Some examples of food applications of pulse proteins.
Pulses such as beans, peas and lentils have been consumed for thousands of years and represent one of the most extensively consumed food in the world [1]. Pulses play crucial roles in fulfilling the nutritional requirements of the growing population in a cost effective manner, especially for developing or underdeveloped countries where animal protein consumption is either limited or expensive [2]. Pulses are widely used for food purposes because of their high protein content, high nutritional and health beneficial properties, appropriate functional attributes, and associated low production cost and abundance [3]. The health benefits associated with pulse consumption include lowering of cholesterol levels, reducing the risks of various cardiovascular diseases and cancers, and decreasing the risk of type-2 diabetes [4]. Along with protein, pulses provides dietary fiber and vitamins and minerals such as iron, zinc, folate, and magnesium [1]. Pulses also have an antioxidant and anti-carcinogenic effect because of the presence of phytochemicals, saponins and tannins in them [1].
\nFor many years, pulses have been used in the preparation of wholesome nutritional meals in combination with other food sources or ingredients. Pulse crops such as pea, chickpea and common bean (
The majority of pulse proteins are albumin and globulin fractions, where globulins represent ∼70% and albumins constitute 10–20% of the total pulse protein [5, 16]. In addition, other proteins are present in minor proportions such as prolamins and glutelins [17, 18]. These four proteins can be classified according to their solubility in various solvents based on the Osborne classification scheme [19]. For example, globulin proteins are soluble in dilute salt solution, albumins in water, prolamins in 70% ethanol solution, and glutelins are solubilized in dilute alkali solutions [19, 20].
\nAlbumins encompass structural and enzymatic proteins, lectins and protease inhibitors, with their overall molecular mass (MM) ranging between 5 and 80 kDa [5]. In contrast, the salt soluble globulins include legumin (11S, S = Svedberg Unit) and vicilin (7S) proteins. The 11S fraction is a hexamer (MM of ∼340–360 kDa) comprised of six subunits (MM of ∼60 kDa) linked by non-covalent interactions. Each subunit pair is comprised of an acidic (MM of ∼40 kDa) and basic (MM of ∼20 kDa) chain joined by a disulfide bond [16, 21]. In contrast, the 7S fraction is a trimer with a MM of ∼175–180 kDa, and lacks disulfide bridging [5]. Vicilin protein molecules also have been reported to have various subunits of 75, 43, 33, 56, 12 and 25 kDa [16, 21]. A third type of globulin is also present, although in lesser amounts as compared to other globulins, and is known as convicilin [22]. It is a 7S globulin, and a single convicilin molecule has an overall MM of 220–290 kDa, and consists of 3 or 4 subunits each with a MW of 70 kDa. This protein has a different amino acid profile than vicilin as it contains sulfur-containing amino acids, is immunologically similar to 7S vicilin, and contains very little carbohydrate [5]. Various pulse species have been reported to contain convicilin-type proteins. For example, Saenz de Miera et al. [23] investigated 29 different legume species from 4 genera (
The ratio of legumin:vicilin (L/V) is not fixed and may vary among different pulse varieties and species. The ratio of L/V for pea, soybean and faba bean varies in the range of 0.2–8.0, 1.3–3.4 and 1.7–3.7, respectively [25–35]. Various studies reported that L/V ratio for wrinkled pea seeds (0.2–0.6) represents a smaller ratio compared to the smooth pea seeds (0.3–2.0) [28, 30, 35, 36]. Various factors including the methods used in the preparation of protein materials (concentrates or isolates), processing parameters like pH and temperature and environmental or agronomic factors may account for the variation in these ratios, which in turn could also have influential effects on the physiochemical properties of pulse protein materials [16, 21, 37, 38]. As a part of their studies, Barac et al. [38] extracted the proteins from six varieties (genotypes) of pea (Calvedon, L1, L2, L3, Maja and M.A) and indicated that genotypes with high 7S protein levels or low 11S protein levels yielded higher amounts of protein (protein extractability) compared to the other genotypes. Moreover, pure vicilin solutions were observed to have better functional properties (such as emulsification and gelation) than the pure legumin solutions [38]. It was indicated that a low L/V ratio for preparation of protein isolates could be desirable. In the Mertens et al. [35] study on smooth pea seeds, it was reported that agronomic factors, including variety, cultivar type and location, affected the protein content and L/V ratio with high significance. However, some varieties were less sensitive to the prevailing climatic conditions than others. This approach could be beneficial from an industrial point of view as it could manifest in picking stable and less sensitive L/V ratio lines for specific product quality characteristics [35].
\nVarious groups have researched relationships between L/V ratios and their functional attributes. A number of studies noted that pea vicilin showed higher emulsifying properties than corresponding pea legumin [39–41], which was attributed due to higher solubility [42] and surface hydrophobicity [5] of vicilin proteins. Furthermore, Shen and Tang [43] reported that emulsifying properties of vicilins were found to be dependent on both the legume source (Kidney bean, red bean and mung bean) and their protein concentration (0.25–2.5% w/v). The differences in the emulsion properties of vicilins at different concentrations were majorly related to the variation in zeta potential and interfacial characteristics, and were also found to be dependent on other factors such as protein folding, penetration and structural rearrangement at the interface [43]. Bora et al. [44] studied the heat induced gelation of mixed pea globulins and found that 7S globulin had the capacity to undergo heat gelation while 11S globulin did not although used the same optimal conditions of gelation with 15% globulin solutions, pH 7.1 and heating at 87°C for 20 min. However, Nakamura et al. [45] observed that the gels formed by 7S globulins of soybean are less strong and transparent as compared to those formed by 11S globulins, which were much harder and turbid in nature. The study suggested that the extent of interaction in gel formation of a mixed system of 7S and 11S globulins is affected by factors such as the 11S/7S ratio and the composition of their subunits. Cserhalmi et al. [39] reported that mixed globulins and 7S fractions of pea proteins had increased surface hydrophobicity and emulsifying properties compared to the albumins and 11S fractions. Moreover, for all the pea varieties tested, the emulsifying and surface hydrophobicity properties were different from each other. Thus, varying the L/V ratio could be used in obtaining the desired functional attribute in new food formulations.
\nThe quantification of 7S and 11S fractions present in isolates or concentrates is an essential step for calculation of L/V ratio which can be achieved using various methods described in literature. Methods include ammonium sulfate salt extraction [46], isoelectric precipitation [47], sodium dodecyl sulfate-polyacrylamide-gel electrophoresis (SDS-PAGE), gel chromatography [48], selective thermal denaturation [49], sucrose gradient centrifugation [50] and zonal isoelectric precipitation [51, 52]. The effective separation and the choice of technique should be dependent on factors such as nature of sample (isolates, concentrates, seed), extraction technique employed and the level of purification required. For testing of functional and physicochemical properties of 7S and 11S fractions, it is required that enough quantity of these samples is obtained whichever technique is used without compromising the purity.
\nProtein extraction is dependent on many factors such as pH, temperature, particle size, ionic strength, type of salt used, and solvent to flour ratio [53, 54]. Various extraction methods are being studied so as to maximize the protein yield without compromising the protein functionality of the concentrate or isolate product. The protein extraction processes which are being exploited in the preparation of protein-rich materials (such as isolates and concentrates) can be classified into dry and wet methods [55–57].
\nDry processing of pulses is typically done by air classification, which involves the separation of flours on the basis of particle size and density using an air stream into protein and starch rich fractions [21, 58]. Air classification has been found to be suitable for legume crops low in fat, such as field pea and common bean. Flours are first fractionated into starch (SI) and protein (PI) rich concentrates using an air classification method. SI is then remilled and fractionated to give SII and PII concentrates [55]. Protein separation efficiency (PSE) is defined as the percentage of total flour protein recovered in the PI and PII fractions, and measured as the subtraction of % total flour protein recovered in SII fraction from 100% [55]. For legume crops high in fat such as soybean and chickpea, particle agglomeration is detected which interferes with PSE [59–61]. Dry processing has major advantage over wet extraction methods as the native functionality of proteins is retained and a lower amount of energy and no water is required [62]. Moreover, in contrast to wet extraction methods where both protein concentrates and isolates can be produced, dry processes are suitable only for preparing protein concentrates with protein content from 40–75% [63] probably because of the presence of higher amount of other compounds such as oil and fibers, and protein loss in coarse fractions [64].
\nTyler et al. [55] studied the fractionation of eight legumes (cowpea, great northern bean, lima bean, mung bean, navy bean, lentil, faba bean and field pea) using flours produced by pin milling followed by air classification and found faba bean (63.8–75.1%) and lima bean (43.4–49.6%) to have the highest and lowest protein concentrations in the protein-rich fractions. According to the authors, the suitability of pin milling followed by air classification is strongly correlated with the PSE of the legumes. Mung bean, lentil and great northern bean were found to have the highest mean PSE values of 88.9, 87.2 and 87.0%, respectively, whereas lima bean, cowpea and navy bean showed the lowest at 80.2, 78.2 and 80.3%, respectively. The other two legumes, faba bean and field pea, had PSE values of 84.1 and 82.8%, respectively. Overall, the authors indicated that except for lima bean and cowpea, the legumes were found to be suitable for separation of protein and starch fractions by the pin milling and air classification method.
\nIn general, wet extraction methods can be exploited for preparing both protein concentrates and isolates at levels of 70% and 90% protein (or higher), respectively. However, it should be noted that currently there is no universal classification scheme which separates concentrate from an isolate for all the legumes. The various wet extraction processes include acid/alkaline extraction-isoelectric precipitation, ultrafiltration and salt extraction. Legume flours dispersed in aqueous solutions typically show high solubility when subjected to alkaline or acidic extraction conditions at pH 8–10 and below 4 respectively [63].
\nBriefly, proteins are first dissolved under alkaline (alkaline extraction) or acidic (acid extraction) conditions, followed by a clarification step and then precipitation by adjusting the pH to the isoelectric point (pI) of the protein [65]. In solutions with the pH < pI, proteins assume a net positive charge, whereas at pHs > pI proteins assume a net negative charge. Under solvent conditions where proteins carry a net positive or negative charge, repulsive forces between proteins repel neighboring molecules, and also promote protein-water interactions for improved dispersion and solubility. Near the pI value, proteins tend to carry a neutral net charge, allowing neighboring proteins to aggregate via attractive van der Waals forces and hydrophobic interactions. Under these conditions, protein-protein interactions are favored over protein-water interactions, and thus protein is precipitated out of the solution.
\nAccording to Han and Hamaker [65], alkaline extraction followed by isoelectric precipitation is the most widely used method for obtaining extracts with protein purity greater than 70%. During alkaline extraction, legume proteins become solubilized at high pH values. The solution can then be clarified by centrifugation to remove insoluble material such as insoluble fiber, carbohydrates and insoluble proteins (e.g., prolamins). Protein concentrates or isolates can be formed by reducing the pH of the supernatant to near the pI of the protein using an acid such as HCl [63, 66]. The study of Can Karaca et al. [16] showed that isolates prepared from legumes (faba bean, chickpea, lentil, pea and soybean) by an alkaline extraction/IEP method had higher overall protein content (85.6%) as compared to those prepared by a salt extraction method (78.4%). Moreover, it was reported that both legume source and protein extraction method along with their interaction had significant effects on protein levels of the isolates, and also on physicochemical and emulsifying properties. The overall surface charge, solubility, hydrophobicity and creaming stability for IEP produced isolates was higher as compared to isolates produced by salt extraction [16]. The effect of processing or extraction conditions on the protein content of isolates can also be well observed from the studies of Flink and Christiansen [67] and McCurdy and Knipfel [68]. In the former study, faba bean isolates with protein contents of 80.0–90.0% were obtained when the bean:solvent ratio was 1:5 (w/v) with pH 8 to 10 at 23°C for 10 min, and the precipitation of protein was carried out at pH 3–5. While in the latter study, the protein content of faba bean isolates was 76.4–94.0% using a bean:solvent ratio of 1:5 w/v with pH 7–10, for 30 min, temperatures of 10°C and 20°C, and precipitation at pH 4–5.3.
\nAcid extraction (in principle similar to alkaline extraction) involves the preliminary extraction of proteins under acidic conditions. This process could result in high solubilization of proteins prior to protein recovery (IEP, Ultrafiltration (UF)), as proteins tend to be more soluble under acidic conditions (pH below 4) [5]. In a study by Vose [69] for preparation of faba bean (
In the literature, membrane separation methods were shown to produce protein isolates with higher functionality [70, 71] and were effective in reducing levels of anti-nutritional components which include protease and amylase inhibitors, lectins and polyphenols [72–74]. UF and microfiltration are membrane-based fractionation methods using pressure as the driving force for separation. Microfiltration can be used to separate particles or macromolecules larger than 0.1 μm, whereas ultrafiltration removes similar particles in the range of 0.001–0.02 μm [75]. For preparation of protein materials using ultrafiltration, the supernatant after alkaline or acidic extraction is processed using either UF or diafiltration (DF) together to isolate the protein material. UF is often combined with DF to improve protein recovery, where water is added to the retentate for dilution purposes, followed by re-ultrafiltration.
\nVose [69] used the UF procedure to produce faba bean and pea protein isolates which protein levels of 94.1% and 89.5%, respectively. Boye et al. [66] evaluated the protein content of isolates obtained from different pulses (pea, chickpea and lentil) using alkaline extraction-IEP and UF/DF extraction methods. The protein content in concentrates obtained by the UF/DF method was found to be higher than in those obtained by IEP. For instance, for yellow pea, green lentil, red lentil, and desi and kabuli chickpea, UF/DF gave protein levels of 83.9%, 88.6%, 82.7%, 76.5% and 68.5%, respectively. In contrast, for IEP extraction, protein levels were 81.7%, 79.1%, 78.2%, 73.6% and 63.9% respectively for the same legume crops. Moreover, it was reported that UF was different from IEP in terms of protein composition as the isolates prepared by UF comprised both globulins and albumins, whereas the isolates prepared by IEP were observed to contain only globulins [63, 76, 77].
\nSalt extraction is a process where globulin proteins are separated from albumins on the basis of solubility [5], as described previously in the Osborne classification scheme [19]. Proteins contain both hydrophobic and hydrophilic amino acids. The majority of hydrophobic moieties are buried inside the quaternary or tertiary structure due to a hydrophobic effect, and the majority of hydrophilic moieties are on the surface, free to participate in protein-water interactions. ‘Salting-in’ of proteins typically occurs at low salt levels, where the ions act to increase order of the protein\'s hydration layers and promote protein-water interactions [78–83]. However, at high levels of salt, hydration layers can be disrupted as ion-water interactions become favored over protein-water interactions in a ‘salting-out’ process [78–83]. As the ions attract water molecules away from the surface of the proteins, protein-protein aggregation is favored due to hydrophobic interactions. Aggregates continue to grow in size and number until they fall out of solution as a precipitate. The ability of ions to ‘salt-in’ or ‘salt-out’ proteins depends on both the ionic strength and type of cations and/or anions present, as described according to the Hofmeister series [Anions: SO42− > HPO42−> acetate− > Cl− > NO3−; Cations: N(CH3)4+> NH4+> Na+ = K+ > Li+ > Mg2+] [84].
\nSalts formed between cations and anions with higher precipitation ability in the series decrease the solubility of non-polar amino acids, favoring hydrophobic interactions to ‘salt-out’ proteins. On the contrary, salts formed between cations and anions with lower precipitation ability in the series weaken the hydrophobic interactions and result in increasing solubility of non-polar amino acids, thus favoring the ‘salting-in’ process [85]. Broadly speaking, ammonium sulfate (NH4)2SO4 and sodium chloride (NaCl) are the most commonly used salts for research purposes [16, 86–88]. Typically in the salt extraction procedure, proteins are initially dissolved in an aqueous NaCl solution (0.3–0.5 M) [86, 88] at neutral pH, followed by a clarification procedure to remove insoluble material. Precipitation of the protein can be triggered by either diluting the supernatant with water to lower the ionic strength or by dialysis to remove the salts, resulting in the formation of protein micelles which grow in size and number until precipitation ensues. Alsohaimy et al. [87] prepared protein isolates from chickpea, lupin and lentil using IEP and ammonium sulfate precipitation. For all of these legumes, the latter method resulted in higher protein content (chickpea − 90.6%, lupin − 92.6% and lentil − 93.0%) in comparison to the former method (chickpea − 81.4%, lupin − 87.3% and lentil − 80.0%). On the contrary, Can Karaca et al. [16] produced isolates from chickpea, faba bean, pea and lentil using IEP and a salt extraction method and found that the protein levels obtained using the IEP method (chickpea − 85.4%, faba − 84.1%, pea − 88.8%, and lentil − 81.9%) were found to be higher than the ones produced by the salt extraction method (chickpea − 81.6%, faba − 82.0%, pea − 81.1%, and lentil- − 74.7%) [16].
\nProtein flours, concentrates and isolates can be incorporated into various foods to increase their nutritional value and/or to provide specific and desirable functional attributes [5]. These functional attributes may include solubility, gelation, emulsifying ability, oil and water absorption capacity, and foaming. Moreover, functional properties of legume proteins contribute an important aspect in determining the competitiveness of the protein ingredient or the product in the market, as they can impact the sensory, physical and chemical properties of a food, which includes texture and organoleptic characteristics. In the literature, the functional attributes of legume proteins vary considerably due to differences in the raw material, processing, extraction methods and environmental conditions used during testing.
\nProtein solubility plays a major role in various food applications as a number of functional properties such as foaming, gelation or thickening, and emulsification are closely related and often dependent on protein solubility. High protein solubility may be helpful in producing food products such as beverages, infant milk powder, imitation milk and other products which require instant solubility with no residues left. For instance, imitation milk produced using lentil protein isolate was reported to have the same quality as compared to milk prepared from soy protein isolate, however had a lower quality than when pea protein isolate was used [21]. The solubility of protein depends on various attributes including hydrophobic/hydrophilic balance of the protein molecule (mainly the surface composition: polar/non polar amino acids), pI, pH, temperature, ionic strength and the type of ions present in the solution [63]. Proteins exhibit minimum solubility at their pI because of a zero net surface charge, resulting in aggregation of protein molecules into larger structures, followed by precipitation. On the contrary, when the pH values are greater or less than the protein\'s pI, proteins exert a positive or negative net charge into solution, repelling one another to maximize solubility.
\nThe solubility profiles of concentrates and isolates from various pulses obtained by IEP or UF were found to be lowest between pH 4 and 6, and significantly increased with pH shifting to either more acidic or alkaline conditions [63]. Boye et al. [66] reported that the solubility of pea, chickpea and lentil protein concentrates, which were processed using IEP and UF/DF techniques, were highest at pHs 1–3 and pHs 7–10. Moreover, the solubility profile varied with different varieties where, UF-yellow pea and UF-red lentil concentrates had the highest solubility at neutral pH, while at pH 3 and 8–10 solubility was highest for only UF-red lentil. In both cases, the lowest solubility was found for UF-chickpea (desi). The study by Can Karaca et al. [16] on five different legumes (pea, chickpea, faba bean, lentil and soybean) showed higher overall solubility (determined at neutral pH) of these legume isolates prepared by the IEP method (85.9%) as compared to ones prepared by a salt extraction method (61.5%). For the IEP method, the pea protein isolate had the lowest solubility (61.4%); soybean isolates had the highest solubility (96.5%); and pea, lentil and chickpea isolates exhibited intermediate solubility (>90.0%). However, highly variable results were obtained for the solubility of salt-extracted isolates with values of 30.1% and 96.6% for chickpea and soybean respectively, while intermediate solubility was observed for lentil (89.8%), pea (38.1%), and faba bean (52.5%). Solubility profile of isolates produced from kabuli (PBG-1, PDG-4, PDG-3, GL769 and GPF-2) and desi chickpea cultivars (L550) were found to be non-significant as a function of genotype (p>0.05) [89]. However, in the study of Barac et al. [38], the solubility profile of six pea genotypes (Maja, Calvedon, Miracle, L1, L2 and L3) were found to be significantly different from each other except L2 and Maja (p<0.05).
\nOHC and WHC refer to the extent to which oil and water, respectively, can be bound per gram of the protein material or legume flour [5, 63]. These properties are essential with respect to maintaining the quality of a product, its shelf life and consumer acceptability (texture and mouth feel). The ability of a protein to bind oil and water is important in preventing cook loss or leakage from the product during processing or storage [63]. Failure of a protein to bind water could lead to brittle and dry characteristics of the product [5]. WHC values for pulse protein concentrates, such as pea, faba bean, lentil and chickpea, have been determined by various groups [66, 89, 90] and fall in the range of 0.6–4.9 g/g, suggesting that both pulse genotype and manner of processing could impact values. For instance, Kaur and Singh [89] found that protein isolates prepared by kabuli chickpea cultivars (PBG-1, PDG-4, PDG-3, GL769 and GPF-2) produced significantly lower WHC than desi chickpea (L550) (p<0.05) which clearly indicates the impact of different cultivars in assessing functionality. Boye et al. [66] reported that for all the legumes studied (red and green lentil, desi and kabuli chickpea, yellow pea), IEP protein concentrates had higher WHCs than did ones prepared by UF (with the exception of red lentil protein concentrates) although no substantial differences were observed between WHC values between the processing treatments. The yellow pea concentrate (IEP) had the highest WHC value which was much higher than those of the kabuli and desi chickpea concentrates (IEP and UF) indicating the more significant effect of pulse type compared to extraction method on WHC.
\nOHC values reported by various authors [86, 89, 90] for different pulses range from 1.0–3.96 g/g, and seem to depend again on the type and variety of pulse used, and the method of preparation of the protein product. Boye et al. [66] studied the UF and IEP concentrates produced from red and green lentil, yellow pea and kabuli and desi chickpea. They reported that pulse variety and processing conditions had a larger impact on the OHC of yellow pea, kabuli chickpea and red lentil concentrates as compared to those made from desi chickpea and green lentil. Moreover, UF concentrates made from yellow pea, red lentil and kabuli chickpea had significantly higher OHC than their corresponding IEP concentrates. Red lentil and yellow pea concentrates produced by UF had the highest OHC of 2.26 g/g and 1.17 g/g respectively. However, no significant differences in OHC were observed between the IEP produced concentrates (p>0.05) [66]. In the study of Kaur and Singh [89], chickpea protein isolates were reported to have higher OHC than the corresponding flour samples. Moreover, in contrast to WHC, the OHC of kabuli chickpea was reported to be significantly higher than desi cultivars (p<0.05).
\nThe water and oil holding properties of legume proteins may be essential in formulation of food products such as meat, pasta, cookies, etc. In producing low fat meat products, water is added to substitute the fat loss. And, water holding compounds are added to prevent cooking losses and meat shrinkage which includes proteins (whey, soy and collagen), lipids (soy lecithin) and carbohydrates (flours, starches and gums) [91]. For instance, soy proteins added to ground beef improves the tenderness, moisture retention, decreases cooking losses, and inhibits rancidity [92]. Deliza et al. [93] replaced meat in ground beef mixture with hydrated textured soybean protein (15 or 30%) and found that beef patties were more tender as compared to controls, although the overall flavor quality was reduced with having less beefy flavor. However, legumes (navy beans, chickpeas, mung beans and, red kidney beans) when substituted at a level of 15% in beef mince resulted in acceptable products, with chickpea preferred over other legumes [94].
\nAn emulsion is a mixture of two or more immiscible liquids (usually oil and water), where one of the liquids (the dispersed phase) is mixed in to the other (the continuous phase) in the form of small spherical droplets [95]. Emulsions are generally classified into two types: oil-in-water (O/W), in which oil droplets are dispersed within an aqueous phase (e.g., milk, mayonnaise, cream and soups); or water-in-oil (W/O), in which water droplets are dispersed within an oil phase (e.g., butter and margarine). Emulsions are thermodynamically unstable and with time separate into oil and liquid layers due to collision and coalescence of droplets [95]. Stabilizers such as emulsifiers can be used to produce stable emulsions. For instance, protein as an emulsifier acts by adsorbing onto the oil-water interface to form a viscoelastic film surrounding the oil droplets. Stability is enhanced through electrostatic charge repulsion (depending on the pH), steric hindrance or increases to the continuous phase viscosity [95].
\nProtein emulsifiers are used worldwide because of their ability to adsorb at the droplet surface in an O/W emulsion during the process of homogenization, thereby reducing interfacial tension. The adsorbed protein molecules present at the surface act as a separating membrane preventing coalescence with the neighboring droplets [63]. To be an effective emulsifier, protein must exhibit the following properties: fast adsorption at the oil-water interface, ability to form a protective and cohesive layer around the oil droplets, and ability to unfold at the interface [96]. Various studies reported that the emulsifying ability of legume protein concentrates or isolates are dependent on the type of legume or the method (IEP/UF/salt extraction) used in their preparation. For instance, Fuhrmeister and Meuser [71] reported that a pea protein isolate prepared by an IEP method was found to have lower emulsifying ability as compared to one prepared using UF.
\nEmulsion activity index (EAI) refers to the area of emulsion stabilized per gram of emulsifier or protein material and expressed as m2/g whereas emulsion stability index (ESI) refers to the measure of stability of this emulsion as a function of the time. Emulsion capacity (EC) is the amount of oil homogenized per gram of protein material and expressed as g oil/g protein whereas creaming stability (CS) is the ability of an emulsion to resist creaming and the formation of a serum layer as time passes, and measured as %. The study conducted by Can Karaca et al. [16] on different legumes (pea, chickpea, faba bean, soybean and lentil) showed that both legume source and extraction method (IEP or UF) had significant effects on emulsifying and physicochemical properties. Both EAI and ESI were significantly affected by legume source and extraction method, whereas EC was dependent on the legume source only. However, Boye et al. [66], studying the functional properties of chickpea, lentil and pea protein concentrates, concluded that IEP and UF preparation methods had little impact on emulsifying properties. Barac et al. [38] studying functional properties of six pea genotypes reported significant differences in emulsifying properties (EAI and ESI) as a function of Genotype and pH. The EAI of pea genotypes tested in this study was significantly higher than the commercial pea protein isolates tested.
\nEmulsifying and other functional properties of proteins can also be improved with protein modifications such as limited enzymatic hydrolysis using proteases (e.g. trypsin). The hydrolysis reaction results in partial unraveling of protein molecules thus exposing more ionic and hydrophobic groups for interaction with oil droplets [97]. For instance, trypsin treated oat bran protein with a ∼4–8% degree of hydrolysis (DH) had improved solubility, water holding, foaming and emulsifying properties as compared to those of native proteins [98]. On the contrary, Avramenko et al. [99] reported detrimental effects of trypsin mediated hydrolysis (DH∼4–20%) of lentil protein isolates. Here, except zeta potential, all the physicochemical properties (surface hydrophobicity and interfacial tension) and emulsifying properties (emulsion activity and stability indices) were found to have lower values as compared to the unhydrolyzed lentil protein isolate. This suggests that processing conditions might have specific effects dependent on protein source.
\nLegume proteins play a vital role in the formulation of a number of novel foods (such as sausages, bologna, meat analogues, cakes and soups) by formation and stabilization of emulsions. Meat analogues are foods which are made from nonmeat ingredients, structurally similar to meat and may have the same texture, flavor, appearance, and chemical characteristics [100]. Some of the traditional foods such as wheat gluten, rice, mushrooms, tofu and legumes when added with flavors mimic the finished a meat products such as chicken, beef, sausage etc. [100]. Soybean protein is an important meat analogue since it has meat like texture and provides a similar amino acid profile to meat proteins [100]. Tofu is a widely consumed meat analogue made from soy, which provides a good source of protein, calcium and, iron. In general, the market for meat analogues is large and includes vegetarians, vegans, and people who do not eat meat products because of religious or cultural practices.
\nSimilar to emulsions, foams also have two immiscible phases (aqueous and gas), and require an energy input to facilitate their formation. Foams are comprised of a dispersed gas phase within a continuous aqueous phase [96]. Proteins in solution adsorb to the gas-liquid interface in a similar manner as in emulsions to form a viscoelastic film surrounding the gas bubbles that helps resist rupturing and bubble fusion [63]. In contrast to emulsions, the major driving mechanism associated with foam instability is associated with Oswald ripening, which involves the diffusion of small gas bubbles through the continuous phase in order to become absorbed into a larger gas bubble [96]. Rupture of the viscoelastic film leads to drainage of the continuous liquid phase through the film matrix. Various food products are available which use protein as a stabilizer including meringues, whipped desserts, mousses and leavened bakery products [101]. Vose [69] reported that the foaming properties of faba bean and yellow pea isolates, prepared using UF, were higher than that of skim milk powder, wheat flour and soy protein isolates. A faba bean isolate was observed to have better foaming properties than pea protein isolate.
\nFoaming capacity (FC) refers to the volume of foam generated after homogenization of a certain amount of protein solution whereas foam stability (FS) refers to the ability to retain foam structure and resistance in the formation of serum layer as a function of time. In the study of Sathe and Salunkhe [102] on great northern bean (
Nowadays, there has been a growing interest by the food industry towards utilizing pulse proteins in novel products due to their nutritional value, availability, low cost, desired functional properties and beneficial health effects [3]. Pulse protein concentrates and isolates are being applied in many food products such as beverages, imitation milk, baby foods, bakery products, meat analogs, cereals, snack foods, bars, and nutrition supplements. Examples of some of the food applications of pulse proteins from literature offering opportunities for novel product development are presented in Table 1. Pulse proteins are also used in non-food applications such as microencapsulation of bioactive ingredients. Pulse proteins can serve as good encapsulating agents due to their amphiphilic nature, ability to stabilize oil-in-water emulsions and film forming abilities. Some of the current examples of pulse protein-based microcapsules include: alpha-tocopherol [103], polyunsaturated fatty acids-rich oil [104] and conjugated linoleic acid [105] encapsulated with pea protein, flaxseed oil encapsulated with chickpea or lentil protein [106],
Chickpea | \nPasta | \n5–15 | \nQuality characteristics of the cooked pasta were not affected by increasing protein content. | \n[109] | \n
Chickpea, faba bean, lentil, mung bean, smooth pea, pea, and winged bean | \nBean curd | \n2.3–3 | \nChickpea and faba beans had comparable textural properties to soybean. | \n[110] | \n
Lentil and white bean | \nCake | \n3 | \nLentil and white bean protein extracts tested were found to be suitable to replace soy and pea in bakery products. | \n[111] | \n
Pea protein | \nGluten-free bread | \n1–6 | \nPea protein addition improved rheological and structural properties of the dough. | \n[112] | \n
Lupin | \nBread | \n5–10 | \nLupin protein addition increased the dough development time, stability and the resistance to deformation and the extensibility of the dough. | \n[113] | \n
Lupin | \nFermented sausage | \n2 | \nProducts containing lupin protein showed no difference in firmness, appearance and color compared to control. | \n[114] | \n
Pea and sweet lupin (cross-linked) | \nSausage-like vegetarian substitute | \n9 | \nSensory profile and textural properties were overall accepted. | \n[115] | \n
Some examples of food applications of pulse proteins.
Application of pulse protein ingredients in food products is limited due to the formation of a green or beany off-flavor during storage [116]. The most potent odor-active volatiles have been identified in soy protein. One of the key off-flavors in soy protein is reported to be
Financial support for this work was provided by the Saskatchewan Ministry of Agriculture, the Western Grains Research Foundation, and the Saskatchewan Pulse Growers.
\nAdrenal gland consists of an outer cortex and inner medulla; the cortex is further subdivided into three distinct zones: the zona glomerulosa, the zona fasciculata, and the zona reticularis. Mineralocorticoids (aldosterone) secreted from the zona glomerulosa are essential for fluid and electrolyte balance and the renin-angiotensin-aldosterone system. The fasciculata secretes glucocorticoids (mainly cortisol). The zona reticularis produces steroid sex hormones called androgens. These hormones play an important role in maintaining the normal homeostasis of the body [1, 2, 3]. However, it is quite common to encounter disorders related to the hormones of these three layers. These disorders could be possibly due to adrenal cortical masses secondary to cortical hyperplasia. It is very infrequent to encounter metastatic lesions in the adrenal glands.
\nThis chapter mainly focuses on the pathology related to adrenal cortex which includes various forms of adrenocortical hyperplasia and benign and malignant neoplasms of the adrenal gland which lead to various hormonal imbalances encountered in clinical practice. Hormonal deficiency is due to inherited glandular or enzymatic disorder, destruction of pituitary gland by autoimmune disorders, infection, infarction, or others [4, 5]. The major disorders of the adrenal cortex are characterized by excessive or deficient secretion of each type of adrenocortical hormone.
\nThe lesions of the adrenal cortex could be functional as well as nonfunctional, which means that patients with these lesions may exhibit clinical symptoms that are due to hypersecretion of hormones released. Usually cortical hyperplasia and adenomas are nonfunctioning. The functional syndromes associated with pathology of adrenal cortex are hypercortisolism (Cushing’s syndrome), adrenal insufficiency (Addison’s disease), hyperaldosteronism, and androgen excess (adrenogenital syndrome) [4, 5, 6, 7, 8, 9].
\nAdrenal hyperplasia is characterized as a smooth, diffuse, bilateral enlargement of the adrenal glands, wherein the glands retain their adreniform shape. Hyperplasia can be either macronodular or micronodular. They are commonly unilateral; however bilateral cases are also observed [7, 8]. Broadly adrenal cortical hyperplasia can be grouped into three main categories: ACTH-dependent (adrenocorticotropic hormone), ACTH-independent, and congenital adrenal hyperplasia (CAH). Cushing’s syndrome is one of the common functional manifestations of adrenal gland hyperplasia and therefore is discussed first [8, 10, 11].
\nIt is a syndrome which encompasses various clinical features due to chronic excess of glucocorticoids. The incidence is nearly 1–2 per 100,000 population per year. Harvey Cushing was the first to observe pituitary adenomas associated with hypercortisolism in 1932 [10, 11, 12, 13]. Cushing’s syndrome, caused by prolonged exposure of tissues to high levels of cortisol, presents as constellation of symptoms including central obesity, muscle fatigue/atrophy, hirsutism, infertility, osteoporosis, moon facies, dorsocervical and supraclavicular fat pads, and wide purple striae [8, 10, 12]. The syndrome may be ACTH-dependent or ACTH-independent. A fair number of cases attributed to iatrogenic causes are also identified. Most of the cases of Cushing’s syndrome are due to ACTH hypersecretion from the anterior pituitary and are associated with pituitary cortical adenoma. Majority of the cases, about 80–90%, show diffuse hyperplasia of the adrenal cortex [9, 10]. Nearly 15% of cases do present with ectopic ACTH secretion associated with small cell lung carcinoma or bronchial carcinoid. Thymic carcinoids, pancreatic islet cell tumor, pheochromocytomas, and medullary carcinoma of thyroid form minor group of tumors associated with ectopic ACTH secretion [12]. In a study by Ejaz et al., lung tumors constituted 44.4% of all cases of neoplasm-related ectopic ACTH secretion causing Cushing’s syndrome [14]. Clinically patients with Cushing’s syndrome present with diastolic hypertension, hypokalemia, and edema. Hypogonadism and amenorrhea can also be seen in these patients which are attributed to suppression of gonadotropin secretion secondary to excess glucocorticoid secretion [10, 11, 12, 13, 14].
\nCushing disease, resulting from a pituitary corticotropic adenoma, and rarely carcinoma, makes up to 80–85% of endogenous Cushing’s syndrome cases [8, 10, 15].
\nA two-stage test is usually recommended in a patient to rule out Cushing’s syndrome [8, 10, 15, 16, 17]:
The first group of tests are to screen for the evidence of hypercortisolism. These comprise urine cortisol excretion and low-dose dexamethasone suppression test.
The second group of tests comprise of the diagnostic tests which help to determine the cause of excessive production of cortisol. These are:
Plasma ACTH measurement: Low plasma ACTH level suggests an adrenal cause of the disease; however normal/high [ACTH] level suggests ectopic ACTH secretion or hypersecretion of ACTH from pituitary (Cushing’s disease).
High-dose dexamethasone suppression test: In this test the patient is administered with 2 mg of dexamethasone, 6 hourly for 48 h, following which plasma cortisol levels are measured. In the case of ectopic ACTH secretion or adrenal limited hypercortisolism, there is a failure of suppression of cortisol secretion. Also it is important to remember that cortisol is not suppressed with either low- or high-dose dexamethasone suppression in adrenal hyperplasia associated with ectopic ACTH production [18].
This investigation is used primarily for the diagnosis of hypercortisolism due to Cushing’s syndrome, and reference ranges for this test with respect to age are 1.4–20 μg/24 h (3–8 years), 2.6–37 μg/24 h (9–12 years), 4–56 μg/24 h (13–17 years), and 3.5–45 μg/24 h in individuals ≥18 years of age. A 24-h urine sample with boric acid (10 g) as preservative is advisable for performing this analysis [10, 17, 18, 19].
\nNearly 15–20% of Cushing’s syndrome are associated with ACTH-independent hypercortisolism and are secondary to a functioning adenoma or carcinoma. Diagnosis of ACTH-independent Cushing’s syndrome includes clinical features of hypercortisolism, absence of serum cortisol diurnal rhythm, elevated late-night cortisol levels, and incomplete suppression of cortisol production with low-dose dexamethasone suppression test [10, 17, 18, 19, 20].
\nAdrenal glands from patients with Cushing’s syndrome/hyperplasia appear variably enlarged in size and weigh approximately 6–12 g. The cortical width is widened as compared to the reticulosa. The zona fasciculata usually shows nodular hyperplasia. Nearly 10–20% of the patients reveal bilateral nodular hyperplasia, and up to 30% of patients may have normal adrenal morphology [2, 20, 21].
\nPrimary pigmented nodular adrenocortical disease is a rare cause of childhood Cushing’s disease having female preponderance, whereas Cushing’s disease is common in prepubertal males [20, 21, 22]. It is the main endocrine manifestation of Carney complex (a multiple neoplasia syndrome caused by mutation in PRKAR1A gene) [23]. This is an autosomal dominant syndrome and is characterized by cutaneous lentigines, myxoma, schwannomas, and endocrinopathy [11, 23]. It was first described by Aidan Carney and co-workers in 1985. Almost 25–30% of patients with Carney complex have ACTH-independent Cushing’s syndrome. Cutaneous pigmentation is the commonest manifestation of the disease [24]. Lentigines are seen in most patients, and this characteristic manifestation can be used to make the definitive diagnosis. The name is derived from the macroscopic appearance of the adrenals that show characteristic small pigmented micronodules in the adrenal cortex. The disease typically involves bilateral adrenal glands. Grossly the adrenal glands may have variable size. The most characteristic finding is the presence of multiple brown-black pigmented cortical nodules that measure 1 mm to 3 cm in diameter. The adjacent cortical tissue invariable shows atrophy. These pigmented nodules may extend into corticomedullary junction or peri-adrenal fat [9, 11, 24].
\nOn microscopy these tumors appear as sharply circumscribed, unencapsulated tumors composed of large eosinophilic lipid-poor cells similar to the zona reticularis arranged predominantly in trabecular growth pattern. However the nucleus appears enlarged, with a variable degree of pleomorphism and prominent nucleoli. There is prominent lipofuscin deposit. Lipid-rich fasciculata-like cells are also seen invariably. The tumor may have focal areas of necrosis, mitotic activity, myelolipomatous change, and lymphocytic infiltrates [9, 11, 24].
\n(Synonyms: ACTH-independent massive bilateral adrenal disease, massive macronodular hyperplasia, giant macronodular adrenal hyperplasia, macronodular adrenal hyperplasia, macronodular hyperplasia).
\nAIMAH is a disorder characterized by bilateral adrenocortical nodules, associated with ACTH-independent hypercortisolism, without any clinical features of pigmented nodular adrenocortical disease and histological features consistent with atrophic internodular cortex [25]. It is a rare cause of ACTH-independent Cushing’s syndrome with slightly male preponderance. The patients present usually at later age (average: 48 years) [24, 25, 26]. In few patients with AIMAH, ectopic expression and/or increased sensitivity to gastric inhibitory peptide, vasopressin receptors, and beta-adrenergic receptors is also seen [25].
\nGrossly these lesions are characterized by nodules in the adrenal cortex, ranging from 1 to 4.2 cm. The adrenal gland weighs approximately 16.7–218 g. The adrenal gland may have a large mass of cortical tissue and multiple bilateral nodules measuring up to 5 cm. Combined adrenal gland weight of more than 300 g has also been noted (normal range: 8–12 g). Histology demonstrates large, yellow macronodules comprising of small cells with eosinophilic cytoplasm. Bilateral adrenalectomy and well-controlled glucocorticoid replacement is the most accepted treatment modality [2, 3, 9, 25, 26].
\nCAH is an autosomal recessive disorder characterized by impaired steroidogenesis finally leading to mineralocorticoid and cortisol deficiency secondary to reduced activity of enzymes required for cortisol biosynthesis in the adrenal cortex. These patients usually present during the perinatal period with ambiguous genitalia in females and salt wasting in males. The milder forms of disease may present later with virilization at puberty or even as irregular menses. Most of the cases (nearly 95%) are attributed to deficiency of the 21-hydroxylase enzyme [27, 28].
\nAbnormal growth and development, adverse effects on bone and the cardiovascular system, and infertility are few long-term effects seen in these patients. These patients are usually managed by reducing glucocorticoid exposure and improving excess hormone control [29, 30].
\nCongenital adrenal hyperplasia can be of four forms [8, 9, 10, 27, 28, 29, 30]:
Congenital adrenal hyperplasia: classical 21-hydroxylase deficiency
Simple virilizing congenital adrenal hyperplasia
Non-classic or late onset form of congenital adrenal hyperplasia
Congenital adrenal hyperplasia with steroidogenic acute regulatory (StAR) mutation
This form is the most common form of CAH, occurring due to 21-hydroxylase (21-OH) deficiency, accounting for almost 90% of the cases. It occurs with the frequency of 1:12000 to 1:15000 births, and nearly 75% of patients with classic 21-OH deficiency also have defect in synthesizing aldosterone. These patients die in the neonatal period due to shock from salt wasting. CAH is associated with multiple tumors like testicular tumors arising from ectopic adrenal cortical rests, testicular and ovarian Leydig cell tumor, and ovarian tumor of the adrenogenital syndrome as ovarian and paraovarian brown masses. Grossly the adrenal gland is marked enlarged having a cerebriform appearance. On cut surface the gland appears tan-brown in color. Under the microscope the adrenal gland reveals diffuse cortical hyperplasia. The cells are compactly arranged like how they are in the zona reticularis [2, 27, 28, 29, 30].
\n\nTable 1 illustrates various syndromes associated with adrenocortical lesions [31].
\nMultiple endocrine neoplasia (MEN) type 1 | \nAdrenocortical lesions are seen in nearly 36–41% of individuals with MEN type I syndrome, the commonest being bilateral nonfunctioning adrenal cortical hyperplasia or adenoma; adrenocortical carcinoma is exceedingly rare. The pathogenesis of these lesions is proposed to be due to influence of locally secreted insulin and insulin-like growth factors and not due to menin gene mutations | \n
Carney complex | \nThis syndrome encompasses multiple endocrine hyperplasia, with tumors of two or more endocrine glands, including primary pigmented adrenocortical disease (PPNAD), GH- and prolactin-producing pituitary adenomas, testicular neoplasms, thyroid adenoma or carcinoma, and ovarian cysts. This autosomal dominant syndrome is mapped to two genetic loci, one present on chromosome 2p16 and another locus at chromosome 17q22–24 encoding the PRKARIA gene [82] | \n
Beckwith-Wiedemann syndrome | \nThis syndrome is characterized by gigantism, ear lobe pits and/or creases, macroglossia, and defects in the abdominal wall and is associated with chromosomal aberration of 11p15.5. These individuals are at higher risk of developing benign or malignant tumors of multiple organs, commonest being Wilms’ tumor, rhabdomyosarcoma, hepatoblastoma, and adrenal carcinoma | \n
Li-Fraumeni syndrome | \nRare, autosomal, dominant familial syndrome with high incidence of multiple malignancies at an early age, including breast cancer, leukemias, soft tissue sarcomas, gliomas, laryngeal carcinoma, lung cancer, and adrenocortical carcinoma. The pathogenesis of this syndrome is attributed to germ-line point mutations in the p53 tumor suppressor gene (chromosome 17p13) in pediatric age group with adrenocortical carcinoma and deletion of short arm of chromosome 17 (17p) | \n
Familial adenomatous polyposis | \nThis disease is an autosomal dominant disorder, characterized by the presence of multiple adenomatous polyps of the colon and rectum. The gene [adenomatous polyposis coli gene] is located at 5q21. These patients are at high risk to develop adrenocortical adenomas and carcinomas, the incidence being 7.4% higher than 0.6–3.4% reported for normal population | \n
Hereditary adrenocortical tumor syndromes.
This disease was defined first by Conn in 1955, with a prevalence of 5–13%. This syndrome is characterized by an inappropriate increase in production of aldosterone which is relatively independent from the renin-angiotensin mechanism and is non-suppressible by sodium loading. This is one of the leading causes of secondary hypertension in hypertensive adults [32]. Patients with primary aldosteronism may exhibit adrenal cortical hyperplasia or adenoma in 30% of sporadic cases, and nearly 1% of sporadic cases may have adrenocortical carcinoma [33]. Clinically these patients present most commonly as normokalemic hypertension, and severe cases do show hypokalemia (Table 2).
\nS. no. | \nTests | \nProcedure | \nInterpretation | \n
---|---|---|---|
1. | \nPostural testing | \n\n
| \n\n
| \n
2. | \n18-Hydroxycortico-sterone level | \n\n | \n
| \n
3. | \nDexamethasone suppression test: used for patients with glucocorticoid-remediable aldosteronism (GRA) as well as for those patients who do not have GRA | \n\n
| \n\n
| \n
4. | \n18-Oxocortisol and 18-hydroxycortisol (>100 nmol/day) | \n\n | \n
| \n
5. | \nAdrenal venous sampling | \n\n
| \n\n
| \n
The aldosterone-to-renin ratio (ARR), a gold standard method to differentiate primary from secondary causes of hyperaldosteronism, is defined as the ratio of plasma aldosterone (expressed in ng/dL) to plasma renin activity (PRA, expressed in ng/mL/h). The cutoff value of ARR is 30 ng/dL per/mL per hour (or 750 pmol/L per ng/mL per hour). The principle behind this test is that as aldosterone secretion rises, PRA in ex vivo testing falls due to sodium retention. This negative feedback response should occur when the aldosterone levels are supraphysiologic for that individual patient, and PRA may fall well before plasma aldosterone is clearly increased. Primary aldosteronism is suspected if the ARR is >30 ng/dL per mL per hour. This method is also helpful in differentiating aldosterone-producing adenoma from bilateral adrenal hyperplasia [34].
\nFamilial primary aldosteronism is mainly of three types, all of which are inherited in an autosomal dominant manner [8, 10, 32, 33]:
Familial hyperaldosteronism type I (glucocorticoid-remediable aldosteronism): accounts for less than 1% of cases. This disorder is caused by a recombination between the CYP11B2 and CYP11B1 genes.
Familial hyperaldosteronism type II: nearly 3–5% cases of primary aldosteronism belong to this category and are attributed to 7p22. This disorder still lacks a specific gene.
Grossly, the adrenal gland in cases of idiopathic hyperaldosteronism is rather unremarkable or may exhibit slight enlargement. The enlargement could be due to the presence of micronodules or macronodules. Usually, adenomas are unilateral and solitary. However few cases of bilateral disease have also been reported. These adenomas are mostly intra-adrenal and do not show a capsule. Few cases may reveal the presence of a true capsule or a pseudocapsule [2, 3, 35]. The cut surface of this tumor appears homogenous and golden yellow and is classically described as “canary yellow” [2]. Focal areas of hemorrhage or cystic changes can be present in few cases [35].
\nMicroscopically these adenomas appear encapsulated by compressed fibrous rim or fibrous “pseudocapsule.” The tumor cells are most commonly arranged in the form of nests or in alveolar pattern. Occasionally these cells may be arranged in short cords and trabeculae. Few cases may show mixed histological patterns. The tumor is composed of four different varieties of cells which may be present in varying proportions. More commonly seen are clear cells, having optically clear cytoplasm and centrally placed nuclei similar to those of the zona fasciculata cells; then there may be cells resembling to the zona glomerulosa or zona reticularis which appear small with compact eosinophilic cytoplasm. Then we have cells that are designated as “hybrid” cells. These hybrid cells have cytological features resembling both the zona fasciculata and glomerulosa (Figure 1). The uninvolved portion of adrenal cortex reveals atrophy. This atrophy is secondary to the negative feedback suppression effect of the hypothalamic–pituitary axis. Spironolactone bodies which appear as small, intracytoplasmic eosinophilic inclusions, round to oval, measuring 2–12 mm, are often encountered in adrenal cortical adenoma in patients on spironolactone treatment. These inclusions are delineated from the surrounding cytoplasm by a small, clear halo [2, 7, 9, 35].
\nSection from a 22-year-old patient, presented with a 2 cm mass in the right adrenal gland. Histology reveals adenoma with clusters of cells with enlarged lipid-rich cytoplasm (hematoxylin and eosin stain, ×200).
Adrenal insufficiency was first described by Thomas Addison in 1855 and was popularly known as Addison’s disease. This disorder can occur either due to failure of the adrenal gland or impairment of the hypothalamic–pituitary axis [36]. Clinically this syndrome is characterized by weakness, fatigue, anorexia, abdominal pain, weight loss, orthostatic hypotension, and salt craving. Characteristic hyperpigmentation is seen in patients with primary adrenal failure [37]. This disease has been reported in three forms [7, 9, 37]:
Primary disease also known as Addison’s disease, a result of destruction of 90% or more of the adrenocortical gland or conditions that involve decreased production of adrenal steroids, resulting in subnormal synthesis of aldosterone, cortisol, and androgens.
Secondary and tertiary insufficiency occurs due to deficiency of secretion of corticotropin (ACTH) and corticotropin-releasing hormone (CRH), respectively.
Most of the cases (80–90%) of primary adrenal insufficiency are caused by autoimmune adrenalitis. Most of the cases fall under the autoimmune polyendocrinopathy syndrome (60%) [1, 2, 19, 32, 33, 34]. Cell-mediated immune mechanisms are implicated in pathogenesis. Various antibodies have been identified, antibodies against steroid 21-hydroxylase (85% cases) and autoantigens like steroid 17α-hydroxylase and cholesterol side-chain cleavage enzyme. Other associations include cytotoxic T-lymphocyte antigen 4, protein tyrosine-phosphatase non-receptor type 22, and the MHC class II transactivator. Secondary adrenal insufficiency results from any process that involves the pituitary gland and interferes with corticotropin secretion. Tertiary adrenal insufficiency results from processes that involve the hypothalamus and interfere with secretion of corticotropin-releasing hormone, arginine vasopressin, or both. Suppression of the hypothalamic–pituitary–adrenal (HPA) axis by long-term administration of high doses of glucocorticoids is the most common cause [9, 36, 38].
\nThe patients of AI usually present with hyponatremia and hyperkalemia due to decreased aldosterone. Hypoglycemia also occurs due to cortisol. Decreased levels of this hormone also lead to an increase in lymphocytes and eosinophils, as a result of decreased immune-modulatory action of hydrocortisone. Measurement of baseline cortisol levels between 8:00 and 9:00 AM is the test used to diagnose AI. A serum cortisol level of value less than 5 μg/mL favors diagnosis of AI. Stimulation test with cosyntropin which stimulates the cortex helps in differentiating primary and secondary AI. In this test 250 μg of cosyntropin is administered intramuscularly or intravenously, and serum cortisol is measured 30 min after infusion. Serum cortisol value of ≥18 μg/dL indicates a normal response. A cortisol peak <18 μg/dL confirms the diagnosis of AI. Serum cortisol level ≥ 100 pg/mL confirms the diagnosis of Addison’s syndrome. Serum cortisol value of <10 pg/mL confirms diagnosis of secondary AI [35, 36, 37, 38, 39].
\nACC is a highly aggressive and a very rare malignancy. The incidence of this malignancy is approximately 0.72 per million cases per year according to the study by Surveillance, Epidemiology, and End Results (SEER) database [39]. The median age of diagnosis is usually fifth to sixth decade; however the German ACC Registry reports a median age at diagnosis of 46 years with a predilection for the female gender (female to male ratio: 1.5–2.5:1) [35, 38, 39].
\nAdrenocortical carcinomas (ACC) are rare tumors with an estimated annual inci¬dence of 0.7–2 cases by year and a global prevalence of 4–12 cases per million with a 5-year survival rate inferior to 35% in most of the studies published.
\nVarious mutations have been implicated in association with ACC. Most common are germ-line
In ACCs, chromosomal gains were frequently observed in regions 4q, 4p16, 5p15, 5q12–13, 5q32-qter, 9q34, 12q13, 12q24, and 19p, and chromosomal losses were observed at 1p, 2q, 11q 17p, 22p, and 22q. Microsatellite studies identified frequent allelic losses in regions 17p13, 11q15, and 2p16 (85%, 92%, and 90% of samples, respectively) [41, 42, 43].
\nSignaling pathways involved in adrenal malignant carcinogenesis [44, 45, 46, 47]:
p53 signaling pathway
Wnt/beta-catenin signaling pathway
Insulin growth factor II (IGF-II) locus
Protein p53, “guardian of genome,” is located at the 17p13 locus, and alterations in this gene have been noticed in various cancers including adrenocortical carcinoma, more so at the somatic level. p53 gene mediates cellular response to stress, and adult sporadic ACCs usually reveal loss of heterozygosity at this locus (nearly 85%) [48]. Stress leads to inhibition of degradation of p53 by E3 ubiquitin ligase MDM2, leading to inhibition of cell cycle arrest in response to DNA damage as well as apoptosis. These tumors tend to be larger and present at more advanced stage of tumor progression with shorter disease-free survival. Various genetic alterations have been reported in patients with adrenal cortex carcinoma like loss of
Wnt family consists of highly conserved growth factors having similar amino acid sequences and is responsible for various developmental and homeostatic processes [4, 44, 46, 47, 48, 51]. A prevalence of 39 and 84% has been reported by various authors on immunohistochemistry for β-catenin. The Wnt receptor is composed of members of the frizzled family and low-density lipoprotein receptor-related protein. β-Catenin accumulates in the cytoplasm and gets translocated into the nucleus and then binds with Wnt receptor leading to inhibition of the axin-adenomatous polyposis coli—glycogen synthase kinase 3β (GSK-3) complex. This blocks the phosphorylation of β-catenin, leading to increased accumulation of β-catenin in the cytoplasm which further translocates into the nucleus. Interaction between β-catenin with the T cell-specific transcription factor/lymphoid enhancer-binding factor-1 family of transcription factors occurs in the nucleus, thus regulating transcription of Wnt target genes. If Wnt stimulation of GSK-3 phosphorylating β-catenin does not occur, degradation by proteosomes occurs following ubiquitylation of this receptor. Wnt pathway has been implicated in patients with familial adenomatous polyposis and in the development of colorectal carcinomas as well as ACCs. Wnt/beta-catenin pathway can be activated in both benign and malignant tumors by
Nearly 85–90% of the adult adrenocortical carcinomas are attributed to
ACC are the tumors characterized by adrenocortical hormone production in nearly 45–70% of patients. Hypercortisolism is the most common presentation of patients presenting with hormone excess leading to a plethora of symptoms like diabetes mellitus, hypertension, hypokalemia, muscle weakness/atrophy, and osteoporosis [40, 41, 42, 43]. Excess of androgens which comprise nearly 40–60% of hormone-secreting ACCs can cause rapid-onset male pattern baldness, hirsutism, virilization, and menstrual irregularities in women. Estrogen production occurs in 1–3% of male ACC patients, causing gynecomastia and testicular atrophy (through suppression of the gonadal axis). In the evaluation of adrenal tumors, regardless of size, androgen or estrogen production should always raise the suspicion of a malignant tumor [44].
\nACCs are generally large tumors, measuring on average 10–13 cm. Only a minority of tumors are less than 6 cm (9–14%), with only 3% presenting as lesions less than 4 cm [2, 3, 6, 9, 35].
\nMicroscopically these tumors have variable architectural patterns. The tumor cells are arranged in a trabecular, alveolar, or diffuse pattern. Occasionally mixed patterns are also noted. Some areas may also exhibit free-floating tumor cells forming balls [2, 3, 6, 9, 35] (Figure 2A,B).
\n(A) Section from a 45-year-old patient, presented with a 13 cm mass in the left adrenal gland. Histology reveals clusters of cells having anisocytosis and enlarged nuclei with prominent nucleoli. The fair number of darkly stained atypical mitosis is also evident (hematoxylin and eosin stain, ×200). (B) Histology reveals clusters of cells having anisocytosis and enlarged nuclei with prominent nucleoli. The cells are separated by myxoid stroma. The fair number of darkly stained atypical mitosis is also evident (hematoxylin and eosin stain, ×400).
Histologic criteria for malignancy in adrenal cortical tumors are assessed as follows [2, 3, 6, 9, 35, 43, 44, 45]:
High nuclear grade (grades III and IV according to the criteria of Fuhrman)
Mitotic rate > 5 per 50 HPF (10 HPF in each of the five areas that are most suspicious to be malignant)
Atypical mitotic figures (abnormal distribution of chromosomes or an excessive number of mitotic spindles)
Eosinophilic tumor cell cytoplasm (>75% of tumor cells or <25% clear vacuolated cells resembling the normal fasciculata)
Diffuse architecture (>33% of the tumor forming patternless sheets of cells)
Necrosis (occurring in confluent nests of cells)
Venous invasion (endothelial-lined vessel with smooth muscle as a component of the wall)
Sinusoidal invasion (endothelial-lined vessel in the adrenal with little supportive tissue)
Capsular invasion (nests or cords of tumor extended into or through the capsule with the corresponding stromal reaction)
Weiss et al. proposed a scoring system which was further modified and is widely accepted to report adrenal cortex carcinomas. These criteria include [35, 43, 44, 45, 54] (Table 3).
\nCriteria | \nScore | \n|
---|---|---|
Absent | \nPresent | \n|
Mitotic rate (≥6 mitotic figures/50 HPF) | \n0 | \n1 | \n
Cytoplasm characteristics [clear vs. compact (compact >75% of cells)] | \n0 | \n1 | \n
Abnormal mitoses | \n0 | \n1 | \n
Tumor necrosis | \n0 | \n1 | \n
Invasion of the capsule | \n0 | \n1 | \n
Weiss scoring for adrenocortical carcinoma.
Overall score = 2 × mitotic rate + 2 × cytoplasm + abnormal mitoses + necrosis + capsular invasion.
Adrenal cortical adenoma: total score < 3.
\nAdrenal cortical carcinoma: total score ≥ 3.
\nThus if the modified Weiss score is ≥ 3, then a diagnosis of adrenocortical carcinoma is given.
\nHowever there are other features that may help in differentiating between adenomas and carcinoma. These are listed in Table 4 [35, 43, 44, 45].
\nCharacteristics | \nAdrenocortical adenoma | \nAdrenocortical carcinoma | \n
---|---|---|
Weight | \nUsually less than 100 g | \nMore than 100 g | \n
Hemorrhage | \n+/− | \n+++ | \n
Necrosis | \n+/− | \n+++ | \n
Cystic degeneration | \n+/− | \n+++ | \n
MIB-1 | \nNegative | \nPositive | \n
Vimentin | \nNegative | \nPositive | \n
Inhibin | \nPositive | \nPositive | \n
Melanin | \nPositive | \nPositive | \n
Calretinin | \nPositive | \nPositive | \n
BCL-2 | \nPositive | \nPositive | \n
C-kit | \nNegative | \nPositive | \n
EMA | \nNegative | \nNegative | \n
Cytokeratin | \nNegative | \nNegative | \n
NSE | \n— | \nPositive | \n
Synaptophysin | \n— | \nPositive | \n
Chromogranin | \n— | \nNegative | \n
Differentiating features between adrenocortical adenoma and adrenocortical carcinoma.
Adrenal glands have an essential role in maintaining the normal hemostasis. However the three layers of adrenal cortex, the zona glomerulosa, zona fasciculata, and zona reticularis, secrete essential hormones that are involved in fluid and electrolyte balance, regulating renin-angiotensin-aldosterone system, production of glucocorticoids, and synthesis of sex hormones. These hormones play an important role in maintaining the normal homeostasis of the body. Various lesions in adrenal, benign as well as malignant, are known to cause disturbances in the internal milieu of our body. It is therefore essential to know the physiology as well as various types of disorders that can be encountered so as to define proper management of the patient. Also lesions of adrenal gland are attributed to various genetic abnormalities, knowledge of which can be implicated to study the pathogenesis and in applying this knowledge in prognosis as well as developing targeted therapy for these lesions.
\nIntechOpen Compacts provide a mid-length publishing format which bridges the gap between journal articles, book chapters and monographs, and cover content across all scientific disciplines. Compacts are the preferred publishing option for brief research reports on new topics, in-depth case studies, dissertations, or essays exploring new ideas, issues or broader topics on the research subject.
",metaTitle:"IntechOpen Compacts",metaDescription:"IntechOpen Compacts present a mid-length publishing format which bridges the gap between journal articles, book chapters, and monographs and covers content across all scientific disciplines.",metaKeywords:null,canonicalURL:"/page/compacts",contentRaw:'[{"type":"htmlEditorComponent","content":"Without sacrificing the quality of carefully edited and produced peer-reviewed content, Compacts are published as part of IntechOpen’s book collection but on a faster schedule, typically 4-6 weeks after acceptance. With an average of 132,000 visitors per week, publishing in Compacts not only guarantees high visibility but also facilitates international content sharing. As a fully Open Access publisher, the utilization of a CC BY NC 4.0 license means that other researchers will never have to pay permission fees and can adapt, use, and further build upon the material published in Compacts, eliminating any barriers to the further development of scientific research.
\\n\\nCOMPACTS-SHORT FORM MONOGRAPH
\\n\\nCOST
\\n\\n4,000 GBP Compacts Monograph - Short Form
\\n\\nThe final price will depend on the volume of the publication and includes project management, editorial and peer-review services, technical editing, language copyediting, cover design, book layout, book promotion and ISBN assignment.
\\n\\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate applicable in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\\n\\nOptional Services
\\n\\nIntechOpen has collaborated with Enago, through its sister company, Ulatus – one of the world’s leading providers of book translation services. The services are designed to convey the essence of your work seamlessly to readers from across the globe in their own language. Enago’s expert translators incorporate cultural nuances in translations to make the content relevant for local audiences while retaining the original meaning and style. With a high degree of linguistic and subject expertise, Enago translators are equipped to handle all complex and multiple overlapping themes encompassed in a single book to deliver a superior quality of translation.
\\n\\nIntechOpen Authors that wish to use this service will receive a 20% discount on all translation work. For more information or a quote, please visit: https://www.enago.com/intech.
\\n\\nFUNDING
\\n\\nWe feel that financial barriers should never prevent researchers from publishing their research. Please consult our Open Access Funding page to explore funding opportunities and learn more about how you can finance your IntechOpen publication.
\\n\\nBENEFITS
\\n\\nPUBLISHING PROCESS STEPS
\\n\\nSee a complete overview and description of the steps involved in the publishing process here.
\\n\\nSEND YOUR PROPOSAL
\\n\\nIf you are interested in publishing your book with IntechOpen, please submit your book proposal by completing the Publishing Proposal Form.
\\n\\nNot sure if this is the right option for you? Please refer back to the main Publish with IntechOpen page or feel free to contact us directly at book.department@intechopen.com
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Without sacrificing the quality of carefully edited and produced peer-reviewed content, Compacts are published as part of IntechOpen’s book collection but on a faster schedule, typically 4-6 weeks after acceptance. With an average of 132,000 visitors per week, publishing in Compacts not only guarantees high visibility but also facilitates international content sharing. As a fully Open Access publisher, the utilization of a CC BY NC 4.0 license means that other researchers will never have to pay permission fees and can adapt, use, and further build upon the material published in Compacts, eliminating any barriers to the further development of scientific research.
\n\nCOMPACTS-SHORT FORM MONOGRAPH
\n\nCOST
\n\n4,000 GBP Compacts Monograph - Short Form
\n\nThe final price will depend on the volume of the publication and includes project management, editorial and peer-review services, technical editing, language copyediting, cover design, book layout, book promotion and ISBN assignment.
\n\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate applicable in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\n\nOptional Services
\n\nIntechOpen has collaborated with Enago, through its sister company, Ulatus – one of the world’s leading providers of book translation services. The services are designed to convey the essence of your work seamlessly to readers from across the globe in their own language. Enago’s expert translators incorporate cultural nuances in translations to make the content relevant for local audiences while retaining the original meaning and style. With a high degree of linguistic and subject expertise, Enago translators are equipped to handle all complex and multiple overlapping themes encompassed in a single book to deliver a superior quality of translation.
\n\nIntechOpen Authors that wish to use this service will receive a 20% discount on all translation work. For more information or a quote, please visit: https://www.enago.com/intech.
\n\nFUNDING
\n\nWe feel that financial barriers should never prevent researchers from publishing their research. Please consult our Open Access Funding page to explore funding opportunities and learn more about how you can finance your IntechOpen publication.
\n\nBENEFITS
\n\nPUBLISHING PROCESS STEPS
\n\nSee a complete overview and description of the steps involved in the publishing process here.
\n\nSEND YOUR PROPOSAL
\n\nIf you are interested in publishing your book with IntechOpen, please submit your book proposal by completing the Publishing Proposal Form.
\n\nNot sure if this is the right option for you? Please refer back to the main Publish with IntechOpen page or feel free to contact us directly at book.department@intechopen.com
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6581},{group:"region",caption:"Middle and South America",value:2,count:5888},{group:"region",caption:"Africa",value:3,count:2381},{group:"region",caption:"Asia",value:4,count:12507},{group:"region",caption:"Australia and Oceania",value:5,count:1006},{group:"region",caption:"Europe",value:6,count:17528}],offset:12,limit:12,total:132501},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"8,9,10,11,14,15,20,22,24"},books:[{type:"book",id:"11929",title:"Drilling Engineering and Technology - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"969d1c6315b04584c2f011e03dad69c2",slug:null,bookSignature:"Dr. Mansoor Zoveidavianpoor",coverURL:"https://cdn.intechopen.com/books/images_new/11929.jpg",editedByType:null,editors:[{id:"92105",title:"Dr.",name:"Mansoor",surname:"Zoveidavianpoor",slug:"mansoor-zoveidavianpoor",fullName:"Mansoor Zoveidavianpoor"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11934",title:"Hydrogen Energy - New Insights",subtitle:null,isOpenForSubmission:!0,hash:"360fe5dabd12a1f91a5658a5fe3eff66",slug:null,bookSignature:"Associate Prof. Murat Eyvaz and Dr. Ahmed Albahnasawi",coverURL:"https://cdn.intechopen.com/books/images_new/11934.jpg",editedByType:null,editors:[{id:"170083",title:"Associate Prof.",name:"Murat",surname:"Eyvaz",slug:"murat-eyvaz",fullName:"Murat Eyvaz"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11551",title:"Blockchain",subtitle:null,isOpenForSubmission:!0,hash:"26f3d47bfbfd96e25e5b46001876cc48",slug:null,bookSignature:"Prof. Vardan Mkrttchian",coverURL:"https://cdn.intechopen.com/books/images_new/11551.jpg",editedByType:null,editors:[{id:"333134",title:"Prof.",name:"Vardan",surname:"Mkrttchian",slug:"vardan-mkrttchian",fullName:"Vardan Mkrttchian"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11555",title:"Ubiquitous and Pervasive Computing - New Trends and Opportunities",subtitle:null,isOpenForSubmission:!0,hash:"42b6f15e5d9044c3abd00c231efec806",slug:null,bookSignature:"Prof. Rodrigo da Rosa Righi",coverURL:"https://cdn.intechopen.com/books/images_new/11555.jpg",editedByType:null,editors:[{id:"69889",title:"Prof.",name:"Rodrigo",surname:"da Rosa Righi",slug:"rodrigo-da-rosa-righi",fullName:"Rodrigo da Rosa Righi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11506",title:"Antenna Arrays",subtitle:null,isOpenForSubmission:!0,hash:"1b378e33d6f6e73721ee0dacbbb89aa1",slug:null,bookSignature:"Prof. Hussain Al-Rizzo, Dr. Nijas Kunju and Dr. Aldebaro Klautau",coverURL:"https://cdn.intechopen.com/books/images_new/11506.jpg",editedByType:null,editors:[{id:"153384",title:"Prof.",name:"Hussain",surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11458",title:"Human-Robot Interaction - Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"2003e3388833e911f610e0cd9788a5e7",slug:null,bookSignature:"Dr. Ramana Vinjamuri",coverURL:"https://cdn.intechopen.com/books/images_new/11458.jpg",editedByType:null,editors:[{id:"196746",title:"Dr.",name:"Ramana",surname:"Vinjamuri",slug:"ramana-vinjamuri",fullName:"Ramana Vinjamuri"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11561",title:"Zeolite From Wastes - New Perspectives on Innovative Resources and Their Valorization Process",subtitle:null,isOpenForSubmission:!0,hash:"3ed0dfd842de9cd1143212415903e6ad",slug:null,bookSignature:"Dr. Claudia Belviso",coverURL:"https://cdn.intechopen.com/books/images_new/11561.jpg",editedByType:null,editors:[{id:"61457",title:"Dr.",name:"Claudia",surname:"Belviso",slug:"claudia-belviso",fullName:"Claudia Belviso"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11470",title:"Graphene - Recent Advances, Future Perspective and Applied Applications",subtitle:null,isOpenForSubmission:!0,hash:"409e022e3baf48795e816576a6ee66e3",slug:null,bookSignature:"Dr. Mujtaba Ikram, Dr. Asghari Maqsood and Dr. Aneeqa Bashir",coverURL:"https://cdn.intechopen.com/books/images_new/11470.jpg",editedByType:null,editors:[{id:"286820",title:"Dr.",name:"Mujtaba",surname:"Ikram",slug:"mujtaba-ikram",fullName:"Mujtaba Ikram"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11519",title:"Vibration Monitoring and Analysis - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"f0d2d82a5c1a49020abf39dc8aabd89d",slug:null,bookSignature:"Dr.Ing. Louay Yousuf",coverURL:"https://cdn.intechopen.com/books/images_new/11519.jpg",editedByType:null,editors:[{id:"322417",title:"Dr.Ing.",name:"Louay",surname:"Yousuf",slug:"louay-yousuf",fullName:"Louay Yousuf"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11445",title:"Multi-Agent Technologies and Machine Learning",subtitle:null,isOpenForSubmission:!0,hash:"d980826615baa6e33456e2a79064c5e8",slug:null,bookSignature:"Prof. Igor Sheremet",coverURL:"https://cdn.intechopen.com/books/images_new/11445.jpg",editedByType:null,editors:[{id:"265237",title:"Prof.",name:"Igor",surname:"Sheremet",slug:"igor-sheremet",fullName:"Igor Sheremet"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11468",title:"High Entropy Alloys - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"3b4ef3ce01f8f9b113dc28ac847b8c0d",slug:null,bookSignature:"Prof. Yong A Zhang",coverURL:"https://cdn.intechopen.com/books/images_new/11468.jpg",editedByType:null,editors:[{id:"203937",title:"Prof.",name:"Yong",surname:"Zhang",slug:"yong-zhang",fullName:"Yong Zhang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11484",title:"Thin Film Deposition - Fundamentals, Processes, and Applications",subtitle:null,isOpenForSubmission:!0,hash:"9c10a55203c2f0f7d47c743e6cfa2492",slug:null,bookSignature:"Dr. Dongfang Yang",coverURL:"https://cdn.intechopen.com/books/images_new/11484.jpg",editedByType:null,editors:[{id:"177814",title:"Dr.",name:"Dongfang",surname:"Yang",slug:"dongfang-yang",fullName:"Dongfang Yang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:42},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:10},{group:"topic",caption:"Business, Management and Economics",value:7,count:6},{group:"topic",caption:"Chemistry",value:8,count:21},{group:"topic",caption:"Computer and Information Science",value:9,count:20},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:60},{group:"topic",caption:"Environmental Sciences",value:12,count:8},{group:"topic",caption:"Immunology and Microbiology",value:13,count:9},{group:"topic",caption:"Materials Science",value:14,count:27},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:122},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:11},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:167},popularBooks:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10351",title:"Enhanced Liposuction",subtitle:"New Perspectives and Techniques",isOpenForSubmission:!1,hash:"f08ed6de16da357614586c5b58ed4dfa",slug:"enhanced-liposuction-new-perspectives-and-techniques",bookSignature:"Diane Irvine Duncan",coverURL:"https://cdn.intechopen.com/books/images_new/10351.jpg",editors:[{id:"279869",title:"Dr.",name:"Diane Irvine",middleName:null,surname:"Duncan",slug:"diane-irvine-duncan",fullName:"Diane Irvine Duncan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10779",title:"21st Century Nanostructured Materials",subtitle:"Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture",isOpenForSubmission:!1,hash:"72c67f97f9bef68200df115b5fd79884",slug:"21st-century-nanostructured-materials-physics-chemistry-classification-and-emerging-applications-in-industry-biomedicine-and-agriculture",bookSignature:"Phuong V. Pham",coverURL:"https://cdn.intechopen.com/books/images_new/10779.jpg",editors:[{id:"236073",title:"Dr.",name:"Phuong",middleName:"Viet",surname:"Pham",slug:"phuong-pham",fullName:"Phuong Pham"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4386},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3665,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1713,editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",publishedDate:"April 28th 2022",numberOfDownloads:2481,editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1107,editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3307,editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3266,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1868,editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",publishedDate:"May 4th 2022",numberOfDownloads:856,editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1704,editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7489,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8737",title:"Rabies Virus at the Beginning of 21st Century",subtitle:null,isOpenForSubmission:!1,hash:"49cce3f548da548c718c865feb343509",slug:"rabies-virus-at-the-beginning-of-21st-century",bookSignature:"Sergey Tkachev",coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10861",title:"Furan Derivatives",subtitle:"Recent Advances and Applications",isOpenForSubmission:!1,hash:"fdfc39cecd82f91b0effac994f75c877",slug:"furan-derivatives-recent-advances-and-applications",bookSignature:"Anish Khan, Mohammed Muzibur Rahman, M. Ramesh, Salman Ahmad Khan and Abdullah Mohammed Ahmed Asiri",coverURL:"https://cdn.intechopen.com/books/images_new/10861.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"293058",title:"Dr.",name:"Anish",middleName:null,surname:"Khan",slug:"anish-khan",fullName:"Anish Khan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10870",title:"Ultrasound Imaging",subtitle:"Current Topics",isOpenForSubmission:!1,hash:"2f0bc3733ab226d67fa73759ef0e12ad",slug:"ultrasound-imaging-current-topics",bookSignature:"Felix Okechukwu Erondu",coverURL:"https://cdn.intechopen.com/books/images_new/10870.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"68312",title:"Prof.",name:"Felix",middleName:null,surname:"Okechukwu Erondu",slug:"felix-okechukwu-erondu",fullName:"Felix Okechukwu Erondu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11392",title:"Leadership in a Changing World",subtitle:"A Multidimensional Perspective",isOpenForSubmission:!1,hash:"86a6d33cf601587e591064ce92effc02",slug:"leadership-in-a-changing-world-a-multidimensional-perspective",bookSignature:"Muhammad Mohiuddin, Bilal Khalid, Md. Samim Al Azad and Slimane Ed-dafali",coverURL:"https://cdn.intechopen.com/books/images_new/11392.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10400",title:"The Application of Ant Colony Optimization",subtitle:null,isOpenForSubmission:!1,hash:"f4fdfd07ee1ab99fb7c740d6d0c144c6",slug:"the-application-of-ant-colony-optimization",bookSignature:"Ali Soofastaei",coverURL:"https://cdn.intechopen.com/books/images_new/10400.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"257455",title:"Dr.",name:"Ali",middleName:null,surname:"Soofastaei",slug:"ali-soofastaei",fullName:"Ali Soofastaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10915",title:"Leadership",subtitle:"New Insights",isOpenForSubmission:!1,hash:"0d72e79892f2a020cee66a52d09de5a4",slug:"leadership-new-insights",bookSignature:"Mário Franco",coverURL:"https://cdn.intechopen.com/books/images_new/10915.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"105529",title:"Dr.",name:"Mário",middleName:null,surname:"Franco",slug:"mario-franco",fullName:"Mário Franco"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10683",title:"Technological Innovations and Advances in Hydropower Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ce7ad8768bd2cad155470fe1fd883f4",slug:"technological-innovations-and-advances-in-hydropower-engineering",bookSignature:"Yizi Shang, Ling Shang and Xiaofei Li",coverURL:"https://cdn.intechopen.com/books/images_new/10683.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"349630",title:"Dr.",name:"Yizi",middleName:null,surname:"Shang",slug:"yizi-shang",fullName:"Yizi Shang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7102",title:"Pneumonia",subtitle:null,isOpenForSubmission:!1,hash:"9fd70142814192dcec58a176749f1b60",slug:"pneumonia",bookSignature:"Nima Rezaei",coverURL:"https://cdn.intechopen.com/books/images_new/7102.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"852",title:"Sustainability",slug:"environmental-design-sustainability",parent:{id:"128",title:"Environmental Design",slug:"environmental-design"},numberOfBooks:3,numberOfSeries:0,numberOfAuthorsAndEditors:12,numberOfWosCitations:9,numberOfCrossrefCitations:34,numberOfDimensionsCitations:41,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"852",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9916",title:"Zero-Energy Buildings",subtitle:"New Approaches and Technologies",isOpenForSubmission:!1,hash:"03b533ca4c0a7f4f0307e4e4ec474594",slug:"zero-energy-buildings-new-approaches-and-technologies",bookSignature:"Jesús Alberto Pulido Arcas, Carlos Rubio-Bellido, Alexis Pérez-Fargallo and Ivan Oropeza-Perez",coverURL:"https://cdn.intechopen.com/books/images_new/9916.jpg",editedByType:"Edited by",editors:[{id:"172801",title:"Dr.",name:"Jesus Alberto",middleName:null,surname:"Pulido Arcas",slug:"jesus-alberto-pulido-arcas",fullName:"Jesus Alberto Pulido Arcas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7650",title:"Different Strategies of Housing Design",subtitle:null,isOpenForSubmission:!1,hash:"a7228ca821b354d974a45eac0ca0eff8",slug:"different-strategies-of-housing-design",bookSignature:"Ayşem Berrin Çakmaklı",coverURL:"https://cdn.intechopen.com/books/images_new/7650.jpg",editedByType:"Edited by",editors:[{id:"220974",title:"Dr.",name:"Aysem",middleName:"Berrin",surname:"Cakmakli",slug:"aysem-cakmakli",fullName:"Aysem Cakmakli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5692",title:"Sustainable Home Design by Applying Control Science",subtitle:null,isOpenForSubmission:!1,hash:"83bab2850ca5c3aea1dd9c25cd2aee8c",slug:"sustainable-home-design-by-applying-control-science",bookSignature:"Kazutoshi Fujihira",coverURL:"https://cdn.intechopen.com/books/images_new/5692.jpg",editedByType:"Authored by",editors:[{id:"69662",title:"BSc.",name:"Kazutoshi",middleName:null,surname:"Fujihira",slug:"kazutoshi-fujihira",fullName:"Kazutoshi Fujihira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}}],booksByTopicTotal:3,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"71492",doi:"10.5772/intechopen.90466",title:"Fly Ash as a Cementitious Material for Concrete",slug:"fly-ash-as-a-cementitious-material-for-concrete",totalDownloads:821,totalCrossrefCites:5,totalDimensionsCites:6,abstract:"This paper presents a review on fly ash as prime materials used for geopolymer. Due to its advantages of abundant resources, less in cost, great workability and high physical properties, fly ash leads to achieving high mechanical properties. Fly ash is considered as one of the largest generated industrial solid wastes or so-called industrial by-products, around the world particularly in China, India, and USA. The characteristics of fly ash allow it to be a geotechnical material to produce geopolymer cement or concrete as an alternative of ordinary Portland cement. Many efforts are made in this direction to formulate a suitable mix design of fly ash-based geopolymer by focusing on fly ash as the main prime material. The physical properties, chemical compositions, and chemical activation of fly ash are analyzed and evaluated in this review paper. Reference has been made to different ASTM, ACI standards, and other researches work in geopolymer area.",book:{id:"9916",slug:"zero-energy-buildings-new-approaches-and-technologies",title:"Zero-Energy Buildings",fullTitle:"Zero-Energy Buildings - New Approaches and Technologies"},signatures:"Aissa Bouaissi, Long Yuan Li, Mohd Mustafa Al Bakri Abdullah, Romisuhani Ahmad, Rafiza Abdul Razak and Zarina Yahya",authors:null},{id:"73729",doi:"10.5772/intechopen.93500",title:"Solar Energy and Its Purpose in Net-Zero Energy Building",slug:"solar-energy-and-its-purpose-in-net-zero-energy-building",totalDownloads:581,totalCrossrefCites:3,totalDimensionsCites:4,abstract:"The Net Zero Energy Building is generally described as an extremely energy-efficient building in which the residual electricity demand is provided by renewable energy. Solar power is also regarded to be the most readily available and usable form of renewable electricity produced at the building site. In contrast, energy conservation is viewed as an influential national for achieving a building’s net zero energy status. This chapter aims to show the value of the synergy between energy conservation and solar energy transfer to NZEBs at the global and regional levels. To achieve these goals, both energy demand building and the potential supply of solar energy in buildings have been forecasted in various regions, climatic conditions, and types of buildings. Building energy consumption was evaluated based on a bottom-up energy model developed by 3CSEP and data inputs from the Bottom-Up Energy Analysis System (BUENAS) model under two scenarios of differing degrees of energy efficiency intention. The study results indicate that the acquisition of sustainable energy consumption is critical for solar-powered net zero energy buildings in various building styles and environments. The chapter calls for the value of government measures that incorporate energy conservation and renewable energy.",book:{id:"9916",slug:"zero-energy-buildings-new-approaches-and-technologies",title:"Zero-Energy Buildings",fullTitle:"Zero-Energy Buildings - New Approaches and Technologies"},signatures:"Mostafa Esmaeili Shayan",authors:[{id:"317852",title:"Ph.D.",name:"Mostafa",middleName:null,surname:"Esmaeili Shayan",slug:"mostafa-esmaeili-shayan",fullName:"Mostafa Esmaeili Shayan"}]},{id:"67105",doi:"10.5772/intechopen.86279",title:"Social Innovation and Environmental Sustainability in Social Housing Policies: Learning from Two Experimental Case Studies in Italy",slug:"social-innovation-and-environmental-sustainability-in-social-housing-policies-learning-from-two-expe",totalDownloads:997,totalCrossrefCites:2,totalDimensionsCites:4,abstract:"This chapter critically examines approaches and solutions developed by social housing to sustainably respond to the housing emergency plaguing contemporary cities and Italian cities in particular. In a broader perspective, we also investigate how housing has become ‘difficult’ in Europe and the poorest segments of the population run the risk of having their right to housing dramatically denied. Analysing housing in terms of its procedural dimension, we focus on two Italian case studies that evoke a new way of inhabiting the city, cases in which high standards characterised social housing and yet remain accessible to all. The Sharing hotel residence in Turin and Zoia social housing in Milan combine housing with other socially innovative measures in a framework of sustainability and avant-garde construction. These are significant examples that speak to issues such as temporariness, flexibility and the coordination of measures. These two cases both pursued objectives having to do with social, planning, architectural and environmental quality, albeit each in their own way. There are by now numerous examples of social housing in Europe and these have recently attracted growing interest in Italy as well; in this country, however, such projects represent valid instances of experimentation but are not at all widespread.",book:{id:"7650",slug:"different-strategies-of-housing-design",title:"Different Strategies of Housing Design",fullTitle:"Different Strategies of Housing Design"},signatures:"Rossana Galdini and Silvia Lucciarini",authors:[{id:"281246",title:"Dr.",name:"Silvia",middleName:null,surname:"Lucciarini",slug:"silvia-lucciarini",fullName:"Silvia Lucciarini"},{id:"282958",title:"Prof.",name:"Rossana",middleName:null,surname:"Galdini",slug:"rossana-galdini",fullName:"Rossana Galdini"}]},{id:"57401",doi:"10.5772/intechopen.71325",title:"Basic Schemes: Preparations for Applying Control Science to Sustainable Design",slug:"basic-schemes-preparations-for-applying-control-science-to-sustainable-design",totalDownloads:1191,totalCrossrefCites:3,totalDimensionsCites:3,abstract:"It is the ultimate goal for humankind to deal with various problems and achieve sustainability. Control science can be applied to all goal-oriented tasks and has already produced remarkable results. Accordingly, applying control science to the task of achieving sustainability is a rational and reliable approach. In order to apply control science to sustainability issues, our first study has shown the “basic control system for sustainability” as well as the “model of sustainability.” After that, in order to identify system components of practical control systems for promoting sustainable design, we have devised “two-step preparatory work for sustainable design.” The two steps of this preparatory work are “determining the relationships between the standard human activities and sustainability” and “sustainability checkup on human activities as an object.”",book:{id:"5692",slug:"sustainable-home-design-by-applying-control-science",title:"Sustainable Home Design by Applying Control Science",fullTitle:"Sustainable Home Design by Applying Control Science"},signatures:"Kazutoshi Fujihira",authors:[{id:"69662",title:"BSc.",name:"Kazutoshi",middleName:null,surname:"Fujihira",slug:"kazutoshi-fujihira",fullName:"Kazutoshi Fujihira"}]},{id:"72850",doi:"10.5772/intechopen.92725",title:"Computational Analysis of a Lecture Room Ventilation System",slug:"computational-analysis-of-a-lecture-room-ventilation-system",totalDownloads:819,totalCrossrefCites:3,totalDimensionsCites:3,abstract:"The level of Indoor Air Quality (IAQ) has become a big topic of research, and improving it using passive ventilation methods is imperative due to the cost saving potentials. Designing lecture buildings to use less energy or Zero Energy (ZE) has become more important, and analysing buildings before construction can save money in design changes. This research analyses the performance (thermal comfort [TC]) of a lecture room, investigate the use of passive ventilation methods and determine the energy-saving potential of the proposed passive ventilation method using Computational Fluid Dynamics (CFD). Results obtained showed that air change per hour at a wind velocity of 0.05 m/s was 3.10, which was below standards. Therefore, the lecture hall needs external passive ventilation systems (Solar Chimney [SC]) for improved indoor air quality at minimum cost. Also, it was observed that the proposed passive ventilation (SC) system with the size between 1 and 100 m3, made an improvement upon the natural ventilation in the room. There was a 66.69% increase after 10 years in the saving of energy and cost using Solar Chimney as compared to Fans, which depicts that truly energy and cost were saved using passive ventilation systems rather than mechanical ventilation systems.",book:{id:"9916",slug:"zero-energy-buildings-new-approaches-and-technologies",title:"Zero-Energy Buildings",fullTitle:"Zero-Energy Buildings - New Approaches and Technologies"},signatures:"Abayomi Layeni, Collins Nwaokocha, Olalekan Olamide, Solomon Giwa, Samuel Tongo, Olawale Onabanjo, Taiwo Samuel, Olabode Olanipekun, Oluwasegun Alabi, Kasali Adedeji, Olusegun Samuel, Jagun Zaid Oluwadurotimi, Olaolu Folorunsho, Jacob Adebayo and Folashade Oniyide",authors:null}],mostDownloadedChaptersLast30Days:[{id:"71982",title:"Net-Zero Energy Buildings: Principles and Applications",slug:"net-zero-energy-buildings-principles-and-applications",totalDownloads:2134,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"Global warming and climate change are rising issues during the last couple of decades. With residential and commercial buildings being the largest energy consumers, sources are being depleted at a much faster pace in the recent decades. Recent statistics shows that 14% of humans are active participant to protect the environment with an additional 48% sympathetic but not active. In this chapter, net-zero energy buildings design tools and applications are presented that can help designers in the commercial and residential sectors design their buildings to be net-zero energy buildings. Case studies with benefits and challenges will be presented to illustrate the different designs to achieve a net-zero energy building (NZEB).",book:{id:"9916",slug:"zero-energy-buildings-new-approaches-and-technologies",title:"Zero-Energy Buildings",fullTitle:"Zero-Energy Buildings - New Approaches and Technologies"},signatures:"Maher Shehadi",authors:null},{id:"57400",title:"Case Study: Detached House Designed by Following the Control System",slug:"case-study-detached-house-designed-by-following-the-control-system",totalDownloads:1529,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"The previous chapter has demonstrated the control system for promoting sustainable housing design in which the sustainable design guidelines and sustainability checklist are incorporated. Following this control system, we have actually designed and constructed a detached house. To be concrete, the homeowner and the architects of the housing manufacture have designed the home’s parts, or elements, so that as much as possible the elements’ variables meet their desired values. The sustainable design guidelines and sustainability checklist have been readily accepted because the material and spatial elements are equivalent to real parts of the home. After the home started to be used, we have obtained external evaluations of the home’s sustainability performance. For example, CASBEE for Detached Houses, a comprehensive assessment system, has readily ranked the house in the highest “S.” An energy-saving performance assessment has shown that this home has reduced energy consumption by over 70%, as compared with the average home. On the other hand, the reactions of the occupants and visitors have indicated the comfort, healthiness and safety of this house. Furthermore, this home has received a sustainable housing award, especially due to its extremely high sustainability and energy-saving performance.",book:{id:"5692",slug:"sustainable-home-design-by-applying-control-science",title:"Sustainable Home Design by Applying Control Science",fullTitle:"Sustainable Home Design by Applying Control Science"},signatures:"Kazutoshi Fujihira",authors:[{id:"69662",title:"BSc.",name:"Kazutoshi",middleName:null,surname:"Fujihira",slug:"kazutoshi-fujihira",fullName:"Kazutoshi Fujihira"}]},{id:"67084",title:"Comprehensive Strategy for Sustainable Housing Design",slug:"comprehensive-strategy-for-sustainable-housing-design",totalDownloads:1348,totalCrossrefCites:2,totalDimensionsCites:3,abstract:"Sustainable housing needs to be designed to maximize occupants’ well-being and minimize the environmental load. The pursuit of combining these two different aspects toward sustainability is a goal-oriented task. The science of control can be applied to all goal-oriented tasks. Therefore, applying control science, we have been progressing in research on sustainable housing design. Our previous study has produced the control system for promoting sustainable housing design in which sustainable design guidelines and sustainability checklist are incorporated. Based on these accomplished results, this study has comprehensively visualized the process of producing and revising the sustainable design guidelines and sustainability checklist. Following this visualized process, also this study has concretely shown the production and revision processes of the sustainable design guidelines. The study results suggest that the comprehensive visualization can make these processes more manageable and help system designers to produce and revise the guidelines more efficiently. Furthermore, these results have led to indicating how to adjust the guidelines to different countries or regions as well as changing situations over time.",book:{id:"7650",slug:"different-strategies-of-housing-design",title:"Different Strategies of Housing Design",fullTitle:"Different Strategies of Housing Design"},signatures:"Kazutoshi Fujihira",authors:[{id:"69662",title:"BSc.",name:"Kazutoshi",middleName:null,surname:"Fujihira",slug:"kazutoshi-fujihira",fullName:"Kazutoshi Fujihira"}]},{id:"65804",title:"Effects of Street Geometry on Airflow Regimes for Natural Ventilation in Three Different Street Configurations in Enugu City",slug:"effects-of-street-geometry-on-airflow-regimes-for-natural-ventilation-in-three-different-street-conf",totalDownloads:1375,totalCrossrefCites:1,totalDimensionsCites:3,abstract:"Efficient natural ventilation is dependent on the micro climate conditions of an urban environment. This is affected by ambient wind flow, radiation and air temperatures. The airflow within the urban street can be cultivated into two regions. The first is a recirculation region, which forms in the near wake of each building. The Second is a ventilated region downstream of the recirculation region, formed when the street is sufficiently wide. The development of the flow into these two regions depends on geometry. This chapter looks at the impacts of street geometry on these regions of airflow cultivation in three different street configurations in high density residential settlements in Enugu city. It utilized schematic analysis of airflow regimes to identify the behaviors of flow in these street configurations relative to the height and width ratios of the street canyon. This schematic analysis can be utilized in preliminary design studies by city and building designers for justifying street dimensions and configurations in tropical regions where natural ventilation is paramount.",book:{id:"7650",slug:"different-strategies-of-housing-design",title:"Different Strategies of Housing Design",fullTitle:"Different Strategies of Housing Design"},signatures:"Jideofor Anselm Akubue",authors:[{id:"139659",title:"Dr.",name:"Akubue",middleName:"Jideofor",surname:"Anselm",slug:"akubue-anselm",fullName:"Akubue Anselm"}]},{id:"66000",title:"Fundamentals of Natural Ventilation Design within Dwellings",slug:"fundamentals-of-natural-ventilation-design-within-dwellings",totalDownloads:946,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Along with acoustical and lighting comfort, indoor air quality (IAQ) and thermal comfort upon households are essential to maintain a proper indoor environment, therefore ensuring a welfare toward the occupants. Nevertheless, sometimes, these features are neglected by building designers and constructers, causing problems such as the so-called sick building syndrome (SBS) and thermal discomfort, among others. Although there are short-term solutions such as purifiers, extractors, fans, and air conditioning, eventually these methods become not sustainable activities that consume energy and emit polluting gases such as chlorofluorocarbons. One alternative to this is natural ventilation, understood as the airflow throughout a building caused by changes of pressures naturally produced. In this chapter, the role of the early-stage building design as well as the correct occupant behavior is presented as essential to develop a naturally ventilated dwelling, which is an excellent alternative to achieve proper levels of indoor environment in a sustainable manner.",book:{id:"7650",slug:"different-strategies-of-housing-design",title:"Different Strategies of Housing Design",fullTitle:"Different Strategies of Housing Design"},signatures:"Ivan Oropeza-Perez",authors:[{id:"282172",title:"Dr.",name:"Ivan",middleName:null,surname:"Oropeza-Perez",slug:"ivan-oropeza-perez",fullName:"Ivan Oropeza-Perez"}]}],onlineFirstChaptersFilter:{topicId:"852",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"81264",title:"Holistic and Affordable Approach to Supporting the Sustainability of Family Houses in Cold Climates by Using Many Vacuum-Tube Solar Collectors and Small Water Tank to Provide the Sanitary Hot Water, Space Heating, Greenhouse, and Swimming Poole Heating De",slug:"holistic-and-affordable-approach-to-supporting-the-sustainability-of-family-houses-in-cold-climates-",totalDownloads:11,totalDimensionsCites:0,doi:"10.5772/intechopen.103110",abstract:"This work presents a new proposal for supporting the sustainability of a single-family house in very cold climates by installing many vacuum-tube solar collectors and a small water tank in order to fulfill the whole dweller demands of heat: space heating, sanitary hot water, and warming both, a greenhouse (spring and autumn) and a swimming pool (summer). This way is obtained a sustained demand that maximizes the utilization of heat from solar collectors throughout the year. This system is designed intending to use the smallest tank that fulfills the winter heating demand, supported by vacuum-tube solar collectors and a little help from electrical heaters working just on the valley tariff. This innovative design gets the most sustainable (but affordable) solution. This goal can be achieved by using a small well-insulated overheated aboveground water tank, instead of the huge underground reservoir of heat used by most projects tested up today. These large communal projects use huge reservoirs to provide seasonal thermal storage (STES) capacity, but their costs are huge too. Besides, it was observed that all these huge STES suffer large heat losses (about 40%), due to constraints for thermally insulating such very heavy systems. On the contrary, our small aboveground water tank can be thermally insulated very well and gets affordable costs. In this work is developed dynamical solar-thermal modeling for studying this novel approach and are discussed its major differences with traditional design. This modeling is used to study the whole demands of heat for one family living in the same conditions of the Okotoks’ project. The Okotoks’ project is based on many flat solar collectors (2,290 m2) and a huge (2,800 m3) rocky-underground STES system in order to almost fulfill (97%) the space heating demand of 52 houses (15,795 kWh/y ea.) in Alberta (Canada), having an overall cost of 9 MU$ (173,000 U$ ea.). We have already shown in previous work that this new proposal could reach noticeably lower costs (€30,500) than the Okotoks’ project in order to provide the same heating demand, by taking advantage of using 18 vacuum-tube collectors (solar area 37 m2) and a small (72 m3) well-insulated (heat losses 18%) water tank heated up to 85°C, which is the same temperature used in Okotoks and other traditional projects. Now, this proposal is enhanced by using a holistic approach to include other low-temperature demands (sanitary hot water and warming a greenhouse and swimming pool) that enhance the sustainability of dweller living. This way, the full production of heat from solar collectors is utilized (about six times larger than the single space heating demand, but using only 20 vacuum-tube solar collectors (21 m2 solar area) and a very small (10m3) water tank, reaching about a lower overall cost (€20,000), and so, the economic performance is enhanced as well. Besides, it is shown that using a small fraction of electrical heaters as a backup system (2%) and slightly overheating the water (up to 120°C@2 bar), which is feasible by using commercial stainless steel water tanks designed for such purposes, its economic performance could be again noticeably enhanced (reducing the overall cost to €20,000, and getting payback period less than two years). This way here is demonstrated the overall solar-STES system can be reduced by about half size meanwhile the energy output can be increased up to seven times. Hence, the thermal analysis performed suggested us strongly critic the traditional approach of using flat solar collectors instead of vacuum-tube collectors. This analysis shows that this choice has strongly driven the selection of a huge STES, which in turn increases noticeably the overall costs of the system since for such huge STES is mandatory to use underground reservoirs. However, this analysis also shows that without including those secondary demands, this proposal achieves a modest economic performance (payback period about 11 years) regarding its lower energy saved and compared against the “most smart” standard solution (one water tank with electrical heaters, costing about 5,000 U$ and exploiting the valley tariff of nocturnal electricity costing 0.1 €/kWh). On the contrary, when these secondary demands are included, the payback period is reduced by two years. Beyond the particular case studied here, this analysis suggests that the right design of any solar + STES system should be led by the solar production. On the contrary, the traditional design intends to fulfill one demand (space heating) concentrated during winter, and so, its performance is noticeably penalized, and the solution is definitely not to put a larger tank. Unfortunately, up today the poor performance of these projects has shown that this solar technology is (by far) unaffordable. Maybe its best days have gone, considering the enormous improvements achieved by another solar technology (using photovoltaic panels + heat pump + small daily-storage water tank), as it was discussed here.",book:{id:"11175",title:"Nearly Zero Energy Building (NZEB) - Materials, Design and New Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11175.jpg"},signatures:"Luis E. Juanicó"},{id:"81265",title:"An Aggregated Embodied and Operational Energy Approach",slug:"an-aggregated-embodied-and-operational-energy-approach",totalDownloads:16,totalDimensionsCites:0,doi:"10.5772/intechopen.103073",abstract:"Highly insulated envelopes are an integral part of any net zero energy building with a target to reduce the demand that need to be supplied by the renewable energy and other mitigating measures. While stricter insulation levels can in theory reduce the operational energy demand of buildings, the additional embodied energy investment in the insulations can become significant and not recovered within the expected timeframes. Accounting for embodied energy investment requires a paradigm shift in design of highly insulated buildings and can determine U-value levels that can be justified based on an aggregated operational and embodied energy approach. The following chapter discusses the aggregated approach in more detail showcasing the shortcomings of existing building codes and standards using a case study building. The chapter also reviews the potential barriers of adopting such approaches with a specific focus on the uncertainties of embodied energy data and offers a holistic view on its implications for various end-users and stakeholders within the construction sector. The presented analyses in this chapter depict optimal insulation levels beyond which the additional embodied energy burden cannot be recovered using the associated operational energy savings highlighting the necessity of accounting for embodied energy in developing future design principles for zero energy buildings.",book:{id:"11175",title:"Nearly Zero Energy Building (NZEB) - Materials, Design and New Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11175.jpg"},signatures:"Shahaboddin Resalati"},{id:"80715",title:"Highlighting the Design and Performance Gaps: Case Studies of University Buildings",slug:"highlighting-the-design-and-performance-gaps-case-studies-of-university-buildings",totalDownloads:32,totalDimensionsCites:0,doi:"10.5772/intechopen.102779",abstract:"Buildings are one of the highest emitters of greenhouse gases globally. To reduce the detrimental effects of buildings on the environment and recognise their potential for emissions reductions, a transition towards sustainable building solutions has been observed globally. This trend and the associated benefits have been discussed and argued for more than three decades now. However, the impacts of sustainable buildings are yet to be demonstrated at macro, meso, and micro levels in the community, as the actual versus expected performance of such buildings are still being questioned. Consequently, this entry discusses the concepts underpinning sustainable buildings outlining the drivers and practices to achieve sustainable built environment solutions from the design to operation stage using university buildings as a case study. The chapter also recommends evidence-based solutions on understanding the actual and perceived gaps to achieve expected performance using “Green Star” rated academic buildings in Australia.",book:{id:"11175",title:"Nearly Zero Energy Building (NZEB) - Materials, Design and New Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11175.jpg"},signatures:"Karishma Kashyap, Usha Iyer-Raniga and Mary Myla Andamon"},{id:"80658",title:"An Integrated Design Process in Practice: A Nearly Zero Energy Building at the University of Brasília - Brazil",slug:"an-integrated-design-process-in-practice-a-nearly-zero-energy-building-at-the-university-of-bras-lia",totalDownloads:38,totalDimensionsCites:0,doi:"10.5772/intechopen.102443",abstract:"This study aims to present the design experience of LabZERO|UnB, an NZEB building awarded in a public call, that will be built on the University of Brasília campus. The method consisted of defining the design team and the Integrated Design Process (IDP), establishing assumptions and design guidelines, schematic design, initial computer simulations, design development, new simulations, and final calculations for the synthesis of energy performance. As a result, IDP proved to be efficient and underlined the possibility of translating research experiences into practice. The barriers and potentialities related to the coordination of a multidisciplinary team stand out, likewise the organization, planning, and achievement of goals. In the design concept of the 200m2 building, the basic assumption was the adequacy of the architecture to favor the use of passive resources, respecting the local climate, classified as high-altitude tropical climate. Moreover, bioclimatic strategies were used, such as the North/South orientation of main façades, narrow floor plan, limited window-wall ratio, and adequate construction materials, to optimize energy consumption. As a result, the distributed generation of electricity was estimated at 58.29 kWh/m2. a year and the final electricity demand was 34.29 kWh/m2. year. Hence, this process indicates the real possibility of reaching the zero energy balance.",book:{id:"11175",title:"Nearly Zero Energy Building (NZEB) - Materials, Design and New Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11175.jpg"},signatures:"Cláudia Naves David Amorim, Joara Cronemberger Ribeiro Silva, Caio Frederico e Silva, Thiago Montenegro Góes, Ayana Dantas de Medeiros, João Manoel Dias Pimenta, Marco Antonio Egito, Adolfo Bauchspiess, Loana Nunes Velasco and José Manoel Morales Sánchez"},{id:"80047",title:"Coalash as Sustainable Material for Low Energy Building",slug:"coalash-as-sustainable-material-for-low-energy-building",totalDownloads:65,totalDimensionsCites:0,doi:"10.5772/intechopen.101858",abstract:"Sand, which is a naturally occurring soft mineral ranks second after water, as far as consumption is concerned globally. Due to rapid infrastructural development worldwide, particularly in Asian region, the rate of natural formation of sand has been found to be outpaced by rate of consumption, causing greater ecological imbalances. Coalash, an industrial waste from thermal power plants are polluting in nature, and legacy ash in huge proportion without proper utilization is posing a serious threat to the environment. It was ideated to replace sand by coalash in concrete and mortar mix, and to evaluate the physical and thermal properties for its suitability in low energy building construction. Without compromising strength criteria, thermal transmittance value is found to be reduced up to considerable extent, which resulted lesser cooling requirement with added economic benefit. This medium technology application could be one of the economic pathway towards Near Zero Building Construction.",book:{id:"11175",title:"Nearly Zero Energy Building (NZEB) - Materials, Design and New Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11175.jpg"},signatures:"Avijit Ghosh"},{id:"80014",title:"Evaluation of Energy Efficiency of Buildings Based on LCA and LCC Assessment: Method, Computer Tool, and Case Studies",slug:"evaluation-of-energy-efficiency-of-buildings-based-on-lca-and-lcc-assessment-method-computer-tool-an",totalDownloads:83,totalDimensionsCites:0,doi:"10.5772/intechopen.101820",abstract:"In this chapter, the development of a computer tool for the determination of nearly zero energy buildings (nZEB) metrics upgraded with life cycle assessment (LCA) and life cycle cost (LCC) indicators is presented, following the requirements of the Energy Performance of Buildings Directive (EPBD). The computer tool was developed for the assessment of new and renovated buildings to support the holistic decision-making process. The tool itself consists of two modules: the building description module (BDU), based on the national certification tool of buildings’ energy performance, and the LCA tool (Etool). BDU enables the assessment of energy needs, final energy demand, and primary energy needs. According to the EPBD, supporting standards was upgraded with the life cycle inventory database. The database includes data on predefined building materials, envelope components, heat generators, and energy carriers and is used by Etool with which mid-point and end-point life cycle impact assessment can be done by taking into account impact groups and damage factors from IMPACT2002+ and ReCiPe methods. The LCC assessment module, which is also part of Etool, was developed according to Commission Delegated Regulation No. 244/212. The use of computer tools is demonstrated through the case studies.",book:{id:"11175",title:"Nearly Zero Energy Building (NZEB) - Materials, Design and New Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11175.jpg"},signatures:"Suzana Domjan, Ciril Arkar, Rok Fink and Sašo Medved"}],onlineFirstChaptersTotal:11},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:8,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:286,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:9,numberOfPublishedChapters:101,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"10",title:"Physiology",doi:"10.5772/intechopen.72796",issn:"2631-8261",scope:"Modern physiology requires a comprehensive understanding of the integration of tissues and organs throughout the mammalian body, including the cooperation between structure and function at the cellular and molecular levels governed by gene and protein expression. While a daunting task, learning is facilitated by identifying common and effective signaling pathways mediated by a variety of factors employed by nature to preserve and sustain homeostatic life. \r\nAs a leading example, the cellular interaction between intracellular concentration of Ca+2 increases, and changes in plasma membrane potential is integral for coordinating blood flow, governing the exocytosis of neurotransmitters, and modulating gene expression and cell effector secretory functions. Furthermore, in this manner, understanding the systemic interaction between the cardiovascular and nervous systems has become more important than ever as human populations' life prolongation, aging and mechanisms of cellular oxidative signaling are utilised for sustaining life. \r\nAltogether, physiological research enables our identification of distinct and precise points of transition from health to the development of multimorbidity throughout the inevitable aging disorders (e.g., diabetes, hypertension, chronic kidney disease, heart failure, peptic ulcer, inflammatory bowel disease, age-related macular degeneration, cancer). With consideration of all organ systems (e.g., brain, heart, lung, gut, skeletal and smooth muscle, liver, pancreas, kidney, eye) and the interactions thereof, this Physiology Series will address the goals of resolving (1) Aging physiology and chronic disease progression (2) Examination of key cellular pathways as they relate to calcium, oxidative stress, and electrical signaling, and (3) how changes in plasma membrane produced by lipid peroxidation products can affect aging physiology, covering new research in the area of cell, human, plant and animal physiology.",coverUrl:"https://cdn.intechopen.com/series/covers/10.jpg",latestPublicationDate:"May 14th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:11,editor:{id:"35854",title:"Prof.",name:"Tomasz",middleName:null,surname:"Brzozowski",slug:"tomasz-brzozowski",fullName:"Tomasz Brzozowski",profilePictureURL:"https://mts.intechopen.com/storage/users/35854/images/system/35854.jpg",biography:"Prof. Dr. Thomas Brzozowski works as a professor of Human Physiology and is currently Chairman at the Department of Physiology and is V-Dean of the Medical Faculty at Jagiellonian University Medical College, Cracow, Poland. His primary area of interest is physiology and pathophysiology of the gastrointestinal (GI) tract, with the major focus on the mechanism of GI mucosal defense, protection, and ulcer healing. He was a postdoctoral NIH fellow at the University of California and the Gastroenterology VA Medical Center, Irvine, Long Beach, CA, USA, and at the Gastroenterology Clinics Erlangen-Nuremberg and Munster in Germany. He has published 290 original articles in some of the most prestigious scientific journals and seven book chapters on the pathophysiology of the GI tract, gastroprotection, ulcer healing, drug therapy of peptic ulcers, hormonal regulation of the gut, and inflammatory bowel disease.",institutionString:null,institution:{name:"Jagiellonian University",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"10",title:"Animal Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/10.jpg",isOpenForSubmission:!0,annualVolume:11406,editor:{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null},{id:"11",title:"Cell Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/11.jpg",isOpenForSubmission:!0,annualVolume:11407,editor:{id:"133493",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",profilePictureURL:"https://mts.intechopen.com/storage/users/133493/images/3091_n.jpg",biography:"Prof. Dr. Angel Catalá \r\nShort Biography Angel Catalá was born in Rodeo (San Juan, Argentina). He studied \r\nchemistry at the Universidad Nacional de La Plata, Argentina, where received aPh.D. degree in chemistry (Biological Branch) in 1965. From\r\n1964 to 1974, he worked as Assistant in Biochemistry at the School of MedicineUniversidad Nacional de La Plata, Argentina. From 1974 to 1976, he was a Fellowof the National Institutes of Health (NIH) at the University of Connecticut, Health Center, USA. From 1985 to 2004, he served as a Full Professor oBiochemistry at the Universidad Nacional de La Plata, Argentina. He is Member ofthe National Research Council (CONICET), Argentina, and Argentine Society foBiochemistry and Molecular Biology (SAIB). His laboratory has been interested for manyears in the lipid peroxidation of biological membranes from various tissues and different species. Professor Catalá has directed twelve doctoral theses, publishedover 100 papers in peer reviewed journals, several chapters in books andtwelve edited books. Angel Catalá received awards at the 40th InternationaConference Biochemistry of Lipids 1999: Dijon (France). W inner of the Bimbo PanAmerican Nutrition, Food Science and Technology Award 2006 and 2012, South AmericaHuman Nutrition, Professional Category. 2006 award in pharmacology, Bernardo\r\nHoussay, in recognition of his meritorious works of research. Angel Catalá belongto the Editorial Board of Journal of lipids, International Review of Biophysical ChemistryFrontiers in Membrane Physiology and Biophysics, World Journal oExperimental Medicine and Biochemistry Research International, W orld Journal oBiological Chemistry, Oxidative Medicine and Cellular Longevity, Diabetes and thePancreas, International Journal of Chronic Diseases & Therapy, International Journal oNutrition, Co-Editor of The Open Biology Journal.",institutionString:null,institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}},editorTwo:null,editorThree:null},{id:"12",title:"Human Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/12.jpg",isOpenForSubmission:!0,annualVolume:11408,editor:{id:"195829",title:"Prof.",name:"Kunihiro",middleName:null,surname:"Sakuma",slug:"kunihiro-sakuma",fullName:"Kunihiro Sakuma",profilePictureURL:"https://mts.intechopen.com/storage/users/195829/images/system/195829.jpg",biography:"Professor Kunihiro Sakuma, Ph.D., currently works in the Institute for Liberal Arts at the Tokyo Institute of Technology. He is a physiologist working in the field of skeletal muscle. He was awarded his sports science diploma in 1995 by the University of Tsukuba and began his scientific work at the Department of Physiology, Aichi Human Service Center, focusing on the molecular mechanism of congenital muscular dystrophy and normal muscle regeneration. His interest later turned to the molecular mechanism and attenuating strategy of sarcopenia (age-related muscle atrophy). His opinion is to attenuate sarcopenia by improving autophagic defects using nutrient- and pharmaceutical-based treatments.",institutionString:null,institution:{name:"Tokyo Institute of Technology",institutionURL:null,country:{name:"Japan"}}},editorTwo:null,editorThree:{id:"331519",title:"Dr.",name:"Kotomi",middleName:null,surname:"Sakai",slug:"kotomi-sakai",fullName:"Kotomi Sakai",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000031QtFXQA0/Profile_Picture_1637053227318",biography:"Senior researcher Kotomi Sakai, Ph.D., MPH, works at the Research Organization of Science and Technology in Ritsumeikan University. She is a researcher in the geriatric rehabilitation and public health field. She received Ph.D. from Nihon University and MPH from St.Luke’s International University. Her main research interest is sarcopenia in older adults, especially its association with nutritional status. Additionally, to understand how to maintain and improve physical function in older adults, to conduct studies about the mechanism of sarcopenia and determine when possible interventions are needed.",institutionString:null,institution:{name:"Ritsumeikan University",institutionURL:null,country:{name:"Japan"}}}},{id:"13",title:"Plant Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/13.jpg",isOpenForSubmission:!0,annualVolume:11409,editor:{id:"332229",title:"Prof.",name:"Jen-Tsung",middleName:null,surname:"Chen",slug:"jen-tsung-chen",fullName:"Jen-Tsung Chen",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000031RJmlQAG/Profile_Picture_1600760167494",biography:"Dr. Jen-Tsung Chen is currently a professor at the National University of Kaohsiung in Taiwan. He teaches cell biology, genomics, proteomics, medicinal plant biotechnology, and plant tissue culture in college. Dr. Chen's research interests are bioactive compounds, chromatography techniques, in vitro culture, medicinal plants, phytochemicals, and plant biotechnology. He has published over 60 research papers, reviewed over 260 manuscripts, and edited at least 150 papers in international peer-review journals.",institutionString:null,institution:{name:"National University of Kaohsiung",institutionURL:null,country:{name:"Taiwan"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:25,paginationItems:[{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81271",title:"The Diversity of Parvovirus Telomeres",doi:"10.5772/intechopen.102684",signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:22,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"80187",title:"Potential Utilization of Insect Meal as Livestock Feed",doi:"10.5772/intechopen.101766",signatures:"Sipho Moyo and Busani Moyo",slug:"potential-utilization-of-insect-meal-as-livestock-feed",totalDownloads:101,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Feed Science and Nutrition - Production, Health and Environment",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"79909",title:"Cryopreservation Methods and Frontiers in the Art of Freezing Life in Animal Models",doi:"10.5772/intechopen.101750",signatures:"Feda S. Aljaser",slug:"cryopreservation-methods-and-frontiers-in-the-art-of-freezing-life-in-animal-models",totalDownloads:160,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}}]},overviewPagePublishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Dr.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",biography:"Rita Payan Carreira earned her Veterinary Degree from the Faculty of Veterinary Medicine in Lisbon, Portugal, in 1985. She obtained her Ph.D. in Veterinary Sciences from the University of Trás-os-Montes e Alto Douro, Portugal. After almost 32 years of teaching at the University of Trás-os-Montes and Alto Douro, she recently moved to the University of Évora, Department of Veterinary Medicine, where she teaches in the field of Animal Reproduction and Clinics. Her primary research areas include the molecular markers of the endometrial cycle and the embryo–maternal interaction, including oxidative stress and the reproductive physiology and disorders of sexual development, besides the molecular determinants of male and female fertility. She often supervises students preparing their master's or doctoral theses. She is also a frequent referee for various journals.",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}]},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",slug:"veterinary-anatomy-and-physiology",publishedDate:"March 13th 2019",editedByType:"Edited by",bookSignature:"Catrin Sian Rutland and Valentina Kubale",hash:"75cdacb570e0e6d15a5f6e69640d87c9",volumeInSeries:2,fullTitle:"Veterinary Anatomy and Physiology",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}]},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Naceur M'Hamdi",hash:"2aa2a9a0ec13040bbf0455e34625504e",volumeInSeries:3,fullTitle:"Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi",profilePictureURL:"https://mts.intechopen.com/storage/users/73376/images/system/73376.jpg",biography:"Naceur M’HAMDI is Associate Professor at the National Agronomic Institute of Tunisia, University of Carthage. He is also Member of the Laboratory of genetic, animal and feed resource and member of Animal science Department of INAT. He graduated from Higher School of Agriculture of Mateur, University of Carthage, in 2002 and completed his masters in 2006. Dr. M’HAMDI completed his PhD thesis in Genetic welfare indicators of dairy cattle at Higher Institute of Agronomy of Chott-Meriem, University of Sousse, in 2011. He worked as assistant Professor of Genetic, biostatistics and animal biotechnology at INAT since 2013.",institutionString:null,institution:null}]},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",biography:"Juan Carlos Gardón Poggi received University degree from the Faculty of Agrarian Science in Argentina, in 1983. Also he received Masters Degree and PhD from Córdoba University, Spain. He is currently a Professor at the Catholic University of Valencia San Vicente Mártir, at the Department of Medicine and Animal Surgery. He teaches diverse courses in the field of Animal Reproduction and he is the Director of the Veterinary Farm. He also participates in academic postgraduate activities at the Veterinary Faculty of Murcia University, Spain. His research areas include animal physiology, physiology and biotechnology of reproduction either in males or females, the study of gametes under in vitro conditions and the use of ultrasound as a complement to physiological studies and development of applied biotechnologies. Routinely, he supervises students preparing their doctoral, master thesis or final degree projects.",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null}]}]},openForSubmissionBooks:{paginationCount:3,paginationItems:[{id:"11675",title:"Advances in Skeletal Muscle Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11675.jpg",hash:"e1d9662c334dd78ab35bfb57c3bf106e",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 19th 2022",isOpenForSubmission:!0,editors:[{id:"281317",title:"Dr.",name:"Fabio",surname:"Iannotti",slug:"fabio-iannotti",fullName:"Fabio Iannotti"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11677",title:"New Insights in Mammalian Endocrinology",coverURL:"https://cdn.intechopen.com/books/images_new/11677.jpg",hash:"c59dd0f87bbf829ca091c485f4cc4e68",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 5th 2022",isOpenForSubmission:!0,editors:[{id:"321396",title:"Prof.",name:"Muhammad Subhan",surname:"Qureshi",slug:"muhammad-subhan-qureshi",fullName:"Muhammad Subhan Qureshi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11676",title:"Recent Advances in Homeostasis",coverURL:"https://cdn.intechopen.com/books/images_new/11676.jpg",hash:"63eb775115bf2d6d88530b234a1cc4c2",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 10th 2022",isOpenForSubmission:!0,editors:[{id:"203015",title:"Dr.",name:"Gaffar",surname:"Zaman",slug:"gaffar-zaman",fullName:"Gaffar Zaman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:2,paginationItems:[{id:"81644",title:"Perspective Chapter: Ethics of Using Placebo Controlled Trials for Covid-19 Vaccine Development in Vulnerable Populations",doi:"10.5772/intechopen.104776",signatures:"Lesley Burgess, Jurie Jordaan and Matthew Wilson",slug:"perspective-chapter-ethics-of-using-placebo-controlled-trials-for-covid-19-vaccine-development-in-vu",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"80546",title:"Streptococcal Skin and Skin-Structure Infections",doi:"10.5772/intechopen.102894",signatures:"Alwyn Rapose",slug:"streptococcal-skin-and-skin-structure-infections",totalDownloads:48,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}}]},subseriesFiltersForOFChapters:[{caption:"Bacterial Infectious Diseases",value:3,count:1,group:"subseries"},{caption:"Viral Infectious Diseases",value:6,count:1,group:"subseries"}],publishedBooks:{paginationCount:0,paginationItems:[]},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{paginationCount:25,paginationItems:[{id:"429683",title:"Dr.",name:"Bilal",middleName:null,surname:"Khalid",slug:"bilal-khalid",fullName:"Bilal Khalid",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/429683/images/system/429683.png",biography:"Dr. Bilal Khalid received a Ph.D. in Industrial Business Administration from KMITL Business School, Bangkok, in 2021, and a master’s in International Business Management from Stamford International University, Bangkok, in 2017. Dr. Khalid\\'s research interests include leadership and negotiations, digital transformations, gamification, eLearning, blockchain, Big Data, and management of information technology. Dr. Bilal Khalid also serves as an academic editor at Education Research International and a reviewer for international journals.",institutionString:"KMITL Business School",institution:{name:"King Mongkut's Institute of Technology Ladkrabang",country:{name:"Thailand"}}},{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",biography:"Dr. Muhammad Mohiuddin is an Associate Professor of International Business at Laval University, Canada. He has taught at Thompson Rivers University, Canada; University of Paris-Est, France; Osnabruck University of Applied Science, Germany; and Shanghai Institute of Technology and Tianjin University of Technology, China. He has published research in Research Policy, Applied Economics, Review of Economic Philosophy, Strategic Change, International Journal of Logistics, Sustainability, Journal of Environmental Management, Journal of Global Information Management, Journal of Cleaner Production, M@N@GEMENT, and more. He is a member of CEDIMES Institut (France), Academy of International Business (AIB), Strategic Management Society (SMS), Academy of Management (AOM), Administrative Science Association of Canada (ASAC), and Canadian council of small business and entrepreneurship (CCSBE). He is currently the director of the Research Group on Contemporary Asia (GERAC) at Laval University. He is also co-managing editor of Transnational Corporations Review and a guest editor for Electronic Commerce Research and Journal of Internet Technology.",institutionString:null,institution:{name:"Université Laval",country:{name:"Canada"}}},{id:"189147",title:"Dr.",name:"Hailan",middleName:null,surname:"Salamun",slug:"hailan-salamun",fullName:"Hailan Salamun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/189147/images/19274_n.jpeg",biography:"Hailan Salamun, (Dr.) was born in Selangor, Malaysia and graduated from Tunku Ampuan Jamaah Religious High School at Shah Alam. Obtained a degree from the International Islamic University (UIA), Gombak in the field of Islamic Revealed Knowledge and Heritage. Next, I furthered my studies to the professional level to obtain a Diploma in Education at UIA. After serving for several years in school, I furthered my studies to the Master of Dakwah and Leadership at Universiti Kebangsaan Malaysia (UKM), Bangi. I graduated with a Doctor of Philosophy in Principalship Leadership from the University of Malaya (UM) in 2010. I am currently a senior lecturer in the Department of Nationalism and Civilization, Center for Basic and Continuing Education, Universiti Malaysia Terengganu. Prior to that, I had served in several educational institutions such as schools, the Institute of Teacher Education (IPG), and also the University of Malaya. I am also actively involved in paper presentation, writing and publishing. My research interests are focused on leadership, education, society and Islamic civilization. This area of research requires a detailed understanding of Islamic studies and research studies in leadership. Another research interest that I have explored recently is the politics of the Malay community and also the leadership of the mosque.",institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"442081",title:"Dr.",name:"Audrey",middleName:null,surname:"Addy",slug:"audrey-addy",fullName:"Audrey Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Kwame Nkrumah University of Science and Technology",country:{name:"Ghana"}}},{id:"437993",title:"Mr.",name:"Job",middleName:null,surname:"Jackson",slug:"job-jackson",fullName:"Job Jackson",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Management College of Southern Africa",country:{name:"South Africa"}}},{id:"428495",title:"Prof.",name:"Asyraf",middleName:null,surname:"Ab Rahman",slug:"asyraf-ab-rahman",fullName:"Asyraf Ab Rahman",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"429650",title:"Dr.",name:"Jacqueline",middleName:null,surname:"Kareem",slug:"jacqueline-kareem",fullName:"Jacqueline Kareem",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Christ University",country:{name:"India"}}},{id:"421041",title:"Dr.",name:"Sunil",middleName:null,surname:"Kumar Ramdas",slug:"sunil-kumar-ramdas",fullName:"Sunil Kumar Ramdas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Jain University",country:{name:"India"}}},{id:"421833",title:"Mr.",name:"Eugene",middleName:null,surname:"Owusu-Acheampong",slug:"eugene-owusu-acheampong",fullName:"Eugene Owusu-Acheampong",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"239876",title:"Ph.D.",name:"Luciana",middleName:null,surname:"Mourão",slug:"luciana-mourao",fullName:"Luciana Mourão",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Salgado de Oliveira",country:{name:"Brazil"}}},{id:"421735",title:"Dr.",name:"elizabeth",middleName:null,surname:"addy",slug:"elizabeth-addy",fullName:"elizabeth addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"442083",title:"Dr.",name:"James",middleName:null,surname:"Addy",slug:"james-addy",fullName:"James Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"437991",title:"Prof.",name:"Muhammad",middleName:null,surname:"Hoque",slug:"muhammad-hoque",fullName:"Muhammad Hoque",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421006",title:"Dr.",name:"Anna",middleName:null,surname:"Uster",slug:"anna-uster",fullName:"Anna Uster",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470243",title:"Dr.",name:"Md Samim",middleName:null,surname:"Al Azad",slug:"md-samim-al-azad",fullName:"Md Samim Al Azad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470244",title:"Dr.",name:"Slimane",middleName:null,surname:"Ed-dafali",slug:"slimane-ed-dafali",fullName:"Slimane Ed-dafali",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421011",title:"Dr.",name:"Afatakpa",middleName:null,surname:"Fortune",slug:"afatakpa-fortune",fullName:"Afatakpa Fortune",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"446057",title:"Mr.",name:"Okedare",middleName:null,surname:"David Olubukunmi",slug:"okedare-david-olubukunmi",fullName:"Okedare David Olubukunmi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421778",title:"Dr.",name:"Fatimah",middleName:"Saeed",surname:"AlAhmari",slug:"fatimah-alahmari",fullName:"Fatimah AlAhmari",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421024",title:"Prof.",name:"Harold Andrew",middleName:null,surname:"Patrick",slug:"harold-andrew-patrick",fullName:"Harold Andrew Patrick",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421065",title:"Ms.",name:"Euzália",middleName:null,surname:"do Rosário Botelho Tomé",slug:"euzalia-do-rosario-botelho-tome",fullName:"Euzália do Rosário Botelho Tomé",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421053",title:"Associate Prof.",name:"Ken",middleName:null,surname:"Kalala Ndalamba",slug:"ken-kalala-ndalamba",fullName:"Ken Kalala Ndalamba",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421826",title:"Dr.",name:"Inusah",middleName:null,surname:"Salifu",slug:"inusah-salifu",fullName:"Inusah Salifu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"420823",title:"Prof.",name:"Gardênia da Silva",middleName:null,surname:"Abbad",slug:"gardenia-da-silva-abbad",fullName:"Gardênia da Silva Abbad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"437613",title:"MSc.",name:"Juliana",middleName:null,surname:"Legentil",slug:"juliana-legentil",fullName:"Juliana Legentil",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]}},subseries:{item:{id:"6",type:"subseries",title:"Viral Infectious Diseases",keywords:"Novel Viruses, Virus Transmission, Virus Evolution, Molecular Virology, Control and Prevention, Virus-host Interaction",scope:"The Viral Infectious Diseases Book Series aims to provide a comprehensive overview of recent research trends and discoveries in various viral infectious diseases emerging around the globe. The emergence of any viral disease is hard to anticipate, which often contributes to death. A viral disease can be defined as an infectious disease that has recently appeared within a population or exists in nature with the rapid expansion of incident or geographic range. This series will focus on various crucial factors related to emerging viral infectious diseases, including epidemiology, pathogenesis, host immune response, clinical manifestations, diagnosis, treatment, and clinical recommendations for managing viral infectious diseases, highlighting the recent issues with future directions for effective therapeutic strategies.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11402,editor:{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:null,institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}},editorTwo:null,editorThree:null,series:{id:"6",title:"Infectious Diseases",doi:"10.5772/intechopen.71852",issn:"2631-6188"},editorialBoard:[{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",institutionString:null,institution:{name:"Grenoble Alpes University",institutionURL:null,country:{name:"France"}}},{id:"188219",title:"Prof.",name:"Imran",middleName:null,surname:"Shahid",slug:"imran-shahid",fullName:"Imran Shahid",profilePictureURL:"https://mts.intechopen.com/storage/users/188219/images/system/188219.jpeg",institutionString:null,institution:{name:"Umm al-Qura University",institutionURL:null,country:{name:"Saudi Arabia"}}},{id:"214235",title:"Dr.",name:"Lynn",middleName:"S.",surname:"Zijenah",slug:"lynn-zijenah",fullName:"Lynn Zijenah",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSEJGQA4/Profile_Picture_1636699126852",institutionString:null,institution:{name:"University of Zimbabwe",institutionURL:null,country:{name:"Zimbabwe"}}},{id:"178641",title:"Dr.",name:"Samuel Ikwaras",middleName:null,surname:"Okware",slug:"samuel-ikwaras-okware",fullName:"Samuel Ikwaras Okware",profilePictureURL:"https://mts.intechopen.com/storage/users/178641/images/system/178641.jpg",institutionString:null,institution:{name:"Uganda Christian University",institutionURL:null,country:{name:"Uganda"}}}]},onlineFirstChapters:{paginationCount:9,paginationItems:[{id:"81272",title:"Pain Identification in Electroencephalography Signal Using Fuzzy Inference System",doi:"10.5772/intechopen.103753",signatures:"Vahid Asadpour, Reza Fazel-Rezai, Maryam Vatankhah and Mohammad-Reza Akbarzadeh-Totonchi",slug:"pain-identification-in-electroencephalography-signal-using-fuzzy-inference-system",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Brain-Computer Interface",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",subseries:{id:"23",title:"Computational Neuroscience"}}},{id:"78549",title:"Language as the Working Model of Human Mind",doi:"10.5772/intechopen.98536",signatures:"Amitabh Dube, Umesh Kumar, Kapil Gupta, Jitendra Gupta, Bhoopendra Patel, Sanjay Kumar Singhal, Kavita Yadav, Lubaina Jetaji and Shubha Dube",slug:"language-as-the-working-model-of-human-mind",totalDownloads:169,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Brain-Computer Interface",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",subseries:{id:"23",title:"Computational Neuroscience"}}},{id:"77731",title:"A Brief Summary of EEG Artifact Handling",doi:"10.5772/intechopen.99127",signatures:"İbrahim Kaya",slug:"a-brief-summary-of-eeg-artifact-handling",totalDownloads:244,totalCrossrefCites:2,totalDimensionsCites:4,authors:null,book:{title:"Brain-Computer Interface",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",subseries:{id:"23",title:"Computational Neuroscience"}}},{id:"76953",title:"Evaluating Steady-State Visually Evoked Potentials-Based Brain-Computer Interface System Using Wavelet Features and Various Machine Learning Methods",doi:"10.5772/intechopen.98335",signatures:"Ebru Sayilgan, Yilmaz Kemal Yuce and Yalcin Isler",slug:"evaluating-steady-state-visually-evoked-potentials-based-brain-computer-interface-system-using-wavel",totalDownloads:205,totalCrossrefCites:4,totalDimensionsCites:4,authors:null,book:{title:"Brain-Computer Interface",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",subseries:{id:"23",title:"Computational Neuroscience"}}},{id:"77059",title:"Entropy and the Emotional Brain: Overview of a Research Field",doi:"10.5772/intechopen.98342",signatures:"Beatriz García-Martínez, Antonio Fernández-Caballero and Arturo Martínez-Rodrigo",slug:"entropy-and-the-emotional-brain-overview-of-a-research-field",totalDownloads:161,totalCrossrefCites:0,totalDimensionsCites:1,authors:null,book:{title:"Brain-Computer Interface",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",subseries:{id:"23",title:"Computational Neuroscience"}}},{id:"76863",title:"Therapeutic Effect of Infra-Low-Frequency Neurofeedback Training on Children and Adolescents with ADHD",doi:"10.5772/intechopen.97938",signatures:"Horst Schneider, Jennifer Riederle and Sigrid Seuss",slug:"therapeutic-effect-of-infra-low-frequency-neurofeedback-training-on-children-and-adolescents-with-ad",totalDownloads:238,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Brain-Computer Interface",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",subseries:{id:"23",title:"Computational Neuroscience"}}},{id:"77069",title:"Training the Conductor of the Brainwave Symphony: In Search of a Common Mechanism of Action for All Methods of Neurofeedback",doi:"10.5772/intechopen.98343",signatures:"Jen A. Markovics",slug:"training-the-conductor-of-the-brainwave-symphony-in-search-of-a-common-mechanism-of-action-for-all-m",totalDownloads:163,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Brain-Computer Interface",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",subseries:{id:"23",title:"Computational Neuroscience"}}},{id:"76834",title:"Brain Computer Interface Drone",doi:"10.5772/intechopen.97558",signatures:"Manupati Hari Hara Nithin Reddy",slug:"brain-computer-interface-drone",totalDownloads:245,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Brain-Computer Interface",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",subseries:{id:"23",title:"Computational Neuroscience"}}},{id:"74227",title:"Multivariate Real Time Series Data Using Six Unsupervised Machine Learning Algorithms",doi:"10.5772/intechopen.94944",signatures:"Ilan Figueirêdo, Lílian Lefol Nani Guarieiro and Erick Giovani Sperandio Nascimento",slug:"multivariate-real-time-series-data-using-six-unsupervised-machine-learning-algorithms",totalDownloads:549,totalCrossrefCites:1,totalDimensionsCites:2,authors:null,book:{title:"Brain-Computer Interface",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",subseries:{id:"23",title:"Computational Neuroscience"}}}]},publishedBooks:{paginationCount:7,paginationItems:[{type:"book",id:"7102",title:"Pneumonia",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7102.jpg",slug:"pneumonia",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Nima Rezaei",hash:"9fd70142814192dcec58a176749f1b60",volumeInSeries:13,fullTitle:"Pneumonia",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",institutionURL:null,country:{name:"Iran"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9615",title:"Chikungunya Virus",subtitle:"A Growing Global Public Health Threat",coverURL:"https://cdn.intechopen.com/books/images_new/9615.jpg",slug:"chikungunya-virus-a-growing-global-public-health-threat",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Jean Engohang-Ndong",hash:"c960d94a63867dd12a8ab15176a3ff06",volumeInSeries:12,fullTitle:"Chikungunya Virus - A Growing Global Public Health Threat",editors:[{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",institutionString:"Kent State University",institution:{name:"Kent State University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9619",title:"Epstein-Barr Virus",subtitle:"New Trends",coverURL:"https://cdn.intechopen.com/books/images_new/9619.jpg",slug:"epstein-barr-virus-new-trends",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Emmanuel Drouet",hash:"a2128c53becb6064589570cbe8d976f8",volumeInSeries:11,fullTitle:"Epstein-Barr Virus - New Trends",editors:[{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",institutionString:null,institution:{name:"Grenoble Alpes University",institutionURL:null,country:{name:"France"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9613",title:"Dengue Fever in a One Health Perspective",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9613.jpg",slug:"dengue-fever-in-a-one-health-perspective",publishedDate:"October 28th 2020",editedByType:"Edited by",bookSignature:"Márcia Aparecida Sperança",hash:"77ecce8195c11092230b4156df6d83ff",volumeInSeries:7,fullTitle:"Dengue Fever in a One Health Perspective",editors:[{id:"176579",title:"Ph.D.",name:"Márcia Aparecida",middleName:null,surname:"Sperança",slug:"marcia-aparecida-speranca",fullName:"Márcia Aparecida Sperança",profilePictureURL:"https://mts.intechopen.com/storage/users/176579/images/system/176579.jpg",institutionString:"Federal University of ABC",institution:{name:"Universidade Federal do ABC",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7887",title:"Hepatitis B and C",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7887.jpg",slug:"hepatitis-b-and-c",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Luis Rodrigo",hash:"8dd6dab483cf505d83caddaeaf497f2c",volumeInSeries:5,fullTitle:"Hepatitis B and C",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo",profilePictureURL:"https://mts.intechopen.com/storage/users/73208/images/system/73208.jpg",institutionString:"University of Oviedo",institution:{name:"University of Oviedo",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:null,institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6667",title:"Influenza",subtitle:"Therapeutics and Challenges",coverURL:"https://cdn.intechopen.com/books/images_new/6667.jpg",slug:"influenza-therapeutics-and-challenges",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"105e347b2d5dbbe6b593aceffa051efa",volumeInSeries:1,fullTitle:"Influenza - Therapeutics and Challenges",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:null,institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.jpg",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:8,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:286,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:9,numberOfPublishedChapters:101,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"4",title:"Fungal Infectious Diseases",scope:"Fungi are ubiquitous and there are almost no non-pathogenic fungi. Fungal infectious illness prevalence and prognosis are determined by the exposure between fungi and host, host immunological state, fungal virulence, and early and accurate diagnosis and treatment. \r\nPatients with both congenital and acquired immunodeficiency are more likely to be infected with opportunistic mycosis. Fungal infectious disease outbreaks are common during the post- disaster rebuilding era, which is characterised by high population density, migration, and poor health and medical conditions.\r\nSystemic or local fungal infection is mainly associated with the fungi directly inhaled or inoculated in the environment during the disaster. The most common fungal infection pathways are human to human (anthropophilic), animal to human (zoophilic), and environment to human (soilophile). Diseases are common as a result of widespread exposure to pathogenic fungus dispersed into the environment. \r\nFungi that are both common and emerging are intertwined. In Southeast Asia, for example, Talaromyces marneffei is an important pathogenic thermally dimorphic fungus that causes systemic mycosis. Widespread fungal infections with complicated and variable clinical manifestations, such as Candida auris infection resistant to several antifungal medicines, Covid-19 associated with Trichoderma, and terbinafine resistant dermatophytosis in India, are among the most serious disorders. \r\nInappropriate local or systemic use of glucocorticoids, as well as their immunosuppressive effects, may lead to changes in fungal infection spectrum and clinical characteristics. Hematogenous candidiasis is a worrisome issue that affects people all over the world, particularly ICU patients. CARD9 deficiency and fungal infection have been major issues in recent years. Invasive aspergillosis is associated with a significant death rate. Special attention should be given to endemic fungal infections, identification of important clinical fungal infections advanced in yeasts, filamentous fungal infections, skin mycobiome and fungal genomes, and immunity to fungal infections.\r\nIn addition, endemic fungal diseases or uncommon fungal infections caused by Mucor irregularis, dermatophytosis, Malassezia, cryptococcosis, chromoblastomycosis, coccidiosis, blastomycosis, histoplasmosis, sporotrichosis, and other fungi, should be monitored. \r\nThis topic includes the research progress on the etiology and pathogenesis of fungal infections, new methods of isolation and identification, rapid detection, drug sensitivity testing, new antifungal drugs, schemes and case series reports. It will provide significant opportunities and support for scientists, clinical doctors, mycologists, antifungal drug researchers, public health practitioners, and epidemiologists from all over the world to share new research, ideas and solutions to promote the development and progress of medical mycology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",keywords:"Emerging Fungal Pathogens, Invasive Infections, Epidemiology, Cell Membrane, Fungal Virulence, Diagnosis, Treatment"},{id:"5",title:"Parasitic Infectious Diseases",scope:"Parasitic diseases have evolved alongside their human hosts. In many cases, these diseases have adapted so well that they have developed efficient resilience methods in the human host and can live in the host for years. Others, particularly some blood parasites, can cause very acute diseases and are responsible for millions of deaths yearly. Many parasitic diseases are classified as neglected tropical diseases because they have received minimal funding over recent years and, in many cases, are under-reported despite the critical role they play in morbidity and mortality among human and animal hosts. The current topic, Parasitic Infectious Diseases, in the Infectious Diseases Series aims to publish studies on the systematics, epidemiology, molecular biology, genomics, pathogenesis, genetics, and clinical significance of parasitic diseases from blood borne to intestinal parasites as well as zoonotic parasites. We hope to cover all aspects of parasitic diseases to provide current and relevant research data on these very important diseases. In the current atmosphere of the Coronavirus pandemic, communities around the world, particularly those in different underdeveloped areas, are faced with the growing challenges of the high burden of parasitic diseases. At the same time, they are faced with the Covid-19 pandemic leading to what some authors have called potential syndemics that might worsen the outcome of such infections. Therefore, it is important to conduct studies that examine parasitic infections in the context of the coronavirus pandemic for the benefit of all communities to help foster more informed decisions for the betterment of human and animal health.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",keywords:"Blood Borne Parasites, Intestinal Parasites, Protozoa, Helminths, Arthropods, Water Born Parasites, Epidemiology, Molecular Biology, Systematics, Genomics, Proteomics, Ecology"},{id:"6",title:"Viral Infectious Diseases",scope:"The Viral Infectious Diseases Book Series aims to provide a comprehensive overview of recent research trends and discoveries in various viral infectious diseases emerging around the globe. The emergence of any viral disease is hard to anticipate, which often contributes to death. A viral disease can be defined as an infectious disease that has recently appeared within a population or exists in nature with the rapid expansion of incident or geographic range. This series will focus on various crucial factors related to emerging viral infectious diseases, including epidemiology, pathogenesis, host immune response, clinical manifestations, diagnosis, treatment, and clinical recommendations for managing viral infectious diseases, highlighting the recent issues with future directions for effective therapeutic strategies.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",keywords:"Novel Viruses, Virus Transmission, Virus Evolution, Molecular Virology, Control and Prevention, Virus-host Interaction"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 15th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:286,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRqB9QAK/Profile_Picture_1626163237970",institutionString:null,institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/50953",hash:"",query:{},params:{id:"50953"},fullPath:"/chapters/50953",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()