.
(a) GaN HEMT fabricated wafer (b) 100°nm 2 × 100 GaN HEMT device (reprinted with permission from Ref. [
Current–voltage (IV) measurements on the fabricated sample were performed using a highly accurate and precise Keithley 4200 source measurement unit (SMU) inside a vacuum chamber equipped with a Janis probe station and Lakeshore temperature controller. IV measurements were performed in dark mode (no illumination) and radiation illumination mode to extract the ISBT in fabricated GaN HEMT devices. 1-mW blue, yellow and red LEDs as well as 300-W halogen lamp-based perpendicular illumination sources were used in our experiment to excite the deep-level traps in the GaN HEMT device, while 1-mW broadband infrared illumination sources like a red laser (630–690 nm), near-infrared (NIR) LED (650–850 nm) and short-wave infrared (SWIR) LED (1.7–2.1 micron) based illumination at an oblique angle of incident (AOI) were used to investigate the ISBT at ambient temperature. Moreover, to confirm the transition is solely dependent upon the bandgap phenomenon, low-temperature PL and IV measurements were also carried out. Most devices showed the ambient temperature ISBT, however, we selected the 2 × 100 device for demonstration.
Post growth, the GaN heterostructure was extensively evaluated using standard, highly accurate semiconductor characterization techniques. Table 3 shows the summary of extracted heterostructure properties using various characterization techniques. Room-temperature mobility and 2DEG carrier concentration were found to be 1885 cm2/V.s and 1.1E + 13 cm−2, respectively, using the Hall measurement method. The composition and thickness of the AlGaN barrier layer play crucial roles in polarization and 2DEG carrier accumulation inside the GaN HEMT. Thickness of 21 nm and Al composition of 31% were found in the AlGaN barrier layer against targeted thickness of 20 nm and Al composition of 30%. Ohmic and Schottky contacts to GaN heterostructures play a vital role in the development of a GaN HEMT device. Low contact resistance of ∼0.27 Ω.mm and high barrier height of ∼0.72 eV were extracted using IV measurements. Surface traps were present in the GaN HEMT devices and led to significant degradation of DC and RF performance. High-quality Si3N4 surface passivation deposition was used to effectively reduce surface traps. The improvement in drain current density is about 35 mA/mm and in RF gain is 4 dB at 10 GHz after Si3N4 deposition, which clearly indicates the majority of surface traps are saturated after passivation. The saturation drain current density (@ Vg = 0 V) was measured at ∼1 A/mm, while cut-off frequency of ∼89 GHz was extracted for the fabricated 100-nm GaN HEMT.
FET shows the response towards THz beyond its cutoff frequency even at room temperature irrespective of semiconductor material systems [22, 24, 25, 26, 27, 28]. The Dyakonov–Shur plasma wave theory [22, 23] classically explains the THz behavior of the device starting from conventional semiconductors like Si, GaAs, and GaN to recently developed 2D materials system like graphene, MoS2, WS2, black phosphorous, and others. We proposed ISBT transition at ambient temperature as another potential mechanism for THz response of the GaN HEMT device. ISBT is demonstrated using IV measurement of the GaN HEMT device under dark and illuminated conditions. Usually, IV characteristics are the combination of all possible phenomenon in the FET. It is very difficult to distinguish the defects- or traps-assisted transitions, thermal transitions and ISBTs in the IV characteristics of FET. However, electrical tuning of ISBT in GaAs HEMT has been demonstrated [59]. There are three following key challenges involved in supporting the ambient ISBT mechanism in FET/HEMT.
rule out plasma wave mechanism
Defects−/traps-based transitions
Thermal energy-assisted transitions
The basic physics involved in plasma wave theory is that 2DEG instability in short-channel HEMTs has a resonant response to incident electromagnetic radiation. The resonance frequency is governed by the size and shape of the channel (i.e., the geometrical plasmon frequency). Tuning the plasmon resonant frequency to the incident THz wave is used for detectors, mixers and multipliers, as the carrier resonance happens in the THz frequency range only. It is not possible to generate plasma wave inside the FET channel if the incident radiation has a frequency other than THz. In other words, if we are using a source other than a THz radiation source that is capable of inducing the ISBT, the generation of plasma waves can be ruled out inside the FET/HEMT.
The deep-level traps- or defects-assisted transitions have been well reported since the invention of heterostructure [60]. The traps’ energy level and density depend upon several parameters like heterostructure growth condition, materials system, and others. Especially in GaN-based wide bandgap semiconductor materials, the domination of the deep-level traps is even more significant than GaAs semiconductor material [61]. It is highly difficult to prevent the transitions through these traps. However, control over traps-based transition is possible, as it shows the different responses towards the incident radiations. If we are selecting the illumination source that has the least significance for trap excitation and the most significance for ISBT, then defects−/traps-assisted transitions can also be also ruled out.
The thermal energy associated at room temperature is ∼25 mev (∼ 6 THz), which is much higher than the spacing between the subband in a quantum well. It is very difficult to negligible thermal energy contribution. Thermal occupation of electrons in a higher subband may prevent the observation of ISBT at ambient temperature [59]. Measurement are done at ambient as well as low temperature in vacuum condition with a precise and accurate temperature controller to quantified the thermal transitions. Furthermore, source-measurement units (SMUs) are accurate for detecting very small changes in measurement for dark and illuminated conditions. The background thermal energy contribution in transitions is equally present in both dark and illumination modes, which clearly indicates the presence of ISBT in the measurement.
In summary, to confirm the transitions solely occurring due to ISB inside the triangular quantum well of the heterostructure, we used a 1-mW SWIR LED because it is least significant for trap excitation [62, 63], whereas it is most significant for ISBT. Moreover, the use of a SWIR source that is not in the THz frequency range ensures that the generation of plasma wave inside the channel is not possible. The blue LED was selected for measuring traps-assisted transitions. Table 4 summarizes the key challenges involved along with possible solutions to confirm room-temperature ISBT in GaN HEMT.
Properties | AlGaN | GaN | Measurement method |
---|---|---|---|
Thickness | 21 nm | 2.0 | HR-XRD |
Composition (%) | Al0.31Ga0.69N | — | HR-XRD |
Lattice constant (A°) | 5.121 | 5.185 | HR-XRD |
Bang gap (eV) | — | 3.44 | PL |
2DEG | — | 1.1E+13 | Hall |
Mobility (RT) | — | 1885 | Hall |
Measured heterostructure properties using standard semiconductor characterization equipment.
Sr. No | Discrimination ISBT from other mechanism | Used excitation source/methods |
---|---|---|
1 | Plasma wave mechanism | Non terahertz radiation source |
2 | Defects/traps induced transition | Blue LED |
3 | Thermal energy contribution | Measurement in vacuum, precise temperature control with highly accurate SMUs Confirm with low temperature IV and PL |
4 | ISBT | SWIR (1.7–2.1 μm) source |
Measurement methods and excitation sources used to confirm ISBT.
To excite the deep-level traps in a GaN heterostructure, 1-mW blue, yellow and red LEDs as well as a 300-W halogen lamp-based perpendicular illumination were used. It is well proven that as we move from NIR to UV radiations, the trap excitation becomes more efficient. It is difficult to excite traps larger than 870 nm [62, 63]. In our experiments, blue LED was found to be more efficient among all used light sources to excite the deep-level traps. To extract the trap-assisted transitions, a 90-degree AOI under blue LED illumination for 10 min was used. The Id-Vd characteristics and change in drain current (ΔId) of the 100-nm GaN HEMT without and with illumination are shown in Figure 16(a). Deep-level traps-assisted transitions increased the drain current up to approximately 24 mA/mm as shown in Figure 16(b). It was found that after 10 min of illumination, there was no further significant increase in drain current, which confirms that most traps were saturated and the equilibrium condition was reached.
Effect of 90° AO Iillumination with blue LED (a) on id-Vd characteristics of 100 nm GaN HEMT device (b) change in drain current (reprinted with permission from Ref. [
Red laser (630–690 nm), NIR LED (650–850 nm) and SWIR LED (1.7–2.1 micron) broadband infrared sources were used in our experiment to investigate physical phenomena other than plasma wave at ambient temperature. It is noted that the ISB absorption characteristics were found to be identical for all used IR sources (red laser, NIR and SWIR LEDs) with the highest absorption found for the case of SWIR LED.
For ISBT experiments, we selected 1-mW SWIR LED as it is least significant for trap excitation [62, 63], whereas it is most significant for ISBT. GaN heterostructure materials have a wide bandgap with lower cut-off wavelengths than the wavelength of the IR light source, ensuring the transition of the carriers from valance band to the conduction band is forbidden.
When light is incident perpendicular to the sample surface ISBT cannot be induced, as the electric field has component only in the quantum-well plane [40]. We illuminated the sample at an oblique angle of incidence to discriminate ISBT with other transitions. When the sample is illuminated with an oblique angle, IR radiation interacts with carriers inside the subband of the triangular quantum well and transitions occur within the conduction band. The Id-Vd characteristics and change in drain current (ΔId) of the 100-nm GaN HEMT without and with 30 s of 45-degree AOI SWIR LED illumination are shown in Figure 17(a) and (c). A zoom portion of the Id-Vd curve for −0.5 and − 1.0 gate voltage is shown in Figure 17(b) for visualization purposes, as the change in drain current was very small due to illumination. Infrared lamp-assisted photoinduced ISBT in doped and undoped multiple quantum wells was reported by Olszakier et al. in a series of experiments [64, 65, 66, 67, 68]. It was concluded that the ISBT involves free electrons as well as excitons. The exciton-based transitions have greater frequency and oscillator strength than those of the bare electrons.
Effect of 45° AO Iillumination with SWIR led (a) on id-Vd characteristics of 100°nm GaN HEMT device (b) zoom portion of id-Vd characteristics for drain current change visualization and (c) change in drain current (reprinted with permission from Ref. [
The bulk wurtzite semiconductor band diagram along with the two E0 and E1 subbands in the triangular quantum well involves transition of free electrons and excitons-based transition as shown in Figure 18(a)–(c), respectively. In the asymmetrical (triangular) quantum well, inversion symmetry with respect to the quantum well center is broken, which leads to a relaxation of the selection rules (i.e., transitions between all subbands are allowed) [40]. It is possible to tune subbands inside the quantum well by external electrical field in an HEMT device. Free electron-based ISBT (0.5–10 THz) and exciton-assisted ISBT (for higher frequency) can be exploited as potential tunable sources and detectors for the entire THz range.
(a) Band structure for wurtzite (WZ) bulk semiconductor with conduction band (CB), light and heavy holes (HH, LH). The ISBT is shown in (b) well electrons and (c) the exciton schemes. (reprinted with permission from Ref. [
The spacing between subband and quantum-well width depends on gate biasing. Let us consider only two subbands, E0 and E1 inside a well having N0 and N1 electrons, respectively. The gate voltage is selected in such a way where ground state E0 is situated below the Fermi level as shown in Figure 19(a). The 2DEG carriers below the Fermi energy level are extracted as a drain current by applying a potential between source and drain. When the sample is illuminated, the electrons in a ground state E0 interact with an external electromagnetic field. The electrons pick up photons from the illuminating field, which allows them to enter an excited energy state E1 within the subband as shown in Figure 19(b). These excited electrons are in the energy level E1 that is above the Fermi level. As these electrons are not contributed to conduction, the drain current Id is decreased. This mechanism is clearly observed in Figure 17(c) in terms of decrease in drain current due to illumination, which shows ISB absorption. The amount of absorption strictly depends upon the distribution of electrons in the subband and the spacing between subband and width of well. To rule out thermal energy contribution in IV characteristics, measurement is done in vacuum conditions. The precise and accurate temperature controller and SMUs are used in measurement, which are able to detect a very small change in drain current in dark and illuminated conditions. Moreover, to confirm the transition is solely dependent upon the bandgap phenomenon, low-temperature PL and IV measurements were carried out. The temperature-dependent bandgap shifting in GaN found in PL measurement, as shown in Figure 20, matches with previously published results [69]. Low-temperature 200-K and 100-K ISB absorption measurements were also carried out. It was found that the intensity of absorption increases as the temperature decreases, as shown in Figure 21(a) and (b). It indicates that thermal energy contribution decreases with a decrease in temperature. The temperature-dependent bandgap variation in GaN perfectly matches with ISB absorption (Vg = 0 V, Vds = 8 V), as depicted in Figure 22.
(a) Band-schematic of the first two subbands in a 2DEG with respect to the Fermi level (b) absorption in the subband. (reprinted with permission from Ref. [
Low-temperature PL measurement of GaN heterostructure (reprinted with permission from Ref. [
Change in drain current due to 45° AOI and 30°second illumination with SWIRLED at temperature (a) 200 K and (b) 100 K (reprinted with permission from Ref. [
Temperature dependent GaN band gap and change in drain current (vg = 0 V and Vds = 8 V) due to illumination (reprinted with permission from Ref. [
In conclusion, low-temperature and angle-dependent illumination-based measurements were used to confirm the ISB transition in GaN HEMT. We have experimentally explored electrical tuning of ISB resonance phenomena inside the triangular quantum well for a GaN HEMT device, which shows the potential of GaN HEMT technology to be realized as a room-temperature THz source and detector.
We have developed theoretical models for electrically tunable plasmonic metamaterials-assisted ISBT in GaN HEMT. Experimental demonstration of electrical tuning of ISBT in a GaN HEMT device at room temperature has not only provided a new alternate mechanism but also discriminates ISBT from other transitions induced by deep-level traps and defects in the 100-nm GaN HEMT device. The chapter also explored the photonics ISBT phenomenon in a GaN HEMT device for external biasing, which depends on tuning of the subband. A novel approach for ISBT in GaN HEMT helps to overcome the THz gap in the electromagnetic spectrum at ambient temperature.
We are thankful to the director of SAC for continuous encouragement and guidance during this study. We extend our sincere thanks to Prof Solomon Ivan at the Department of Physics, IIST Thiruvananthapuram, for helpful discussions and providing valuable suggestions. We are also thankful to the Microelectronics Group for providing fabrication and characterization support.
IntechOpen - where academia and industry create content with global impact
",metaTitle:"Team",metaDescription:"Advancing discovery in Open Access for the scientists by the scientist",metaKeywords:null,canonicalURL:"page/team",contentRaw:'[{"type":"htmlEditorComponent","content":"Our business values are based on those any scientist applies to their research. We have created a culture of respect and collaboration within a relaxed, friendly and progressive atmosphere, while maintaining academic rigour.
\\n\\nCo-founded by Alex Lazinica and Vedran Kordic: “We are passionate about the advancement of science. As Ph.D. researchers in Vienna, we found it difficult to access the scholarly research we needed. We created IntechOpen with the specific aim of putting the academic needs of the global research community before the business interests of publishers. Our Team is now a global one and includes highly-renowned scientists and publishers, as well as experts in disseminating your research.”
\\n\\nBut, one thing we have in common is -- we are all scientists at heart!
\\n\\nSara Uhac, COO
\\n\\nSara Uhac was appointed Managing Director of IntechOpen at the beginning of 2014. She directs and controls the company’s operations. Sara joined IntechOpen in 2010 as Head of Journal Publishing, a new strategically underdeveloped department at that time. After obtaining a Master's degree in Media Management, she completed her Ph.D. at the University of Lugano, Switzerland. She holds a BA in Financial Market Management from the Bocconi University in Milan, Italy, where she started her career in the American publishing house Condé Nast and further collaborated with the UK-based publishing company Time Out. Sara was awarded a professional degree in Publishing from Yale University (2012). She is a member of the professional branch association of "Publishers, Designers and Graphic Artists" at the Croatian Chamber of Commerce.
\\n\\nAdrian Assad De Marco
\\n\\nAdrian Assad De Marco joined the company as a Director in 2017. With his extensive experience in management, acquired while working for regional and global leaders, he took over direction and control of all the company's publishing processes. Adrian holds a degree in Economy and Management from the University of Zagreb, School of Economics, Croatia. A former sportsman, he continually strives to develop his skills through professional courses and specializations such as NLP (Neuro-linguistic programming).
\\n\\nDr Alex Lazinica
\\n\\nAlex Lazinica is co-founder and Board member of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his Ph.D. in Robotics at the Vienna University of Technology. There, he worked as a robotics researcher with the university's Intelligent Manufacturing Systems Group, as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and, most importantly, co-founded and built the International Journal of Advanced Robotic Systems, the world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career since it proved to be the pathway to the foundation of IntechOpen with its focus on addressing academic researchers’ needs. Alex personifies many of IntechOpen´s key values, including the commitment to developing mutual trust, openness, and a spirit of entrepreneurialism. Today, his focus is on defining the growth and development strategy for the company.
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Our business values are based on those any scientist applies to their research. We have created a culture of respect and collaboration within a relaxed, friendly and progressive atmosphere, while maintaining academic rigour.
\n\nCo-founded by Alex Lazinica and Vedran Kordic: “We are passionate about the advancement of science. As Ph.D. researchers in Vienna, we found it difficult to access the scholarly research we needed. We created IntechOpen with the specific aim of putting the academic needs of the global research community before the business interests of publishers. Our Team is now a global one and includes highly-renowned scientists and publishers, as well as experts in disseminating your research.”
\n\nBut, one thing we have in common is -- we are all scientists at heart!
\n\nSara Uhac, COO
\n\nSara Uhac was appointed Managing Director of IntechOpen at the beginning of 2014. She directs and controls the company’s operations. Sara joined IntechOpen in 2010 as Head of Journal Publishing, a new strategically underdeveloped department at that time. After obtaining a Master's degree in Media Management, she completed her Ph.D. at the University of Lugano, Switzerland. She holds a BA in Financial Market Management from the Bocconi University in Milan, Italy, where she started her career in the American publishing house Condé Nast and further collaborated with the UK-based publishing company Time Out. Sara was awarded a professional degree in Publishing from Yale University (2012). She is a member of the professional branch association of "Publishers, Designers and Graphic Artists" at the Croatian Chamber of Commerce.
\n\nAdrian Assad De Marco
\n\nAdrian Assad De Marco joined the company as a Director in 2017. With his extensive experience in management, acquired while working for regional and global leaders, he took over direction and control of all the company's publishing processes. Adrian holds a degree in Economy and Management from the University of Zagreb, School of Economics, Croatia. A former sportsman, he continually strives to develop his skills through professional courses and specializations such as NLP (Neuro-linguistic programming).
\n\nDr Alex Lazinica
\n\nAlex Lazinica is co-founder and Board member of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his Ph.D. in Robotics at the Vienna University of Technology. There, he worked as a robotics researcher with the university's Intelligent Manufacturing Systems Group, as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and, most importantly, co-founded and built the International Journal of Advanced Robotic Systems, the world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career since it proved to be the pathway to the foundation of IntechOpen with its focus on addressing academic researchers’ needs. Alex personifies many of IntechOpen´s key values, including the commitment to developing mutual trust, openness, and a spirit of entrepreneurialism. Today, his focus is on defining the growth and development strategy for the company.
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13389},{group:"region",caption:"Middle and South America",value:2,count:11660},{group:"region",caption:"Africa",value:3,count:4168},{group:"region",caption:"Asia",value:4,count:22334},{group:"region",caption:"Australia and Oceania",value:5,count:2019},{group:"region",caption:"Europe",value:6,count:33642}],offset:12,limit:12,total:135275},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"5,6,12,13,18"},books:[{type:"book",id:"11369",title:"RNA Viruses Infection",subtitle:null,isOpenForSubmission:!0,hash:"52f8a3a1486912beae40b34ac557fed3",slug:null,bookSignature:"Ph.D. Yogendra Shah",coverURL:"https://cdn.intechopen.com/books/images_new/11369.jpg",editedByType:null,editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11610",title:"New Insights in Herbicide Science",subtitle:null,isOpenForSubmission:!0,hash:"eb3830b8176caf3d1fd52c32313c5168",slug:null,bookSignature:"Ph.D. Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/11610.jpg",editedByType:null,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11793",title:"Production, Nutritional and Industrial Perspectives of Barley",subtitle:null,isOpenForSubmission:!0,hash:"996125d4599193b3b6b749f5d8aa3cb2",slug:null,bookSignature:"Dr. Farhan Saeed and Dr. Muhammad Afzaal",coverURL:"https://cdn.intechopen.com/books/images_new/11793.jpg",editedByType:null,editors:[{id:"192244",title:"Dr.",name:"Farhan",surname:"Saeed",slug:"farhan-saeed",fullName:"Farhan Saeed"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11810",title:"Animal Behavior - New Insights",subtitle:null,isOpenForSubmission:!0,hash:"db1dacc9284b2fc73f38fa985a586e15",slug:null,bookSignature:"Associate Prof. Volkan Gelen and Dr. Abdulsamed Kükürt",coverURL:"https://cdn.intechopen.com/books/images_new/11810.jpg",editedByType:null,editors:[{id:"178366",title:"Dr.",name:"Volkan",surname:"Gelen",slug:"volkan-gelen",fullName:"Volkan Gelen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12157",title:"Rice Crops - Productivity, Quality and Sustainability",subtitle:null,isOpenForSubmission:!0,hash:"2a38bb2448f4516740db05ce746f08e3",slug:null,bookSignature:"Dr. Min Huang, Dr. Jiana Chen, Dr. Xiaowu Pan and Dr. Haiming Tang",coverURL:"https://cdn.intechopen.com/books/images_new/12157.jpg",editedByType:null,editors:[{id:"189829",title:"Dr.",name:"Min",surname:"Huang",slug:"min-huang",fullName:"Min Huang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11637",title:"Neuropsychology of Dementia",subtitle:null,isOpenForSubmission:!0,hash:"d40f707b9ef020bb202be89404f77a1e",slug:null,bookSignature:"Dr. Devendra Kumar, Prof. Sushil Kumar Singh and Dr. Ankit Ganeshpurkar",coverURL:"https://cdn.intechopen.com/books/images_new/11637.jpg",editedByType:null,editors:[{id:"454030",title:"Dr.",name:"Devendra",surname:"Kumar",slug:"devendra-kumar",fullName:"Devendra Kumar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11624",title:"Agricultural Waste - New Insights",subtitle:null,isOpenForSubmission:!0,hash:"f86a9f720cc3ac0f1c385d0367ea89b9",slug:null,bookSignature:"Dr. Fiaz Ahmad and Prof. Muhammad Sultan",coverURL:"https://cdn.intechopen.com/books/images_new/11624.jpg",editedByType:null,editors:[{id:"338219",title:"Dr.",name:"Fiaz",surname:"Ahmad",slug:"fiaz-ahmad",fullName:"Fiaz Ahmad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11788",title:"Plant Stress Responses and Defense Mechanisms",subtitle:null,isOpenForSubmission:!0,hash:"fd76ac80924e5a4d530ad0a1b54ca1f4",slug:null,bookSignature:"Dr. Saddam Hussain, Dr. Tahir Hussain Awan, Dr. Ejaz Waraich and Dr. Masood Iqbal Awan",coverURL:"https://cdn.intechopen.com/books/images_new/11788.jpg",editedByType:null,editors:[{id:"247858",title:"Dr.",name:"Saddam",surname:"Hussain",slug:"saddam-hussain",fullName:"Saddam Hussain"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11643",title:"Genetic Diversity - Recent Advances and Applications",subtitle:null,isOpenForSubmission:!0,hash:"0b1e679fcacdec2448603a66df71ccc7",slug:null,bookSignature:"Prof. Mahmut Çalışkan and Dr. Sevcan Aydin",coverURL:"https://cdn.intechopen.com/books/images_new/11643.jpg",editedByType:null,editors:[{id:"51528",title:"Prof.",name:"Mahmut",surname:"Çalışkan",slug:"mahmut-caliskan",fullName:"Mahmut Çalışkan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11784",title:"Bryophytes - The State of Knowledge in a World Under Climate Change",subtitle:null,isOpenForSubmission:!0,hash:"80743b2add35e11b09c10e6895a45831",slug:null,bookSignature:"Prof. Jair Putzke",coverURL:"https://cdn.intechopen.com/books/images_new/11784.jpg",editedByType:null,editors:[{id:"324930",title:"Prof.",name:"Jair",surname:"Putzke",slug:"jair-putzke",fullName:"Jair Putzke"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12332",title:"Resveratrol - Recent Advances, Application, and Therapeutic Potential",subtitle:null,isOpenForSubmission:!0,hash:"6c796885b34b6727cb8fb36badef827f",slug:null,bookSignature:"Dr. Ali Imran",coverURL:"https://cdn.intechopen.com/books/images_new/12332.jpg",editedByType:null,editors:[{id:"235082",title:"Dr.",name:"Ali",surname:"Imran",slug:"ali-imran",fullName:"Ali Imran"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11642",title:"Food Preservation and Packaging - Recent Process and Technological Advancements",subtitle:null,isOpenForSubmission:!0,hash:"00f636e3012dc12ebb8713cb51d75a1f",slug:null,bookSignature:"Dr. Jaya Shankar Tumuluru",coverURL:"https://cdn.intechopen.com/books/images_new/11642.jpg",editedByType:null,editors:[{id:"95803",title:"Dr.",name:"Jaya Shankar",surname:"Tumuluru",slug:"jaya-shankar-tumuluru",fullName:"Jaya Shankar Tumuluru"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:27},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:7},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:16},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:8},{group:"topic",caption:"Engineering",value:11,count:42},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:8},{group:"topic",caption:"Materials Science",value:14,count:17},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:68},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:3},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:6},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:7},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:50},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11263",title:"Supply Chain",subtitle:"Recent Advances and New Perspectives in the Industry 4.0 Era",isOpenForSubmission:!1,hash:"aab634c9c1f9a692c1e9881d18e9c9b7",slug:"supply-chain-recent-advances-and-new-perspectives-in-the-industry-4-0-era",bookSignature:"Tamás Bányai, Ágota Bányai and Ireneusz Kaczmar",coverURL:"https://cdn.intechopen.com/books/images_new/11263.jpg",editors:[{id:"201248",title:"Dr.",name:"Tamás",middleName:null,surname:"Bányai",slug:"tamas-banyai",fullName:"Tamás Bányai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4798},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7175,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1981,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2308,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1473,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318571,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271836,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",publishedDate:"July 1st 2013",numberOfDownloads:243450,editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1582,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2082,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",publishedDate:"October 17th 2012",numberOfDownloads:256294,editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11328",title:"Botulinum Toxin",subtitle:"Recent Topics and Applications",isOpenForSubmission:!1,hash:"7dd05a316001cef143e209eda51387a7",slug:"botulinum-toxin-recent-topics-and-applications",bookSignature:"Suna Sabuncuoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11328.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"270856",title:"Associate Prof.",name:"Suna",middleName:null,surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11085",title:"Polycystic Ovary Syndrome",subtitle:"Functional Investigation and Clinical Application",isOpenForSubmission:!1,hash:"3066dd3ff29e1fac072fd60b08d4d3e7",slug:"polycystic-ovary-syndrome-functional-investigation-and-clinical-application",bookSignature:"Zhengchao Wang",coverURL:"https://cdn.intechopen.com/books/images_new/11085.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"204883",title:"Dr.",name:"Zhengchao",middleName:null,surname:"Wang",slug:"zhengchao-wang",fullName:"Zhengchao Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10833",title:"Tumor Angiogenesis and Modulators",subtitle:null,isOpenForSubmission:!1,hash:"f29b575c46128b2da061ef7f9bd1070b",slug:"tumor-angiogenesis-and-modulators",bookSignature:"Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/10833.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"59529",title:"Dr.",name:"Ke",middleName:null,surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11356",title:"Molecular Cloning",subtitle:null,isOpenForSubmission:!1,hash:"671c629dd86e97f0fb467b9e70e92296",slug:"molecular-cloning",bookSignature:"Sadık Dincer, Hatice Aysun Mercimek Takcı and Melis Sumengen Ozdenef",coverURL:"https://cdn.intechopen.com/books/images_new/11356.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"188141",title:"Prof.",name:"Sadik",middleName:null,surname:"Dincer",slug:"sadik-dincer",fullName:"Sadik Dincer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Advanced Topics of Topology",subtitle:null,isOpenForSubmission:!1,hash:"bf964c52f9e653fac20a7fcab58070e5",slug:"advanced-topics-of-topology",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"92918",title:"Dr.",name:"Francisco",middleName:null,surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11195",title:"Recent Advances in Biometrics",subtitle:null,isOpenForSubmission:!1,hash:"2d32e33e0f499cb5241734bb75dd2a83",slug:"recent-advances-in-biometrics",bookSignature:"Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/11195.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1398",title:"Dermatopathology",slug:"dermatopathology",parent:{id:"175",title:"Dermatology",slug:"dermatology"},numberOfBooks:2,numberOfSeries:0,numberOfAuthorsAndEditors:54,numberOfWosCitations:4,numberOfCrossrefCitations:7,numberOfDimensionsCitations:11,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"1398",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10306",title:"Atopic Dermatitis",subtitle:"Essential Issues",isOpenForSubmission:!1,hash:"2bc6360aa278dad8f3a09289fe68bd73",slug:"atopic-dermatitis-essential-issues",bookSignature:"Celso Pereira",coverURL:"https://cdn.intechopen.com/books/images_new/10306.jpg",editedByType:"Edited by",editors:[{id:"66336",title:"Prof.",name:"Celso",middleName:null,surname:"Pereira",slug:"celso-pereira",fullName:"Celso Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5916",title:"Dermatologic Surgery and Procedures",subtitle:null,isOpenForSubmission:!1,hash:"4db72fff153d0878ec21a7e7b71515d8",slug:"dermatologic-surgery-and-procedures",bookSignature:"Pierre Vereecken",coverURL:"https://cdn.intechopen.com/books/images_new/5916.jpg",editedByType:"Edited by",editors:[{id:"157965",title:"Dr.",name:"Pierre",middleName:null,surname:"Vereecken",slug:"pierre-vereecken",fullName:"Pierre Vereecken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"57073",doi:"10.5772/intechopen.70309",title:"Photodynamic Therapy and Skin Cancer",slug:"photodynamic-therapy-and-skin-cancer",totalDownloads:1511,totalCrossrefCites:3,totalDimensionsCites:4,abstract:"Non-melanoma skin cancer (NMSC) is the most common type of cancer among white skin individuals worldwide with an increasing incidence over the last years. NMSC is mostly treated with surgical or non-invasive methods such as cryotherapy or topical chemotherapeutics. Over the last years, there has been a rapidly growing interest in the use of photodynamic therapy (PDT) which is a well-tolerated, safe and effective alternative treatment option. PDT involves a photosensitizer, a light source and tissue oxygen and is based on a photo-oxidation reaction in the target tissue which results to a selective destruction of the cancer cells. PDT has been approved for treatment of actinic keratosis, Bowen’s disease and basal cell carcinoma in Europe. Off-label uses include treatment of invasive squamous cell carcinoma, cutaneous T-cell lymphoma, Kaposi’s sarcoma, Paget’s disease and prevention of recurrence of squamous cell carcinoma in organ-transplant recipients. Also combination of PDT with other treatment options such as cryotherapy, surgery and topical therapies has been reported with improved efficacy, tolerability and long-term results. Development of novel photosensitizers and light sources together with targeted delivery systems will increase specificity, efficiency and treatment field of PDT in the future. This chapter aims to give the reader an overview of the important applications of PDT, including indications, approved treatments, advantages and disadvantages of this method such as future trends.",book:{id:"5916",slug:"dermatologic-surgery-and-procedures",title:"Dermatologic Surgery and Procedures",fullTitle:"Dermatologic Surgery and Procedures"},signatures:"Eleni Papakonstantinou, Florian Löhr and Ulrike Raap",authors:[{id:"203520",title:"Dr.",name:"Eleni",middleName:null,surname:"Papakonstantinou",slug:"eleni-papakonstantinou",fullName:"Eleni Papakonstantinou"},{id:"203630",title:"Dr.",name:"Ulrike",middleName:null,surname:"Raap",slug:"ulrike-raap",fullName:"Ulrike Raap"},{id:"205792",title:"M.D.",name:"Florian",middleName:null,surname:"Löhr",slug:"florian-lohr",fullName:"Florian Löhr"}]},{id:"57105",doi:"10.5772/intechopen.70509",title:"Application of Cryogenic Methods in Skin Diseases of Different Etiology",slug:"application-of-cryogenic-methods-in-skin-diseases-of-different-etiology",totalDownloads:1598,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"The modern demand for effective treatment options in dermatology was successfully addressed by the invention of cryogenic method. By 2009, Dr. V.I. Kochenov had developed and patented cryogenic set of instruments based on 30 years of his personal clinical experience. The set includes a number of instruments, which could be used independently. It allows implementing a wide range of therapeutic and surgical procedures and has no commercially available alternatives. The main applications of the set include cryogenic revitalization, and treatment for such common dermatological ailments as psoriasis, warts, acne, hypertrophic scars, purulent diseases of the skin and subcutaneous fat, epithelial cysts, skin hemangiomas, precancerous skin lesions, and even malignant melanoma of the skin. A brief overview of etiology, classification and pathogenesis of these maladies is presented alongside with the step-by-step guidelines to cryo-exposure procedures. Not only guidelines but also comprehensive theoretical and practical training is provided to physicians at the center which was established at Nizhny Novgorod State Medical Academy. Physicians at Scientific Clinical Center of Medical Cryology “OnKolor” have been using the set, which proved to be effective even in the most difficult and otherwise costly cases. The procedures that have pronounced cosmetic effect, leaves no scars and dark spots.",book:{id:"5916",slug:"dermatologic-surgery-and-procedures",title:"Dermatologic Surgery and Procedures",fullTitle:"Dermatologic Surgery and Procedures"},signatures:"Tatyana Gennadyevna Kotova, Sergei Nikolaevich Tsybusov,\nVladimir Ivanovich Kochenov and Maksim Igorevich Tcyganov",authors:[{id:"203916",title:"Ph.D.",name:"Tatyana",middleName:null,surname:"Kotova",slug:"tatyana-kotova",fullName:"Tatyana Kotova"},{id:"219207",title:"Dr.",name:"Sergei Nikolaevich",middleName:null,surname:"Tsybusov",slug:"sergei-nikolaevich-tsybusov",fullName:"Sergei Nikolaevich Tsybusov"},{id:"219208",title:"Dr.",name:"Vladimir Ivanovich",middleName:null,surname:"Kochenov",slug:"vladimir-ivanovich-kochenov",fullName:"Vladimir Ivanovich Kochenov"}]},{id:"57503",doi:"10.5772/intechopen.71749",title:"Treatment of Skin Laxity Using Multisource, Phase-Controlled Radiofrequency",slug:"treatment-of-skin-laxity-using-multisource-phase-controlled-radiofrequency",totalDownloads:1497,totalCrossrefCites:0,totalDimensionsCites:2,abstract:"Regardless of age, sex and skin type, skin tightening is a common procedure requested by patients seeking cosmetic treatments to improve facial contours and skin laxity. Radiofrequency has been proven to penetrate deeper than optical light sources independent of skin color and to be beneficial for skin tightening. I previously reported on the efficacy of multisource phase-controlled radiofrequency treatment and noninsulated microneedle radiofrequency applicator with fractionated pulse mode. The evaluation process was both subjective and objective; I evaluated objectively using three-dimensional color schematic representation with quantitative volume measurements. These three-dimensional results showed significant improvement after the treatments. The post-treatment volume was drastically reduced as compared to the pretreatment volume. Most of the patients reported satisfaction with the improvement of skin laxity. The advantages of these multisource phase-controlled radiofrequency treatments are their long-lasting high efficacy of tightening effects, and the reduction of discomfort and side effects. These characteristics facilitate repeated treatments as well as provide safe and effective treatment of skin tightening.",book:{id:"5916",slug:"dermatologic-surgery-and-procedures",title:"Dermatologic Surgery and Procedures",fullTitle:"Dermatologic Surgery and Procedures"},signatures:"Yohei Tanaka",authors:[{id:"36633",title:"Dr.",name:"Yohei",middleName:null,surname:"Tanaka",slug:"yohei-tanaka",fullName:"Yohei Tanaka"}]},{id:"56603",doi:"10.5772/intechopen.70286",title:"Cryotherapy for Common Premalignant and Malignant Skin Disorders",slug:"cryotherapy-for-common-premalignant-and-malignant-skin-disorders",totalDownloads:1500,totalCrossrefCites:0,totalDimensionsCites:1,abstract:"Cryotherapy, also known as cryosurgery or cryoablation, is a common dermatological treatment that is an expanded area from benign to malignant lesions. The system has been designed as a localized freezing cold that causes the destruction of cell integrity. The treatment has been also used for all ages, which is not required to have a condition of wellness. It is convenient, fast, and easy to apply in clinics, and there is no need for anesthesia. Additionally, multiple lesions are also cured in the same sessions. After the treatment, recovery period has not taken much longer and also has simple adverse effects, which are tolerable. Lastly, cryotherapy has gained excellent cosmetic results. It is highly effective for actinic keratosis and is the treatment of choice for most old patients who show poor cooperation and recurrent multiple lesions. Additionally, due to increasing premalignant lesions all over the world associated with increasing age, it is a considerable choice for lentigo maligna and Bowen’s disease. In non-melanoma skin cancers, it is also the most important option in patients who do not undergo surgery and when other options are not appropriate. In this chapter, the use of cryotherapy for premalignant and malignant cutaneous disorders has been mainly focused.",book:{id:"5916",slug:"dermatologic-surgery-and-procedures",title:"Dermatologic Surgery and Procedures",fullTitle:"Dermatologic Surgery and Procedures"},signatures:"Sevgi Akarsu and Isil Kamberoglu",authors:[{id:"182444",title:"Prof.",name:"Sevgi",middleName:null,surname:"Akarsu",slug:"sevgi-akarsu",fullName:"Sevgi Akarsu"},{id:"194631",title:"Dr.",name:"Işıl",middleName:null,surname:"Kamberoğlu Turan",slug:"isil-kamberoglu-turan",fullName:"Işıl Kamberoğlu Turan"}]},{id:"57377",doi:"10.5772/intechopen.70288",title:"Advanced Technologies in Dermatology",slug:"advanced-technologies-in-dermatology",totalDownloads:1533,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"Cellular therapies are an attractive area of regenerative medicine. For large partial thickness wound, keratinocytes transplant is suggested. The transplantation of cell graft is achieved by obtaining large amounts of cultured cells from a skin biopsy in 3 weeks. Stem cells can be applied before that, but are also efficient in chronic wound closure. Alternative treatment methods are transplants of allogeneic, biostatic skin and amnion. Amnion can be applied as a skin substitute on shallow facialburn wounds, hand burn wounds, on donor areas and granulating wounds. For medium depth or even deep burns, allogeneic skin is recommended. Thanks to the removing of cells from human allogeneic dermis, collagen scaffolding is obtained. It can be populated de novo by autologous skin cells. Artificial skin substitutes are especially good for hand burns and shallow burns. Even though scarring is a part of normal wound healing, it often leads to a pathological process. When scar treatment methods prove insufficient, surgical intervention becomes necessary. Surgical scar intervention involves removal of the pathological skin tissue fragment and replacing it with healthy skin or application of expanders. Improvement of the visual features can be also achieved by laser therapy.",book:{id:"5916",slug:"dermatologic-surgery-and-procedures",title:"Dermatologic Surgery and Procedures",fullTitle:"Dermatologic Surgery and Procedures"},signatures:"Diana Kitala, Agnieszka Klama-Baryła, Wojciech Łabuś, Marcelina\nMisiuga, Mariusz Nowak and Marek Kawecki",authors:[{id:"203598",title:"Ph.D.",name:"Diana",middleName:null,surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"},{id:"204300",title:"Dr.",name:"Agnieszka",middleName:null,surname:"Klama-Baryła",slug:"agnieszka-klama-baryla",fullName:"Agnieszka Klama-Baryła"},{id:"204301",title:"Dr.",name:"Wojciech",middleName:null,surname:"Łabuś",slug:"wojciech-labus",fullName:"Wojciech Łabuś"},{id:"204302",title:"MSc.",name:"Marcelina",middleName:null,surname:"Misiuga",slug:"marcelina-misiuga",fullName:"Marcelina Misiuga"},{id:"204303",title:"Dr.",name:"Mariusz",middleName:null,surname:"Nowak",slug:"mariusz-nowak",fullName:"Mariusz Nowak"},{id:"204304",title:"Prof.",name:"Marek",middleName:null,surname:"Kawecki",slug:"marek-kawecki",fullName:"Marek Kawecki"}]}],mostDownloadedChaptersLast30Days:[{id:"56876",title:"Mohs Micrographic Surgery",slug:"mohs-micrographic-surgery",totalDownloads:1368,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Mohs micrographic surgery (MMS) is used to obtain clear margins in skin cancer treatment. MMS involves staged excisions and complete margin assessment of the specimen from fresh tissue frozen sectioning. It has been shown to achieve higher cure rates with malignancies, including basal cell carcinoma (BCC), squamous cell carcinoma (SCC), lentigo maligna, melanoma in situ and dermatofibrosarcoma protuberans. This technique is especially useful in face, feet and hand regions to avoid cosmetic deformities.",book:{id:"5916",slug:"dermatologic-surgery-and-procedures",title:"Dermatologic Surgery and Procedures",fullTitle:"Dermatologic Surgery and Procedures"},signatures:"Merdan Serin",authors:[{id:"199977",title:"Dr.",name:"Merdan",middleName:null,surname:"Serin",slug:"merdan-serin",fullName:"Merdan Serin"}]},{id:"58693",title:"Local Anesthesia",slug:"local-anesthesia",totalDownloads:1261,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Local anesthesia is a routine procedure in dermatological practice. This chapter deals with the basic principles of pharmacology and pharmacodynamics related to the most commonly used anesthetics in dermatology as well as its side effects, the most common anesthetic solutions, anesthesia techniques, and topical anesthesia.",book:{id:"5916",slug:"dermatologic-surgery-and-procedures",title:"Dermatologic Surgery and Procedures",fullTitle:"Dermatologic Surgery and Procedures"},signatures:"Caio Lamunier de Abreu Camargo",authors:[{id:"219137",title:"M.D.",name:"Caio",middleName:null,surname:"Camargo",slug:"caio-camargo",fullName:"Caio Camargo"}]},{id:"57377",title:"Advanced Technologies in Dermatology",slug:"advanced-technologies-in-dermatology",totalDownloads:1532,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"Cellular therapies are an attractive area of regenerative medicine. For large partial thickness wound, keratinocytes transplant is suggested. The transplantation of cell graft is achieved by obtaining large amounts of cultured cells from a skin biopsy in 3 weeks. Stem cells can be applied before that, but are also efficient in chronic wound closure. Alternative treatment methods are transplants of allogeneic, biostatic skin and amnion. Amnion can be applied as a skin substitute on shallow facialburn wounds, hand burn wounds, on donor areas and granulating wounds. For medium depth or even deep burns, allogeneic skin is recommended. Thanks to the removing of cells from human allogeneic dermis, collagen scaffolding is obtained. It can be populated de novo by autologous skin cells. Artificial skin substitutes are especially good for hand burns and shallow burns. Even though scarring is a part of normal wound healing, it often leads to a pathological process. When scar treatment methods prove insufficient, surgical intervention becomes necessary. Surgical scar intervention involves removal of the pathological skin tissue fragment and replacing it with healthy skin or application of expanders. Improvement of the visual features can be also achieved by laser therapy.",book:{id:"5916",slug:"dermatologic-surgery-and-procedures",title:"Dermatologic Surgery and Procedures",fullTitle:"Dermatologic Surgery and Procedures"},signatures:"Diana Kitala, Agnieszka Klama-Baryła, Wojciech Łabuś, Marcelina\nMisiuga, Mariusz Nowak and Marek Kawecki",authors:[{id:"203598",title:"Ph.D.",name:"Diana",middleName:null,surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"},{id:"204300",title:"Dr.",name:"Agnieszka",middleName:null,surname:"Klama-Baryła",slug:"agnieszka-klama-baryla",fullName:"Agnieszka Klama-Baryła"},{id:"204301",title:"Dr.",name:"Wojciech",middleName:null,surname:"Łabuś",slug:"wojciech-labus",fullName:"Wojciech Łabuś"},{id:"204302",title:"MSc.",name:"Marcelina",middleName:null,surname:"Misiuga",slug:"marcelina-misiuga",fullName:"Marcelina Misiuga"},{id:"204303",title:"Dr.",name:"Mariusz",middleName:null,surname:"Nowak",slug:"mariusz-nowak",fullName:"Mariusz Nowak"},{id:"204304",title:"Prof.",name:"Marek",middleName:null,surname:"Kawecki",slug:"marek-kawecki",fullName:"Marek Kawecki"}]},{id:"57503",title:"Treatment of Skin Laxity Using Multisource, Phase-Controlled Radiofrequency",slug:"treatment-of-skin-laxity-using-multisource-phase-controlled-radiofrequency",totalDownloads:1497,totalCrossrefCites:0,totalDimensionsCites:2,abstract:"Regardless of age, sex and skin type, skin tightening is a common procedure requested by patients seeking cosmetic treatments to improve facial contours and skin laxity. Radiofrequency has been proven to penetrate deeper than optical light sources independent of skin color and to be beneficial for skin tightening. I previously reported on the efficacy of multisource phase-controlled radiofrequency treatment and noninsulated microneedle radiofrequency applicator with fractionated pulse mode. The evaluation process was both subjective and objective; I evaluated objectively using three-dimensional color schematic representation with quantitative volume measurements. These three-dimensional results showed significant improvement after the treatments. The post-treatment volume was drastically reduced as compared to the pretreatment volume. Most of the patients reported satisfaction with the improvement of skin laxity. The advantages of these multisource phase-controlled radiofrequency treatments are their long-lasting high efficacy of tightening effects, and the reduction of discomfort and side effects. These characteristics facilitate repeated treatments as well as provide safe and effective treatment of skin tightening.",book:{id:"5916",slug:"dermatologic-surgery-and-procedures",title:"Dermatologic Surgery and Procedures",fullTitle:"Dermatologic Surgery and Procedures"},signatures:"Yohei Tanaka",authors:[{id:"36633",title:"Dr.",name:"Yohei",middleName:null,surname:"Tanaka",slug:"yohei-tanaka",fullName:"Yohei Tanaka"}]},{id:"58016",title:"CO2 Laser-Assisted Otoplasty: A New Dermatosurgical Procedure",slug:"co2-laser-assisted-otoplasty-a-new-dermatosurgical-procedure",totalDownloads:1390,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Otoplasty is the surgical procedure characteristically performed to improve the appearance of unpleasant, protruding auricles. An incision in the back of the ear with or without excision of cartilage is the usual approach. A novel technique performed with CO2 laser is presented. The objective of CO2 laser-assisted otoplasty is to decrease the mastoid-scapha angle up to approximately 30°; also, the conchal-scapha angle should be reduced to its usual of approximately 90°. The aims of this procedure are to restructure the scapha and the antihelix fold, to diminish the size of the concha (hinge effect), and to relocate the reshaped ear closer to the head in esthetically desired angles, not only horizontally (lateral angle), but also (and of extreme importance for most patients) vertically (superior angle).",book:{id:"5916",slug:"dermatologic-surgery-and-procedures",title:"Dermatologic Surgery and Procedures",fullTitle:"Dermatologic Surgery and Procedures"},signatures:"Hector Leal Silva",authors:[{id:"204525",title:"Dr.",name:"Hector",middleName:null,surname:"Leal Silva",slug:"hector-leal-silva",fullName:"Hector Leal Silva"}]}],onlineFirstChaptersFilter:{topicId:"1398",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:139,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:122,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:21,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"13",title:"Veterinary Medicine and Science",doi:"10.5772/intechopen.73681",issn:"2632-0517",scope:"Paralleling similar advances in the medical field, astounding advances occurred in Veterinary Medicine and Science in recent decades. These advances have helped foster better support for animal health, more humane animal production, and a better understanding of the physiology of endangered species to improve the assisted reproductive technologies or the pathogenesis of certain diseases, where animals can be used as models for human diseases (like cancer, degenerative diseases or fertility), and even as a guarantee of public health. Bridging Human, Animal, and Environmental health, the holistic and integrative “One Health” concept intimately associates the developments within those fields, projecting its advancements into practice. This book series aims to tackle various animal-related medicine and sciences fields, providing thematic volumes consisting of high-quality significant research directed to researchers and postgraduates. It aims to give us a glimpse into the new accomplishments in the Veterinary Medicine and Science field. By addressing hot topics in veterinary sciences, we aim to gather authoritative texts within each issue of this series, providing in-depth overviews and analysis for graduates, academics, and practitioners and foreseeing a deeper understanding of the subject. Forthcoming texts, written and edited by experienced researchers from both industry and academia, will also discuss scientific challenges faced today in Veterinary Medicine and Science. In brief, we hope that books in this series will provide accessible references for those interested or working in this field and encourage learning in a range of different topics.",coverUrl:"https://cdn.intechopen.com/series/covers/13.jpg",latestPublicationDate:"August 7th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:11,editor:{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",biography:"Rita Payan Carreira earned her Veterinary Degree from the Faculty of Veterinary Medicine in Lisbon, Portugal, in 1985. She obtained her Ph.D. in Veterinary Sciences from the University of Trás-os-Montes e Alto Douro, Portugal. After almost 32 years of teaching at the University of Trás-os-Montes and Alto Douro, she recently moved to the University of Évora, Department of Veterinary Medicine, where she teaches in the field of Animal Reproduction and Clinics. Her primary research areas include the molecular markers of the endometrial cycle and the embryo–maternal interaction, including oxidative stress and the reproductive physiology and disorders of sexual development, besides the molecular determinants of male and female fertility. She often supervises students preparing their master's or doctoral theses. She is also a frequent referee for various journals.",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"19",title:"Animal Science",coverUrl:"https://cdn.intechopen.com/series_topics/covers/19.jpg",isOpenForSubmission:!0,editor:{id:"259298",title:"Dr.",name:"Edward",middleName:null,surname:"Narayan",slug:"edward-narayan",fullName:"Edward Narayan",profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",biography:"Dr. Edward Narayan graduated with Ph.D. degree in Biology from the University of the South Pacific and pioneered non-invasive reproductive and stress endocrinology tools for amphibians - the novel development and validation of non-invasive enzyme immunoassays for the evaluation of reproductive hormonal cycle and stress hormone responses to environmental stressors. \nDr. Narayan leads the Stress Lab (Comparative Physiology and Endocrinology) at the University of Queensland. A dynamic career research platform which is based on the thematic areas of comparative vertebrate physiology, stress endocrinology, reproductive endocrinology, animal health and welfare, and conservation biology. \nEdward has supervised 40 research students and published over 60 peer reviewed research.",institutionString:null,institution:{name:"University of Queensland",institutionURL:null,country:{name:"Australia"}}},editorTwo:null,editorThree:null},{id:"20",title:"Animal Nutrition",coverUrl:"https://cdn.intechopen.com/series_topics/covers/20.jpg",isOpenForSubmission:!0,editor:{id:"175967",title:"Dr.",name:"Manuel",middleName:null,surname:"Gonzalez Ronquillo",slug:"manuel-gonzalez-ronquillo",fullName:"Manuel Gonzalez Ronquillo",profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",biography:"Dr. Manuel González Ronquillo obtained his doctorate degree from the University of Zaragoza, Spain, in 2001. He is a research professor at the Faculty of Veterinary Medicine and Animal Husbandry, Autonomous University of the State of Mexico. He is also a level-2 researcher. He received a Fulbright-Garcia Robles fellowship for a postdoctoral stay at the US Dairy Forage Research Center, Madison, Wisconsin, USA in 2008–2009. He received grants from Alianza del Pacifico for a stay at the University of Magallanes, Chile, in 2014, and from Consejo Nacional de Ciencia y Tecnología (CONACyT) to work in the Food and Agriculture Organization’s Animal Production and Health Division (AGA), Rome, Italy, in 2014–2015. He has collaborated with researchers from different countries and published ninety-eight journal articles. He teaches various degree courses in zootechnics, sheep production, and agricultural sciences and natural resources.\n\nDr. Ronquillo’s research focuses on the evaluation of sustainable animal diets (StAnD), using native resources of the region, decreasing carbon footprint, and applying meta-analysis and mathematical models for a better understanding of animal production.",institutionString:null,institution:{name:"Universidad Autónoma del Estado de México",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null},{id:"28",title:"Animal Reproductive Biology and Technology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/28.jpg",isOpenForSubmission:!0,editor:{id:"177225",title:"Prof.",name:"Rosa Maria Lino Neto",middleName:null,surname:"Pereira",slug:"rosa-maria-lino-neto-pereira",fullName:"Rosa Maria Lino Neto Pereira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9wkQAC/Profile_Picture_1624519982291",biography:"Rosa Maria Lino Neto Pereira (DVM, MsC, PhD and) is currently a researcher at the Genetic Resources and Biotechnology Unit of the National Institute of Agrarian and Veterinarian Research (INIAV, Portugal). She is the head of the Reproduction and Embryology Laboratories and was lecturer of Reproduction and Reproductive Biotechnologies at Veterinary Medicine Faculty. She has over 25 years of experience working in reproductive biology and biotechnology areas with a special emphasis on embryo and gamete cryopreservation, for research and animal genetic resources conservation, leading research projects with several peer-reviewed papers. Rosa Pereira is member of the ERFP-FAO Ex situ Working Group and of the Management Commission of the Portuguese Animal Germplasm Bank.",institutionString:"The National Institute for Agricultural and Veterinary Research. Portugal",institution:null},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:20,paginationItems:[{id:"82991",title:"Diseases of the Canine Prostate Gland",doi:"10.5772/intechopen.105835",signatures:"Sabine Schäfer-Somi",slug:"diseases-of-the-canine-prostate-gland",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82956",title:"Potential Substitutes of Antibiotics for Swine and Poultry Production",doi:"10.5772/intechopen.106081",signatures:"Ho Trung Thong, Le Nu Anh Thu and Ho Viet Duc",slug:"potential-substitutes-of-antibiotics-for-swine-and-poultry-production",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Antibiotics and Probiotics in Animal Food - Impact and Regulation",coverURL:"https://cdn.intechopen.com/books/images_new/11578.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"82905",title:"A Review of Application Strategies and Efficacy of Probiotics in Pet Food",doi:"10.5772/intechopen.105829",signatures:"Heather Acuff and Charles G. Aldrich",slug:"a-review-of-application-strategies-and-efficacy-of-probiotics-in-pet-food",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Antibiotics and Probiotics in Animal Food - Impact and Regulation",coverURL:"https://cdn.intechopen.com/books/images_new/11578.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"82773",title:"Canine Transmissible Venereal Tumor: An Infectious Neoplasia in Dogs",doi:"10.5772/intechopen.106150",signatures:"Chanokchon Setthawongsin, Somporn Techangamsuwan and Anudep Rungsipipat",slug:"canine-transmissible-venereal-tumor-an-infectious-neoplasia-in-dogs",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}}]},overviewPagePublishedBooks:{paginationCount:11,paginationItems:[{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",biography:"Rita Payan Carreira earned her Veterinary Degree from the Faculty of Veterinary Medicine in Lisbon, Portugal, in 1985. She obtained her Ph.D. in Veterinary Sciences from the University of Trás-os-Montes e Alto Douro, Portugal. After almost 32 years of teaching at the University of Trás-os-Montes and Alto Douro, she recently moved to the University of Évora, Department of Veterinary Medicine, where she teaches in the field of Animal Reproduction and Clinics. Her primary research areas include the molecular markers of the endometrial cycle and the embryo–maternal interaction, including oxidative stress and the reproductive physiology and disorders of sexual development, besides the molecular determinants of male and female fertility. She often supervises students preparing their master's or doctoral theses. She is also a frequent referee for various journals.",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}]},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",slug:"veterinary-anatomy-and-physiology",publishedDate:"March 13th 2019",editedByType:"Edited by",bookSignature:"Catrin Sian Rutland and Valentina Kubale",hash:"75cdacb570e0e6d15a5f6e69640d87c9",volumeInSeries:2,fullTitle:"Veterinary Anatomy and Physiology",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}]},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Naceur M'Hamdi",hash:"2aa2a9a0ec13040bbf0455e34625504e",volumeInSeries:3,fullTitle:"Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi",profilePictureURL:"https://mts.intechopen.com/storage/users/73376/images/system/73376.jpg",biography:"Naceur M’HAMDI is Associate Professor at the National Agronomic Institute of Tunisia, University of Carthage. He is also Member of the Laboratory of genetic, animal and feed resource and member of Animal science Department of INAT. He graduated from Higher School of Agriculture of Mateur, University of Carthage, in 2002 and completed his masters in 2006. Dr. M’HAMDI completed his PhD thesis in Genetic welfare indicators of dairy cattle at Higher Institute of Agronomy of Chott-Meriem, University of Sousse, in 2011. He worked as assistant Professor of Genetic, biostatistics and animal biotechnology at INAT since 2013.",institutionString:null,institution:null}]},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón Poggi",slug:"juan-carlos-gardon-poggi",fullName:"Juan Carlos Gardón Poggi",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",biography:"Juan Carlos Gardón Poggi received University degree from the Faculty of Agrarian Science in Argentina, in 1983. Also he received Masters Degree and PhD from Córdoba University, Spain. He is currently a Professor at the Catholic University of Valencia San Vicente Mártir, at the Department of Medicine and Animal Surgery. He teaches diverse courses in the field of Animal Reproduction and he is the Director of the Veterinary Farm. He also participates in academic postgraduate activities at the Veterinary Faculty of Murcia University, Spain. His research areas include animal physiology, physiology and biotechnology of reproduction either in males or females, the study of gametes under in vitro conditions and the use of ultrasound as a complement to physiological studies and development of applied biotechnologies. Routinely, he supervises students preparing their doctoral, master thesis or final degree projects.",institutionString:null,institution:{name:"Valencia Catholic University Saint Vincent Martyr",institutionURL:null,country:{name:"Spain"}}}]}]},openForSubmissionBooks:{paginationCount:2,paginationItems:[{id:"12086",title:"Cattle Diseases - Molecular and Biochemical Approach",coverURL:"https://cdn.intechopen.com/books/images_new/12086.jpg",hash:"afdbf57e32d996556a94528c06623cf3",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 5th 2022",isOpenForSubmission:!0,editors:[{id:"219081",title:"Dr.",name:"Abdulsamed",surname:"Kükürt",slug:"abdulsamed-kukurt",fullName:"Abdulsamed Kükürt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11579",title:"Animal Welfare - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11579.jpg",hash:"12e4f41264cbe99028655e5463fa941a",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 8th 2022",isOpenForSubmission:!0,editors:[{id:"51520",title:"Dr.",name:"Shao-Wen",surname:"Hung",slug:"shao-wen-hung",fullName:"Shao-Wen Hung"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:10,paginationItems:[{id:"82903",title:"Walking Accessibility to Primary Healthcare Services: An Inequity Factor for Olders in the Lisbon Metropolitan Area (Portugal)",doi:"10.5772/intechopen.106265",signatures:"Eduarda Marques da Costa, Ana Louro, Nuno Marques da Costa, Mariana Dias and Marcela Barata",slug:"walking-accessibility-to-primary-healthcare-services-an-inequity-factor-for-olders-in-the-lisbon-met",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Social Aspects of Ageing - Selected Challenges, Analyses, and Solutions",coverURL:"https://cdn.intechopen.com/books/images_new/11479.jpg",subseries:{id:"90",title:"Human Development"}}},{id:"82622",title:"Contemporary Geographical Gerontology: Reconciling Space and Place in Population Ageing",doi:"10.5772/intechopen.105863",signatures:"Hamish Robertson",slug:"contemporary-geographical-gerontology-reconciling-space-and-place-in-population-ageing",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hamish",surname:"Robertson"}],book:{title:"Social Aspects of Ageing - Selected Challenges, Analyses, and Solutions",coverURL:"https://cdn.intechopen.com/books/images_new/11479.jpg",subseries:{id:"90",title:"Human Development"}}},{id:"82610",title:"Perspective Chapter: The Role of Learning Styles in Active Learning",doi:"10.5772/intechopen.105964",signatures:"Armando Lozano-Rodríguez, Fernanda Inez García-Vázquez and José Luis García-Cué",slug:"perspective-chapter-the-role-of-learning-styles-in-active-learning",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"81909",title:"Educational Paradigm with Ubuntu Mindset: Implications for Sustainable Development Goals in Education",doi:"10.5772/intechopen.104929",signatures:"George Frempong and Raavee Kadam",slug:"educational-paradigm-with-ubuntu-mindset-implications-for-sustainable-development-goals-in-education",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"82243",title:"The Language that Grade R Students Use to Achieve the Envisaged Mathematics Outcomes, a South African Perspective",doi:"10.5772/intechopen.105446",signatures:"Shakespear M. Chiphambo and Nosisi N. Feza",slug:"the-language-that-grade-r-students-use-to-achieve-the-envisaged-mathematics-outcomes-a-south-african",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"82394",title:"Learning by Doing Active Social Learning",doi:"10.5772/intechopen.105523",signatures:"Anat Raviv",slug:"learning-by-doing-active-social-learning",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"82310",title:"Knowledge of Intergenerational Contact to Combat Ageism towards Older People",doi:"10.5772/intechopen.105592",signatures:"Alice Nga Lai Kwong",slug:"knowledge-of-intergenerational-contact-to-combat-ageism-towards-older-people",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Social Aspects of Ageing - Selected Challenges, Analyses, and Solutions",coverURL:"https://cdn.intechopen.com/books/images_new/11479.jpg",subseries:{id:"90",title:"Human Development"}}},{id:"81993",title:"Emergent Chemistry: Using Visualizations to Develop Abstract Thinking and a Sense of Scale Within the Preschool Setting",doi:"10.5772/intechopen.105216",signatures:"Karina Adbo",slug:"emergent-chemistry-using-visualizations-to-develop-abstract-thinking-and-a-sense-of-scale-within-the",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"82252",title:"Early Childhood: Enriched Environments and Roles of Caring Adults",doi:"10.5772/intechopen.105157",signatures:"Analía Mignaton",slug:"early-childhood-enriched-environments-and-roles-of-caring-adults",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"81996",title:"Perspective Chapter: New Active Learning Models in Africa",doi:"10.5772/intechopen.105217",signatures:"Fred Awaah, Cosmas Lambini Kombat and Emmanuel Okyere Ekwam",slug:"perspective-chapter-new-active-learning-models-in-africa",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}}]},subseriesFiltersForOFChapters:[{caption:"Human Development",value:90,count:3,group:"subseries"},{caption:"Education",value:89,count:7,group:"subseries"}],publishedBooks:{paginationCount:33,paginationItems:[{type:"book",id:"10840",title:"Benzimidazole",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",slug:"benzimidazole",publishedDate:"July 13th 2022",editedByType:"Edited by",bookSignature:"Pravin Kendrekar and Vinayak Adimule",hash:"e28c770013e7a8dd0fc37aea6aa9def8",volumeInSeries:34,fullTitle:"Benzimidazole",editors:[{id:"310674",title:"Dr.",name:"Pravin",middleName:null,surname:"Kendrekar",slug:"pravin-kendrekar",fullName:"Pravin Kendrekar",profilePictureURL:"https://mts.intechopen.com/storage/users/310674/images/system/310674.jpg",institutionString:"Visiting Scientist at Lipid Nanostructures Laboratory, Centre for Smart Materials, School of Natural Sciences, University of Central Lancashire",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",slug:"starch-evolution-and-recent-advances",publishedDate:"June 28th 2022",editedByType:"Edited by",bookSignature:"Martins Ochubiojo Emeje",hash:"f197f6062c1574a9a90e50a369271bcf",volumeInSeries:33,fullTitle:"Starch - Evolution and Recent Advances",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",institutionURL:null,country:{name:"Nigeria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",slug:"essential-oils-advances-in-extractions-and-biological-applications",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",hash:"742e6cae3a35686f975edc8d7f9afa94",volumeInSeries:32,fullTitle:"Essential Oils - Advances in Extractions and Biological Applications",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira",profilePictureURL:"https://mts.intechopen.com/storage/users/195290/images/system/195290.png",institutionString:"Museu Paraense Emílio Goeldi",institution:{name:"Museu Paraense Emílio Goeldi",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",slug:"protein-detection",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Yusuf Tutar and Lütfi Tutar",hash:"2f1c0e4e0207fc45c936e7d22a5369c4",volumeInSeries:31,fullTitle:"Protein Detection",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",institutionString:"University of Health Sciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10797",title:"Cell Culture",subtitle:"Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",slug:"cell-culture-advanced-technology-and-applications-in-medical-and-life-sciences",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"2c628f4757f9639a4450728d839a7842",volumeInSeries:30,fullTitle:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",slug:"hydrolases",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",hash:"4e868cde273d65a7ff54b1817d640629",volumeInSeries:29,fullTitle:"Hydrolases",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider",profilePictureURL:"https://mts.intechopen.com/storage/users/110708/images/system/110708.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",slug:"reactive-oxygen-species",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Rizwan Ahmad",hash:"176adcf090fdd1f93cb8ce3146e79ca1",volumeInSeries:28,fullTitle:"Reactive Oxygen Species",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",publishedDate:"March 23rd 2022",editedByType:"Edited by",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",hash:"8b43add5389ba85743e0a9491e4b9943",volumeInSeries:27,fullTitle:"Vitamin K - Recent Topics on the Biology and Chemistry",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9659",title:"Fibroblasts",subtitle:"Advances in Inflammation, Autoimmunity and Cancer",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",slug:"fibroblasts-advances-in-inflammation-autoimmunity-and-cancer",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Mojca Frank Bertoncelj and Katja Lakota",hash:"926fa6446f6befbd363fc74971a56de2",volumeInSeries:25,fullTitle:"Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer",editors:[{id:"328755",title:"Ph.D.",name:"Mojca",middleName:null,surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj",profilePictureURL:"https://mts.intechopen.com/storage/users/328755/images/system/328755.jpg",institutionString:"BioMed X Institute",institution:{name:"University Hospital of Zurich",institutionURL:null,country:{name:"Switzerland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8018",title:"Extracellular Matrix",subtitle:"Developments and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/8018.jpg",slug:"extracellular-matrix-developments-and-therapeutics",publishedDate:"October 27th 2021",editedByType:"Edited by",bookSignature:"Rama Sashank Madhurapantula, Joseph Orgel P.R.O. and Zvi Loewy",hash:"c85e82851e80b40282ff9be99ddf2046",volumeInSeries:23,fullTitle:"Extracellular Matrix - Developments and Therapeutics",editors:[{id:"212416",title:"Dr.",name:"Rama Sashank",middleName:null,surname:"Madhurapantula",slug:"rama-sashank-madhurapantula",fullName:"Rama Sashank Madhurapantula",profilePictureURL:"https://mts.intechopen.com/storage/users/212416/images/system/212416.jpg",institutionString:"Illinois Institute of Technology",institution:{name:"Illinois Institute of Technology",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Proteomics",value:18,count:4},{group:"subseries",caption:"Metabolism",value:17,count:6},{group:"subseries",caption:"Cell and Molecular Biology",value:14,count:9},{group:"subseries",caption:"Chemical Biology",value:15,count:14}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:9},{group:"publicationYear",caption:"2021",value:2021,count:7},{group:"publicationYear",caption:"2020",value:2020,count:12},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:2}],authors:{paginationCount:754,paginationItems:[{id:"310674",title:"Dr.",name:"Pravin",middleName:null,surname:"Kendrekar",slug:"pravin-kendrekar",fullName:"Pravin Kendrekar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/310674/images/system/310674.jpg",biography:"Dr. Pravin Kendrekar, MSc, MBA, Ph.D., is currently a visiting scientist at the Lipid Nanostructure Laboratory, University of Central Lancashire, England. He previously worked as a post-doctoral fellow at the Ben-Gurion University of Negev, Israel; University of the Free State, South Africa; and Central University of Technology Bloemfontein, South Africa. He obtained his Ph.D. in Organic Chemistry from Nagaoka University of Technology, Japan. He has published more than seventy-four journal articles and attended several national and international conferences as speaker and chair. Dr. Kendrekar has received many international awards. He has several funded projects, namely, anti-malaria drug development, MRSA, and SARS-CoV-2 activity of curcumin and its formulations. He has filed four patents in collaboration with the University of Central Lancashire and Mayo Clinic Infectious Diseases. His present research includes organic synthesis, drug discovery and development, biochemistry, nanoscience, and nanotechnology.",institutionString:"Visiting Scientist at Lipid Nanostructures Laboratory, Centre for Smart Materials, School of Natural Sciences, University of Central Lancashire",institution:null},{id:"428125",title:"Dr.",name:"Vinayak",middleName:null,surname:"Adimule",slug:"vinayak-adimule",fullName:"Vinayak Adimule",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/428125/images/system/428125.jpg",biography:"Dr. Vinayak Adimule, MSc, Ph.D., is a professor and dean of R&D, Angadi Institute of Technology and Management, India. He has 15 years of research experience as a senior research scientist and associate research scientist in R&D organizations. He has published more than fifty research articles as well as several book chapters. He has two Indian patents and two international patents to his credit. Dr. Adimule has attended, chaired, and presented papers at national and international conferences. He is a guest editor for Topics in Catalysis and other journals. He is also an editorial board member, life member, and associate member for many international societies and research institutions. His research interests include nanoelectronics, material chemistry, artificial intelligence, sensors and actuators, bio-nanomaterials, and medicinal chemistry.",institutionString:"Angadi Institute of Technology and Management",institution:null},{id:"284317",title:"Prof.",name:"Kantharaju",middleName:null,surname:"Kamanna",slug:"kantharaju-kamanna",fullName:"Kantharaju Kamanna",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/284317/images/21050_n.jpg",biography:"Prof. K. Kantharaju has received Bachelor of science (PCM), master of science (Organic Chemistry) and Doctor of Philosophy in Chemistry from Bangalore University. He worked as a Executive Research & Development @ Cadila Pharmaceuticals Ltd, Ahmedabad. He received DBT-postdoc fellow @ Molecular Biophysics Unit, Indian Institute of Science, Bangalore under the supervision of Prof. P. Balaram, later he moved to NIH-postdoc researcher at Drexel University College of Medicine, Philadelphia, USA, after his return from postdoc joined NITK-Surthakal as a Adhoc faculty at department of chemistry. Since from August 2013 working as a Associate Professor, and in 2016 promoted to Profeesor in the School of Basic Sciences: Department of Chemistry and having 20 years of teaching and research experiences.",institutionString:null,institution:{name:"Rani Channamma University, Belagavi",country:{name:"India"}}},{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",biography:"Prof. Dr. Yusuf Tutar conducts his research at the Hamidiye Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Division of Biochemistry, University of Health Sciences, Turkey. He is also a faculty member in the Molecular Oncology Program. He obtained his MSc and Ph.D. at Oregon State University and Texas Tech University, respectively. He pursued his postdoctoral studies at Rutgers University Medical School and the National Institutes of Health (NIH/NIDDK), USA. His research focuses on biochemistry, biophysics, genetics, molecular biology, and molecular medicine with specialization in the fields of drug design, protein structure-function, protein folding, prions, microRNA, pseudogenes, molecular cancer, epigenetics, metabolites, proteomics, genomics, protein expression, and characterization by spectroscopic and calorimetric methods.",institutionString:"University of Health Sciences",institution:null},{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",biography:"Hiroyuki Kagechika received his bachelor’s degree and Ph.D. in Pharmaceutical Sciences from the University of Tokyo, Japan, where he served as an associate professor until 2004. He is currently a professor at the Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU). From 2010 to 2012, he was the dean of the Graduate School of Biomedical Science. Since 2012, he has served as the vice dean of the Graduate School of Medical and Dental Sciences. He has been the director of the IBB since 2020. Dr. Kagechika’s major research interests are the medicinal chemistry of retinoids, vitamins D/K, and nuclear receptors. He has developed various compounds including a drug for acute promyelocytic leukemia.",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",country:{name:"Japan"}}},{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",biography:"Martins Emeje obtained a BPharm with distinction from Ahmadu Bello University, Nigeria, and an MPharm and Ph.D. from the University of Nigeria (UNN), where he received the best Ph.D. award and was enlisted as UNN’s “Face of Research.” He established the first nanomedicine center in Nigeria and was the pioneer head of the intellectual property and technology transfer as well as the technology innovation and support center. Prof. Emeje’s several international fellowships include the prestigious Raman fellowship. He has published more than 150 articles and patents. He is also the head of R&D at NIPRD and holds a visiting professor position at Nnamdi Azikiwe University, Nigeria. He has a postgraduate certificate in Project Management from Walden University, Minnesota, as well as a professional teaching certificate and a World Bank certification in Public Procurement. Prof. Emeje was a national chairman of academic pharmacists in Nigeria and the 2021 winner of the May & Baker Nigeria Plc–sponsored prize for professional service in research and innovation.",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",country:{name:"Nigeria"}}},{id:"436430",title:"Associate Prof.",name:"Mesut",middleName:null,surname:"Işık",slug:"mesut-isik",fullName:"Mesut Işık",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/436430/images/19686_n.jpg",biography:null,institutionString:null,institution:{name:"Bilecik University",country:{name:"Turkey"}}},{id:"268659",title:"Ms.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/268659/images/8143_n.jpg",biography:"Dr. Zhan received his undergraduate and graduate training in the fields of preventive medicine and epidemiology and statistics at the West China University of Medical Sciences in China during 1989 to 1999. He received his post-doctoral training in oncology and cancer proteomics for two years at the Cancer Research Institute of Human Medical University in China. In 2001, he went to the University of Tennessee Health Science Center (UTHSC) in USA, where he was a post-doctoral researcher and focused on mass spectrometry and cancer proteomics. Then, he was appointed as an Assistant Professor of Neurology, UTHSC in 2005. He moved to the Cleveland Clinic in USA as a Project Scientist/Staff in 2006 where he focused on the studies of eye disease proteomics and biomarkers. He returned to UTHSC as an Assistant Professor of Neurology in the end of 2007, engaging in proteomics and biomarker studies of lung diseases and brain tumors, and initiating the studies of predictive, preventive, and personalized medicine (PPPM) in cancer. In 2010, he was promoted to Associate Professor of Neurology, UTHSC. Currently, he is a Professor at Xiangya Hospital of Central South University in China, Fellow of Royal Society of Medicine (FRSM), the European EPMA National Representative in China, Regular Member of American Association for the Advancement of Science (AAAS), European Cooperation of Science and Technology (e-COST) grant evaluator, Associate Editors of BMC Genomics, BMC Medical Genomics, EPMA Journal, and Frontiers in Endocrinology, Executive Editor-in-Chief of Med One. He has\npublished 116 peer-reviewed research articles, 16 book chapters, 2 books, and 2 US patents. His current main research interest focuses on the studies of cancer proteomics and biomarkers, and the use of modern omics techniques and systems biology for PPPM in cancer, and on the development and use of 2DE-LC/MS for the large-scale study of human proteoforms.",institutionString:null,institution:{name:"Xiangya Hospital Central South University",country:{name:"China"}}},{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",biography:"Dr. Rizwan Ahmad is a University Professor and Coordinator, Quality and Development, College of Medicine, Imam Abdulrahman bin Faisal University, Saudi Arabia. Previously, he was Associate Professor of Human Function, Oman Medical College, Oman, and SBS University, Dehradun. Dr. Ahmad completed his education at Aligarh Muslim University, Aligarh. He has published several articles in peer-reviewed journals, chapters, and edited books. His area of specialization is free radical biochemistry and autoimmune diseases.",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",country:{name:"Saudi Arabia"}}},{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",biography:"Farid A. Badria, Ph.D., is the recipient of several awards, including The World Academy of Sciences (TWAS) Prize for Public Understanding of Science; the World Intellectual Property Organization (WIPO) Gold Medal for best invention; Outstanding Arab Scholar, Kuwait; and the Khwarizmi International Award, Iran. He has 250 publications, 12 books, 20 patents, and several marketed pharmaceutical products to his credit. He continues to lead research projects on developing new therapies for liver, skin disorders, and cancer. Dr. Badria was listed among the world’s top 2% of scientists in medicinal and biomolecular chemistry in 2019 and 2020. He is a member of the Arab Development Fund, Kuwait; International Cell Research Organization–United Nations Educational, Scientific and Cultural Organization (ICRO–UNESCO), Chile; and UNESCO Biotechnology France",institutionString:"Mansoura University",institution:{name:"Mansoura University",country:{name:"Egypt"}}},{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",biography:"Dr. Singh received a BPharm (2003) and MPharm (2005) from Panjab University, Chandigarh, India, and a Ph.D. (2013) from Punjab Technical University (PTU), Jalandhar, India. He has more than sixteen years of teaching experience and has supervised numerous postgraduate and Ph.D. students. He has to his credit more than seventy papers in SCI- and SCOPUS-indexed journals, fifty-five conference proceedings, four books, six Best Paper Awards, and five projects from different government agencies. He is currently an editorial board member of eight international journals and a reviewer for more than fifty scientific journals. He received Top Reviewer and Excellent Peer Reviewer Awards from Publons in 2016 and 2017, respectively. He is also on the panel of The International Reviewer for reviewing research proposals for grants from the Royal Society. He also serves as a Publons Academy mentor and Bentham brand ambassador.",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",country:{name:"India"}}},{id:"142388",title:"Dr.",name:"Thiago",middleName:"Gomes",surname:"Gomes Heck",slug:"thiago-gomes-heck",fullName:"Thiago Gomes Heck",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/142388/images/7259_n.jpg",biography:null,institutionString:null,institution:{name:"Universidade Regional do Noroeste do Estado do Rio Grande do Sul",country:{name:"Brazil"}}},{id:"336273",title:"Assistant Prof.",name:"Janja",middleName:null,surname:"Zupan",slug:"janja-zupan",fullName:"Janja Zupan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/336273/images/14853_n.jpeg",biography:"Janja Zupan graduated in 2005 at the Department of Clinical Biochemistry (superviser prof. dr. Janja Marc) in the field of genetics of osteoporosis. Since November 2009 she is working as a Teaching Assistant at the Faculty of Pharmacy, Department of Clinical Biochemistry. In 2011 she completed part of her research and PhD work at Institute of Genetics and Molecular Medicine, University of Edinburgh. She finished her PhD entitled The influence of the proinflammatory cytokines on the RANK/RANKL/OPG in bone tissue of osteoporotic and osteoarthritic patients in 2012. From 2014-2016 she worked at the Institute of Biomedical Sciences, University of Aberdeen as a postdoctoral research fellow on UK Arthritis research project where she gained knowledge in mesenchymal stem cells and regenerative medicine. She returned back to University of Ljubljana, Faculty of Pharmacy in 2016. She is currently leading project entitled Mesenchymal stem cells-the keepers of tissue endogenous regenerative capacity facing up to aging of the musculoskeletal system funded by Slovenian Research Agency.",institutionString:null,institution:{name:"University of Ljubljana",country:{name:"Slovenia"}}},{id:"357453",title:"Dr.",name:"Radheshyam",middleName:null,surname:"Maurya",slug:"radheshyam-maurya",fullName:"Radheshyam Maurya",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/357453/images/16535_n.jpg",biography:null,institutionString:null,institution:{name:"University of Hyderabad",country:{name:"India"}}},{id:"418340",title:"Dr.",name:"Jyotirmoi",middleName:null,surname:"Aich",slug:"jyotirmoi-aich",fullName:"Jyotirmoi Aich",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038Ugi5QAC/Profile_Picture_2022-04-15T07:48:28.png",biography:"Biotechnologist with 15 years of research including 6 years of teaching experience. Demonstrated record of scientific achievements through consistent publication record (H index = 13, with 874 citations) in high impact journals such as Nature Communications, Oncotarget, Annals of Oncology, PNAS, and AJRCCM, etc. Strong research professional with a post-doctorate from ACTREC where I gained experimental oncology experience in clinical settings and a doctorate from IGIB where I gained expertise in asthma pathophysiology. A well-trained biotechnologist with diverse experience on the bench across different research themes ranging from asthma to cancer and other infectious diseases. An individual with a strong commitment and innovative mindset. Have the ability to work on diverse projects such as regenerative and molecular medicine with an overall mindset of improving healthcare.",institutionString:"DY Patil Deemed to Be University",institution:null},{id:"349288",title:"Prof.",name:"Soumya",middleName:null,surname:"Basu",slug:"soumya-basu",fullName:"Soumya Basu",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035QxIDQA0/Profile_Picture_2022-04-15T07:47:01.jpg",biography:"Soumya Basu, Ph.D., is currently working as an Associate Professor at Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India. With 16+ years of trans-disciplinary research experience in Drug Design, development, and pre-clinical validation; 20+ research article publications in journals of repute, 9+ years of teaching experience, trained with cross-disciplinary education, Dr. Basu is a life-long learner and always thrives for new challenges.\r\nHer research area is the design and synthesis of small molecule partial agonists of PPAR-γ in lung cancer. She is also using artificial intelligence and deep learning methods to understand the exosomal miRNA’s role in cancer metastasis. Dr. Basu is the recipient of many awards including the Early Career Research Award from the Department of Science and Technology, Govt. of India. She is a reviewer of many journals like Molecular Biology Reports, Frontiers in Oncology, RSC Advances, PLOS ONE, Journal of Biomolecular Structure & Dynamics, Journal of Molecular Graphics and Modelling, etc. She has edited and authored/co-authored 21 journal papers, 3 book chapters, and 15 abstracts. She is a Board of Studies member at her university. She is a life member of 'The Cytometry Society”-in India and 'All India Cell Biology Society”- in India.",institutionString:"Dr. D.Y. Patil Vidyapeeth, Pune",institution:{name:"Dr. D.Y. Patil Vidyapeeth, Pune",country:{name:"India"}}},{id:"354817",title:"Dr.",name:"Anubhab",middleName:null,surname:"Mukherjee",slug:"anubhab-mukherjee",fullName:"Anubhab Mukherjee",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0033Y0000365PbRQAU/ProfilePicture%202022-04-15%2005%3A11%3A18.480",biography:"A former member of Laboratory of Nanomedicine, Brigham and Women’s Hospital, Harvard University, Boston, USA, Dr. Anubhab Mukherjee is an ardent votary of science who strives to make an impact in the lives of those afflicted with cancer and other chronic/acute ailments. He completed his Ph.D. from CSIR-Indian Institute of Chemical Technology, Hyderabad, India, having been skilled with RNAi, liposomal drug delivery, preclinical cell and animal studies. He pursued post-doctoral research at College of Pharmacy, Health Science Center, Texas A & M University and was involved in another postdoctoral research at Department of Translational Neurosciences and Neurotherapeutics, John Wayne Cancer Institute, Santa Monica, California. In 2015, he worked in Harvard-MIT Health Sciences & Technology as a visiting scientist. He has substantial experience in nanotechnology-based formulation development and successfully served various Indian organizations to develop pharmaceuticals and nutraceutical products. He is an inventor in many US patents and an author in many peer-reviewed articles, book chapters and books published in various media of international repute. Dr. Mukherjee is currently serving as Principal Scientist, R&D at Esperer Onco Nutrition (EON) Pvt. Ltd. and heads the Hyderabad R&D center of the organization.",institutionString:"Esperer Onco Nutrition Pvt Ltd.",institution:null},{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/319365/images/system/319365.png",biography:"Manash K. Paul is a Principal Investigator and Scientist at the University of California Los Angeles. He has contributed significantly to the fields of stem cell biology, regenerative medicine, and lung cancer. His research focuses on various signaling processes involved in maintaining stem cell homeostasis during the injury-repair process, deciphering lung stem cell niche, pulmonary disease modeling, immuno-oncology, and drug discovery. He is currently investigating the role of extracellular vesicles in premalignant lung cell migration and detecting the metastatic phenotype of lung cancer via machine-learning-based analyses of exosomal signatures. Dr. Paul has published in more than fifty peer-reviewed international journals and is highly cited. He is the recipient of many awards, including the UCLA Vice Chancellor’s award, a senior member of the Institute of Electrical and Electronics Engineers (IEEE), and an editorial board member for several international journals.",institutionString:"University of California Los Angeles",institution:{name:"University of California Los Angeles",country:{name:"United States of America"}}},{id:"311457",title:"Dr.",name:"Júlia",middleName:null,surname:"Scherer Santos",slug:"julia-scherer-santos",fullName:"Júlia Scherer Santos",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/311457/images/system/311457.jpg",biography:"Dr. Júlia Scherer Santos works in the areas of cosmetology, nanotechnology, pharmaceutical technology, beauty, and aesthetics. Dr. Santos also has experience as a professor of graduate courses. Graduated in Pharmacy, specialization in Cosmetology and Cosmeceuticals applied to aesthetics, specialization in Aesthetic and Cosmetic Health, and a doctorate in Pharmaceutical Nanotechnology. Teaching experience in Pharmacy and Aesthetics and Cosmetics courses. She works mainly on the following subjects: nanotechnology, cosmetology, pharmaceutical technology, aesthetics.",institutionString:"Universidade Federal de Juiz de Fora",institution:{name:"Universidade Federal de Juiz de Fora",country:{name:"Brazil"}}},{id:"219081",title:"Dr.",name:"Abdulsamed",middleName:null,surname:"Kükürt",slug:"abdulsamed-kukurt",fullName:"Abdulsamed Kükürt",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/219081/images/system/219081.png",biography:"Dr. Kükürt graduated from Uludağ University in Turkey. He started his academic career as a Research Assistant in the Department of Biochemistry at Kafkas University. In 2019, he completed his Ph.D. program in the Department of Biochemistry at the Institute of Health Sciences. He is currently working at the Department of Biochemistry, Kafkas University. He has 27 published research articles in academic journals, 11 book chapters, and 37 papers. He took part in 10 academic projects. He served as a reviewer for many articles. He still serves as a member of the review board in many academic journals. He is currently working on the protective activity of phenolic compounds in disorders associated with oxidative stress and inflammation.",institutionString:null,institution:{name:"Kafkas University",country:{name:"Turkey"}}},{id:"178366",title:"Dr.",name:"Volkan",middleName:null,surname:"Gelen",slug:"volkan-gelen",fullName:"Volkan Gelen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/178366/images/system/178366.jpg",biography:"Volkan Gelen is a Physiology specialist who received his veterinary degree from Kafkas University in 2011. Between 2011-2015, he worked as an assistant at Atatürk University, Faculty of Veterinary Medicine, Department of Physiology. In 2016, he joined Kafkas University, Faculty of Veterinary Medicine, Department of Physiology as an assistant professor. Dr. Gelen has been engaged in various academic activities at Kafkas University since 2016. There he completed 5 projects and has 3 ongoing projects. He has 60 articles published in scientific journals and 20 poster presentations in scientific congresses. His research interests include physiology, endocrine system, cancer, diabetes, cardiovascular system diseases, and isolated organ bath system studies.",institutionString:"Kafkas University",institution:{name:"Kafkas University",country:{name:"Turkey"}}},{id:"418963",title:"Dr.",name:"Augustine Ododo",middleName:"Augustine",surname:"Osagie",slug:"augustine-ododo-osagie",fullName:"Augustine Ododo Osagie",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/418963/images/16900_n.jpg",biography:"Born into the family of Osagie, a prince of the Benin Kingdom. I am currently an academic in the Department of Medical Biochemistry, University of Benin. Part of the duties are to teach undergraduate students and conduct academic research.",institutionString:null,institution:{name:"University of Benin",country:{name:"Nigeria"}}},{id:"192992",title:"Prof.",name:"Shagufta",middleName:null,surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/192992/images/system/192992.png",biography:"Prof. Shagufta Perveen is a Distinguish Professor in the Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia. Dr. Perveen has acted as the principal investigator of major research projects funded by the research unit of King Saud University. She has more than ninety original research papers in peer-reviewed journals of international repute to her credit. She is a fellow member of the Royal Society of Chemistry UK and the American Chemical Society of the United States.",institutionString:"King Saud University",institution:{name:"King Saud University",country:{name:"Saudi Arabia"}}},{id:"49848",title:"Dr.",name:"Wen-Long",middleName:null,surname:"Hu",slug:"wen-long-hu",fullName:"Wen-Long Hu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49848/images/system/49848.jpg",biography:"Wen-Long Hu is Chief of the Division of Acupuncture, Department of Chinese Medicine at Kaohsiung Chang Gung Memorial Hospital, as well as an adjunct associate professor at Fooyin University and Kaohsiung Medical University. Wen-Long is President of Taiwan Traditional Chinese Medicine Medical Association. He has 28 years of experience in clinical practice in laser acupuncture therapy and 34 years in acupuncture. He is an invited speaker for lectures and workshops in laser acupuncture at many symposiums held by medical associations. He owns the patent for herbal preparation and producing, and for the supercritical fluid-treated needle. Dr. Hu has published three books, 12 book chapters, and more than 30 papers in reputed journals, besides serving as an editorial board member of repute.",institutionString:"Kaohsiung Chang Gung Memorial Hospital",institution:{name:"Kaohsiung Chang Gung Memorial Hospital",country:{name:"Taiwan"}}},{id:"298472",title:"Prof.",name:"Andrey V.",middleName:null,surname:"Grechko",slug:"andrey-v.-grechko",fullName:"Andrey V. Grechko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/298472/images/system/298472.png",biography:"Andrey Vyacheslavovich Grechko, Ph.D., Professor, is a Corresponding Member of the Russian Academy of Sciences. He graduated from the Semashko Moscow Medical Institute (Semashko National Research Institute of Public Health) with a degree in Medicine (1998), the Clinical Department of Dermatovenerology (2000), and received a second higher education in Psychology (2009). Professor A.V. Grechko held the position of Сhief Physician of the Central Clinical Hospital in Moscow. He worked as a professor at the faculty and was engaged in scientific research at the Medical University. Starting in 2013, he has been the initiator of the creation of the Federal Scientific and Clinical Center for Intensive Care and Rehabilitology, Moscow, Russian Federation, where he also serves as Director since 2015. He has many years of experience in research and teaching in various fields of medicine, is an author/co-author of more than 200 scientific publications, 13 patents, 15 medical books/chapters, including Chapter in Book «Metabolomics», IntechOpen, 2020 «Metabolomic Discovery of Microbiota Dysfunction as the Cause of Pathology».",institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null},{id:"199461",title:"Prof.",name:"Natalia V.",middleName:null,surname:"Beloborodova",slug:"natalia-v.-beloborodova",fullName:"Natalia V. Beloborodova",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/199461/images/system/199461.jpg",biography:'Natalia Vladimirovna Beloborodova was educated at the Pirogov Russian National Research Medical University, with a degree in pediatrics in 1980, a Ph.D. in 1987, and a specialization in Clinical Microbiology from First Moscow State Medical University in 2004. She has been a Professor since 1996. Currently, she is the Head of the Laboratory of Metabolism, a division of the Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russian Federation. N.V. Beloborodova has many years of clinical experience in the field of intensive care and surgery. She studies infectious complications and sepsis. She initiated a series of interdisciplinary clinical and experimental studies based on the concept of integrating human metabolism and its microbiota. Her scientific achievements are widely known: she is the recipient of the Marie E. Coates Award \\"Best lecturer-scientist\\" Gustafsson Fund, Karolinska Institutes, Stockholm, Sweden, and the International Sepsis Forum Award, Pasteur Institute, Paris, France (2014), etc. Professor N.V. Beloborodova wrote 210 papers, five books, 10 chapters and has edited four books.',institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null},{id:"354260",title:"Ph.D.",name:"Tércio Elyan",middleName:"Azevedo",surname:"Azevedo Martins",slug:"tercio-elyan-azevedo-martins",fullName:"Tércio Elyan Azevedo Martins",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/354260/images/16241_n.jpg",biography:"Graduated in Pharmacy from the Federal University of Ceará with the modality in Industrial Pharmacy, Specialist in Production and Control of Medicines from the University of São Paulo (USP), Master in Pharmaceuticals and Medicines from the University of São Paulo (USP) and Doctor of Science in the program of Pharmaceuticals and Medicines by the University of São Paulo. Professor at Universidade Paulista (UNIP) in the areas of chemistry, cosmetology and trichology. Assistant Coordinator of the Higher Course in Aesthetic and Cosmetic Technology at Universidade Paulista Campus Chácara Santo Antônio. Experience in the Pharmacy area, with emphasis on Pharmacotechnics, Pharmaceutical Technology, Research and Development of Cosmetics, acting mainly on topics such as cosmetology, antioxidant activity, aesthetics, photoprotection, cyclodextrin and thermal analysis.",institutionString:null,institution:{name:"University of Sao Paulo",country:{name:"Brazil"}}},{id:"334285",title:"Ph.D. Student",name:"Sameer",middleName:"Kumar",surname:"Jagirdar",slug:"sameer-jagirdar",fullName:"Sameer Jagirdar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334285/images/14691_n.jpg",biography:"I\\'m a graduate student at the center for biosystems science and engineering at the Indian Institute of Science, Bangalore, India. I am interested in studying host-pathogen interactions at the biomaterial interface.",institutionString:null,institution:{name:"Indian Institute of Science Bangalore",country:{name:"India"}}},{id:"329248",title:"Dr.",name:"Md. Faheem",middleName:null,surname:"Haider",slug:"md.-faheem-haider",fullName:"Md. Faheem Haider",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329248/images/system/329248.jpg",biography:"Dr. Md. Faheem Haider completed his BPharm in 2012 at Integral University, Lucknow, India. In 2014, he completed his MPharm with specialization in Pharmaceutics at Babasaheb Bhimrao Ambedkar University, Lucknow, India. He received his Ph.D. degree from Jamia Hamdard University, New Delhi, India, in 2018. He was selected for the GPAT six times and his best All India Rank was 34. Currently, he is an assistant professor at Integral University. Previously he was an assistant professor at IIMT University, Meerut, India. He has experience teaching DPharm, Pharm.D, BPharm, and MPharm students. He has more than five publications in reputed journals to his credit. Dr. Faheem’s research area is the development and characterization of nanoformulation for the delivery of drugs to various organs.",institutionString:"Integral University",institution:{name:"Integral University",country:{name:"India"}}},{id:"329795",title:"Dr.",name:"Mohd Aftab",middleName:"Aftab",surname:"Siddiqui",slug:"mohd-aftab-siddiqui",fullName:"Mohd Aftab Siddiqui",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329795/images/system/329795.png",biography:"Dr. Mohd Aftab Siddiqui is an assistant professor in the Faculty of Pharmacy, Integral University, Lucknow, India, where he obtained a Ph.D. in Pharmacology in 2020. He also obtained a BPharm and MPharm from the same university in 2013 and 2015, respectively. His area of research is the pharmacological screening of herbal drugs/natural products in liver cancer and cardiac diseases. He is a member of many professional bodies and has guided many MPharm and PharmD research projects. Dr. Siddiqui has many national and international publications and one German patent to his credit.",institutionString:"Integral University",institution:null}]}},subseries:{item:{id:"3",type:"subseries",title:"Bacterial Infectious Diseases",keywords:"Antibiotics, Biofilm, Antibiotic Resistance, Host-microbiota Relationship, Treatment, Diagnostic Tools",scope:"