\r\n\tThis book will address the various modern, technical, and practical aspects of smart technology for capturing solar radiation and converting it into different forms of energy, as well as enabling it for renewables integration in energy generation and transformation, built environment, transportation, buildings, and agriculture.
\r\n
\r\n\tThe book will cover the most recent developments, innovations and applications concerning the following topics: \r\n\t• Solar radiation – Smart and enabling technologies for measurement, modelling, and forecasting \r\n\tHigh-resolution measurement sensor and instrument technology (Pyranometers, Albedometers, Pyrheliometers, UV Radiometers, Sun Trackers, Spectroradiometer, Pyrgeometers, etc.), Artificial intelligence techniques for modelling and forecasting of solar radiation, Solar Irradiance forecast with satellite data, Solar potential analysis, Short-term forecasting of photovoltaic power and solar irradiance prediction with sky imagers. \r\n\t• Renewable energy integration – Smart solutions for integration of RE in distributed generation, energy storage, and demand-side management. \r\n\tIntegrated Photovoltaics: Smart technology for vehicle-integrated PV, Building Integrated PV, Agrivoltaics, Road-Integrated PV, Floating PV, Product-integrated PV. \r\n\tRenewable Energy Applications in Built Environment and mobility: Solar cars, solar-powered electric charging stations, passive solar systems, solar heating, and cooling systems, building-integrated vegetation, multifunctional solar systems, solar pumps, solar lighting, solar shading, Natural lighting, Solar dryer, Greenhouse.
",isbn:"978-1-83768-216-4",printIsbn:"978-1-83769-990-2",pdfIsbn:"978-1-83768-217-1",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"0400d540d2b8fb55d4cc8590e1e58844",bookSignature:"Dr. Mohammadreza Aghaei and Associate Prof. Amin Moazami",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11493.jpg",keywords:"High-Resolution Measurement Technology, Solar Irradiance Prediction, Integrated Photovoltaics, Energy Storage, Photovoltaics Technology, Nano Materials, Life Cycle Assessment, Photovoltaic Power Plants, UAV-Based Aerial Inspection, Bankability, Blockchain Technology, Circular Solar Economy",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 5th 2022",dateEndSecondStepPublish:"July 8th 2022",dateEndThirdStepPublish:"September 6th 2022",dateEndFourthStepPublish:"November 25th 2022",dateEndFifthStepPublish:"January 24th 2023",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"a month",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Dr. Aghaei is a pioneering researcher in Renewable Energy, Solar photovoltaics, Energy systems, Autonomous and Smart Monitoring, Aerial Robotics, and Artificial Intelligence. He received a Ph.D. degree in electrical engineering from Politecnico di Milano. Dr. Aghaei was a Postdoctoral Scientist at Fraunhofer ISE and Helmholtz-Zentrum Berlin-PVcomB, Germany. He joined the University of Freiburg as a lecturer. He also fulfilled another 2 years postdoc at the Eindhoven University. He is IEEE senior member.",coeditorOneBiosketch:"Dr. Moazami is a pioneering researcher in smart buildings and energy flexibility and distributed intelligence (Swarm Intelligence, Collective Intelligence, Multi-Agent systems) for energy management. He is appointed as head of the Energy Management and Efficiency Research Group (EMERGE). He is the coordinator of the COLLECTiEF project and was actively involved in several national and international projects.",coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"317230",title:"Dr.",name:"Mohammadreza",middleName:null,surname:"Aghaei",slug:"mohammadreza-aghaei",fullName:"Mohammadreza Aghaei",profilePictureURL:"https://mts.intechopen.com/storage/users/317230/images/system/317230.jpg",biography:"Mohammadreza Aghaei is a senior researcher in the field of photovoltaic solar energy and energy system. \nHe received the Ph.D. degree in electrical engineering from Politecnico di Milano, Italy, in 2016. He was a Postdoctoral Scientist with Fraunhofer ISE and Helmholtz-Zentrum Berlin (HZB)-PVcomB, Germany, in 2017 and 2018, respectively. He is a Guest Scientist with the Department of Microsystems Engineering (IMTEK)/Department of Sustainable Systems Engineering (INATECH), Solar Energy Engineering, the University of Freiburg since 2017. He also fulfilled another two years postdoc in the Design of Sustainable Energy Systems Group, at Eindhoven University of Technology (TU/e), The Netherlands. Dr. Aghaei is currently a senior scientist with the Faculty of Engineering, Norwegian University of Science and Technology Norwegian (NTNU), Norway. He is also co-coordinator of EU-project 'COLLECTiEF” - Collective Intelligence for Energy Flexibility.\nHe has authored numerous publications in international refereed journals, book chapters, and conference proceedings. Main his research interests include Energy transition, Energy flexibility, Solar Energy, Photovoltaics, predictive and autonomous monitoring, solar cells, Artificial intelligence (AI), and Unmanned Aerial vehicle (UAV). Dr. Aghaei is a member of the International Energy Agency (IEA), PVPS program - Task 13, and International Solar Energy Society (ISES). Since 2019 he has been the chair/vice-chair of the working group 2: reliability and durability of PV in EU COST Action PEARL PV.",institutionString:"Norwegian University of Science and Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Norwegian University of Science and Technology",institutionURL:null,country:{name:"Norway"}}}],coeditorOne:{id:"327897",title:"Dr.",name:"Amin",middleName:null,surname:"Moazami",slug:"amin-moazami",fullName:"Amin Moazami",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002zb1jQQAQ/Profile_Picture_2022-06-14T14:47:32.png",biography:"Amin Moazami received a Ph.D. degree in building energy performance from the Norwegian University of Science and Technology (NTNU) in 2019.\r\nHe is an Associate Professor in the Department of Ocean Operations and Civil Engineering at NTNU. He has strong experience in building performance simulation, energy flexibility, climate robustness and resilience in buildings, occupant behaviour, etc. He is the coordinator of the COLLECTiEF project and was actively involved in several national and international projects. In 2019, he has been awarded an innovation grant (innovasjonsstipend 2019) for the proposal 'A simulation-based tool for the development of Collective Intelligence (CI) at the urban scale to mitigate the impacts of extreme climate conditions”, focusing on developing a new solution for increasing the energy demand flexibility of urban areas.",institutionString:null,position:null,outsideEditionCount:null,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Norwegian University of Science and Technology",institutionURL:null,country:{name:"Norway"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"10",title:"Earth and Planetary Sciences",slug:"earth-and-planetary-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"429342",firstName:"Zrinka",lastName:"Tomicic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/429342/images/20008_n.jpg",email:"zrinka@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"5962",title:"Estuary",subtitle:null,isOpenForSubmission:!1,hash:"43058846a64b270e9167d478e966161a",slug:"estuary",bookSignature:"William Froneman",coverURL:"https://cdn.intechopen.com/books/images_new/5962.jpg",editedByType:"Edited by",editors:[{id:"109336",title:"Prof.",name:"William",surname:"Froneman",slug:"william-froneman",fullName:"William Froneman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3569",title:"Biodegradation",subtitle:"Life of Science",isOpenForSubmission:!1,hash:"bb737eb528a53e5106c7e218d5f12ec6",slug:"biodegradation-life-of-science",bookSignature:"Rolando Chamy and Francisca Rosenkranz",coverURL:"https://cdn.intechopen.com/books/images_new/3569.jpg",editedByType:"Edited by",editors:[{id:"165784",title:"Dr.",name:"Rolando",surname:"Chamy",slug:"rolando-chamy",fullName:"Rolando Chamy"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"51351",title:"Glycosylation of Integrins in Melanoma Progression",doi:"10.5772/64287",slug:"glycosylation-of-integrins-in-melanoma-progression",body:'\n
\n
1. Introduction
\n
Melanoma progression and the acquisition of invasive and metastatic competence by melanoma cells are accompanied not only by changes in integrin expression but also by alterations of the sugar component of these heavily N-glycosylated adhesive proteins [1]. This post-translational modification is critical to integrin functions, mainly its interactions with extracellular matrix proteins (ECM) and the basement membrane [2]. Changes in the expression and glycosylation of integrins contribute to each stage of melanoma progression. Human cutaneous melanoma develops in a series of definable stages, from the common acquired nevus and dysplastic nevus through the radial growth phase (RGP) and vertical growth phase (VGP) of primary melanoma and finally metastatic melanoma. During these multistep transformations, melanoma cells acquire the ability to invade the dermis and then disseminate throughout the body via blood and lymphatic vessels [3–8]. Adjustment of integrin glycosylation is an important feature of the melanoma cell’s adaptation to the constantly changing conditions of its microenvironment. This chapter reviews the current state of knowledge about integrin glycosylation in the course of melanoma progression.
\n
\n
\n
2. Overall characteristics of integrins
\n
The term “integrins” introduced by Hynes reflects the capacity of these cell surface receptors to integrate ECM proteins with the cytoskeleton and with intracellular signaling pathways by physical connection [9]. The role of integrin-mediated adhesion to the ECM in cell survival is now accepted. Integrins are heterodimeric cell surface adhesion molecules consisting of α and β subunits. By combining 18 α with 8 β subunits, at least 24 integrin dimers can be formed, each with its own characteristic specificity for ligands [10] (Figure 1).
\n
Figure 1.
Integrin classification based on β subunits possessed in common. Integrin heterodimers whose expression was observed to increase during melanoma progression are marked in red.
\n
\n
2.1. The structure of α and β subunit ectodomains
\n
Each integrin subunit consists of a large extracellular domain and short transmembrane and cytoplasmic domains. The extracellular domains (ectodomains) of the α and β subunits are constructed of several subdomains joined together by flexible linkers [11, 12]. The crystal structure of the αvβ3 [13] and αIIbβ3 [14] ectodomains has been characterized in detail.
\n
The ectodomain of the α-subunit contains four or five elements: a seven-bladed β-propeller, a thigh, and two calfs. There are also nine integrins with an α-subunit containing an additional α-I domain inserted between blades 2 and 3 of the β-propeller. A structure similar to an α-I domain is also present in the β subunit of integrins. The β-propeller contains Ca2+-binding sites needed for ligand binding. The thigh and calf of the α-subunit have 140–170 residues folded into an immunoglobulin-like domain.
\n
The ectodomain of the β-subunit consists of seven subdomains: a PSI (plexin-semaphorin-integrin), an Ig-like hybrid, a β-I-like domain, and four EGF-like modules (epidermal growth factor-like modules), followed by the β-tail part. The β-I-like domain is inserted into the hybrid modules and shows homology to the α-I domain. The PSI domain is split into two parts. The α-I domain is the primary region of ligand binding in integrins that have this structure, whereas the other integrins form the binding site through the cooperation of both subunit ectodomains (β-propeller/β-I-like interface) [15]. It has been suggested that the I-domain can exist as an “open” (high-affinity) or “closed” (low-affinity) conformation. The presence of a “metal-ion-dependent-adhesion-site” (MIDAS) motif indicates the role of divalent metal ions in achievement of the high-affinity state by integrins.
\n
The transmembrane segments of each subunit are followed by a short cytoplasmic tail. Although they have no enzymatic activity, cytoplasmic tails play an important role in integrin activity and signal transfer.
\n
\n
\n
2.2. Bidirectional signaling of integrins
\n
Integrins are involved in bidirectional signaling—inside-out and outside-in—through their function as a linker between the ECM and the cytoskeleton [16, 17]. Control of the integrin conformation state is required for their signaling. There is little agreement among the findings from nuclear magnetic resonance (NMR) studies of cytoplasmic tails [12], but other data support the view that transmembrane and cytoplasmic domains play a key role in this signaling. In the inactive state, these domains are closely associated; separation of the chain results in activation of adhesion [11, 16].
\n
Inside-out activation is mediated by talin binding to the β-tail, which interrupts the α/β interaction [18]. In fact, a large number of proteins have been shown to interact with cytoplasmic domains of integrins, among them cytoskeleton proteins (talin, filamin, and kindlins), adaptor proteins, and kinases [11, 19]. Talin and kindlins bound to β-integrin cooperate to regulate integrin affinity [19]. Upon binding of the ligand to the integrins’ extracellular domain, signal transduction to the cytoplasm is transmitted in the classical direction: outside-in. Generation of intracellular signals leads to the formation of a focal adhesion complex which involves over 150 intracellular proteins and serves as a center of intracellular signaling [20]. Among these proteins are scaffolding molecules and also kinases such as focal adhesion kinase (FAK) and Src family kinase (SFK). So the function of integrin is related to its ligand affinity, which can be induced either by conformational changes or by clustering on the cell surface [11].
\n
\n
\n
2.3. Classification of integrins and their ligands
\n
The first classification of integrins was based on the presence of a common β subunit having distinct α subfamilies. Recent work has shown that one α subunit may associate with different β subunits, in particular a αv subunit. However, the largest number of integrins are still assigned to the β1 (VLA, very late-activated antigens) subfamily. In this group, are integrins recognizing fibronectin (FN) (α5β1, α4β1), collagen (α1β1, α2β1, α10β1, α11β1) or laminin (LN) (α2β1, α3β1, α6β1, α7β1) [21, 22] (Figure 1). The α4β1 integrin present on human lymphocytes has been shown to bind vascular cell adhesion molecule 1 (VCAM-1), the cell surface protein of activated endothelia. The β2 subfamily of integrins is limited to white blood cells. Recognition of cell surface receptors of the Ig superfamily by β2 integrins is crucial to leukocyte–endothelium interaction [22, 23]. The β3 subfamily consists of two members: platelet receptor (αIIbβ3) and vitronectin - receptor (αvβ3). Integrin αIIbβ3 is specific for platelets; it recognizes fibrinogen specifically but upon platelet activation can also bind fibronectin (FN), von Willebrand’s factor and thrombospondin. Integrin αvβ3 binds multiple ligands including vitronectin (VN), fibrinogen, thrombospondin, and von Willebrand’s factor [23]. αv subunit can associate with more than one β subunit, such as β1, β5, β6, and β8 [22].
\n
Integrins bind to a specific motif in their ligands. The RGD (Arg-Gly-Asp) sequence found within matrix proteins including FN, VN, thrombospondin, and laminin (LN) is usually recognized by integrins [12, 23], but there are integrins that recognize their ligands through motifs other than RGD. Integrins, α3β1, α6β1, and α7β1, being highly specific LN receptors, bind to different regions of this ligand [12]. Fibrinogen contains the binding sequence Lys-Gln-Ala-Gly-Asp-Val, while Asp-Gly-Glu-Ala was found to be the dominant binding motif in type I collagen [24].
\n
\n
\n
\n
3. Integrin expression in melanoma
\n
Changes in integrin expression have been studied extensively in melanoma carcinogenesis [8, 25]. The integrin profile of melanoma cells differs significantly from that of normal melanocytes [26, 27] and is closely related to the stage of melanoma progression [24, 28]. Flow cytometry showed significant differences in the expression of α2, α3, β1, and especially α5 integrin subunits between WM35 primary and two metastatic human cell lines (WM9 and A375), indicating that acceleration of melanoma invasion is accompanied by increased integrin subunit synthesis [29]. Significant up-regulation of α5 integrin expression was also shown in highly metastatic B16-F10 murine melanoma cells as compared to weakly metastatic B16-F1 cells [30]. A low level of α3β1 integrin was found in benign lesions of primary melanoma, whereas in malignant cutaneous melanoma, the expression of the heterodimer progressively increased and was connected with the degree of invasion into the dermis [31].
\n
It is well documented in in vitro models that melanoma development and acquisition of the metastatic phenotype are also correlated with the expression of αvβ3 integrin [26, 32, 33]. An early study by Albelda et al. [34] showed that the β3 subunit is restricted to the VGP and metastatic melanomas; in the RGP and in nevus cells, this integrin chain was not found. A study of pairs of differing melanoma cells taken from the same patient (primary WM115 and metastatic WM266-4 cell lines) supported previous observations that in primary melanoma the cells survive without αv integrins, while in disease progression, their growth and functions depend on this receptor’s expression [35]. Our group detected αvβ3 integrin in both primary RGP-derived (WM35) and metastatic melanoma cells (WM9, WM239 and A397 cell lines) [36, 37]. On the other hand, immunohistochemical staining of αvβ3 in human tumor tissue samples did not confirm a positive correlation of integrin expression with the melanoma metastatic phenotype; melanoma in situ with a pre-invasive phenotype showed the highest level of αvβ3 expression [38].
\n
Most studies have demonstrated up-regulation of integrin expression in melanoma carcinogenesis; only a few integrin receptors have been found to reduce their expression during disease progression. Ziober et al. [39] found that acquisition of a highly metastatic phenotype by melanoma cells was accompanied by loss of α7β1 expression.
\n
Enhancement of the expression of most integrins promotes conversion of melanoma from the RGP to the VGP and then acquisition of metastatic competence. The switch in expression from LN-binding to FN-binding integrins was shown to contribute to the movement of melanoma cells from the epidermis to the dermis through degraded basement membrane. Apart from induction of αvβ3 expression, the involvement of α3β1 [31], α5β1, and αvβ5 integrins in this process has been found [40].
\n
\n
\n
4. Functions of integrins: role of glycosylation
\n
Integrins participate in a wide range of biological processes, including growth, proliferation, differentiation, survival/apoptosis, and cell-cycle regulation [41–44]. Apart from the adhesion function, they mediate cell signaling events [45–47].
\n
Tumor progression requires comprehensive alteration of normal cell-cell and cell-ECM interactions [34, 48]. Integrins are the main adhesion proteins responsible for these changes, mainly due to their altered expression. They contribute to regulation of such processes as angiogenesis, tumor growth and metastasis, as well as cell proliferation, survival and motility [49–53]. Abundant glycosylation of the extracellular domains of integrins also significantly affects the function of these receptors [2, 54, 55].
\n
Glycosylation is one of the most frequent post-translational modifications of transmembrane and secreted proteins. Both integrin chains are subject to this modification [56]. Integrin α subunits are more profusely N-glycosylated than their β partners. Subunits α3, α5, and αv in the polypeptide sequences contain 13, 14, and 13 potential N-glycosylation sites, respectively, whereas the β1 and β3 chains include 12 and 6 N-glycan-linked sequences, respectively [57]. Intensive glycosylation of integrin chains during post-translational processing results in high content of the sugar component of the whole glycoprotein molecule. Peptide N-glycosidase F (PNGase F) digestion showed that ca. 24 and 25% of the glycoprotein’s molecular weight (MW) responds to N-glycans in α3 subunits from WM35 primary and A375 metastatic melanoma cells, respectively. N-oligosaccharides on β1 subunits account for ca. 24 and 33% of total MW in primary and metastatic cells, respectively. In both subunits, the pool of sialic acids increases in metastatic cells in compared with primary melanoma [58] (Figure 2). N-oligosaccharides on the αv integrin subunit from WM793 primary melanoma cells respond to nearly 30% of glycoprotein MW, and from WM1205Lu metastatic cells 28%. Subunit β3 contains 16% of the N-glycans in WM793 cells and 12% of the N-glycans in WM1205Lu cells [59].
\n
Figure 2.
Percentage content of the N-glycan pool and sialic acid in subunits of α3β1 integrin, based on Pocheć et al. [58].
\n
Integrin chains bear all types of N-glycan structures, starting from the evolutionarily oldest structures high-mannose-type, through hybrid glycans, and ending in the most complicated complex-type oligosaccharides [1, 54]. The occurrence of these glycostructures on β1 integrins in B16-F10 melanoma cells depends on the stage of integrin maturation. High-mannose glycans recognized by GNA lectin (Galanthus nivalis agglutinin) were abundant on the immature form of β1 integrins with lower molecular weight. The mature, larger β1 chain carried mostly sialylated complex-type structures, identified using DSA (Datura stramonium agglutinin) and MAA (Maackia ammurensis agglutinin) lectins. Only the completely processed form of β1 integrin was detected at the cell surface of murine melanoma [60].
\n
Glycosylation is crucial to the processing, activation, and functioning of integrins [56, 61]. The function of integrin glycans has been determined mostly using N-glycan synthesis inhibitors, such as castanospermine and N-methyldeoxynojirimycin, which block glucosidases I and II responsible for trimming glucose from the precursor form of N-linked oligosaccharides; 1-deoxymannojirimycin and swainsonine (SW), inhibitors of mannosidase I and II, respectively, and tunicamycin, which abolishes N-glycosylation by inhibiting the action of N-acetylglucosamine-1-phosphotransferase. Other useful tools for assessing N-glycan functioning are recombinant glycosidases, such as PNGase F, which removes glycans N-linked to the protein backbone, and endo-N-acetylglucosaminidase F (Endo F), which cleaves high-mannose and complex-type N-glycans [62].
\n
Glycosylation of αvβ3 integrin is necessary to assembly of the heterodimer, proteolytic cleavage of the α chain, and cell surface expression of this VN receptor in human melanoma cells. Application of castanospermine and N-methyldeoxynojirimycin decreased αvβ3 surface expression as the result of reduced chain assembly and α polypeptide cleavage. On the other hand, 1-deoxymannojirimycin and SW, inhibitors acting on the later stages of glycan synthesis, did not influence αvβ3 transport to the cell membrane [63]. The importance of N-glycosylation in associating the two subunits was also clearly demonstrated by treating α5βl integrin with Endo F and PNGase F. Enzymatic digestion of purified α5βl integrin resulted in separate precipitation of the α and β polypeptide chains; undigested integrin subunits underwent co-precipitation [64]. Further research using sequential side-directed mutagenesis showed that N-glycosylation of the I-like domain of the βl subunit is essential for the formation of the α5βl heterodimer and for integrin functioning [65].
\n
Cell surface carbohydrates present on adhesion proteins are involved in adhesive and migratory events crucial to each step of the metastatic process. In early studies by Chammas et al., it was found that glycosylation of the β1 subunit complexed with α6 integrin is essential for interaction with LN. Binding of B16-F10 melanoma cells to LN via α6βl integrin was nearly abolished in tunicamycin-treated cells and after treating LN with Endo F/PNGase F [66]. Similarly, digestion of α5βl integrin with a mixture of Endo F and PNGase F led to the loss of FN binding [64]. Lectin analysis showed that both subunits of α6βl integrin bear mainly sialylated complex-type N-glycan structures. Exoglycosidase treatment identified galactose residues on the α subunit as the LN-binding determinants involved in cell adhesion to this ECM ligand. The integrin β chain, abundant in complex-type structures, whose synthesis was inhibited by SW (which blocks the formation of complex-type glycans, among them β1,6-branched glycans), was associated with cell spread but not cell adhesion [67]. Also, human metastatic malignant melanoma cell lines LOX and FEMX treated with tunicamycin showed significantly weaker adhesion to LN and to a lesser extent to type IV collagen. Inhibition of N-glycan synthesis by tunicamycin resulted in reduction of LOX and FEMX invasion through Matrigel-coated chambers, as well as diminution of human melanoma aggregation [68].
\n
\n
\n
5. Alterations of integrin glycosylation in melanoma carcinogenesis
\n
The vast majority of studies on integrin glycosylation in melanoma have used mouse melanoma cell line B16-F10 and phenotypic variants of it that show different degrees of invasive potential, mainly the weakly invasive cell lines B16-F1 or B16-Flr, and B16-BL6 cells selected for their higher ability to metastasize to the lungs [60, 67, 69–73], as well as human melanoma cell lines derived from each stage of melanoma progression, most of which were established by Herlyn’s group [3].
\n
It has been demonstrated that the glycosylation profile of integrins depends on the stage of melanoma development [37, 58, 59, 74] and the location of the metastasis [75, 76] and that glycosylation is essential to the interaction between integrin and ECM proteins during adhesion and migration processes [58, 75, 76]. These studies have produced ample evidence for the presence of glycoforms associated with melanoma carcinogenesis on α3β1, α5β1, and αvβ3 integrins. The changes in the β1,6 branching of complex-type N-glycans, and their sialylation, have been observed on these integrins during human melanoma progression.
\n
\n
5.1. Branched complex-type N-glycans
\n
One of the well-characterized changes in N-glycosylation is enhanced expression of β1,6-N-acetylglucosaminyltransferase V (GnT-V) and its products, N-acetylglucosamine (GlcNAc) β1,6-branched N-linked oligosaccharides, observed in the tumorigenesis of many cancers [77–81], including melanoma [74]. β1,6-branched N-glycans are important in invasion of the basement membrane [82] and acquisition of metastatic competence [83]. β1,6 branching of glycans on integrin chains has been described in studies of mouse and human melanoma.
\n
The presence of β1,6-branched complex-type oligosaccharides on the integrin receptors that bind LN and FN was first shown by Chammas et al. in mouse melanoma cell line B16-F10 [70] and then confirmed on the β1 subunit sharing integrins in this parent cell line and its highly invasive B16-BL6 variant [73, 84, 85]. Significantly enhanced β1,6 branching found on highly invasive B16-BL6 cells resulted in their more efficient invasion and migration, as well as impaired adhesion to different ECM proteins (LN, FN, VN, type I and type IV collagen, hyaluronic acid, and Matrigel). Inhibition of β1,6 branching on two levels—expression of GnT-V by cell transfection (using antisense cDNA), and oligosaccharide synthesis (using SW)—decreased metastasis and invasion of B16-BL6 cells by half, and reduced the formation of metastatic colonies in lungs [73]. Later it was found that α3β1 and α5β1 integrins on mouse B16-BL6 cells carry β1,6-branched oligosaccharides and that β1,6-glycosylation of integrins has an effect on the spread of melanoma cells on FN and Matrigel. Interestingly, β1,6-branched glycans on α3β1 weakened the association of integrin with CD151 tetraspanin [85]. Earlier the crucial role of glycosylation in the interaction of α3β1 with CD151 had been described in work using MDA-MB-231 human breast cancer cells [86]. For B16-BL6 mouse melanoma cells, it was shown (by co-precipitating α3β1 and CD151 from SW-treated cells) that β1,6-branched N-glycans regulate the association of CD151 with this integrin [85].
\n
In human melanoma cells, we demonstrated β1,6 branching of cancer-associated integrin subunits such as α2, α3, α4, α5, αv, β1, and β3 [37]; integrin heterodimers of special importance in melanoma carcinogenesis are α3β1 [58, 75], α5β1 [74], and αvβ3 [59, 75, 87].
\n
A number of studies have confirmed the involvement of α3β1 integrin in melanoma development through its participation in cell adhesion, migration, and invasion [88–90]. The ability of α3β1 to promote melanoma metastasis results from its enhanced synthesis [91, 92] and also from altered glycosylation of it, particularly enhanced β1,6 branching [58, 74, 75].
\n
Glycosylation of α3β1 integrin was first recognized as a factor promoting tumorigenesis in human colon carcinoma cells. Sialylated β1,6-branched Asn-linked oligosaccharides with short poly-N-acetyllactosamine units were found on both integrin subunits. Due to their role in cancer development, they were suggested to be oncodevelopmental carbohydrate epitopes [93].
\n
Different techniques have been employed to analyze α3β1 integrin glycosylation in detail in melanoma cells derived from primary and metastatic tumors. The use of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) showed the presence of tetra-antennary complex-type glycans on the β1 subunit in highly metastatic A375 melanoma cells but not in WM35 cells from the primary site. The reaction of affinity-chromatography-purified α3β1 integrin with Phaseolus vulgaris agglutinin (PHA-L) revealed that complex-type glycans are β1,6-branched in the α3 subunit from metastatic but not from primary cells [58]. The presence of GlcNAc β1,6-branched glycans on α3β1 in A375 metastatic cells was confirmed by tandem mass spectrometry (MS/MS) of PHA-L-positive glycoproteins eluted in lectin-affinity chromatography [36]. The absence of this type of branching on the α3 subunit in WM35 primary melanoma was thoroughly documented by MS/MS identification of PHA-L bound proteins and two-sided control of integrin glycosylation: immunoblotting in PHA-L-eluted material and PHA-L blotting in immunoprecipitation [37]. In two other metastatic melanoma cell lines (WM9 and WM239), β1,6 branching of α3β1 integrin was shown using MS/MS identification of PHA-L-bound glycoproteins [37] and confirmed using MALDI-MS and PHA-L precipitation [75]. The amount of glycans with β1,6-linked antenna increased in WM1205Lu metastatic melanoma as compared to WM793 primary cells [74]. Using normal-phase high-performance liquid chromatography (NP-HPLC), however, Link-Lenczowski et al. [94] did not observe differences in α3β1 glycosylation profiles between WM115 primary and WM266-4 metastatic human melanoma cell lines originating from the same patient.
\n
The role of α5 integrin in promoting melanoma metastasis has been shown in uveal [95] and cutaneous melanoma [29, 96]. An increase of the metastatic potential of melanoma is accompanied by enhancement of α5 integrin expression [30, 97]. In highly metastatic B16-F10 melanoma cells, the level of α5 integrin was conspicuously elevated as compared to weakly metastatic B16-F1 cells. Pulmonary metastasis in mice as well as the adhesion and spread of B16-F10 cells to FN in vitro was significantly reduced after blocking of α5 integrin by a specific antibody. The loss of α5-mediated melanoma cell-FN anchoring promoted apoptosis of B16-F10 cells [30].
\n
Integrin α5β1 is also a carrier of β1,6-branched glycans in metastatic cells, but on the α5 subunit from primary melanoma, this type of branching was not detected. In each of three analyzed metastatic cell lines (WM9, WM239 and A375), the α5 subunit oligosaccharides were β1,6-branched [37], but not the α5 chain in WM35 melanoma cells [36], as determined using MS/MS analysis of PHA-L-positive glycoproteins. A comparison of α5 integrin chains from early VGP and metastatic lesion cells showed an uptrend of β1,6 branching during acquisition of metastatic competence [74]. These findings suggest that GlcNAc β1,6-branched structures appear earlier in melanoma development on the β1 subunit than on the α3 and α5 chains and that in melanoma cancerogenesis their content is more stable on the β1 subunit than on the α3 and α5 chains [36, 37, 74].
\n
Glycosylation of integrin αvβ3 is still rather poorly understood [54], although it is well known that this integrin is associated with the metastatic potential of melanoma [33, 35, 98]. Our studies using two genetically related melanoma cell lines showed the presence of β1,6-branched complex-type structures on primary and metastatic cells, but we did not observe differences in the β1,6 branching of αvβ3 glycans during the transition from primary VGP melanoma to its metastatic variant. PHA-L precipitation and SW treatment gave similar levels of β1,6 branching in both αvβ3 subunits in cell lines WM793 and WM1205Lu [59]. This type of glycan was also present on the αv subunit from RGP-derived WM35 melanoma cells, but β1,6 branching was not found on the β3 chain from these cells [36]. Integrin αvβ3 from three metastatic cell lines (WM9, WM239 and A375) of varying origin showed expression of these structures [37, 75].
\n
The phenomenon of competition for a substrate between N-acetylglucosaminyltransferase III (GnT-III) and GnT-V is well documented in N-glycan biology. GnT-III activity during N-glycan processing can suppress the biological functions of GnT-V; it results in reduction of N-glycan β1,6 branching. With respect to integrins, this was first shown on α3β1 in human gastric cancer cell line MKN45 [99]. In B16 melanoma cells, ectopic expression of GnT-III was shown to retard cell metastasis through inhibition of GnT-V activity: the absence of GnT-V products was associated with attenuation of malignant cell motility [83]. Our group showed a significant decrease of bisecting GlcNAc content on αvβ3 integrin subunits during the transition from the VGP to the metastatic stage, but it was not associated with any change in the amount of β1,6-branched glycans on this integrin [59], although previously in this pair of related cell lines (WM115 vs. WM1205Lu), we observed significant upregulation of GnT-V expression [74].
\n
Integrin-mediated cell migration requires adhesion of cells to ECM substrates and is essential for dissemination of the tumor to distant organs during metastasis [100], so the role of integrin glycosylation is frequently assessed in different adhesion and migration tests. Functional studies have clearly shown that β1,6 branching on cell surface adhesion receptors, mainly integrins, promotes melanoma cell migration [101], and invasion [90].
\n
The contribution of α3β1 integrin’s N-glycans to its binding with its ECM ligands was demonstrated using affinity-chromatography-purified integrin from WM35 primary and A375 metastatic melanoma cells. In direct ligand-binding assays, de-N-glycosylated α3β1 integrin showed enhanced binding of both melanoma cell lines to LN, type IV collagen and FN, except for the binding of α3β1 from WM35 to FN [58]. Enzymatic removal of N-glycans from this integrin in two metastatic melanoma cell lines from metastases of different origin (WM9 and WM239) also resulted in enhanced binding of α3β1 to LN5 [75].
\n
Of the ECM proteins, fibronectin is the major α5β1 ligand [102] and therefore is the one most frequently chosen for assays evaluating the involvement of α5β1 integrin in adhesion and migration processes. β1,6 branching of FN receptors was shown to contribute to migration of metastatic melanoma on FN, but not to primary cell migration [74].
\n
N-glycan-dependent binding of integrins to the ECM triggers intracellular pathways via phosphorylation of cytoplasmic kinases. FAK is one of the first proteins recruited to integrins aggregated within the cell membrane. Activation of signal pathways leads to the expression of different genes that control cell growth, differentiation, tumor invasion and metastasis [103, 104]. Changes in integrin glycosylation affect intracellular signals triggered by melanoma cell binding to the ECM. Dual immunostaining of melanoma cells growing on VN showed co-localization of αvβ3 integrin and FAK, a downstream target of integrins, in focal adhesion sites of melanoma cells. Overexpression of GnT-V in human WM266-4 metastatic melanoma cells up-regulated αvβ3-integrin-mediated FAK phosphorylation and cell migration on VN, while inhibition of β1,6 branching by SW-treatment reduced FAK signaling activation in both A375 and WM266-4 metastatic cells [87].
\n
An interesting aspect of integrin glycans’ involvement in melanoma metastasis is their participation in ECM degradation through regulation of the activity of matrix proteases, such as urokinase-type plasminogen activator (uPA) and metalloproteinases (MMPs). Integrins interact with urokinase-type plasminogen activator receptors (uPARs) in the cell membrane [105]. A urokinase-type plasminogen activator (uPA), acting via its receptor (uPAR), catalyzes the activation of plasmin from plasminogen, and the plasmin initiates a proteolytic cascade leading to degradation of the ECM [106, 107]. Our work demonstrated that β1,6-branched oligosaccharides on αvβ3 and α3β1 integrins are essential for the association of the uPAR with integrins in human melanoma cell lines WM9 and WM239, seen in the failure of co-precipitation of the two integrins with the uPAR in SW-treated cells. Adhesion of the two melanoma cells to VN was dependant on β1,6 branching of αvβ3 and α3β1 integrins in a cell-line-specific manner [76].
\n
N-glycans with β1,6-branched antennae on melanoma integrins also modify the activity of metalloproteinases (MMPs). PHA-L precipitation revealed that β1 integrins from B16-BL6 cells are more β1,6-branched than the parent cells with lower invasion ability. β1,6-glycosylation of β1 integrin receptors affected the activation of membrane-tethered forms of metalloproteinases (MT1-MMPs). The association of β1,6-glycosylation-suppressed β1 integrin with MT1-MMPs was more severely affected in B16-BL6 cells than in the parent cells, suggesting that integrin β1,6 branching contributes to melanoma invasion also through activation of MMPs [84].
\n
\n
\n
5.2. Sialylation
\n
Sialic acid-linked α2,3 or α2,6, mostly in terminal positions of the oligosaccharide, gives these molecules a negative charge [108, 109] that significantly influences cell interaction mediated by sialylated adhesion proteins, among them integrins [110]. Hypersialylation of cell surface receptors is important in tumor invasion and metastasis [111]. MAA is the lectin commonly used to analyze a pool of α2,3-linked sialic acid, while a lectin from Sambucus nigra (SNA) is specific for α2,6-linked sialic acid [112]. The presence of sialic acids on α3β1, α5β1, and αvβ3 integrins in melanoma cells was confirmed in each stage of melanoma progression [58, 59, 75].
\n
One of the first studies on integrin sialylation in melanoma employed mouse melanoma cell lines differing in their metastatic ability. Analysis of melanoma cell sialylation using HPLC and digestion by Vibrio cholerae sialidase did not show changes in the total content of cell surface sialic acids on mouse B16 metastatic melanoma cell variants differing in their invasive potential [69]. Research on specific adhesion proteins provided more detailed information. Integrin β1 from both B16-F1 mouse metastatic melanoma and its weakly metastatic wheat germ agglutinin-resistant mutant Wa4-b1 was found to contain high-mannose and bi-, tri-, and tetra-antennary complex-type N-oligosaccharides. Sialylation of the β1 subunit was significantly decreased in mutant melanoma cells with low metastatic ability. Alteration of β1 integrin glycosylation resulted in reduction of the mutant’s metastatic potential and adhesion to FN and LN, as compared to the parent cells [71]. Higher β1,6 branching of complex-type glycans on more invasive B16-BL6 melanoma cells versus the parent B16-F10 line was correlated with an increase of α2,3-linked and α2,6-linked sialic acid content as determined using MAA and SNA staining in flow cytometry. Hypersialylation of B16-BL6 cells resulted in their higher motility and stronger adhesion to selected ECM proteins [73]. Further results for this pair of murine melanoma cell lines were obtained by lectin blotting: α2,6-linked sialic acid especially increased on B16-BL6 glycans as a result of enhanced β1,6 branching. α2,6-desialylation and down-regulation of the sialyltransferase ST6Gal-I, which transfers sialic acids to oligosaccharides and catalyzes the formation of α2,6 linkage, negatively affected adhesion and invasion of B16-BL6 cells [113]. In turn, a study by Chang and colleagues showed that α2,3-linked sialic acid is important in the metastasis of B16-F10 cells. Soyasaponin I (Ssa I), which specifically inhibits the expression of α2,3-linked sialic acids, reduced the migratory ability of melanoma, up-regulated cell adhesion to ECM proteins, and impaired pulmonary metastasis [114].
\n
Our studies using different human melanoma cell line models indicated reduction of α2,3 sialylation on the α3 integrin subunit, and of α2,6 sialylation on αvβ3 integrin, in melanoma progression [74, 59]. Lectin-probed Western blotting showed that the β1 subunit from both cell lines and the α3 subunit from primary melanoma cell line WM35 had both types of sialic acid linkage, while the α3 subunit from metastatic cell line A375 lost its α2,3 glycosidic linkage [58]. Using genetically matched cell lines WM793 and WM1205Lu from the last two stages of melanoma progression, we observed a shift in the sialylation of αvβ3 integrin during the transition from VGP to metastatic tumor. Lectin MAA and SNA precipitation as well as digestion by two neuraminidases with narrower (α2,3) and wider (α2-3,6,8) specificity showed that α2,6-linked sialic acid was reduced, whereas α2,3-linked sialic acid increased on both integrin subunits from metastatic lesion cells. In a wound-healing assay, migration of melanoma cells on VN in the presence of both lectins was affected only in the metastatic cell line [59]. Lectin flow cytometry of another pair of related melanoma cell lines (WM115 derived from RGP/VGP vs. WM266-4 from lymph node metastasis) indicated a more than fourfold increase of cell surface α2,3 sialylation during the acquisition of metastatic competence. Despite these differences in surface α2,3 sialylation, the reduction of migration by MAA-treated primary and melanoma cells was comparable, suggesting the involvement of receptor(s) other than αvβ3 integrin and its/their sialylation in metastatic cell migration (data not published).
\n
Digestion of α3β1 glycans with a broad-specificity neuraminidase from Arthrobacter ureafaciens led to stronger binding of the integrin to various ECM components (LN, FN, and type IV collagen) in both primary and metastatic melanoma cells. Interestingly, removal of the sialic acids by neuraminidase enhanced integrin binding significantly more than complete de-N-glycosylation did, suggesting an important role of desialylated N-oligosaccharides in integrin-ECM interactions [58]. For efficient cell-ECM adhesion, protein-protein interactions apparently are not enough, and glycosylation is needed to regulate this binding.
\n
Attachment of α2,8 to underlying glycans by sialic acid is rather rarely detected on integrins. A study using human melanoma cell line G361 is one of the few that have demonstrated the presence of α2,8-bound sialic acid on α5β1 integrin—and the role of this type of sialylation in FN binding. Desialylation using an enzyme from Arthrobacter ureafaciens specific for α2-3,6,8-linked sialic acids resulted in reduction of α5β1-mediated adhesion to FN, an effect not observed for neuraminidase, which cleaves only α2-3,6 linkages [115].
\n
Undoubtedly, the sialylation state of integrins contributes to the metastatic potential of mouse and human melanoma, but there are blank spots in our understanding of the role of α2,3-linked and α2,6-linked sialic acid in melanoma progression. Further studies should establish precisely how sialylation becomes altered, and its contribution to the disease phenotype.
\n
\n
\n
\n
6. Conclusions
\n
The search for glyco-biomarkers on integrins in melanoma progression motivates a host of studies performed by different research groups. Identification of universally present alterations of glycans on adhesion molecules, among them integrins—and elucidation of the molecular mechanisms of these changes—will boost our understanding of how melanoma cells acquire the ability to escape the primary tumor and spread through the body. Enhanced β1,6 branching and altered sialylation are the main glyco-features of integrin glycosylation in melanoma progression. The functional consequences of surface glycosylation rearrangements in melanoma progression must be known if we are to find effective ways to stop the process of carcinogenesis. The vast majority of studies on integrin glycosylation in melanoma cells have used cells cultured in vitro. A hugely important task for future research is to verify the results obtained from in vitro studies of tumor tissue from patients with melanoma, so that those findings can be applied for prevention and treatment of melanoma.
\n
\n\n',keywords:"integrin, N-glycosylation, melanoma, β1,6 branching, migration, extracellular matrix proteins",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/51351.pdf",chapterXML:"https://mts.intechopen.com/source/xml/51351.xml",downloadPdfUrl:"/chapter/pdf-download/51351",previewPdfUrl:"/chapter/pdf-preview/51351",totalDownloads:1486,totalViews:174,totalCrossrefCites:0,totalDimensionsCites:1,totalAltmetricsMentions:0,introChapter:null,impactScore:1,impactScorePercentile:64,impactScoreQuartile:3,hasAltmetrics:0,dateSubmitted:"November 24th 2015",dateReviewed:"May 18th 2016",datePrePublished:null,datePublished:"October 19th 2016",dateFinished:"June 27th 2016",readingETA:"0",abstract:"Each stage of melanoma development from transformed melanocytes to metastatic lesions requires the involvement of cell adhesion receptors, among which integrins are of particular importance. Strong N-glycosylation of αβ integrin heterodimers influences their processing, activation, and functions related to the modulation of cell adhesion to extracellular matrix proteins (ECM) and the basement membrane. A lack of N-glycans on integrin chains significantly reduces their interactions with the ECM. Melanoma progression is accompanied by changes in the composition of N-glycans on integrin subunits. The glycosylation profile of integrins depends on the stage of melanoma development and on the location of the metastasis. Enhanced expression of β1,6-branched complex-type oligosaccharides and altered sialylation are well-characterized changes in the N-glycosylation of integrins observed in melanoma progression. This chapter summarizes the current state of knowledge about α3β1, α5β1, and αvβ3 integrin glycosylation in melanoma and the functional consequences of changed glycosylation for the development of this cancer.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/51351",risUrl:"/chapter/ris/51351",book:{id:"5303",slug:"human-skin-cancer-potential-biomarkers-and-therapeutic-targets"},signatures:"Ewa Pocheć and Anna Lityńska",authors:[{id:"182953",title:"Dr.",name:"Ewa",middleName:null,surname:"Pocheć",fullName:"Ewa Pocheć",slug:"ewa-pochec",email:"ewa.pochec@uj.edu.pl",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"Jagiellonian University",institutionURL:null,country:{name:"Poland"}}},{id:"183802",title:"Prof.",name:"Anna",middleName:null,surname:"Lityńska",fullName:"Anna Lityńska",slug:"anna-litynska",email:"anna.litynska@uj.edu.pl",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"Jagiellonian University",institutionURL:null,country:{name:"Poland"}}}],sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Overall characteristics of integrins",level:"1"},{id:"sec_2_2",title:"2.1. The structure of α and β subunit ectodomains",level:"2"},{id:"sec_3_2",title:"2.2. Bidirectional signaling of integrins",level:"2"},{id:"sec_4_2",title:"2.3. Classification of integrins and their ligands",level:"2"},{id:"sec_6",title:"3. Integrin expression in melanoma",level:"1"},{id:"sec_7",title:"4. Functions of integrins: role of glycosylation",level:"1"},{id:"sec_8",title:"5. Alterations of integrin glycosylation in melanoma carcinogenesis",level:"1"},{id:"sec_8_2",title:"5.1. Branched complex-type N-glycans",level:"2"},{id:"sec_9_2",title:"5.2. Sialylation",level:"2"},{id:"sec_11",title:"6. Conclusions",level:"1"}],chapterReferences:[{id:"B1",body:'Link-Lenczowski P, Lityńska A. Glycans in melanoma screening. Part 2. Towards the understanding of integrin N-glycosylation in melanoma. Biochem Soc Trans. 2011;39(1):374–377. doi:10.1042/BST0390374'},{id:"B2",body:'Gu J, Taniguchi N. Potential of N-glycan in cell adhesion and migration as either a positive or negative regulator. Cell Adh Migr. 2008;2(4):243–245. doi:10.4161/cam.2.4.67.48'},{id:"B3",body:'Herlyn M. Human melanoma: development and progression. Cancer Metastasis Rev. 1990;9(2):101–112. doi:10.1007/BF00046337'},{id:"B4",body:'Seftor RE, Seftor EA, Hendrix MJ. Molecular role(s) for integrins in human melanoma invasion. Cancer Metastasis Rev. 1999;18(3):359–375. doi:10.1023/A:1006317125454'},{id:"B5",body:'McGary EC, Lev DC, Bar-Eli M. Cellular adhesion pathways and metastatic potential of human melanoma. Cancer Biol Ther. 2002;1(5):459–465. doi:104161/cbt.1.5.158'},{id:"B6",body:'Satyamoorthy K, Herlyn M. Cellular and molecular biology of human melanoma. Cancer Biol Ther. 2002;1(1):14–17. doi:10.4161/cbt.1.1.32'},{id:"B7",body:'Chudnovsky Y, Khavari PA, Adams AE. Melanoma genetics and the development of rational therapeutics. J Clin Invest. 2005;115(4):813–824. doi:10.1172/JCI24808'},{id:"B8",body:'Monteiro AC, Toricelli M, Jasiulionis MG. Signaling pathways altered during the metastatic progression of melanoma. In: Murph M. editor. Current clinical management and future therapeutics. InTech; 2015. p. 49–78. doi:10.5772/59747'},{id:"B9",body:'Hynes RO. Integrins: a family of cell surface receptors. Cell. 1987;48:549–554. doi:10.1016/0092-8674(87)90233-9'},{id:"B10",body:'Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer. 2010;10(1):9–22. doi:10.1038/nrc2748'},{id:"B11",body:'Gahmberg CG, Fagerholm SC, Nurmi SM, Chavakis T, Marcheas S, Gronhold M. Regulation of integrin activity and signaling. Biochim. Biophys. Acta. 2009;1790(6):431–444. doi:10.1016/j.bbagen.2009.03.007'},{id:"B12",body:'Cambell ID, Humphries MJ. Integrin structure, activation, and interactions. Cold Spring Harb Perspect Biol. 2011;3(3). pii:a004994. doi:10.1101/cshperspect.a004994'},{id:"B13",body:'Xiong JP, Stehle T, Zhang R, Joachimiak A, Frech M, Goodman SL, Arnaout MA. Crystal structure of the extracellular segment of integrin αvβ3 in complex with an Arg-Gly-Asp ligand. Science. 2002;296:151–155. doi:10.1126/science.1069040'},{id:"B14",body:'Zhu J, Luo BH, Xiao T, Zhang C, Nishida N, Springer TA. Structure of a complete integrin ectodomain in a physiologic resting state and activation and deactivation by applied forces. Mol Cell. 2008;32:849–861. doi:10.1016/j.molcel.2008.11.018'},{id:"B15",body:'Xiong JP, Stehle T, Diefenbach B, Zhang R, Dunker R, Scott DL, Joachimiak A, Goodman SL, Arnaout MA. Crystal structure of the extracellular segment of integrin αvβ3. Science. 2001;294(5541):339–345. doi:10.1126/science.1064535'},{id:"B16",body:'Wegener KL, Campbell ID. Transmembrane and cytoplasmic domains in integrin activation and protein-protein interactions. Mol Membr Biol. 2008;25(5):376–387. doi:10.1080/09687680802269886'},{id:"B17",body:'Barczyk M, Carracedo S, Gullberg D. Integrins. Cell Tissue Res. 2010;339(1):269–280. doi:10.1007/s00441-009-0834-6'},{id:"B18",body:'Wegener KL, Partridge AW, Han J, Pickford AR, Liddington RC, Ginsberg MH, Cambell ID. Structural basis of integrin activation by talin. Cell. 2007;128(1):171–182. doi:10.1016/j.cell.2006.10.048'},{id:"B19",body:'Montanez E, Ussar S, Schifferer M, Bosl M, Zent R, Moser M, Fassler R. Kindlin-2 controls bidirectional signaling of integrins. Genes Dev. 2008;22:1325–1330. doi:10.1101/gad.469408.'},{id:"B20",body:'Zaidel-Bar R, Itzkovitz S, Ma’ayan A, Iyengar R, Geiger B. Functional atlas of the integrin adhesome. Nat Cell Biol. 2007;9:858–867. doi:10.1038/ncb0807-858'},{id:"B21",body:'Takada Y, Ye X, Simon S. The integrins. Genome Biol. 2007;8(5):215. doi:10.1186/gb-2007-8-5-215'},{id:"B22",body:'Srichai MB, Zent R. Integrin structure and function. In: Zent R, Pozzi A, editors. Cell-extracellular matrix interactions in cancer. 1st ed. New York: Springer-Verlag; 2010. p. 19–41. doi:10.1007/978-1-4419-0814-8'},{id:"B23",body:'Albelda SM, Buck CA. Integrins and other cell adhesion molecules. FASEB J. 1990;4(11):2868–2880. doi:10.1038/346425a0'},{id:"B24",body:'Kuphal S, Bauer R, Bosserhoff A-K. Integrin signaling in malignant melanoma. Cancer Metastasis Rev. 2005;24(2):195–222. doi:10.1007/s10555-005-1572-1'},{id:"B25",body:'Mizejewski GJ. Role of integrins in cancer: survey of expression patterns. Proc Soc Exp Biol Med. 1999;222(2):124–138. doi:10.1046/j.1525-1373.1999.d01-122.x'},{id:"B26",body:'Cheresh DA. Structure, function and biological properties of integrin alpha v beta 3 on human melanoma cells. Cancer Metastasis Rev. 1991;10(1):3–10. doi:10.1007/BF00046839'},{id:"B27",body:'Kramer RH, Vu M, Cheng YF, Ramos DM. Integrin expression in malignant melanoma. Cancer Metastasis Rev. 1991;10(1):49–59. doi:10.1007/BF00046843'},{id:"B28",body:'Felding-Habermann B. Integrin adhesion receptors in tumor metastasis. Clin Exp Metastasis. 2003;20(3):203–213. doi:10.1023/A:1022983000355'},{id:"B29",body:'Laidler P, Gil D, Pituch-Noworolska A, Ciołczyk D, Ksiazek D, Przybyło M, Lityńska A. Expression of beta1-integrins and N-cadherin in bladder cancer and melanoma cell lines. Acta Biochim Pol. 2000;47(4):1159–1170.'},{id:"B30",body:'Qian F, Zhang ZC, Wu XF, Li YP, Xu Q. Interaction between integrin alpha(5) and fibronectin is required for metastasis of B16F10 melanoma cells. Biochem Biophys Res Commun. 2005;333(4):1269–1275. doi:10.1016/j.bbrc.2005.06.039'},{id:"B31",body:'Natali PG, Nicotra MR, Bartolazzi A, Cavaliere R, Bigotti A. Integrin expression in cutaneous malignant melanoma: association of the alpha 3/beta 1 heterodimer with tumor progression. Int J Cancer. 1993;54(1):68–72. doi:10.1002/ijc.2910540112'},{id:"B32",body:'Gehlsen KR, Davis GE, Sriramarao P. Integrin expression in human melanoma cells with differing invasive and metastatic properties. Clin Exp Metastasis. 1992;10(2):111–120. doi:10.1007/BF00114587'},{id:"B33",body:'Voura EB, Ramjeesingh RA, Montgomery AM, Siu CH. Involvement of integrin alpha(v)beta(3) and cell adhesion molecule L1 in transendothelial migration of melanoma cells. Mol Biol Cell. 2001;12(9):2699–2710. doi:10.1091/mbc.12.9.2699'},{id:"B34",body:'Albelda SM, Mette SA, Elder DE, Stewart R, Damjanovich L, Herlyn M, Buck CA. Integrin distribution in malignant melanoma: association of the beta 3 subunit with tumor progression. Cancer Res. 1990;50(20):6757–6764.'},{id:"B35",body:'Koistinen P, Ahonen M, Kähäri VM, Heino J. alphaV integrin promotes in vitro and in vivo survival of cells in metastatic melanoma. Int J Cancer. 2004;112(1):61–70. doi:10.1002/ijc.20377'},{id:"B36",body:'Ochwat D, Hoja-łukowicz D, Lityńska A. N-glycoproteins bearing β1–6 branched oligosaccharides from the A375 human melanoma cell line analysed by tandem mass spectrometry. Melanoma Res. 2004;14(6):479–485.'},{id:"B37",body:'Przybyło M, Martuszewska D, Pocheć E, Hoja-łukowicz D, Lityńska A. Identification of proteins bearing β1–6 branched N-glycans in human melanoma cell lines from different progression stages by tandem mass spectrometry analysis. Biochim Biophys Acta. 2007;1770(9):1427–1435. doi:10.1016/j.bbagen.2007.05.006'},{id:"B38",body:'Neto DS, Pantaleăo L, de Sα BC, Landman G. Alpha-v-beta3 integrin expression in melanocytic nevi and cutaneous melanoma. J Cutan Pathol. 2007;34(11):851–856. doi:10.1111/j.1600-0560.2007.00730.x'},{id:"B39",body:'Ziober BL, Chen YQ, Ramos DM, Waleh N, Kramer RH. Expression of the alpha7beta1 laminin receptor suppresses melanoma growth and metastatic potential. Cell Growth Differ. 1999;10(7):479–490.'},{id:"B40",body:'Danen EHJ. Integrin signaling as a cancer drug target. ISRN Cell Biol. 2013;Article ID 135164, doi:10.1155/2013/135164'},{id:"B41",body:'Frisch SM, Ruoslahti E. Integrins and anoikis. Curr Opin Cell Biol. 1997;9(5):701–706. doi:10.1016/S0955-0674(97)80124-X'},{id:"B42",body:'van der Flier A, Sonnenberg A. Function and interactions of integrins. Cell Tissue Res. 2001;305(3):285–298. doi:10.1007/s004410100417'},{id:"B43",body:'Watt FM. Role of integrins in regulating epidermal adhesion, growth and differentiation. EMBO J. 2002;21(15):3919–3926. doi:10.1093/emboj/cdf399'},{id:"B44",body:'Rathinam R, Alahari SK. Important role of integrins in the cancer biology. Cancer Metastasis Rev. 2010;9(1):2232–2237. doi:10.1007/s10555-010-9211-x'},{id:"B45",body:'Yamada KM, Even-Ram S. Integrin regulation of growth factor receptors. Nat Cell Biol. 2002;4(4):E75–E76. doi:10.1038/ncb0402-e75'},{id:"B46",body:'Hehlgans S, Haase M, Cordes N. Signalling via integrins: implications for cell survival and anticancer strategies. Biochim Biophys Acta. 2007;1775(1):163–180. doi:10.1016/j.bbcan.2006.09.001'},{id:"B47",body:'Harburger DS, Calderwood DA. Integrin signalling at a glance. J Cell Sci. 2009;122(Pt 2):159–163. doi:10.1242/jcs.018093'},{id:"B48",body:'Christiansen MN, Chik J, Lee L, Anugraham M, Abrahams JL, Packer NH. Cell surface protein glycosylation in cancer. Proteomics. 2014;14(4–5):525–546. doi:10.1002/pmic.201300387'},{id:"B49",body:'Schadendorf D, Gawlik C, Haney U, Ostmeier H, Suter L, Czarnetzki BM. Tumour progression and metastatic behaviour in vivo correlates with integrin expression on melanocytic tumours. J Pathol. 1993;170(4):429–434. doi:10.1002/path.1711700405'},{id:"B50",body:'Guo W, Giancotti FG. Integrin signalling during tumour progression. Nat Rev Mol Cell Biol. 2004;5(10):816–826. doi:10.1038/nrm1490'},{id:"B51",body:'Danen EHJ. Integrins: regulators of tissue function and cancer progression. Curr Pharm Des. 2005;11(7):881–891. doi:10.2174/1381612053381756'},{id:"B52",body:'Ganguly KK, Pal S, Moulik S, Chatterjee A. Integrins and metastasis. Cell Adh Migr. 2013;7(3):251–261. doi:10.4161/cam.23840'},{id:"B53",body:'Seguin L, Desgrosellier JS, Weis SM, Cheresh DA. Integrins and cancer: regulators of cancer stemness, metastasis, and drug resistance. Trends Cell Biol. 2015;25(4):234–240. doi:10.1016/j.tcb.2014.12.006'},{id:"B54",body:'Janik ME, Lityńska A, Vereecken P. Cell migration—the role of integrin glycosylation. Biochim Biophys Acta. 2010;1800(6):545–555. doi:10.1016/j.bbagen.2010.03.013'},{id:"B55",body:'Yuan Y, Wu L, Shen S, Wu S, Burdick MM. Effect of alpha 2,6 sialylation on integrin-mediated adhesion of breast cancer cells to fibronectin and collagen IV. Life Sci. 2016;149:138–145. doi:10.1016/j.lfs.2016.02.071'},{id:"B56",body:'Gu J, Taniguchi N. Regulation of integrin functions by N-glycans. Glycoconj J. 2004;21(1–2):9–15. doi:10.1023/B:GLYC.0000043741.47559.30'},{id:"B57",body:'Pigott R, Power C. The adhesion molecules facts book. 1st ed. London: Academic Press; 1993.'},{id:"B58",body:'Pocheć E, Lityńska A, Amoresano A, Casbarra A. Glycosylation profile of integrin alpha 3 beta 1 changes with melanoma progression. Biochim Biophys Acta. 2003;1643(1–3):113–123. doi:10.1016/j.bbamcr.2003.10.004'},{id:"B59",body:'Pocheć E, Bubka M, Rydlewska M, Janik M, Pokrywka M, Lityńska A. Aberrant glycosylation of αvβ3 integrin is associated with melanoma progression. Anticancer Res. 2015;5(4):2093–2103.'},{id:"B60",body:'Veiga SS, Chammas R, Cella N, Brentani RR. Glycosylation of beta-1 integrins in B16-F10 mouse melanoma cells as determinant of differential binding and acquisition of biological activity. Int J Cancer. 1995;61(3):420–424. doi:10.1002/ijc.2910610324'},{id:"B61",body:'Fuster MM, Esko JD. The sweet and sour of cancer: glycans as novel therapeutic targets. Nat Rev Cancer. 2005;5(7):526–542. doi:10.1038/nrc1649'},{id:"B62",body:'Stanley P, Schachter H, Taniguchi N. N-gycans. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME, editors. Essentials of glycobiology. 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2009.'},{id:"B63",body:'Spiro RC, Laufer DM, Perry SK, Harper JR. Effect of inhibitors of N-linked oligosaccharide processing on the cell surface expression of a melanoma integrin. J Cell Biochem. 1989;41(1):37–45. doi:10.1002/jcb.240410105'},{id:"B64",body:'Zheng M, Fang H, Hakomori S. Functional role of N-glycosylation in alpha 5 beta 1 integrin receptor. De-N-glycosylation induces dissociation or altered association of alpha 5 and beta 1 subunits and concomitant loss of fibronectin binding activity. J Biol Chem. 1994;269(16):12325–12331.'},{id:"B65",body:'Isaji T, Sato Y, Fukuda T, Gu J. N-glycosylation of the I-like domain of β1 integrin domain is essential for β1 integrin expression and biological function. J Biol Chem. 2009;284(18);12207–12216. doi:10.1074/jbc.M807920200'},{id:"B66",body:'Chammas R, Veiga SS, Line S, Potocnjak P, Brentani RR. Asn-linked oligosaccharide-dependent interaction between laminin and gp120/140. An alpha 6/beta 1 integrin. J Biol Chem. 1991;266(5):3349–3355.'},{id:"B67",body:'Chammas R, Veiga SS, Travassos LR, Brentani RR. Functionally distinct roles for glycosylation of alpha and beta integrin chains in cell-matrix interactions. Proc Natl Acad Sci U S A. 1993;90(5):1795–1799. doi:10.1073/pnas.90.5.1795'},{id:"B68",body:'Bironaite D, Nesland JM, Dalen H, Risberg B, Bryne M. N-Glycans influence the in vitro adhesive and invasive behaviour of three metastatic cell lines. Tumour Biol. 2000;21(3):165–175. doi:10.1159/000030123'},{id:"B69",body:'Passaniti A, Hart GW. Cell surface sialylation and tumor metastasis. Metastatic potential of B16 melanoma variants correlates with their relative numbers of specific penultimate oligosaccharide structures. J Biol Chem. 1988;263(16):7591–7603.'},{id:"B70",body:'Chammas R, Veiga SS, Brentani RR. Glycobiology of laminin-integrin interaction and the metastatic phenotype. Mem Inst Oswaldo Cruz. 1991;86(Suppl 3):29–35. doi:10.1590/S0074-02761991000700006'},{id:"B71",body:'Kawano T, Takasaki S, Tao TW, Kobata A. Altered glycosylation of beta 1 integrins associated with reduced adhesiveness to fibronectin and laminin. Int J Cancer. 1993;53(1):91–96. doi:10.1002/ijc.2910530118'},{id:"B72",body:'Ogura T, Noguchi T, Murai-Takebe R, Hosooka T, Honma N, Kasuga M. Resistance of B16 melanoma cells to CD47-induced negative regulation of motility as a result of aberrant N-glycosylation of SHPS-1. J Biol Chem. 2004;279(14):13711–13720. doi:10.1074/jbc.M310276200'},{id:"B73",body:'Reddy BV, Kalraiya RD. Sialilated beta1,6 branched N-oligosaccharides modulate adhesion, chemotaxis and motility of melanoma cells: effect on invasion and spontaneous metastasis properties. Biochim Biophys Acta. 2006;1760(9):1393–1402. doi:10.1016/j.bbagen.2006.05.003'},{id:"B74",body:'Pocheć E, Janik M, Hoja-łukowicz D, Link-Lenczowski P, Przybyło M, Lityńska A. Expression of integrins α3β1 and α5β1 and GlcNAc β1,6 glycan branching influences metastatic melanoma cell migration on fibronectin. Eur J Cell Biol. 2013;92(12):355–362. doi:10.1016/j.ejcb.2013.10.007'},{id:"B75",body:'Kremser ME, Przybyło M, Hoja-łukowicz D, Pocheć E, Amoresano A, Carpentieri A, Bubka M, Lityńska A. Characterisation of alpha3beta1 and alpha(v)beta3 integrin N-oligosaccharides in metastatic melanoma WM9 and WM239 cell lines. Biochim Biophys Acta. 2008;1780(12):1421–1431. doi:10.1016/j.bbagen.2008.07.011'},{id:"B76",body:'Janik ME, Przybyło M, Pocheć E, Pokrywka M, Lityńska A. Effect of α3β1 and αvβ3 integrin glycosylation on interaction of melanoma cells with vitronectin. Acta Biochim Pol. 2010;57(1):55–61.'},{id:"B77",body:'Dennis JW, Laferté S, Waghorne C, Breitman ML, Kerbel RS. Beta 1-6 branching of Asn-linked oligosaccharides is directly associated with metastasis. Science. 1987;236(4801):582–585. doi:10.1126/science.2953071'},{id:"B78",body:'Taniguchi N, Miyoshi E, Ko JH, Ikeda Y, Ihara Y. Implication of N-acetylglucosaminyltransferases III and V in cancer: gene regulation and signaling mechanism. Biochim Biophys Acta. 1999;1455(2–3):287–300. doi:10.1016/S0925-4439(99)00066-6'},{id:"B79",body:'Couldrey C, Green JE. Metastases: the glycan connection. Breast Cancer Res. 2000;2(5):321–323. doi:10.1186/bcr75'},{id:"B80",body:'Guo HB, Lee I, Kamar M, Akiyama SK, Pierce M. Aberrant N-glycosylation of beta1 integrin causes reduced alpha5beta1 integrin clustering and stimulates cell migration. Cancer Res. 2002;62(23):6837–6845.'},{id:"B81",body:'Wang L, Liang Y, Li Z, Cai X, Zhang W, Wu G, Jin J, Fang Z, Yang Y, Zha X. Increase in beta1-6 GlcNAc branching caused by N-acetylglucosaminyltransferase V directs integrin beta1 stability in human hepatocellular carcinoma cell line SMMC-7721. J Cell Biochem. 2007;100(1):230–241. doi:10.1002/jcb.21071'},{id:"B82",body:'Yagel S, Feinmesser R, Waghorne C, Lala PK, Breitman ML, Dennis JW. Evidence that beta 1-6 branched Asn-linked oligosaccharides on metastatic tumor cells facilitate invasion of basement membranes. Int J Cancer. 1989;44(4):685–690. doi:10.1002/ijc.2910440422'},{id:"B83",body:'Dennis JW, Granovsky M, Warren CE. Glycoprotein glycosylation and cancer progression. Biochim Biophys Acta. 1999;1473(1):21–34. doi:10.1016/S0304-4165(99)00167-1'},{id:"B84",body:'Ranjan A, Kalraiya RD. Invasive potential of melanoma cells correlates with the expression of MT1-MMP and regulated by modulating its association with motility receptors via N-glycosylation on the receptors. Biomed Res Int. 2014;2014:804680. doi:10.1155/2014/804680'},{id:"B85",body:'Ranjan A, Bane SM, Kalraiya RD. Glycosylation of the laminin receptor (α3β1) regulates its association with tetraspanin CD151: impact on cell spreading, motility, degradation and invasion of basement membrane by tumor cells. Exp Cell Res. 2014;322(2):249–264. doi:10.1016/j.yexcr.2014.02.004'},{id:"B86",body:'Baldwin G, Novitskaya V, Sadej R, Pochec E, Litynska A, Hartmann C, Williams J, Ashman L, Eble JA, Berditchevski F. Tetraspanin CD151 regulates glycosylation of (alpha)3(beta)1 integrin. J Biol Chem. 2008;283(51):35445–35454. doi:10.1074/jbc.M806394200'},{id:"B87",body:'Pocheć E, Ząbczyńska M, Bubka M, Homa J, Lityńska A. β1,6-branched complex-type N-glycans affect FAK signaling in metastatic melanoma cells. Cancer Invest. 2016;34(1):45–56. doi:10.3109/07357907.2015.1102928'},{id:"B88",body:'Tsuji T, Kawada Y, Kai-Murozono M, Komatsu S, Han SA, Takeuchi K, Mizushima H, Miyazaki K, Irimura T. Regulation of melanoma cell migration and invasion by laminin-5 and alpha3beta1 integrin (VLA-3). Clin Exp Metastasis. 2002;19(2):127–134. doi:10.1023/A:1014573204062'},{id:"B89",body:'Giannelli G, Astigiano S, Antonaci S, Morini M, Barbieri O, Noonan DM, Albini A. Role of the alpha3beta1 and alpha6beta4 integrins in tumor invasion. Clin Exp Metastasis. 2002;19(3):217–223. doi:10.1023/A:1015579204607'},{id:"B90",body:'Litynska A, Przybylo M, Pochec E, Kremser E, Hoja-Lukowicz D, Sulowska U. Does glycosylation of melanoma cells influence their interactions with fibronectin? Biochimie. 2006;88(5):527–534. doi:10.1016/j.biochi.2005.10.012'},{id:"B91",body:'Melchiori A, Mortarini R, Carlone S, Marchisio PC, Anichini A, Noonan DM, Albini A. The alpha 3 beta 1 integrin is involved in melanoma cell migration and invasion. Exp Cell Res. 1995;219(1):233–242. doi:10.1006/excr.1995.1223'},{id:"B92",body:'Kreidberg JA. Functions of alpha3beta1 integrin. Curr Opin Cell Biol. 2000;12(5):548–553. doi:10.1016/S0955-0674(00)00130-7'},{id:"B93",body:'Prokopishyn NL, Puzon-McLaughlin W, Takada Y, Laferté S. Integrin alpha3beta1 expressed by human colon cancer cells is a major carrier of oncodevelopmental carbohydrate epitopes. J Cell Biochem. 1999;72(2):189–209. doi:10.1002/(SICI)1097-4644(19990201)72:2<189::AID-JCB4>3.0.CO;2-N'},{id:"B94",body:'Link-Lenczowski P, Butters TD, Litynska A. Glycosylation profile of integrin alpha3beta1 subunits in human melanoma cells at different stages of progression. In: XXI International Symposium on Glycoconjugates (GLYCO 21); 21–26 August. 2011; Vienna. Austria: Glycoconjugate J; 2011. p. 329.'},{id:"B95",body:'Béliveau A, Bérubé M, Rousseau A, Pelletier G, Guérin SL. Expression of integrin alpha5beta1 and MMPs associated with epithelioid morphology and malignancy of uveal melanoma. Invest Ophthalmol Vis Sci. 2000;41(8):2363–2372.'},{id:"B96",body:'Schaffner F, Ray AM, Dontenwill M. Integrin α5β1, the fibronectin receptor, as a pertinent therapeutic target in solid tumors. Cancers. 2013;5(1):27–47. doi:10.3390/cancers5010027'},{id:"B97",body:'Ruoslahti E. The Walter Herbert Lecture. Control of cell motility and tumour invasion by extracellular matrix interactions. Br J Cancer. 1992;66(2):239–242. doi:10.1038/bjc.1992.250'},{id:"B98",body:'Aznavoorian S, Stracke ML, Parsons J, McClanahan J, Liotta LA. Integrin alphavbeta3 mediates chemotactic and haptotactic motility in human melanoma cells through different signaling pathways. J Biol Chem. 1996;271(6):3247–3254. doi:10.1074/jbc.271.6.3247'},{id:"B99",body:'Zhao Y, Nakagawa T, Itoh S, Inamori K, Isaji T, Kariya Y, Kondo A, Miyoshi E, Miyazaki K, Kawasaki N, Taniguchi N, Gu J. N-acetylglucosaminyltransferase III antagonizes the effect of N-acetylglucosaminyltransferase V on alpha3beta1 integrin-mediated cell migration. J Biol Chem. 2006;281(43):32122–32130. doi:10.1074/jbc.M607274200'},{id:"B100",body:'Friedl P, Wolf K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer. 2003;3(5):362–374. doi:10.1038/nrm2720'},{id:"B101",body:'Przybyło M, Pocheć E, Link-Lenczowski P, Lityńska A. Beta1-6 branching of cell surface glycoproteins may contribute to uveal melanoma progression by up-regulating cell motility. Mol Vis. 2008;14:625–636.'},{id:"B102",body:'Akiyama SK. Integrins in cell adhesion and signaling. Hum Cell. 1996;9(3):181–186.'},{id:"B103",body:'Zhao Y, Sato Y, Isaji T, Fukuda T, Matsumoto A, Miyoshi E, Gu J, Taniguchi N. Branched N-glycans regulate the biological functions of integrins and cadherins. FEBS J. 2008;275(9):1939–1948. doi:10.1111/j.1742-4658.2008.06346.x'},{id:"B104",body:'Gu J, Sato Y, Kariya Y, Isaji T, Taniguchi N, Fukuda T. A mutual regulation between cell-cell adhesion and N-glycosylation: implication of the bisecting GlcNAc for biological functions. J Proteome Res. 2009;8(2):431–435. doi:10.1021/pr800674g'},{id:"B105",body:'Kugler MC, Wei Y, Chapman HA. Urokinase receptor and integrin interactions. Curr Pharm Des. 2003;9(19):1565–1574. doi:10.2174/1381612033454658'},{id:"B106",body:'Stahl A, Mueller BM. Binding of urokinase to its receptor promotes migration and invasion of human melanoma cells in vitro. Cancer Res. 1994;54(11):3066–3071.'},{id:"B107",body:'Laurenzana A, Biagioni A, D’Alessio S, Bianchini F, Chillŕ A, Margheri F, Luciani C, Mazzanti B, Pimpinelli N, Torre E, Danese S, Calorini L, Del Rosso M, Fibbi G. Melanoma cell therapy: endothelial progenitor cells as shuttle of the MMP12 uPAR-degrading enzyme. Oncotarget. 2014;5(11):3711–3727. doi:10.18632/oncotarget.1987'},{id:"B108",body:'Varki A. Sialic acids as ligands in recognition phenomena. FASEB J. 1997;11(4):248–255.'},{id:"B109",body:'Traving C, Schauer R. Structure, function and metabolism of sialic acids. Cell Mol Life Sci. 1998;54(12):1330–1349. doi:10.1007/s000180050258'},{id:"B110",body:'Schultz MJ, Swindall AF, Bellis SL. Regulation of the metastatic cell phenotype by sialylated glycans. Cancer Metastasis Rev. 2012;31(3–4):501–518. doi:10.1007/s10555-012-9359-7'},{id:"B111",body:'Yogeeswaran G, Salk PL. Metastatic potential is positively correlated with cell surface sialylation of cultured murine tumor cell lines. Science. 1981;212(4502):1514–1516. doi:10.1126/science.7233237'},{id:"B112",body:'Sato T. Lectin-probed western blot analysis. Methods Mol Biol. 2014;1200:93–100. doi:10.1007/978-1-4939-1292-6_8'},{id:"B113",body:'Ranjan A, Kalraiya RD. α2,6 sialylation associated with increased beta 1,6-branched N-oligosaccharides influences cellular adhesion and invasion. J Biosci. 2013;38(5):867–876. doi:10.1007/s12038-013-9382-z'},{id:"B114",body:'Chang WW, Yu CY, Lin TW, Wang PH, Tsai YC. Soyasaponin I decreases the expression of alpha2,3-linked sialic acid on the cell surface and suppresses the metastatic potential of B16F10 melanoma cells. Biochem Biophys Res Commun. 2006;341(2):614–619. doi:10.1016/j.bbrc.2005.12.216'},{id:"B115",body:'Nadanaka S, Sato C, Kitajima K, Katagiri K, Irie S, Yamagata T. Occurrence of oligosialic acids on integrin alpha 5 subunit and their involvement in cell adhesion to fibronectin. J Biol Chem. 2001;276(36):33657–33664. doi:10.1074/jbc.M011100200'}],footnotes:[],contributors:[{corresp:"yes",contributorFullName:"Ewa Pocheć",address:"ewa.pochec@uj.edu.pl",affiliation:'
Department of Glycoconjugate Biochemistry, Institute of Zoology, Jagiellonian University, Krakow, Poland
Department of Glycoconjugate Biochemistry, Institute of Zoology, Jagiellonian University, Krakow, Poland
'}],corrections:null},book:{id:"5303",type:"book",title:"Human Skin Cancer, Potential Biomarkers and Therapeutic Targets",subtitle:null,fullTitle:"Human Skin Cancer, Potential Biomarkers and Therapeutic Targets",slug:"human-skin-cancer-potential-biomarkers-and-therapeutic-targets",publishedDate:"October 19th 2016",bookSignature:"Miroslav Blumenberg",coverURL:"https://cdn.intechopen.com/books/images_new/5303.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-953-51-2711-6",printIsbn:"978-953-51-2710-9",pdfIsbn:"978-953-51-7317-5",reviewType:"peer-reviewed",numberOfWosCitations:7,isAvailableForWebshopOrdering:!0,editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1077"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"52391",type:"chapter",title:"Introductory Chapter: A Short Primer on Human Skin Cancers",slug:"introductory-chapter-a-short-primer-on-human-skin-cancers",totalDownloads:1250,totalCrossrefCites:0,signatures:"Miroslav Blumenberg",reviewType:"peer-reviewed",authors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",slug:"miroslav-blumenberg"}]},{id:"51846",type:"chapter",title:"The Emerging Epigenetic Landscape in Melanoma",slug:"the-emerging-epigenetic-landscape-in-melanoma",totalDownloads:1776,totalCrossrefCites:0,signatures:"Robert A. Rollins, Kimberly H. Kim and Cheng‐Chung Tsao",reviewType:"peer-reviewed",authors:[{id:"183245",title:"Dr.",name:"Robert",middleName:null,surname:"Rollins",fullName:"Robert Rollins",slug:"robert-rollins"},{id:"183811",title:"Dr.",name:"Kimberly",middleName:null,surname:"Kim",fullName:"Kimberly Kim",slug:"kimberly-kim"},{id:"183812",title:"Dr.",name:"Cheng-Chung",middleName:null,surname:"Tsao",fullName:"Cheng-Chung Tsao",slug:"cheng-chung-tsao"}]},{id:"51351",type:"chapter",title:"Glycosylation of Integrins in Melanoma Progression",slug:"glycosylation-of-integrins-in-melanoma-progression",totalDownloads:1486,totalCrossrefCites:0,signatures:"Ewa Pocheć and Anna Lityńska",reviewType:"peer-reviewed",authors:[{id:"182953",title:"Dr.",name:"Ewa",middleName:null,surname:"Pocheć",fullName:"Ewa Pocheć",slug:"ewa-pochec"},{id:"183802",title:"Prof.",name:"Anna",middleName:null,surname:"Lityńska",fullName:"Anna Lityńska",slug:"anna-litynska"}]},{id:"51724",type:"chapter",title:"Bitter Sweetness of Malignant Melanoma: Deciphering the Role of Cell Surface Glycosylation in Tumour Progression and Metastasis",slug:"bitter-sweetness-of-malignant-melanoma-deciphering-the-role-of-cell-surface-glycosylation-in-tumour-",totalDownloads:1380,totalCrossrefCites:2,signatures:"Małgorzata Przybyło, Marcelina E. Janik and Dorota Hoja-Łukowicz",reviewType:"peer-reviewed",authors:[{id:"182917",title:"Dr.",name:"Małgorzata",middleName:null,surname:"Przybyło",fullName:"Małgorzata Przybyło",slug:"malgorzata-przybylo"},{id:"183174",title:"Dr.",name:"Marcelina",middleName:null,surname:"Janik",fullName:"Marcelina Janik",slug:"marcelina-janik"},{id:"183733",title:"Dr.",name:"Dorota",middleName:null,surname:"Hoja-Łukowicz",fullName:"Dorota Hoja-Łukowicz",slug:"dorota-hoja-lukowicz"}]},{id:"51928",type:"chapter",title:"Cadherins and their Role in Malignant Transformation: Implications for Skin Cancer Progression",slug:"cadherins-and-their-role-in-malignant-transformation-implications-for-skin-cancer-progression",totalDownloads:1340,totalCrossrefCites:0,signatures:"Marcelina E. Janik, Dorota Hoja-Łukowicz and Małgorzata Przybyło",reviewType:"peer-reviewed",authors:[{id:"182917",title:"Dr.",name:"Małgorzata",middleName:null,surname:"Przybyło",fullName:"Małgorzata Przybyło",slug:"malgorzata-przybylo"},{id:"183174",title:"Dr.",name:"Marcelina",middleName:null,surname:"Janik",fullName:"Marcelina Janik",slug:"marcelina-janik"},{id:"183733",title:"Dr.",name:"Dorota",middleName:null,surname:"Hoja-Łukowicz",fullName:"Dorota Hoja-Łukowicz",slug:"dorota-hoja-lukowicz"}]},{id:"51490",type:"chapter",title:"Inhibiting Lactate Dehydrogenase A Enhances the Cytotoxicity of the Mitochondria Accumulating Antioxidant, Mitoquinone, in Melanoma Cells",slug:"inhibiting-lactate-dehydrogenase-a-enhances-the-cytotoxicity-of-the-mitochondria-accumulating-antiox",totalDownloads:1677,totalCrossrefCites:1,signatures:"Ali A. Alshamrani, James L. Franklin, Aaron M. Beedle and Mandi M.\nMurph",reviewType:"peer-reviewed",authors:[{id:"32293",title:"Prof.",name:"Mandi",middleName:null,surname:"Murph",fullName:"Mandi Murph",slug:"mandi-murph"},{id:"185977",title:"Mr.",name:"Ali",middleName:null,surname:"Alshamrani",fullName:"Ali Alshamrani",slug:"ali-alshamrani"},{id:"191333",title:"Prof.",name:"James",middleName:null,surname:"Franklin",fullName:"James Franklin",slug:"james-franklin"},{id:"191334",title:"Prof.",name:"Aaron",middleName:null,surname:"Beedle",fullName:"Aaron Beedle",slug:"aaron-beedle"}]}]},relatedBooks:[{type:"book",id:"6078",title:"Human Skin Cancers",subtitle:"Pathways, Mechanisms, Targets and Treatments",isOpenForSubmission:!1,hash:"bb972353fcf2ce19dfbd460010d13803",slug:"human-skin-cancers-pathways-mechanisms-targets-and-treatments",bookSignature:"Miroslav Blumenberg",coverURL:"https://cdn.intechopen.com/books/images_new/6078.jpg",editedByType:"Edited by",editors:[{id:"31610",title:"Dr.",name:"Miroslav",surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"57287",title:"Epigenetics in Melanoma Development and Drug Resistance",slug:"epigenetics-in-melanoma-development-and-drug-resistance",signatures:"Heinz Hammerlindl and Helmut Schaider",authors:[{id:"209068",title:"Associate Prof.",name:"Helmut",middleName:null,surname:"Schaider",fullName:"Helmut Schaider",slug:"helmut-schaider"},{id:"209070",title:"MSc.",name:"Heinz",middleName:null,surname:"Hammerlindl",fullName:"Heinz Hammerlindl",slug:"heinz-hammerlindl"}]},{id:"56758",title:"LncRNAs as Biomarkers for Melanoma",slug:"lncrnas-as-biomarkers-for-melanoma",signatures:"Yixuan James Zheng, Ricardo Moreno Traspas and Susana Ortiz-\nUrda",authors:[{id:"209093",title:"B.A.",name:"Yixuan James",middleName:null,surname:"Zheng",fullName:"Yixuan James Zheng",slug:"yixuan-james-zheng"},{id:"209094",title:"Dr.",name:"Suzana",middleName:null,surname:"Ortiz",fullName:"Suzana Ortiz",slug:"suzana-ortiz"},{id:"217602",title:"Dr.",name:"Ricardo",middleName:null,surname:"Traspas",fullName:"Ricardo Traspas",slug:"ricardo-traspas"}]},{id:"56861",title:"The Multiple Roles of Tyrosinase-Related Protein-2/L- Dopachrome Tautomerase in Melanoma: Biomarker, Therapeutic Target, and Molecular Driver in Tumor Progression",slug:"the-multiple-roles-of-tyrosinase-related-protein-2-l-dopachrome-tautomerase-in-melanoma-biomarker-th",signatures:"Adina L. Milac and Gabriela Negroiu",authors:[{id:"46010",title:"Prof.",name:"Gabriela",middleName:null,surname:"Negroiu",fullName:"Gabriela Negroiu",slug:"gabriela-negroiu"},{id:"217160",title:"Dr.",name:"Adina",middleName:"Luminita",surname:"Milac",fullName:"Adina Milac",slug:"adina-milac"}]},{id:"58972",title:"The Modern Approach to Targeting Melanoma",slug:"the-modern-approach-to-targeting-melanoma",signatures:"Jane O'Sullivan and Donal O’Connor",authors:[{id:"224699",title:"Dr.",name:"Jane",middleName:null,surname:"O'Sullivan",fullName:"Jane O'Sullivan",slug:"jane-o'sullivan"}]},{id:"56783",title:"Possibilities for the Therapy of Melanoma: Current Knowledge and Future Directions",slug:"possibilities-for-the-therapy-of-melanoma-current-knowledge-and-future-directions",signatures:"Marcela Valko-Rokytovská, Jana Šimková, Mária Milkovičová and\nZuzana Kostecká",authors:[{id:"206108",title:"Dr.",name:"Marcela",middleName:null,surname:"Valko-Rokytovská",fullName:"Marcela Valko-Rokytovská",slug:"marcela-valko-rokytovska"},{id:"216042",title:"Dr.",name:"Jana",middleName:null,surname:"Šimková",fullName:"Jana Šimková",slug:"jana-simkova"},{id:"216043",title:"Dr.",name:"Mária",middleName:null,surname:"Milkovičová",fullName:"Mária Milkovičová",slug:"maria-milkovicova"},{id:"216044",title:"Prof.",name:"Zuzana",middleName:null,surname:"Kostecká",fullName:"Zuzana Kostecká",slug:"zuzana-kostecka"}]},{id:"57067",title:"Squamous Cell Carcinoma: Biomarkers and Potential Therapeutic Targets",slug:"squamous-cell-carcinoma-biomarkers-and-potential-therapeutic-targets",signatures:"Vlad-Mihai Voiculescu, Constantin Caruntu, Iulia Solomon, Mihai\nLupu, Mihaela Adriana Ilie, Daniel Boda, Carolina Constantin and\nMonica Neagu",authors:[{id:"52215",title:"Prof.",name:"Monica",middleName:null,surname:"Teodora Neagu",fullName:"Monica Teodora Neagu",slug:"monica-teodora-neagu"},{id:"52218",title:"Dr.",name:"Carolina",middleName:null,surname:"Constantin",fullName:"Carolina Constantin",slug:"carolina-constantin"},{id:"207531",title:"Associate Prof.",name:"Constantin",middleName:null,surname:"Caruntu",fullName:"Constantin Caruntu",slug:"constantin-caruntu"},{id:"207534",title:"Dr.",name:"Vlad",middleName:null,surname:"Voiculescu",fullName:"Vlad Voiculescu",slug:"vlad-voiculescu"},{id:"207536",title:"Dr.",name:"Mihaela Adriana",middleName:null,surname:"Ilie",fullName:"Mihaela Adriana Ilie",slug:"mihaela-adriana-ilie"},{id:"207538",title:"Dr.",name:"Mihai",middleName:null,surname:"Lupu",fullName:"Mihai Lupu",slug:"mihai-lupu"},{id:"207543",title:"Dr.",name:"Daniel",middleName:null,surname:"Boda",fullName:"Daniel Boda",slug:"daniel-boda"},{id:"218453",title:"Dr.",name:"Iulia",middleName:null,surname:"Solomon",fullName:"Iulia Solomon",slug:"iulia-solomon"}]},{id:"60451",title:"Correlation between Porcine and Human Skin Models by Optical Methods",slug:"correlation-between-porcine-and-human-skin-models-by-optical-methods",signatures:"Alessandra Keiko Lima Fujita, Rozana Wendler da Rocha, André\nEscobar, Andrigo Barboza de Nardi, Vanderlei Salvador Bagnato\nand Priscila Fernanda Campos de Menezes",authors:[{id:"36412",title:"Dr.",name:"Priscila",middleName:null,surname:"Menezes",fullName:"Priscila Menezes",slug:"priscila-menezes"},{id:"72297",title:"Prof.",name:"Vanderlei Salvador",middleName:null,surname:"Bagnato",fullName:"Vanderlei Salvador Bagnato",slug:"vanderlei-salvador-bagnato"},{id:"220461",title:"Dr.",name:"Alessandra",middleName:null,surname:"Keiko",fullName:"Alessandra Keiko",slug:"alessandra-keiko"},{id:"227389",title:"MSc.",name:"Rozana",middleName:null,surname:"Da Rocha",fullName:"Rozana Da Rocha",slug:"rozana-da-rocha"},{id:"227390",title:"Dr.",name:"André",middleName:null,surname:"Escobar",fullName:"André Escobar",slug:"andre-escobar"},{id:"227391",title:"Prof.",name:"Andrigo",middleName:null,surname:"De Nardi",fullName:"Andrigo De Nardi",slug:"andrigo-de-nardi"}]},{id:"57023",title:"Molecular Mechanisms and Biomarkers of Skin Photocarcinogenesis",slug:"molecular-mechanisms-and-biomarkers-of-skin-photocarcinogenesis",signatures:"Adriana T. Lopez, Liang Liu and Larisa Geskin",authors:[{id:"214089",title:"B.A.",name:"Adriana",middleName:null,surname:"Lopez",fullName:"Adriana Lopez",slug:"adriana-lopez"},{id:"219947",title:"Dr.",name:"Liang",middleName:null,surname:"Liu",fullName:"Liang Liu",slug:"liang-liu"},{id:"219948",title:"Dr.",name:"Larisa",middleName:null,surname:"Geskin",fullName:"Larisa Geskin",slug:"larisa-geskin"}]}]}],publishedBooks:[{type:"book",id:"7866",title:"Cutaneous Melanoma",subtitle:null,isOpenForSubmission:!1,hash:"20e2bb07cb5983230e8a271d46400393",slug:"cutaneous-melanoma",bookSignature:"Paweł Pietkiewicz",coverURL:"https://cdn.intechopen.com/books/images_new/7866.jpg",editedByType:"Edited by",editors:[{id:"164394",title:"Ph.D.",name:"Paweł",surname:"Pietkiewicz",slug:"pawel-pietkiewicz",fullName:"Paweł Pietkiewicz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10338",title:"Melanoma",subtitle:null,isOpenForSubmission:!1,hash:"911948e45d7c681a350a511fd44bb4b3",slug:"melanoma",bookSignature:"Ahmed Lasfar and Karine Cohen-Solal",coverURL:"https://cdn.intechopen.com/books/images_new/10338.jpg",editedByType:"Edited by",editors:[{id:"32546",title:"Dr.",name:"Ahmed",surname:"Lasfar",slug:"ahmed-lasfar",fullName:"Ahmed Lasfar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"245",title:"Current Management of Malignant Melanoma",subtitle:null,isOpenForSubmission:!1,hash:"d76e43a506d68b3062db243c8ad6495a",slug:"current-management-of-malignant-melanoma",bookSignature:"Ming Y. Cao",coverURL:"https://cdn.intechopen.com/books/images_new/245.jpg",editedByType:"Edited by",editors:[{id:"47032",title:"Dr.",name:"Ming Yu",surname:"Cao",slug:"ming-yu-cao",fullName:"Ming Yu Cao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"273",title:"Research on Melanoma",subtitle:"A Glimpse into Current Directions and Future Trends",isOpenForSubmission:!1,hash:"03dcadf8ca228b0a39a14c7614a712f2",slug:"research-on-melanoma-a-glimpse-into-current-directions-and-future-trends",bookSignature:"Mandi Murph",coverURL:"https://cdn.intechopen.com/books/images_new/273.jpg",editedByType:"Edited by",editors:[{id:"32293",title:"Prof.",name:"Mandi",surname:"Murph",slug:"mandi-murph",fullName:"Mandi Murph"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"520",title:"Melanoma in the Clinic",subtitle:"Diagnosis, Management and Complications of Malignancy",isOpenForSubmission:!1,hash:"1d46978920ee70714be6f18821b032ec",slug:"melanoma-in-the-clinic-diagnosis-management-and-complications-of-malignancy",bookSignature:"Prof. Mandi Murph",coverURL:"https://cdn.intechopen.com/books/images_new/520.jpg",editedByType:"Edited by",editors:[{id:"32293",title:"Prof.",name:"Mandi",surname:"Murph",slug:"mandi-murph",fullName:"Mandi Murph"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],publishedBooksByAuthor:[{type:"book",id:"5303",title:"Human Skin Cancer, Potential Biomarkers and Therapeutic Targets",subtitle:null,isOpenForSubmission:!1,hash:"603f010ded352a569252feae2b686d18",slug:"human-skin-cancer-potential-biomarkers-and-therapeutic-targets",bookSignature:"Miroslav Blumenberg",coverURL:"https://cdn.intechopen.com/books/images_new/5303.jpg",editedByType:"Edited by",editors:[{id:"31610",title:"Dr.",name:"Miroslav",surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},onlineFirst:{chapter:{type:"chapter",id:"73951",title:"Diverse Synthesis and Characterization Techniques of Nanoparticles",doi:"10.5772/intechopen.94453",slug:"diverse-synthesis-and-characterization-techniques-of-nanoparticles",body:'
1. Introduction
Nanotechnology involves synthesizing and developing different nanomaterials. The field of nanotechnology allows different nanoparticles of unique features to be produced. Nanoparticles (NPs) are complex material particles that fall within the range of one to hundred nanometers. Their nanometer sizes drive the chemical, optical, physical, and electric features of the nanoparticles [1]. Naturally, nanoparticles can be sourced from geological, biological, meteorological, and cosmological means. However, nanoparticles can be created from liquid and solid materials by breaking down biopolymers, condensing gases, wet chemical process, implantation of ions, hydrothermal process, pyrolysis, radiolysis etc. Nanoparticles are usually viewed with the aid of electron microscopes, can penetrate filters, and have unique mechanical properties that distinguish them from the bulk materials. Nanoparticles exist in various shapes like nanorods, nanostars, nanofibers, nanospheres, nanoflowers, nanoboxes etc. [2].
Nanoparticles comprise a functionalized surface, a shell of different layered materials, and the core/main nanoparticle [3]. The features of materials in their bulk form are different from their nanoparticle forms because of the large area to volume ratio, interfacial layer, affinity to solvents, kind of coating, quantum mechanics effects, rate of diffusion, mechanical, and ferromagnetic features [1]. The large area to volume ratio makes the nanoparticles highly reactive and able to penetrate membranes. The chemical nature of nanoparticles should be studied to enhance their molecular attachment to surfaces.
2. Classification of nanoparticles
Nanoparticles may be metallic, non-metallic [1], anthropogenic, engineered, organic, or inorganic as outlined in Figure 1. Metallic nanoparticles include copper, magnesium, zinc, gold, titanium, silver etc.; while non-metallic nanoparticles include silica, carbon nanotubes etc. Anthropogenic NPs are by-products obtained from industrial produce while engineered nanoparticles are directly obtained from manufacturing processes.
Figure 1.
Schematics on the classifications of nanoparticles.
Some of the nanoparticles and their features [2, 4] have been summarized in Table 1.
Nanoparticles
Features
Silver
Very effective, high antimicrobial performance, wide range of usage
Gold
Good for identifying protein interactions, useful in tracing out fingerprints, detects antibiotics and cancerous cells, efficient for cancer diagnosis and other bacteria
Iron
Biocompatible and useful for treating cancer, sorting stem cells, analyzing genes, and drug delivery
Quantum dot
Diameters less than 10 nm, semiconducting nanoparticle, size-dependent
Carbon nanotubes
sp2 hybridized carbon atoms, strong electron bonds, high electrical conductivity, good catalysts.
Copper
Wide absorption spectrum, distinct optical features, yields good quality nanoparticles
Ceramics
Inorganic amorphous solids; could be polycrystalline, porous, amorphous or dense; vastly applied in photocatalysis, imaging devices etc.
Semiconductor
Large and tunable band gap nature, suitable in water splitting and electronic appliances.
Polymeric
Majorly organic components and easily functionalized
Lipid-based
Comprise lipid components, uses surfactants as core stabilizers
Table 1.
Some nanoparticles and their respective features.
3. Synthesis techniques of nanoparticles
The techniques applied in synthesizing nanoparticles greatly influence their morphology, size, structure, and performance. The electrochemical, physiochemical, optical, and electrical features of the nanoparticles are also affected. In some occasions, nanoparticles are coated so as to retain their features after precipitating out of suspensions. The synthesis methods for nanoparticles are broadly divided into top-down and bottom-up approaches [4].
3.1 Top-down approach
Top-down method is a destructive method that breaks down large molecules into smaller parts before converting into the relevant nanoparticles. This approach involves some decomposition strategies like chemical vapor deposition (CVD), milling process, and physical vapor deposition (PVD). Milling is used to extract nanoparticles from coconut shells with the crystallite size reducing with increasing time. Nanoparticles of iron oxide, carbon, dichalcogenides, cobalt (III) oxide have been produced using this method.
3.2 Bottom-up approach
This approach involves the formation of nanoparticles from simple materials in a build-up manner. It is environmentally friendly, less poisonous, feasible, and of low cost. The materials used are usually Reduction and sedimentation processes like green synthesis, bio-chemical, spin coating, sol–gel etc. adopt this approach. Nanoparticles of titanium dioxide, gold, bismuth have been synthesized via this approach. The reaction chain for the production of gold nanoparticle has been illustrated in Figure 2 [5].
Figure 2.
Formation process of gold nanoparticle.
Synthesizing nanoparticles could also involve chemical or biological processes [1]. Some chemical synthesis techniques of nanoparticles include sol–gel method, wet chemical synthesis, hydrothermal method, thermal decomposition, microwave method etc. [2]; while the biological means involve enzymes, microorganisms, plant extracts, and fungi.
3.3 Chemical methods
Some chemical methods adopted in synthesizing nanoparticles include sol gel, precipitation, hydrothermal, thermal decomposition, solvothermal, vapor synthesis etc. [6, 7]. Sol–gel method is an easy means of producing nanostructures by homogenously mixing precursors in a solvent to form a gel material which is then heated to produce the required nanoparticle. It begins from preparing a sol which undergoes gelation process to solvent removal. Wet chemical/precipitation method is a fast and easy process for synthesizing large scale nanoparticles. Hydrothermal method utilizes high pressure and temperature to power heterogeneous reactions under aqueous solvents like water. The kind of pressure, pH, and temperature applied affects the features of the synthesized nanoparticles. Such nanoparticles are suitable for biotechnological use because of their hydrophilic surface nature [8]. Thermal decomposition involves oxidizing a solid material in optimal temperature. Solvothermal method uses a solvent to produce various materials like polymers, semiconductors, or metals at moderate or high pressure [9]. It produces novel and stable nanoparticles with controlled thicknesses and temperature. To synthesize nanodots; the cationic source is dissolved in suitable solvent alongside a surfactant which stabilizes the growth rate. Cadmium selenide, zinc oxide, zinc selenide are producible using this method and can be applied in magnetic and biotech industries [10]. In vapor synthesis, gaseous molecules chemically react to produce a phase which condenses and leads to particle growth. The higher the temperature, the faster the particles are formed. Different means of inducing homogenous nucleation include condensing inert gases, vaporizing a supersaturated material using a pulsed laser, generating a spark discharge by charging electrodes, sputtering the material with unreactive gaseous ions; or through some chemical methods like chemical vapor deposition, photothermal method, flame synthesis, or spray pyrolysis [11]. This method suitably yields nanoparticles of titania, carbon, and silica. Flame synthesis is commonly used to commercially produce silica, carbon black, optical fiber, and titania [12]. Particles produced by converting gases in furnace reactors or hot walls are usually very pure, although it produces agglomerated particles.
3.4 Biological methods
Biological or biosynthesis of nanoparticles is an environmentally-friendly, green, and non-toxic method involving microorganisms [13, 14, 15]. Nanoparticles of iron oxide, silver, nickel oxide, copper oxide, zinc ferrite have been synthesized using this method [16, 17, 18, 19, 20, 21, 22]. The location of the nanoparticle determines the point of synthesis; whether intracellular or extracellular [1]. Intracellular production of nanoparticles uses enzymes to move ions into the cells of microbes and produces smaller sized nanoparticles in the organism. Extracellular synthesis does not involve cell components and yields nanoparticles outside the cell, uses fungi with large secretory organs. Microbes like fungi and bacteria are responsible for controlling the synthesis process. Microorganisms are immensely used to produce nanoparticles because of their economical, non-poisonous nature, and detoxification of heavy metal power. Phytonanotechnology is compatible with biological systems, available source materials, high stability, and entails synthesizing nanoparticles from plants [23]. Changes in the pH level of plants alter their binding strength, morphology, and the number of metallic ions available during the synthesis. The different sources, synthesis methods, and areas of application of nanoparticles have been represented in Figure 3 [23]. Biogenic means of producing nanoparticles are green and cheap; with the involvement of fungi, waste materials, and bacteria [5].
Figure 3.
Diverse bio-development synthesis of nanoparticles and their application areas.
3.5 Mechanical methods
Nanoparticles can also be synthesized by mechanical methods like mechanical alloying, milling, and mechanochemical processes [24]. Milling method regenerates interfacial chemical operations at low temperatures. Mechanochemical technique involves continuous welding operations that adequately select milling materials and minimize agglomerations. For effective production; the stoichiometry of source materials, thermal treatment, paths for reaction to occur, and milling conditions would be carefully considered. Nanoparticles of oxides, iron, nickel, silver, cobalt can be synthesized using these methods.
4. Characterization methods for nanoparticles
Properties of nanoparticles like shape, size, surface morphology, crystalline nature, light absorption etc. need to be completely described using relevant characterization techniques [2]. Some of the methods used to characterize nanoparticles [4] include:
4.1 Morphological features
The morphology of nanoparticles greatly influence the properties exhibited by nanoparticles. Microscopy methods applied on nanoparticles are usually electron microscopy or scanning probe microscopy. Scanning electron microscope (SEM) gives nanoscale and surface information of the dispersion and morphology of nanoparticles. Microscopy techniques are destructive and used for single-particle measurements. Transmission electron microscopy (TEM) uses transmittance of electrons to provide bulk information at high and low magnifications. Optical microscopic technique is not useful for nanoparticles because the size of nanoparticles is smaller than light diffraction limit. Coupling spectroscopic techniques to electron microscopes would enable elemental studies to be carried out.
4.2 Optical studies
Optical methods reveal reflectance, transmittance, photochemical, and luminescence features of nanoparticles. Spectroscopy uses the interaction of particles with electromagnetic radiation to determine the shape, concentration, and size of nanoparticles. Spectroscopic techniques like infrared, ultraviolet–visible, photoluminescence (PL), UV/vis-diffuse reflectance spectrometer (DRS), and magnetic resonance methods are applied to nanoparticles. DRS is specially used to determine the band gap energy of nanoparticles. PL studies reveal the effect of emissivity and absorptivity on the excitation of photons, half-life, and recombining effects of the charges. The sizes of nanoparticles affect their optical features and make it useful in bioimaging devices [4].
4.3 Structural analysis
The structure of nanoparticles gives details about the kind of bond existing between the atoms and the features of the bulk material. Some of the structural techniques used on nanoparticles include BET, X-ray diffractometry (XRD), IR etc. XRD describes the phase, particle size, type of NP, and crystal nature of the nanoparticles.
4.4 Elemental studies
The elemental composition of nanoparticles can be determined using energy dispersive X-ray spectroscopy (EDX), XPS, Raman, FT-IR etc. EDX details the elemental components of bulk particles. Better contrast is obtainable when the obtained spectra are compared with a computer generated model. XPS is a very sensitive spectroscopic method used to obtain the exact compositional ratio of the elements, their bonding nature, depth profile analysis. Raman and FTIR techniques use vibrational methods to show functionalized peaks and particle information.
4.5 Size estimation
Sizes of nanoparticles can be estimated using scanning electron microscope, transmission electron microscope, X-ray diffractometer, atomic force microscope etc. The sizes of the nanoparticles are obtained using size distribution profiles and give more precise results when used alongside digital models. The surface area can be estimated using BET via adsorption and desorption processes.
4.6 Physiochemical characteristics
Mechanical properties, optical activity, surface area, and chemical reactions of nanoparticles are physiochemical characteristics obtainable from nanoparticles. Free surface electrons on nanoparticles are very mobile and are not scattered upon light illumination. The magnetic features of NPs are manifested at small nanoscales due to their uneven distribution, influenced by the synthesis technique adopted, and find vast application in biomedicine, resonance imaging, and catalytic devices. Mechanical characteristics of nanoparticles like stress, surface coatings, hardness, strain, friction, adhesiveness etc. aid an understanding of NPs and greatly affect the quality of the surface. Nanoparticles have great conduction to heat especially on the surface.
5. Application areas of nanoparticles
Generally, nanoparticles have been applied in various areas including anticancer drugs, vaccines, disease treatment, cancer diagnosis, mechanical factories, electronics, optical devices, energy harvesters, manufacturing processes, cell imaging, and delivery systems due to their unique features [4]. NPs also aid water contaminants to be absorbed on the surface during water purification, serve as environmental sensors, and protect materials from harmful substances. Some of the application areas of the nanoparticles [2, 23] have been summarized in Table 2.
Nanoparticles
Application areas
Nickel oxide
Dye sensitized solar cells, supercapacitors, batteries, water treatment and catalytic systems, gas sensing devices.
Carbon nanotubes
Integrated circuits, electronic components, textile, construction, cosmetics, medicine
Cerium oxide
Biomedical equipments, electronic appliances, energy devices
Agriculture, automotives, cosmetics, home appliances, food
Gold
Cosmetics, environmental products, food, medicine
Palladium
Automotive, electronic appliances, food
Table 2.
Application areas of some nanoparticles.
Despite the numerous applications of NPs; they suffer from poisonous and harmful body effects which inhaled, ingested, or transferred to the ground and surrounding environs. Nanoparticles are also affected by organic materials which lead to agglomeration. The poisonous effects associated with NP synthesis can be curtailed by adopting green synthesis methods especially in the synthesis of silver, iron, copper, gold nanoparticles amongst others [25]. The synthesis process for silver nanoparticles is as shown in Figure 4 [25].
Figure 4.
Experimental diagram for the bioproduction of silver nanoparticles.
Green synthesis involves different capping substances like biomolecules and polysaccharides. Green methods are non-poisonous, environmentally friendly, involve toxic-free solvents, compatible in biological systems, and utilize reagents like sugars, polymers, vitamins, plant extracts [26]. Plant-based extracts like latex, leaf, seed, root, or stem are more suited for bioprocesses as they are cheap, non-complex, easily reproduced, and highly stable. Other sources of waste materials useful for nanoparticle production have been outlined in Figure 5. Models can be developed to minimize the difficulties associated with distributing the size of the particles and NPs synthesis by computing the rates at which the particles get nucleated [11].
Figure 5.
Schematic showing different sources of waste material.
6. Conclusion and future perspective
The need for environmentally-friendly and stable nanomaterial that would be compatible with biological systems have prompted researchers into the production of nanoparticles. This chapter gives general knowledge on nanoparticles, their classification, merits and demerits, several synthesis and characterization techniques. Nanoparticles have economical and simple manufacturing processes that are classified into top-down method, bottom-up approach, chemical synthesis, biological method, and mechanical process. Several characterization methods of nanoparticles are geared towards understanding the morphological, structural, optical, size, mechanical, and physiochemical features. Each property is obtainable from different machines and using different techniques. The synthesis and characterization methods employed greatly influence the obtained features of the nanoparticles. Nanoparticles find useful application in medicine, drug delivery, cosmetics, optical devices, electronics, solar cell devices etc.
\n',keywords:"nanoparticles, thin film technologies, synthesis, characterizations, applications",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/73951.pdf",chapterXML:"https://mts.intechopen.com/source/xml/73951.xml",downloadPdfUrl:"/chapter/pdf-download/73951",previewPdfUrl:"/chapter/pdf-preview/73951",totalDownloads:451,totalViews:0,totalCrossrefCites:0,dateSubmitted:"June 3rd 2020",dateReviewed:"October 12th 2020",datePrePublished:"November 6th 2020",datePublished:"November 17th 2021",dateFinished:"November 6th 2020",readingETA:"0",abstract:"Nanoparticles are small particles that range from 1 to 100 nm in size, exhibit several physical and chemical features. An understanding of nanoparticles would reveal great qualities and potential applications that would aid the diversification of thin film technologies. The synthesis methods employed like top-down, bottom-up, chemical, biological, and mechanical processes have great influence on the properties exhibited by such nanomaterials. This review covers an insight into the knowledge of nanoparticles, their classifications, parameters affecting their efficient performance, synthesis and characterization techniques of nanoparticles. Nanoparticles are also characterized to obtain their morphological, structural, optical, elemental, size, and physiochemical features. The potential applications of nanoparticles have not been left undiscussed.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/73951",risUrl:"/chapter/ris/73951",signatures:"Agnes Chinecherem Nkele and Fabian I. Ezema",book:{id:"10014",type:"book",title:"Thin Films",subtitle:null,fullTitle:"Thin Films",slug:"thin-films",publishedDate:"November 17th 2021",bookSignature:"Alicia Esther Ares",coverURL:"https://cdn.intechopen.com/books/images_new/10014.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-83881-993-4",printIsbn:"978-1-83881-986-6",pdfIsbn:"978-1-83881-994-1",isAvailableForWebshopOrdering:!0,editors:[{id:"91095",title:"Dr.",name:"Alicia Esther",middleName:null,surname:"Ares",slug:"alicia-esther-ares",fullName:"Alicia Esther Ares"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"253379",title:"Prof.",name:"Fabian",middleName:null,surname:"Ezema",fullName:"Fabian Ezema",slug:"fabian-ezema",email:"fabian.ezema@unn.edu.ng",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/253379/images/system/253379.png",institution:{name:"University of Nigeria, Nsukka",institutionURL:null,country:{name:"Nigeria"}}},{id:"323052",title:"Mrs.",name:"Chinecherem",middleName:null,surname:"Nkele",fullName:"Chinecherem Nkele",slug:"chinecherem-nkele",email:"nechenkele@gmail.com",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null}],sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Classification of nanoparticles",level:"1"},{id:"sec_3",title:"3. Synthesis techniques of nanoparticles",level:"1"},{id:"sec_3_2",title:"3.1 Top-down approach",level:"2"},{id:"sec_4_2",title:"3.2 Bottom-up approach",level:"2"},{id:"sec_5_2",title:"3.3 Chemical methods",level:"2"},{id:"sec_6_2",title:"3.4 Biological methods",level:"2"},{id:"sec_7_2",title:"3.5 Mechanical methods",level:"2"},{id:"sec_9",title:"4. Characterization methods for nanoparticles",level:"1"},{id:"sec_9_2",title:"4.1 Morphological features",level:"2"},{id:"sec_10_2",title:"4.2 Optical studies",level:"2"},{id:"sec_11_2",title:"4.3 Structural analysis",level:"2"},{id:"sec_12_2",title:"4.4 Elemental studies",level:"2"},{id:"sec_13_2",title:"4.5 Size estimation",level:"2"},{id:"sec_14_2",title:"4.6 Physiochemical characteristics",level:"2"},{id:"sec_16",title:"5. Application areas of nanoparticles",level:"1"},{id:"sec_17",title:"6. Conclusion and future perspective",level:"1"}],chapterReferences:[{id:"B1",body:'S. Hasan, “A Review on Nanoparticles: Their Synthesis and Types,” vol. 4, p. 3, 2015.'},{id:"B2",body:'“Nanoparticle,” Wikipedia. Aug. 06, 2020, Accessed: Aug. 15, 2020. [online]. Available: https://en.wikipedia.org/w/index.php?title=Nanoparticle&oldid=971565062.'},{id:"B3",body:'Christian P, Von der Kammer F, Baalousha M, Hofmann T. Nanoparticles: Structure, properties, preparation and behaviour in environmental media. Ecotoxicology. Jul. 2008;17(5):326-343. DOI: 10.1007/s10646-008-0213-1'},{id:"B4",body:'Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry. 2019;12(7):908-931'},{id:"B5",body:'Sharma D, Kanchi S, Bisetty K. Biogenic synthesis of nanoparticles: A review. Arabian Journal of Chemistry. Dec. 2019;12(8):3576-3600. DOI: 10.1016/j.arabjc.2015.11.002'},{id:"B6",body:'Saranya M, Santhosh C, Ramachandran R, Nirmala Grace A. Growth of CuS nanostructures by hydrothermal route and its optical properties. Journal of Nanotechnology. 2014;2014'},{id:"B7",body:'Kaviyarasu K, Manikandan E, Paulraj P, Mohamed SB, Kennedy J. One dimensional well-aligned CdO nanocrystal by solvothermal method. Journal of Alloys and Compounds. 2014;593:67-70'},{id:"B8",body:'V. K. Yadav et al., “Microbial synthesis of nanoparticles and their Applications for wastewater treatment,” in Microbial Biotechnology: Basic Research and Applications, J. Singh, A. Vyas, S. Wang, and R. Prasad, Eds. Singapore: Springer, 2020, pp. 147-187.'},{id:"B9",body:'Y. F. Liu, G. H. Yuan, Z. H. Jiang, and Z. P. Yao, “Solvothermal Synthesis of Mn3O4 Nanoparticle/Graphene Sheet Composites and Their Supercapacitive Properties,” J. Nanomaterials, vol. 2014, pp. 151:151-151:151, Jan. 2014, doi: 10.1155/2014/190529.'},{id:"B10",body:'Gersten B. Solvothermal synthesis of nanoparticles. Chem. 2005;5:11-12'},{id:"B11",body:'Swihart MT. Vapor-phase synthesis of nanoparticles. Current Opinion in Colloid & Interface Science. Mar. 2003;8(1):127-133. DOI: 10.1016/S1359-0294(03)00007-4'},{id:"B12",body:'Kammler HK, Mädler L, Pratsinis SE. Flame synthesis of nanoparticles. Chemical Engineering & Technology. 2001;24(6):583-596. DOI: 10.1002/1521-4125(200106)24:6<583::AID-CEAT583>3.0.CO;2-H'},{id:"B13",body:'Aisida SO et al. Incubation period induced biogenic synthesis of PEG enhanced Moringa oleifera silver nanocapsules and its antibacterial activity. Journal of Polymer Research. 2019;26(9):225'},{id:"B14",body:'Aisida SO, Akpa PA, Ahmad I, Maaza M, Ezema FI. Influence of PVA, PVP and PEG doping on the optical, structural, morphological and magnetic properties of zinc ferrite nanoparticles produced by thermal method. Physica B: Condensed Matter. 2019;571:130-136'},{id:"B15",body:'Aisida SO, Akpa PA, Ahmad I, Zhao T, Maaza M, Ezema FI. Bio-inspired encapsulation and functionalization of iron oxide nanoparticles for biomedical applications. European Polymer Journal. 2020;122:109371'},{id:"B16",body:'Madubuonu N et al. Biosynthesis of iron oxide nanoparticles via a composite of Psidium guavaja-Moringa oleifera and their antibacterial and photocatalytic study. Journal of Photochemistry and Photobiology B: Biology. 2019;199:111601'},{id:"B17",body:'Aisida SO et al. Biogenic synthesis and antibacterial activity of controlled silver nanoparticles using an extract of Gongronema Latifolium. Materials Chemistry and Physics. 2019;237:121859'},{id:"B18",body:'Aisida SO et al. Biogenic synthesis of iron oxide nanorods using Moringa oleifera leaf extract for antibacterial applications. Applied Nanoscience. 2020;10(1):305-315'},{id:"B19",body:'Ugwoke E et al. Concentration induced properties of silver nanoparticles and their antibacterial study. Surfaces and Interfaces. 2020;18:100419'},{id:"B20",body:'Nwanya AC et al. Industrial textile effluent treatment and antibacterial effectiveness of Zea mays L. dry husk mediated bio-synthesized copper oxide nanoparticles. Journal of Hazardous Materials. 2019;375:281-289'},{id:"B21",body:'Nwanya AC et al. Maize (Zea mays L.) fresh husk mediated biosynthesis of copper oxides: Potentials for pseudo capacitive energy storage. Electrochimica Acta. 2019;301:436-448'},{id:"B22",body:'Nwanya AC et al. Zea mays lea silk extract mediated synthesis of nickel oxide nanoparticles as positive electrode material for asymmetric supercabattery. Journal of Alloys and Compounds. 2020;822:153581'},{id:"B23",body:'Singh P, Kim Y-J, Zhang D, Yang D-C. Biological synthesis of nanoparticles from plants and microorganisms. Trends in Biotechnology. Jul. 2016;34(7):588-599. DOI: 10.1016/j.tibtech.2016.02.006'},{id:"B24",body:'Tsuzuki T, McCormick PG. Mechanochemical synthesis of nanoparticles. Journal of Materials Science. Aug. 2004;39(16):5143-5146. DOI: 10.1023/B:JMSC.0000039199.56155.f9'},{id:"B25",body:'Kharissova OV, Dias HVR, Kharisov BI, Pérez BO, Pérez VMJ. The greener synthesis of nanoparticles. Trends in Biotechnology. Apr. 2013;31(4):240-248. DOI: 10.1016/j.tibtech.2013.01.003'},{id:"B26",body:'Gour A, Jain NK. Advances in green synthesis of nanoparticles. Artificial Cells, Nanomedicine, and Biotechnology. Dec. 2019;47(1):844-851. DOI: 10.1080/21691401.2019.1577878'}],footnotes:[],contributors:[{corresp:"yes",contributorFullName:"Agnes Chinecherem Nkele",address:"nechenkele@gmail.com",affiliation:'
Department of Physics and Astronomy, University of Nigeria, Nsukka, Nigeria
'},{corresp:null,contributorFullName:"Fabian I. Ezema",address:null,affiliation:'
Department of Physics and Astronomy, University of Nigeria, Nsukka, Nigeria
Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, South Africa
UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, P.O. Box 392, South Africa
Department of Physics, Faculty of Natural and Applied Sciences, Coal City University, Nigeria
'}],corrections:null},book:{id:"10014",type:"book",title:"Thin Films",subtitle:null,fullTitle:"Thin Films",slug:"thin-films",publishedDate:"November 17th 2021",bookSignature:"Alicia Esther Ares",coverURL:"https://cdn.intechopen.com/books/images_new/10014.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-83881-993-4",printIsbn:"978-1-83881-986-6",pdfIsbn:"978-1-83881-994-1",isAvailableForWebshopOrdering:!0,editors:[{id:"91095",title:"Dr.",name:"Alicia Esther",middleName:null,surname:"Ares",slug:"alicia-esther-ares",fullName:"Alicia Esther Ares"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},profile:{item:{id:"42095",title:"Prof.",name:"João Eduardo",middleName:null,surname:"Pereira",email:"jesp61@gmail.com",fullName:"João Eduardo Pereira",slug:"joao-eduardo-pereira",position:null,biography:null,institutionString:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",totalCites:0,totalChapterViews:"0",outsideEditionCount:0,totalAuthoredChapters:"1",totalEditedBooks:"0",personalWebsiteURL:null,twitterURL:null,linkedinURL:null,institution:null},booksEdited:[],chaptersAuthored:[{id:"21943",title:"Comparison of Methodologies for Analysis of Longitudinal Data Using MATLAB",slug:"comparison-of-methodologies-for-analysis-of-longitudinal-data-using-matlab",abstract:null,signatures:"João Eduardo da Silva Pereira, Janete Pereira Amador and Angela Pellegrin Ansuj",authors:[{id:"42095",title:"Prof.",name:"João Eduardo",surname:"Pereira",fullName:"João Eduardo Pereira",slug:"joao-eduardo-pereira",email:"jesp61@gmail.com"},{id:"59921",title:"Prof.",name:"Janete Pereira",surname:"Amador",fullName:"Janete Pereira Amador",slug:"janete-pereira-amador",email:"janeteamador@hotmail.com"},{id:"59922",title:"Prof.",name:"Angela Pellegrin",surname:"Ansuj",fullName:"Angela Pellegrin Ansuj",slug:"angela-pellegrin-ansuj",email:"angelaansuj@yahoo.com"}],book:{id:"294",title:"MATLAB",slug:"matlab-a-ubiquitous-tool-for-the-practical-engineer",productType:{id:"1",title:"Edited Volume"}}}],collaborators:[{id:"34987",title:"Dr.",name:"Fikri Serdar",surname:"Gokhan",slug:"fikri-serdar-gokhan",fullName:"Fikri Serdar Gokhan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Hasan Kalyoncu University",institutionURL:null,country:{name:"Turkey"}}},{id:"36616",title:"MSc.",name:"Woo Nam",surname:"Lee",slug:"woo-nam-lee",fullName:"Woo Nam Lee",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Konkuk University",institutionURL:null,country:{name:"Korea, South"}}},{id:"37340",title:"Dr.",name:"Damian",surname:"Trif",slug:"damian-trif",fullName:"Damian Trif",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Babeș-Bolyai University",institutionURL:null,country:{name:"Romania"}}},{id:"47367",title:"Prof.",name:"Krasimira",surname:"Stoilova",slug:"krasimira-stoilova",fullName:"Krasimira Stoilova",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"48670",title:"Prof.",name:"Jong Bae",surname:"Park",slug:"jong-bae-park",fullName:"Jong Bae Park",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Konkuk University",institutionURL:null,country:{name:"Korea, South"}}},{id:"51287",title:"Dr.",name:"Alain",surname:"Hebert",slug:"alain-hebert",fullName:"Alain Hebert",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Polytechnique Montréal",institutionURL:null,country:{name:"Canada"}}},{id:"51706",title:"Prof.",name:"Todor",surname:"Stoilov",slug:"todor-stoilov",fullName:"Todor Stoilov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/51706/images/system/51706.jfif",biography:"Prof. Todor Stoilov is a researcher at the Institute of Information and Communication Technologies, affiliated to the Bulgarian Academy of Sciences. He graduated in 'Control engineering” in Technical University of Sofia. Prof. Todor Stoilov obtained his PhD in 1979; and in 1999 he obtained the highest scientific title - 'Doctor of Science”. Since 2000, he is a full professor in Bulgarian Academy of Sciences. He has published six monographs and more than 300 scientific papers and articles. His current research interests address domains like optimization, resource allocation, hierarchical control, management of information, transport, financial systems.",institutionString:"Bulgarian Academy of Sciences",institution:{name:"Bulgarian Academy of Sciences",institutionURL:null,country:{name:"Bulgaria"}}},{id:"55545",title:"Dr.",name:"Abbas",surname:"Mahmoudabadi",slug:"abbas-mahmoudabadi",fullName:"Abbas Mahmoudabadi",position:"Manager",profilePictureURL:"https://mts.intechopen.com/storage/users/55545/images/3047_n.gif",biography:"Tehran, Iran, Born in 1972, Graduated in MSc. in 1997, PhD candidate in industrial engineering at the present, \r\nWork field: traffic, transportation, safety and ITS",institutionString:null,institution:null},{id:"59921",title:"Prof.",name:"Janete Pereira",surname:"Amador",slug:"janete-pereira-amador",fullName:"Janete Pereira Amador",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"59922",title:"Prof.",name:"Angela Pellegrin",surname:"Ansuj",slug:"angela-pellegrin-ansuj",fullName:"Angela Pellegrin Ansuj",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]},generic:{page:{slug:"OA-publishing-fees",title:"Open Access Publishing Fees",intro:"
The Open Access model is applied to all of our publications and is designed to eliminate subscriptions and pay-per-view fees. This approach ensures free, immediate access to full text versions of your research.
As a gold Open Access publisher, an Open Access Publishing Fee is payable on acceptance following peer review of the manuscript. In return, we provide high quality publishing services and exclusive benefits for all contributors. IntechOpen is the trusted publishing partner of over 140,000 international scientists and researchers.
\\n\\n
The Open Access Publishing Fee (OAPF) is payable only after your book chapter, monograph or journal article is accepted for publication.
\\n\\n
OAPF Publishing Options
\\n\\n
\\n\\t
1,400 GBP Chapter - Edited Volume
\\n\\t
850 GBP Chapter - Book Series Topic (Annual Volume)
\\n\\t
10,000 GBP Monograph - Long Form
\\n\\t
4,000 GBP Compacts Monograph - Short Form
\\n\\t
850 GBP Journal Article (Across Portfolio)
\\n
\\n\\n
During the launching phase journals do not charge an APC, rather they will be funded by IntechOpen.
\\n\\n
*These prices do not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT as long as provision of the VAT registration number is made during the application process. This is made possible by the EU reverse charge method.
\\n\\n
Services included are:
\\n\\n
\\n\\t
An online manuscript tracking system to facilitate your work
\\n\\t
Personal contact and support throughout the publishing process from your dedicated Author Service Manager
\\n\\t
Assurance that your manuscript meets the highest publishing standards
\\n\\t
English language copyediting and proofreading, including the correction of grammatical, spelling, and other common errors
\\n\\t
XML Typesetting and pagination - web (PDF, HTML) and print files preparation
\\n\\t
Discoverability - electronic citation and linking via DOI
\\n\\t
Permanent and unrestricted online access to your work
\\n
\\n\\n
What isn't covered by the Open Access Publishing Fee?
\\n\\n
If your manuscript:
\\n\\n
\\n\\t
Exceeds the number of pages defined by the publishing guidelines, an additional fee per page may be required
\\n\\t
If a manuscript requires Heavy Editing or Language Polishing, this will incur additional fees.
\\n
\\n\\n
Your Author Service Manager will inform you of any items not covered by the OAPF and provide exact information regarding those additional costs before proceeding.
\\n\\n
Open Access Funding
\\n\\n
To explore funding opportunities and learn more about how you can finance your IntechOpen publication, go to our Open Access Funding page. IntechOpen offers expert assistance to all of its Authors. We can support you in approaching funding bodies and institutions in relation to publishing fees by providing information about compliance with the Open Access policies of your funder or institution. We can also assist with communicating the benefits of Open Access in order to support and strengthen your funding request and provide personal guidance through your application process. You can contact us at funders@intechopen.com for further details or assistance.
\\n\\n
For Authors who are still unable to obtain funding from their institutions or research funding bodies for individual projects, IntechOpen does offer the possibility of applying for a Waiver to offset some or all processing feed. Details regarding our Waiver Policy can be found here.
\\n\\n
Added Value of Publishing with IntechOpen
\\n\\n
Choosing to publish with IntechOpen ensures the following benefits:
\\n\\n
\\n\\t
Indexing and listing across major repositories, see details ...
\\n\\t
Long-term archiving
\\n\\t
Visibility on the world's strongest OA platform
\\n\\t
Live Performance Metrics to track readership and the impact of your chapter
\\n\\t
Dissemination and Promotion
\\n
\\n\\n
Benefits of Publishing with IntechOpen
\\n\\n
\\n\\t
Proven world leader in Open Access book publishing with over 10 years experience
\\n\\t
+5,700 OA books published
\\n\\t
Most competitive prices in the market
\\n\\t
Fully compliant with OA funding requirements
\\n\\t
Optimized processes that assure your research is made available to the scientific community without delay
\\n\\t
Personal support during every step of the publication process
\\n\\t
+184,650 citations in Web of Science databases
\\n\\t
Currently strongest OA platform with over 175 million downloads
As a gold Open Access publisher, an Open Access Publishing Fee is payable on acceptance following peer review of the manuscript. In return, we provide high quality publishing services and exclusive benefits for all contributors. IntechOpen is the trusted publishing partner of over 140,000 international scientists and researchers.
\n\n
The Open Access Publishing Fee (OAPF) is payable only after your book chapter, monograph or journal article is accepted for publication.
\n\n
OAPF Publishing Options
\n\n
\n\t
1,400 GBP Chapter - Edited Volume
\n\t
850 GBP Chapter - Book Series Topic (Annual Volume)
\n\t
10,000 GBP Monograph - Long Form
\n\t
4,000 GBP Compacts Monograph - Short Form
\n\t
850 GBP Journal Article (Across Portfolio)
\n
\n\n
During the launching phase journals do not charge an APC, rather they will be funded by IntechOpen.
\n\n
*These prices do not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT as long as provision of the VAT registration number is made during the application process. This is made possible by the EU reverse charge method.
\n\n
Services included are:
\n\n
\n\t
An online manuscript tracking system to facilitate your work
\n\t
Personal contact and support throughout the publishing process from your dedicated Author Service Manager
\n\t
Assurance that your manuscript meets the highest publishing standards
\n\t
English language copyediting and proofreading, including the correction of grammatical, spelling, and other common errors
\n\t
XML Typesetting and pagination - web (PDF, HTML) and print files preparation
\n\t
Discoverability - electronic citation and linking via DOI
\n\t
Permanent and unrestricted online access to your work
\n
\n\n
What isn't covered by the Open Access Publishing Fee?
\n\n
If your manuscript:
\n\n
\n\t
Exceeds the number of pages defined by the publishing guidelines, an additional fee per page may be required
\n\t
If a manuscript requires Heavy Editing or Language Polishing, this will incur additional fees.
\n
\n\n
Your Author Service Manager will inform you of any items not covered by the OAPF and provide exact information regarding those additional costs before proceeding.
\n\n
Open Access Funding
\n\n
To explore funding opportunities and learn more about how you can finance your IntechOpen publication, go to our Open Access Funding page. IntechOpen offers expert assistance to all of its Authors. We can support you in approaching funding bodies and institutions in relation to publishing fees by providing information about compliance with the Open Access policies of your funder or institution. We can also assist with communicating the benefits of Open Access in order to support and strengthen your funding request and provide personal guidance through your application process. You can contact us at funders@intechopen.com for further details or assistance.
\n\n
For Authors who are still unable to obtain funding from their institutions or research funding bodies for individual projects, IntechOpen does offer the possibility of applying for a Waiver to offset some or all processing feed. Details regarding our Waiver Policy can be found here.
\n\n
Added Value of Publishing with IntechOpen
\n\n
Choosing to publish with IntechOpen ensures the following benefits:
\n\n
\n\t
Indexing and listing across major repositories, see details ...
\n\t
Long-term archiving
\n\t
Visibility on the world's strongest OA platform
\n\t
Live Performance Metrics to track readership and the impact of your chapter
\n\t
Dissemination and Promotion
\n
\n\n
Benefits of Publishing with IntechOpen
\n\n
\n\t
Proven world leader in Open Access book publishing with over 10 years experience
\n\t
+5,700 OA books published
\n\t
Most competitive prices in the market
\n\t
Fully compliant with OA funding requirements
\n\t
Optimized processes that assure your research is made available to the scientific community without delay
\n\t
Personal support during every step of the publication process
\n\t
+184,650 citations in Web of Science databases
\n\t
Currently strongest OA platform with over 175 million downloads
\n
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13389},{group:"region",caption:"Middle and South America",value:2,count:11661},{group:"region",caption:"Africa",value:3,count:4168},{group:"region",caption:"Asia",value:4,count:22334},{group:"region",caption:"Australia and Oceania",value:5,count:2019},{group:"region",caption:"Europe",value:6,count:33642}],offset:12,limit:12,total:135278},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"8"},books:[{type:"book",id:"11559",title:"Photocatalysts - New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"fc9a28dbceaeccb8991b24aec1decd32",slug:null,bookSignature:"Prof. Nasser S Awwad, Dr. Saleh S. Alarfaji and Dr. Ahmed Alomary",coverURL:"https://cdn.intechopen.com/books/images_new/11559.jpg",editedByType:null,editors:[{id:"145209",title:"Prof.",name:"Nasser",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11560",title:"Piezoelectric Materials - New Opportunities to Energy Harvesting Devices",subtitle:null,isOpenForSubmission:!0,hash:"ef99895997e3b7c308813218cd6f61e7",slug:null,bookSignature:"D.Sc. Rafael Vargas-Bernal",coverURL:"https://cdn.intechopen.com/books/images_new/11560.jpg",editedByType:null,editors:[{id:"182114",title:"D.Sc.",name:"Rafael",surname:"Vargas-Bernal",slug:"rafael-vargas-bernal",fullName:"Rafael Vargas-Bernal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11561",title:"Zeolite From Wastes - New Perspectives on Innovative Resources and Their Valorization Process",subtitle:null,isOpenForSubmission:!0,hash:"3ed0dfd842de9cd1143212415903e6ad",slug:null,bookSignature:"Dr. Claudia Belviso",coverURL:"https://cdn.intechopen.com/books/images_new/11561.jpg",editedByType:null,editors:[{id:"61457",title:"Dr.",name:"Claudia",surname:"Belviso",slug:"claudia-belviso",fullName:"Claudia Belviso"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11563",title:"A Comprehensive Review of the Versatile Dehydration Processes",subtitle:null,isOpenForSubmission:!0,hash:"91d7853d4e74d161d7a8f5913626cf94",slug:null,bookSignature:"Ph.D. Jelena Jovanovic",coverURL:"https://cdn.intechopen.com/books/images_new/11563.jpg",editedByType:null,editors:[{id:"447810",title:"Ph.D.",name:"Jelena",surname:"Jovanovic",slug:"jelena-jovanovic",fullName:"Jelena Jovanovic"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11895",title:"Sonochemistry - Recent Advances, New Perspectives, and Advanced Applications",subtitle:null,isOpenForSubmission:!0,hash:"a3bb7281ab6a6ce27a0d69cddedc05fd",slug:null,bookSignature:"Prof. Mohammed Khalid",coverURL:"https://cdn.intechopen.com/books/images_new/11895.jpg",editedByType:null,editors:[{id:"137240",title:"Prof.",name:"Mohammed",surname:"Khalid",slug:"mohammed-khalid",fullName:"Mohammed Khalid"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11898",title:"Glycerol - Current Catalytic and Biochemical Processes for Sustainability",subtitle:null,isOpenForSubmission:!0,hash:"f4b04aa4b82f5a8f2de916212b20da55",slug:null,bookSignature:"Ph.D. Israel Pala-Rosas, Dr. Jose Salmones and Prof. Jose Luis Contreras Larios",coverURL:"https://cdn.intechopen.com/books/images_new/11898.jpg",editedByType:null,editors:[{id:"284261",title:"Ph.D.",name:"Israel",surname:"Pala-Rosas",slug:"israel-pala-rosas",fullName:"Israel Pala-Rosas"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11899",title:"Ethanol Chemistry - Production, Modelling, Applications, and Technological Aspects",subtitle:null,isOpenForSubmission:!0,hash:"bee828f72f44f58c6bcb10453b91c3e9",slug:null,bookSignature:"Assistant Prof. Rampal Pandey",coverURL:"https://cdn.intechopen.com/books/images_new/11899.jpg",editedByType:null,editors:[{id:"338234",title:"Assistant Prof.",name:"Rampal",surname:"Pandey",slug:"rampal-pandey",fullName:"Rampal Pandey"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11902",title:"Lignin - Chemistry, Structure, and Application",subtitle:null,isOpenForSubmission:!0,hash:"4c3ccf3ce961d9c60aeb9774034eeb87",slug:null,bookSignature:"Associate Prof. Arpit Sand and Dr. Jaya Tuteja",coverURL:"https://cdn.intechopen.com/books/images_new/11902.jpg",editedByType:null,editors:[{id:"287032",title:"Associate Prof.",name:"Arpit",surname:"Sand",slug:"arpit-sand",fullName:"Arpit Sand"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11903",title:"Covalent Organic Frameworks",subtitle:null,isOpenForSubmission:!0,hash:"8125f3f415f5d2fa9583abde0143602d",slug:null,bookSignature:"Prof. Yanan Gao and Dr. Fei Lu",coverURL:"https://cdn.intechopen.com/books/images_new/11903.jpg",editedByType:null,editors:[{id:"171387",title:"Prof.",name:"Yanan",surname:"Gao",slug:"yanan-gao",fullName:"Yanan Gao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11904",title:"Actinides - New Insights on Contamination, Exposure, and Analytical Techniques",subtitle:null,isOpenForSubmission:!0,hash:"a74f62997524c0c100aac1388bf529e8",slug:null,bookSignature:"Dr. Markus R. Zehringer",coverURL:"https://cdn.intechopen.com/books/images_new/11904.jpg",editedByType:null,editors:[{id:"311750",title:"Dr.",name:"Markus R.",surname:"Zehringer",slug:"markus-r.-zehringer",fullName:"Markus R. Zehringer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11905",title:"Rare Earth Elements - Emerging Advances, Technology Utilization, and Resource Procurement",subtitle:null,isOpenForSubmission:!0,hash:"38ffcf92affa26770585dbc04b3742fe",slug:null,bookSignature:"Dr. Michael Thomas Aide",coverURL:"https://cdn.intechopen.com/books/images_new/11905.jpg",editedByType:null,editors:[{id:"185895",title:"Dr.",name:"Michael",surname:"Aide",slug:"michael-aide",fullName:"Michael Aide"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11908",title:"Self-Assembly of Materials and Supramolecular Structures",subtitle:null,isOpenForSubmission:!0,hash:"e9cc643ae0a219e91e445a1e61b33a22",slug:null,bookSignature:"Prof. Hemali Rathnayake and Dr. Gayani Pathiraja",coverURL:"https://cdn.intechopen.com/books/images_new/11908.jpg",editedByType:null,editors:[{id:"323782",title:"Prof.",name:"Hemali",surname:"Rathnayake",slug:"hemali-rathnayake",fullName:"Hemali Rathnayake"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:22},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:6},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:15},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:8},{group:"topic",caption:"Engineering",value:11,count:37},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:8},{group:"topic",caption:"Materials Science",value:14,count:15},{group:"topic",caption:"Mathematics",value:15,count:8},{group:"topic",caption:"Medicine",value:16,count:62},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:5},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:27},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3737",title:"MATLAB",subtitle:"Modelling, Programming and Simulations",isOpenForSubmission:!1,hash:null,slug:"matlab-modelling-programming-and-simulations",bookSignature:"Emilson Pereira Leite",coverURL:"https://cdn.intechopen.com/books/images_new/3737.jpg",editors:[{id:"12051",title:"Prof.",name:"Emilson",middleName:null,surname:"Pereira Leite",slug:"emilson-pereira-leite",fullName:"Emilson Pereira Leite"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"1770",title:"Gel Electrophoresis",subtitle:"Principles and Basics",isOpenForSubmission:!1,hash:"279701f6c802cf02deef45103e0611ff",slug:"gel-electrophoresis-principles-and-basics",bookSignature:"Sameh Magdeldin",coverURL:"https://cdn.intechopen.com/books/images_new/1770.jpg",editors:[{id:"123648",title:"Dr.",name:"Sameh",middleName:null,surname:"Magdeldin",slug:"sameh-magdeldin",fullName:"Sameh Magdeldin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4797},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7175,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1981,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2308,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1473,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318571,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271836,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",publishedDate:"July 1st 2013",numberOfDownloads:243450,editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1582,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2082,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",publishedDate:"October 17th 2012",numberOfDownloads:256294,editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11328",title:"Botulinum Toxin",subtitle:"Recent Topics and Applications",isOpenForSubmission:!1,hash:"7dd05a316001cef143e209eda51387a7",slug:"botulinum-toxin-recent-topics-and-applications",bookSignature:"Suna Sabuncuoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11328.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"270856",title:"Associate Prof.",name:"Suna",middleName:null,surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11085",title:"Polycystic Ovary Syndrome",subtitle:"Functional Investigation and Clinical Application",isOpenForSubmission:!1,hash:"3066dd3ff29e1fac072fd60b08d4d3e7",slug:"polycystic-ovary-syndrome-functional-investigation-and-clinical-application",bookSignature:"Zhengchao Wang",coverURL:"https://cdn.intechopen.com/books/images_new/11085.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"204883",title:"Dr.",name:"Zhengchao",middleName:null,surname:"Wang",slug:"zhengchao-wang",fullName:"Zhengchao Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10833",title:"Tumor Angiogenesis and Modulators",subtitle:null,isOpenForSubmission:!1,hash:"f29b575c46128b2da061ef7f9bd1070b",slug:"tumor-angiogenesis-and-modulators",bookSignature:"Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/10833.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"59529",title:"Dr.",name:"Ke",middleName:null,surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11356",title:"Molecular Cloning",subtitle:null,isOpenForSubmission:!1,hash:"671c629dd86e97f0fb467b9e70e92296",slug:"molecular-cloning",bookSignature:"Sadık Dincer, Hatice Aysun Mercimek Takcı and Melis Sumengen Ozdenef",coverURL:"https://cdn.intechopen.com/books/images_new/11356.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"188141",title:"Prof.",name:"Sadik",middleName:null,surname:"Dincer",slug:"sadik-dincer",fullName:"Sadik Dincer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Advanced Topics of Topology",subtitle:null,isOpenForSubmission:!1,hash:"bf964c52f9e653fac20a7fcab58070e5",slug:"advanced-topics-of-topology",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"92918",title:"Dr.",name:"Francisco",middleName:null,surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11195",title:"Recent Advances in Biometrics",subtitle:null,isOpenForSubmission:!1,hash:"2d32e33e0f499cb5241734bb75dd2a83",slug:"recent-advances-in-biometrics",bookSignature:"Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/11195.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1071",title:"Urogynecology",slug:"urogynecology",parent:{id:"189",title:"Obstetrics and Gynecology",slug:"obstetrics-and-gynecology"},numberOfBooks:8,numberOfSeries:0,numberOfAuthorsAndEditors:233,numberOfWosCitations:52,numberOfCrossrefCitations:57,numberOfDimensionsCitations:104,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"1071",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10722",title:"Pelvic Floor Dysfunction",subtitle:"Symptoms, Causes, and Treatment",isOpenForSubmission:!1,hash:"fa669d0f9c768ec43040a30b98ca239f",slug:"pelvic-floor-dysfunction-symptoms-causes-and-treatment",bookSignature:"Ran Pang",coverURL:"https://cdn.intechopen.com/books/images_new/10722.jpg",editedByType:"Edited by",editors:[{id:"186524",title:"Prof.",name:"Ran",middleName:null,surname:"Pang",slug:"ran-pang",fullName:"Ran Pang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6278",title:"Pelvic Floor Disorders",subtitle:null,isOpenForSubmission:!1,hash:"e53630ad8f02658c6ca31163f9d68193",slug:"pelvic-floor-disorders",bookSignature:"Raheela M. Rizvi",coverURL:"https://cdn.intechopen.com/books/images_new/6278.jpg",editedByType:"Edited by",editors:[{id:"185970",title:"Dr.",name:"Raheela",middleName:"Mohsin",surname:"Rizvi",slug:"raheela-rizvi",fullName:"Raheela Rizvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6152",title:"Debatable Topics in PCOS Patients",subtitle:null,isOpenForSubmission:!1,hash:"c47a69bf2dac1f402c7f1b5751f1ea7e",slug:"debatable-topics-in-pcos-patients",bookSignature:"Neeraj Kumar Agrawal and Kiran Singh",coverURL:"https://cdn.intechopen.com/books/images_new/6152.jpg",editedByType:"Edited by",editors:[{id:"136647",title:"Dr.",name:"N.K.",middleName:null,surname:"Agrawal",slug:"n.k.-agrawal",fullName:"N.K. Agrawal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5728",title:"Colposcopy and Cervical Pathology",subtitle:null,isOpenForSubmission:!1,hash:"f4232ee2dc701c710f42172d09afdc8f",slug:"colposcopy-and-cervical-pathology",bookSignature:"Rajamanickam Rajkumar",coverURL:"https://cdn.intechopen.com/books/images_new/5728.jpg",editedByType:"Edited by",editors:[{id:"120109",title:"Dr.",name:"Rajamanickam",middleName:null,surname:"Rajkumar",slug:"rajamanickam-rajkumar",fullName:"Rajamanickam Rajkumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4641",title:"Approaches to Hysterectomy",subtitle:null,isOpenForSubmission:!1,hash:"a2a63bba8f7b17c10aff3d6d59ea0d08",slug:"approaches-to-hysterectomy",bookSignature:"Zouhair O. Amarin",coverURL:"https://cdn.intechopen.com/books/images_new/4641.jpg",editedByType:"Edited by",editors:[{id:"101551",title:"Prof.",name:"Zouhair Odeh",middleName:null,surname:"Amarin",slug:"zouhair-odeh-amarin",fullName:"Zouhair Odeh Amarin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"684",title:"Endometriosis",subtitle:"Basic Concepts and Current Research Trends",isOpenForSubmission:!1,hash:"1f5625375189846e4fa04200c135afcc",slug:"endometriosis-basic-concepts-and-current-research-trends",bookSignature:"Koel Chaudhury and Baidyanath Chakravarty",coverURL:"https://cdn.intechopen.com/books/images_new/684.jpg",editedByType:"Edited by",editors:[{id:"83747",title:"Prof.",name:"Koel",middleName:null,surname:"Chaudhury",slug:"koel-chaudhury",fullName:"Koel Chaudhury"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"707",title:"Hysterectomy",subtitle:null,isOpenForSubmission:!1,hash:"219d88512350b2e1d01cfd8faf81aa9c",slug:"hysterectomy",bookSignature:"Ayman Al-Hendy and Mohamed Sabry",coverURL:"https://cdn.intechopen.com/books/images_new/707.jpg",editedByType:"Edited by",editors:[{id:"54087",title:"Dr.",name:"Ayman",middleName:null,surname:"Al-Hendy",slug:"ayman-al-hendy",fullName:"Ayman Al-Hendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1900",title:"In Vitro Fertilization",subtitle:"Innovative Clinical and Laboratory Aspects",isOpenForSubmission:!1,hash:"212b5ed00828501488c8d7025d84a188",slug:"in-vitro-fertilization-innovative-clinical-and-laboratory-aspects",bookSignature:"Shevach Friedler",coverURL:"https://cdn.intechopen.com/books/images_new/1900.jpg",editedByType:"Edited by",editors:[{id:"111647",title:"Prof.",name:"Shevach",middleName:null,surname:"Friedler",slug:"shevach-friedler",fullName:"Shevach Friedler"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:8,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"35165",doi:"10.5772/38592",title:"The Role of Ultrasound in the Evaluation of Endometrial Receptivity Following Assisted Reproductive Treatments",slug:"the-role-of-ultrasound-in-the-evaluation-of-endometrial-receptivity-following-assisted-reproductive-",totalDownloads:8249,totalCrossrefCites:2,totalDimensionsCites:7,abstract:null,book:{id:"1900",slug:"in-vitro-fertilization-innovative-clinical-and-laboratory-aspects",title:"In Vitro Fertilization",fullTitle:"In Vitro Fertilization - Innovative Clinical and Laboratory Aspects"},signatures:"Mitko Ivanovski",authors:[{id:"118205",title:"Ph.D.",name:"Mitko",middleName:null,surname:"Ivanovski",slug:"mitko-ivanovski",fullName:"Mitko Ivanovski"}]},{id:"36768",doi:"10.5772/29357",title:"Pathomechanism of Infertility in Endometriosis",slug:"pathomechanism-of-infertility-in-endometriosis",totalDownloads:2864,totalCrossrefCites:5,totalDimensionsCites:5,abstract:null,book:{id:"684",slug:"endometriosis-basic-concepts-and-current-research-trends",title:"Endometriosis",fullTitle:"Endometriosis - Basic Concepts and Current Research Trends"},signatures:"Hendi Hendarto",authors:[{id:"77444",title:"Dr.",name:"Hendi",middleName:null,surname:"Hendarto",slug:"hendi-hendarto",fullName:"Hendi Hendarto"}]},{id:"36774",doi:"10.5772/29063",title:"Imaging Tools for Endometriosis: Role of Ultrasound, MRI and Other Imaging Modalities in Diagnosis and Planning Intervention",slug:"role-of-imaging-in-the-diagnosis-of-endometriosis",totalDownloads:7022,totalCrossrefCites:1,totalDimensionsCites:5,abstract:null,book:{id:"684",slug:"endometriosis-basic-concepts-and-current-research-trends",title:"Endometriosis",fullTitle:"Endometriosis - Basic Concepts and Current Research Trends"},signatures:"Shalini Jain Bagaria,\r\nDarshana D. Rasalkar and Bhawan K. Paunipagar",authors:[{id:"70915",title:"Prof.",name:"Shalini",middleName:null,surname:"Jain",slug:"shalini-jain",fullName:"Shalini Jain"},{id:"76390",title:"Dr.",name:"Darshana",middleName:null,surname:"Rasalkar",slug:"darshana-rasalkar",fullName:"Darshana Rasalkar"},{id:"126379",title:"Dr.",name:"Bhawan",middleName:null,surname:"Paunipagar",slug:"bhawan-paunipagar",fullName:"Bhawan Paunipagar"}]},{id:"54747",doi:"10.5772/68011",title:"The Role of miRNAs in Diagnosis, Prognosis and Treatment Prediction in Cervical Cancer",slug:"the-role-of-mirnas-in-diagnosis-prognosis-and-treatment-prediction-in-cervical-cancer",totalDownloads:1596,totalCrossrefCites:3,totalDimensionsCites:5,abstract:"Cervical cancer represents one of the major problems of health women worldwide, especially in the developing countries. If discovered in its earliest stages, cervical cancer is successfully treatable; however, due to lack of proper implementation of screening programs, the majority of cervical cancer patients are diagnosed in advanced stages, which dramatically influence their outcome. Almost a half of these patients will suffer recurrence or metastasis in the following 2 years after therapy. If there are no immediate prospects in terms of developing new or more effective therapies, identifying new tools for early diagnosis, prognosis and treatment prediction remains a big challenge for cervical cancer. miRNAs have been validated to be key players in cell physiology, alterations in miRNA expression being associated with cancer progression and response to therapy. Cervical cancer studies have showed that alterations of miRNA expression can be identified in tumor tissues, exfoliated cervical cells and patients serum and that their transcription pattern is regulated by the present HPV genotype. Furthermore, miRNAs have been associated with patients response to therapy, therefore suggesting their potential to be used as biomarkers for cervical cancer diagnosis, prognosis and treatment response.",book:{id:"5728",slug:"colposcopy-and-cervical-pathology",title:"Colposcopy and Cervical Pathology",fullTitle:"Colposcopy and Cervical Pathology"},signatures:"Ovidiu Balacescu, Loredana Balacescu, Oana Baldasici, Oana\nTudoran and Patriciu Achimas‐Cadariu",authors:[{id:"195763",title:"Ph.D.",name:"Ovidiu",middleName:null,surname:"Balacescu",slug:"ovidiu-balacescu",fullName:"Ovidiu Balacescu"},{id:"196758",title:"Dr.",name:"Loreadana",middleName:null,surname:"Balacescu",slug:"loreadana-balacescu",fullName:"Loreadana Balacescu"},{id:"196761",title:"Dr.",name:"Oana",middleName:null,surname:"Tudoran",slug:"oana-tudoran",fullName:"Oana Tudoran"},{id:"196770",title:"Prof.",name:"Patriciu",middleName:null,surname:"Achimas",slug:"patriciu-achimas",fullName:"Patriciu Achimas"},{id:"203875",title:"Dr.",name:"Oana",middleName:null,surname:"Baldasici",slug:"oana-baldasici",fullName:"Oana Baldasici"}]},{id:"36753",doi:"10.5772/29909",title:"Diagnosis and Treatment of Perineal Endometriosis",slug:"diagnosis-and-treatment-of-perineal-endometriosis",totalDownloads:4770,totalCrossrefCites:2,totalDimensionsCites:4,abstract:null,book:{id:"684",slug:"endometriosis-basic-concepts-and-current-research-trends",title:"Endometriosis",fullTitle:"Endometriosis - Basic Concepts and Current Research Trends"},signatures:"Lan Zhu, Na Chen and Jinghe Lang",authors:[{id:"79859",title:"Dr.",name:"Lan",middleName:null,surname:"Zhu",slug:"lan-zhu",fullName:"Lan Zhu"}]}],mostDownloadedChaptersLast30Days:[{id:"48951",title:"Peripartum Hysterectomy",slug:"peripartum-hysterectomy-",totalDownloads:2008,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Peripartum hysterectomy is uncommon in modern obstetrics. It is mostly performed as an emergency procedure to control life-threatening haemorrhage. Despite recent technical advances in medicine, it is associated with high rates of morbidity and mortality. Peripartum hysterectomy constitutes a life-saving procedure.",book:{id:"4641",slug:"approaches-to-hysterectomy",title:"Approaches to Hysterectomy",fullTitle:"Approaches to Hysterectomy"},signatures:"Zouhair O. Amarin",authors:[{id:"101551",title:"Prof.",name:"Zouhair Odeh",middleName:null,surname:"Amarin",slug:"zouhair-odeh-amarin",fullName:"Zouhair Odeh Amarin"}]},{id:"60935",title:"Pathophysiology of Pelvic Organ Prolapse",slug:"pathophysiology-of-pelvic-organ-prolapse",totalDownloads:1859,totalCrossrefCites:5,totalDimensionsCites:3,abstract:"Pelvic organ support is provided by interaction between the pelvic floor muscle, ligaments and its connective tissues. Failure of anatomical support may result in pelvic organ prolapse. Therefore in managing anterior, posterior, or apical compartments prolapse, conceptual understanding of pelvic floor anatomy is essential for the surgeons. To appropriately treat these entities, comprehension of the various theories of the pathophysiology of pelvic organ prolapse is of paramount importance. DeLancey has described vaginal connective tissue support of the pelvis at three levels that has helped us to understand various clinical manifestations of pelvic organ support dysfunction. Pelvic floor disorder is frequently associated with etiological risk factors which include aging, parity, obesity, connective tissue disorder, increased intra-abdominal pressure and hysterectomy. A better understanding of pathophysiology of muscular, collagen, and neuronal components of the pelvic organs and their support would provide an insight of site specific defects and its prevention.",book:{id:"6278",slug:"pelvic-floor-disorders",title:"Pelvic Floor Disorders",fullTitle:"Pelvic Floor Disorders"},signatures:"Lubna Razzak",authors:[{id:"212077",title:"Dr.",name:"Lubna",middleName:null,surname:"Razzak",slug:"lubna-razzak",fullName:"Lubna Razzak"}]},{id:"49153",title:"B-Lynch Compression Suture as an Alternative to Paripartum Hysterectomy",slug:"b-lynch-compression-suture-as-an-alternative-to-paripartum-hysterectomy",totalDownloads:2748,totalCrossrefCites:0,totalDimensionsCites:1,abstract:"Obstetrics haemorrhage is a major killer of women of all categories of class, religion, social and economic status. Women of third world countries suffer the most adversity because of poor resources and infrastructure. In major substandard care, haemorrhage emerges as the major cause of severe maternal morbidity in almost all ‘near miss’ audits in both developed and developing countries [1, 2, 24].",book:{id:"4641",slug:"approaches-to-hysterectomy",title:"Approaches to Hysterectomy",fullTitle:"Approaches to Hysterectomy"},signatures:"Christopher Balogun-Lynch and Tahira Aziz Javaid",authors:[{id:"176667",title:"Dr.",name:"Christopher",middleName:null,surname:"Balogun-Lynch",slug:"christopher-balogun-lynch",fullName:"Christopher Balogun-Lynch"},{id:"176773",title:"Dr.",name:"Tahira Aziz",middleName:null,surname:"Javaid",slug:"tahira-aziz-javaid",fullName:"Tahira Aziz Javaid"}]},{id:"61034",title:"Recurrent Pelvic Organ Prolapse",slug:"recurrent-pelvic-organ-prolapse",totalDownloads:1810,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"The treatment of recurrent pelvic organ prolapse is challenging. The pelvic floor symptom needs to be treated, a high quality of life has to be ensured and complications have to be minimized. There is a wide range of surgical options that may be used. The surgeon should be able to discuss and offer native tissue procedures for prolapse. In addition, for the clinically challenging situations of recurrent prolapse, mesh augmented procedures may need to be discussed with the patient. A thorough knowledge of mesh and graft options, as well as knowledge of prolapse recurrence and adverse events rate, can help guide clinicians in counseling their patients effectively. Ultimately, this will allow surgeons to choose a personalized treatment option that best align with a woman’s lifestyle and treatment goals. In this chapter the anatomical concepts of supports of vagina are elaborated. The pelvic diaphragm, lateral attachment of vagina to arcus tendineus fascia pelvis, intrinsic and extrinsic sphincter control mechanisms are elaborated. The surgical techniques of suspending the vaginal vault with autologous tissue and synthetic mesh are discussed. Finally, the role of minimally invasive surgery of pelvic floor is discussed as an integral part of management of recurrent vaginal prolapse.",book:{id:"6278",slug:"pelvic-floor-disorders",title:"Pelvic Floor Disorders",fullTitle:"Pelvic Floor Disorders"},signatures:"Nidhi Sharma and Sudakshina Chakrabarti",authors:[{id:"220214",title:"Prof.",name:"Nidhi",middleName:null,surname:"Sharma",slug:"nidhi-sharma",fullName:"Nidhi Sharma"},{id:"224544",title:"Dr.",name:"Sudakshina",middleName:null,surname:"Chakrabarti",slug:"sudakshina-chakrabarti",fullName:"Sudakshina Chakrabarti"}]},{id:"61308",title:"Effects of Posture and Gravity on Pelvic Organ Prolapse",slug:"effects-of-posture-and-gravity-on-pelvic-organ-prolapse",totalDownloads:1308,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"Female pelvic floor dysfunction occurs when the integrity of the pelvic floor muscles is compromised and impacts the position and function of the pelvic organs. Physicians use international guidelines to evaluate and treat women for POP taking into account that posture and gravity impact pelvic organ position, and degree of prolapse. Our clinical focuses on the description of surface anatomy. This examination alone is insufficient. Although imaging is recommended, the modalities currently available are recognized to have flaws. MRI is performed in the supine position regardless the effect of posture and gravity on POP. A literature search was performed using databases, searching MEDLINE and PubMed using the key terms ultrasound, MRI, and CT. We describe use of a new protocol and advanced technique to evaluate the changes of POP in different positions using open MRI (MRO). POP patients underwent MRO imaging of the pelvic floor using a 0.5 T MRO scanner. The extent of displacement of prolapsed organs was determined using validated reference lines drawn on the mid-sagittal images. Manual segmentation and surface modeling were used to construct the 3D models. MRO offers new levels of anatomic detail; 3D sequences based on 2D images are an additional refinement.",book:{id:"6278",slug:"pelvic-floor-disorders",title:"Pelvic Floor Disorders",fullTitle:"Pelvic Floor Disorders"},signatures:"Marwa Abdulaziz, Lynn Stothers and Andrew Macnab",authors:[{id:"117248",title:"Dr.",name:"Andrew",middleName:null,surname:"Macnab",slug:"andrew-macnab",fullName:"Andrew Macnab"},{id:"183155",title:"Dr.",name:"Lynn",middleName:null,surname:"Stothers",slug:"lynn-stothers",fullName:"Lynn Stothers"},{id:"209987",title:"M.Sc.",name:"Marwa",middleName:"Mohammed",surname:"Abdulaziz",slug:"marwa-abdulaziz",fullName:"Marwa Abdulaziz"}]}],onlineFirstChaptersFilter:{topicId:"1071",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:141,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:124,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:22,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"10",title:"Physiology",doi:"10.5772/intechopen.72796",issn:"2631-8261",scope:"Modern physiology requires a comprehensive understanding of the integration of tissues and organs throughout the mammalian body, including the cooperation between structure and function at the cellular and molecular levels governed by gene and protein expression. While a daunting task, learning is facilitated by identifying common and effective signaling pathways mediated by a variety of factors employed by nature to preserve and sustain homeostatic life. \r\nAs a leading example, the cellular interaction between intracellular concentration of Ca+2 increases, and changes in plasma membrane potential is integral for coordinating blood flow, governing the exocytosis of neurotransmitters, and modulating gene expression and cell effector secretory functions. Furthermore, in this manner, understanding the systemic interaction between the cardiovascular and nervous systems has become more important than ever as human populations' life prolongation, aging and mechanisms of cellular oxidative signaling are utilised for sustaining life. \r\nAltogether, physiological research enables our identification of distinct and precise points of transition from health to the development of multimorbidity throughout the inevitable aging disorders (e.g., diabetes, hypertension, chronic kidney disease, heart failure, peptic ulcer, inflammatory bowel disease, age-related macular degeneration, cancer). With consideration of all organ systems (e.g., brain, heart, lung, gut, skeletal and smooth muscle, liver, pancreas, kidney, eye) and the interactions thereof, this Physiology Series will address the goals of resolving (1) Aging physiology and chronic disease progression (2) Examination of key cellular pathways as they relate to calcium, oxidative stress, and electrical signaling, and (3) how changes in plasma membrane produced by lipid peroxidation products can affect aging physiology, covering new research in the area of cell, human, plant and animal physiology.",coverUrl:"https://cdn.intechopen.com/series/covers/10.jpg",latestPublicationDate:"July 20th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:14,editor:{id:"35854",title:"Prof.",name:"Tomasz",middleName:null,surname:"Brzozowski",slug:"tomasz-brzozowski",fullName:"Tomasz Brzozowski",profilePictureURL:"https://mts.intechopen.com/storage/users/35854/images/system/35854.jpg",biography:"Prof. Dr. Thomas Brzozowski works as a professor of Human Physiology and is currently Chairman at the Department of Physiology and is V-Dean of the Medical Faculty at Jagiellonian University Medical College, Cracow, Poland. His primary area of interest is physiology and pathophysiology of the gastrointestinal (GI) tract, with the major focus on the mechanism of GI mucosal defense, protection, and ulcer healing. He was a postdoctoral NIH fellow at the University of California and the Gastroenterology VA Medical Center, Irvine, Long Beach, CA, USA, and at the Gastroenterology Clinics Erlangen-Nuremberg and Munster in Germany. He has published 290 original articles in some of the most prestigious scientific journals and seven book chapters on the pathophysiology of the GI tract, gastroprotection, ulcer healing, drug therapy of peptic ulcers, hormonal regulation of the gut, and inflammatory bowel disease.",institutionString:null,institution:{name:"Jagiellonian University",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"10",title:"Animal Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/10.jpg",isOpenForSubmission:!0,annualVolume:11406,editor:{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null},{id:"11",title:"Cell Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/11.jpg",isOpenForSubmission:!0,annualVolume:11407,editor:{id:"133493",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",profilePictureURL:"https://mts.intechopen.com/storage/users/133493/images/3091_n.jpg",biography:"Prof. Dr. Angel Catalá \r\nShort Biography Angel Catalá was born in Rodeo (San Juan, Argentina). He studied \r\nchemistry at the Universidad Nacional de La Plata, Argentina, where received aPh.D. degree in chemistry (Biological Branch) in 1965. From\r\n1964 to 1974, he worked as Assistant in Biochemistry at the School of MedicineUniversidad Nacional de La Plata, Argentina. From 1974 to 1976, he was a Fellowof the National Institutes of Health (NIH) at the University of Connecticut, Health Center, USA. From 1985 to 2004, he served as a Full Professor oBiochemistry at the Universidad Nacional de La Plata, Argentina. He is Member ofthe National Research Council (CONICET), Argentina, and Argentine Society foBiochemistry and Molecular Biology (SAIB). His laboratory has been interested for manyears in the lipid peroxidation of biological membranes from various tissues and different species. Professor Catalá has directed twelve doctoral theses, publishedover 100 papers in peer reviewed journals, several chapters in books andtwelve edited books. Angel Catalá received awards at the 40th InternationaConference Biochemistry of Lipids 1999: Dijon (France). W inner of the Bimbo PanAmerican Nutrition, Food Science and Technology Award 2006 and 2012, South AmericaHuman Nutrition, Professional Category. 2006 award in pharmacology, Bernardo\r\nHoussay, in recognition of his meritorious works of research. Angel Catalá belongto the Editorial Board of Journal of lipids, International Review of Biophysical ChemistryFrontiers in Membrane Physiology and Biophysics, World Journal oExperimental Medicine and Biochemistry Research International, W orld Journal oBiological Chemistry, Oxidative Medicine and Cellular Longevity, Diabetes and thePancreas, International Journal of Chronic Diseases & Therapy, International Journal oNutrition, Co-Editor of The Open Biology Journal.",institutionString:null,institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}},editorTwo:null,editorThree:null},{id:"12",title:"Human Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/12.jpg",isOpenForSubmission:!0,annualVolume:11408,editor:{id:"195829",title:"Prof.",name:"Kunihiro",middleName:null,surname:"Sakuma",slug:"kunihiro-sakuma",fullName:"Kunihiro Sakuma",profilePictureURL:"https://mts.intechopen.com/storage/users/195829/images/system/195829.jpg",biography:"Professor Kunihiro Sakuma, Ph.D., currently works in the Institute for Liberal Arts at the Tokyo Institute of Technology. He is a physiologist working in the field of skeletal muscle. He was awarded his sports science diploma in 1995 by the University of Tsukuba and began his scientific work at the Department of Physiology, Aichi Human Service Center, focusing on the molecular mechanism of congenital muscular dystrophy and normal muscle regeneration. His interest later turned to the molecular mechanism and attenuating strategy of sarcopenia (age-related muscle atrophy). His opinion is to attenuate sarcopenia by improving autophagic defects using nutrient- and pharmaceutical-based treatments.",institutionString:null,institution:{name:"Tokyo Institute of Technology",institutionURL:null,country:{name:"Japan"}}},editorTwo:{id:"331519",title:"Dr.",name:"Kotomi",middleName:null,surname:"Sakai",slug:"kotomi-sakai",fullName:"Kotomi Sakai",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000031QtFXQA0/Profile_Picture_1637053227318",biography:"Senior researcher Kotomi Sakai, Ph.D., MPH, works at the Research Organization of Science and Technology in Ritsumeikan University. She is a researcher in the geriatric rehabilitation and public health field. She received Ph.D. from Nihon University and MPH from St.Luke’s International University. Her main research interest is sarcopenia in older adults, especially its association with nutritional status. Additionally, to understand how to maintain and improve physical function in older adults, to conduct studies about the mechanism of sarcopenia and determine when possible interventions are needed.",institutionString:null,institution:{name:"Ritsumeikan University",institutionURL:null,country:{name:"Japan"}}},editorThree:null},{id:"13",title:"Plant Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/13.jpg",isOpenForSubmission:!0,annualVolume:11409,editor:{id:"332229",title:"Prof.",name:"Jen-Tsung",middleName:null,surname:"Chen",slug:"jen-tsung-chen",fullName:"Jen-Tsung Chen",profilePictureURL:"https://mts.intechopen.com/storage/users/332229/images/system/332229.png",biography:"Dr. Jen-Tsung Chen is currently a professor at the National University of Kaohsiung, Taiwan. He teaches cell biology, genomics, proteomics, medicinal plant biotechnology, and plant tissue culture. Dr. Chen\\'s research interests include bioactive compounds, chromatography techniques, in vitro culture, medicinal plants, phytochemicals, and plant biotechnology. He has published more than ninety scientific papers and serves as an editorial board member for Plant Methods, Biomolecules, and International Journal of Molecular Sciences.",institutionString:"National University of Kaohsiung",institution:{name:"National University of Kaohsiung",institutionURL:null,country:{name:"Taiwan"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:21,paginationItems:[{id:"83000",title:"Purine and Pyrimidine Pathways as Antimalarial Targets",doi:"10.5772/intechopen.106468",signatures:"Yacoba V.T. Minnow and Vern L. Schramm",slug:"purine-and-pyrimidine-pathways-as-antimalarial-targets",totalDownloads:1,totalCrossrefCites:null,totalDimensionsCites:null,authors:null,book:{title:"Malaria - Recent Advances, and New Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11576.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"83065",title:"Interventions and Practical Approaches to Reduce the Burden of Malaria on School-Aged Children",doi:"10.5772/intechopen.106469",signatures:"Andrew Macnab",slug:"interventions-and-practical-approaches-to-reduce-the-burden-of-malaria-on-school-aged-children",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Andrew",surname:"Macnab"}],book:{title:"Malaria - Recent Advances, and New Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11576.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"82804",title:"Psychiatric Problems in HIV Care",doi:"10.5772/intechopen.106077",signatures:"Seggane Musisi and Noeline Nakasujja",slug:"psychiatric-problems-in-hiv-care",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Future Opportunities and Tools for Emerging Challenges for HIV/AIDS Control",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82827",title:"Epidemiology and Control of Schistosomiasis",doi:"10.5772/intechopen.105170",signatures:"Célestin Kyambikwa Bisangamo",slug:"epidemiology-and-control-of-schistosomiasis",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"New Horizons for Schistosomiasis Research",coverURL:"https://cdn.intechopen.com/books/images_new/10829.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}}]},overviewPagePublishedBooks:{paginationCount:13,paginationItems:[{type:"book",id:"6667",title:"Influenza",subtitle:"Therapeutics and Challenges",coverURL:"https://cdn.intechopen.com/books/images_new/6667.jpg",slug:"influenza-therapeutics-and-challenges",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"105e347b2d5dbbe6b593aceffa051efa",volumeInSeries:1,fullTitle:"Influenza - Therapeutics and Challenges",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}]},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}]},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",slug:"current-topics-in-neglected-tropical-diseases",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"61c627da05b2ace83056d11357bdf361",volumeInSeries:3,fullTitle:"Current Topics in Neglected Tropical Diseases",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}]},{type:"book",id:"7839",title:"Malaria",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",slug:"malaria",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Fyson H. Kasenga",hash:"91cde4582ead884cb0f355a19b67cd56",volumeInSeries:4,fullTitle:"Malaria",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga",profilePictureURL:"https://mts.intechopen.com/storage/users/86725/images/system/86725.jpg",biography:"Dr. Kasenga is a graduate of Tumaini University, Kilimanjaro Christian Medical College, Moshi, Tanzania and Umeå University, Sweden. He obtained a Master’s degree in Public Health and PhD in Public Health and Epidemiology. He has a background in Clinical Medicine and has taken courses at higher diploma levels in public health from University of Transkei, Republic of South Africa, and African Medical and Research Foundation (AMREF) in Nairobi, Kenya. Dr. Kasenga worked in different places in and outside Malawi, and has held various positions, such as Licensed Medical Officer, HIV/AIDS Programme Officer, HIV/AIDS resource person in the International Department of Diakonhjemet College, Oslo, Norway. He also managed an Integrated HIV/AIDS Prevention programme for over 5 years. He is currently working as a Director for the Health Ministries Department of Malawi Union of the Seventh Day Adventist Church. Dr. Kasenga has published over 5 articles on HIV/AIDS issues focusing on Prevention of Mother to Child Transmission of HIV (PMTCT), including a book chapter on HIV testing counseling (currently in press). Dr. Kasenga is married to Grace and blessed with three children, a son and two daughters: Happy, Lettice and Sungani.",institutionString:"Malawi Adventist University",institution:{name:"Malawi Adventist University",institutionURL:null,country:{name:"Malawi"}}}]}]},openForSubmissionBooks:{paginationCount:2,paginationItems:[{id:"11676",title:"Recent Advances in Homeostasis",coverURL:"https://cdn.intechopen.com/books/images_new/11676.jpg",hash:"63eb775115bf2d6d88530b234a1cc4c2",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 15th 2022",isOpenForSubmission:!0,editors:[{id:"203015",title:"Dr.",name:"Gaffar",surname:"Zaman",slug:"gaffar-zaman",fullName:"Gaffar Zaman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12213",title:"New Advances in Photosynthesis",coverURL:"https://cdn.intechopen.com/books/images_new/12213.jpg",hash:"2eece9ed4f67de4eb73da424321fc455",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 15th 2022",isOpenForSubmission:!0,editors:[{id:"224171",title:"Prof.",name:"Josphert N.",surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:49,paginationItems:[{id:"83087",title:"Role of Cellular Responses in Periodontal Tissue Destruction",doi:"10.5772/intechopen.106645",signatures:"Nam Cong-Nhat Huynh",slug:"role-of-cellular-responses-in-periodontal-tissue-destruction",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Periodontology - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11566.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"83073",title:"Dental and Orofacial Trauma Impacts on Oral-Health-Related—Quality of Life in Children: Low- and Middle-Income Countries",doi:"10.5772/intechopen.105845",signatures:"Yolanda Malele-Kolisa, Nazia Khan, Mpho P. Molete, Maphefo D. Thekiso and Mzubanzi Mabongo",slug:"dental-and-orofacial-trauma-impacts-on-oral-health-related-quality-of-life-in-children-low-and-middl",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"82938",title:"Trauma from Occlusion: Practical Management Guidelines",doi:"10.5772/intechopen.105960",signatures:"Prashanth Shetty, Shweta Hegde, Shubham Chelkar, Rahul Chaturvedi, Shruti Pochhi, Aakanksha Shrivastava, Dudala Lakshmi, Shreya Mukherjee, Pankaj Bajaj and Shahzada Asif Raza",slug:"trauma-from-occlusion-practical-management-guidelines",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"82654",title:"Atraumatic Restorative Treatment: More than a Minimally Invasive Approach?",doi:"10.5772/intechopen.105623",signatures:"Manal A. Ablal",slug:"atraumatic-restorative-treatment-more-than-a-minimally-invasive-approach",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"82608",title:"Early Management of Dental Trauma in the Era of COVID-19",doi:"10.5772/intechopen.105992",signatures:"Khairul Bariah Chi Adam, Haszelini Hassan, Pram Kumar Subramaniam, Izzati Nabilah Ismail, Nor Adilah Harun and Naziyah Shaban Mustafa",slug:"early-management-of-dental-trauma-in-the-era-of-covid-19",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"82767",title:"Teeth Avulsion",doi:"10.5772/intechopen.105846",signatures:"Manal Abdalla Eltahir, Randa Fath Elrahman Ibrahim and Hanan Alharbi",slug:"teeth-avulsion",totalDownloads:21,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"82735",title:"The Influence of Salivary pH on the Prevalence of Dental Caries",doi:"10.5772/intechopen.106154",signatures:"Laura-Cristina Rusu, Alexandra Roi, Ciprian-Ioan Roi, Codruta Victoria Tigmeanu and Lavinia Cosmina Ardelean",slug:"the-influence-of-salivary-ph-on-the-prevalence-of-dental-caries",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"82288",title:"Dental Emergency and Conditions",doi:"10.5772/intechopen.105495",signatures:"Navneet Kaur",slug:"dental-emergency-and-conditions",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"81961",title:"Antioxidants as an Adjuncts to Periodontal Therapy",doi:"10.5772/intechopen.105016",signatures:"Sura Dakhil Jassim and Ali Abbas Abdulkareem",slug:"antioxidants-as-an-adjuncts-to-periodontal-therapy",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"82357",title:"Caries Management Aided by Fluorescence-Based Devices",doi:"10.5772/intechopen.105567",signatures:"Atena Galuscan, Daniela Jumanca and Aurora Doris Fratila",slug:"caries-management-aided-by-fluorescence-based-devices",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}}]},subseriesFiltersForOFChapters:[{caption:"Prosthodontics and Implant Dentistry",value:2,count:23,group:"subseries"},{caption:"Oral Health",value:1,count:26,group:"subseries"}],publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10897",title:"Food Systems Resilience",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",slug:"food-systems-resilience",publishedDate:"July 13th 2022",editedByType:"Edited by",bookSignature:"Ana I. Ribeiro-Barros, Daniel S. Tevera, Luís F. Goulao and Lucas D. Tivana",hash:"ae9dd92f53433e4607f1db188dc649b4",volumeInSeries:1,fullTitle:"Food Systems Resilience",editors:[{id:"171036",title:"Dr.",name:"Ana I.",middleName:null,surname:"Ribeiro-Barros",slug:"ana-i.-ribeiro-barros",fullName:"Ana I. Ribeiro-Barros",profilePictureURL:"https://mts.intechopen.com/storage/users/171036/images/system/171036.jpg",institutionString:"University of Lisbon",institution:{name:"University of Lisbon",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Sustainable Economy and Fair Society",value:91,count:1}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1}],authors:{paginationCount:30,paginationItems:[{id:"425474",title:"Mr.",name:"Jasper",middleName:"Okoro Godwin",surname:"Okoro Godwin Elechi",slug:"jasper-okoro-godwin-elechi",fullName:"Jasper Okoro Godwin Elechi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/425474/images/19990_n.jpg",biography:"Mr. Elechi is an innovative and passionate food professional and educator who can collaborate across boundaries with an integrated aspiration of innovation to provide good, sustainable, and healthy food solutions that promote human health and conserve planetary health. He has a special interest in innovative food product development, nutrition, indigenous food products, biotechnology, bioeconmy, sustainable global food systems transformation, food safety Nanotechnology, and Nanomaterials. He has carried out independent research and publications in these areas. He possesses comprehensive knowledge and technical know-how on nutritional formulation and production of healthy and sustainable foods from locally available underutilized Cereal-Legume crops for combating food security and malnutrition in developing communities.",institutionString:null,institution:null},{id:"307387",title:"Dr.",name:"Cecilia",middleName:null,surname:"Camporeale",slug:"cecilia-camporeale",fullName:"Cecilia Camporeale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Agency For New Technologies, Energy and Sustainable Economic Development",country:{name:"Italy"}}},{id:"296882",title:"Dr.",name:"Mario",middleName:null,surname:"Jorizzo",slug:"mario-jorizzo",fullName:"Mario Jorizzo",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Agency For New Technologies, Energy and Sustainable Economic Development",country:{name:"Italy"}}},{id:"307388",title:"Dr.",name:"ROBERTO",middleName:null,surname:"DEL CIELLO",slug:"roberto-del-ciello",fullName:"ROBERTO DEL CIELLO",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Agency For New Technologies, Energy and Sustainable Economic Development",country:{name:"Italy"}}},{id:"437647",title:"M.Sc.",name:"Fernando",middleName:null,surname:"Teixeira",slug:"fernando-teixeira",fullName:"Fernando Teixeira",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Évora",country:{name:"Portugal"}}},{id:"423338",title:"Dr.",name:"Harjeet",middleName:null,surname:"Singh",slug:"harjeet-singh",fullName:"Harjeet Singh",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Chitkara University",country:{name:"India"}}},{id:"443635",title:"Dr.",name:"Suruchi",middleName:null,surname:"Jindal",slug:"suruchi-jindal",fullName:"Suruchi Jindal",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Punjab Agricultural University",country:{name:"India"}}},{id:"426265",title:"Mrs.",name:"Inonge",middleName:null,surname:"Chibua",slug:"inonge-chibua",fullName:"Inonge Chibua",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Botswana",country:{name:"Botswana"}}},{id:"426266",title:"Ms.",name:"Mesha",middleName:null,surname:"Mbisana",slug:"mesha-mbisana",fullName:"Mesha Mbisana",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Botswana",country:{name:"Botswana"}}},{id:"426264",title:"Mr.",name:"Samuel",middleName:null,surname:"Raditloko",slug:"samuel-raditloko",fullName:"Samuel Raditloko",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Botswana",country:{name:"Botswana"}}},{id:"426394",title:"Dr.",name:"Mags",middleName:null,surname:"Adams",slug:"mags-adams",fullName:"Mags Adams",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Central Lancashire",country:{name:"United Kingdom"}}},{id:"441182",title:"Dr.",name:"Neil",middleName:null,surname:"Wilson",slug:"neil-wilson",fullName:"Neil Wilson",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Central Lancashire",country:{name:"United Kingdom"}}},{id:"425171",title:"Ph.D. Student",name:"Tanya",middleName:null,surname:"Zerbian",slug:"tanya-zerbian",fullName:"Tanya Zerbian",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Central Lancashire",country:{name:"Cyprus"}}},{id:"424714",title:"Prof.",name:"Elke",middleName:null,surname:"Stedefeldt",slug:"elke-stedefeldt",fullName:"Elke Stedefeldt",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Federal University of Sao Paulo",country:{name:"Brazil"}}},{id:"425244",title:"Dr.",name:"Rayane",middleName:"Stephanie Gomes",surname:"Stephanie Gomes De Freitas",slug:"rayane-stephanie-gomes-de-freitas",fullName:"Rayane Stephanie Gomes De Freitas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Federal University of Sao Paulo",country:{name:"Brazil"}}},{id:"424688",title:"Dr.",name:"Bart",middleName:null,surname:"de Steenhuijsen Piters",slug:"bart-de-steenhuijsen-piters",fullName:"Bart de Steenhuijsen Piters",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Wageningen University & Research",country:{name:"Netherlands"}}},{id:"429404",title:"Dr.",name:"Emma",middleName:null,surname:"Termeer",slug:"emma-termeer",fullName:"Emma Termeer",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Wageningen University & Research",country:{name:"Netherlands"}}},{id:"429407",title:"Dr.",name:"Herman",middleName:null,surname:"Brouwer",slug:"herman-brouwer",fullName:"Herman Brouwer",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Wageningen University & Research",country:{name:"Netherlands"}}},{id:"429406",title:"Dr.",name:"Hubert",middleName:null,surname:"Fonteijn",slug:"hubert-fonteijn",fullName:"Hubert Fonteijn",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Wageningen University & Research",country:{name:"Netherlands"}}},{id:"427504",title:"Dr.",name:"Kriengsak",middleName:null,surname:"Chareonwongsak",slug:"kriengsak-chareonwongsak",fullName:"Kriengsak Chareonwongsak",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"423333",title:"Ph.D. Student",name:"Shivani",middleName:null,surname:"Sood",slug:"shivani-sood",fullName:"Shivani Sood",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"452297",title:"Mr.",name:"Cornelius",middleName:null,surname:"Smah Adamu",slug:"cornelius-smah-adamu",fullName:"Cornelius Smah Adamu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"452296",title:"Mr.",name:"Ikechukwu",middleName:null,surname:"U. Nwiyi",slug:"ikechukwu-u.-nwiyi",fullName:"Ikechukwu U. Nwiyi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"423395",title:"Assistant Prof.",name:"Adane",middleName:null,surname:"Atara Debessa",slug:"adane-atara-debessa",fullName:"Adane Atara Debessa",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"426267",title:"Mr.",name:"Banyaladzi",middleName:null,surname:"Paphane",slug:"banyaladzi-paphane",fullName:"Banyaladzi Paphane",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"483388",title:"Dr.",name:"Berhanu",middleName:null,surname:"Denu",slug:"berhanu-denu",fullName:"Berhanu Denu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"483387",title:"Dr.",name:"Degefa",middleName:null,surname:"Tolossa",slug:"degefa-tolossa",fullName:"Degefa Tolossa",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"426059",title:"Dr.",name:"Dikabo",middleName:null,surname:"Mogopodi",slug:"dikabo-mogopodi",fullName:"Dikabo Mogopodi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"422909",title:"Dr.",name:"Dorcas Stella",middleName:null,surname:"Shumba",slug:"dorcas-stella-shumba",fullName:"Dorcas Stella Shumba",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"429405",title:"Dr.",name:"Deborah",middleName:null,surname:"Bakker",slug:"deborah-bakker",fullName:"Deborah Bakker",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]}},subseries:{item:{id:"86",type:"subseries",title:"Business and Management",keywords:"Demographic Shifts, Innovation, Technology, Next-gen Leaders, Worldwide Environmental Issues and Clean Technology, Uncertainty and Political Risks, Radical Adjacency, Emergence of New Business Ecosystem Type, Emergence of Different Leader and Leader Values Types, Universal Connector, Elastic Enterprise, Business Platform, Supply Chain Complexity",scope:"
\r\n\tThe Business and Management series topic focuses on the most pressing issues confronting organizations today and in the future. Businesses are trying to figure out how to lead in a time of global uncertainty. In emerging markets, issues such as ill-defined or unstable policies, as well as corrupt practices, can be hugely problematic. Changes in governments can result in new policy, regulations, and interest rates, all of which can be detrimental to foreign businesses and investments. A growing trend towards economic nationalism also makes the current global political landscape potentially hostile towards international businesses.
\r\n
\r\n\tThe demographic shifts are creating interesting challenges. People are living longer, resulting to an aging demographic. We have a large population of older workers and retirees who are living longer lives, combined with a declining birthrate in most parts of the world. Businesses of all types are looking at how technology is affecting their operations. Several questions arise, such as: How is technology changing what we do? How is it transforming us internally, how is it influencing our clients and our business strategy? It is about leveraging technology to improve efficiency, connect with customers more effectively, and drive innovation. The majority of innovative companies are technology-driven businesses. Realizing digital transformation is today’s top issue and will remain so for the next five years. Improving organizational agility, expanding portfolios of products and services, creating, and maintaining a culture of innovation, and developing next -generation leaders were also identified as top challenges in terms of both current and future issues.
\r\n
\r\n\tThe most sustained profitable growth occurs when a company expands its core business into an adjacent space. This has significant implications for management because innovation in business ecosystems differs from traditional, vertically integrated firms. Every organization in the ecosystem must be aware of the bigger picture. Innovation in ecosystems necessitates collaborative action to invent and appraise, efficient, cross-organizational knowledge flows, modular architectures, and good stewardship of legacy systems. It is built on multiple, interconnected platforms. Environmental factors have already had a significant impact in the West and will continue to have an impact globally. Businesses must take into account the environmental impact of their daily operations. The advantage of this market is that it is expected to grow more rapidly than the overall economy. Another significant challenge is preparing the next generation of leaders to elevate this to the number one priority within the next five years. There can be no culture of innovation unless there is diverse leadership or development of the next generation of leaders; and these diverse, next-generation leaders are the ones who will truly understand the digital strategies that will drive digital transformation.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/86.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11970,editor:{id:"128342",title:"Prof.",name:"Vito",middleName:null,surname:"Bobek",slug:"vito-bobek",fullName:"Vito Bobek",profilePictureURL:"https://mts.intechopen.com/storage/users/128342/images/system/128342.jpg",biography:"Dr. Vito Bobek works as an international management professor at the University of Applied Sciences FH Joanneum, Graz, Austria. He has published more than 400 works in his academic career and visited twenty-two universities worldwide as a visiting professor. Dr. Bobek is a member of the editorial boards of six international journals and a member of the Strategic Council of the Minister of Foreign Affairs of the Republic of Slovenia. He has a long history in academia, consulting, and entrepreneurship. His own consulting firm, Palemid, has managed twenty significant projects, such as Cooperation Program Interreg V-A (Slovenia-Austria) and Capacity Building for the Serbian Chamber of Enforcement Agents. He has also participated in many international projects in Italy, Germany, Great Britain, the United States, Spain, Turkey, France, Romania, Croatia, Montenegro, Malaysia, and China. Dr. Bobek is also a co-founder of the Academy of Regional Management in Slovenia.",institutionString:"Universities of Applied Sciences FH Joanneum, Austria",institution:{name:"Universities of Applied Sciences Joanneum",institutionURL:null,country:{name:"Austria"}}},editorTwo:{id:"293992",title:"Dr.",name:"Tatjana",middleName:null,surname:"Horvat",slug:"tatjana-horvat",fullName:"Tatjana Horvat",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002hXb0hQAC/Profile_Picture_1642419002203",biography:"Tatjana Horvat works as a professor for accountant and auditing at the University of Primorska, Slovenia. She is a Certified State Internal Auditor (licensed by Ministry of Finance RS) and Certified Internal Auditor for Business Sector and Certified accountant (licensed by Slovenian Institute of Auditors). At the Ministry of Justice of Slovenia, she is a member of examination boards for court expert candidates and judicial appraisers in the following areas: economy/finance, valuation of companies, banking, and forensic investigation of economic operations/accounting. At the leading business newspaper Finance in Slovenia (Swedish ownership), she is the editor and head of the area for business, finance, tax-related articles, and educational programs.",institutionString:null,institution:{name:"University of Primorska",institutionURL:null,country:{name:"Slovenia"}}},editorThree:null,series:{id:"22",title:"Business, Management and Economics",doi:"10.5772/intechopen.100359",issn:"2753-894X"},editorialBoard:[{id:"114318",title:"Dr.",name:"David",middleName:null,surname:"Rodeiro",slug:"david-rodeiro",fullName:"David Rodeiro",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS2a8QAC/Profile_Picture_2022-04-22T08:29:52.jpg",institutionString:null,institution:{name:"University of Santiago de Compostela",institutionURL:null,country:{name:"Spain"}}},{id:"114073",title:"Prof.",name:"Jörg",middleName:null,surname:"Freiling",slug:"jorg-freiling",fullName:"Jörg Freiling",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS2UPQA0/Profile_Picture_1642580983875",institutionString:null,institution:{name:"University of Bremen",institutionURL:null,country:{name:"Germany"}}},{id:"202681",title:"Dr.",name:"Mojca",middleName:null,surname:"Duh",slug:"mojca-duh",fullName:"Mojca Duh",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSD2dQAG/Profile_Picture_1644907300283",institutionString:null,institution:{name:"University of Maribor",institutionURL:null,country:{name:"Slovenia"}}},{id:"103802",title:"Ph.D.",name:"Ondrej",middleName:null,surname:"Zizlavsky",slug:"ondrej-zizlavsky",fullName:"Ondrej Zizlavsky",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRyQJQA0/Profile_Picture_1643100292225",institutionString:null,institution:{name:"Brno University of Technology",institutionURL:null,country:{name:"Czech Republic"}}},{id:"190913",title:"Dr.",name:"Robert M.X.",middleName:null,surname:"Wu",slug:"robert-m.x.-wu",fullName:"Robert M.X. Wu",profilePictureURL:"https://mts.intechopen.com/storage/users/190913/images/system/190913.jpg",institutionString:"Central Queensland University",institution:{name:"Central Queensland University",institutionURL:null,country:{name:"Australia"}}}]},onlineFirstChapters:{paginationCount:2,paginationItems:[{id:"82936",title:"Soil Degradation Processes Linked to Long-Term Forest-Type Damage",doi:"10.5772/intechopen.106390",signatures:"Pavel Samec, Aleš Kučera and Gabriela Tomášová",slug:"soil-degradation-processes-linked-to-long-term-forest-type-damage",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Forest Degradation Under Global Change",coverURL:"https://cdn.intechopen.com/books/images_new/11457.jpg",subseries:{id:"94",title:"Climate Change and Environmental Sustainability"}}},{id:"82124",title:"Assessment of Diversity, Growth Characteristics and Aboveground Biomass of Tree Species in Selected Urban Green Areas of Osogbo, Osun State",doi:"10.5772/intechopen.104982",signatures:"Omolara Aremu, Olusola O. Adetoro and Olusegun Awotoye",slug:"assessment-of-diversity-growth-characteristics-and-aboveground-biomass-of-tree-species-in-selected-u",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Forest Degradation Under Global Change",coverURL:"https://cdn.intechopen.com/books/images_new/11457.jpg",subseries:{id:"94",title:"Climate Change and Environmental Sustainability"}}}]},publishedBooks:{paginationCount:5,paginationItems:[{type:"book",id:"8737",title:"Rabies Virus at the Beginning of 21st Century",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",slug:"rabies-virus-at-the-beginning-of-21st-century",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Sergey Tkachev",hash:"49cce3f548da548c718c865feb343509",volumeInSeries:9,fullTitle:"Rabies Virus at the Beginning of 21st Century",editors:[{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev",profilePictureURL:"https://mts.intechopen.com/storage/users/61139/images/system/61139.png",institutionString:"Russian Academy of Sciences",institution:{name:"Russian Academy of Sciences",institutionURL:null,country:{name:"Russia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10497",title:"Canine Genetics, Health and Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10497.jpg",slug:"canine-genetics-health-and-medicine",publishedDate:"June 2nd 2021",editedByType:"Edited by",bookSignature:"Catrin Rutland",hash:"b91512e31ce34032e560362e6cbccc1c",volumeInSeries:7,fullTitle:"Canine Genetics, Health and Medicine",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9081",title:"Equine Science",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9081.jpg",slug:"equine-science",publishedDate:"September 23rd 2020",editedByType:"Edited by",bookSignature:"Catrin Rutland and Albert Rizvanov",hash:"ac415ef2f5450fa80fdb9cf6cf32cd2d",volumeInSeries:5,fullTitle:"Equine Science",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Naceur M'Hamdi",hash:"2aa2a9a0ec13040bbf0455e34625504e",volumeInSeries:3,fullTitle:"Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi",profilePictureURL:"https://mts.intechopen.com/storage/users/73376/images/system/73376.jpg",institutionString:null,institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",slug:"veterinary-anatomy-and-physiology",publishedDate:"March 13th 2019",editedByType:"Edited by",bookSignature:"Catrin Sian Rutland and Valentina Kubale",hash:"75cdacb570e0e6d15a5f6e69640d87c9",volumeInSeries:2,fullTitle:"Veterinary Anatomy and Physiology",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:141,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:124,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:22,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"3",title:"Bacterial Infectious Diseases",scope:"
\r\n\tThe era of antibiotics led us to the illusion that the problem of bacterial infection is over. However, bacterial flexibility and adaptation mechanisms allow them to survive and grow in extreme conditions. The best example is the formation of a sophisticated society of bacteria defined as a biofilm. Understanding the mechanism of bacterial biofilm formation has changed our perception of the development of bacterial infection but successfully eradicating biofilm remains a challenge. Considering the above, it is not surprising that bacteria remain a major public health threat despite the development of many groups of antibiotics. Additionally, increasing prevalence of acquired antibiotic resistance forces us to realize that we are far from controlling the development of bacterial infections. On the other hand, many infections are endogenous and result from an unbalanced relationship between the host and the microorganism. The increasing use of immunosuppressants, such as chemotherapy or organ transplantation, increases the incidence of patients highly susceptible to bacterial infections in the population.
\r\n
\r\n\tThis topic will focus on the current challenges and advantages in the diagnosis and treatment of bacterial infections. We will discuss the host-microbiota relationship, the treatment of chronic infections due to biofilm formation, and the development of new diagnostic tools to rapidly distinguish between colonization and probable infection.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/3.jpg",keywords:"Antibiotics, Biofilm, Antibiotic Resistance, Host-microbiota Relationship, Treatment, Diagnostic Tools"},{id:"4",title:"Fungal Infectious Diseases",scope:"Fungi are ubiquitous and there are almost no non-pathogenic fungi. Fungal infectious illness prevalence and prognosis are determined by the exposure between fungi and host, host immunological state, fungal virulence, and early and accurate diagnosis and treatment. \r\nPatients with both congenital and acquired immunodeficiency are more likely to be infected with opportunistic mycosis. Fungal infectious disease outbreaks are common during the post- disaster rebuilding era, which is characterised by high population density, migration, and poor health and medical conditions.\r\nSystemic or local fungal infection is mainly associated with the fungi directly inhaled or inoculated in the environment during the disaster. The most common fungal infection pathways are human to human (anthropophilic), animal to human (zoophilic), and environment to human (soilophile). Diseases are common as a result of widespread exposure to pathogenic fungus dispersed into the environment. \r\nFungi that are both common and emerging are intertwined. In Southeast Asia, for example, Talaromyces marneffei is an important pathogenic thermally dimorphic fungus that causes systemic mycosis. Widespread fungal infections with complicated and variable clinical manifestations, such as Candida auris infection resistant to several antifungal medicines, Covid-19 associated with Trichoderma, and terbinafine resistant dermatophytosis in India, are among the most serious disorders. \r\nInappropriate local or systemic use of glucocorticoids, as well as their immunosuppressive effects, may lead to changes in fungal infection spectrum and clinical characteristics. Hematogenous candidiasis is a worrisome issue that affects people all over the world, particularly ICU patients. CARD9 deficiency and fungal infection have been major issues in recent years. Invasive aspergillosis is associated with a significant death rate. Special attention should be given to endemic fungal infections, identification of important clinical fungal infections advanced in yeasts, filamentous fungal infections, skin mycobiome and fungal genomes, and immunity to fungal infections.\r\nIn addition, endemic fungal diseases or uncommon fungal infections caused by Mucor irregularis, dermatophytosis, Malassezia, cryptococcosis, chromoblastomycosis, coccidiosis, blastomycosis, histoplasmosis, sporotrichosis, and other fungi, should be monitored. \r\nThis topic includes the research progress on the etiology and pathogenesis of fungal infections, new methods of isolation and identification, rapid detection, drug sensitivity testing, new antifungal drugs, schemes and case series reports. It will provide significant opportunities and support for scientists, clinical doctors, mycologists, antifungal drug researchers, public health practitioners, and epidemiologists from all over the world to share new research, ideas and solutions to promote the development and progress of medical mycology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",keywords:"Emerging Fungal Pathogens, Invasive Infections, Epidemiology, Cell Membrane, Fungal Virulence, Diagnosis, Treatment"},{id:"5",title:"Parasitic Infectious Diseases",scope:"Parasitic diseases have evolved alongside their human hosts. In many cases, these diseases have adapted so well that they have developed efficient resilience methods in the human host and can live in the host for years. Others, particularly some blood parasites, can cause very acute diseases and are responsible for millions of deaths yearly. Many parasitic diseases are classified as neglected tropical diseases because they have received minimal funding over recent years and, in many cases, are under-reported despite the critical role they play in morbidity and mortality among human and animal hosts. The current topic, Parasitic Infectious Diseases, in the Infectious Diseases Series aims to publish studies on the systematics, epidemiology, molecular biology, genomics, pathogenesis, genetics, and clinical significance of parasitic diseases from blood borne to intestinal parasites as well as zoonotic parasites. We hope to cover all aspects of parasitic diseases to provide current and relevant research data on these very important diseases. In the current atmosphere of the Coronavirus pandemic, communities around the world, particularly those in different underdeveloped areas, are faced with the growing challenges of the high burden of parasitic diseases. At the same time, they are faced with the Covid-19 pandemic leading to what some authors have called potential syndemics that might worsen the outcome of such infections. Therefore, it is important to conduct studies that examine parasitic infections in the context of the coronavirus pandemic for the benefit of all communities to help foster more informed decisions for the betterment of human and animal health.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",keywords:"Blood Borne Parasites, Intestinal Parasites, Protozoa, Helminths, Arthropods, Water Born Parasites, Epidemiology, Molecular Biology, Systematics, Genomics, Proteomics, Ecology"},{id:"6",title:"Viral Infectious Diseases",scope:"The Viral Infectious Diseases Book Series aims to provide a comprehensive overview of recent research trends and discoveries in various viral infectious diseases emerging around the globe. The emergence of any viral disease is hard to anticipate, which often contributes to death. A viral disease can be defined as an infectious disease that has recently appeared within a population or exists in nature with the rapid expansion of incident or geographic range. This series will focus on various crucial factors related to emerging viral infectious diseases, including epidemiology, pathogenesis, host immune response, clinical manifestations, diagnosis, treatment, and clinical recommendations for managing viral infectious diseases, highlighting the recent issues with future directions for effective therapeutic strategies.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",keywords:"Novel Viruses, Virus Transmission, Virus Evolution, Molecular Virology, Control and Prevention, Virus-host Interaction"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/51351",hash:"",query:{},params:{id:"51351"},fullPath:"/chapters/51351",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()