Main types of nanomedicines that are currently under investigation for the treatment of CNS tumors.
\\n\\n
More than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\\n\\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\\n\\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\\n\\nAdditionally, each book published by IntechOpen contains original content and research findings.
\\n\\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:{caption:"IntechOpen Maintains",originalUrl:"/media/original/113"}},components:[{type:"htmlEditorComponent",content:'
Simba Information has released its Open Access Book Publishing 2020 - 2024 report and has again identified IntechOpen as the world’s largest Open Access book publisher by title count.
\n\nSimba Information is a leading provider for market intelligence and forecasts in the media and publishing industry. The report, published every year, provides an overview and financial outlook for the global professional e-book publishing market.
\n\nIntechOpen, De Gruyter, and Frontiers are the largest OA book publishers by title count, with IntechOpen coming in at first place with 5,101 OA books published, a good 1,782 titles ahead of the nearest competitor.
\n\nSince the first Open Access Book Publishing report published in 2016, IntechOpen has held the top stop each year.
\n\n\n\nMore than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\n\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\n\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\n\nAdditionally, each book published by IntechOpen contains original content and research findings.
\n\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\n\n\n\n
\n'}],latestNews:[{slug:"intechopen-supports-asapbio-s-new-initiative-publish-your-reviews-20220729",title:"IntechOpen Supports ASAPbio’s New Initiative Publish Your Reviews"},{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"}]},book:{item:{type:"book",id:"5980",leadTitle:null,fullTitle:"New Pedagogical Challenges in the 21st Century - Contributions of Research in Education",title:"New Pedagogical Challenges in the 21st Century",subtitle:"Contributions of Research in Education",reviewType:"peer-reviewed",abstract:"The societies of the twenty-first century are subject to social, cultural, political, and economic changes. In this context, the school is asked to educate the future citizens in the present. To respond to this kaleidoscopic reality, the school is immersed in a pedagogical revolution. In this book, the reader will find a selection of avant-garde research works from different disciplines and contexts, which have their epicenter in the school and in the faculties of education. New issues in pedagogy and education, and new roles of teachers and students, are discussed in a global and diverse context. And new methodological and formative proposals are also proposed to build the ideal school and the ideal teacher, from the initial and continuous teacher training.",isbn:"978-1-78923-381-0",printIsbn:"978-1-78923-380-3",pdfIsbn:"978-1-83881-262-1",doi:"10.5772/66552",price:139,priceEur:155,priceUsd:179,slug:"new-pedagogical-challenges-in-the-21st-century-contributions-of-research-in-education",numberOfPages:316,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"3023022a959e4709cccf3d89270f33f8",bookSignature:"Olga Bernad Cavero and Núria Llevot-Calvet",publishedDate:"July 4th 2018",coverURL:"https://cdn.intechopen.com/books/images_new/5980.jpg",numberOfDownloads:28041,numberOfWosCitations:18,numberOfCrossrefCitations:43,numberOfCrossrefCitationsByBook:2,numberOfDimensionsCitations:54,numberOfDimensionsCitationsByBook:2,hasAltmetrics:1,numberOfTotalCitations:115,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"November 15th 2016",dateEndSecondStepPublish:"December 6th 2016",dateEndThirdStepPublish:"September 16th 2017",dateEndFourthStepPublish:"October 16th 2017",dateEndFifthStepPublish:"December 16th 2017",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"193391",title:"Ph.D.",name:"Olga",middleName:null,surname:"Bernad-Cavero",slug:"olga-bernad-cavero",fullName:"Olga Bernad-Cavero",profilePictureURL:"https://mts.intechopen.com/storage/users/193391/images/7552_n.png",biography:"Olga Bernad Cavero is an adjunct lecturer at the University of Lleida and she has Ph.D. in Sociology of Education. She obtained her Bachelor of Psychopedagogy degree in Open University of Catalonia. Her lines of research are cultural and religious diversity, intercultural education, equal opportunities, school-family relationship, and involvement of families of immigrant and minority origins. In recent years, she has been participating in several research projects on these issues and done research stays in Quebec and Senegal. She has published several articles in the following journals: Civitas Educationis, Orientamenti pedagogici, Opción: Revista de Ciencias Humanas y Sociales, Revista Electrónica Interuniversitaria de Formación del Profesorado, Revista Internacional de Estudios Migratorios, Revista de Sociología de la Educación (RASE), and Ehquidad. She has also published chapters of books and books, in the following editorials: Peter Lang, Pirámide, Tecnos (Anaya), and Milenio.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"University of Lleida",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"193390",title:"Ph.D.",name:"Núria",middleName:null,surname:"Llevot-Calvet",slug:"nuria-llevot-calvet",fullName:"Núria Llevot-Calvet",profilePictureURL:"https://mts.intechopen.com/storage/users/193390/images/7553_n.png",biography:"Núria Llevot-Calvet is an associate professor (Serra Hunter Program) at the University of Lleida and has Ph.D. in Psychopedagogy. Member of different research institutes, her research focuses on education and intercultural mediation, cultural and religious diversity, rural school, and Europe-Africa cooperation. In recent years, she has been directing various research projects on these issues and done research stays in Quebec, France, Senegal, and Italy. She is the author of several books, chapters of books, and articles on an international level. In the last 5 years, she has published in the following journals: Bordón, Revista de Educación, Revista Electrónica interuniversitaria de formación del profesorado, Rivista Civitas Educationis, Intercultural Education, Hipatia Press, British Journal of Religious Education, etc. And she has published in the following editorials: Peter Lang, McGraw-Hill, Pirámide, and Milenio.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"University of Lleida",institutionURL:null,country:{name:"Spain"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"265",title:"Education",slug:"social-sciences-education"}],chapters:[{id:"58060",title:"Pedagogy of the Twenty-First Century: Innovative Teaching Methods",doi:"10.5772/intechopen.72341",slug:"pedagogy-of-the-twenty-first-century-innovative-teaching-methods",totalDownloads:8832,totalCrossrefCites:17,totalDimensionsCites:23,hasAltmetrics:1,abstract:"In the twenty-first century, significant changes are occurring related to new scientific discoveries, informatization, globalization, the development of astronautics, robotics, and artificial intelligence. This century is called the age of digital technologies and knowledge. How is the school changing in the new century? How does learning theory change? Currently, you can hear a lot of criticism that the classroom has not changed significantly compared to the last century or even like two centuries ago. Do the teachers succeed in modern changes? The purpose of the chapter is to summarize the current changes in didactics for the use of innovative teaching methods and study the understanding of changes by teachers. In this chapter, we consider four areas: the expansion of the subject of pedagogy, environmental approach to teaching, the digital generation and the changes taking place, and innovation in teaching. The theory of education, figuratively speaking, has two levels. At the macro-level, in the “education-society” relationship, decentralization and diversification, internationalization of education, and the introduction of digital technologies occur. At the micro-level in the “teacher-learner” relationship, there is an active mix of traditional and innovative methods, combination of an activity approach with an energy-informational environment approach, cognition with constructivism and connectivism.",signatures:"Aigerim Mynbayeva, Zukhra Sadvakassova and Bakhytkul\nAkshalova",downloadPdfUrl:"/chapter/pdf-download/58060",previewPdfUrl:"/chapter/pdf-preview/58060",authors:[{id:"201997",title:"Dr.",name:"Aigerim",surname:"Mynbayeva",slug:"aigerim-mynbayeva",fullName:"Aigerim Mynbayeva"},{id:"209208",title:"Dr.",name:"Zukhra",surname:"Sadvakassova",slug:"zukhra-sadvakassova",fullName:"Zukhra Sadvakassova"},{id:"209210",title:"Dr.",name:"Bakhytkul",surname:"Akshalova",slug:"bakhytkul-akshalova",fullName:"Bakhytkul Akshalova"}],corrections:null},{id:"59524",title:"Technology-Mediated Pedagogies for Skill Acquisition toward Sustainability Education",doi:"10.5772/intechopen.74336",slug:"technology-mediated-pedagogies-for-skill-acquisition-toward-sustainability-education",totalDownloads:1133,totalCrossrefCites:2,totalDimensionsCites:3,hasAltmetrics:0,abstract:"The era of digital technologies has heralded increasing opportunities for technology-mediated pedagogies (TMPs). TMPs as effective means for enhancing acquisition of skills have been widely reported. Sustainable living may be attained by focusing on accessibility, availability, affordability, accountability, and last but not the least, acquisition of knowledge and skills. This study explores the means and ways of realizing the objective of sustainability education by deploying TMPs. Technology and skill acquisition are important means for realizing the concept of sustainable education. Sustainable development goals have targeted 14 goals. The theme of ensuring quality education is included as digital technologies and global inclusiveness. Regional disparities in education continue to be a problem that hinders economic development. Achieving the targets of “Education for All” will contribute to meeting Goal 4.7 that envisages to ensure that all learners acquire the knowledge and skills needed to promote sustainable development by 2030 and Goal 4.c that envisages to increase the supply of qualified teachers.",signatures:"Ajitha Nayar Krishnakumaryamma and Srikirupa\nVenkatasubramanian",downloadPdfUrl:"/chapter/pdf-download/59524",previewPdfUrl:"/chapter/pdf-preview/59524",authors:[{id:"201507",title:"Dr.",name:"Ajitha",surname:"Nayar",slug:"ajitha-nayar",fullName:"Ajitha Nayar"},{id:"201514",title:"Ms.",name:"Srikirupa",surname:"V",slug:"srikirupa-v",fullName:"Srikirupa V"}],corrections:null},{id:"56659",title:"Inclusive Schoolwide Pedagogical Principles: Cultural Indicators in Action",doi:"10.5772/intechopen.70358",slug:"inclusive-schoolwide-pedagogical-principles-cultural-indicators-in-action",totalDownloads:1214,totalCrossrefCites:2,totalDimensionsCites:2,hasAltmetrics:0,abstract:"“Inclusion!” is the catch cry heard across both educational and community contexts and yet the reality is often less than ideal. The diversity and complexity of student needs within regular classrooms are both an asset and a challenge for schools and classroom teachers. We believe, with Nelson Mandela, that “Education is the most powerful weapon which you can use to change the world” and in order for such a dream to be achieved, it is essential that the pedagogical practices that support the needs of diverse learners are clearly understood and supported by both teachers and school leaders. Most existing research emphasises the need to improve the skill sets of both teacher graduates and practising teachers as a means of enhancing student support. We suggest that it cannot stop at the individual classroom practice level. To maximise student outcomes, inclusive pedagogical practices must be school wide, and well understood, thus resulting in a culture of inclusion becoming embedded in school wide practices and maintained over the long term. Inclusive schoolwide pedagogical (SWP) frameworks and shared practices lie at the heart of the two case study examples used to illustrate the key messages from our research.",signatures:"Lindy Abawi, Susan Carter, Dorothy Andrews and Joan Conway",downloadPdfUrl:"/chapter/pdf-download/56659",previewPdfUrl:"/chapter/pdf-preview/56659",authors:[{id:"202264",title:"Dr.",name:"Lindy-Anne",surname:"Abawi",slug:"lindy-anne-abawi",fullName:"Lindy-Anne Abawi"},{id:"203140",title:"Dr.",name:"Susan",surname:"Carter",slug:"susan-carter",fullName:"Susan Carter"},{id:"203141",title:"Dr.",name:"Andrews",surname:"Dorothy",slug:"andrews-dorothy",fullName:"Andrews Dorothy"},{id:"203142",title:"Dr.",name:"Joan",surname:"Conway",slug:"joan-conway",fullName:"Joan Conway"}],corrections:null},{id:"57268",title:"Intercultural Education in Poland: Experiences, Problems and Prospects",doi:"10.5772/intechopen.71010",slug:"intercultural-education-in-poland-experiences-problems-and-prospects",totalDownloads:1058,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:"The study presents an assessment of the achievements and problems of intercultural pedagogy as an important educational (sub)discipline, which has been developing intensively in Poland—particularly since the 1990s. Against the background of a crisis of multicultural education, a new suggestion was presented aimed at overcoming its drawbacks in the form of the theoretical assumptions and practical solutions of intercultural education. However, understanding and accepting intercultural education depend on many factors, for example, historical experiences, the developmental level of societies and the sociopolitical system. This necessitates presenting the essence of intercultural education as well as formulating its message both in Poland and worldwide.",signatures:"Ewa Ogrodzka-Mazur",downloadPdfUrl:"/chapter/pdf-download/57268",previewPdfUrl:"/chapter/pdf-preview/57268",authors:[{id:"201935",title:"Prof.",name:"Ewa",surname:"Ogrodzka-Mazur",slug:"ewa-ogrodzka-mazur",fullName:"Ewa Ogrodzka-Mazur"}],corrections:null},{id:"58829",title:"Education (Bildung) for Values",doi:"10.5772/intechopen.72450",slug:"education-bildung-for-values",totalDownloads:937,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"The article develops the thesis that a universal value basis for holistic education (Bildung) is provided by a plural moral system in which various ethical discourses are constructively interwoven. This is more successful for education and allows the individual a broader evaluation of alternatives in moral action. The plurality of a moral system supposes the presence of various ethical discourses, including the ethics of human rights (liberal discourse), the ethics of the common good (communitarian discourse) and the ethics of interpersonal relations (the ethics of care). In interweaving all three of these discourses in education, the teacher should use common sense, which we define as the power of judgement and a sense of community. This is followed by views on how to model organise educational practices that stimulate the creation of an ethically plural educational environment in open communication, where the learner develops the ability to make judicious decisions with regard to moral action without having to submit passively to common norms.",signatures:"Zdenko Medveš",downloadPdfUrl:"/chapter/pdf-download/58829",previewPdfUrl:"/chapter/pdf-preview/58829",authors:[{id:"220195",title:"Prof.",name:"Zdenko",surname:"Medveš",slug:"zdenko-medves",fullName:"Zdenko Medveš"}],corrections:null},{id:"58012",title:"Precursors of Decolonial Pedagogical Thinking in Latin America and Abya Yala",doi:"10.5772/intechopen.72343",slug:"precursors-of-decolonial-pedagogical-thinking-in-latin-america-and-abya-yala",totalDownloads:1193,totalCrossrefCites:4,totalDimensionsCites:5,hasAltmetrics:1,abstract:"This chapter introduces the pedagogical thinking of an array of Latin-American and indigenous educators who dreamt of Latin America featuring more freedom and democracy. The works selected were from scholars who were born and had their intellectual upbringing, in the first half of the twentieth century. This is a “bibliographical essay” intended to highlight the predecessors of decolonial pedagogy, thinkers, and educators who formulated ideas and theories within a delinking philosophy. We place these thinkers in the context of building a Latin-American “awareness” and within the scope of active resistance from the people in Abya Yala.",signatures:"Carlos Renato Carola",downloadPdfUrl:"/chapter/pdf-download/58012",previewPdfUrl:"/chapter/pdf-preview/58012",authors:[{id:"201607",title:"Dr.",name:"Carlos Renato",surname:"Carola",slug:"carlos-renato-carola",fullName:"Carlos Renato Carola"}],corrections:null},{id:"58472",title:"The Practice Architectures of Pedagogy: Conceptualising the Convergences between Sociality, Dialogue, Ontology and Temporality in Teaching Practices",doi:"10.5772/intechopen.72920",slug:"the-practice-architectures-of-pedagogy-conceptualising-the-convergences-between-sociality-dialogue-o",totalDownloads:1589,totalCrossrefCites:3,totalDimensionsCites:5,hasAltmetrics:0,abstract:"Amidst constant waves of research seeking to understand and improve pedagogical practices in schools, this chapter positions pedagogy as social practice rather than a more commonly held view of pedagogy as method. It is a view of pedagogy that is centrally interested in the sociality, situatedness and happeningness of practices, and thus requires a theory of practice that treats it as socially, dialogically, ontologically and temporally constituted. Capitalising on the ‘practice turn’ in education, the chapter utilises the theory of practice architectures to consider the relationship between pedagogy, practice and practice architectures. It will be argued that pedagogical practices as they happen in lessons cannot be understood without a theory of practice that explains (especially for teachers) how practices unfold discursively through language and sequences of time, and how they are interwoven (enmeshed or entangled) with sites, not just ‘set’ in them. Empirical material from recorded primary school lessons will be used to illustrate particular practice architectures or cultural-discursive, the material-economic and the social-political arrangements that influence the conduct of pedagogical practice as it happens in classrooms. The chapter seeks to address these three broad questions: (1) how does the theory of practice architectures enhance understandings of pedagogy? (2) in what ways does this theory help us to understand pedagogy as social practice? and (3) what influences pedagogical decision making as it happens in the flow of instruction?",signatures:"Christine Edwards-Groves",downloadPdfUrl:"/chapter/pdf-download/58472",previewPdfUrl:"/chapter/pdf-preview/58472",authors:[{id:"218422",title:"Dr.",name:"Christine",surname:"Edwards-Groves",slug:"christine-edwards-groves",fullName:"Christine Edwards-Groves"}],corrections:null},{id:"58707",title:"Teacher Pedagogical Choice",doi:"10.5772/intechopen.73201",slug:"teacher-pedagogical-choice",totalDownloads:1489,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"This chapter examines teachers’ pedagogical decisions and how routinization of practice can lead to the ineffective application of pedagogy that hinders student development and achievement. Identification of tacit knowledge that supports routinization can enable teachers to critique their teaching practice and identify pedagogies that are more appropriate for the students they teach. The work of Bourdieu and Giddens provides a sociological framework to analyse the influences on pedagogical decision-making. Evidence from a case study is used to illustrate how teacher professional habitus, motivation, ontological security, routinization and time and space interact to inhibit or enable expansion of teachers’ knowledgeability and the frames of practice inform their choice and development of pedagogy.",signatures:"Peter Burridge",downloadPdfUrl:"/chapter/pdf-download/58707",previewPdfUrl:"/chapter/pdf-preview/58707",authors:[{id:"201876",title:"Dr.",name:"Peter",surname:"Burridge",slug:"peter-burridge",fullName:"Peter Burridge"}],corrections:null},{id:"58379",title:"Large Courses at Universities: Criteria for Teacher Action",doi:"10.5772/intechopen.72674",slug:"large-courses-at-universities-criteria-for-teacher-action",totalDownloads:1027,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Large courses represent the vast majority of learning activities in higher education institutions around the world, where classrooms are crowded with students and teachers make their best efforts trying to accomplish the learning objectives. This educational context, along with the increased access to higher education in the past decade, has generated demands on the teaching-learning process. Consequently, research in the topic is needed to elucidate guidelines to improve university instruction. Recent initial findings of the research project “What do the best university teachers do in large courses? A multi-case study” report five crucial aspects to consider when planning a successful large group activity: student-teacher interaction, active learning strategies, classroom management, students’ motivation and commitment, and effective use of technology. Also, it has been concluded that there are five criteria that the best university teachers frequently use in their classes: ubiquitous interaction between student-teacher-student, the dynamic decision-making based on student learning achievement, use of examples originated from reality, promotion in the generation of networks of collaboration, and promotion of participation of students during class. To overcome the challenge of large courses, future research and innovations in large learning activities should be undertaken to evaluate their impact on students’ learning.",signatures:"Oscar M. Jerez, Catalina A. Ortiz, Marcos S. Rojas and César A. Orsini",downloadPdfUrl:"/chapter/pdf-download/58379",previewPdfUrl:"/chapter/pdf-preview/58379",authors:[{id:"219491",title:"Dr.",name:"Oscar",surname:"Jerez",slug:"oscar-jerez",fullName:"Oscar Jerez"},{id:"219632",title:"Dr.",name:"Cesar",surname:"Orsini",slug:"cesar-orsini",fullName:"Cesar Orsini"},{id:"219633",title:"BSc.",name:"Marcos",surname:"Rojas",slug:"marcos-rojas",fullName:"Marcos Rojas"},{id:"219634",title:"BSc.",name:"Catalina",surname:"Ortiz",slug:"catalina-ortiz",fullName:"Catalina Ortiz"}],corrections:null},{id:"58574",title:"Education in Confessional Schools According to the Speech of his Students",doi:"10.5772/intechopen.72497",slug:"education-in-confessional-schools-according-to-the-speech-of-his-students",totalDownloads:900,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"This article comes from the research project “Representations of formal and private education in students of Catholic schools in the metropolitan area.” The research analyzed a series of oral speeches, about education in the Catholic school, in students who have been educated for over 9 years in these institutions. The analysis identified representations that young people had built with their learning environment and the values that revolve around his education in schools guided by principles of a religion. A qualitative method was used with ethnographic-semiotic approach that guided the collection of oral statements, through semi-structured interviews and focus groups, analyzed from theories and methods of the pedagogy and semiotics. Thus, an approach was made to the constituent elements (values) of educational practices one of the many training projects and certainly the oldest counts in Latin America in general. It was possible to find answers about the valuation of these phenomena, showing a dichotomy between educating “a good person” to the confessional way and educating a citizen. With these results, it aims to promote reflection about the educational phenomenon from the perspective of the learner, while the theoretical and practical relationship between pedagogy and semiotics is strengthened.",signatures:"Diana Marcela Pedraza Díaz",downloadPdfUrl:"/chapter/pdf-download/58574",previewPdfUrl:"/chapter/pdf-preview/58574",authors:[{id:"201547",title:"M.A.",name:"Diana",surname:"Pedraza Díaz",slug:"diana-pedraza-diaz",fullName:"Diana Pedraza Díaz"}],corrections:null},{id:"56563",title:"Categorizing Teaching Knowledge from the Perspective of Students: Narratives about Memorable Teachers",doi:"10.5772/intechopen.70250",slug:"categorizing-teaching-knowledge-from-the-perspective-of-students-narratives-about-memorable-teachers",totalDownloads:1061,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"The following article approaches, as an object of research, the teaching knowledge of memorable teachers from the perspective of the students; narrative analysis was chosen as a methodological strategy, by categorizing 28 texts written by undergrad students at the University of Veracruz in México, belonging to the bachelors in pedagogy program. The objectives were aimed at categorizing the meanings of teacher’s educational knowledge, explaining those samples of knowledge that left a mark in the lives of pupils, describing educational knowledge in the technical and professional realms, and distinguishing between those categories that involved bad teachers. The results show eight categories that answer to the objectives in this research; these categories are didactic knowledge, human knowledge-patience-comprehension, the ability to explain—gift of teaching, educational knowledge strategies, educational knowledge specific to memorable teachers, planning and assessment knowledge, knowledge on strictness-tidiness-formats, and knowledge on good attitudes of teachers.",signatures:"Miguel Navarro-Rodríguez, Rubén Edel-Navarro and Yaneth Soto-\nRuiz",downloadPdfUrl:"/chapter/pdf-download/56563",previewPdfUrl:"/chapter/pdf-preview/56563",authors:[{id:"202207",title:"Dr.",name:"Miguel Navarro",surname:"Rodríguez",slug:"miguel-navarro-rodriguez",fullName:"Miguel Navarro Rodríguez"},{id:"203473",title:"Dr.",name:"Yaneth",surname:"Soto Ruiz",slug:"yaneth-soto-ruiz",fullName:"Yaneth Soto Ruiz"},{id:"206629",title:"Dr.",name:"Rubén",surname:"Edel Navarro",slug:"ruben-edel-navarro",fullName:"Rubén Edel Navarro"}],corrections:null},{id:"56553",title:"Case Studies as Unconventional Meanings",doi:"10.5772/intechopen.70247",slug:"case-studies-as-unconventional-meanings",totalDownloads:980,totalCrossrefCites:6,totalDimensionsCites:6,hasAltmetrics:0,abstract:"The critical exegesis of the epistemology of educational science illustrates various narratives: postmodernist views on educational sciences, links between pedagogy and the politics, dialogs between education and culture, counternarratives, critical pedagogies, etc. These reflect an intellectual space that incorporates various constructions of knowledge: different experiences, fragmentation, transcultural changes, divided borders of educational sciences, conflicts, and unifying themes. This chapter is focused on the Romanian case study in the schools playing a role in developing recent pedagogy. The qualitative research presented in this chapter is based on an investigation conducted from 2014 to 2017 at the University of Bucharest. The target population consists of 300 students in teachers training, and 446 teachers, psychologists, and school counselors who were invited to report case studies on learning topics in accordance with their personal experience. The empirical research aims to explore the Romanian possible identity of case study about learning issues and to discriminate the qualitative features of the data collected. The results are considered mentalistic structures of a case study. In these structures are included learning strategies, life styles, learning styles, teaching styles, communication styles, level of rationale involved in case studies as storytelling, and remarkable’ patterns of social network from the classroom.",signatures:"Victorița Trif",downloadPdfUrl:"/chapter/pdf-download/56553",previewPdfUrl:"/chapter/pdf-preview/56553",authors:[{id:"201656",title:"Ph.D.",name:"Victorița",surname:"Trif",slug:"victorita-trif",fullName:"Victorița Trif"}],corrections:null},{id:"57059",title:"Oral Communication Skills and Pedagogy",doi:"10.5772/intechopen.70831",slug:"oral-communication-skills-and-pedagogy",totalDownloads:2040,totalCrossrefCites:3,totalDimensionsCites:3,hasAltmetrics:0,abstract:"Conversation is the very heart of schooling and pedagogy. In early education, oral language development is particularly significant for interactions, social relationships, and friendships, and for building a sense of belonging. Educators help children develop oral language skills both directly through linguistic interaction with them and indirectly by creating an environment, which is rich in learning stimuli. This chapter aims to establish how educators manage oral language in preschool classrooms and how the implementation of specific approaches has more positive results than that of others. References are made to theoretical approaches of sociolinguistics and ethnography of communication. In this research, kindergarten teachers engage pupils in discussions on the topic of ‘Tolerance’. The activities were recorded and the content analyzed according to the qualitative content analysis of speech and communication. The analysis identified constructive interventions with positive results, along with less effective ones, which proved discouraging for children. We suggest that children in early childhood construct meaning and learn in accordance with the ways in which adults manage orality.",signatures:"Eleni Mousena and Trifeni Sidiropoulou",downloadPdfUrl:"/chapter/pdf-download/57059",previewPdfUrl:"/chapter/pdf-preview/57059",authors:[{id:"201564",title:"Prof.",name:"Eleni",surname:"Mousena",slug:"eleni-mousena",fullName:"Eleni Mousena"},{id:"204748",title:"Prof.",name:"Trifeni",surname:"Sidiropoulou",slug:"trifeni-sidiropoulou",fullName:"Trifeni Sidiropoulou"}],corrections:null},{id:"57670",title:"Is Your Extra X Chromosome Holding You Back? An Insight into Female Education and Academic Careers in STEMM",doi:"10.5772/intechopen.71898",slug:"is-your-extra-x-chromosome-holding-you-back-an-insight-into-female-education-and-academic-careers-in",totalDownloads:2144,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:1,abstract:"This review discusses whether gender inequality still exists within medical, scientific and engineering academia, with regards to the career development of academic staff. In the 1970s it was suggested that women who are talented and educated with family responsibilities tend to come across problems of self-confidence and identity when attempting to enhance their professional careers, and although many are successful in doing so, others find it more challenging. By the 1990s, it was indicated that the main gender inequality mechanism in academia is the commonly known fact that women’s career development in the academic hierarchy is slower than that of men. In the past 50 years, laws and attitudes of many societies, industries and countries, have changed to promote gender equality. What is the impact of these changes, does inequality still exist and what mechanisms exist to address these issues? This review looks in depth at the links between gender equality and continuing personal and professional development (CPPD), in which individuals at work are educated more about the workplace environment and their job roles and performance. The different types, requirements and success rates of CPPD within the scientific (especially medical) academic community is discussed with an emphasis on gender equality.",signatures:"Aziza Alibhai, Mariam Moiz Saigar, Emilia Harding and Catrin Sian\nRutland",downloadPdfUrl:"/chapter/pdf-download/57670",previewPdfUrl:"/chapter/pdf-preview/57670",authors:[{id:"202192",title:"Dr.",name:"Catrin",surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland"},{id:"219223",title:"Mrs.",name:"Aziza",surname:"Alibhai",slug:"aziza-alibhai",fullName:"Aziza Alibhai"},{id:"219226",title:"Dr.",name:"Emilia",surname:"Harding",slug:"emilia-harding",fullName:"Emilia Harding"},{id:"219227",title:"B.Sc.",name:"Mariam",surname:"Saigar",slug:"mariam-saigar",fullName:"Mariam Saigar"}],corrections:null},{id:"59746",title:"The Role of Pedagogy in Clinical Education",doi:"10.5772/intechopen.74960",slug:"the-role-of-pedagogy-in-clinical-education",totalDownloads:1422,totalCrossrefCites:2,totalDimensionsCites:2,hasAltmetrics:0,abstract:"This chapter introduces the role of pedagogy in the tuition of clinical subjects. After which an overview of the two types of pedagogy that underpin it are explained. Research on the role and function of pedagogy in clinical subjects is in its infancy; as such, different examples of approaches are presented. Specifically, I look at public health, Widening Participation and Public and Patient Involvement (PPI). The chapter will highlight that there is a need for more academic work that investigates the role pedagogy plays in clinical subjects. In short, despite that fact that there is a pressing need in most Western countries to train clinical staff, there is an unfortunate lack of pragmatic texts in all areas of clinical education. By highlighting what publications exist, I hope to instigate discussions about the type of publication and style of approaches that are required for the study of medical pedagogies. Because of the variety of stakeholders involved in medical education, not all will uniformly accept new approaches to pedagogy, causing possible tensions. This chapter covers pedagogies relevant to allied healthcare education. Its content may be of interest to tutors who want to know more about clinical pedagogy and curriculum design.",signatures:"John Tredinnick-Rowe",downloadPdfUrl:"/chapter/pdf-download/59746",previewPdfUrl:"/chapter/pdf-preview/59746",authors:[{id:"228216",title:"Dr.",name:"John",surname:"Tredinnick-Rowe",slug:"john-tredinnick-rowe",fullName:"John Tredinnick-Rowe"}],corrections:null},{id:"56925",title:"Achievement Bests Framework, Cognitive Load Theory, and Equation Solving",doi:"10.5772/intechopen.70568",slug:"achievement-bests-framework-cognitive-load-theory-and-equation-solving",totalDownloads:1024,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"The Framework of Achievement Bests provides an explanatory account into the process of optimization, which details how a person reaches from one level of best practice to that of a more optimal level. This framework, we contend, is significant in its explanatory account of personal growth, an internal state of flourishing, and the achievement of exceptionality. This chapter conceptualizes the applicability of the Framework of Achievement Bests to the context of instructional designs. We highlight the tenet of element interactivity, which is integral to the design of a particular mathematics instruction and its potential effectiveness. Element interactivity entails the interaction between elements within a learning material. Owing to the limited working memory capacity, an instruction that incurs high level of element interactivity would impose high cognitive load leading to reduced learning. Our conceptualization postulates the possible alignment between suboptimal and optimal instructional designs with realistic and optimal levels of best practice, respectively. This postulation (e.g., suboptimal instructional design → realistic level of best practice), which recognizes the importance of cognitive load imposition, is significant from a practical point of view. By focusing on instructional designs, it is possible to assist individuals to achieve optimal best practice in learning.",signatures:"Bing H. Ngu and Huy P. Phan",downloadPdfUrl:"/chapter/pdf-download/56925",previewPdfUrl:"/chapter/pdf-preview/56925",authors:[{id:"202444",title:"Dr.",name:"Bing",surname:"Ngu",slug:"bing-ngu",fullName:"Bing Ngu"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"6674",title:"Contemporary Pedagogies in Teacher Education and Development",subtitle:null,isOpenForSubmission:!1,hash:"33d1ab42e6304ea91a1ee326da9b4101",slug:"contemporary-pedagogies-in-teacher-education-and-development",bookSignature:"Yehudith Weinberger and Zipora Libman",coverURL:"https://cdn.intechopen.com/books/images_new/6674.jpg",editedByType:"Edited by",editors:[{id:"201297",title:"Dr.",name:"Yehudith",surname:"Weinberger",slug:"yehudith-weinberger",fullName:"Yehudith Weinberger"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6161",title:"Advanced Learning and Teaching Environments",subtitle:"Innovation, Contents and Methods",isOpenForSubmission:!1,hash:"20c18affe0d4b2b99d72800247328d9e",slug:"advanced-learning-and-teaching-environments-innovation-contents-and-methods",bookSignature:"Núria Llevot-Calvet and Olga Bernad Cavero",coverURL:"https://cdn.intechopen.com/books/images_new/6161.jpg",editedByType:"Edited by",editors:[{id:"193390",title:"Ph.D.",name:"Núria",surname:"Llevot-Calvet",slug:"nuria-llevot-calvet",fullName:"Núria Llevot-Calvet"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6936",title:"Early Childhood Education",subtitle:null,isOpenForSubmission:!1,hash:"f4092f476f58833b460010a63f5397dc",slug:"early-childhood-education",bookSignature:"Donna Farland-Smith",coverURL:"https://cdn.intechopen.com/books/images_new/6936.jpg",editedByType:"Edited by",editors:[{id:"197003",title:"Dr.",name:"Donna",surname:"Farland-Smith",slug:"donna-farland-smith",fullName:"Donna Farland-Smith"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10229",title:"Teacher Education in the 21st Century",subtitle:"Emerging Skills for a Changing World",isOpenForSubmission:!1,hash:"b01f9136149277b7e4cbc1e52bce78ec",slug:"teacher-education-in-the-21st-century-emerging-skills-for-a-changing-world",bookSignature:"Maria Jose Hernández-Serrano",coverURL:"https://cdn.intechopen.com/books/images_new/10229.jpg",editedByType:"Edited by",editors:[{id:"187893",title:"Dr.",name:"Maria Jose",surname:"Hernández-Serrano",slug:"maria-jose-hernandez-serrano",fullName:"Maria Jose Hernández-Serrano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6929",title:"Active Learning",subtitle:"Beyond the Future",isOpenForSubmission:!1,hash:"fe54807c3ff7c1b500127e814988f5e2",slug:"active-learning-beyond-the-future",bookSignature:"Sílvio Manuel Brito",coverURL:"https://cdn.intechopen.com/books/images_new/6929.jpg",editedByType:"Edited by",editors:[{id:"170935",title:"Ph.D.",name:"Sílvio Manuel",surname:"Brito",slug:"silvio-manuel-brito",fullName:"Sílvio Manuel Brito"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6586",title:"Sport Pedagogy",subtitle:"Recent Approach to Technical-Tactical Alphabetization",isOpenForSubmission:!1,hash:"ecdd15ab29df9d59f4b4a46928b11ffe",slug:"sport-pedagogy-recent-approach-to-technical-tactical-alphabetization",bookSignature:"Jaime Serra-Olivares",coverURL:"https://cdn.intechopen.com/books/images_new/6586.jpg",editedByType:"Edited by",editors:[{id:"221512",title:"Dr.",name:"Jaime",surname:"Serra-Olivares",slug:"jaime-serra-olivares",fullName:"Jaime Serra-Olivares"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9558",title:"Active Learning",subtitle:"Theory and Practice",isOpenForSubmission:!1,hash:"c55b272766d51c3d563abc25c026b939",slug:"active-learning-theory-and-practice",bookSignature:"Olena Lutsenko and Gregory Lutsenko",coverURL:"https://cdn.intechopen.com/books/images_new/9558.jpg",editedByType:"Edited by",editors:[{id:"225667",title:"Mrs.",name:"Olena",surname:"Lutsenko",slug:"olena-lutsenko",fullName:"Olena Lutsenko"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9535",title:"Education in Childhood",subtitle:null,isOpenForSubmission:!1,hash:"edc0b902fe67ee1b6fab1df4992cb55d",slug:"education-in-childhood",bookSignature:"Olga María Alegre de la Rosa, Luis Miguel Villar Angulo and Carla Giambrone",coverURL:"https://cdn.intechopen.com/books/images_new/9535.jpg",editedByType:"Edited by",editors:[{id:"338767",title:"Prof.",name:"Olga María",surname:"Alegre de la Rosa",slug:"olga-maria-alegre-de-la-rosa",fullName:"Olga María Alegre de la Rosa"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10807",title:"Teacher Education",subtitle:"New Perspectives",isOpenForSubmission:!1,hash:"3baeedd4e6dfcdbccca461891bd66a8d",slug:"teacher-education-new-perspectives",bookSignature:"Ulas Kayapinar",coverURL:"https://cdn.intechopen.com/books/images_new/10807.jpg",editedByType:"Edited by",editors:[{id:"232425",title:"Dr.",name:"Ulas",surname:"Kayapinar",slug:"ulas-kayapinar",fullName:"Ulas Kayapinar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"79356",slug:"corrigendum-graves-disease",title:"Corrigendum: Graves’ Disease",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/79787.pdf",downloadPdfUrl:"/chapter/pdf-download/79787",previewPdfUrl:"/chapter/pdf-preview/79787",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/79787",risUrl:"/chapter/ris/79787",chapter:{id:"75553",slug:"graves-disease-clinical-significance-and-management",signatures:"Thenmozhi Paluchamy",dateSubmitted:"December 3rd 2020",dateReviewed:"February 4th 2021",datePrePublished:"July 14th 2021",datePublished:"December 1st 2021",book:{id:"10312",title:"Graves' Disease",subtitle:null,fullTitle:"Graves' Disease",slug:"graves-disease",publishedDate:"December 1st 2021",bookSignature:"Robert Gensure",coverURL:"https://cdn.intechopen.com/books/images_new/10312.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"16515",title:"Dr.",name:"Robert",middleName:null,surname:"Gensure",slug:"robert-gensure",fullName:"Robert Gensure"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"296190",title:"Dr.",name:"Thenmozhi",middleName:null,surname:"Paluchamy",fullName:"Thenmozhi Paluchamy",slug:"thenmozhi-paluchamy",email:"thenmozhi.sethu@gmail.com",position:null,institution:null}]}},chapter:{id:"75553",slug:"graves-disease-clinical-significance-and-management",signatures:"Thenmozhi Paluchamy",dateSubmitted:"December 3rd 2020",dateReviewed:"February 4th 2021",datePrePublished:"July 14th 2021",datePublished:"December 1st 2021",book:{id:"10312",title:"Graves' Disease",subtitle:null,fullTitle:"Graves' Disease",slug:"graves-disease",publishedDate:"December 1st 2021",bookSignature:"Robert Gensure",coverURL:"https://cdn.intechopen.com/books/images_new/10312.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"16515",title:"Dr.",name:"Robert",middleName:null,surname:"Gensure",slug:"robert-gensure",fullName:"Robert Gensure"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"296190",title:"Dr.",name:"Thenmozhi",middleName:null,surname:"Paluchamy",fullName:"Thenmozhi Paluchamy",slug:"thenmozhi-paluchamy",email:"thenmozhi.sethu@gmail.com",position:null,institution:null}]},book:{id:"10312",title:"Graves' Disease",subtitle:null,fullTitle:"Graves' Disease",slug:"graves-disease",publishedDate:"December 1st 2021",bookSignature:"Robert Gensure",coverURL:"https://cdn.intechopen.com/books/images_new/10312.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"16515",title:"Dr.",name:"Robert",middleName:null,surname:"Gensure",slug:"robert-gensure",fullName:"Robert Gensure"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11889",leadTitle:null,title:"Sexual Disorders and Dysfunctions",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tThe book explains and educates the reader regarding normal sexual function, sexual dysfunction, and sexual dysfunction disorders both in males and females. The objective of the book will be to highlight the importance of sex education and explain normal human sexuality. With the growing number of males and females reporting sexual dysfunction the need for a ready reckoner of sexual dysfunction may be relevant and necessary.
\r\n\r\n\tThe book will have chapters on normal human sexuality, sexual health, Sexual dysfunction in the male and female, sexual dysfunction disorders related to libido, orgasm, ejaculation, erection, and genetic or hormonal or developmental or sexuo-erotic orientation defects.
\r\n\r\n\tThe book will also highlight the importance of sex counselors and therapists.
\r\n\tThere will be a chapter on secondary causes of sexual dysfunction disorders related to diabetes, cardiovascular disease, and obesity. A chapter on remedial measures to enhance sexual activity and maintain human relationships will be discussed. As there is a growing number of cancer survivors a chapter on cancer-related sexual dysfunction will be welcomed for including it.
Primary central nervous system (CNS) tumors represent 2% of all cancers in adults, whereas this percentage increases to 15–25% in children. Primary brain tumors are stratified by the World Health Organization (WHO) according to a “malignancy scale”. The WHO grade is closely related to clinical prognosis, ranging from grade I (with low proliferative potential and the possibility of cure following surgical resection alone) to grade IV (with widespread invasion of the surrounding healthy tissue, high proliferative potential, recurrence and fatal outcome). Unfortunately, many low-grade gliomas eventually often show progression to a higher histologic grade [1].
\nGliomas represent approximately 80% of all malignant primary brain tumors. Glioblastomas (WHO grade IV) are the most frequent (54.4%) and aggressive type of glioma [2], although, in terms of treatment, WHO grade III brain tumors and glioblastomas are clustered together and treated similarly.
\nAlthough the management of brain tumors depends on the time of diagnosis, new onset or recurrence, the performance status and the age of the patient, the current standard approach in high-grade brain tumors combines maximal surgical resection (if eligible) with radiotherapy and concomitant and adjuvant chemotherapy as well as symptomatic treatment [3].
\nAvailable chemotherapy for high-grade brain tumors includes temozolomide, nitrosureas [carmustine (BCNU) and lomustine (CCNU)], topoisomerase inhibitors (etoposide, irinotecan), platinum agents (carboplatin), procarbazine, and vincristine. The first-line chemotherapy for newly diagnosed glioblastoma multiforme consists of temozolomide, whereas carmustine represents the second-line treatment. After the approval of temozolomide in 1999, irinotecan, etoposide, and platinum agents are mostly used only as adjuvant chemotherapy of bevacizumab (FDA approved in 2009 in monotherapy) for recurrent glioblastomas. In the case of WHO grade III gliomas (anaplastic astrocytomas and oligodendrogliomas), the first-line treatment is the PCV (procarbazine-lomustine-vincristine) combination [4].
\nUnfortunately, the efficacy of the treatment of brain tumors is questionable, since recurrence happens within 6.9 months of initial diagnosis. As a result, despite the combination of surgical resection, radiotherapy and concomitant temozolomide, glioblastoma multiforme remains incurable with a poor median survival of 14.6 months and 2-year survival rate of 26.5% [5]. This poor prognosis results from chemotherapy tumor resistance [6].
\nOne of the chemoresistance mechanism best characterized relates to the expression of O6-methylguanine-DNA methyltransferase (MGMT), a repair gene that removes alkyl groups from the O6 position of guanine and consequently counteracts the alkylating agents (temozolomide or nitrosureas). Methylation of the promoter of this gene, which occurs in 35–45% of the cases, makes glioblastoma more sensitive to alkylating agents [7, 8].
\nLikewise, the existence of glioma stem cells greatly accounts for tumor recurrence, since they upregulate the expression level of P-gycoprotein [9], which is responsible for active efflux of many chemotherapy agents, including temozolomide.
\nThe overexpression of epidermal growth factor receptor (EGFR), which ultimately triggers the activation of complex alternative signaling pathways, aimed at inhibiting apoptosis, also contributes to resistance to standard chemotherapy. Unfortunately, none of the receptor tyrosine kinase inhibitors and signal transduction inhibitors tested in clinical trials prolonged the mean survival, mainly due to the lack of successful drug delivery across the blood-brain tumor barrier (BBTB), since the exposure of the tumor to sublethal drug concentrations helps select the drug-resistant tumor cells [10].
\nThe BBTB consists of the endothelium of existing and abnormal angiogenic blood vessels that deliver nutrients and oxygen to the tumor and enable widespread glioma migration to brain areas where the function of the barrier is still intact. Therefore, even though the BBTB is considered dysfunctional, the truth is that in low grade and in the infiltrative parts of high-grade gliomas, often responsible for the recurrence, the BBTB closely resembles the tight blood-brain barrier (BBB) typical of healthy brain capillaries [11]. Hence, the BBTB greatly accounts for the failure rate of the brain tumor therapy, since the hindrance to brain delivery of chemotherapeutic agents at pharmacologically effective levels conferred by this barrier cannot be offset by dose increase for fear of systemic toxicity. Furthermore, drug efflux pumps of the BBB can also be expressed in endothelium at the BBTB, representing an additional constraint to the achievement of adequate drug levels at the target site [12].
\nSince the therapeutic potential of chemotherapy greatly depends on its ability to attain pharmacologically effective levels at the entire diseased brain area, novel strategies to enhance drug delivery at the tumor site are strongly needed.
\nConventional chemotherapy has failed to improve the prognosis of CNS tumors; hence novel drug delivery technologies have emerged under the assumption that targeted drug delivery could contribute to expose the entire tumor to therapeutically meaningful levels and ultimately improve treatment outcomes for brain tumors. An example of the success achievable thanks to advances in pharmaceutical technology is Gliadel®, the first FDA-approved brain cancer treatment to deliver chemotherapy directly to the tumor site in patients with malignant glioma for whom surgical resection is indicated. Gliadel® is a biodegradable wafer implanted on the surface of the resected tumor beds at the time of surgery that delivers carmustine steadily for about 3 weeks directly to the tumor site minimizing drug exposure to other areas of the body. Gliadel® contributes to eradicate the residual tumor cells at the resection margin and complements other standard therapies for brain tumors (surgery and radiotherapy) [13].
\nNanomedicine represents an encouraging trend within the field of novel drug delivery technology with potential to preferentially delivering the drug at the target site and consequently overcoming biodistribution and pharmacokinetic limitations that eventually account for treatment failure of brain tumors. Nanomedicine is the application of nanotechnology in view of making a medical diagnosis or treating or preventing diseases. It exploits the improved and often novel properties of materials at a nanoscale. Nanomedicines are colloidal structures that act as drug carriers in which the drug substance is dissolved, entrapped, or encapsulated, or to which the drug substance is adsorbed or attached [14]. Unlike monolithic implants such as Gliadel®, colloidal carriers can be administered with conventional needles and therefore are not limited to those brain tumors where surgical resection is indicated.
\nNanomedicine is especially relevant for chemotherapeutic agents, whose low dose availability at the tumor site cannot be counterbalanced by dose increase for fear of severe systemic side effects. Targeted nanomedicines would improve the availability of the drug at the scattered tumor bed and would allow obtaining therapeutic effects with lower drug doses and concomitantly minimizing the side effects of chemotherapy not only in unwanted peripheral tissues, but also in healthy brain cells. Therefore, the therapeutic index of drugs would be greatly enhanced thanks to nanomedicine. Targeted drug delivery to the site of action can be achieved through passive and active targeting or even through external physical stimuli. Passive targeting exploits the specific anatomical and functional features of the target tissues or cells to deliver drugs to the site of action. Active targeting requires the conjugation of tissue or cell-specific ligands on the surface of nanocarriers, whose recognition would eventually allow preferential accumulation of the drug at the diseased site. External stimuli such as a magnetic field, focused ultrasounds, light, and heat can also help selectively release the drug payload of nanomedicines at the target site [15].
\nMoreover, whereas most anticancer drugs are hydrophobic and often require to be solubilized in organic solvents for conventional administration, nanomedicines provide alternative formulations to administer chemotherapy without the need to use toxic solvents. Furthermore, nanomedicine is opening new therapeutic opportunities for easily degradable drug substances that cannot be used effectively as conventional formulations due to their short half-lives in vivo. Nanomedicines not only shield such drugs from enzymatic and chemical drug cleavage that accounts for the loss of pharmacological effect, but also can sustain and/or trigger drug release at a specific rate at the target site, resulting in maintenance of drug levels within a therapeutically desirable range. Thanks to this controlled release profile, undesirable pharmacokinetic properties of drug substances can be overcome with the use of nanocarriers and the dosing frequency can be improved to prescribe more comfortable dose regimens for patients.
\nThe nanomedicine approach to enhance drug delivery to CNS tumors is highly versatile, since it would allow the coadministration of different anticancer agents and is compatible with both local and systemic routes of administration. In the current scenario, this approach must be directed toward surpassing acquired resistance to conventional chemotherapy and implementing strategies to boost the distribution across the brain endothelium in the case of systemic administration [16].
\nNevertheless, nanomedicines might likewise cause unexpected toxicities as the other excipients also reach target tissues along with the drug. Nondegradable nanomedicines used for drug delivery would accumulate at the tumor site and would ultimately result in chronic inflammatory response, because, as colloidal systems, there is no chance of removing them after completion of the treatment. Albeit toxicity concerns of nanomedicines greatly rely on the relatively unexplored size-dependent properties and interaction with biological structures that strikingly differ from those of the bulk material, it is broadly agreed that the safety profile of brain-targeted nanomedicines would be improved with biocompatible excipients devoid of any short or long-term toxic effects [17]. Consequently, despite the large number of available biomaterials for nanomedicines preparation, only a few are suitable for brain tumor treatment because the CNS requires conservative choices with a proven track record of clinical safety. Nanomedicines developed for brain delivery mainly belong to three categories: polymer-based, lipid-based and metal-based, according to their major excipient (Table 1).
\nCategory | \nNanocarrier | \nDescription | \nSize (nm) | \nPhase of development | \n
---|---|---|---|---|
Polymer-based | \nPolymeric nanoparticles | \nSolid matrix-like or reservoir-like nanostructures made up of biocompatible and biodegradable polymers or copolymers | \n20–1000 | \nPreclinical | \n
Polymeric micelles | \nNanostructures of amphiphilic diblock copolymers with a core of hydrophobic blocks stabilized by a corona of hydrophilic blocks | \n50–200 | \nPreclinical | \n|
Dendrimers | \nHighly branched tree-like nanostructures composed of a central core, internal branches, and reactive terminal groups | \n1–10 | \nPreclinical | \n|
Lipid-based | \nLiposomes | \nVesicles of amphipathic lipids structured in concentric bilayers surrounding an equal number of central aqueous compartments | \n80–200 | \nPhase I, II clinical trials | \n
Solid lipid nanoparticles | \nSolid lipid matrixes at room and body temperatures that are stabilized by surfactant(s) | \n50–1000 | \nPreclinical | \n|
Lipid nanocapsules | \nReservoir nanomedicines with a liquid oily core, surrounded by a shell of surfactants | \n20–100 | \nPreclinical | \n|
Metal-based | \nMagnetic nanoparticles | \nNanostructures composed of magnetic elements that can be manipulated using magnetic fields | \n10–50 | \nPreclinical | \n
\n | Gold nanoparticles | \nNanostructures that can serve as drug carriers and even convert absorbed electromagnetic radiation to heat | \n5–50 | \nPreclinical | \n
Main types of nanomedicines that are currently under investigation for the treatment of CNS tumors.
Overall, lipid-based nanomedicines may well be the most suitable for CNS drug delivery; insofar as lipids have very low toxicity, are biocompatible and biodegradable by nature, and the commercially available lipid-based formulations show a solid track record of clinical safety [18–20], whereas at present, only a few of the studied polymers for the development of polymer-based nanomedicines for brain drug delivery have demonstrated biocompatible, biodegradable, and nontoxic properties to be approved by the FDA for clinical use [21–23]. On the other hand, since the lack of biodegradation may not be appropriate for long-term administration, most metal-based nanomedicines (such as magnetic nanoparticles and gold nanoparticles) have been made more biocompatible and water-soluble with polymer coating [24].
The local delivery of anticancer drugs serves to overcome the lack of specificity of conventional chemotherapy. Higher drug levels at the tumor site and lower drug distribution to healthy tissues account for the reduction of the systemic side effects with local routes of administration. Moreover, in the case of CNS tumors, local chemotherapy bypasses the major hurdle for systemic brain drug delivery: the blood-brain tumor barrier. However, the mechanical breach of this barrier may act as a double-edged sword since this might allow neurotoxic blood components to enter the brain or even enhance tumor dissemination.
\nNanomedicines offer several advantages over conventional chemotherapy with regard to local CNS delivery: they can extend the exposure to short-brain-half-life drugs and provide long-lasting drug release that ultimately maintains therapeutic levels at the target site over longer periods. Moreover, nanomedicines show potential for enhancing antitumor activity via several pathways. First, locally administered nanomedicines can promote passive diffusion of the anticancer agent to the brain tumor tissue by increasing the local drug concentration gradient. Furthermore, nanomedicines can be actively targeted to the brain tumor cells by conjugating specific ligands that bind to the receptors that are overexpressed or uniquely expressed on the tumor surface (a mutant form of the epidermal growth factor receptor (EGFRvIII), interleukin receptors for interleukins 4 and 13) to efficiently trigger cellular uptake at the tumor site.
\nSimilarly, locally administered nanomedicines can also help overcome some of the most troublesome chemoresistance mechanisms that are eventually responsible for tumor recurrence. In this sense, the upregulated expression of P-glycoprotein in drug-resistant cancer stem cells, which accounts for active efflux of most anticancer agents from the tumor area and reduces the effectiveness of chemotherapy, can be overcome thanks to nanomedicine. Indeed, the coating with nonionic surfactants seems to confer the nanocarrier itself with efflux-pump blockage properties [25]. Additionally, along with chemotherapy, nanomedicines can serve to deliver irreversible MGMT inhibitors (such as O6-benzylguanine) and/or receptor tyrosine kinase inhibitors, to sensitize brain tumor cells to alkylating agents, and to counteract the inhibition of apoptosis mediated by the overexpression of the receptor of the epidermal growth factor (EGFR), respectively.
\nSeveral local routes of administration may be exploited by nanomedicines for handling of CNS tumors.
\n- The intracranial administration involves drug delivery directly into the brain parenchyma. Nonetheless, intraoperative infusion of anticancer drugs into brain tumors has experienced minor success given the diffusion-limited drug distribution, which does not allow the drug to reach the infiltrative area of recurrence. Moreover, the high interstitial fluid pressure and the presence of edema often observed in intracranial tumors may further hinder the diffusion of the infused agent.
\nAlternatively, convection-enhanced delivery (CED), another method for intracranial administration, achieves larger distribution volumes in the brain, for more homogeneous distribution within the tumor tissue, since it uses positive pressure to supplement simple diffusion with fluid convection. CED continuously delivers a bulk flow under a pressure gradient via a stereotactically guided catheter connected to a syringe pump. Drug leakage away from the tumor site [especially into the subarachnoid space with the subsequent drug spreading via the circulating cerebrospinal fluid (CSF)] should be avoided to minimize side effects such as chemical meningitis. In this regard, the suitable placement of catheters often prevents the leakage and helps spare healthy tissue.
\nCED can likewise deliver nanocarriers loaded with antineoplastic agents for CNS tumor therapy [26]. When combined with CED, the encapsulation of the drug infused into nanocarriers further reduces the potential side effects caused by drug leakage, while extends the brain half-life of anticancer agents by preventing them from being rapidly metabolized and/or eliminated by capillaries from the injection site. However, for efficient CED through the brain interstitium, the physicochemical properties of the colloidal systems must be optimized.
\nFirst, CED-injected nanomedicines must diffuse through interstitial spaces of the brain tissue. Hence, the size of the colloidal systems is a critical parameter to achieve optimal distribution volume with full coverage of the brain tumor tissue. Particles larger than 100 nm do not move readily through the brain interstitium, are retained near the administration site and do not distribute over clinically relevant volumes of brain tissue. Hence, in terms of size, the ideal nanocarrier for CED should be about 20–50 nm.
\nMoreover, to achieve optimal distribution volumes to cover both the tumor bed and the outlying cancer stem cells, it is convenient to provide nanocarriers with a hydrophilic coating [mostly polyethylene glycol (PEG) [27]]. The hydrophilic coating could help mask the hydrophobic structures, which would reduce the eventual binding to brain cells or to proteins in the interstitial space and ultimately enable greater diffusion. However, hydrophilic coating of nanocarriers also has the drawback of reducing the interactions with tumor cells, required for the loaded anticancer drug to eradicate the tumor. Alternatively, distribution volumes can be enhanced with the presence of co-infusates that serve to saturate the potential binding sites along the track of the infused nanomedicines. Furthermore, the ideal CED-administered nanocarrier should have a global neutral or negative charge to prevent nonspecific binding to negatively charged structures in the brain parenchyma and to achieve larger distribution volumes [27].
\nIn addition, the infusion of viscous and hyperosmolar suspensions of nanocarriers would help reduce the risk of drug leakage and enhance the distribution volume by means of osmosis-mediated dilatation of the interstitial space through which nanocarriers could transit, respectively.
\nNonetheless, despite its remarkable potential to improve clinical outcomes for CNS tumors, intracranial CED is an invasive neurosurgical procedure, which truly hinders its widespread use and limits the number of dosing cycles to be applied to eligible patients.
\n- The intrathecal administration involves the injection of anticancer drugs into the intrathecal space, which is the space that holds the cerebrospinal fluid (CSF). This can be achieved either with the implantation of an Ommaya reservoir (a dome-shaped container that is placed subcutaneously under the scalp during surgery, holds the chemotherapy and delivers it into the cerebral ventricles through a small catheter) or with direct injection into the CSF through a numbed area of the lower part of the spinal cord. Despite the significantly less invasive character of the second approach, intrathecal delivery fails to accumulate drugs in the brain parenchyma due to the bulk flow rate of CSF into the venous system, making this route optimal for the treatment of spinal tumors and disseminated meningeal metastases but not for parenchymal tumors like glioblastoma. Indeed, since meningeal gliomatosis remain protected by the blood-brain barrier, intrathecal delivery is widely considered a treatment approach for achieving improved outcomes for these patients [28].
\nEncapsulated drug | \nSystem | \nModel | \nRoute of administration | \nReferences | \n
---|---|---|---|---|
Irinotecan | \nLiposomes | \nU87-bearing rats | \nCED | \n[30] | \n
Irinotecan | \nLiposomes | \nGBM43-/SF7796-bearing mice | \nCED | \n[32] | \n
Topotecan | \nLiposomes | \nU251-/U87MG-bearing rats | \nCED | \n[31, 36] | \n
Topotecan + Doxorubicin | \nLiposomes | \nU87MG-bearing rats | \nCED | \n[33] | \n
Irinotecan + Doxorubicin | \nLiposomes | \nU251-/U87MG-bearing rats | \nCED | \n[34] | \n
Camptothecin | \nPolymer nanoparticles | \n9L-bearing rats | \nCED | \n[46] | \n
Temozolomide | \nPolymer nanoparticles | \nU87-bearing rats | \nCED | \n[47] | \n
HSVtk (+ intraperitoneal Ganciclovir) | \nPolymeric nanoparticles | \n9L-bearing rats | \nCED | \n[48] | \n
Paclitaxel (+ radiotherapy) | \nLipid nanocapsules | \n9L-bearing rats | \nCED | \n[49] | \n
Ferrociphenol | \nLipid nanocapsules | \n9L-bearing rats | \nCED | \n[37, 38, 50] | \n
Ferrociphenol (+ radiotherapy) | \nLipid nanocapsules | \n9L-bearing rats | \nCED | \n[51] | \n
Metothrexate | \nFifth-generation dendrimers | \nF98-bearing rats | \nCED | \n[42] | \n
Cisplatin | \nFifth-generation dendrimers | \nF98-bearing rats | \nCED | \n[43] | \n
EGFRvIII antibody | \nMagnetic nanoparticles | \nU87 glioma-bearing mice | \nCED | \n[39] | \n
Cetuximab | \nMagnetic nanoparticles | \nNO8-30, U87 and LN229-bearing mice | \nCED | \n[40] | \n
O6-Benzylguanine (+ oral temozolomide) | \nMagnetic nanoparticles | \nGBM6-bearing mice | \nCED | \n[35] | \n
Doxorubicin | \nPolymeric micelles | \n9L gliosarcoma-bearing rats | \nCED | \n[41] | \n
Synthetic retinoid Am80 (+ intraperitoneal temozolomide) | \nPolymeric micelles | \nU87 glioma-bearing rats | \nCED | \n[52] | \n
Camptothecin | \nPolymeric micelles | \nC6 glioma-bearing rats | \nIntranasal | \n[44] | \n
Camptothecin + siRNA (Raf-1) | \nPolymeric micelles | \nC6 glioma-bearing rats | \nIntranasal | \n[45] | \n
Locally-administered nanomedicines already tested for efficacy in vivo against orthotopic rodent brain tumor models.
Unfortunately, not all anticancer agents are suitable for intrathecal delivery, as drug spread along the spinal canal can cause dose-limiting chemical arachoniditis. For those irritant drug substances, intrathecal delivery can take great advantage of nanomedicine, since their encapsulation into nanostructures could minimize drug exposure to toxic levels. As a proof of it, intrathecal-administered liposomal cytarabine (Depocyt®) has been approved for clinical use in lymphomatous meningitis. Nonetheless, the cytotoxicity of cytarabine against a wide spectrum of tumors makes Depocyt® a promising candidate for treating the above-mentioned forms of CNS cancer.
\n- More recently, the intranasal delivery has been proposed as an alternative local route of administration. Its noninvasive nature would allow self-administration by nasal inhalation and would enable the sterilization procedures of the drug dosage form to be avoided. This delivery route exploits the fact that trigeminal and olfactory nerves that innervate the nasal epithelium represent the only direct connection between the external environment and the brain [29]. However, this route appears to be relatively inefficient in delivering inhaled drugs to distant brain structures, mainly due to drug loss via systemic absorption.
\nIn regard to brain tumor therapy, intranasal administration has received minor attention, with most applications of this approach being focused on the treatment of neurodegenerative diseases.
\nNumerous locally administered drug-loaded nanomedicines have already been assayed for efficacy in rodent models of brain tumors: liposomes, polymer nanoparticles, lipid nanocapsules, dendrimers, magnetic nanoparticles, and polymeric micelles, as summarized in Table 2. Although results are highly variable depending on various parameters, namely the tumor lineage and the onset, dose, and regimen of treatment, some general conclusions can be drawn from these preclinical studies. Overall, liposomes exhibited the most noticeable survival benefit and the presence of the highest percentage of long-term survivors [30, 31], partly because their potential as drug carriers was acknowledged earlier than any other alternative nanomedicine; hence research on nanomedicines for local CNS anticancer therapy has largely focused on liposomes.
\nLikewise, in some preclinical studies in rodent models, it was even evidenced that CED outperformed the survival benefit of the same formulation administered by a peripheral intravascular route [32]. Furthermore, the versatility of CED has enabled the coadministration of different liposomal formulations to enhance the effect of the anticancer agents [33, 34]. Concerning CED, numerous nanomedicines were formulated with a hydrophilic coating of polyethylene glycol and administered as slightly viscous suspensions to achieve optimal distribution volumes that cover the whole brain tumor tissue [35]. In fact, the deprivation of the hydrophilic coating, albeit increased median overall survival in comparison with untreated controls, significantly differed from efficacy findings reported for animals receiving the pegylated nanomedicines [36]. Nevertheless, it has been postulated the existence of a “threshold extent of pegylation,” over which the hindrance conferred by polyethylene glycol to interact with the tumor cells counterbalances the increase in CED distribution volume provided by slight pegylation [37]. On the other hand, the addition of active targeting moieties that preferentially bind to receptors that are overexpressed on brain tumor cells to promote the delivery of nanomedicines to their target cells is controversial: whereas the attachment of OX26 or a cell-penetrating peptide has shown to enhance both tumor and healthy tissue internalization, which led to the appearance of side effects and high morbidity [38], the attachment of chlorotoxin or antibodies that selectively bind to the epidermal growth factor receptor mutant (EGFRvIII) present on human glioblastoma cells achieved significant survival benefits [35, 39, 40]. The different response could be explained by the choice of the ligand: ligands that preferentially bind to receptors on the cerebral endothelium are pointless in local delivery, whereas ligands that bind to receptors overexpressed on the brain tumor cells are those to be used for active targeting in local delivery.
\nMoreover, some studies [41–43] evidenced the importance of an adequate drug release to achieve a therapeutic response: the covalent linkage of methotrexate [42] and cisplatin [43] to dendrimer structures did not lead to any improvement in the median survival time of F98-bearing rats due to a release failure, while the survival benefit achieved with micellar doxorubicin in 9L-bearing rats was significantly relevant compared with CED of liposomal doxorubicin at the same dose due to the lack of release of doxorubicin from the liposomal formulation [41].
\nImportantly, CED-administered nanocarriers have been designed to overcome the MGMT-related chemoresistance to alkylating agents. O6-benzylguanine has been loaded in iron oxide nanoparticles provided with a biocompatible chitosan-polyethylene glycol coating and actively targeted by chlorotoxin. The concurrent CED administration of these magnetic nanoparticles with oral temozolomide in mice implanted with a GBM6 clinically relevant xenograft extended by twofold the survival times in comparison with mice treated without the MGMT inhibitor and greatly mitigated the severe myelosuppression associated with systemic administration of free O6-benzylguanine [35].
\nWith regard to intranasal administration, polymeric micelles are the only nanomedicine type tested in rodent brain tumor models [44, 45]. The attachment of the cell-penetrating peptide Tat on their surface for actively enhancing the penetration rate across the nasal epithelium extended survival times [44].
Thanks to the high brain perfusion rate, systemic intravascular administration is a very convenient strategy in the clinical management of cancer for compatibility with repeated drug administration and for its lower invasiveness in comparison with most local delivery routes. However, despite being considered disrupted to some extent, the presence of the BBTB has motivated the failure of conventional systemic chemotherapy for CNS tumors, since in low grade and along the infiltrating areas of high-grade gliomas where recurrences tend to occur, the BBTB closely resembles the nonfenestrated endothelial cells typical of healthy brain capillaries. Hence, the BBTB restricts the paracellular permeation of most anticancer agents into the CNS. As a result, conventional systemic chemotherapy must be administered at high drug doses, which causes severe dose-dependent side effects in healthy nontarget tissues.
\nAgainst this background of hindrance to brain tumor delivery, nanomedicine may enhance the distribution of poorly brain-distributed anticancer agents across the brain endothelium, since nanocarriers may well serve to target brain tumors through passive and active targeting or even through external physical stimuli [53]. Passive targeting occurs with the diffusion of nanomedicines through the interendothelial gaps of the highly vascularized leaky BBTB in the case of high-grade brain tumors, a phenomenon known as the enhanced retention and permeation (EPR) effect [54]. Moreover, surface-modified brain actively targeted nanomedicines may also enhance CNS delivery across the intact brain endothelium of infiltrative parts and low-grade brain tumors by triggering transcytosis either by ligand-receptor binding or by electrostatic interactions [55]. Therefore, nanomedicines can be useful for the treatment of different malignancy grades of brain tumors. In addition, the use of stimulus-sensitive groups to control drug release within the brain in a therapeutically relevant concentration could further enhance the specificity of the treatment effect to the brain tumor area. Alternatively, nanomedicines can block the active drug efflux back into the bloodstream.
\nFor optimal passive targeting of brain tumors, systemic nanomedicines should have sufficient circulation time [56] to take advantage of the hypervascularized, leaky, and compromised lymphatic drainage system in a CNS tumor and selectively accumulate in the tumor tissue through the EPR effect. When given intravascularly, the larger the nanomedicines, the more susceptible to opsonization and removal by cells of the reticuloendothelial system (RES) [57]. Hence, to reduce opsonization in plasma and increase their plasma circulation time, the size of nanomedicines should be maintained below 100–200 nm. Additionally, the surface coating with hydrophilic polymers such as polyethylene glycol (PEG) to develop “stealth” nanomedicines creates a hydration layer that prevents protein adsorption and evades RES clearance [58], and consequently prolongs their circulation half-life.
\nTherefore, if properly designed, nanomedicines could cross the leaky BBTB in highly malignant brain tumors by passive targeting. Moreover, the BBTB can be artificially further disrupted to enable a wider distribution of nanomedicines to the brain tumor site. This disruption can be achieved via infusion of a hyperosmotic solution [59] or through the administration of vasoactive agents [60]. Hyperosmotic mannitol infusions cause a transient shrinkage of cerebrovascular endothelial cells, resulting in an enlargement of the tight junctions and BBTB leakiness. However, mannitol infusions also increase the permeability of healthy brain tissue, thereby increasing the risk of neurotoxicity. Conversely, the tumor vasculature is more sensitive than healthy brain vasculature to infusions with vasoactive agents (leukotrienes, bradykinin, and RMP-7, an analogue of bradykinin) through the transient activation of B2 receptors. Nevertheless, delivery of vasoactive agents requires intraarterial infusion, which increases the invasiveness of the procedure, and thereby creates a barrier for clinical translation of this approach. Alternatively, a local, transient, and reversible disruption of the BBTB can be generated by low-frequency focused ultrasound without permanent neuronal injury or other undesired long-term effects [61]. However, the artificial transient disruption of the BBTB is increasingly being considered undesirable since this might lead to widespread tumor dissemination and/or to the development of seizures due to the overexposure to neurotoxic blood components that enter the brain.
\nAdditionally, optimal active targeting of nanomedicines would enable anticancer agents to be delivered across fully functional BBB of infiltrative areas and low-grade brain tumors exploiting carrier-mediated transportation, receptor-mediated, or adsorption-mediated transcytosis.
\nOn the one hand, the carrier- and receptor-mediated active targeting involves functionalizing the surface of nanomedicines with moieties that specifically bind to receptors overexpressed on the brain endothelium and/or brain tumor cell membranes [62]. Therefore, different receptors in the brain could be employed:
\n- Penetration into the brain tumor area can be improved by simply targeting receptors that are normally overexpressed on the brain endothelium (such as transferrin receptors, nicotinic acetylcholine receptors, low-density lipoprotein receptor (LRP1), or carriers responsible for brain nutrient uptake) [62]. To target the transferrin receptor, both physiological ligands (transferrin and lactoferrin) and monoclonal antibodies (OX26 and 8D3) have been attached onto the surface of different types of nanomedicines [63–65]. Overall, physiological ligands ensure biocompatibility and nonimmunogenicity but develop competitive phenomena with endogenous ligands, whereas monoclonal antibodies prevent competitive phenomena with endogenous ligands since they bind to a different epitope. Likewise, nicotinic acetylcholine receptors have been targeted with peptides derived from snake neurotoxins, namely candoxin and Ophiophagushannah toxin b [66–68]. The peptide angiopep-2 has also been attached onto the surface of several nanomedicines to target LRP1 [69, 70]. Furthermore, glucose or mannose conjugation to nanomedicines has conferred brain-targeting properties through overexpressed facilitative glucose transporters [71, 72].
\n- Receptors distributed on proliferating endothelial cells in the tumor vasculature (αVβ3 integrin, aminopeptidase N, nucleolin) represent additional potential sites for active targeting of nanomedicines to brain tumor tissue. In this sense, peptides containing the amino acid sequence Arg-Gly-Asp (RGD) have been coupled to the surface of distinct nanomedicines to bind to αVβ3 integrin [73, 74]. Another tripeptide Asn-Gly-Arg (NGR) has been conjugated to different nanomedicines to target aminopeptidase N (CD 13) [75]. Moreover, the ability of the F3 peptide and the AS1411 aptamer to bind to nucleolin has been exploited to actively target nanomedicines to the brain tumor tissue [76, 77].
\n- Nanomedicines could also incorporate targeting moieties that bind to receptors that are overexpressed on tumor cells, to reduce the side effects of the antitumor agent on healthy brain cells after bypassing the BBTB. Apart from the already mentioned LRP1 and αVβ3 integrin, these tumor targets include the receptor of the epidermal growth factor (EGFR) and its malignant isoform EGFRvIII, receptors for interleukins 13 (IL-13Rα2) and 4 (IL-4R), the folate and the insulin receptors, and even the membrane-bound matrix metalloproteinase-2 (MMP-2). Consequently, antibodies to EGFR or EGFRvIII have been conjugated to several nanomedicines for brain tumor targeting. Likewise, antiIL13Rα2 antibodies and IL-13 or IL-4-derived peptides (PEP-1 or AP-1, respectively) have been attached onto the surface of nanomedicines to selectively bind to interleukin receptors [78, 79]. To target the folate receptor, folid acid has been used, whereas to target the insulin receptor, the monoclonal antibody 83–14 has been incorporated to nanomedicines, since the use of the physiological ligand in this case was truly restricted by its biological effect on nontarget regions (namely hypoglycemia) [63]. Furthermore, MMP-2 has been widely targeted with nanomedicines coupled to a peptide derived from scorpion venom: chlorotoxin [65, 80].
\nSince any ligand for which a receptor exists on the cerebral endothelial or on the tumor cells might be used for active targeting, the enrichment of knowledge about the transport systems present on the BBB/BBTB and the glioma-specific receptors would enable novel practical approaches for improving the passage of nanomedicines to be designed with the purpose of exposing the entire diseased brain tumor area to pharmacologically meaningful quantities.
\nOn the other hand, the adsorption-mediated active targeting takes advantage of electrostatic interactions between positively charged ligands and the negatively charged sialic acid residues in membrane glycoproteins of brain endothelial cells to trigger transcytosis. Hence, this type of active targeting involves modifying the surface of nanomedicines to make them positively charged, namely functionalization with cationic serum albumin and cell-penetrating peptides. The most frequently used cell-penetrating peptide for functionalization of nanomedicines is the transactivator of transcription peptide derived from HIV (TAT).
\nSubsequently, nanomedicines can also be designed to target simultaneously the BBB, the BBTB and the brain tumor cells by either attaching multiple targeting moieties, or by conjugating a single ligand that targets both the brain endothelia and the brain tumor cells [81]. In this case, nanomedicine could indeed represent a potential platform for targeting heterogeneous brain tumors [15].
\nFinally, nanomedicines can increase intratumoral concentration of systemically administered anticancer agents by inhibiting the efflux pump function of P-glycoprotein that is present at the BBTB and at the infiltrative tumor cells and that actively removes these drugs, accounting to a great extent for resistance to chemotherapy. A localized inhibition on brain efflux transporters can be achieved by co-loading pharmacological efflux pump inhibitors (such as tamoxifen) or by the nanomedicine itself, since the coating with nonionic surfactants seems to provide the nanocarrier itself with efflux-pump blockage properties.
\nBesides tailoring the size and surface properties of nanomedicines to influence intratumoral accumulation, external forces such as a magnetic field, light, and heat can also help selectively release the loaded drug of systemically administered nanomedicines at the tumor site [82]. Magnetic targeting has been applied under the assumption that magnetic nanoparticles can accumulate within a tumor area after systemic administration with a locally applied magnetic field. Another external force such as heat can be also used to control drug release in the case of nanomedicines whose excipients exhibit thermosensitive properties. Apart from enhancing tumor blood flow and vascular permeability, the application of local hyperthermia enables the drug to be easily released from thermosensitive nanomedicines when heating over the phase-transition temperature of the excipients.
\nNumerous intravenously administered drug-loaded nanomedicines have already been assayed for efficacy in rodent models of brain tumors: liposomes, polymer nanoparticles, lipid nanocapsules, dendrimers, polymeric micelles, magnetic nanoparticles, and gold nanoparticles (Table 3). Albeit results extremely depend on the tumor lineage and the onset, dose, and regimen of treatment, some general conclusions can be drawn. In broad terms, following intravenous administration, similar results were obtained with most types of nanomedicines.
\nEncapsulated drug | \nSystem | \nStrategy | \nModel | \nReferences | \n
---|---|---|---|---|
Paclitaxel | \nLiposomes | \nNone | \n9L gliosarcoma-bearing rats | \n[89] | \n
Paclitaxel | \nLiposomes | \n- Polyethylene glycol coatinga - RGD peptideb - Histidine rich TH peptidec | \nC6 glioma-bearing mice | \n[73] | \n
Irinotecan | \nLiposomes | \n- Polyethylene glycol coatinga | \nU87MG glioblastoma-bearing mice | \n[90] | \n
Topotecan | \nLiposomes | \n- Polyethylene glycol coatinga - Wheat germ agglutininb - Tamoxifend | \nC6 glioma-bearing rats | \n[91] | \n
Topotecan | \nLiposomes | \n- Polyethylene glycol coatinga | \nU87M/GBM-43/GBM-6 glioblastoma-bearing mice | \n[92] | \n
Doxorubicin | \nLiposomes | \n- Polyethylene glycol coatinga - Folateb - Transferrinb | \nC6 glioma-bearing rats | \n[93] | \n
Doxorubicin | \nLiposomes | \n- Lactoferrinb - Nanocarrier cationizationc | \nC6 glioma-bearing rats | \n[94] | \n
Doxorubicin | \nLiposomes | \n- Polyethylene glycol coatinga - DCDX peptideb | \nU87MG glioblastoma-bearing mice | \n[66] | \n
Doxorubicin | \nLiposomes | \n- Polyethylene glycol coatinga - AP-1 peptideb - Focused ultrasounde | \nGBM8401 glioblastoma-bearing mice | \n[79] | \n
Doxorubicin | \nLiposomes | \n- Polyethylene glycol coatinga - Glutathioneb | \nU87MG glioblastoma-bearing mice | \n[86] | \n
Doxorubicin | \nLiposomes | \n- Polyethylene glycol coatinga - Hyperthermiae | \nC6 glioma-bearing mice | \n[95] | \n
Epirubicin | \nLiposomes | \n- Polyethylene glycol coatinga - Transferrinb - Tamoxifend | \nC6 glioma-bearing rats | \n[96] | \n
Daunorubicin | \nLiposomes | \n- Polyethylene glycol coatinga - Mannoseb \n- Transferrinb | \nC6 glioma-bearing rats | \n[72] | \n
RNA antiEGFR | \nLiposomes | \n- Polyethylene glycol coatinga - 83-14b - 8D3b | \nU87MG glioblastoma-bearing mice | \n[63] | \n
siRNA antiEGFR | \nLiposomes | \n- Polyethylene glycol coatinga \n- T7 peptideb | \nU87MG glioblastoma-bearing mice | \n[64] | \n
DNA (pC27) | \nLiposomes | \n- Polyethylene glycol coatinga - OX26b - Chlorotoxineb | \nC6 glioma-bearing rats | \n[65] | \n
Paclitaxel | \nPolymeric nanoparticles | \n- Polyethylene glycol coatinga - AS1411 aptamerb | \nC6 glioma-bearing rats | \n[77] | \n
Paclitaxel | \nPolymeric nanoparticles | \n- Polyethylene glycol coatinga - Peptide 22b | \nC6 glioma-bearing mice | \n[87] | \n
Paclitaxel | \nPolymeric nanoparticles | \n- Polyethylene glycol coatinga - F3 peptideb | \nC6 glioma-bearing mice | \n[76] | \n
Paclitaxel | \nPolymeric nanoparticles | \n- Polyethylene glycol coatinga - PEP-1b | \nC6 glioma-bearing mice | \n[97] | \n
Paclitaxel | \nPolymeric nanoparticles | \n- Polyethylene glycol coatinga - Glucoseb | \nRG-2 glioma-bearing mice | \n[71] | \n
Paclitaxel | \nPolymeric nanoparticles | \n- Polyethylene glycol coatinga - APT peptideb | \nU87MG glioblastoma-bearing mice | \n[98] | \n
Paclitaxel | \nPolymeric nanoparticles | \n- Polyethylene glycol coatinga - iNGR peptideb | \nU87MG glioblastoma-bearing mice | \n[75] | \n
Paclitaxel | \nPolymeric nanoparticles | \n- Polyethylene glycol coatinga - RGD peptideb | \nU87MG glioblastoma-bearing mice | \n[74] | \n
Paclitaxel | \nPolymeric nanoparticles | \n- Polyethylene glycol coatinga - Angiopepb | \nU87MG glioblastoma-bearing mice | \n[70] | \n
Gemcitabine | \nPolymeric nanoparticles | \n- Polysorbate-80 coatinga | \nC6 glioma-bearing rats | \n[83] | \n
Aclarubicin | \nPolymeric nanoparticles | \n- Polyethylene glycol coatinga - Cationic serum albuminc | \nC6 glioma-bearing rats | \n[99] | \n
Camptothecin | \nPolymeric nanoparticles | \nNone | \nGL261 glioma-bearing mice | \n[84] | \n
Doxorubicin | \nPolymeric nanoparticles | \n- Polysorbate-80 coatinga | \n101-8 glioblastoma- bearing rats | \n[100] | \n
Doxorubicin | \nPolymeric nanoparticles | \n- Polysorbate-80/Poloxamer-188/Poloxamer-908 coatinga | \n101-8 glioblastoma- bearing rats | \n[101] | \n
Doxorubicin | \nPolymeric nanoparticles | \n- Polysorbate-80/Poloxamer-188 coatinga | \n101-8 glioblastoma- bearing rats | \n[102] | \n
Docetaxel | \nPolymeric nanoparticles | \n- Polyethylene glycol coatinga - TGN peptideb - AS1411 aptamerb | \nC6 glioma-bearing mice | \n[78] | \n
Docetaxel | \nPolymeric nanoparticles | \n- Polyethylene glycol coatinga - IL-13 peptideb | \nU87MG glioblastoma-bearing mice | \n[103] | \n
Porphyrin | \nPolymeric nanoparticles | \n- Polyethylene glycol coatinga \n- F3 peptideb \n- Photodynamic therapye | \n9L gliosarcoma-bearing rats | \n[104] | \n
Ferrociphenol | \nLipid nanocapsules | \n- Polyethylene glycol coatinga | \n9L gliosarcoma-bearing rats | \n[85] | \n
Doxorubicin | \nDendrimers | \n- Polyethylene glycol coatinga \n- RGD peptideb | \nC6 glioma-bearing mice | \n[88] | \n
RNA antiEGFR (miR-7) | \nDendrimers | \n- Folateb | \nU251 glioma-bearing mice | \n[105] | \n
DNA (TRAIL) | \nDendrimers | \n- Polyethylene glycol coatinga \n- Chlorotoxinb | \nC6 glioma-bearing mice | \n[80] | \n
DNA (TRAIL) | \nDendrimers | \n- Polyethylene glycol coatinga \n- Angiopepb | \nC6 glioma-bearing mice | \n[69] | \n
DNA (TRAIL) | \nDendrimers | \n- Polyethylene glycol coatinga \n- RGD peptideb | \nU87MG glioblastoma-bearing mice | \n[67] | \n
Paclitaxel | \nPolymeric micelles | \n- Polyethylene glycol coatinga - CDX peptide (candoxin)b | \n||
Paclitaxel | \nPolymeric micelles | \n- Polyethylene glycol coatinga - RGD peptideb \n- Transferrinb | \nU87MG glioblastoma-bearing mice | \n[106] | \n
Paclitaxel | \nPolymeric micelles | \n- Polyethylene glycol coatinga \n- KC2S peptideb | \nU87MG glioblastoma-bearing mice | \n[68] | \n
Paclitaxel | \nPolymeric micelles | \n- Polyethylene glycol coatinga \n- RGD peptideb | \nU87MG glioblastoma-bearing mice | \n[107] | \n
Paclitaxel | \nPolymeric micelles | \n- Polyethylene glycol coatinga \n- CDX peptideb | \nU87MG glioblastoma-bearing mice | \n[108] | \n
Doxurubicin + Paclitaxel | \nPolymeric micelles | \n- Polyethylene glycol coatinga \n- RGD peptideb | \nU87MG glioblastoma-bearing mice | \n[109] | \n
SN-38 (camptothecin derivative) | \nPolymeric micelles | \n- Polyethylene glycol coatinga | \nU87MG glioblastoma-bearing mice | \n[110, 111] | \n
Paclitaxel | \nMagnetic nanoparticles | \n- Magnetic fieldse | \nC6 glioma-bearing rats | \n[112] | \n
Doxorubicin | \nGold nanoparticles | \n- Polyethylene glycol coatinga \n- TAT peptidec | \nU87MG glioblastoma-bearing mice | \n[113] | \n
Intravenously-administered nanomedicines already tested for efficacy in vivo against orthotopic rodent brain tumor models.
Strategies: a: passive targeting; b: carrier/receptor-mediated active targeting; c: adsorption-mediated active targeting; d: inhibition of efflux pump function; e: targeting caused by external physical stimuli
Most nanomedicines intended for preclinical evaluation following intravenous administration were designed to exploit passive and/or active targeting. Overall, stealth properties alone do not appear sufficient for enabling a nanoparticle-mediated transport into the brain, since in most cases of passively nonactively targeted nanomedicines survival benefits remained extremely modest [83–85].This could be due to the fact that PEG coating also reduces the tumor cell uptake of nanomedicines.
\nAdditional active targeting using moieties that preferentially bind to receptors on the cerebral endothelial cells or overexpressed on brain tumor cells did indeed improve the therapeutic potential of nanomedicines due to preferential distribution to and within the brain tumor area: in all the studies with intravenously administered actively targeted nanomedicines, the median survival times were longer than their actively untargeted counterparts and noticeably longer than the untreated controls [75, 86–88].
\nHowever, most of these receptors are ubiquitously expressed to some degree. Hence, in order to prevent the occurrence of nonspecific side effects, dual-actively targeted have already been designed for achieving optimal targeting after systemic administration. In broad terms, the preclinical studies with these dual-targeted nanomedicines showed more extended survival times over their monotargeted counterparts [65, 73, 78].
Despite the tremendous efforts thus far, malignant CNS tumors still represent an unmet medical need. Albeit the rapidly evolving knowledge about tumor biochemistry enables various new drug molecules to be designed as treatments, drug delivery in CNS tumors deserves explicit attention, as otherwise, novel therapies will continue to fail to expose the entire tumor and the infiltrate cells that are not located in the tumor bed to such therapeutics at pharmacologically meaningful quantities. In this regard, nanomedicine poses an appealing platform for efficient drug delivery to the CNS, since it may be targeted to improve the availability of the drugs in their site of action, which could be translated into lower drug doses and fewer side effects.
\nThe BBTB restricts the permeation of most anticancer agents into the CNS, especially in areas where the BBTB more closely resembles the BBB. Therefore, one major challenge in the field of systemic chemotherapy is the development of nanomedicines that can effectively overcome the BBTB and allow specific targeting of brain cancer cells. Overall, the features of nanomedicines dictate their biological fate: size and surface charge, the surface hydration and/or the presence of targeting ligands on the surface. Concerning brain endothelium permeation, an ideal systemic nanomedicine for CNS drug delivery should be around or smaller than 100 nm; be provided with a hydrophilic coating to avoid removal by the RES, extend its plasma half-life and indirectly increase the likelihood of crossing the brain endothelium; have targeting moieties to selectively enhance the distribution across the BBTB to the CNS and even be able to inhibit the drug efflux transporters at the BBTB.
\nClinicalTrials.gov identifier | \nCondition | \nTreatment | \nNanomedicine | \nRoute of administration | \nTargeting approach | \nPhase | \n
---|---|---|---|---|---|---|
NCT00003073u | \nCNS tumors | \nCytarabine | \nLiposome (DepoCyt®) | \nIntrathecal | \nNone | \nI | \n
NCT00029523c | \nNeoplastic meningitis | \nCytarabine | \nLiposome (DepoCyt®) | \nIntrathecal | \nNone | \nUnspecified | \n
NCT00313599c | \nCNS tumors | \nPaclitaxel (+ oral lapatinib) | \nAlbumin nanoparticles (Abraxane®) | \nIntravenous | \nNone | \nI | \n
NCT00019630c | \nBrain tumors (Children) | \nDoxorubicin | \nPegylated liposome (Lipodox®) | \nIntravenous | \nPassive | \nI | \n
NCT00465673t | \nBrain metastases | \nDoxorubicin | \nPegylated liposome (Lipodox®) | \nIntravenous | \nPassive | \nII | \n
NCT00734682c | \nGlioblastoma Gliosarcoma Anaplastic astrocytoma \nAnaplastic oligodendroglioma | \nIrinotecan | \nPegylated liposome | \nIntravenous | \nPassive | \nI | \n
NCT00854867c | \nNeoplastic meningitis | \nCytarabine (+ concomitant/sequential radiotherapy) | \nLiposome (DepoCyt®) | \nIntrathecal | \nNone | \nI | \n
NCT00944801c | \nGlioblastoma | \nDoxorubicin (+ temozolomide + radiotherapy) | \nPegylated liposome (Caelix®) | \nIntravenous | \nPassive | \nI/II | \n
NCT00964743t | \nNeoplastic meningitis | \nCytarabine (+ oral sorafenib) | \nLiposome (DepoCyt®) | \nIntrathecal (Ommaya reservoir) | \nNone | \nUnspecified | \n
NCT00992602c | \nLeptomeningeal metastases | \nCytarabine (+ intravenous methotrexate) | \nLiposome (DepoCyt®) | \nIntrathecal | \nNone | \nII | \n
NCT01044966t | \nGlioblastoma multiforme Glioma Astrocytoma Brain tumor | \nCytarabine (+ oral temozolomide) | \nLiposome (DepoCyt®) | \nIntrathecal | \nNone | \nI/II | \n
NCT01222780c | \nBrain tumors (Children) | \nVincristine | \nLiposome (Marqibo®) | \nIntravenous | \nNone | \nI/II | \n
NCT01386580c | \nRecurrent malignant glioma Brain metastases | \nDoxorubicin | \nGlutathione pegylated liposome | \nIntravenous | \nPassive + Active | \nI/II | \n
NCT01563614t | \nLeptomeningeal metastases | \nCytarabine (+ oral lomustine + radiotherapy) | \nLiposome (DepoCyt®) | \nIntrathecal | \nNone | \nI | \n
NCT01818713u | \nLeptomeningeal metastases | \nDoxorubicin | \nGlutathione pegylated liposome | \nIntravenous | \nPassive + Active | \nII | \n
NCT02022644r | \nHigh-grade glioma | \nIrinotecan | \nPegylated liposome | \nCED | \nPassive | \nI | \n
NCT02340156r | \nGlioblastoma | \nNormal human wild type p53 DNA sequence (+ oral temozolomide) | \nAnti-transferrin receptor single-chain antibody cationic liposome | \nIntravenous | \nActive | \nII | \n
Nanomedicines that have already reached the clinical trials stage for the treatment of CNS tumors.
Identifier of the current state of the clinical trial: u: unknown; c: completed; t: terminated; r: recruiting.
Alternatively, nanomedicines can be locally administered to bypass the BBTB. However, CED and intrathecal delivery remain invasive approaches that carry significant risks for patients. An optimal nanomedicine for CED should be below 100 nm, neutral or negatively charged, conjugated to specific ligands that bind the tumor cell receptors and be infused in a slight viscous and hyperosmolar solution.
\nOverall, nanomedicines intended for brain delivery either for systemic or local delivery should ideally be biocompatible and biodegradable, have a controllable release profile to trigger drug release at the site of action, be able to be sterilized and have a feasible industrial production for clinical implementation.
\nOn the basis of the promising results gathered from preclinical studies of nanomedicine-based therapy, some nanomedicines have already been approved for clinical trials in a variety of CNS tumors conditions to serve as the first steps in translation of nanotherapy to clinic (Table 4). Therefore, their outcome will steer further research directions and when successful, will provide handles for further improvements. Unfortunately, the results of the already completed clinical trials are not yet available on clinicaltrials.gov.
\nIt is worth underlining the fact that current clinical trials using nanomedicines for brain tumors are conducted on patients who have failed conventional therapy and have very poor prognosis (mostly recurrent high-grade glioma or brain metastases). However, expanding the application of nanomedicine to less aggressive forms of brain cancer is challenging, as long as the long-term side effects due to the interactions of colloids with biological structures are not yet known and, consequently, the regulatory agencies have not yet developed comprehensive regulatory guidelines for nanomedicines.
\nIn view of the approved clinical trials, some general conclusions can be drawn. On the one hand, whereas several liposomal formulations are already under clinical trials, the rest of types of nanomedicines are lagging behind. The investigation of nanomedicines for CNS delivery has focused largely on liposomal preparations mostly due to the fact that their potential as drug carriers was already acknowledged back in the 1970s, much earlier than any other alternative nanocarrier.
\nOn the other hand, most liposomes that reached clinical trials for the treatment of brain tumors are passively targeted, avoiding the ligand-receptor interaction. Despite the promising preclinical results, translation of active targeting to clinical trials poses some challenges, since most targeted receptors are not exclusively present at the BBTB and/or brain tumor cells, which may give raise to side effects. Additionally, nanomedicines conjugated with physiological ligands can develop competitive phenomena with endogenous ligands and dysregulate their homeostasis, whereas nanomedicines that incorporate monoclonal antibodies must be able to interact with human receptors to not cause immunogenic reactions; hence, presumably different from those antibodies assayed in rodent preclinical models. Nonetheless, two actively targeted liposomes have recently made their way to clinical trials to cross the BBB after intravenous injection for achieving higher and efficacious brain drug levels: 2B3-101 is a PEGylated liposomal doxorubicin formulation conjugated with glutathione and SGT-53 is a cationic liposome conjugated with an antitransferrin receptor single-chain antibody and encapsulating a normal human wild-type p53 DNA sequence to restore the wild-type p53 function and downmodulate MGMT activity in order to increase the sensitivity of tumor cells to alkylating agents.
\nConcerning the different routes of administration, intravenous among the systemic routes and CED and intrathecal delivery among the local routes have even made its way into clinical trials for nanoparticle administration.
\nIn conclusion, clinical implementation of nanomedicines for patients with brain tumors is still in its infancy. However, further clinical studies of brain-targeted nanomedicines are warranted in the future, with increasing incidences of CNS cancers, many of whom being terrible rapidly progressing and so far untreatable tumors. Hence, the accumulation of data about the CNS physiology and about relevant receptors, the widening therapeutic armamentarium of drugs potentially useful in CNS chemotherapy, the alternative routes for administration and the estimation of the brain permeability with in vitro BBB models to early triage the potential of nanomedicines for optimum therapy of brain tumors envisage nanomedicines as a forthcoming routine approach [114].
This work was partially funded by the Research Group GR35/10 Santander-UCM, Group: Parenteral Administration of Drugs. Juan Aparicio-Blanco thanks the Spanish Ministry of Education for the Contract within the Professor Training Program FPU (Ref. FPU13/02325).
\nMultiple sclerosis is an immune-mediated disease involving the central nervous system predominantly affecting the brain, spinal cord, and optic nerves. There is no gold standard or pathognomonic features that can distinguish MS from other neurological conditions with multiple anatomical site involvement. A comprehensive history obtained from the patient, clinical examination with the support of laboratory investigations with is required to assist in the diagnosis of MS. The key to diagnosis has always been dissemination in time, which translates into different time interval of clinical relapse, and dissemination of space, which is a variable anatomical site in the central nervous system. Hence difference in time and neuroanatomical site is essential. Several criteria have been created over the last several decades such as Schumacher criteria, [1], Poser criteria [2], and McDonald criteria [3, 4, 5]. McDonald criteria has been first established in 2001 and revised in 2005, 2010, and 2017. Revisions are necessary due to evolving research and advances in the field of demyelinating diseases. Researchers in neuroimmunology diseases concurred the diagnosis of MS could be made earlier and can be used for paediatric population and Asian patients [5]. Investigations are done for diagnosis of MS to ensure there are no other possible explanations for the clinical and radiological presentation. As the patient can be subjected to lifelong immune modulators and immunosuppressant, it is highly essential to ensure diagnosis is made accurately and possible differentials are monitored during follow-up. A clinician’s job does not end with establishing diagnosis and instituting treatment. Careful surveillance is necessary to ensure we are in the right track as regards to the diagnosis. Misdiagnosis could still occur, and therefore it must be addressed, and measures should be undertaken to minimise them.
Awareness about MS is crucial for the patient to seek attention, and to ask for a second opinion when necessary is important both for patients and healthcare providers. A good history with a knowledge of common presentations and bearing in mind neuroanatomical sites involved will be valuable in coming to a conclusion, and focused investigations will be needed. Knowledge of subtypes and classification will be helpful to the clinician.
Four subtypes of multiple sclerosis are used [6].
Active or disease activity is measured by clinical relapses and MRI evidence of contrast-enhanced lesion or new or enlarging lesion on T2-weighted images by annual clinical assessment.
Progression-progressive disability by annual clinical assessment
If no annual assessment is done, it is called indeterminate.
Clinically isolated syndrome
Active
Not active
Relapsing-remitting multiple sclerosis
Active
Not active
Primary progressive disease
Active with progression
Active but without progression
Not active but with progression
Not active and without progression
Secondary progressive disease
Active with progression
Active but without progression
Optic nerve involvements are common and often the first presentation in multiple sclerosis [7]. The severity can vary from being asymptomatic to severe visual loss, and recovery could be complete, partial, or no resolution. The symptoms could begin as pain behind the eye and evolve into visual impairment in the centre of the eye and may worsen till visual acuity is lost. Diminished colour appreciation or dyschromatopsia may be seen. The pain associated with ON tends to progress over days. Visual improvement may occur in 3–8 weeks, and most visual recovery occurs within the first 6 months but can continue for up to 1 year after the acute event [8, 9, 10, 11, 12]. However, many patients may experience residual and variable visual complaints and dysfunction after recovery. Examination on optic neuritis could reveal no abnormalities, and deficits are present; there may be disc selling, fine haemorrhages, impaired visual acuity, central or centrocecal oedema, relative afferent pupillary defect or Marcus Gunn pupil, impaired colour vision, and pale optic discs [11]. Phosphenes, which are an experience of bright flashes of light without light entering the eye, Uhthoff’s phenomenon where there is brief blurring of vision during physical exercise [13].
Numbness and weakness of upper and or lower limbs are presentations seen in spinal cord lesions in MS [14]. Cord lesions also come with urinary incontinence, frequency, and urinary retention depending on the level and severity involved. Constipation and diarrhoea could relate to bowel dysfunction. The symptoms are of corticospinal tract lesion; a clear sensory level might guide the clinician to focus on a cord lesion rather than a peripheral lesion due to a lower motor neuron lesion. Clinical assessment may reveal increased tone, monoparesis, hemiparesis and quadriparesis, abnormal cutaneous and sensory deficit, and sphincter disturbance [14]. The clinical diagnosis involving the cord is called myelitis.
Double vision, speech difficulty, swallowing difficulty, nausea, vomiting, hiccups, vertigo, unsteadiness, and weakness of limbs are symptoms seen in brainstem lesions. Examination would reveal nystagmus, ophthalmoplegia, dysarthria, and facial weakness [14]. Cranial nerve deficits involving III–XII may be seen. Cerebellar connection with the brainstem can cause dysdiadochokinesia, dysmetria, and ataxia [15]. Brainstem lesions could also cause respiratory failure and locked-in syndrome. Localization of the neuroanatomical site can be judged based on the symptoms prior to neuroimaging.
Unsteadiness involving upper and lower limbs, gait instability, and dysarthria are common symptoms seen in structures involving the cerebellum. Tremors, which are either due to cerebellar or thalamic involvement, could occur, and they result in tremor affecting limbs, trunk, and vocal cord, and head. Types of tremors are intention, postural, rest, and rubral (Alistair [16]). Cerebellar signs will be evident with a significant involvement of the cerebellum. A pure cerebellar syndrome is rare and other causes must be investigated. Tremors in cerebellar involvement affect arms, legs, head, and trunk in descending order of frequency. Face, tongue, and jaw were not affected in a study done by Alusi et al. [17].
Symptoms involving the cerebral hemispheres correlate the site of lesion such as the parietal, temporal, frontal, and occipital lobes. Symptoms are right- or left-sided hemianaesthesia, hemiparesis, hemiplegia, or monoplegia and visual symptoms due to visual field defect. Aphasia or dysphasia and epilepsy are rare symptoms noted in MS [13].
Spasticity, cognitive dysfunction, fatigue, affective disorders, and sexual dysfunction are normally seen in chronic disease [13]. An in-depth history during the first clinical assessment is a valuable asset to establishing the diagnosis.
There are no blood investigations that are pathognomonic for the diagnosis of multiple sclerosis. However, in order to rule out other neurological conditions that can mimic MS, a complete workout is necessary. Screening for connective tissue diseases such as Systemic Lupus Erythematosus, antiphospholipid antibody, retroviral screen, other autoimmune condition such as thyroid disease, infectious diseases, Lyme disease and angiotensin converting enzyme are necessary [18].
Lumbar puncture for CSF analysis is required as it can further assist in the diagnosis as its presence reveals a risk of developing MS in patients with clinically isolated syndrome [3, 5, 19]. In 2017, cerebrospinal fluid (CSF) is done to look for oligoclonal band and immunoglobulin G (IgG), and a parallel serum sample need to be taken as no OCB production is noted in the blood in multiple sclerosis. Oligoclonal band and immunoglobulin G are indicative of intrathecal inflammation which is B cell modulated from plasma cells seen in CNS inflammatory disease [20]. Distinctive CSF analysis will disclose slightly raised leucocyte count, B cells, or plasma cells in cytological analysis and raised IgG synthesis [21]. Oligoclonal band will be highly helpful in the event of other clinical features that are not diagnostic, and furthermore it depicts dissemination in space. Lumbar puncture is recommended in the following situations [5]:
When clinical and MRI evidence is inadequate to make diagnosis of multiple sclerosis, especially if treatment is considered
When there are atypical features of clinically isolated syndrome and in population where MS is less common such as children, older individuals, or non-white populations
The Panel on Diagnosis of Multiple Sclerosis [5] cautions diagnosis of multiple sclerosis early on in the disease and in children when OCB is negative in atypical clinical, radiological, or OCB findings.
There are two methods of analysing the CSF for oligoclonal band agarose gel electrophoresis/Coomasie Blue Staining and isoelectric focus/silver staining [22]. Oligoclonal bands are positive in up to 95% of patients with clinically definite multiple sclerosis.
Evoked potentials are electrophysiological tests done to look for evidence of silent lesions [23]. Abnormal or slowing of electrical conduction along the central nervous system pathway can be detected even when there are no obvious clinical features seen. Visual evoked potentials are visual stimulation, which consists high contrast black and white checkerboard where these squares, are changed places and response to this reversal is recorded. Delayed waveform depicts an optic nerve lesion. Brainstem evoked potentials are when auditory stimulations in the form of clicks are given for a response obtained from the brainstem. It assesses lower brainstem auditory pathway. The BAEP are abnormal when demyelination involves brainstem. Somatosensory evoked potentials are obtained when stimulation from the peripheral nerves in the upper limbs produces a response. An abnormal response could translate to demyelination within the central fibres of dorsal column-medial lemniscal pathways. Evoked potentials may not be useful with advances in MRI techniques and oligoclonal band, and they have not been included in McDonald criteria 2017.
Magnetic resonance imaging (MRI) is a neuroimaging of choice for diagnosis of MS and plays a key role in research, surveillance, and treatment. Although the McDonald criteria denote that two clinical attacks depicting dissemination in time and space are sufficient to make a diagnosis, neurologists and neurologist with interest in MS would require a baseline MRI to confirm diagnosis and for surveillance. White matter lesions in the MRI are characteristic with typical juxtacortical, cortical; periventricular, brainstem and spinal cord lesions are required. MRI protocols used in MS are spin echo T2 weighted, fluid-attenuated inversion recovery. The Consortium of MS Centres revised and updated guidelines for MRI ([24], ww.mscare.org/mri).
Baseline studies for patients with a clinically isolated syndrome (CIS) and/or suspected MS:
Brain MRI protocol with gadolinium at baseline and to establish dissemination in time
Spinal cord MRI if myelitis, insufficient features on brain MRI to support diagnosis, or age > 40 years with nonspecific brain MRI findings
A cervical cord MRI performed simultaneously with the brain MRI could have prognostic value in the evaluation of CIS patients with or without myelitis and would reduce the number of patients requiring a subsequent MRI appointment
Orbital MRI if severe optic neuritis with poor recovery
Timing of a follow-up brain MRI protocol for patients with a CIS and/or suspected MS to look for evidence of dissemination in time (i.e. new T2 lesions or gadolinium-enhancing lesions):
6–12 months for high-risk CIS (e.g. ≥ 2 ovoid lesions on first MRI)
12–24 months for low-risk CIS (i.e. normal brain MRI) and/or uncertain clinical syndrome with suspicious brain MRI features (e.g. radiologic isolated syndrome [RIS])
Timing of brain MRI protocol for patients with an established diagnosis of MS:
No recent prior imaging available (e.g. patient with established diagnosis of MS and new to your clinical practice)
Postpartum to establish a new baseline
Prior to starting or switching disease-modifying therapy
Approximately 6–12 months after switching disease-modifying therapy to establish a new baseline on the new therapy
Every 1–2 years while on disease-modifying therapy to assess for subclinical disease activity (i.e. new T2 lesions or gadolinium-enhancing lesions). Less frequent MRI scans required in clinically stable patients after 2–3 years of stable treatment (gadolinium-based contrast optional)
Unexpected clinical deterioration or reassessment of original diagnosis (gadolinium-based contrast recommended)
The use of gadolinium-based contrast agents is helpful but not essential for detecting subclinical disease activity because new T2 MS lesions can be identified on well-performed standardized MR imaging unless there is a large T2 lesion burden, which may obscure new T2 lesion activity.
The International Panel on Diagnosis of Multiple Sclerosis consists of 30 members of European, American, and Asian representatives who are experts in their field, met in 2016 and 2017 to revise and formulate a new guideline based on advances on MS. The criteria are to be used only in the setting of clinically isolated syndrome to diagnose MS and progressive MS [5].
Optical coherence tomography (OCT) is a noninvasive cross-sectional imaging in biological systems [26]. OCT assesses the peripapillary area of the retina. Retinal nerve fibre layer and ganglion cell layer thickness loss affects visual function, disability, and magnetic resonance imaging. OCT angiography is a new technique under study in MS [27]. Retinal nerve fibre thinning is seen in multiple sclerosis, and OCT is able to measure the loss. Fundoscopy is the clinical parallel of OCT.
Clinicians should bear in mind multiple sclerosis mimickers to ensure there is no other possible explanation. Common differentials are connective tissue disease such as systemic lupus erythematosus and antiphospholipid antibody syndrome. Neuromyelitis optical spectrum disorder, which was previously known as Devic’s disease, is an immune-mediated disorder that can be distinguished, from MS by typical MRI lesions and/or anti-aquaporin 4 antibody. Other conditions are acute disseminated meningoencephalitis, small vessel disease, and Susac’s syndrome.
Neuromyelitis optica spectrum disorder is often considered as a differential of MS. It was considered as a part and spectrum of Multiple sclerosis, till Aquaporin 4 antibody serum antibodies [28, 29] that target the water channel aquaporin 4 was considered in the pathogenesis of NMOSD. It is essential to differentiate multiple sclerosis and NMOSD as the treatment differs in both, and some treatment could be harmful.
Diagnostic criteria for NMOSD[30].
Diagnostic criteria for NMOSD with AQP4-IgG
At least one core clinical characteristic
Positive test for AQP4-IgG using best available detection method (cell-based assay strongly recommended)
Exclusion of alternative diagnoses
Diagnostic criteria for NMOSD without AQP4-IgG or unknown AQP4-IgG status:
At least two core clinical characteristic occurring as a result of one or more clinical attacks and meeting all of the following requirement:
At least one core clinical characteristic must be optic neuritis, acute myelitis with LETM, or area postrema syndrome
Dissemination in space (two or more core clinical characteristics)
Fulfilment of additional MRI requirements, as applicable
Negative test for AQP4-IgG using the best available detection method or testing unavailable
Exclusion of alternative diagnoses
Core clinical characteristics:
Optic neuritis
Acute myelitis
Area postrema syndrome: episode of otherwise unexplained hiccups or nausea and vomiting
Acute brainstem syndrome
Symptomatic narcolepsy or acute diencephalic clinical syndrome with NMOSD-typical diencephalic MRI lesions
Symptomatic cerebral syndrome with NMOSD-typical brain lesions
Additional MRI requirements for NMOSD without AQP4-IgG or unknown AQP4-IgG status:
Acute optic neuritis
Requires brain MRI showing
Normal findings or only nonspecific white matter lesions, OR
Optic nerve MRI with T2-hyperintense lesion, or T1-weighted gadolinium-enhancing lesion extending over 1/2 optic nerve length or involving optic chiasm
Acute myelitis: requires associated intramedullary MRI lesion extending over three or more contiguous segments (LETM) OR three or more contiguous segments of focal spinal cord atrophy in patients with history compatible with acute myelitis
Area postrema syndrome: requires associated dorsal medulla/area postrema lesions
Acute brainstem syndrome: requires associated periependymal brainstem lesions.
Seronegative NMOSD patients have been associated with MOG antibody disease, which is a myelin oligodendrocyte glycoprotein and which is found only in the central nervous system. Myelin oligodendrocyte glycoprotein is a small part of myelin [31]. MOG can be found in extracellular surface of myelin sheaths and oligodendrocytes. MOG antibodies were seen in several demyelinating diseases of the central nervous system disorders [32, 33]. MOG antibody disease tends to favour women, which is one third of patients (Figure 1).
Biomarkers in Multiple sclerosis, Neuromyelitis Optica Spectrum Disorder and MOG antibody disease. MRZ reaction are antibodies against measles, rubella and varicella zoster. (Adapted from [
B-cell activation is the strongest element seen in central nervous system of multiple sclerosis patients. Central nervous system-directed antibodies are produced in the periphery in neuromyelitis optica and myelin oligodendrocyte glycoprotein antibody disease. MRZ reaction is antibodies against measles, rubella, and varicella zoster (Tables 1–3).
Field strength | Scans should be of good quality, with adequate signal-noise ratio (SNR) and spatial resolution (in-slice pixel resolution of ≤1 × 1 mm) |
Scan prescription | Use the subcallosal plane to prescribe or reformat axial oblique slices |
Coverage | Whole brain coverage |
Slice thickness and gap | ≤ 3 mm, no gap (for 2D acquisition Or 3D1 reconstruction) |
Core sequences | 2D/3D sagittal and Axial FLAIR1,2. 2D/3D axial T21 Axial 2D DWI3 3D IR-Prep GE4 T1 |
Gadolinium5 (as required) | Post-gad 2D/3D axial T1 |
Additional sequences | Susceptibility-weighted imaging (SWI). Pre-gad 2D/3D axial T1 |
Axial proton density
| |
Field strength | Scans should be of good quality, with adequate signal-noise ratio (SNR) and resolution (in-slice pixel resolution of ≤1 × 1 mm) |
Scan prescription | Use the subcallosal plane to prescribe or reformat axial oblique slices |
Coverage | Whole brain coverage |
Core sequences1 | 2D/3D sagittal and axial FLAIR2 axial 2D DWI3 |
Gadolinium (can be helpful) 4 | Post-gad 2D/3D axial T1 |
Additional sequences | DWI |
2D/3D axial T2 | |
3D IR-Prep GE5 T1 | |
Pre-gad 2D/3D axial T1. Axial proton density | |
Slice thickness and gap | < 3 mm, no gap (for 2D acquisition or 3D reconstruction) |
| |
Field strength | Scans should be of good quality, with adequate signal-noise ratio (SNR) and resolution (in-slice pixel resolution of ≤1 × 1 mm) |
Coverage | Cervical cord coverage1 |
Core sequences | Two of the following: sagittal T2 |
Proton density STIR2 | |
T1-PSIR3 | |
Axial T2/T2* through lesions | |
Slice thickness and gap | Sagittal: <3 mm, no gap. Axial: <5 Mm, no gap |
Additional sequences | Sagittal T1 |
Post-gad T14 (sag, axial) | |
Axial T2/T2* entire cervical cord 3D IR-Prep GE5 T1 | |
| |
MRI requisition: The clinician should provide on the request for the standardized MRI brain and/or spinal cord protocol:
Standardised nomenclature/terminology should be used and include:
Recommendations: *Studies should be stored in a DICOM format. *Copies of MRI studies should be retained permanently and be available. *It is strongly recommended for patients to keep their own studies on Portable digital media |
MRI protocols (Adapted from [25]).
McDonald criteria 2017.
Features of MOG antibody disease, NMOSD and MS. (Adapted from [34]).
Acute disseminated encephalomyelitis (ADEM) is a central nervous system-demyelinating disease predominantly involving children and young adults. It has been noted in adults and elderly; it follows vaccination and postinfectious state. It is commonly monophasic and rarely multiphasic in nature, and it can involve the brain, spinal cord, and optic nerves as in multiple sclerosis. Fever, malaise, myalgias, headache, nausea, and vomiting can precede neurological symptoms of ADEM, which can begin 4–21 days after the antecedent event. Clinical features of ADEM are the development of a focal or multifocal neurological disorder which could be encephalopathy, coma, and focal and multifocal neurological signs like hemiparesis, cranial nerve palsies, paraparesis, meningismus, ataxia, movement disorders, and seizure [36]. The International Paediatric Multiple Sclerosis Study Group (IPMSSG) [37] proposed consensus definitions for paediatric-acquired demyelinating disorders of the CNS to clarify the terminology for demyelination disease, and this was further updated in 2013 [38]. ADEM criteria require the following:
Monophasic ADEM:
A first polyfocal clinical neurological event with presumed inflammatory cause
Encephalopathy that cannot be explained by fever is present
No new clinical or radiological evidence of a new event suggestive of ADEM after 3 months
Multiphasic ADEM
A new onset of ADEM in 3 or more months after the primary event
A new onset or reappearance of ADEM linked to previous clinical or radiological event involving the central nervous system
Time of symptom onset in relation to steroids has no relevance
ADEM should be a diagnosis of exclusion and should be differentiated from multiple sclerosis from its clinical and radiological profile.
The antiphospholipid syndrome (APS) is a systemic autoimmune disorder with arterial and venous thromboses; recurrent foetal loss, often accompanied by thrombocytopenia; raised antiphospholipid antibodies, namely, lupus anticoagulant; and anticardiolipin antibodies [39]. Common presentations that can mimic MS are stroke-like presentations such as transient ischemic attack, ischemic stroke, venous thrombosis, epilepsy, headache, movement disorder, transverse myelitis, cognitive impairment, and other neuropsychiatric manifestations.
Systemic lupus erythematous is an autoimmune condition that is frequency associated with neuropsychiatric manifestations and neurological deficit [13].
Multiple sclerosis can be challenging to make a diagnosis unless a clinician is familiar with the disease. No better explanation for the condition is essential to come to a conclusion regarding the diagnosis. A good history, elaborate and extensive clinical examination, lumbar puncture, magnetic resonance examination, and blood investigations are required. The McDonald criteria have facilitated the diagnosis of multiple sclerosis for precision and allowing earlier diagnosis.
IntechOpen is the first native scientific publisher of Open Access books, with more than 116,000 authors worldwide, ranging from globally-renowned Nobel Prize winners to up-and-coming researchers at the cutting edge of scientific discovery. Established in Europe with the new headquarters based in London, and with plans for international growth, IntechOpen is the leading publisher of Open Access scientific books. The values of our business are based on the same ones that any scientist applies to their research -- we have created a culture of respect, collegiality and collaboration within an atmosphere that’s relaxed, friendly and progressive.
",metaTitle:"Social Media Community Manager and Marketing Assistant",metaDescription:"We are looking to add further talent to our team in The Shard office in London with a full-time Marketing and Communications Specialist position. The candidate will bring with them a creative and enthusiastic mindset, high level problem-solving skills, the latest marketing and social media platforms skills and strong involvement in community-best practices to engage with researchers and scholars online. The ideal candidate will be a dynamic, forward thinking, approachable team player, able to communicate with all in the global, growing company, with an ability to understand and build a rapport within the research community.",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"We are looking to add further talent to our team in The Shard office in London with a full-time Social Media Community Manager and Marketing Assistant position. The candidate will bring with them a creative and enthusiastic mindset, high level problem-solving skills, the latest marketing and social media platforms skills and strong involvement in community-best practices to engage with researchers and scholars online. The ideal candidate wll be a dynamic, forward thinking, approachable team player, able to communicate with all in the global, growing company, with an ability to understand and build a rapport within the research community.
\\n\\nThe Social Media Community Manager and Marketing Assistant will report to the Senior Marketing Manager. They will work alongside the Marketing and Corporate Communications team, supporting the preparation of all marketing programs, assisting in the development of scientific marketing and communication deliverables, and creating content for social media outlets, as well as managing international social communities.
\\n\\nResponsibilities:
\\n\\nEssential Skills:
\\n\\nDesired Skills:
\\n\\nWhat makes IntechOpen a great place to work?
\\n\\nIntechOpen is a global, dynamic and fast-growing company offering excellent opportunities to develop. We are a young and vibrant company where great people do great work. We offer a creative, dedicated, committed, passionate, and above all, fun environment where you can work, travel, meet world-renowned researchers and grow your career and experience.
\\n\\nTo apply, please email a copy of your CV and covering letter to hogan@intechopen.com stating your salary expectations.
\\n\\nNote: This full-time position will have an immediate start. In your cover letter, please indicate when you might be available for a block of two hours. As part of the interview process, all candidates that make it to the second phase will participate in a writing exercise.
\\n\\n*IntechOpen is an Equal Opportunities Employer consistent with its obligations under the law and does not discriminate against any employee or applicant on the basis of disability, gender, age, colour, national origin, race, religion, sexual orientation, war veteran status, or any classification protected by state, or local law.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'We are looking to add further talent to our team in The Shard office in London with a full-time Social Media Community Manager and Marketing Assistant position. The candidate will bring with them a creative and enthusiastic mindset, high level problem-solving skills, the latest marketing and social media platforms skills and strong involvement in community-best practices to engage with researchers and scholars online. The ideal candidate wll be a dynamic, forward thinking, approachable team player, able to communicate with all in the global, growing company, with an ability to understand and build a rapport within the research community.
\n\nThe Social Media Community Manager and Marketing Assistant will report to the Senior Marketing Manager. They will work alongside the Marketing and Corporate Communications team, supporting the preparation of all marketing programs, assisting in the development of scientific marketing and communication deliverables, and creating content for social media outlets, as well as managing international social communities.
\n\nResponsibilities:
\n\nEssential Skills:
\n\nDesired Skills:
\n\nWhat makes IntechOpen a great place to work?
\n\nIntechOpen is a global, dynamic and fast-growing company offering excellent opportunities to develop. We are a young and vibrant company where great people do great work. We offer a creative, dedicated, committed, passionate, and above all, fun environment where you can work, travel, meet world-renowned researchers and grow your career and experience.
\n\nTo apply, please email a copy of your CV and covering letter to hogan@intechopen.com stating your salary expectations.
\n\nNote: This full-time position will have an immediate start. In your cover letter, please indicate when you might be available for a block of two hours. As part of the interview process, all candidates that make it to the second phase will participate in a writing exercise.
\n\n*IntechOpen is an Equal Opportunities Employer consistent with its obligations under the law and does not discriminate against any employee or applicant on the basis of disability, gender, age, colour, national origin, race, religion, sexual orientation, war veteran status, or any classification protected by state, or local law.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13389},{group:"region",caption:"Middle and South America",value:2,count:11658},{group:"region",caption:"Africa",value:3,count:4168},{group:"region",caption:"Asia",value:4,count:22334},{group:"region",caption:"Australia and Oceania",value:5,count:2019},{group:"region",caption:"Europe",value:6,count:33642}],offset:12,limit:12,total:135272},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"19"},books:[{type:"book",id:"11690",title:"COVID-19 Drug Development - Recent Advances, New Perspectives, and Applications",subtitle:null,isOpenForSubmission:!0,hash:"f8092a491f68ca0b63cc6d40936a010a",slug:null,bookSignature:"Dr. Arli Aditya Parikesit",coverURL:"https://cdn.intechopen.com/books/images_new/11690.jpg",editedByType:null,editors:[{id:"72288",title:"Dr.",name:"Arli Aditya",surname:"Parikesit",slug:"arli-aditya-parikesit",fullName:"Arli Aditya Parikesit"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11813",title:"RNA Therapeutics - History, Design, Manufacturing, and Applications",subtitle:null,isOpenForSubmission:!0,hash:"fbffd7b2f97a65ffb0901de38a65bed0",slug:null,bookSignature:"Prof. Irina Vlasova-St. Louis",coverURL:"https://cdn.intechopen.com/books/images_new/11813.jpg",editedByType:null,editors:[{id:"211159",title:"Dr.",name:"Irina",surname:"Vlasova-St. Louis",slug:"irina-vlasova-st.-louis",fullName:"Irina Vlasova-St. Louis"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12205",title:"Photodynamic Therapy",subtitle:null,isOpenForSubmission:!0,hash:"8099dd8f660b401e5ecfa85ce3f0df81",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12205.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12206",title:"Antibiotic Resistance - New Insights",subtitle:null,isOpenForSubmission:!0,hash:"708d9c997d91bdbe75c55cb5d9f7b526",slug:null,bookSignature:"Dr. Ghulam Mustafa",coverURL:"https://cdn.intechopen.com/books/images_new/12206.jpg",editedByType:null,editors:[{id:"298756",title:"Dr.",name:"Ghulam",surname:"Mustafa",slug:"ghulam-mustafa",fullName:"Ghulam Mustafa"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12208",title:"Metformin - A Prospective Alternative for the Treatment of Chronic Diseases",subtitle:null,isOpenForSubmission:!0,hash:"aa4b8aac3f44ba3ab334530c5d5646ea",slug:null,bookSignature:"Prof. Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/12208.jpg",editedByType:null,editors:[{id:"41865",title:"Prof.",name:"Farid A.",surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12209",title:"Vitamin B Complex",subtitle:null,isOpenForSubmission:!0,hash:"56e8be78a5a1aed62dbc6e8f3c1371f8",slug:null,bookSignature:"Prof. Juber Akhtar, Dr. Mohammad Ahmad, Dr. Mohammad Irfan Khan and Dr. Badruddeen",coverURL:"https://cdn.intechopen.com/books/images_new/12209.jpg",editedByType:null,editors:[{id:"345595",title:"Prof.",name:"Juber",surname:"Akhtar",slug:"juber-akhtar",fullName:"Juber Akhtar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12212",title:"Hypoxia",subtitle:null,isOpenForSubmission:!0,hash:"c7561177210ce5982b54d46a48666012",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12212.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12315",title:"Cosmetic Products and Industry",subtitle:null,isOpenForSubmission:!0,hash:"4730ab11e05d70d04ea88d87983a5cef",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12315.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12316",title:"Biosimilars",subtitle:null,isOpenForSubmission:!0,hash:"a1b73e32f785b40296c7b8def525c99f",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12316.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12324",title:"Aspirin",subtitle:null,isOpenForSubmission:!0,hash:"9af8f557ac54627e386caa7cd6015d96",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12324.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12326",title:"Drug Formulation Design",subtitle:null,isOpenForSubmission:!0,hash:"be61949c97a884e4342d41ec7414e678",slug:null,bookSignature:"Dr. Rahul Shukla",coverURL:"https://cdn.intechopen.com/books/images_new/12326.jpg",editedByType:null,editors:[{id:"319705",title:"Dr.",name:"Rahul",surname:"Shukla",slug:"rahul-shukla",fullName:"Rahul Shukla"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12421",title:"Tuberculosis Treatment",subtitle:null,isOpenForSubmission:!0,hash:"31d5daa5b5230855e904363eecdf0fef",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12421.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:28},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:8},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:16},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:8},{group:"topic",caption:"Engineering",value:11,count:43},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:9},{group:"topic",caption:"Materials Science",value:14,count:17},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:69},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:3},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:6},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:7},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:12},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11263",title:"Supply Chain",subtitle:"Recent Advances and New Perspectives in the Industry 4.0 Era",isOpenForSubmission:!1,hash:"aab634c9c1f9a692c1e9881d18e9c9b7",slug:"supply-chain-recent-advances-and-new-perspectives-in-the-industry-4-0-era",bookSignature:"Tamás Bányai, Ágota Bányai and Ireneusz Kaczmar",coverURL:"https://cdn.intechopen.com/books/images_new/11263.jpg",editors:[{id:"201248",title:"Dr.",name:"Tamás",middleName:null,surname:"Bányai",slug:"tamas-banyai",fullName:"Tamás Bányai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4805},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7107,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1955,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1452,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2289,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11263",title:"Supply Chain",subtitle:"Recent Advances and New Perspectives in the Industry 4.0 Era",isOpenForSubmission:!1,hash:"aab634c9c1f9a692c1e9881d18e9c9b7",slug:"supply-chain-recent-advances-and-new-perspectives-in-the-industry-4-0-era",bookSignature:"Tamás Bányai, Ágota Bányai and Ireneusz Kaczmar",coverURL:"https://cdn.intechopen.com/books/images_new/11263.jpg",publishedDate:"July 27th 2022",numberOfDownloads:888,editors:[{id:"201248",title:"Dr.",name:"Tamás",middleName:null,surname:"Bányai",slug:"tamas-banyai",fullName:"Tamás Bányai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1566,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2054,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",publishedDate:"July 27th 2022",numberOfDownloads:780,editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318480,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271760,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11328",title:"Botulinum Toxin",subtitle:"Recent Topics and Applications",isOpenForSubmission:!1,hash:"7dd05a316001cef143e209eda51387a7",slug:"botulinum-toxin-recent-topics-and-applications",bookSignature:"Suna Sabuncuoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11328.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"270856",title:"Associate Prof.",name:"Suna",middleName:null,surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11085",title:"Polycystic Ovary Syndrome",subtitle:"Functional Investigation and Clinical Application",isOpenForSubmission:!1,hash:"3066dd3ff29e1fac072fd60b08d4d3e7",slug:"polycystic-ovary-syndrome-functional-investigation-and-clinical-application",bookSignature:"Zhengchao Wang",coverURL:"https://cdn.intechopen.com/books/images_new/11085.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"204883",title:"Dr.",name:"Zhengchao",middleName:null,surname:"Wang",slug:"zhengchao-wang",fullName:"Zhengchao Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10833",title:"Tumor Angiogenesis and Modulators",subtitle:null,isOpenForSubmission:!1,hash:"f29b575c46128b2da061ef7f9bd1070b",slug:"tumor-angiogenesis-and-modulators",bookSignature:"Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/10833.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"59529",title:"Dr.",name:"Ke",middleName:null,surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11356",title:"Molecular Cloning",subtitle:null,isOpenForSubmission:!1,hash:"671c629dd86e97f0fb467b9e70e92296",slug:"molecular-cloning",bookSignature:"Sadık Dincer, Hatice Aysun Mercimek Takcı and Melis Sumengen Ozdenef",coverURL:"https://cdn.intechopen.com/books/images_new/11356.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"188141",title:"Prof.",name:"Sadik",middleName:null,surname:"Dincer",slug:"sadik-dincer",fullName:"Sadik Dincer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Advanced Topics of Topology",subtitle:null,isOpenForSubmission:!1,hash:"bf964c52f9e653fac20a7fcab58070e5",slug:"advanced-topics-of-topology",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"92918",title:"Dr.",name:"Francisco",middleName:null,surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11195",title:"Recent Advances in Biometrics",subtitle:null,isOpenForSubmission:!1,hash:"2d32e33e0f499cb5241734bb75dd2a83",slug:"recent-advances-in-biometrics",bookSignature:"Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/11195.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"13",title:"Immunology and Microbiology",slug:"immunology-and-microbiology",parent:{id:"2",title:"Life Sciences",slug:"life-sciences"},numberOfBooks:82,numberOfSeries:0,numberOfAuthorsAndEditors:2179,numberOfWosCitations:1878,numberOfCrossrefCitations:1624,numberOfDimensionsCitations:3528,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"13",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"11328",title:"Botulinum Toxin",subtitle:"Recent Topics and Applications",isOpenForSubmission:!1,hash:"7dd05a316001cef143e209eda51387a7",slug:"botulinum-toxin-recent-topics-and-applications",bookSignature:"Suna Sabuncuoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11328.jpg",editedByType:"Edited by",editors:[{id:"270856",title:"Associate Prof.",name:"Suna",middleName:null,surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10874",title:"Insights on Antimicrobial Peptides",subtitle:null,isOpenForSubmission:!1,hash:"23ca26025e87356a7c2ffac365f73a22",slug:"insights-on-antimicrobial-peptides",bookSignature:"Shymaa Enany, Jorge Masso-Silva and Anna Savitskaya",coverURL:"https://cdn.intechopen.com/books/images_new/10874.jpg",editedByType:"Edited by",editors:[{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",slug:"shymaa-enany",fullName:"Shymaa Enany"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,isOpenForSubmission:!1,hash:"2f1c0e4e0207fc45c936e7d22a5369c4",slug:"protein-detection",bookSignature:"Yusuf Tutar and Lütfi Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10906",title:"Fungal Reproduction and Growth",subtitle:null,isOpenForSubmission:!1,hash:"f84de0280d54f3b52e3e4585cff24ac1",slug:"fungal-reproduction-and-growth",bookSignature:"Sadia Sultan and Gurmeet Kaur Surindar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/10906.jpg",editedByType:"Edited by",editors:[{id:"176737",title:"Dr.",name:"Sadia",middleName:null,surname:"Sultan",slug:"sadia-sultan",fullName:"Sadia Sultan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11006",title:"Disinfection of Viruses",subtitle:null,isOpenForSubmission:!1,hash:"d7f3f66e22e16c3751989918a43b3210",slug:"disinfection-of-viruses",bookSignature:"Raymond W. Nims and M. Khalid Ijaz",coverURL:"https://cdn.intechopen.com/books/images_new/11006.jpg",editedByType:"Edited by",editors:[{id:"104702",title:"Dr.",name:"Raymond W.",middleName:null,surname:"Nims",slug:"raymond-w.-nims",fullName:"Raymond W. Nims"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10442",title:"Cyanobacteria",subtitle:"Recent Advances in Taxonomy and Applications",isOpenForSubmission:!1,hash:"2fec78743d3f973c80881957ce3e6d79",slug:"cyanobacteria-recent-advances-in-taxonomy-and-applications",bookSignature:"Wael N. Hozzein",coverURL:"https://cdn.intechopen.com/books/images_new/10442.jpg",editedByType:"Edited by",editors:[{id:"189233",title:"Prof.",name:"Wael N.",middleName:"Nabil",surname:"Hozzein",slug:"wael-n.-hozzein",fullName:"Wael N. Hozzein"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9614",title:"Advances in Candida albicans",subtitle:null,isOpenForSubmission:!1,hash:"31d6882518ca749b12715266eed0a018",slug:"advances-in-candida-albicans",bookSignature:"Xinhui Wang",coverURL:"https://cdn.intechopen.com/books/images_new/9614.jpg",editedByType:"Edited by",editors:[{id:"296531",title:"Dr.",name:"Xinhui",middleName:null,surname:"Wang",slug:"xinhui-wang",fullName:"Xinhui Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8043",title:"Monoclonal Antibodies",subtitle:null,isOpenForSubmission:!1,hash:"91da3371c910d66deb7b8c434948b834",slug:"monoclonal-antibodies",bookSignature:"Nima Rezaei",coverURL:"https://cdn.intechopen.com/books/images_new/8043.jpg",editedByType:"Edited by",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9403",title:"Human Microbiome",subtitle:null,isOpenForSubmission:!1,hash:"c31366ba82585ba3ac91d21eb1cf0a4d",slug:"human-microbiome",bookSignature:"Natalia V. Beloborodova and Andrey V. Grechko",coverURL:"https://cdn.intechopen.com/books/images_new/9403.jpg",editedByType:"Edited by",editors:[{id:"199461",title:"Prof.",name:"Natalia V.",middleName:null,surname:"Beloborodova",slug:"natalia-v.-beloborodova",fullName:"Natalia V. Beloborodova"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9665",title:"Pseudomonas aeruginosa",subtitle:"Biofilm Formation, Infections and Treatments",isOpenForSubmission:!1,hash:"00e9f0f41cf8cd97ff33fac3bcea14cb",slug:"pseudomonas-aeruginosa-biofilm-formation-infections-and-treatments",bookSignature:"Theerthankar Das",coverURL:"https://cdn.intechopen.com/books/images_new/9665.jpg",editedByType:"Edited by",editors:[{id:"179493",title:"Dr.",name:"Theerthankar",middleName:null,surname:"Das",slug:"theerthankar-das",fullName:"Theerthankar Das"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:82,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"62553",doi:"10.5772/intechopen.79371",title:"Antibiotic Use in Poultry Production and Its Effects on Bacterial Resistance",slug:"antibiotic-use-in-poultry-production-and-its-effects-on-bacterial-resistance",totalDownloads:7315,totalCrossrefCites:42,totalDimensionsCites:89,abstract:"A surge in the development and spread of antibiotic resistance has become a major cause for concern. Over the past few decades, no major new types of antibiotics have been produced and almost all known antibiotics are increasingly losing their activity against pathogenic microorganisms. The levels of multi-drug resistant bacteria have also increased. It is known that worldwide, more than 60% of all antibiotics that are produced find their use in animal production for both therapeutic and non-therapeutic purposes. The use of antimicrobial agents in animal husbandry has been linked to the development and spread of resistant bacteria. Poultry products are among the highest consumed products worldwide but a lot of essential antibiotics are employed during poultry production in several countries; threatening the safety of such products (through antimicrobial residues) and the increased possibility of development and spread of microbial resistance in poultry settings. This chapter documents some of the studies on antibiotic usage in poultry farming; with specific focus on some selected bacterial species, their economic importance to poultry farming and reports of resistances of isolated species from poultry settings (farms and poultry products) to essential antibiotics.",book:{id:"6978",slug:"antimicrobial-resistance-a-global-threat",title:"Antimicrobial Resistance",fullTitle:"Antimicrobial Resistance - A Global Threat"},signatures:"Christian Agyare, Vivian Etsiapa Boamah, Crystal Ngofi Zumbi and\nFrank Boateng Osei",authors:[{id:"182058",title:"Dr.",name:"Christian",middleName:null,surname:"Agyare",slug:"christian-agyare",fullName:"Christian Agyare"},{id:"261271",title:"MSc.",name:"Crystal Ngofi",middleName:null,surname:"Zumbi",slug:"crystal-ngofi-zumbi",fullName:"Crystal Ngofi Zumbi"},{id:"261272",title:"MSc.",name:"Frank Boateng",middleName:null,surname:"Osei",slug:"frank-boateng-osei",fullName:"Frank Boateng Osei"},{id:"261273",title:"Dr.",name:"Vivian Etsiapa",middleName:null,surname:"Boamah",slug:"vivian-etsiapa-boamah",fullName:"Vivian Etsiapa Boamah"}]},{id:"39599",doi:"10.5772/50046",title:"Encapsulation Technology to Protect Probiotic Bacteria",slug:"encapsulation-technology-to-protect-probiotic-bacteria",totalDownloads:12448,totalCrossrefCites:45,totalDimensionsCites:87,abstract:null,book:{id:"3145",slug:"probiotics",title:"Probiotics",fullTitle:"Probiotics"},signatures:"María Chávarri, Izaskun Marañón and María Carmen Villarán",authors:[{id:"150285",title:"Dr.",name:"María",middleName:null,surname:"Chávarri Hueda",slug:"maria-chavarri-hueda",fullName:"María Chávarri Hueda"},{id:"151613",title:"MSc.",name:"Izaskun",middleName:null,surname:"Marañon",slug:"izaskun-maranon",fullName:"Izaskun Marañon"},{id:"151621",title:"Dr.",name:"Mª Carmen",middleName:null,surname:"Villarán",slug:"ma-carmen-villaran",fullName:"Mª Carmen Villarán"}]},{id:"39607",doi:"10.5772/50121",title:"Recent Application of Probiotics in Food and Agricultural Science",slug:"recent-application-of-probiotics-in-food-and-agricultural-science",totalDownloads:10168,totalCrossrefCites:32,totalDimensionsCites:77,abstract:null,book:{id:"3145",slug:"probiotics",title:"Probiotics",fullTitle:"Probiotics"},signatures:"Danfeng Song, Salam Ibrahim and Saeed Hayek",authors:[{id:"107905",title:"Prof.",name:"Salam",middleName:null,surname:"Ibrahim",slug:"salam-ibrahim",fullName:"Salam Ibrahim"},{id:"150202",title:"Dr.",name:"Danfeng",middleName:null,surname:"Song",slug:"danfeng-song",fullName:"Danfeng Song"},{id:"151025",title:"MSc.",name:"Saeed",middleName:null,surname:"Hayek",slug:"saeed-hayek",fullName:"Saeed Hayek"}]},{id:"49246",doi:"10.5772/61300",title:"Chitosan as a Biomaterial — Structure, Properties, and Electrospun Nanofibers",slug:"chitosan-as-a-biomaterial-structure-properties-and-electrospun-nanofibers",totalDownloads:4720,totalCrossrefCites:27,totalDimensionsCites:63,abstract:"Chitosan is a polysaccharide derived from chitin; chitin is the second most abundant polysaccharide in the world, after cellulose. Chitosan is biocompatible, biodegradable and non-toxic, so that it can be usedin medicalapplications such as antimicrobial and wound healing biomaterials. It also used as chelating agent due to its ability to bind with cholesterol, fats, proteins and metal ions.",book:{id:"4648",slug:"concepts-compounds-and-the-alternatives-of-antibacterials",title:"Concepts, Compounds and the Alternatives of Antibacterials",fullTitle:"Concepts, Compounds and the Alternatives of Antibacterials"},signatures:"H. M. Ibrahim and E.M.R. El- Zairy",authors:[{id:"90645",title:"Dr.",name:"Hassan",middleName:null,surname:"Ibrahim",slug:"hassan-ibrahim",fullName:"Hassan Ibrahim"},{id:"175694",title:"Dr.",name:"Enas",middleName:null,surname:"El- Zairy",slug:"enas-el-zairy",fullName:"Enas El- Zairy"}]},{id:"51065",doi:"10.5772/63499",title:"Role of the Biofilms in Wastewater Treatment",slug:"role-of-the-biofilms-in-wastewater-treatment",totalDownloads:6849,totalCrossrefCites:28,totalDimensionsCites:61,abstract:"Biological wastewater treatment systems play an important role in improving water quality and human health. This chapter thus briefly discusses different biological methods, specially biofilm technologies, the development of biofilms on different filter media, factors affecting their development as well as their structure and function. It also tackles various conventional and modern molecular techniques for detailed exploration of the composition, diversity and dynamics of biofilms. These data are crucial to improve the performance, robustness and stability of biofilm-based wastewater treatment technologies.",book:{id:"5197",slug:"microbial-biofilms-importance-and-applications",title:"Microbial Biofilms",fullTitle:"Microbial Biofilms - Importance and Applications"},signatures:"Shama Sehar and Iffat Naz",authors:[{id:"180364",title:"Dr.",name:"Iffat",middleName:null,surname:"Naz",slug:"iffat-naz",fullName:"Iffat Naz"},{id:"183345",title:"Dr.",name:"Shama",middleName:null,surname:"Sehar",slug:"shama-sehar",fullName:"Shama Sehar"}]}],mostDownloadedChaptersLast30Days:[{id:"65613",title:"The Methods for Detection of Biofilm and Screening Antibiofilm Activity of Agents",slug:"the-methods-for-detection-of-biofilm-and-screening-antibiofilm-activity-of-agents",totalDownloads:9277,totalCrossrefCites:15,totalDimensionsCites:26,abstract:"Biofilm producer microorganisms cause nosocomial and recurrent infections. Biofilm that is a sticky exopolysaccharide is the main virulence factor causing biofilm-related infections. Biofilm formation begins with attachment of bacteria to biotic surface such as host cell or abiotic surface such as prosthetic devices. After attachment, aggregation of bacteria is started by cell-cell adhesion. Aggregation continues with the maturation of biofilm. Dispersion is started by certain conditions such as phenol-soluble modulins (PSMs). By this way, sessile bacteria turn back into planktonic form. Bacteria embedded in biofilm (sessile form) are more resistant to antimicrobials than planktonic bacteria. So it is hard to treat biofilm-embedded bacteria than planktonic forms. For this reason, it is important to detect biofilm. There are a few biofilm detection and biofilm production methods on prosthetics, methods for screening antibacterial effect of agents against biofilm-embedded microorganism and antibiofilm effect of agents against biofilm production and mature biofilm. The aim of this chapter is to overview direct and indirect methods such as microscopy, fluorescent in situ hybridization, and Congo red agar, tube method, microtiter plate assay, checkerboard assay, plate counting, polymerase chain reaction, mass spectrometry, MALDI-TOF, and biological assays used by antibiofilm researches.",book:{id:"8427",slug:"antimicrobials-antibiotic-resistance-antibiofilm-strategies-and-activity-methods",title:"Antimicrobials, Antibiotic Resistance, Antibiofilm Strategies and Activity Methods",fullTitle:"Antimicrobials, Antibiotic Resistance, Antibiofilm Strategies and Activity Methods"},signatures:"Sahra Kırmusaoğlu",authors:[{id:"179460",title:"Associate Prof.",name:"Sahra",middleName:null,surname:"Kırmusaoğlu",slug:"sahra-kirmusaoglu",fullName:"Sahra Kırmusaoğlu"}]},{id:"62553",title:"Antibiotic Use in Poultry Production and Its Effects on Bacterial Resistance",slug:"antibiotic-use-in-poultry-production-and-its-effects-on-bacterial-resistance",totalDownloads:7327,totalCrossrefCites:43,totalDimensionsCites:92,abstract:"A surge in the development and spread of antibiotic resistance has become a major cause for concern. Over the past few decades, no major new types of antibiotics have been produced and almost all known antibiotics are increasingly losing their activity against pathogenic microorganisms. The levels of multi-drug resistant bacteria have also increased. It is known that worldwide, more than 60% of all antibiotics that are produced find their use in animal production for both therapeutic and non-therapeutic purposes. The use of antimicrobial agents in animal husbandry has been linked to the development and spread of resistant bacteria. Poultry products are among the highest consumed products worldwide but a lot of essential antibiotics are employed during poultry production in several countries; threatening the safety of such products (through antimicrobial residues) and the increased possibility of development and spread of microbial resistance in poultry settings. This chapter documents some of the studies on antibiotic usage in poultry farming; with specific focus on some selected bacterial species, their economic importance to poultry farming and reports of resistances of isolated species from poultry settings (farms and poultry products) to essential antibiotics.",book:{id:"6978",slug:"antimicrobial-resistance-a-global-threat",title:"Antimicrobial Resistance",fullTitle:"Antimicrobial Resistance - A Global Threat"},signatures:"Christian Agyare, Vivian Etsiapa Boamah, Crystal Ngofi Zumbi and\nFrank Boateng Osei",authors:[{id:"182058",title:"Dr.",name:"Christian",middleName:null,surname:"Agyare",slug:"christian-agyare",fullName:"Christian Agyare"},{id:"261271",title:"MSc.",name:"Crystal Ngofi",middleName:null,surname:"Zumbi",slug:"crystal-ngofi-zumbi",fullName:"Crystal Ngofi Zumbi"},{id:"261272",title:"MSc.",name:"Frank Boateng",middleName:null,surname:"Osei",slug:"frank-boateng-osei",fullName:"Frank Boateng Osei"},{id:"261273",title:"Dr.",name:"Vivian Etsiapa",middleName:null,surname:"Boamah",slug:"vivian-etsiapa-boamah",fullName:"Vivian Etsiapa Boamah"}]},{id:"65914",title:"Introductory Chapter: The Action Mechanisms of Antibiotics and Antibiotic Resistance",slug:"introductory-chapter-the-action-mechanisms-of-antibiotics-and-antibiotic-resistance",totalDownloads:4428,totalCrossrefCites:6,totalDimensionsCites:10,abstract:null,book:{id:"8427",slug:"antimicrobials-antibiotic-resistance-antibiofilm-strategies-and-activity-methods",title:"Antimicrobials, Antibiotic Resistance, Antibiofilm Strategies and Activity Methods",fullTitle:"Antimicrobials, Antibiotic Resistance, Antibiofilm Strategies and Activity Methods"},signatures:"Sahra Kırmusaoğlu, Nesrin Gareayaghi and Bekir S. Kocazeybek",authors:[{id:"179460",title:"Associate Prof.",name:"Sahra",middleName:null,surname:"Kırmusaoğlu",slug:"sahra-kirmusaoglu",fullName:"Sahra Kırmusaoğlu"},{id:"248288",title:"Prof.",name:"Bekir",middleName:null,surname:"Kocazeybek",slug:"bekir-kocazeybek",fullName:"Bekir Kocazeybek"},{id:"406463",title:"Dr.",name:"Nesrin",middleName:null,surname:"Gareayaghi",slug:"nesrin-gareayaghi",fullName:"Nesrin Gareayaghi"}]},{id:"50992",title:"Probiotics: A Comprehensive Review of Their Classification, Mode of Action and Role in Human Nutrition",slug:"probiotics-a-comprehensive-review-of-their-classification-mode-of-action-and-role-in-human-nutrition",totalDownloads:5429,totalCrossrefCites:16,totalDimensionsCites:28,abstract:"Probiotics are live microorganisms that live in gastrointestinal (GI) tract and are beneficial for their hosts and prevent certain diseases. In this chapter, after a complete introduction to probiotics, definition, mechanism of action, and their classification, currently used organisms will be discussed in detail. Moreover, different kinds of nutritional synthetic products of probiotics along with their safety and drug interaction will be noticed. This chapter mentions all clinical trial studies that have been done to evaluate probiotic efficacy with a focus on gastrointestinal diseases.",book:{id:"5193",slug:"probiotics-and-prebiotics-in-human-nutrition-and-health",title:"Probiotics and Prebiotics in Human Nutrition and Health",fullTitle:"Probiotics and Prebiotics in Human Nutrition and Health"},signatures:"Amirreza Khalighi, Reza Behdani and Shabnam Kouhestani",authors:[{id:"179560",title:"Dr.",name:"Amirreza",middleName:null,surname:"Khalighi",slug:"amirreza-khalighi",fullName:"Amirreza Khalighi"},{id:"185238",title:"Dr.",name:"Reza",middleName:null,surname:"Behdani",slug:"reza-behdani",fullName:"Reza Behdani"},{id:"185239",title:"Dr.",name:"Shabnam",middleName:null,surname:"Kouhestani",slug:"shabnam-kouhestani",fullName:"Shabnam Kouhestani"}]},{id:"56849",title:"Physiology and Pathology of Innate Immune Response Against Pathogens",slug:"physiology-and-pathology-of-innate-immune-response-against-pathogens",totalDownloads:6226,totalCrossrefCites:21,totalDimensionsCites:28,abstract:"Pathogen infections are recognized by the immune system, which consists of two types of responses: an innate immune response and an antigen-specific adaptive immune response. The innate response is characterized by being the first line of defense that occurs rapidly in which leukocytes such as neutrophils, monocytes, macrophages, eosinophils, mast cells, dendritic cells, etc., are involved. These cells recognize the pathogen-associated molecular patterns (PAMPs), which have been evolutionarily conserved by the diversity of microorganisms that infect humans. Recognition of these pathogen-associated molecular patterns occurs through pattern recognition receptors such as Toll-like receptors and some other intracellular receptors such as nucleotide oligomerization domain (NOD), with the aim of amplifying the inflammation and activating the adaptive cellular immune response, through the antigenic presentation. In the present chapter, we will review the importance of the main components involved in the innate immune response, such as different cell types, inflammatory response, soluble immune mediators and effector mechanisms exerted by the immune response against bacteria, viruses, fungi, and parasites; all with the purpose of eliminating them and eradicating the infection of the host.",book:{id:"5975",slug:"physiology-and-pathology-of-immunology",title:"Physiology and Pathology of Immunology",fullTitle:"Physiology and Pathology of Immunology"},signatures:"José Luis Muñoz Carrillo, Flor Pamela Castro García, Oscar\nGutiérrez Coronado, María Alejandra Moreno García and Juan\nFrancisco Contreras Cordero",authors:[{id:"214236",title:"Dr.",name:"Jose Luis",middleName:null,surname:"Muñoz-Carrillo",slug:"jose-luis-munoz-carrillo",fullName:"Jose Luis Muñoz-Carrillo"},{id:"216080",title:"Dr.",name:"Alejandra",middleName:null,surname:"Moreno-García",slug:"alejandra-moreno-garcia",fullName:"Alejandra Moreno-García"},{id:"216081",title:"Dr.",name:"Oscar",middleName:null,surname:"Gutiérrez-Coronado",slug:"oscar-gutierrez-coronado",fullName:"Oscar Gutiérrez-Coronado"},{id:"216082",title:"Dr.",name:"Pamela",middleName:null,surname:"Castro-García",slug:"pamela-castro-garcia",fullName:"Pamela Castro-García"},{id:"220717",title:"Dr.",name:"Juan Francisco",middleName:null,surname:"Contreras Cordero",slug:"juan-francisco-contreras-cordero",fullName:"Juan Francisco Contreras Cordero"}]}],onlineFirstChaptersFilter:{topicId:"13",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"82972",title:"Actinomycosis: Diagnosis, Clinical Features and Treatment",slug:"actinomycosis-diagnosis-clinical-features-and-treatment",totalDownloads:2,totalDimensionsCites:0,doi:"10.5772/intechopen.104698",abstract:"Actinomycosis is a filamentous bacterium that forms part of the normal human flora of the gastrointestinal, oropharynx and female genitalia. This indolent infection is characterized by abscess formation, widespread granulomatous disease, fibrosis, cavitary lung lesions and mass-like consolidations, simulating an active malignancy or systemic inflammatory diseases. It is subacute, chronic and variable presentation may delay diagnosis due to its capability to simulate other conditions. An accurate diagnostic timeline is relevant. Early diagnosis of pulmonary actinomycosis decreases the risk of indolent complications. Proper treatment reduces the need for invasive surgical methods. Actinomycosis can virtually involve any organ system, the infection spread without respecting anatomical variables as metastatic disease does, making malignancy an important part of the differential diagnosis. As it is normal gastrointestinal florae, it is difficult to cultivate, and share similar morphology to other organisms such as Nocardia and fungus. It is often difficult to be identified as the culprit of disease. Its true imitator capability makes this infectious agent a remarkable organism within the spectra of localized and disseminated disease. In this chapter, we will discuss different peculiarities of actinomycosis as an infectious agent, most common presentation in different organ systems, and challenging scenarios.",book:{id:"10893",title:"Actinobacteria",coverURL:"https://cdn.intechopen.com/books/images_new/10893.jpg"},signatures:"Onix J. Cantres-Fonseca, Vanessa Vando-Rivera, Vanessa Fonseca-Ferrer, Christian Castillo Latorre and Francisco J. Del Olmo-Arroyo"},{id:"82412",title:"Potential of Native Microalgae from the Peruvian Amazon on the Removal of Pollutants",slug:"potential-of-native-microalgae-from-the-peruvian-amazon-on-the-removal-of-pollutants",totalDownloads:2,totalDimensionsCites:0,doi:"10.5772/intechopen.105686",abstract:"Environmental pollution is a severe and common problem in all the countries worldwide. Various physicochemical technologies and organisms (e.g., plants, microorganisms, etc.) are used to address these environmental issues, but low-cost, practical, efficient, and effective approaches have not been available yet. Microalgae offer an attractive, novel, and little-explored bioremediation alternative because these photosynthetic organisms can eliminate pathogenic microorganisms and remove heavy metals and toxic organic compounds through processes still under study. Our research team has conducted some experiments to determine the bioremediation potential of native microalgae on some pollutant sources (i.e., leachate and wastewater) and its ability to remove hazardous chemical compounds. Therefore, in this chapter, we provide the results of our research and updated information about this exciting topic. Experiments were conducted under controlled culture conditions using several native microalgae species, variable time periods, different pollutant sources, and hazardous chemicals such as ethidium bromide. The results indicated that native microalgae can remove pollutants (i.e., phosphorus, ammonia, etc.) of wastewater, leachate, and some hazardous chemical compounds such as ethidium bromide. In conclusion, native microalgae have an excellent potential for removing several pollutants and, consequently, could be used to develop bioremediation technologies based on native microalgae from the Peruvian Amazon.",book:{id:"11366",title:"Microalgae",coverURL:"https://cdn.intechopen.com/books/images_new/11366.jpg"},signatures:"Marianela Cobos, Segundo L. Estela, Carlos G. Castro, Miguel A. Grandez, Alvaro B. Tresierra, Corayma L. Cabezudo, Santiago Galindo, Sheyla L. Pérez, Angélica V. Rios, Jhon A. Vargas, Roger Ruiz, Pedro M. Adrianzén, Jorge L. Marapara and Juan C. Castro"},{id:"81859",title:"Respiratory Syncytial Virus",slug:"respiratory-syncytial-virus",totalDownloads:5,totalDimensionsCites:0,doi:"10.5772/intechopen.104771",abstract:"Respiratory Syncytial Virus (RSV)-driven bronchiolitis is one of the most common causes of pediatric hospitalization. Every year, we face 33.1 million episodes of RSV-driven lower respiratory tract infection without any available vaccine or cost-effective therapeutics since the discovery of RSV eighty years before. RSV is an enveloped RNA virus belonging to the pneumoviridae family of viruses. This chapter aims to elucidate the structure and functions of the RSV genome and proteins and the mechanism of RSV infection in host cells from entry to budding, which will provide current insight into the RSV-host relationship. In addition, this book chapter summarizes the recent research outcomes regarding the structure of RSV and the functions of all viral proteins along with the RSV life cycle and cell-to-cell spread.",book:{id:"11369",title:"RNA Viruses Infection",coverURL:"https://cdn.intechopen.com/books/images_new/11369.jpg"},signatures:"Sattya Narayan Talukdar and Masfique Mehedi"},{id:"82148",title:"Mosquito Population Modification for Malaria Control",slug:"mosquito-population-modification-for-malaria-control",totalDownloads:12,totalDimensionsCites:0,doi:"10.5772/intechopen.104907",abstract:"Malaria is a mosquito-borne disease that kills millions of people every year. Existing control tools have been insufficient to eliminate the disease in many endemic regions and additional approaches are needed. Novel vector-control strategies using genetic engineering to create malaria-resistant mosquitoes (population modification) can potentially contribute a new set of tools for mosquito control. Here we review the current mosquito control strategies and the development of transgenic mosquitoes expressing anti-parasite effector genes, highlighting the recent improvements in mosquito genome editing with CRISPR-Cas9 as an efficient and adaptable tool for gene-drive systems to effectively spread these genes into mosquito populations.",book:{id:"11379",title:"Mosquito Research - Recent Advances in Pathogen Interactions, Immunity, and Vector Control Strategies",coverURL:"https://cdn.intechopen.com/books/images_new/11379.jpg"},signatures:"Rebeca Carballar-Lejarazú, Taylor Tushar, Thai Binh Pham and Anthony James"},{id:"81934",title:"Lactobacillus Use for Plant Fermentation: New Ways for Plant-Based Product Valorization",slug:"lactobacillus-use-for-plant-fermentation-new-ways-for-plant-based-product-valorization",totalDownloads:15,totalDimensionsCites:0,doi:"10.5772/intechopen.104958",abstract:"Today, plant production is increasing, but most industrial processes generate a lot of waste and by-products for which, in the current context, it is a priority to recycle or valorize them. One of the cheapest valorization routes is fermentation, in particular lactic fermentation by Lactobacillus species, which produces lactic acid and other molecules of industrial interest such as bioactive compounds such as anthocyanin, organic acid, peptides, or phenol, which are widely found in the plant matrix, mainly in cereals, grass, fruits, and vegetables. Bioactive compounds may exert beneficial health effects, such as antioxidant, anti-inflammatory, antimicrobial, or prebiotic activities. In addition, lactic acid fermentation can improve existing products and lead to new applications in food, livestock feeding and biotechnology, such as the production of lactic acid, protein, or silage. This chapter reviews the use of Lactobacillus strains in the fermentation process of many plant bioresources or by-products through their different bioactivities, active molecules, and applications.",book:{id:"11372",title:"Lactobacillus - A Multifunctional Genus",coverURL:"https://cdn.intechopen.com/books/images_new/11372.jpg"},signatures:"Morgan Le Rouzic, Pauline Bruniaux, Cyril Raveschot, François Krier, Vincent Phalip, Rozenn Ravallec, Benoit Cudennec and François Coutte"},{id:"82672",title:"Removal of Microcystins from Drinking Water by Electrocoagulation: Upscaling, Challenges, and Prospects",slug:"removal-of-microcystins-from-drinking-water-by-electrocoagulation-upscaling-challenges-and-prospects",totalDownloads:5,totalDimensionsCites:0,doi:"10.5772/intechopen.105751",abstract:"Microcystins (MCs) belong to a family of stable monocyclic heptapeptide compounds responsible for hazardous toxins in drinking water. Although several methods have been applied to remove MCs from drinking water (e.g., activated carbon filtration, ion exchange resins, high-pressure membranes, and electrochemistry), upscaling laboratory experiments to benefit municipal water treatment is still a major challenge. This chapter is a follow-up study designed to test three electrocoagulation (EC) techniques for decomposing MC by UV-ozone purification (laboratory), electrocoagulation (field unit), and coupled UV-ozone-electrocoagulation (municipal treatment). The chemistry and efficiency of the treatments were first examined followed by comparison with activated carbon filtration. Electrocoagulation outperformed activated carbon filtration by nearly 40%. When the laboratory treatments were evaluated at the municipal scale, effectiveness of the technique deteriorated by 10–20% because of UV pulse dissipation, vapor-ion plasma under-functioning, and limitations of polymer fiber filters. We confirmed previously published studies that pollutant coagulation and MC decomposition are affected by physicochemical factors such as radiation pulse density, electrical polarity, pH, and temperature dynamics. The results have relevant applications in wastewater treatment and chemical recycling.",book:{id:"11800",title:"Cyanobacteria - Recent Advances and New Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11800.jpg"},signatures:"Stephen Opoku-Duah, Dennis Johnson, Dan Blair and Jeff Dimick"}],onlineFirstChaptersTotal:101},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:139,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:122,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:21,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"August 2nd, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:33,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",isOpenForSubmission:!0,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",isOpenForSubmission:!0,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",isOpenForSubmission:!0,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",isOpenForSubmission:!0,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:42,paginationItems:[{id:"82914",title:"Glance on the Critical Role of IL-23 Receptor Gene Variations in Inflammation-Induced Carcinogenesis",doi:"10.5772/intechopen.105049",signatures:"Mohammed El-Gedamy",slug:"glance-on-the-critical-role-of-il-23-receptor-gene-variations-in-inflammation-induced-carcinogenesis",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}},{id:"82875",title:"Lipidomics as a Tool in the Diagnosis and Clinical Therapy",doi:"10.5772/intechopen.105857",signatures:"María Elizbeth Alvarez Sánchez, Erick Nolasco Ontiveros, Rodrigo Arreola, Adriana Montserrat Espinosa González, Ana María García Bores, Roberto Eduardo López Urrutia, Ignacio Peñalosa Castro, María del Socorro Sánchez Correa and Edgar Antonio Estrella Parra",slug:"lipidomics-as-a-tool-in-the-diagnosis-and-clinical-therapy",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82440",title:"Lipid Metabolism and Associated Molecular Signaling Events in Autoimmune Disease",doi:"10.5772/intechopen.105746",signatures:"Mohan Vanditha, Sonu Das and Mathew John",slug:"lipid-metabolism-and-associated-molecular-signaling-events-in-autoimmune-disease",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82483",title:"Oxidative Stress in Cardiovascular Diseases",doi:"10.5772/intechopen.105891",signatures:"Laura Mourino-Alvarez, Tamara Sastre-Oliva, Nerea Corbacho-Alonso and Maria G. Barderas",slug:"oxidative-stress-in-cardiovascular-diseases",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Importance of Oxidative Stress and Antioxidant System in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11671.jpg",subseries:{id:"15",title:"Chemical Biology"}}}]},overviewPagePublishedBooks:{paginationCount:33,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science\nand Technology from the Department of Chemistry, National\nUniversity of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013.\nShe relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the\nNational Institute of Fundamental Studies from April 2013 to\nOctober 2016. She was a senior lecturer on a temporary basis at the Department of\nFood Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is\ncurrently Deputy Principal of the Australian College of Business and Technology –\nKandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI)",institutionString:"Australian College of Business & Technology",institution:{name:"Kobe College",institutionURL:null,country:{name:"Japan"}}}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{paginationCount:2,paginationItems:[{id:"12086",title:"Cattle Diseases - Molecular and Biochemical Approach",coverURL:"https://cdn.intechopen.com/books/images_new/12086.jpg",hash:"afdbf57e32d996556a94528c06623cf3",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 5th 2022",isOpenForSubmission:!0,editors:[{id:"219081",title:"Dr.",name:"Abdulsamed",surname:"Kükürt",slug:"abdulsamed-kukurt",fullName:"Abdulsamed Kükürt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11579",title:"Animal Welfare - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11579.jpg",hash:"12e4f41264cbe99028655e5463fa941a",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 8th 2022",isOpenForSubmission:!0,editors:[{id:"51520",title:"Dr.",name:"Shao-Wen",surname:"Hung",slug:"shao-wen-hung",fullName:"Shao-Wen Hung"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:9,paginationItems:[{id:"82936",title:"Soil Degradation Processes Linked to Long-Term Forest-Type Damage",doi:"10.5772/intechopen.106390",signatures:"Pavel Samec, Aleš Kučera and Gabriela Tomášová",slug:"soil-degradation-processes-linked-to-long-term-forest-type-damage",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Forest Degradation Under Global Change",coverURL:"https://cdn.intechopen.com/books/images_new/11457.jpg",subseries:{id:"94",title:"Climate Change and Environmental Sustainability"}}},{id:"82777",title:"Sustainability and Social Investment: Community Microhydropower Systems in the Dominican Republic",doi:"10.5772/intechopen.105995",signatures:"Michela Izzo, Alberto Sánchez and Rafael Fonseca",slug:"sustainability-and-social-investment-community-microhydropower-systems-in-the-dominican-republic",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"82387",title:"Kept Promises? The Evolution of the EU Financial Contribution to Climate Change",doi:"10.5772/intechopen.105541",signatures:"Cecilia Camporeale, Roberto Del Ciello and Mario Jorizzo",slug:"kept-promises-the-evolution-of-the-eu-financial-contribution-to-climate-change",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Mario",surname:"Jorizzo"},{name:"Cecilia",surname:"Camporeale"},{name:"ROBERTO",surname:"DEL CIELLO"}],book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"82524",title:"Italy’s Small Exporting Companies: Globalization and Sustainability Issues",doi:"10.5772/intechopen.105542",signatures:"Roberta Pace and Francesca Mandanici",slug:"italy-s-small-exporting-companies-globalization-and-sustainability-issues",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"82427",title:"Our Globalization Era among Success, Obstacles and Doubts",doi:"10.5772/intechopen.105545",signatures:"Arnaldo Canziani, Annalisa Baldissera and Ahmad Kahwaji",slug:"our-globalization-era-among-success-obstacles-and-doubts",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"82248",title:"Sustainability and Excellence: Pillars for Business Survival",doi:"10.5772/intechopen.105420",signatures:"Irina Severin, Maria Cristina Dijmarescu and Mihai Caramihai",slug:"sustainability-and-excellence-pillars-for-business-survival",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"82124",title:"Assessment of Diversity, Growth Characteristics and Aboveground Biomass of Tree Species in Selected Urban Green Areas of Osogbo, Osun State",doi:"10.5772/intechopen.104982",signatures:"Omolara Aremu, Olusola O. Adetoro and Olusegun Awotoye",slug:"assessment-of-diversity-growth-characteristics-and-aboveground-biomass-of-tree-species-in-selected-u",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Forest Degradation Under Global Change",coverURL:"https://cdn.intechopen.com/books/images_new/11457.jpg",subseries:{id:"94",title:"Climate Change and Environmental Sustainability"}}},{id:"81920",title:"Rethinking an Approach for Sustainable Globalization",doi:"10.5772/intechopen.105141",signatures:"Parakram Pyakurel",slug:"rethinking-an-approach-for-sustainable-globalization",totalDownloads:29,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"81428",title:"Observatory of Sustainable Development in Postgraduate Study Programs in Baja California",doi:"10.5772/intechopen.104641",signatures:"Rodolfo Martinez-Gutierrez, Maria Marcela Solis-Quinteros, Maria Esther Ibarra-Estrada and Angel Ernesto Jimenez-Bernardino",slug:"observatory-of-sustainable-development-in-postgraduate-study-programs-in-baja-california",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}}]},subseriesFiltersForOFChapters:[{caption:"Climate Change and Environmental Sustainability",value:94,count:2,group:"subseries"},{caption:"Sustainable Economy and Fair Society",value:91,count:7,group:"subseries"}],publishedBooks:{paginationCount:13,paginationItems:[{type:"book",id:"7102",title:"Pneumonia",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7102.jpg",slug:"pneumonia",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Nima Rezaei",hash:"9fd70142814192dcec58a176749f1b60",volumeInSeries:13,fullTitle:"Pneumonia",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",institutionURL:null,country:{name:"Iran"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9615",title:"Chikungunya Virus",subtitle:"A Growing Global Public Health Threat",coverURL:"https://cdn.intechopen.com/books/images_new/9615.jpg",slug:"chikungunya-virus-a-growing-global-public-health-threat",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Jean Engohang-Ndong",hash:"c960d94a63867dd12a8ab15176a3ff06",volumeInSeries:12,fullTitle:"Chikungunya Virus - A Growing Global Public Health Threat",editors:[{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",institutionString:"Kent State University",institution:{name:"Kent State University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9619",title:"Epstein-Barr Virus",subtitle:"New Trends",coverURL:"https://cdn.intechopen.com/books/images_new/9619.jpg",slug:"epstein-barr-virus-new-trends",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Emmanuel Drouet",hash:"a2128c53becb6064589570cbe8d976f8",volumeInSeries:11,fullTitle:"Epstein-Barr Virus - New Trends",editors:[{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",institutionString:null,institution:{name:"Grenoble Alpes University",institutionURL:null,country:{name:"France"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9525",title:"Insights Into Drug Resistance in Staphylococcus aureus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9525.jpg",slug:"insights-into-drug-resistance-in-staphylococcus-aureus",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Amjad Aqib",hash:"98bb6c1ddb067da67185c272f81c0a27",volumeInSeries:10,fullTitle:"Insights Into Drug Resistance in Staphylococcus aureus",editors:[{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:{name:"University of Agriculture Faisalabad",institutionURL:null,country:{name:"Pakistan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9614",title:"Advances in Candida albicans",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9614.jpg",slug:"advances-in-candida-albicans",publishedDate:"November 17th 2021",editedByType:"Edited by",bookSignature:"Xinhui Wang",hash:"31d6882518ca749b12715266eed0a018",volumeInSeries:9,fullTitle:"Advances in Candida albicans",editors:[{id:"296531",title:"Dr.",name:"Xinhui",middleName:null,surname:"Wang",slug:"xinhui-wang",fullName:"Xinhui Wang",profilePictureURL:"https://mts.intechopen.com/storage/users/296531/images/system/296531.jpg",institutionString:"Qinghai Normal University",institution:{name:"University of Luxembourg",institutionURL:null,country:{name:"Luxembourg"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9528",title:"Current Topics and Emerging Issues in Malaria Elimination",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9528.jpg",slug:"current-topics-and-emerging-issues-in-malaria-elimination",publishedDate:"July 21st 2021",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"7f178329cc42e691efe226b32f14e2ea",volumeInSeries:8,fullTitle:"Current Topics and Emerging Issues in Malaria Elimination",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9613",title:"Dengue Fever in a One Health Perspective",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9613.jpg",slug:"dengue-fever-in-a-one-health-perspective",publishedDate:"October 28th 2020",editedByType:"Edited by",bookSignature:"Márcia Aparecida Sperança",hash:"77ecce8195c11092230b4156df6d83ff",volumeInSeries:7,fullTitle:"Dengue Fever in a One Health Perspective",editors:[{id:"176579",title:"Dr.",name:"Márcia Aparecida",middleName:null,surname:"Sperança",slug:"marcia-aparecida-speranca",fullName:"Márcia Aparecida Sperança",profilePictureURL:"https://mts.intechopen.com/storage/users/176579/images/system/176579.jpg",institutionString:null,institution:{name:"Universidade Federal do ABC",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7981",title:"Overview on Echinococcosis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7981.jpg",slug:"overview-on-echinococcosis",publishedDate:"April 22nd 2020",editedByType:"Edited by",bookSignature:"Fethi Derbel and Meriem Braiki",hash:"24dee9209f3fd6b7cd28f042da0076f0",volumeInSeries:6,fullTitle:"Overview on Echinococcosis",editors:[{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",institutionString:"Clinique les Oliviers",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7887",title:"Hepatitis B and C",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7887.jpg",slug:"hepatitis-b-and-c",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Luis Rodrigo",hash:"8dd6dab483cf505d83caddaeaf497f2c",volumeInSeries:5,fullTitle:"Hepatitis B and C",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo",profilePictureURL:"https://mts.intechopen.com/storage/users/73208/images/system/73208.jpg",institutionString:"University of Oviedo",institution:{name:"University of Oviedo",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7839",title:"Malaria",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",slug:"malaria",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Fyson H. Kasenga",hash:"91cde4582ead884cb0f355a19b67cd56",volumeInSeries:4,fullTitle:"Malaria",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga",profilePictureURL:"https://mts.intechopen.com/storage/users/86725/images/system/86725.jpg",institutionString:"Malawi Adventist University",institution:{name:"Malawi Adventist University",institutionURL:null,country:{name:"Malawi"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",slug:"current-topics-in-neglected-tropical-diseases",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"61c627da05b2ace83056d11357bdf361",volumeInSeries:3,fullTitle:"Current Topics in Neglected Tropical Diseases",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Bacterial Infectious Diseases",value:3,count:2},{group:"subseries",caption:"Parasitic Infectious Diseases",value:5,count:4},{group:"subseries",caption:"Viral Infectious Diseases",value:6,count:7}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:2},{group:"publicationYear",caption:"2021",value:2021,count:4},{group:"publicationYear",caption:"2020",value:2020,count:3},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:754,paginationItems:[{id:"310674",title:"Dr.",name:"Pravin",middleName:null,surname:"Kendrekar",slug:"pravin-kendrekar",fullName:"Pravin Kendrekar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/310674/images/system/310674.jpg",biography:"Dr. Pravin Kendrekar, MSc, MBA, Ph.D., is currently a visiting scientist at the Lipid Nanostructure Laboratory, University of Central Lancashire, England. He previously worked as a post-doctoral fellow at the Ben-Gurion University of Negev, Israel; University of the Free State, South Africa; and Central University of Technology Bloemfontein, South Africa. He obtained his Ph.D. in Organic Chemistry from Nagaoka University of Technology, Japan. He has published more than seventy-four journal articles and attended several national and international conferences as speaker and chair. Dr. Kendrekar has received many international awards. He has several funded projects, namely, anti-malaria drug development, MRSA, and SARS-CoV-2 activity of curcumin and its formulations. He has filed four patents in collaboration with the University of Central Lancashire and Mayo Clinic Infectious Diseases. His present research includes organic synthesis, drug discovery and development, biochemistry, nanoscience, and nanotechnology.",institutionString:"Visiting Scientist at Lipid Nanostructures Laboratory, Centre for Smart Materials, School of Natural Sciences, University of Central Lancashire",institution:null},{id:"428125",title:"Dr.",name:"Vinayak",middleName:null,surname:"Adimule",slug:"vinayak-adimule",fullName:"Vinayak Adimule",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/428125/images/system/428125.jpg",biography:"Dr. Vinayak Adimule, MSc, Ph.D., is a professor and dean of R&D, Angadi Institute of Technology and Management, India. He has 15 years of research experience as a senior research scientist and associate research scientist in R&D organizations. He has published more than fifty research articles as well as several book chapters. He has two Indian patents and two international patents to his credit. Dr. Adimule has attended, chaired, and presented papers at national and international conferences. He is a guest editor for Topics in Catalysis and other journals. He is also an editorial board member, life member, and associate member for many international societies and research institutions. His research interests include nanoelectronics, material chemistry, artificial intelligence, sensors and actuators, bio-nanomaterials, and medicinal chemistry.",institutionString:"Angadi Institute of Technology and Management",institution:null},{id:"284317",title:"Prof.",name:"Kantharaju",middleName:null,surname:"Kamanna",slug:"kantharaju-kamanna",fullName:"Kantharaju Kamanna",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/284317/images/21050_n.jpg",biography:"Prof. K. Kantharaju has received Bachelor of science (PCM), master of science (Organic Chemistry) and Doctor of Philosophy in Chemistry from Bangalore University. He worked as a Executive Research & Development @ Cadila Pharmaceuticals Ltd, Ahmedabad. He received DBT-postdoc fellow @ Molecular Biophysics Unit, Indian Institute of Science, Bangalore under the supervision of Prof. P. Balaram, later he moved to NIH-postdoc researcher at Drexel University College of Medicine, Philadelphia, USA, after his return from postdoc joined NITK-Surthakal as a Adhoc faculty at department of chemistry. Since from August 2013 working as a Associate Professor, and in 2016 promoted to Profeesor in the School of Basic Sciences: Department of Chemistry and having 20 years of teaching and research experiences.",institutionString:null,institution:{name:"Rani Channamma University, Belagavi",country:{name:"India"}}},{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",biography:"Prof. Dr. Yusuf Tutar conducts his research at the Hamidiye Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Division of Biochemistry, University of Health Sciences, Turkey. He is also a faculty member in the Molecular Oncology Program. He obtained his MSc and Ph.D. at Oregon State University and Texas Tech University, respectively. He pursued his postdoctoral studies at Rutgers University Medical School and the National Institutes of Health (NIH/NIDDK), USA. His research focuses on biochemistry, biophysics, genetics, molecular biology, and molecular medicine with specialization in the fields of drug design, protein structure-function, protein folding, prions, microRNA, pseudogenes, molecular cancer, epigenetics, metabolites, proteomics, genomics, protein expression, and characterization by spectroscopic and calorimetric methods.",institutionString:"University of Health Sciences",institution:null},{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",biography:"Hiroyuki Kagechika received his bachelor’s degree and Ph.D. in Pharmaceutical Sciences from the University of Tokyo, Japan, where he served as an associate professor until 2004. He is currently a professor at the Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU). From 2010 to 2012, he was the dean of the Graduate School of Biomedical Science. Since 2012, he has served as the vice dean of the Graduate School of Medical and Dental Sciences. He has been the director of the IBB since 2020. Dr. Kagechika’s major research interests are the medicinal chemistry of retinoids, vitamins D/K, and nuclear receptors. He has developed various compounds including a drug for acute promyelocytic leukemia.",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",country:{name:"Japan"}}},{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",biography:"Martins Emeje obtained a BPharm with distinction from Ahmadu Bello University, Nigeria, and an MPharm and Ph.D. from the University of Nigeria (UNN), where he received the best Ph.D. award and was enlisted as UNN’s “Face of Research.” He established the first nanomedicine center in Nigeria and was the pioneer head of the intellectual property and technology transfer as well as the technology innovation and support center. Prof. Emeje’s several international fellowships include the prestigious Raman fellowship. He has published more than 150 articles and patents. He is also the head of R&D at NIPRD and holds a visiting professor position at Nnamdi Azikiwe University, Nigeria. He has a postgraduate certificate in Project Management from Walden University, Minnesota, as well as a professional teaching certificate and a World Bank certification in Public Procurement. Prof. Emeje was a national chairman of academic pharmacists in Nigeria and the 2021 winner of the May & Baker Nigeria Plc–sponsored prize for professional service in research and innovation.",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",country:{name:"Nigeria"}}},{id:"436430",title:"Associate Prof.",name:"Mesut",middleName:null,surname:"Işık",slug:"mesut-isik",fullName:"Mesut Işık",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/436430/images/19686_n.jpg",biography:null,institutionString:null,institution:{name:"Bilecik University",country:{name:"Turkey"}}},{id:"268659",title:"Ms.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/268659/images/8143_n.jpg",biography:"Dr. Zhan received his undergraduate and graduate training in the fields of preventive medicine and epidemiology and statistics at the West China University of Medical Sciences in China during 1989 to 1999. He received his post-doctoral training in oncology and cancer proteomics for two years at the Cancer Research Institute of Human Medical University in China. In 2001, he went to the University of Tennessee Health Science Center (UTHSC) in USA, where he was a post-doctoral researcher and focused on mass spectrometry and cancer proteomics. Then, he was appointed as an Assistant Professor of Neurology, UTHSC in 2005. He moved to the Cleveland Clinic in USA as a Project Scientist/Staff in 2006 where he focused on the studies of eye disease proteomics and biomarkers. He returned to UTHSC as an Assistant Professor of Neurology in the end of 2007, engaging in proteomics and biomarker studies of lung diseases and brain tumors, and initiating the studies of predictive, preventive, and personalized medicine (PPPM) in cancer. In 2010, he was promoted to Associate Professor of Neurology, UTHSC. Currently, he is a Professor at Xiangya Hospital of Central South University in China, Fellow of Royal Society of Medicine (FRSM), the European EPMA National Representative in China, Regular Member of American Association for the Advancement of Science (AAAS), European Cooperation of Science and Technology (e-COST) grant evaluator, Associate Editors of BMC Genomics, BMC Medical Genomics, EPMA Journal, and Frontiers in Endocrinology, Executive Editor-in-Chief of Med One. He has\npublished 116 peer-reviewed research articles, 16 book chapters, 2 books, and 2 US patents. His current main research interest focuses on the studies of cancer proteomics and biomarkers, and the use of modern omics techniques and systems biology for PPPM in cancer, and on the development and use of 2DE-LC/MS for the large-scale study of human proteoforms.",institutionString:null,institution:{name:"Xiangya Hospital Central South University",country:{name:"China"}}},{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",biography:"Dr. Rizwan Ahmad is a University Professor and Coordinator, Quality and Development, College of Medicine, Imam Abdulrahman bin Faisal University, Saudi Arabia. Previously, he was Associate Professor of Human Function, Oman Medical College, Oman, and SBS University, Dehradun. Dr. Ahmad completed his education at Aligarh Muslim University, Aligarh. He has published several articles in peer-reviewed journals, chapters, and edited books. His area of specialization is free radical biochemistry and autoimmune diseases.",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",country:{name:"Saudi Arabia"}}},{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",biography:"Farid A. Badria, Ph.D., is the recipient of several awards, including The World Academy of Sciences (TWAS) Prize for Public Understanding of Science; the World Intellectual Property Organization (WIPO) Gold Medal for best invention; Outstanding Arab Scholar, Kuwait; and the Khwarizmi International Award, Iran. He has 250 publications, 12 books, 20 patents, and several marketed pharmaceutical products to his credit. He continues to lead research projects on developing new therapies for liver, skin disorders, and cancer. Dr. Badria was listed among the world’s top 2% of scientists in medicinal and biomolecular chemistry in 2019 and 2020. He is a member of the Arab Development Fund, Kuwait; International Cell Research Organization–United Nations Educational, Scientific and Cultural Organization (ICRO–UNESCO), Chile; and UNESCO Biotechnology France",institutionString:"Mansoura University",institution:{name:"Mansoura University",country:{name:"Egypt"}}},{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",biography:"Dr. Singh received a BPharm (2003) and MPharm (2005) from Panjab University, Chandigarh, India, and a Ph.D. (2013) from Punjab Technical University (PTU), Jalandhar, India. He has more than sixteen years of teaching experience and has supervised numerous postgraduate and Ph.D. students. He has to his credit more than seventy papers in SCI- and SCOPUS-indexed journals, fifty-five conference proceedings, four books, six Best Paper Awards, and five projects from different government agencies. He is currently an editorial board member of eight international journals and a reviewer for more than fifty scientific journals. He received Top Reviewer and Excellent Peer Reviewer Awards from Publons in 2016 and 2017, respectively. He is also on the panel of The International Reviewer for reviewing research proposals for grants from the Royal Society. He also serves as a Publons Academy mentor and Bentham brand ambassador.",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",country:{name:"India"}}},{id:"142388",title:"Dr.",name:"Thiago",middleName:"Gomes",surname:"Gomes Heck",slug:"thiago-gomes-heck",fullName:"Thiago Gomes Heck",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/142388/images/7259_n.jpg",biography:null,institutionString:null,institution:{name:"Universidade Regional do Noroeste do Estado do Rio Grande do Sul",country:{name:"Brazil"}}},{id:"336273",title:"Assistant Prof.",name:"Janja",middleName:null,surname:"Zupan",slug:"janja-zupan",fullName:"Janja Zupan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/336273/images/14853_n.jpeg",biography:"Janja Zupan graduated in 2005 at the Department of Clinical Biochemistry (superviser prof. dr. Janja Marc) in the field of genetics of osteoporosis. Since November 2009 she is working as a Teaching Assistant at the Faculty of Pharmacy, Department of Clinical Biochemistry. In 2011 she completed part of her research and PhD work at Institute of Genetics and Molecular Medicine, University of Edinburgh. She finished her PhD entitled The influence of the proinflammatory cytokines on the RANK/RANKL/OPG in bone tissue of osteoporotic and osteoarthritic patients in 2012. From 2014-2016 she worked at the Institute of Biomedical Sciences, University of Aberdeen as a postdoctoral research fellow on UK Arthritis research project where she gained knowledge in mesenchymal stem cells and regenerative medicine. She returned back to University of Ljubljana, Faculty of Pharmacy in 2016. She is currently leading project entitled Mesenchymal stem cells-the keepers of tissue endogenous regenerative capacity facing up to aging of the musculoskeletal system funded by Slovenian Research Agency.",institutionString:null,institution:{name:"University of Ljubljana",country:{name:"Slovenia"}}},{id:"357453",title:"Dr.",name:"Radheshyam",middleName:null,surname:"Maurya",slug:"radheshyam-maurya",fullName:"Radheshyam Maurya",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/357453/images/16535_n.jpg",biography:null,institutionString:null,institution:{name:"University of Hyderabad",country:{name:"India"}}},{id:"418340",title:"Dr.",name:"Jyotirmoi",middleName:null,surname:"Aich",slug:"jyotirmoi-aich",fullName:"Jyotirmoi Aich",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038Ugi5QAC/Profile_Picture_2022-04-15T07:48:28.png",biography:"Biotechnologist with 15 years of research including 6 years of teaching experience. Demonstrated record of scientific achievements through consistent publication record (H index = 13, with 874 citations) in high impact journals such as Nature Communications, Oncotarget, Annals of Oncology, PNAS, and AJRCCM, etc. Strong research professional with a post-doctorate from ACTREC where I gained experimental oncology experience in clinical settings and a doctorate from IGIB where I gained expertise in asthma pathophysiology. A well-trained biotechnologist with diverse experience on the bench across different research themes ranging from asthma to cancer and other infectious diseases. An individual with a strong commitment and innovative mindset. Have the ability to work on diverse projects such as regenerative and molecular medicine with an overall mindset of improving healthcare.",institutionString:"DY Patil Deemed to Be University",institution:null},{id:"349288",title:"Prof.",name:"Soumya",middleName:null,surname:"Basu",slug:"soumya-basu",fullName:"Soumya Basu",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035QxIDQA0/Profile_Picture_2022-04-15T07:47:01.jpg",biography:"Soumya Basu, Ph.D., is currently working as an Associate Professor at Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India. With 16+ years of trans-disciplinary research experience in Drug Design, development, and pre-clinical validation; 20+ research article publications in journals of repute, 9+ years of teaching experience, trained with cross-disciplinary education, Dr. Basu is a life-long learner and always thrives for new challenges.\r\nHer research area is the design and synthesis of small molecule partial agonists of PPAR-γ in lung cancer. She is also using artificial intelligence and deep learning methods to understand the exosomal miRNA’s role in cancer metastasis. Dr. Basu is the recipient of many awards including the Early Career Research Award from the Department of Science and Technology, Govt. of India. She is a reviewer of many journals like Molecular Biology Reports, Frontiers in Oncology, RSC Advances, PLOS ONE, Journal of Biomolecular Structure & Dynamics, Journal of Molecular Graphics and Modelling, etc. She has edited and authored/co-authored 21 journal papers, 3 book chapters, and 15 abstracts. She is a Board of Studies member at her university. She is a life member of 'The Cytometry Society”-in India and 'All India Cell Biology Society”- in India.",institutionString:"Dr. D.Y. Patil Vidyapeeth, Pune",institution:{name:"Dr. D.Y. Patil Vidyapeeth, Pune",country:{name:"India"}}},{id:"354817",title:"Dr.",name:"Anubhab",middleName:null,surname:"Mukherjee",slug:"anubhab-mukherjee",fullName:"Anubhab Mukherjee",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0033Y0000365PbRQAU/ProfilePicture%202022-04-15%2005%3A11%3A18.480",biography:"A former member of Laboratory of Nanomedicine, Brigham and Women’s Hospital, Harvard University, Boston, USA, Dr. Anubhab Mukherjee is an ardent votary of science who strives to make an impact in the lives of those afflicted with cancer and other chronic/acute ailments. He completed his Ph.D. from CSIR-Indian Institute of Chemical Technology, Hyderabad, India, having been skilled with RNAi, liposomal drug delivery, preclinical cell and animal studies. He pursued post-doctoral research at College of Pharmacy, Health Science Center, Texas A & M University and was involved in another postdoctoral research at Department of Translational Neurosciences and Neurotherapeutics, John Wayne Cancer Institute, Santa Monica, California. In 2015, he worked in Harvard-MIT Health Sciences & Technology as a visiting scientist. He has substantial experience in nanotechnology-based formulation development and successfully served various Indian organizations to develop pharmaceuticals and nutraceutical products. He is an inventor in many US patents and an author in many peer-reviewed articles, book chapters and books published in various media of international repute. Dr. Mukherjee is currently serving as Principal Scientist, R&D at Esperer Onco Nutrition (EON) Pvt. Ltd. and heads the Hyderabad R&D center of the organization.",institutionString:"Esperer Onco Nutrition Pvt Ltd.",institution:null},{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/319365/images/system/319365.png",biography:"Manash K. Paul is a Principal Investigator and Scientist at the University of California Los Angeles. He has contributed significantly to the fields of stem cell biology, regenerative medicine, and lung cancer. His research focuses on various signaling processes involved in maintaining stem cell homeostasis during the injury-repair process, deciphering lung stem cell niche, pulmonary disease modeling, immuno-oncology, and drug discovery. He is currently investigating the role of extracellular vesicles in premalignant lung cell migration and detecting the metastatic phenotype of lung cancer via machine-learning-based analyses of exosomal signatures. Dr. Paul has published in more than fifty peer-reviewed international journals and is highly cited. He is the recipient of many awards, including the UCLA Vice Chancellor’s award, a senior member of the Institute of Electrical and Electronics Engineers (IEEE), and an editorial board member for several international journals.",institutionString:"University of California Los Angeles",institution:{name:"University of California Los Angeles",country:{name:"United States of America"}}},{id:"311457",title:"Dr.",name:"Júlia",middleName:null,surname:"Scherer Santos",slug:"julia-scherer-santos",fullName:"Júlia Scherer Santos",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/311457/images/system/311457.jpg",biography:"Dr. Júlia Scherer Santos works in the areas of cosmetology, nanotechnology, pharmaceutical technology, beauty, and aesthetics. Dr. Santos also has experience as a professor of graduate courses. Graduated in Pharmacy, specialization in Cosmetology and Cosmeceuticals applied to aesthetics, specialization in Aesthetic and Cosmetic Health, and a doctorate in Pharmaceutical Nanotechnology. Teaching experience in Pharmacy and Aesthetics and Cosmetics courses. She works mainly on the following subjects: nanotechnology, cosmetology, pharmaceutical technology, aesthetics.",institutionString:"Universidade Federal de Juiz de Fora",institution:{name:"Universidade Federal de Juiz de Fora",country:{name:"Brazil"}}},{id:"219081",title:"Dr.",name:"Abdulsamed",middleName:null,surname:"Kükürt",slug:"abdulsamed-kukurt",fullName:"Abdulsamed Kükürt",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/219081/images/system/219081.png",biography:"Dr. Kükürt graduated from Uludağ University in Turkey. He started his academic career as a Research Assistant in the Department of Biochemistry at Kafkas University. In 2019, he completed his Ph.D. program in the Department of Biochemistry at the Institute of Health Sciences. He is currently working at the Department of Biochemistry, Kafkas University. He has 27 published research articles in academic journals, 11 book chapters, and 37 papers. He took part in 10 academic projects. He served as a reviewer for many articles. He still serves as a member of the review board in many academic journals. He is currently working on the protective activity of phenolic compounds in disorders associated with oxidative stress and inflammation.",institutionString:null,institution:{name:"Kafkas University",country:{name:"Turkey"}}},{id:"178366",title:"Dr.",name:"Volkan",middleName:null,surname:"Gelen",slug:"volkan-gelen",fullName:"Volkan Gelen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/178366/images/system/178366.jpg",biography:"Volkan Gelen is a Physiology specialist who received his veterinary degree from Kafkas University in 2011. Between 2011-2015, he worked as an assistant at Atatürk University, Faculty of Veterinary Medicine, Department of Physiology. In 2016, he joined Kafkas University, Faculty of Veterinary Medicine, Department of Physiology as an assistant professor. Dr. Gelen has been engaged in various academic activities at Kafkas University since 2016. There he completed 5 projects and has 3 ongoing projects. He has 60 articles published in scientific journals and 20 poster presentations in scientific congresses. His research interests include physiology, endocrine system, cancer, diabetes, cardiovascular system diseases, and isolated organ bath system studies.",institutionString:"Kafkas University",institution:{name:"Kafkas University",country:{name:"Turkey"}}},{id:"418963",title:"Dr.",name:"Augustine Ododo",middleName:"Augustine",surname:"Osagie",slug:"augustine-ododo-osagie",fullName:"Augustine Ododo Osagie",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/418963/images/16900_n.jpg",biography:"Born into the family of Osagie, a prince of the Benin Kingdom. I am currently an academic in the Department of Medical Biochemistry, University of Benin. Part of the duties are to teach undergraduate students and conduct academic research.",institutionString:null,institution:{name:"University of Benin",country:{name:"Nigeria"}}},{id:"192992",title:"Prof.",name:"Shagufta",middleName:null,surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/192992/images/system/192992.png",biography:"Prof. Shagufta Perveen is a Distinguish Professor in the Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia. Dr. Perveen has acted as the principal investigator of major research projects funded by the research unit of King Saud University. She has more than ninety original research papers in peer-reviewed journals of international repute to her credit. She is a fellow member of the Royal Society of Chemistry UK and the American Chemical Society of the United States.",institutionString:"King Saud University",institution:{name:"King Saud University",country:{name:"Saudi Arabia"}}},{id:"49848",title:"Dr.",name:"Wen-Long",middleName:null,surname:"Hu",slug:"wen-long-hu",fullName:"Wen-Long Hu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49848/images/system/49848.jpg",biography:"Wen-Long Hu is Chief of the Division of Acupuncture, Department of Chinese Medicine at Kaohsiung Chang Gung Memorial Hospital, as well as an adjunct associate professor at Fooyin University and Kaohsiung Medical University. Wen-Long is President of Taiwan Traditional Chinese Medicine Medical Association. He has 28 years of experience in clinical practice in laser acupuncture therapy and 34 years in acupuncture. He is an invited speaker for lectures and workshops in laser acupuncture at many symposiums held by medical associations. He owns the patent for herbal preparation and producing, and for the supercritical fluid-treated needle. Dr. Hu has published three books, 12 book chapters, and more than 30 papers in reputed journals, besides serving as an editorial board member of repute.",institutionString:"Kaohsiung Chang Gung Memorial Hospital",institution:{name:"Kaohsiung Chang Gung Memorial Hospital",country:{name:"Taiwan"}}},{id:"298472",title:"Prof.",name:"Andrey V.",middleName:null,surname:"Grechko",slug:"andrey-v.-grechko",fullName:"Andrey V. Grechko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/298472/images/system/298472.png",biography:"Andrey Vyacheslavovich Grechko, Ph.D., Professor, is a Corresponding Member of the Russian Academy of Sciences. He graduated from the Semashko Moscow Medical Institute (Semashko National Research Institute of Public Health) with a degree in Medicine (1998), the Clinical Department of Dermatovenerology (2000), and received a second higher education in Psychology (2009). Professor A.V. Grechko held the position of Сhief Physician of the Central Clinical Hospital in Moscow. He worked as a professor at the faculty and was engaged in scientific research at the Medical University. Starting in 2013, he has been the initiator of the creation of the Federal Scientific and Clinical Center for Intensive Care and Rehabilitology, Moscow, Russian Federation, where he also serves as Director since 2015. He has many years of experience in research and teaching in various fields of medicine, is an author/co-author of more than 200 scientific publications, 13 patents, 15 medical books/chapters, including Chapter in Book «Metabolomics», IntechOpen, 2020 «Metabolomic Discovery of Microbiota Dysfunction as the Cause of Pathology».",institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null},{id:"199461",title:"Prof.",name:"Natalia V.",middleName:null,surname:"Beloborodova",slug:"natalia-v.-beloborodova",fullName:"Natalia V. Beloborodova",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/199461/images/system/199461.jpg",biography:'Natalia Vladimirovna Beloborodova was educated at the Pirogov Russian National Research Medical University, with a degree in pediatrics in 1980, a Ph.D. in 1987, and a specialization in Clinical Microbiology from First Moscow State Medical University in 2004. She has been a Professor since 1996. Currently, she is the Head of the Laboratory of Metabolism, a division of the Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russian Federation. N.V. Beloborodova has many years of clinical experience in the field of intensive care and surgery. She studies infectious complications and sepsis. She initiated a series of interdisciplinary clinical and experimental studies based on the concept of integrating human metabolism and its microbiota. Her scientific achievements are widely known: she is the recipient of the Marie E. Coates Award \\"Best lecturer-scientist\\" Gustafsson Fund, Karolinska Institutes, Stockholm, Sweden, and the International Sepsis Forum Award, Pasteur Institute, Paris, France (2014), etc. Professor N.V. Beloborodova wrote 210 papers, five books, 10 chapters and has edited four books.',institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null},{id:"354260",title:"Ph.D.",name:"Tércio Elyan",middleName:"Azevedo",surname:"Azevedo Martins",slug:"tercio-elyan-azevedo-martins",fullName:"Tércio Elyan Azevedo Martins",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/354260/images/16241_n.jpg",biography:"Graduated in Pharmacy from the Federal University of Ceará with the modality in Industrial Pharmacy, Specialist in Production and Control of Medicines from the University of São Paulo (USP), Master in Pharmaceuticals and Medicines from the University of São Paulo (USP) and Doctor of Science in the program of Pharmaceuticals and Medicines by the University of São Paulo. Professor at Universidade Paulista (UNIP) in the areas of chemistry, cosmetology and trichology. Assistant Coordinator of the Higher Course in Aesthetic and Cosmetic Technology at Universidade Paulista Campus Chácara Santo Antônio. Experience in the Pharmacy area, with emphasis on Pharmacotechnics, Pharmaceutical Technology, Research and Development of Cosmetics, acting mainly on topics such as cosmetology, antioxidant activity, aesthetics, photoprotection, cyclodextrin and thermal analysis.",institutionString:null,institution:{name:"University of Sao Paulo",country:{name:"Brazil"}}},{id:"334285",title:"Ph.D. Student",name:"Sameer",middleName:"Kumar",surname:"Jagirdar",slug:"sameer-jagirdar",fullName:"Sameer Jagirdar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334285/images/14691_n.jpg",biography:"I\\'m a graduate student at the center for biosystems science and engineering at the Indian Institute of Science, Bangalore, India. I am interested in studying host-pathogen interactions at the biomaterial interface.",institutionString:null,institution:{name:"Indian Institute of Science Bangalore",country:{name:"India"}}},{id:"329248",title:"Dr.",name:"Md. Faheem",middleName:null,surname:"Haider",slug:"md.-faheem-haider",fullName:"Md. Faheem Haider",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329248/images/system/329248.jpg",biography:"Dr. Md. Faheem Haider completed his BPharm in 2012 at Integral University, Lucknow, India. In 2014, he completed his MPharm with specialization in Pharmaceutics at Babasaheb Bhimrao Ambedkar University, Lucknow, India. He received his Ph.D. degree from Jamia Hamdard University, New Delhi, India, in 2018. He was selected for the GPAT six times and his best All India Rank was 34. Currently, he is an assistant professor at Integral University. Previously he was an assistant professor at IIMT University, Meerut, India. He has experience teaching DPharm, Pharm.D, BPharm, and MPharm students. He has more than five publications in reputed journals to his credit. Dr. Faheem’s research area is the development and characterization of nanoformulation for the delivery of drugs to various organs.",institutionString:"Integral University",institution:{name:"Integral University",country:{name:"India"}}},{id:"329795",title:"Dr.",name:"Mohd Aftab",middleName:"Aftab",surname:"Siddiqui",slug:"mohd-aftab-siddiqui",fullName:"Mohd Aftab Siddiqui",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329795/images/system/329795.png",biography:"Dr. Mohd Aftab Siddiqui is an assistant professor in the Faculty of Pharmacy, Integral University, Lucknow, India, where he obtained a Ph.D. in Pharmacology in 2020. He also obtained a BPharm and MPharm from the same university in 2013 and 2015, respectively. His area of research is the pharmacological screening of herbal drugs/natural products in liver cancer and cardiac diseases. He is a member of many professional bodies and has guided many MPharm and PharmD research projects. Dr. Siddiqui has many national and international publications and one German patent to his credit.",institutionString:"Integral University",institution:null}]}},subseries:{item:{id:"25",type:"subseries",title:"Evolutionary Computation",keywords:"Genetic Algorithms, Genetic Programming, Evolutionary Programming, Evolution Strategies, Hybrid Algorithms, Bioinspired Metaheuristics, Ant Colony Optimization, Evolutionary Learning, Hyperparameter Optimization",scope:"Evolutionary computing is a paradigm that has grown dramatically in recent years. This group of bio-inspired metaheuristics solves multiple optimization problems by applying the metaphor of natural selection. It so far has solved problems such as resource allocation, routing, schedule planning, and engineering design. Moreover, in the field of machine learning, evolutionary computation has carved out a significant niche both in the generation of learning models and in the automatic design and optimization of hyperparameters in deep learning models. This collection aims to include quality volumes on various topics related to evolutionary algorithms and, alternatively, other metaheuristics of interest inspired by nature. For example, some of the issues of interest could be the following: Advances in evolutionary computation (Genetic algorithms, Genetic programming, Bio-inspired metaheuristics, Hybrid metaheuristics, Parallel ECs); Applications of evolutionary algorithms (Machine learning and Data Mining with EAs, Search-Based Software Engineering, Scheduling, and Planning Applications, Smart Transport Applications, Applications to Games, Image Analysis, Signal Processing and Pattern Recognition, Applications to Sustainability).",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",hasOnlineFirst:!1,hasPublishedBooks:!0,annualVolume:11421,editor:{id:"136112",title:"Dr.",name:"Sebastian",middleName:null,surname:"Ventura Soto",slug:"sebastian-ventura-soto",fullName:"Sebastian Ventura Soto",profilePictureURL:"https://mts.intechopen.com/storage/users/136112/images/system/136112.png",biography:"Sebastian Ventura is a Spanish researcher, a full professor with the Department of Computer Science and Numerical Analysis, University of Córdoba. Dr Ventura also holds the positions of Affiliated Professor at Virginia Commonwealth University (Richmond, USA) and Distinguished Adjunct Professor at King Abdulaziz University (Jeddah, Saudi Arabia). Additionally, he is deputy director of the Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI) and heads the Knowledge Discovery and Intelligent Systems Research Laboratory. He has published more than ten books and over 300 articles in journals and scientific conferences. Currently, his work has received over 18,000 citations according to Google Scholar, including more than 2200 citations in 2020. In the last five years, he has published more than 60 papers in international journals indexed in the JCR (around 70% of them belonging to first quartile journals) and he has edited some Springer books “Supervised Descriptive Pattern Mining” (2018), “Multiple Instance Learning - Foundations and Algorithms” (2016), and “Pattern Mining with Evolutionary Algorithms” (2016). He has also been involved in more than 20 research projects supported by the Spanish and Andalusian governments and the European Union. He currently belongs to the editorial board of PeerJ Computer Science, Information Fusion and Engineering Applications of Artificial Intelligence journals, being also associate editor of Applied Computational Intelligence and Soft Computing and IEEE Transactions on Cybernetics. Finally, he is editor-in-chief of Progress in Artificial Intelligence. He is a Senior Member of the IEEE Computer, the IEEE Computational Intelligence, and the IEEE Systems, Man, and Cybernetics Societies, and the Association of Computing Machinery (ACM). Finally, his main research interests include data science, computational intelligence, and their applications.",institutionString:null,institution:{name:"University of Córdoba",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,series:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403"},editorialBoard:[{id:"111683",title:"Prof.",name:"Elmer P.",middleName:"P.",surname:"Dadios",slug:"elmer-p.-dadios",fullName:"Elmer P. Dadios",profilePictureURL:"https://mts.intechopen.com/storage/users/111683/images/system/111683.jpg",institutionString:"De La Salle University",institution:{name:"De La Salle University",institutionURL:null,country:{name:"Philippines"}}},{id:"106873",title:"Prof.",name:"Hongwei",middleName:null,surname:"Ge",slug:"hongwei-ge",fullName:"Hongwei Ge",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Dalian University of Technology",institutionURL:null,country:{name:"China"}}},{id:"171056",title:"Dr.",name:"Sotirios",middleName:null,surname:"Goudos",slug:"sotirios-goudos",fullName:"Sotirios Goudos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9IuQAK/Profile_Picture_1622623673666",institutionString:null,institution:{name:"Aristotle University of Thessaloniki",institutionURL:null,country:{name:"Greece"}}},{id:"15895",title:"Assistant Prof.",name:"Takashi",middleName:null,surname:"Kuremoto",slug:"takashi-kuremoto",fullName:"Takashi Kuremoto",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLrqQAG/Profile_Picture_1625656196038",institutionString:null,institution:{name:"Nippon Institute of Technology",institutionURL:null,country:{name:"Japan"}}},{id:"125844",title:"Prof.",name:"Wellington",middleName:"Pinheiro Dos",surname:"Santos",slug:"wellington-santos",fullName:"Wellington Santos",profilePictureURL:"https://mts.intechopen.com/storage/users/125844/images/4878_n.jpg",institutionString:null,institution:{name:"Federal University of Pernambuco",institutionURL:null,country:{name:"Brazil"}}}]},onlineFirstChapters:{paginationCount:25,paginationItems:[{id:"82654",title:"Atraumatic Restorative Treatment: More than a Minimally Invasive Approach?",doi:"10.5772/intechopen.105623",signatures:"Manal A. Ablal",slug:"atraumatic-restorative-treatment-more-than-a-minimally-invasive-approach",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"82735",title:"The Influence of Salivary pH on the Prevalence of Dental Caries",doi:"10.5772/intechopen.106154",signatures:"Laura-Cristina Rusu, Alexandra Roi, Ciprian-Ioan Roi, Codruta Victoria Tigmeanu and Lavinia Cosmina Ardelean",slug:"the-influence-of-salivary-ph-on-the-prevalence-of-dental-caries",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"82357",title:"Caries Management Aided by Fluorescence-Based Devices",doi:"10.5772/intechopen.105567",signatures:"Atena Galuscan, Daniela Jumanca and Aurora Doris Fratila",slug:"caries-management-aided-by-fluorescence-based-devices",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"81894",title:"Diet and Nutrition and Their Relationship with Early Childhood Dental Caries",doi:"10.5772/intechopen.105123",signatures:"Luanna Gonçalves Ferreira, Giuliana de Campos Chaves Lamarque and Francisco Wanderley Garcia Paula-Silva",slug:"diet-and-nutrition-and-their-relationship-with-early-childhood-dental-caries",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80964",title:"Upper Airway Expansion in Disabled Children",doi:"10.5772/intechopen.102830",signatures:"David Andrade, Joana Andrade, Maria-João Palha, Cristina Areias, Paula Macedo, Ana Norton, Miguel Palha, Lurdes Morais, Dóris Rocha Ruiz and Sônia Groisman",slug:"upper-airway-expansion-in-disabled-children",totalDownloads:43,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80839",title:"Herbs and Oral Health",doi:"10.5772/intechopen.103715",signatures:"Zuhair S. Natto",slug:"herbs-and-oral-health",totalDownloads:69,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80441",title:"Periodontitis and Heart Disease: Current Perspectives on the Associative Relationships and Preventive Impact",doi:"10.5772/intechopen.102669",signatures:"Alexandra Roman, Andrada Soancă, Bogdan Caloian, Alexandru Bucur, Gabriela Valentina Caracostea, Andreia Paraschiva Preda, Dora Maria Popescu, Iulia Cristina Micu, Petra Șurlin, Andreea Ciurea, Diana Oneț, Mircea Viorel Ciurea, Dragoș Alexandru Țermure and Marius Negucioiu",slug:"periodontitis-and-heart-disease-current-perspectives-on-the-associative-relationships-and-preventive",totalDownloads:65,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79498",title:"Oral Aspects and Dental Management of Special Needs Patient",doi:"10.5772/intechopen.101067",signatures:"Pinar Kiymet Karataban",slug:"oral-aspects-and-dental-management-of-special-needs-patient",totalDownloads:108,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Pinar",surname:"Karataban"}],book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79699",title:"Metabolomics Distinction of Cigarette Smokers from Non-Smokers Using Non-Stationary Benchtop Nuclear Magnetic Resonance (NMR) Analysis of Human Saliva",doi:"10.5772/intechopen.101414",signatures:"Benita C. Percival, Angela Wann, Sophie Taylor, Mark Edgar, Miles Gibson and Martin Grootveld",slug:"metabolomics-distinction-of-cigarette-smokers-from-non-smokers-using-non-stationary-benchtop-nuclear",totalDownloads:56,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80295",title:"Preventive Methods and Treatments of White Spot Lesions in Orthodontics",doi:"10.5772/intechopen.102064",signatures:"Elif Nadide Akay",slug:"preventive-methods-and-treatments-of-white-spot-lesions-in-orthodontics",totalDownloads:87,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79876",title:"Management and Prevention Strategies for Treating Dentine Hypersensitivity",doi:"10.5772/intechopen.101495",signatures:"David G. Gillam",slug:"management-and-prevention-strategies-for-treating-dentine-hypersensitivity",totalDownloads:93,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80020",title:"Alternative Denture Base Materials for Allergic Patients",doi:"10.5772/intechopen.101956",signatures:"Lavinia Cosmina Ardelean, Laura-Cristina Rusu and Codruta Victoria Tigmeanu",slug:"alternative-denture-base-materials-for-allergic-patients",totalDownloads:191,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79297",title:"Oral Health and Prevention in Older Adults",doi:"10.5772/intechopen.101043",signatures:"Irma Fabiola Díaz-García, Dinorah Munira Hernández-Santos, Julio Alberto Díaz-Ramos and Neyda Ma. Mendoza-Ruvalcaba",slug:"oral-health-and-prevention-in-older-adults",totalDownloads:111,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79903",title:"Molecular Docking of Phytochemicals against Streptococcus mutans Virulence Targets: A Proteomic Insight into Drug Planning",doi:"10.5772/intechopen.101506",signatures:"Diego Romário da Silva, Tahyná Duda Deps, Otavio Akira Souza Sakaguchi, Edja Maria Melo de Brito Costa, Carlus Alberto Oliveira dos Santos, Joanilda Paolla Raimundo e Silva, Bruna Dantas da Silva, Frederico Favaro Ribeiro, Francisco Jaime Bezerra Mendonça-Júnior and Andréa Cristina Barbosa da Silva",slug:"molecular-docking-of-phytochemicals-against-streptococcus-mutans-virulence-targets-a-proteomic-insig",totalDownloads:114,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79754",title:"Evaluation of Trans-Resveratrol as a Treatment for Periodontitis",doi:"10.5772/intechopen.101477",signatures:"Tracey Lynn Harney",slug:"evaluation-of-trans-resveratrol-as-a-treatment-for-periodontitis",totalDownloads:110,totalCrossrefCites:1,totalDimensionsCites:1,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79515",title:"White Spot Lesions and Remineralization",doi:"10.5772/intechopen.101372",signatures:"Monisha Khatri, Shreya Kishore, S. Nagarathinam, Suvetha Siva and Vanita Barai",slug:"white-spot-lesions-and-remineralization",totalDownloads:78,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}}]},publishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",slug:"biomedical-signal-and-image-processing",publishedDate:"April 14th 2021",editedByType:"Edited by",bookSignature:"Yongxia Zhou",hash:"22b87a09bd6df065d78c175235d367c8",volumeInSeries:10,fullTitle:"Biomedical Signal and Image Processing",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou",profilePictureURL:"https://mts.intechopen.com/storage/users/259308/images/system/259308.jpeg",institutionString:"University of Southern California",institution:{name:"University of Southern California",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9973",title:"Data Acquisition",subtitle:"Recent Advances and Applications in Biomedical Engineering",coverURL:"https://cdn.intechopen.com/books/images_new/9973.jpg",slug:"data-acquisition-recent-advances-and-applications-in-biomedical-engineering",publishedDate:"March 17th 2021",editedByType:"Edited by",bookSignature:"Bartłomiej Płaczek",hash:"75ea6cdd241216c9db28aa734ab34446",volumeInSeries:9,fullTitle:"Data Acquisition - Recent Advances and Applications in Biomedical Engineering",editors:[{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",institutionString:"University of Silesia",institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9905",title:"Biometric Systems",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9905.jpg",slug:"biometric-systems",publishedDate:"February 10th 2021",editedByType:"Edited by",bookSignature:"Muhammad Sarfraz",hash:"c730560dd2e3837a03407b3a86b0ef2a",volumeInSeries:8,fullTitle:"Biometric Systems",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",institutionString:"Kuwait University",institution:{name:"Kuwait University",institutionURL:null,country:{name:"Kuwait"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8622",title:"Peptide Synthesis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8622.jpg",slug:"peptide-synthesis",publishedDate:"December 18th 2019",editedByType:"Edited by",bookSignature:"Jaya T. Varkey",hash:"de9fa48c5248dbfb581825b8c74f5623",volumeInSeries:0,fullTitle:"Peptide Synthesis",editors:[{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",institutionString:"St. Teresa’s College",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7497",title:"Computer Vision in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7497.jpg",slug:"computer-vision-in-dentistry",publishedDate:"September 18th 2019",editedByType:"Edited by",bookSignature:"Monika Elzbieta Machoy",hash:"1e9812cebd46ef9e28257f3e96547f6a",volumeInSeries:7,fullTitle:"Computer Vision in Dentistry",editors:[{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8633",title:"Novel Diagnostic Methods in Ophthalmology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8633.jpg",slug:"novel-diagnostic-methods-in-ophthalmology",publishedDate:"September 4th 2019",editedByType:"Edited by",bookSignature:"Anna Nowinska",hash:"da2c90e8db647ead30504defce3fb5d3",volumeInSeries:6,fullTitle:"Novel Diagnostic Methods in Ophthalmology",editors:[{id:"261466",title:"Dr.",name:"Anna",middleName:"Karolina",surname:"Nowińska",slug:"anna-nowinska",fullName:"Anna Nowińska",profilePictureURL:"https://mts.intechopen.com/storage/users/261466/images/system/261466.jpeg",institutionString:"Medical University of Silesia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",institutionString:"University of Silesia",institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:139,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:122,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:21,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"August 3rd, 2022",hasOnlineFirst:!0,numberOfOpenTopics:3,numberOfPublishedChapters:107,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},subseries:[{id:"7",title:"Bioinformatics and Medical Informatics",keywords:"Biomedical Data, Drug Discovery, Clinical Diagnostics, Decoding Human Genome, AI in Personalized Medicine, Disease-prevention Strategies, Big Data Analysis in Medicine",scope:"Bioinformatics aims to help understand the functioning of the mechanisms of living organisms through the construction and use of quantitative tools. The applications of this research cover many related fields, such as biotechnology and medicine, where, for example, Bioinformatics contributes to faster drug design, DNA analysis in forensics, and DNA sequence analysis in the field of personalized medicine. Personalized medicine is a type of medical care in which treatment is customized individually for each patient. Personalized medicine enables more effective therapy, reduces the costs of therapy and clinical trials, and also minimizes the risk of side effects. Nevertheless, advances in personalized medicine would not have been possible without bioinformatics, which can analyze the human genome and other vast amounts of biomedical data, especially in genetics. The rapid growth of information technology enabled the development of new tools to decode human genomes, large-scale studies of genetic variations and medical informatics. The considerable development of technology, including the computing power of computers, is also conducive to the development of bioinformatics, including personalized medicine. In an era of rapidly growing data volumes and ever lower costs of generating, storing and computing data, personalized medicine holds great promises. Modern computational methods used as bioinformatics tools can integrate multi-scale, multi-modal and longitudinal patient data to create even more effective and safer therapy and disease prevention methods. Main aspects of the topic are: Applying bioinformatics in drug discovery and development; Bioinformatics in clinical diagnostics (genetic variants that act as markers for a condition or a disease); Blockchain and Artificial Intelligence/Machine Learning in personalized medicine; Customize disease-prevention strategies in personalized medicine; Big data analysis in personalized medicine; Translating stratification algorithms into clinical practice of personalized medicine.",annualVolume:11403,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"5886",title:"Dr.",name:"Alexandros",middleName:"T.",surname:"Tzallas",fullName:"Alexandros Tzallas",profilePictureURL:"https://mts.intechopen.com/storage/users/5886/images/system/5886.png",institutionString:"University of Ioannina, Greece & Imperial College London",institution:{name:"University of Ioannina",institutionURL:null,country:{name:"Greece"}}},{id:"257388",title:"Distinguished Prof.",name:"Lulu",middleName:null,surname:"Wang",fullName:"Lulu Wang",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRX6kQAG/Profile_Picture_1630329584194",institutionString:"Shenzhen Technology University",institution:{name:"Shenzhen Technology University",institutionURL:null,country:{name:"China"}}},{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",fullName:"Reda R. Gharieb",profilePictureURL:"https://mts.intechopen.com/storage/users/225387/images/system/225387.jpg",institutionString:"Assiut University",institution:{name:"Assiut University",institutionURL:null,country:{name:"Egypt"}}}]},{id:"8",title:"Bioinspired Technology and Biomechanics",keywords:"Bioinspired Systems, Biomechanics, Assistive Technology, Rehabilitation",scope:'Bioinspired technologies take advantage of understanding the actual biological system to provide solutions to problems in several areas. Recently, bioinspired systems have been successfully employing biomechanics to develop and improve assistive technology and rehabilitation devices. The research topic "Bioinspired Technology and Biomechanics" welcomes studies reporting recent advances in bioinspired technologies that contribute to individuals\' health, inclusion, and rehabilitation. Possible contributions can address (but are not limited to) the following research topics: Bioinspired design and control of exoskeletons, orthoses, and prostheses; Experimental evaluation of the effect of assistive devices (e.g., influence on gait, balance, and neuromuscular system); Bioinspired technologies for rehabilitation, including clinical studies reporting evaluations; Application of neuromuscular and biomechanical models to the development of bioinspired technology.',annualVolume:11404,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"49517",title:"Prof.",name:"Hitoshi",middleName:null,surname:"Tsunashima",fullName:"Hitoshi Tsunashima",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTP4QAO/Profile_Picture_1625819726528",institutionString:null,institution:{name:"Nihon University",institutionURL:null,country:{name:"Japan"}}},{id:"425354",title:"Dr.",name:"Marcus",middleName:"Fraga",surname:"Vieira",fullName:"Marcus Vieira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003BJSgIQAX/Profile_Picture_1627904687309",institutionString:null,institution:{name:"Universidade Federal de Goiás",institutionURL:null,country:{name:"Brazil"}}},{id:"196746",title:"Dr.",name:"Ramana",middleName:null,surname:"Vinjamuri",fullName:"Ramana Vinjamuri",profilePictureURL:"https://mts.intechopen.com/storage/users/196746/images/system/196746.jpeg",institutionString:"University of Maryland, Baltimore County",institution:{name:"University of Maryland, Baltimore County",institutionURL:null,country:{name:"United States of America"}}}]},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",keywords:"Biotechnology, Biosensors, Biomaterials, Tissue Engineering",scope:"The Biotechnology - Biosensors, Biomaterials and Tissue Engineering topic within the Biomedical Engineering Series aims to rapidly publish contributions on all aspects of biotechnology, biosensors, biomaterial and tissue engineering. We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics can include but are not limited to: Biotechnology such as biotechnological products and process engineering; Biotechnologically relevant enzymes and proteins; Bioenergy and biofuels; Applied genetics and molecular biotechnology; Genomics, transcriptomics, proteomics; Applied microbial and cell physiology; Environmental biotechnology; Methods and protocols. Moreover, topics in biosensor technology, like sensors that incorporate enzymes, antibodies, nucleic acids, whole cells, tissues and organelles, and other biological or biologically inspired components will be considered, and topics exploring transducers, including those based on electrochemical and optical piezoelectric, thermal, magnetic, and micromechanical elements. Chapters exploring biomaterial approaches such as polymer synthesis and characterization, drug and gene vector design, biocompatibility, immunology and toxicology, and self-assembly at the nanoscale, are welcome. Finally, the tissue engineering subcategory will support topics such as the fundamentals of stem cells and progenitor cells and their proliferation, differentiation, bioreactors for three-dimensional culture and studies of phenotypic changes, stem and progenitor cells, both short and long term, ex vivo and in vivo implantation both in preclinical models and also in clinical trials.",annualVolume:11405,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"35539",title:"Dr.",name:"Cecilia",middleName:null,surname:"Cristea",fullName:"Cecilia Cristea",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYQ65QAG/Profile_Picture_1621007741527",institutionString:null,institution:{name:"Iuliu Hațieganu University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"40735",title:"Dr.",name:"Gil",middleName:"Alberto Batista",surname:"Gonçalves",fullName:"Gil Gonçalves",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYRLGQA4/Profile_Picture_1628492612759",institutionString:null,institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}},{id:"211725",title:"Associate Prof.",name:"Johann F.",middleName:null,surname:"Osma",fullName:"Johann F. Osma",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDv7QAG/Profile_Picture_1626602531691",institutionString:null,institution:{name:"Universidad de Los Andes",institutionURL:null,country:{name:"Colombia"}}},{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",fullName:"Mani T. Valarmathi",profilePictureURL:"https://mts.intechopen.com/storage/users/69697/images/system/69697.jpg",institutionString:"Religen Inc. | A Life Science Company, United States of America",institution:null},{id:"205081",title:"Dr.",name:"Marco",middleName:"Vinícius",surname:"Chaud",fullName:"Marco Chaud",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDGeQAO/Profile_Picture_1622624307737",institutionString:null,institution:{name:"Universidade de Sorocaba",institutionURL:null,country:{name:"Brazil"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/53003",hash:"",query:{},params:{id:"53003"},fullPath:"/chapters/53003",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()