Abstract
There are many recent interests on cooperative communication (CC) in wireless networks. Despite the large capacity gain of CC in small wireless networks, CC can result in severe interference in large networks and even degraded throughput. The aim of this chapter is to concurrently exploit multi-radio and multi-channel (MRMC) and CC technique to combat co-channel interference and improve the performance of multi-hop wireless network. Our proposed solution concurrently considers cooperative routing, channel assignment, and relay selection and takes advantage of both MRMC technique and spatial diversity to improve the throughput. We propose two important metrics, contention-aware channel utilization routing metric (CACU) to capture the interference cost from both direct and cooperative transmission, and traffic aware channel condition metric (TACC) to evaluate the channel load condition. Based on these metrics, we propose three algorithms for interference-aware cooperative routing, local channel adjustment, and local path and relay adaptation, respectively, to ensure high-performance communications in dynamic wireless networks. Our algorithms are fully distributed and can effectively mitigate co-channel interference and achieve cooperative diversity gain. To our best knowledge, this is the first distributed solution that supports CC in MRMC networks. Our performance studies demonstrate that our algorithms can significantly increase the aggregate throughput.
Keywords
- cooperative routing
- relay assignment
- channel assignment
1. Introduction
As an emerging technique for future wireless networks, cooperative communication (CC) has been proposed to take advantage of the broadcast nature of wireless communications and spatial diversity to improve the network performance [1, 2]. More specifically, relay nodes have been exploited to forward the replica of packets from the sources, and the destinations can combine multiple copies of the signal to better decode the original message. Taking advantage of spatial and multiuser diversities, CC can efficiently improve the network performance.
Despite the significant performance gain in small networks, recent research results show through both analysis and simulation that the use of cooperative relays (CRs) in large‐scale wireless networks can lead to severe interference, which in turn results in higher packet loss and consequent throughput reduction [3–5]. Although relay nodes may help to increase the throughput of a single source and destination pair, a cooperative transmission (CT) often involves three transmission links (i.e., from the source to the relay, from the source to the destination, and from the relay to the destination). The increase of transmission links in a neighborhood leads to higher interference, thus reducing the network‐wise performance [6]. When the interference is severe, the performance can be even worse than without using cooperative transmissions. It is critical to reduce the interference for CC to work efficiently in a practical wireless network, especially when the network scale is large.
Another recent technique, multi‐radio multi‐channel (MRMC), has been exploited to alleviate the co‐channel interference by supporting concurrent transmissions over orthogonal channels to improve the network capacity [7–9]. With the growth of modern wireless technologies, the cost of radio chips including those supporting 802.11 [10, 11] constantly reduces and more devices will be equipped with multiple radios.
In this chapter, we exploit MRMC to alleviate the interference in a network with cooperative communications for potentially much higher network performance. In cooperative networks, a routing path can be formed with a combination of cooperative transmissions and direct transmissions (DTs), and we call this kind of routing
First, the coupled cooperative routing problem and relay selection problem should be solved together. Different from conventional routing in MRMC networks where every node just needs to find the next‐hop node to forward packets toward the destination, with cooperative routing, a neighbor of the transmitter not only needs to serve as a multi‐hop transmission relay (MR) for packet forwarding but may also act as a cooperative relay (CR) of the transmitter for cooperative transmission. The capability for a node or a radio interface to serve as two different types of relay makes multi‐radio cooperative routing and relay node assignment inter‐dependent.
Second, there is a trade‐off between alleviating co‐channel interference and exploiting cooperative diversity. In single‐radio single‐channel cooperative wireless networks, one‐hop neighbors of a transmitter are candidate MR or CR nodes. A transmitter node can determine to use direct transmission and find an MR or cooperative transmission and find a CR to maximize the cooperative transmission gain. Although MRMC can largely relieve the co‐channel interference, only the node, which tunes to the same channel as that of the transmitter, can act as an MR or a CR, which reduces the number of candidate relay nodes. This makes it important and challenging to consider radio‐channel assignment along with cooperative communications.
Third, the use of cooperative relays in cooperative communications makes the network interference condition more complicated than that in a network with only direct transmissions, and it desires careful design to reduce the interference along with the finding of the cooperative routing path and channel assignment in MRMC cooperative networks.
In summary, there is an inter‐dependence among cooperative routing, channel assignment, and relay selection. To enable cooperative communications in MRMC wireless networks and fulfill the complete potential of both techniques, the three problems need to be systematically solved together. A few recent studies [21–25] have begun to investigate interference‐aware cooperative routing algorithms to solve the challenge problems. This chapter presents a practical and distributed solution to effectively exploit both MRMC technique and cooperative diversity to ensure higher performance of a multi‐hop network with dynamic channel conditions and traffic flows. In this design, the cooperative routing at the network layer, channel assignment at the MAC layer, and cooperative communication at the physical layer will work interactively and seamlessly together. The main techniques are as follows:
Contention‐aware channel utilization metric (CACU): this captures the interference cost from both direct transmission and cooperative transmission. Using CACU as the key routing metric, an interference‐aware cooperative routing algorithm is proposed.
Traffic‐aware channel condition metric (TACC): it evaluates the channel load condition and triggers the channel‐adjustment procedure to relieve co‐channel interference. Based on TACC, a feasible channel selection algorithm is proposed to ensure active flows (involving either direct transmission or cooperative transmission) to have continuous data transmissions during the channel‐adjustment process. To further prevent the network from being instable due to channel adjustment, a chain‐puzzle detection sub‐algorithm is proposed.
Local path and relay adjustment algorithm: it further enhances the performance of active flows after channel adjustment.
The remaining of this chapter is organized as follows. We introduce our system model in Section 2. Motivation example and solution overview are presented in Section 3. We present the detailed algorithms on cooperative routing, channel assignment, and local path and relay adjustment in Sections 4–6, respectively. The complete solution is presented in Section 7. Simulation results are given in Section 8. We conclude the work in Section 9.
2. System model
We consider a multi‐hop cooperative wireless network where a node can be equipped with multiple radios. We call this network MRMC cooperative wireless network. There are
There are two transmission modes between any two nodes in the network considered, direct transmission (DT) and cooperative transmission (CT), as shown in Figure 1. Direct transmission mode is widely employed in current wireless networks, where a source node transmits its signal directly to a destination node. The achievable rate of
A cooperative transmission involves three nodes and three links. Specifically, a collaborative neighbor
In the above equation,
Relay nodes can be categorized into two types based on their functions: a cooperative relay (CR), which operates at the physical layer for cooperative transmission (i.e., node
A cooperative routing path could be a combination of cooperative transmissions and direct transmissions. For example, flow
3. Motivation example and solution overview
To help understand the significance of our problem, we first give a motivation example to show that only channel assignment and cooperative routing cannot achieve the good performance. Expired from the example, we give an overview on our solution.
Figure 3 is an MRMC cooperative wireless network consisting of 14 nodes. The small solid dots in each node denote the radios. There are three orthogonal channels available, denoted by
Initially, there are two flows with their routing paths
In Figure 3b, a new flow
With the above‐selected routes, we apply channel assignment to improve the network performance. In Figure 3c, we change the channel of node
Based on the above channel assignment, transmitter nodes would further check whether there exists a better relay node which can be utilized to obtain a better cooperative capacity gain. As shown in Figure 3d, node
Existing studies have demonstrated that the joint optimization problem of routing and channel assignment in multi‐radio multi‐channel wireless network is NP [27], the joint optimization problem of relay selection and cooperative routing is also NP [19]. Compared to the above problems where each considers only two issues, our problem considers three issues and can be generally proven to be NP‐hard. To solve the problem, we propose a solution framework which is formed with three important components. In the following sections, we introduce the detailed algorithms for each part.
First, to obtain cooperative gain and reduce co‐channel interference, every node periodically calculates the routing metric of CACU (contention‐aware channel utilization). Based on this metric, when new flow arrives, an interference‐aware cooperative routing algorithm is run to find the cooperative routing path and select MR and CR nodes along the path.
Second, to adapt to dynamic traffic changes, every node periodically measures the channel condition and calculates TACC metric. When a node's working channel is detected to be overloaded according to the TACC value, a dynamic channel‐adjustment algorithm is triggered to switch the highly loaded channel to a lightly loaded one to relieve the co‐channel interference.
Third, as channel adjustment changes the network topology, a local path segment and relay adjustment algorithm are followed by switching the flow traffic to a new path segment locally according to the new topology.
4. Cooperative route
To quantify the available capacity of a link, we first introduce a new routing metric. Based on the metric, we propose an interference‐aware cooperative routing algorithm to better exploit the benefit of cooperative diversity.
There are several existing routing metrics proposed for multi‐hop wireless networks. Hop count is a basic routing metric widely used. To further consider the wireless channel condition and interference, several improved metrics are also proposed, including ETX, WCETT, MIC, CCM [27], and MIPC [28]. The above routing metrics target for one‐to‐one direct transmissions between two nodes in conventional wireless networks. In cooperative wireless networks, the routing metric should consider multiple‐to‐one cooperative transmissions. As a cooperative transmission involves three links, it may cause more interference in the network, thus reducing the transmission performance. To facilitate the finding of more efficient cooperative routing path for higher throughput, the routing metric should concurrently consider the transmission mode selection and interference impact. To characterize radio transmissions in the presence of interference and identify the co‐channel interference links of a given link, two receiver‐driven interference models are proposed in the literature, the physical model [29] and the protocol model [30].
Our design does not depend on a specific model used. For the convenience of presentation and design, we simply apply a protocol model to illustrate our algorithms in this chapter. We consider link
If a node
where
where
Therefore, the available capacity of a link (
where
where
In this chapter, we modified ad hoc on‐demand distance vector (AODV) routing to implement our distributed interference‐aware cooperative routing algorithm to establish the maximum capacity path while considering the flow routing and relay selection, as shown in Algorithm 1. The derived CACU metric is applied to construct the cooperative path. When a source has data to transmit but does not have a path to the destination, it broadcasts a route request (RREQ) for that destination. When an intermediate node receives RREQ, if it is the destination or has a current route to the destination, it generates a route reply (RREP). Otherwise, the node needs to rebroadcast the RREQ with a set of parameters inserted: the CACU metric for each of its outgoing link is calculated based on Eq. (7), and the maximum capacity from the source to itself is calculated based on Algorithm 1 in Figure 4.
5. Channel adjustment
As shown in the motivation example of Section 3, the channel adjustment can reduce co‐channel interference and thus increase the aggregate throughput. The main function of channel adjustment is to switch one node's working channel from an overloaded one to a lightly loaded one to obtain better throughput. For practical implementation of the channel adjustment in a cooperative wireless network, we need to answer two basic questions: (1) Which channel to switch to? (2) How to keep the network stable and well connected during the channel adjustment?
Before presenting the detailed channel‐adjustment algorithm, we first introduce a traffic‐aware channel condition metric (TACC) to evaluate the channel load condition. The TACC of node
where
When a node finds that the TACC of a working channel exceeds a threshold
where node
We set
Figure 5 shows an example of channel‐adjustment procedure. There are four flows in the network,
Besides considering the condition in Eq. (9) to avoid network instability, to justify the extra channel switching overhead, the gains in terms of TACC should be larger than a given threshold
where
Obviously, to obtain a positive benefit of channel switching,
In an MRMC cooperative network, two nodes may have more than one pair of radios connected. If nodes
Cooperative transmission may be more prone to the chain‐puzzle problem. Figure 6 gives two examples to illustrate the chain‐puzzle problem under direct transmission and cooperative transmission, respectively. In Figure 6a, assume that flow
Chain‐puzzle checking becomes an important issue in channel‐adjustment procedure because chain puzzle may cause a number of practical problems. First, a large number of nodes may be involved in a channel switch when chain puzzle happens, which could result in a high overhead. Second, it is difficult to synchronize the switching action among all nodes involved because the signaling used for negotiation needs to propagate through many hops. In the worst case, this may result in flow transmission interruption. Therefore, before a node switches its working channel, chain puzzle should be checked to identify feasible candidate channel to avoid switching channel sequentially, and maintain the network's stability. To facilitate chain‐puzzle checking, we propose two different connectivity rules according to different transmission modes:
Connectivity Rule 1: if any node pair of a direct transmission link passed by an active flow is originally connected, the node pair should remain connected after the channel switching.
Connectivity Rule 2: if any three nodes in an active cooperative transmission are originally connected, they should remain directly connected under a new channel.
Based on the above two connectivity rules, we propose a local two‐hop chain‐puzzle‐checking sub‐algorithm, as shown in Algorithm 2 of Figure 7. When node
6. Local routing and relay adjustment
After channel adjustment, the network topology may change. To make flow transmissions continuous under the new topology, some flows may need to adapt their path segments, channels, or relays locally.
As shown in Figure 8a, an active flow
7. Completed solution
The complete algorithm of joint cooperative routing, channel adjustment, and relay selection is shown in Algorithm 5 of Figure 10. To handle the dynamic wireless environment, nodes in the network execute the algorithm locally as follows.
When a new flow arrives, the interference‐aware cooperative routing algorithm is applied to find the cooperative routing path with the maximum end‐to‐end available capacity and with the MR and CR relays selected along the path. Every node periodically evaluates the traffic conditions of a channel by calculating the TCAA metric according to Eq. (8) and checking whether its working channel is overloaded. If so, the node first applies Algorithm 3 to identify the feasible channel to switch to. Then, the channel adjustment will be triggered, which is followed by the local path adaptation and relay adjustment through Algorithm 4 for uninterrupted transmissions and better performance.
If each node independently makes a local channel‐adjustment decision, multiple channel‐adjustment requests may be received simultaneously by a node, which either leads to request message collisions or inconsistent requests (if all messages are successfully received). To reduce the chance of simultaneous transmissions of channel‐adjustment messages, we design a channel‐adjustment timer which introduces a random delay before the message sending according to the channel load, and the timer can be set as follows:
From Eq. (13), obviously, the node with a higher channel load, that is, a larger TACC value, has a lower average timer value, thus an earlier chance of adjusting its overloaded channel. When the channel load is high, the data transmissions should be switched from an overloaded channel to a light‐loaded channel. In Algorithm 5, the channel load is measured with the metric TACC and updated when the TACC timer goes off. A smaller TACC timer would allow for more frequent update of the TACC value at high measurement cost, while a larger TACC timer for smaller measurement cost would make the TACC metric less accurate. In this chapter, we set the TACC timer adaptively according to the traffic pattern in the network taking into account the tradeoff between the accuracy of TACC metric and the measurement cost. If the traffic load is high, the TACC timer reduces but remains above a minimum timeout value
8. Simulation
In the simulation, unless otherwise specified, the simulation setting is as follows. Thirty nodes are generated one by one in random locations in a 1000 × 1000 m area. Each new node is ensured to get connected with existing nodes in the network, and the initial channel assignment is done according to [26] to guarantee the connectivity of network to transmit possible flows over multiple hops. A node is equipped with two radio interfaces, and has the maximum transmission range set to 250 m. There are a total of 11 orthogonal channels, and the default number of flows in the network is set as
Although ns‐3 and Omnet++ are widespread simulator, cooperative communication is a physical layer technique, and can be very hard to simulate in ns‐3 and Omnet++ if it is not completely impossible. Following the simulation setup in Refs. [17, 19], we evaluate the performance of our proposed algorithm through extensive simulations using MATLAB. Specifically, following the parameter setting in Ref. [19], we set the bandwidth of each channel to
We evaluate the effectiveness of our algorithms by comparing the results from six different implementation schemes. We implement two different cooperative transmission (CT) schemes. The first is our proposed Algorithm 5, denoted as CT_adjustment. In the second scheme, we apply the cooperative routing algorithm in Algorithm 1 to find the cooperative path, without applying channel adjustment or local path adaptation and relay adjustment, which is denoted as CT_No‐adjustment. We also implement four additional schemes based on direct transmission (DT). The first DT scheme is denoted as DT_No‐adjustment, where we use the available capacity calculated in Eq. (7) as the routing metric and apply Algorithm 1 to find the path with the maximum available capacity for each flow. In the second scheme, denoted as DT_ adjustment, channel and local path segment adjustment in Sections 5 and 6 are applied periodically to obtain better performance. The third and fourth schemes take two different routing metrics proposed in the literature to find the routing path: a HOP scheme, which uses hop count as routing metric and finds the shortest path, and an ETT scheme [27], which captures the packet transmission time in a time unit.
Two metrics are used to evaluate the performance. One is aggregate throughput which is the aggregative throughput of all flows. The other is minimum throughput, which is the minimum of all flows’ throughput. Various factors affect the performance. We perform two set of simulations to analyze the effect of node density and number of orthogonal channel. As follows, we show the simulation results, respectively. With the same topology and flows, we run the six schemes orderly to obtain the two metrics.
8.1. Impact of node density
To investigate how the node density impacts the network performance, we vary the number of nodes
Among all the routing schemes, the aggregate throughput and the minimum throughput increase the fastest under our CT_adjustment. With well‐designed algorithms, our CT_adjustment can more effectively exploit the resources of relay nodes and multiple channels to achieve high cooperative gain when the number of nodes is large. Our CT_adjustment has the largest aggregate throughput and minimum throughput. At the node density 120, the aggregate throughput of our CT_adjustment is 382, 270, 276, 127, 36, and 112% higher than those of HOP, ETT, DT_No‐adjustment, DT‐adjustment, CT_No‐adjustment, and CT‐adjustment, respectively. The minimum throughput of CT_adjustment is 527, 317, 235, 124, 74, and 124% higher than those of HOP, ETT, DT_No‐adjustment, DT‐adjustment, and CT_No‐adjustment, respectively.
Although the performance under CT_No‐adjustment is much better than that under DT_No‐adjustment, the performance under DT_adjustment is better than that under CT_No‐adjustment. As discussed in “Introduction”, under CT_No‐adjustment, although relay nodes can help to increase the capacity of a transmission pair, cooperative transmissions may also cause interference to more network nodes and consequently significant performance degradation. Compared with CT_No‐adjustment, CT adjustment can obtain much larger cooperative transmission gain, which demonstrates the effectiveness of our algorithms in relieving the interference raised by cooperative relays. The performance gain is also attributed to our algorithms for channel adjustment and adaptation of local path segments and relays. By exploiting the MRMC technique, the co‐channel interference is alleviated, which is the key reason for the throughput improvement.
8.2. Impact of the number of orthogonal channel
We vary the number of orthogonal channels from 1 to 15 in the network while setting other parameters to the default values. As shown in Figure 12, the aggregate network throughput and minimum flow throughput achieved by all the routing schemes increase when the number of orthogonal channels increases initially, while remaining the same when the number of channels is large enough for the tested five flows. As each node has only two radio interfaces and the traffic in the network is limited, extra channels cannot be fully utilized. Therefore, increasing the number of channels cannot unboundedly increase the performance of the routing schemes for the tested five flows. We observe that CT_adjustment can exploit available orthogonal channels to increase the throughput and achieve the best performance. When the number of channels is larger than 5, CT_adjustment achieves 251, 228, 180, 22, and 126% higher aggregate throughput compared to HOP, ETT, DT_No‐adjustment, DT‐adjustment, and CT_No‐adjustment, respectively.
9. Conclusion
To fulfill the complete potential of cooperative transmission in MRMC cooperative networks, a solution is proposed where cooperative routing at the network layer, channel assignment at the MAC layer, and cooperative communication at the physical layer can work coherently together to maximize the throughput. The simulation results demonstrate that cooperative communication can achieve a large capacity gain in MRMC wireless networks under well‐designed algorithms. Compared to direct transmission in multi‐radio multi‐channel, cooperative transmission in multi‐radio multi‐channel can increase the aggregate throughput more than 1.8 times when there are at least five orthogonal channels.
Acknowledgments
AcknowledgmentsThis work is supported by the National Natural Science Foundation of China under grant nos.6157218, 61472130, 71331001, and 71420107027, U.S. National Science Foundation under grant no. CNS 1526843, the Science and Technology Projects of Hunan Province (No. 2016JC2075), and the Research Foundation of Education Bureau of Hunan Province, China (No. 16C0047).
References
- 1.
Xie K, Cao J, Wang X, Wen J. Optimal resource allocation for reliable and energy efficient cooperative communications. IEEE Trans. Wireless Commun. 2013; 12 (10):4994–5007. DOI: 10.1109/TWC.2013.081913.121709 - 2.
Xie K, Cao J, Wen J. Optimal relay assignment and power allocation for cooperative communications. J. Comput. Sci. Technol. 2013; 28 (2):343–356. DOI: 10.1007/s11390‐013‐1335‐3 - 3.
Zhu Y, Zheng H. Understanding the impact of interference on collaborative relays. IEEE Trans. Mobile Comput. 2008; 7 (6):724–736. DOI: 10.1109/TMC.2007.70790 - 4.
Yang F, Huang M, Zhao M, Zhang S, Zhou W. Cooperative strategies for wireless relay networks with cochannel interference over time‐correlated fading channels. IEEE Trans. Veh. Technol. 2013; 62 (6):3392–3408. DOI: 10.1109/TVT.2013.2242911 - 5.
Dehghan M, Ghaderi M, Goeckel D. On the performance of cooperative routing in wireless networks. In: INFOCOM Conf. Comput. Commun. Workshops; 15–19 March 2010; San Diego, CA, New York, NY: IEEE; 2010. pp. 1–5. - 6.
Xie K, Xie K, He S, Zhang D, Wen J, Lloret J. Busy tone based channel access control for cooperative communication. Trans. Emerg. Telecommun. Technol. 2015; 26 (10): 1173–1188. DOI: 10.1002/ett.2856 - 7.
Lin T, Wu K, Yin G. Channel‐hopping scheme and channel diverse routing in static multi‐radio multi‐hop wireless networks. IEEE Trans. Comput. 2015; 64 (1):71–86. DOI: 10.1109/TC.2013.199 - 8.
He S, Zhang D, Xie K, Qiao H, Zhang J. Channel aware opportunistic routing in multi‐radio multi‐channel wireless mesh networks. J. Comput. Sci. Technol. 2014; 39 (3):487–501. DOI:10.1007/s11390‐014‐1444‐7. - 9.
He S, Zhang D, Xie K, Qiao H, Zhang J. A distributed low‐complexity channel assignment for opportunistic routing. China Commun. 2012; 11 :9–22. - 10.
I. W. Group. IEEE Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE Std 802.11-1997, 1997. DOI: 10.1109/IEEESTD.1997.85951 - 11.
I. 802.11a Working Group. Wireless LAN medium access control (MAC) and physical layer (PHY) specifications-Amendment 1: High-speed physical layer in the 5 GHz band. IEEE Std 802.11a-1999, 1999. - 12.
Mansourkiaie F, Ahmed MH. Cooperative routing in wireless networks: a comprehensive survey. IEEE Commun. Surveys Tutor. 2015; 17 (2):604–626. DOI: 10.1109/COMST.2014.2386799 - 13.
Bai Z, Jia J, Wang C, Yuan D. Performance analysis of SNR‐based incremental hybrid decode‐amplify‐forward cooperative relaying protocol. IEEE Trans. Commun. 2015; 63 (6): 2094–2106. DOI: 10.1109/TCOMM.2015.2427166 - 14.
Ding H, Costa DB, Liu W, Ge J. Enhancing cooperative diversity gains in dual‐hop one‐way/two‐way AF relaying systems: a fully opportunistic role selection strategy. IEEE Trans. Veh. Technol. 2015;64(8): 3440–3457. DOI: 10.1109/TVT.2014.2356506 - 15.
Elhawary M, Haas Z. Energy‐efficient protocol for cooperative networks. IEEE/ACM Trans. Netw. 2011; 19 (2):561–574. DOI: 10.1109/TNET.2010.2089803 - 16.
Xu H, Huang L, Qiao C, Zhang Y, Sun Q. Bandwidth power aware cooperative multipath routing for wireless multimedia sensor networks. IEEE Trans. Wireless Commun. 2012; 11 (4):1532–1543. DOI: 10.1109/TWC.2012.020812.111265 - 17.
Guo Y, Duan L, Zhang R. Optimal pricing and load sharing for energy saving with cooperative communications. IEEE Trans. Wireless Commun. 2016; 15 (2):951–964. DOI: 10.1109/TWC.2015.2480771 - 18.
Jayakody DNK, Flanagan MF. A soft decode–compress–forward relaying scheme for cooperative wireless networks. IEEE Trans. Veh. Technol. 2016;65(5):3033–3041. DOI: 10.1109/TVT.2015.2442459 - 19.
Jiang W, Kaiser T, Vinck AJH. A robust opportunistic relaying strategy for co‐operative wireless communications. IEEE Trans. Wireless Commun. 2016; 15 (4):2642–2655. DOI: 10.1109/TWC.2015.2506574 - 20.
Nazari B, Jamalipour A. Contract‐auction based distributed resource allocation for cooperative communications. IET Commun. 2016;10(9):1087–1095. DOI: 10.1049/iet‐com.2015.0764 - 21.
Xie K, Wang X, Liu X, Wen J, Cao J. Interference‐aware cooperative communication in multi‐radio multi‐channel wireless networks. IEEE Trans. Comput. 2016; 65 (5):1528–1542. DOI: 10.1109/TC.2015.2448089 - 22.
Xie K, Wang X, Wen J, Cao J. Cooperative routing with relay assignment in multi‐radio multihop wireless networks. IEEE/ACM Trans. Netw. 2016; 24 (2):859–872. DOI: 10.1109/TC.2015.2448089 - 23.
Xie K, Li H, Wang X, He S, Wen J, Guizani M. Joint cooperative routing and channel assignment in multi‐flow multi‐hop wireless networks. In: IWCMC; 4–8 August. 2014; Nicosia. New York, NY: IEEE; 2014, p. 1188–1193. - 24.
Qiao H, Zhang D, Xie K, Zhang J, He S. Power-bandwidth aware cooperative routing in multi-radio multi-channel wireless network. In: IEEE ISPA; 23-26 Aug; Tianjin China. New York, NY: IEEE; 2016, pp. 1342–1349 - 25.
Qiao H, Zhang D, Xie K, Zhang J, He S. A distributed joint cooperative routing and channel assignment in multi‐radio wireless mesh network. In: ICA3PP; 18–20 November 2015; Zhangjiajie China. Springer Verlag; 2015, pp. 552–566. - 26.
Raniwala A, Gopalan K, Chiueh T‐C. Centralized channel assignment and routing algorithms for multi‐channel wireless mesh networks. ACM SIGMOBILE Mobile Comput. Commun. Rev. 2004; 8 (2):50–65. DOI: 10.1145/997122.997130 - 27.
Wu H, Yang F, Tan K, Chen J, Zhang Q, Zhang Z. Distributed channel assignment and routing in multiradio multichannel multihop wireless networks. IEEE J. Sel. Areas Commun. 2006; 24 (11): 1972–1983. DOI: 10.1109/JSAC.2006.881638 - 28.
He S, Xie K, Xie K, Li Z, Xu C. Interference-aware multi-source transmission. In: IEEE ISPA; 23-26 Aug; Tianjin China. New York, NY: IEEE; 2016, pp. 1233–1240 - 29.
Gupta P, Kumar P. The capacity of wireless networks. IEEE Trans. Inf. Theory. 2000; 46 (2):388–404. DOI: 10.1109/18.825799 - 30.
Ma H, AlAzemi H, Roy S. A stochastic model for optimizing physical carrier sensing and spatial reuse in wireless ad hoc networks. In: IEEE Int. Conf. Mobile Adhoc Sensor Syst. Conf.; 7 November, 2005; Washington, DC. New York, NY: IEEE; 2005, pp. 615–622. - 31.
Chen L, Zhang Q, Li M, Jia W. Joint topology control and routing in IEEE 802.11‐based multiradio multichannel mesh networks. IEEE Trans. Veh. Technol. 2007; 56(5): 3123–3136. DOI: 10.1109/TVT.2007.900509 - 32.
Middleton G, Aazhang B. Relay selection for joint scheduling, routing and power allocation in multiflow wireless networks. In: 4th Int. Symp. Commun., Control Signal Process.; 3–5 March 2010; Limassol. New York, NY: IEEE; 2010, pp. 1–4.