\r\n\tThis book will address the various modern, technical, and practical aspects of smart technology for capturing solar radiation and converting it into different forms of energy, as well as enabling it for renewables integration in energy generation and transformation, built environment, transportation, buildings, and agriculture.
\r\n\r\n\tThe book will cover the most recent developments, innovations and applications concerning the following topics:
\r\n\t• Solar radiation – Smart and enabling technologies for measurement, modelling, and forecasting
\r\n\tHigh-resolution measurement sensor and instrument technology (Pyranometers, Albedometers, Pyrheliometers, UV Radiometers, Sun Trackers, Spectroradiometer, Pyrgeometers, etc.), Artificial intelligence techniques for modelling and forecasting of solar radiation, Solar Irradiance forecast with satellite data, Solar potential analysis, Short-term forecasting of photovoltaic power and solar irradiance prediction with sky imagers.
\r\n\t• Renewable energy integration – Smart solutions for integration of RE in distributed generation, energy storage, and demand-side management.
\r\n\tIntegrated Photovoltaics: Smart technology for vehicle-integrated PV, Building Integrated PV, Agrivoltaics, Road-Integrated PV, Floating PV, Product-integrated PV.
\r\n\tRenewable Energy Applications in Built Environment and mobility: Solar cars, solar-powered electric charging stations, passive solar systems, solar heating, and cooling systems, building-integrated vegetation, multifunctional solar systems, solar pumps, solar lighting, solar shading, Natural lighting, Solar dryer, Greenhouse.
Interconnecting hardware devices of different features has been a challenge faced repeated times in different areas of knowledge. It started as a task to be done at the network layer, where different proprietary systems struggled to communicate with each other when equipment from different manufacturers had to cooperate in retrieving and exchanging information. Some of the most prominent organizations regarding standardization (ISO, CCITT) started working back in the late 1970s [1] in a layered solution that would allow interoperability among different pieces of equipment while (open system interconnection (OSI) model), around the same time, another layered architecture would impose its own criteria in order to solve interconnectivity challenges (transmission control protocol/Internet protocol (TCP/IP) model). While those solutions—especially the latter one, which became widely adopted in the following years—offered reasonably accurate patterns on what could be obtained from each of the layers (implementation details were left to each of the manufacturers, which only had to guarantee that their products would be compliant with the specifications described in each of the layers), few holistic implementations were offered upper than the network layer. This fact implied that despite the network and lower layers had standardized protocols that would accomplish the expected functionalities for connection‐oriented and connectionless communications, solving the challenges associated with the different formats for data representation in upper levels (as session or presentation in the OSI model, and most of the application layer in TCP/IP) would still be a major challenge, as increasingly differing devices were being used in distributed systems. As far as the Smart Grid is concerned, each of the microgrids that are involved in the larger deployment might count with appliances that have little to do with the ones that are found in another one. For example, advanced metering infrastructure may provide different services and be developed by a different company in one microgrid if compared to another one; even the same one is likely to have pieces of equipment from different vendors. Advanced end users or developers with enough know‐how are willing to create their own smart meters by integrating hardware and software solutions reliant on open source technologies to provide services, thus adding a degree on unpredictability in the information formats that are used throughout the Smart Grid. If some other devices and/or resources are taken into account (RTUs, DERs, RESs, etc.), the differences among the infrastructures and hardware components grow exponentially. Clearly, a solution that goes beyond purely network‐based communications, which are oblivious to the meaning of the information that is interchanged (only network datagrams are considered, thus leaving the data unprocessed and without knowledge inference), is required for upper layers.
\nFortunately, middleware can be used to solve these issues. Middleware can be defined as a software‐based layer located between the lower, network‐ and hardware‐based layers and the higher, application‐based ones, which has as its main functionality the abstraction of the underlying heterogeneity associated with the different hardware devices participating in a distributed deployment, in a way that a collection of homogeneous‐looking interfaces (more specifically, a set of application programming interfaces or APIs) will be offered to the end users of the application layer. The main functionality of middleware becomes evident in Figure 1: despite the different data formats used by the devices located in different levels, the middleware layer still homogenizes the collected data from lower ones, withholding the underlying heterogeneity of the whole system.
\n\nWhen all is said and done, middleware architectures are used in heterogeneous, noncentralized systems where data collection is scattered throughout a collection of different pieces of equipment responsible for harvesting data, transferring them and either taking decisions or executing commands made by human beings. When considering how energy production, transport, and consumption can be managed, it becomes clear that if it is done in a distributed manner and using the infrastructure of a smart grid, middleware can be very convenient for a plethora of tasks:\n Generic middleware architecture for the Smart Grid.Figure 1.
A middleware architecture in a distributed system effectively acts as the “glue” that puts together many different hardware and software entities. It processes the data in a way that it will be offered to users and applications (human operators, mobile apps, etc.) oblivious to the underlying complexity and different appliances used in the distributed energy generation systems.
A middleware architecture can be used to enhance the available services developed for the system. If, for example, load balance, context awareness, real‐time pricing, security, semantic capabilities or data aggregation functionalities are desired, they can be added as part of the middleware architecture in case they cannot be installed either as part of the hardware or the applications. This is a situation that happens more often than not, as applications may be too lightweight to be able to perform calculations expected from different features (statistic information, big data management) and hardware devices might be either not powerful enough to perform those calculations, or may be proprietary and/or legacy devices that cannot be reprogrammed, or else they would be regarded as “hacked” by their vendors.
A middleware architecture allows the creation or enhancement of business models, as it can be used under different kinds of service paradigms, such as Software‐as‐a‐Service or Platform‐as‐a‐Service. In addition to that, application developers can have a very easy time connecting to the middleware architecture their own pieces of work, as they only need to care about the upper level interfaces that the middleware architecture offers them.
Prosumers can manage the amount of energy in a more flexible manner, as they are able to use the services that are in the middleware to decide how much or when to pour their produced electricity into the power grid, they can coordinate with other users to offer a better price for the energy, etc.
There are several parameters that must be considered when a middleware architecture is to be developed for a system:\n
How transferred information is going to be homogenized: the data transferred by different devices located at the last mile of the distributed system may be made by different manufacturers that use their own proprietary data format. Due to that, it becomes even more evident that middleware is useful to solve this kind of challenges. However, it has to be figured out the way that data formats will be the same for all the existing devices. One of the ways that can be used to solve that issue is by using semantic resources as common information model or CIM [2]. CIM is a standard somewhat resembling unified modeling language that can be used as a way to design software in a smart grid‐based system. In addition to that, CIM can be extended by additions done in a microgrid, so they will be added to the overall available libraries. An architecture based on CIM relies heavily on semantics, which can also be used as a way to create or extend existing ontologies that will not only expand the collection of terms and associations among those terms, but also add more capabilities to the middleware using them, as the capacity of inferring knowledge from information or even raw data will be of major importance for taking decisions.
Functional and nonfunctional requirements that are to be born in mind when designing the middleware architecture: functional requirements will be turned into use cases that represent the functionalities expected from a distributed, energy‐based system. These requirements are conceived to improve the existing state of the art at micro‐ and macroservices level: on the one hand, already present services must be improved in terms of efficiency (doing the same task faster) and complexity (more complicated tasks can be performed as well). On the other hand, new services can be included in the middleware architecture that can be based on purely software capabilities (context awareness, semantic capabilities, publish/subscribe paradigm, security) or more involved in distributed energy generation (load balance, demand side management, tariff calculation).
Present and already functioning models must be studied as well. One of the most widely known is the smart grid architecture model or SGAM [3], where different layers (component, communication, information, function, business) are responsible for different attributes that model a whole Smart Grid system with a holistic point of view. While there is a considerable room for improvement and innovation, this and more models and proposals can be used as a starting point for further studies and developments.
Overall, research activities done to develop the middleware architecture must consider the current state of the art to have a good grasp of the status of the existing solutions (especially regarding the open issues and challenges that remain to be dealt with), improving it with functional and nonfunctional requirements, either being inferred from the state of the art or motivated by a research project, and obtaining use cases from those requirements, which will result in software modules that satisfy them. Special care has also to be taken to how information will become standardized in the system, as well as the possible constrains that are introduced by nonfunctional requirements. The resulting output will be a middleware architecture that will be compliant with previously formulated objectives: it will be distributed, enhanced with several software modules and capable to manage energy generation and distribution. Typically, it will result in a layered architecture that will handle hardware and application information at the lower and higher borders, whereas there will be a core area with all the services required for data management and distributed energy functionalities.
\nThis chapter is devoted to the definition of middleware architectures for distributed systems and how they can be used in an environment related to distributed generation of energy, such as the smart grid. The main features of middleware will be displayed, as well as a methodology to do research on this topic, and a collection of services design that can be used as a templated for future implementation works.
\nMiddleware location and main functionality.
When considering the requirements to build a middleware architecture focused on the functionalities to be made use of in the Smart Grid, there are some facts that must be observed. Since research activities should be used here as a tool to build a commercial, usable solution that will effectively improve the already existing power grid, three lines of work will be followed, that is to say, the state of the art regarding existing developments, functional and nonfunctional requirements and the homogenization procedures that will be carried out for the main functionalities of the middleware. Following each of these, three lines will have different impacts on the methodology, as each of them deals with a different side of the challenges for designing the architecture. For example, the study on the state of the art will result in acquiring knowledge not only regarding the existing solutions, but also their most usual strengths and weaknesses. Similarly, functional and nonfunctional requirements will imply the elaboration of a plethora of use cases that will result in a sequence of actions that will have their usability established by the nonfunctional requirements defining the system (more specifically, nonfunctional requirements will describe how the middleware architecture present in the Smart Grid will be and functional requirements will depict what that middleware architecture is capable of doing). Finally, homogenization solutions define what kind of data models are going to be used for information representation once the processed data are handled to the upper layers of the deployment. The synergy of these three lines of research will result in a middleware architecture suitable for the Smart Grid, as depicted in Figure 2.
\n\nThe different software components and features will be a matter to be described in the next chapter, once the procedures to design a middleware architecture for the Smart Grid are fully understood.
\nThe study of the already available solutions regarding middleware architectures for the Smart Grid should come as the first step to be done when developing a new one. The logic behind this reasoning is getting a grasp of the features and possibilities of the already developed works, as it is more cost‐efficient in terms of monetary and time resources counting with some previous point to start the actual development, rather than having to “reinvent the wheel” every time a new architecture has to be designed and implemented. Depending on the needs of one deployment, the capabilities of one solution might be enough for the requirements of the project, albeit it should be considered as a symptom of having not so original work or research objectives. Besides, it has to be taken into account that some of the solutions might have not been disseminated enough, and in fact they could be only partial implementations of theoretical proposals, with little to no code available to be reused or at least be employed as a template for a development done from scratch. The tools that can be used to get a grasp on the available solutions are as follows:\n
Scientific papers: these are one of the most common know‐how resources that can be used to have an idea of the work carried out in a particular area of knowledge. Typically, it is best to use a scientific‐themed search engine in order to look for scientific papers, so that a collection of them will be composed and they can be consulted in search for relevant information. Relevant search engines with scientific papers to show are Google Scholar [4] or the IEEE Xplorer Digital Library [5]. It is not rare that some of these search engines have their full load of content only accessible under a subscription, where a monthly fee has to be paid to access to all the data. Nevertheless, some institutions (research centers, universities, etc.) pay for that service and offer it in a transparent manner to their own members (research staff, students, etc.). Several academic publishing companies may also have a scientific search engine in their websites. As far as information collection from other purposes is concerned, there are two kind of scientific papers that can be taken into account, which can be categorized as survey‐themed and innovation‐themed papers. Usually, survey‐themed papers have already collected the state of the art of a particular topic that could match with a varying degree of accuracy the one that the researchers are aiming their efforts to. They can be expected to contain a list of solutions already published and tested depending on the location of their area of interest (e.g., theoretical proposals may have been tested in a laboratory or in a research institution, whereas project‐related ones might have to prove the exploitability of their concepts from a more business‐oriented point of view, or have to be deployed during a long period of time). Innovation‐themed papers are more focused on describing a novel idea that implies a step forward in the boundaries of knowledge on a certain topic. These latter ones often contain a Related Works section where available solutions (at the time of having the innovation‐themed paper published) are reviewed to an extent. Experienced readers of scientific papers are usually capable of distinguishing which content or kind of paper is more interesting for their goals.
Online and offline literature: One of the most obvious ways to obtain information from a topic is consulting books on it. These resources might be found both as online (eBooks, online journals) and offline resources (hardcopy books and journals). Academic publishers and journals are one of the longest existing sources of relevant information in research for different areas of knowledge. It is not uncommon to find out that some of them started publishing scientific works during the nineteenth century [6]. As far as middleware is concerned,
Research Projects: Research projects funded all around the world by public national or supranational authorities [12, 13], semiprivate or private research institutions or universities usually offer some public resources, as part of the tasks that have to be done regarding dissemination and documentation of the very project that is being funded. The easiest way to obtain material from research projects is checking their own websites [14, 15], although members of the consortium made by all the partners participating in the project can be contacted as well, provided that they offer contact details. The available online materials that can be downloaded from the websites of those projects can be very diverse; the most usual ones include public deliverables (documents with features of different parts or tasks from the project that describe the development tasks that have been carried out), an index of the publications associated with the project (showing the name of the publication, its authors and the journal where it was accepted) and the partners that are included in the consortium responsible for the execution of the project.
Repositories and hosting services: as far as implementation works are concerned, a possible starting point to create a new software solution can be obtaining feedback from the online available code in order to get an idea on how to create a software development, design software functionalities or even debug some already developed code. The most widely known repository of these characteristics is GitHub [16], where code that is willingly uploaded by a large number of developers can be obtained, improved and shared again, as long as the person interested in obtaining and sharing data creates an account in the site. Although repositories can be a useful place to get some immediate knowledge on a specific task, the code that is shown is usually provided “as is,” without any guarantee of it working flawlessly (in the end, it makes sense that is done like that, as it is obtained cost‐free) or completely fulfilling the tasks it was expected to perform.
Social networks: There are some scientific research social networks that can also be used as a way to collect information from the current state of the art in one area of knowledge, as the members of those networks can be scientists with a high level of expertise [17] able to provide some background information. As it happens with repositories and hosting services, scientific social networks must be approached with a degree of caution, since reliability of social networks as a way to obtain feedback is usually way lower than the one obtained from more orthodox sources, as the quantity and quality of the answers relies on quantity and quality of the peers willing to provide their know‐how in one topic. It is not uncommon to obtain misleading or plainly wrong answers to a question that will hinder the undergoing research. Social networks should be used in close cooperation—and subordination—to other more scientifically sound sources rather than being taken as the only source of research material.
From the resource usage point of view, the requirements for a Smart Grid middleware architecture may vary from one deployment to another, but in the end, they result similar in most of the cases. Functional requirements are strongly related to the functionalities that are expected from a system of these features. They involve a certain number of capabilities that the system (by system, it is meant the microgrid that is deployed as part of a wider Smart Grid) offers to some actors, who may or may not be human beings (machinery located outside the Smart Grid, e.g., may make use of services offered by it, such as tariff policy elaboration and modification in real time).
\nOn the other hand, nonfunctional requirements are very specific features that are imposed on the system, which will have an impact in system performance (by setting a minimum level of certain parameters or limiting the capabilities of the system). Rather than describing or being related to system functionalities, they set the boundaries for them, so that the functional requirements will be fulfilled with success within the borders set by the nonfunctional ones. The reasons for having strict nonfunctional requirements are varied and are usually due to technical (hardware capabilities of the devices used in the microgrid, open or proprietary hardware, location of the required appliances in a deployment) or economical (budget limits, Service Level Agreements, reutilization of already existing premises and/or equipment) motivations.
\nWhen actors become engaged to the functional requirements the latter start being referred to as use cases. According to the principles of software engineering, use cases can be defined as a group of events and actions performed within the boundaries of a system for the benefit of some actors out of it, but using the system. In this context, functional requirements define those events and actions to be made by the power grid once it has been enhanced with a middleware architecture, so the latter is pivotal to obtain the desired performance from the former. A few of the most common use cases are as follows:\n
These use cases can be expressed in a more formalized manner by means of unified modeling language (UML). As it is implied by its name, UML is a software modeling language that is profusely used for software design as a previous step to implementation works [18]. Since one of its main goals is describing in a graphical and accurate manner the features of one system, as well as the relationships among its different components, it comes in handy for the representation of the uses cases that will be studied at the middleware architecture level. UML makes use of many different diagrams to explain the different functionalities and viewpoints of one system; for example, computational analysis can be used to have a reference of the different subsystems that are used in the overall middleware architecture, along with the relationships that are held among them. Thus, subsystem diagrams are used in order to depict those relations and subsystems. Additionally, functional analysis is used to describe some other features of the system related with the functional requirements: it is here where the use case diagrams that show the defined use cases, along with their links to the actor taking part of the system as external stakeholders, are represented. Use case diagrams are employed to describe elements of the Smart Grid (as it is shown in the Figure 3), display the actors involved in the system, the use cases that have been contemplated, the boundaries of the system containing those use cases and the relations between use cases and actors. While the content of the use cases might differ greatly from one are of knowledge from other (a microgrid is very different from a wireless sensor network or a group of cooperating robots), their representation varies little among them.
\nUse case diagram for common use cases.
At the same time, component diagrams depict the different software elements that make a subsystem and how they obtain resources one from the other by means of component interfaces that transfer the information among the existing components. Some other diagrams are advised to be used for functional analysis; for example, sequence diagrams show the set of steps that are made for a use case to be completed. Each of those steps is a software instance that is needed to get through to complete the flow of actions that will end up providing the service, as each of them provides a significant inner action for the fulfillment of the requirement defined by the use case. Sequence diagrams must be interpreted in a bi‐dimensional fashion: the horizontal axis represents the direction of the information exchange (which uses the software instances and the name given to the actions that communicate one instance with the other in both directions), whereas the vertical one represents the time that is used by each of the software entities in the flow of the represented use case. Last but not least, those software entities and action names are better represented by the usage of class diagrams, which gather the different actions to be taken as methods or functions within the software instances that were used in the sequence diagram as instances. Class diagrams are usually very close to the implementation stage, which is typically carried out after the classes and methods defined by this diagram become definitive. An example of sequence diagrams for the already studied use cases is shown in Figure 4.
\nSequence diagrams for the previously shown use cases.
Here, it can be seen in the first sequence diagram how a typical device registration procedure would take place: the interface of the device that is going to be registered keeps the hardware in touch with the communication services enabled in the Smart Grid. By means of this interface, a first request message is sent. This message is transferred throughout the communications system (which will typically involve IP communications at the network level and TCP/UDP at the transport one) until it reaches the middleware component responsible for receiving request messages from devices (hardware abstractor). This component will send the received message to the software module in charge of formatting the messages delivered from levels located lower than the middleware layer (standardization). This is the message, formatted according to what has been defined for the middleware (and containing all the information regarding the services that can be offered by the device that is going to be registered) that will be used for registration. Commonly, a registration acknowledgement message will be sent as a reply to the device that requested the registration and data transfer will be ready to be done, although depending on the degree of control that is given to the end user, the registration request may be sent to the application access point to be evaluated by a human operator. The other two sequence diagrams deal with data interchanges and alarm triggering. Data are requested from an application connected to the middleware via the application access point and is sent though the standardization module in order to have it sent according to the format that is understandable by the hardware device that is being requested. Hardware abstractor sends the request through the network layer until it is received by the interface at the very device capable of providing the service. Once the data are collected, they can be sent back to the middleware architecture by means of the communications network until they are received again at the application access point, which will interface with the application to deliver the data. Alarm triggering is a process used to inform the end user about an abnormal situation that has happened in the grid. Depending on the nature of the alarm, it might be sent by either the hardware component that has detected the issue or other system entities, such as a middleware module. When the issue is detected by a hardware device (as depicted in Figure 4), a message containing information about it will be sent through the communication system to the middleware components previously depicted (hardware abstractor, standardization) until it reaches the application access point, which will send it the application as an alarm that has been push from the underlying system.
\nAs far as the Smart Grid is concerned, the boundaries of those use cases are frequently defined by the most hardware‐based elements of the deployment (power grid appliances, smart meters, etc.) on one side, and the closest software entity possible to an end user (mobile app, website, etc.). Hence, the sequence diagrams are representing the relations among those border elements by means of action interchanges among some other, more internal software instances.
\n\nAnother very accurate representation of the different stages used to design a middleware architecture can be found in [19]. Here, it is explained how the different functionalities and software modules are conceived, related and located in the middleware system.
\nThe other kind of requirements that was presented is the nonfunctional ones. As it happened with the former, they are present in almost any imaginable distributed system, although they can appear in any other system that is not distributed, as long as some boundaries are imposed to have a system working under realistic circumstances. Nonfunctional requirements are a group of features that strictly define the main features that establish what a system is. This is something that must be born in mind, as sometimes they can be loosely interpreted as the boundaries of one system. Nonfunctional requirements have been used for quite a while in the design of both hardware and software products. For example, nonfunctional requirements established during the design stages of the popular Citroën 2CV where used to devise
As for the middleware architectures for the Smart Grid, nonfunctional requirements are often focused on the properties that both distributed systems and the power grid have: on the one hand, features as scalability, resilience or data security impact the system from a distributed software development point of view. On the other hand, electricity distribution characteristics as power consumption or load peak limits have their own impact in the design of the overall system too.
\nAs previously stated, the main reason for middleware architecture to exist is its capacity to homogenize the different information representation formats that are received from lower layer elements. Among the several software tools that can be used to carry out this functionality, semantics is one of the most effective. In information and communication technologies, semantics can be defined as the capability of a system to infer knowledge form gathered data so that the meaning of the transmitted data will be apprehended by it and the system will be able to use it in the future to optimize its overall performance. The core idea around semantics is that raw data are not only meant to be transmitted from one remote location to another but also processed in a way that will make the system able to infer the actual meaning of the information that is being transmitted throughout the distributed system. For example, should raw data be transmitted about temperature in an equipment, a semantically enhanced system will be able to both transfer the data and assess them, so that an educated decision can be taken with regards of the information transmitted. In a nutshell, a middleware architecture using semantics will have learnt, or inferred, that a very higher than usual temperature means that there is some kind of trouble with the appliance or the geographical area the temperature reading was retrieved from.
\nSemantics become implemented in a more tangible way by means of ontologies. An ontology is a collection of terms and definitions of wide use in a software system (which may be distributed or not, but it is assumed here that it will be so, as the rules of ontologies also apply to them), along with the relationships between those terms, to the point that it should be considered more as a graph with interrelated elements rather than a dictionary [21]. In addition to that, an ontology can be updated to incorporate new elements or even drop deprecated ones, so the knowledge that is acquired by the system can be refreshed as it works during its usual lifespan, thus becoming “wiser” as time goes on.
\nAs described in [19], a semantic module usually consists of several parts:\n
An action collector that will retrieve the actions that are being carried out by the system. The pace for collecting actions data can be adapted to the needs of the system, ranging from several times during the day to an almost real‐time pace. The smaller of that time span the work strain is put to the whole module (and by proxy, the middleware architecture), though.
An inference managing entity that infers knowledge for the system, based on the actions that have been collected, the rules fixed for the system and another repository for stored facts.
A rules repository that stores the norms that have been fixed for the system. They are of major importance to decide whether an action should be triggered or not.
A facts repository where the past actions that were gathered by the action collector are kept.
An action trigger component that will be used to send commands whenever the semantic module rules it is necessary. This component comes especially in handy for managing alarms and events.
The most popular semantics element used in the Smart Grid is the CIM [2], which defines its own ontology for most of the pieces of equipment that can be found in a power grid. The representation of CIM is identical to what can be expected from a UML one; this can be deemed as a token of the increasing involvement of software engineering in the power grid.
\nWaterfall model for software design and development tasks for middleware.
Overall, the methodology used to design a middleware for the Smart Grid may be flexible to an extent. For example, the traditional waterfall model can be used to complete the intermediation layer until all its expected functionalities have been performed (see Figure 5), even though it is advisable to have some feedback in each of the stages in the very likely case that any bug or deviation from the scheduled functionalities has to be dealt with. Usually, when tackling the implementation stage, there are five steps that must be taken into account to successfully complete the development works of the middleware architecture:\n
A decision must be made regarding which hardware devices present in the Smart Grid deployment will be used to have the middleware installed. There might be some appliances that are proprietary solutions without any possibility to have new software installed.
The software platform that is going to be used to have all the software components installed must also be chosen. It should be capable to work in a distributed way, sending messages from one part of the platform to other ones located remotely. Enterprise service bus architectures (ESBs) work in a suitable manner to solve this challenge, and they can send messages among different software components embedded in them.
The software packages that are developed to implement the services that are going to be located in the middleware architecture must be codified once the hardware devices and the software platform have been defined.
Connectivity among the software modules that have been implemented must be guaranteed in order to have them all able to send and receive information whenever there are data to be transmitted through the middleware architecture, either toward the application layer being used by the last mile clients or the network layer interconnecting the deployed appliances.
Connectivity among the different elements outside the middleware must be accomplished so that there will be a seamless integration of all the subsystems that conform the Smart Grid (or at least, the microgrid where they have been deployed) and data can be transferred from/to the applications developed on top of the middleware architecture to/from the hardware devices present in the system deployment done.
The deployments where middleware architectures are used have some important similarities, as it has already been hinted in several sections. These can be easily obtained by taking into account the most usual functional requirements that are expected from those deployments, that is, (a) hardware abstraction for communications between the intermediate software layer and the pieces of equipment in the Smart Grid, (b) semantic capabilities to make the overall system smarter, (c) upper‐level access points to the applications that are interconnected to the middleware, (d) registration of the detected devices, (e) other services as context awareness, security, etc. Arguably, wherever a middleware architecture becomes deployed, those services are taken for granted by the end user, who will count on them without noticing which software or hardware entity is providing them. Taking that fact into account, a generic middleware layer can be defined that will be matching most of the requirements that have been imposed to the system. The appearance of the architecture is displayed in Figure 6:
\nWaterfall model for software design and development tasks for middleware.
The services that are going to be offered have been divided into four different kinds, each of them composing groups of services that are located in different places according to their characteristics. They are as follows:\n
The most usual way for them to be using each of the functionalities is expressed in Figure 7. As it can be seen, the subsystems need functionalities from each other, namely, the high‐level services subsystem is using the software and distributed energy subsystems to obtain the services contained in each of those parts of the middleware. At the same time, those two subsystems are interacting with the low‐level services to collect the information fetched from outer, lower layers. Interestingly enough, software services are often used by the services that are more typical of the smart grid, but they are use more as a way to offer support than providing an actual service to the end user, so software services rarely employ the distributed energy services (hence the unidirectional arrow in Figure 7). In any case, depending on the use case that is being dealt with, some components of the middleware architecture may be required and some others may not, in the different ways that were described by the sequence diagrams. The services that have been described here are the ones that are most popular and useful for a system of the features presented here (distributed systems that enhance the regular power grid). Nevertheless, there might be some other ones that are more important for punctual environments or developments.
\nSoftware subsystems within the generic middleware architecture for the Smart Grid.
The ideas described in this chapter have been put into practice in several application domains. One of them is regarding a European project called e‐GOTHAM [26] that involved building a Smart Grid where several pieces of advanced metering infrastructure and power grid‐related appliances were integrated by means of a semantic middleware architecture. The designed semantic middleware architecture was published as a scientific research work [27] and an implementation of it, with all the necessary software components for that specific iteration, was used in the Finnish city of Ylivieska [28]. The overall structure of the power grid network (with the middleware architecture installed in a machine) was also reported as a standardization and dissemination activity [29] and is presented in Figure 8 in a high‐level manner.
\nMicrogrid deployment with the middleware architecture.
As described, there are several buildings located in the city of Ylivieska (Concert Hall, schools, a power plant, etc.) using several hardware parts (such as wireless sensor networks) that can be regarded as AMI. That infrastructure is interconnected by means of local controllers that, depending on their capabilities or whether they are proprietary or open solutions, either can have middleware modules installed, or will rely on the middleware components installed in the central controller. It is this central controller where most of the software modules of the middleware are present, in accordance with the referred architecture (device registration, semantic capabilities, access points to the application layer, etc.). The framework that has been used to have all the software components contained was an open source Enterprise Service Bus, currently known as JBoss Fuse [30]. Collection of data was made from those buildings and presented in a web application with some ancillary functions added (e.g., energy consumption forecast). Other projects, such as I3RES [31], have used similar ideas in order to build middleware architectures for the Smart Grid that have been used in living labs such as Steinkjer, a Norwegian city that often participates in this kind of purposes [32].
\nThe usage of middleware architectures for the Smart Grid offer clear benefits on the deployments where they are installed: they guarantee that many different pieces of hardware can cooperate seamlessly (regardless of the manufacturer that makes them or the data representation formats that they use), offer different services when applications of devices cannot deliver them, upgrade the system so that it will be able to infer information from the transferred data to be used in the future and improve the services that can be used by the power grid, turning them into a smarter entity capable of providing more information and making smarter decisions. In addition to that there are several middleware modules (hardware abstraction modules, context awareness, data aggregation, decision making modules) that are almost mandatory if the full potential of middleware is to be obtained. Fortunately, its widespread usage makes possible that, by collecting information from other proposals or studying the state of the art, can either have some previously developed modules adapted to the need of the middleware architecture in one particular system, or develop new ones with a reduced amount of work, as some guidelines have been offer in this chapter to do so.
\nThe key contribution of this chapter is the summarization of prominent knowledge that has been noticed throughout distributed systems and software architectures research to come to the conclusion that, since there is a plethora of services that will almost always be required, a generic middleware architecture, with a very well defined set of functionalities, can be used whenever middleware is required. This idea can be used for successive deployments that might improve the Smart Grid even further, shortening development times and making a more cost‐efficient use of economic resources.
\nThe laser technology for manufacturing is classified into two categories; e.g., thermal and athermal processings [1]. CO2-laser with continuous power supply and fiber-lasers with use of short pulses are typical processing for welding, machining, and joining by formation of thermally hot spots [2]. Various fiber lasers [3] have been developed and applied to laser welding, laser machining, laser marking, and so on [3]. Most of them utilize the nanosecond solid-state oscillators and make thermal machining of materials. In recent, pico- and femtosecond laser machining [4, 5, 6] is widely utilized for athermal removal of materials with high dimensional accuracy in practice.
\nThere are two keywords to classify the laser processing; i.e., the wave length of light and the pulse duration time. CO2 laser has the longest wave length of 10.6 μm, while excimer laser by KrF, 248 nm. Most of laser wave length (λ) ranges from the far ultra-violet regime less than 200 nm to infra-red regime more than 20 μm. Since every material has its own relaxation rime (τ0), most of laser power can be absorbed by the material having the equivalent τ0 to λ. Then, this targeting work material is athermally machined by selecting the laser with suitable wave length; otherwise, the work is only thermally cut or drilled. A micromachining essentially requires for fast-rate removal of materials with sufficient accuracy in dimension and geometry; the repetition frequency as well as the wave length must be optimally selected to make suitable laser micromachining to each work-material. With use of second harmonic generator (SHG), third harmonic generator (THG), and forth harmonic generator (FHG), the fundamental wavelength of 1064 nm is controllable to be 532, 355 and 266 nm, respectively.
\nThe pulse duration time (Δt) is important for short-pulse laser micromachining. As shown in Figure 1a, the pulse power increases significantly with reduction of Δt. When the laser energy with Δt = 1 ms is 1 mJ, the laser power (P) is only 1 W; P reaches to 1 GW only by shortening Δt down to 1 ps.
\nTypical characteristics of ultra-short pulse laser machining. (a) Significant increase of laser power by reduction of Δt down to 1 ps, (b) ablation as an athermal removal of materials, and (c) laser intensity profile.
Under high power laser irradiation, most of materials are athermally removed, or, ablazed, as depicted in Figure 1b. The dimensional accuracy in laser micromachining is determined by focusing the laser spot for this ablation process. This laser irradiation has a finite spot size which is dependent on λ and Δt. The laser intensity distributes even in the focused spot; e.g., the well-controlled laser intensity distributes in Gaussian profile as depicted in Figure 1c.
\nIn the following, our developing ultrashort pulse laser machining systems are employed to make microdrilling and microtexturing into various kinds of work materials. In particular, the laser microtexturing technology is applied to microjoining process of dissimilar polymers, and to microdimple formation for friction control of sliding parts and components and for reservoir of wear debris during dry cutting. Further applications including the surface property control by using the nano-/microtexturing are discussed in this chapter.
\nOur developed pico- and femtosecond laser machining systems are stated with some comments on their capacity and configuration.
\nA single picosecond is equivalent to the relaxation time of molecular bonding stage; its pulsed power is readily absorbed by most of work materials. Three types of picosecond laser machining systems were developed; a standard system and its configuration are shown in Figure 2. The machining speed is dependent on the repletion frequency and average power. The dimensional accuracy in machining is determined by the beam spot size. To be discussed later, this spot size depends on the optical system; e.g., the minimum spot size can be controlled down to 1 μm when every lens is fixed on the stage. However, when the lens position is controlled during machining, the spot size becomes wider; e.g., it is limited by 10 μm when using the galvanometer.
\nOur developed picosecond laser machining system and its capacity and configuration.
A single femtosecond or subpicosecond lasers are developed for innovative research and development; most industrial applications stand on this laser machining in the order of 100 femtoseconds. Our developed system and its configuration are shown in Figure 3.
\nOur developed femtosecond laser machining system and its capacity and configuration.
Since the focused spot of work materials is subjected to ultra-high power irradiation, how to scan the beam spot becomes more important when using this laser machining system. Higher repetition frequency of laser beams as well as higher scanning speed result in fast-rate dimensionally accurate machining. At present, a laser oscillator with the repetition frequency of 40 MHz has been already developed for machining. How to make fast control of this short pulse laser becomes an essential issue in laser machining design.
\nIn parallel with the development of laser oscillators and machining unit, the optical unit design is also important for accurate laser machining. Two unit designs are introduced in Figure 4; e.g., an optical control unit with use of galvanometer to distribute the laser beam as designed, and a beam rotator for laser drilling with accurate circularity. The former unit is a standard approach for laser machining with moderate rate; new controller must be developed to make much faster rate laser machining. The latter is a powerful tool to rotate the optical units and to move the laser beam in the axisymmetric manner.
\nTypical two optical control units for laser micromachining. (a) Optical control unit with use of galvanometer and (b) beam rotator.
Various controlling tools of laser beam can be designed and developed for each application of laser machining.
\nThese pico- and femtoseconds with the pulse duration in the order of 10−12 and 10−15 s provide a reliable means to drill the through-holes into the ceramics, the metallic alloys, and the plastics [7]. Compared to the micromilling and the microelectrical discharge machining (micro-EDM), finer through-holes with higher circularity are formed without residuals at the inlet of holes and without deterioration on their inner surfaces [8]. In addition, no micromilling tools and no thin EDM wires are needed to drill the lots of through-holes onto the relatively large area. In this laser drilling process, the surface quality of through-holes as well as their circularity is strongly dependent on the laser beam control, as summarized in [9]. In the conventional fiber-laser machining, the inlet of through-holes is deteriorated by the redeposits and the residuals [10]. Even when using the picosecond pulse lasers, the through-hole shape is also damaged by the unstable laser beams [11, 12]. Typical damage of through-holes comes from the branching from the straight hole drilled in the initial stage to two holes. The deviation of beam focusing and positioning directly induces these defects [7, 8, 13]. Our developed picosecond laser machining system for industrial applications is applied to drill the through-holes into the ceramic plates. The beam rotator is used as a trepanning system for laser drilling. The alumina plate with the thickness of 1 mm is employed as a substrate. Scanning electron microscopy (SEM) is used to measure the diameter of through-holes as well as their aspect ratio. The replica method is also utilized to describe the geometric alignment and homogeneity of through-holes. The drilled through-holes with the uniform diameter of 50 μm and the aspect ratio of 10.0 are accurately aligned into the alumina plate. The present trepanning device works to control the diameter of irradiation for fine drilling of the tapered and inversely tapered through-holes into steels.
\nThe alumina plate is prepared for the laser drilling under the experimental setup in Figure 5. The beam rotator as well as projection lens unit is utilized to improve the focused beam quality. Through the CCD and display, the microdrilling process is monitored during operation.
\nA typical experimental setup for laser microdrilling.
Let us first evaluate on the difference of drilling behavior between the fiber lasers and the picosecond laser. The through-hole with the diameter of 50 μm is drilled into alumina plate. When using the normal fiber lasers, the surroundings of hole are completely damaged with deposits on themFigure 6a. While, the accurate hole with circularity of 1 μm is drilled by the picosecond laser without damage and deposits, as shown in Figure 6b.
\nComparison of the drilled through-hole between fiber lasers and the picosecond laser. (a) Fiber laser drilling, and, (b) Picosecond laser drilling.
No residuals or no redeposits at the vicinity of through-hole inlets prove that the present picosecond lase drilling is free from the thermal effects to deteriorate the surface quality of work specimen. The picosecond laser drilling is utilized to fabricate a series of holes with periodically aligned into alumina substrate. Figure 7a depicts the through-holes drilled into the alumina. Each through-hole is aligned with the pitch of 300 μm as programmed by the CAM data mining through the positioning control of beams. As had been discussed in [11], the inner surface quality of through-holes is sensitive to the instability during the laser drilling. Figure 7b also demonstrates that the straight through-hole inner surfaces are formed to have constant diameter without any geometric damages by the picosecond laser drilling. This is because the laser beam is well profiled through the trepanning system before fine control by the galvanometer, and is controlled to move into the depth of work materials. The above straightforwardness of through-holes is also demonstrated by using the replica method. In this method, the silicone-based polymers are infiltrated into each through-hole. The frozen polymers are used as a replica to reproduce the drilled through-hole shape. Figure 7c depicts the alignment of replicas in correspondence to a series of laser-drilled through-holes. Three through-holes were laser-drilled down to the same depth in the alumina plate. Since the first three polymer pillars have the same height as 150 μm, the successive series of through-holes are accurately machined into the alumina with the same depth.
\nPicosecond laser drilling of through-holes into the alumina plate. (a) Alignment of through-holes, (b) inner surface of through-hole with the diameter of 50 μm, and (c) demonstration of the homogeneous laser drilling by using the replica method.
These straight through-holes with high aspect ratio provide a solution to the demand for the probe-cards to make accurate inspection of the semiconductor chips. The probe-pins are pierced through the straight through-holes of alumina or PSZ substrates for inspection. These through-holes must have higher aspect ratio than 10 to preserve the sufficient working space. Figure 8a depicts the through-hole with the diameter of 50 μm machined into the alumina plate with the thickness of 1 mm; the aspect ratio reaches to 20. This high aspect ratio is also attained even when laser drilling PSZ in Figure 8b. This demonstrates that the trepanned laser drilling enables to make through-holes with higher aspect ratio than 20 under the well-structured setup in laser machining.
\nPicosecond laser drilling of through-holes with higher aspect ratio. (a) Drilled through-holes into alumina plate and (b) drilled through-holes into partially stabilized zirconia (PSZ).
In the die and mold industries, the case-hardened and plasma-treated steels are often utilized for high proof of dimensional accuracy. Let us also compare the laser drilling performance between the fiber-lasers and the picosecond laser. Figure 9 compared the drilled through-holes between two lasers. The large heat-affected zones as well as damages surround the drilled hole by fiber laser in Figure 9a. While, the clean and accurate through-hole is drilled into the case-hardened steels by the picosecond laser in Figure 9b.
\nComparison of the drilled through-holes into the case-hardened steels. (a) Using the fiber lasers and (b) using the picosecond laser.
Without use of the beam rotation control, the tapering is difficult or nearly impossible in the laser drilling. In the present setup, the pair of lenses in the beam rotator in Figure 5 is radially adjusted to directly control the diameter of irradiated region. When this diameter is narrowed from the inlet to the outlet with the constant velocity, the uniformly tapered through-hole is drilled to have a constant tapered angle up to the specified positive skew angle. On the other hand, the inversely tapered through-hole is also machined by enlarging this diameter with the constant velocity in the similar way down to the negative skew angle. These tapering or inversely tapering processes from the inlet to outlet of the through-hole are automatically programmed. After CAM data in the present laser drilling, this diameter of irradiation is narrowed from the inlet by 100 μm to the outlet by 30 μm with the constant feeding velocity. Then, the tapered through-hole is built into the alumina plate with the constant angle of +30° and the higher aspect ratio than 10.0 in Figure 10. In the similar way, the inversely tapered through-hole is formed by enlarging the diameter of irradiation from the inlet by 100 μm to the outlet by 180 μm also with the constant velocity. The inversely tapered through-hole is also drilled into the alumina with the thickness of 1 mm. The inversely tapered angles are also constant by −25°. In both cases, the inner surfaces of holes are finely shaped with less roughness [14].
\nPicosecond laser drilling of the tapered and inversely tapered through-holes into the case-hardened steels.
Microtextures with the size in the order of 1–100 μm on the solid surface and interface work to reduce the friction and wear, to assist the joinability, and to functionalize the surfaces and interfaces [15]. Micromilling [16] and microelectrical discharge machining (micro-EDM) [17] have been utilized to make microtexturing onto the steel surfaces. Due to the limitation on the machining tool shape and their controllability for machining, their application is also limited in practice. Short-pulse laser machining is employed to make microtexturing onto the metallic and ceramic surfaces.
\nA circular dimple is formed on the various metallic surfaces as an aligned structure. Figure 11 depicts four microtexturing cases. The unit-geometry of microdimples, their alignment on the surfaces, and the finished surface quality are preserved with less roughing during laser processing. For an example, the circular microdimples with the diameter of 95 μm and the depth of 26 μm are formed on the AISI430 surface in the pitch of 110 μm as shown in Figure 11d. No difference in microdimple size and shape and in its alignment is noticed for various kinds of metallic substrates.
\nLaser microtexturing of circular dimples aligned on the metallic substrates. (a) Aluminum, (b) copper, (c) nickel, and (d) AISI430.
The initial geometric data in CAD and CAM for laser microdimple texturing are data-transformed from positive to negative; this transformed CAD and CAM data are automatically built for laser microemboss formation. In practice, the concave patterning to form the microdimples changes itself to the convex patterning to form the microembosses onto the substrate surfaces. Figure 12 depicts four microembossing cases. The dimensional and geometric accuracies are preserved in the similar manner of microdimple formation. For an example, the circular microembosses with the diameter of 250 μm and the depth of 125 μm are formed on the boron-silicate glass surface in the pitch of 280 μm, as shown in Figure 12d.
\nLaser microembossing of circular embosses aligned on the metallic and ceramic substrates. (a) AISI430, (b) Ni, (c) AISI304, and (d) boron-silicate glass.
With use of femtosecond lasers, finer microtextures are formed as a three-dimensional structure on the metallic surfaces. Figure 13 depicts the three-dimensional microstructures formed on the steel surfaces. In particular, the Gaussian-shaped pillar array with the height of 20 μm and the pitch of 20 μm is machined into the AISI430 substrate as shown in Figure 13c.
\nLaser microtexturing of three-dimensional structures onto the surfaces. (a) AISI410, (b) SISI304, (c) AISI430, and (d) AISI430.
Three-dimensional periodic microstructures have a capability to functionalize the metallic surfaces for optical reflection and diffraction devices and for stamping die and injection mold to transcribe their negative textures onto metallic and polymer sheets. Figure 14 depicts the periodic microstructures formed on the aluminum and AISI304 steel substrates, respectively. Figure 14a is a stepwise terrace structure machined into aluminum with each layer thickness of 5 μm by decreasing the diameter from 450 μm down to 50 μm with the step of 100 μm.
\nLaser microtexturing of fine periodic structures onto the surfaces. (a) Al, (b) AISI304, (c) AISI304, and (d) AISI304.
Two- and three-dimensional microtexturing becomes much important in preparation of mold-dies for mold-stamping of optical elements [18]. The most popular microtexture is a Fresnel pattern for optical lens; circumferential patterns with steep surfaces must be imprinted onto the surface of substrate materials. V-letter-shaped micropatterns are laser-machined onto the glassy carbon substrate to discuss the dimensional accuracy and to investigate the depth profile for different aspect ratio. Furthermore, our developing microstamping system [8, 19, 20] is utilized to duplicate these micropatterns onto optical polymers by using the patterned glassy carbon mold-dies and to discuss the accuracy by this imprinting.
\nIn the two-dimensional microtexturing, a unit pattern like a groove, a dimple, or a wedge is machined with the specified regularity onto the substrate by using X-Y positioning control. Here, a microgroove is employed as a standard unit pattern to fabricate the microtextured mold-die. Glassy carbon (GC) substrate is employed to make V-letter-shaped microgrooving with the pitch of 35 μm, the V-shaped wedge width of 10 μm, and the depth of 10 μm in design. Figure 15a shows the optical micrograph of V-shaped grooving pattern on GC substrate. One groove is laser-machined twice on the same designed machining path. This micropattern is formed onto the GC substrate with the area of 25 × 25 mm2 for 40 min or 2.4 ks. As shown in Figure 15b, a sharp wedge of microgroove is imprinted onto the multilayered GC substrate. The microgroove has 10 μm in width, and 35 μm in pitch. The geometric dimensions specified in CAM program are accurately reproduced in the actual laser microtexturing. The depth profile of V-letter-shaped microgrooves is directly measured to investigate the accuracy of depth in the two-dimensional texturing. Figure 16 depicts the measured depth profile by precise surface profilometer. Deviation of depth ranges from −1 to +2 μm around the average depth of 10 μm. This proves that regular patterns could be machined by the present approach. In order to investigate the controllability of microgrooving in depth, the designed depth parameter is varied with the laser beam power kept constant. Figure 17 compares the relationship between the designed and measured depths in this microgrooving. Up to 20 μm, the average depth of microgrooves is accurately controlled by the present laser machining system.
\nLaser microtexturing of V-letter shaped grooves into GC substrate. (a) Microscopic image of microgrooved GC and (b) SEM image of microgrooves.
Depth profile across the V-letter shaped microgrooves in GC substrate.
Relationship between the designed and measured microgroove depths.
The above microtextured GC substrate is used as a mold-die for warm mold-stamping. PMMA sheet with the thickness of 1 mm is employed as a work material for this mold-stamping just above its glass-transition temperature of 383 K (or 110°C). Figure 18a showed the V-letter-shaped grooving patterns, which are imprinted onto PMMA by the load of 1 kN for 60 s. The V-letter-shaped concave patterns in Figure 15b are accurately imprinted onto PMMA as the convex micropattern as shown in Figure 18b. That is, a series of microwedge fins are fabricated by this mold-stamping with use of microtextured mold in Figure 15. In the mold-stamping, the filling process of work materials into the micropatterns on the mold-die is essential for accurate imprinting. Precise observation with higher magnification in SEM is made to investigate this filling behavior at the initial stage of mold-stamping. Figure 18c depicted a convex bump with the width of 10 μm and the height of 3.5 μm. This bump formation is just the initial stage of filling process for viscous PMMA to infiltrate into the V-letter-shaped groove by mold-stamping. In case of mold-stamping just above the glass transition temperature, viscosity of plastic materials is so high as to reduce the filling velocity. This reflects on the slow shearing along the side faces of microgroove.
\nTranscription of the V-letter wedge microtexture on GC to the V-letter bump microtexture via the mold stamping. (a) Multimicrogrooved PMMA sheet, (b) V-letter bump microtextures on PMMA, and (c) formation of microbump by inclusion of melt PMMA into V-letter wedge on GC mold.
Most of mobile cellular phones are not water-proven so as to be diminished in the accident where those were dropped into water. To be free from these damages, there have been done many efforts to install the perfect waterproof into them [21]; e.g., a silicone rubber ring was sandwiched between plastic cover cases to prevent from water penetration through clearance. This fixture might work well just after shipping; it could be useless at the presence of dirt on the interface or through its misalignment by users in daily use of mobile phones. As the first remedy, a liquid silicone rubber with adhesives is fixed onto their polymer case by the liquid injection molding (LIM) process [22]. Since adhesives invoked in the silicone are responsible for joining, delamination might occur in partial after repetitive opening-and-closing operations in daily use of mobile phones. This difficulty requests us to reconsider the joining process between flexible rubber and hard plastic case in the mobile phone.
\nThe microgrooves are formed into the stainless steel mold for injection molding [23, 24]. Silicone rubber is joined with the polycarbonate plate as a specimen for joining strength test. The measured joining strength is constant by 4 N/mm at the presence of fine microgrooves, where the thinnest silicon rubber fractures without interfacial delamination. This joinability is common to the mobile phone model. The waterproof testing demonstrates that this joined interface has sufficient integrity at high pressure state by 15 kPa.
\nThe picosecond laser microtexturing with use of the galvanometer is employed to form the microgroove textures onto the AISI martensitic stainless steel mold. Figure 19 depicts four microgrooved AISI420 molds with varying widths of 100, 75, 45, and 20 μm, respectively. The groove depth is constant by 10 μm. Each microgroove is shaped to have Gaussian profile irrespectively; the beam intensity profile directly reflects on this microgroove geometry. This mold is inserted into the die-set for injection molding. Polycarbonate (PC) is employed as a work material to imprint these microgroove textures onto the work surface. Figure 20 depicts the transcribed microbump textures onto PC from the microgroove on the AISI420 mold. Both the groove width and pitch are accurately preserved through this injection molding.
\nMicrogroove textures with various widths from 100 to 20 μm and constant depth of 10 μm into AISI420 stainless steel substrate.
Transcription from the microgrooves on the AISI420 mold to the microbumps on the PC specimen.
In the LIM process, adhesive primer is deposited onto the interface before infiltration of silicone melt in the mold-die. Since intermission between two processes is less than 2–3 s, adhesion takes place between silicon and PC-plate under the cooling stage. Figure 21a depicts the PC plate specimen with a silicone square ring after joining in the inside of mold-die during LIM process. In the following test, only the joined section in the width of 80 mm is used for tensile adhesive strength testing. A uniaxial tensile testing system with the dynamic video monitoring is used to measure the loading behavior till the final fracture with in situ observation on the deformation of silicone. As shown in Figure 21b, when the microgroove width is less than the intrinsic microcavity width of 100 μm, the fatal fracture occurs in the tensile silicone rubber without any delamination of interface between PC and silicone. This joining strength reaches 4 N/mm irrespective of the joined length and size even if the microcavities are present on the interface. This implies that microtextures on the joined interface could control the cavitation process to be free from interfacial delamination.
\nJoining strength testing. (a) Microbump textured PC specimen joined with silicone rubber and (b) fatal fracture of silicone without interfacial delamination.
The skewed microgrooves with their width and depth of 20 μm are laser-machined into the AISI420 die insert. In the similar way to preparation for the PC-specimen with the silicone rubber ring, the injection molding is used to transcribe the microgrooves into the PC-cover case; LIM process is also utilized to make in situ joining of silicone rubber ring onto the PC-cover case via the microbump textures on PC. Figure 22 depicts the mobile phone model, fabricated in the above procedure. Each interface between the PC-cover case and silicone rubber has microbump textures. The Hamron leakage testing is employed to perform the waterproof test; e.g., this test aims at the quality check of significant deformation by small leaks under the applied pressure for 5 min. This model is dipped into a water pool, pressurized up to 15 kPa and held for 5 min. As shown in Figure 23, the PC-cover case deforms by pressuring it up to 15 kPa; no further deformation is detected during the holding duration. This demonstrates the perfect waterproof on the jointed interface with aid of microbump textures.
\nA mobile phone PC-model joined with the silicone rubber through the microtexture with the width of 20 mm on the interface.
Waterproof test to demonstrate the integrity of mobile phones under the pressure of 15 kPa.
Superhydrophilicity and superhydrophobicity have grown up as a key surface engineering to keep clean and fresh surface of products and to control the liquid flow on the product surfaces. The oxide-glass lens as well as metallic-glass, optical elements are a typical targeting product to have their surface hydrophilic or superhydrophilic for liquid film formation, and to have it hydrophobic or superhydrophobic for well-defined water repellency [25]. The high energy surface had higher attractive capacity to other material atoms and molecules; those are adherent to each other to form a wet film on the surface. While, the low energy surface had lower attractive capacity to other material atoms and molecules; those are isolated from each other to form the droplets on the surface.
\nThere are two modifications to control this surface state; e.g., the chemical and physical treatments. The chemical treatment is a general tool to modify the surface condition; e.g., fluorine-based coating increases the contact angle up to 130–150° in [26]. On the other hand, the idea of lotus effect has been discussed as a physical approach to form hydrophobic surface [27]. This lotus effect works in nature since the water droplets are supported by the air gap through the fine fibrous lotus leaf; this idea suggests that wettability might be widely controlled by the micro-/nanotexturing [28]. As has been reported in [29, 30, 31], the femtosecond laser micro-/nanotexturing methods have been developed to tune the surface wettability from superhydrophilic to superhydrophobic states. In particular, the micro-/submicro textures are formed on any materials by the laser-induced periodic surface structuring (LIPSS), where the incident and reflected lights have interaction with the scattered and diffracted lights at the vicinity of surface roughness [32]. Among several approaches to design this LIPSS, the authors proposed the micro-/submicrotexturing design by LIPSS with the use of fundamental wavelets and high-frequency ripples [33, 34]. Here, LIPSS is formed onto the AISI304 stainless steel substrates by using the femtosecond laser texturing. Both the superhydrophilic and superhydrophobic surfaces can be formed by the present laser nano-/microtexturing. The geometric effect of surface geometry on the superhydrophobicity is discussed to optimize the laser surface profile control.
\nWith reduction of the pulse duration, the optical interaction with irradiated materials localizes in the wavelength range. When irradiating the materials in the fundamental mode, this interaction field is limited within the submicrometer range. LIPSS is a typical local interaction, occurring at the site of material surface roughness in the order of micrometer. Figure 24 depicts the LIPSS formed on the austenitic stainless steel type 304 by the present femtosecond laser texturing. Nanotexturing alignment angulates itself across the microtexture in Figure 24asince optical interaction is affected by the surface profile in micrometer range. As shown in Figure 24b, the spatial periodicity of these nanotextures is constant by 250 nm. This reveals that fine nanotextures with constant periodicity are formed on the metallic surface by the femtosecond laser treatment.
\nLIPSS formed on AISI304 substrate surface by the present femtosecond laser texturing. (a) Microtextured angulation and nanotextures and (b) fine alignment of nanotextures.
After the classical theory on the surface wettability [35], the hydrophilic or the hydrophobic surfaces are modified to have superhydrophilic or superhydrophobic states, respectively. This is because the geometric item works to decrease the contact angle for hydrophilic surface or to increase it for hydrophobic one. Figure 25 depicts the wettability of nanotextured AISI304 surface by the femtosecond laser surface modification. The measured contact angle reaches down to 8°; it is superhydrophilic. This reveals that the classical theory is true to describe the geometric nanotexture effect on the contact angle when the spatial periodicity of nanotextures works as a major geometric item in surface quality.
\nModification of hydrophilic surface to have superhydrophilic state by laser nanotexturing.
In addition to the nanotexturing surface modification, the microtexturing angulation is taken into account as the geometric item. AISI304 stainless steel sheets with the size of 25 × 25 × 3 mm3 are nano-/microtextured to investigate the change of surface wettability by this processing. Figure 26 compares the droplets swelling on the specimen before and after this micro/submicrolaser texturing. The contact angle of pure water on the bare stainless steels is 70–75°, corresponding to the normal wettability of metals [36]. Through the present texturing, the contact angle increases up to 156°. This proves that nano-/microlaser texturing provides a tool to modify the wettability of stainless steel surfaces from hydrophobic to superhydrophobic state. This finding is completely against the classical theory; if more geometric items are put into laser texturing, the material surface quality can be widely controlled by geometric design.
\nModification of wettability on the AISI304 substrate from the original hydrophilic state to the superhydrophobic one by laser nano-/microtexturing.
There are two geometric items affecting on the surface property; the fractal dimension and the aspect ratio for nanotextures [37]. The former influences on the complexity of surface geometry; the latter, on the local angulation of geometry. Thirty AISI304 stainless steel sheets with the size of 10 × 10 × 0.1 t mm3 are laser nano-/microtextured to investigate the effect of microtexture pitch and height on the measured wettability. Figure 27 describes the relationship between the aspect ratio of nanotexture width to height on the measured contact angle. When this aspect ratio is less than 0.1 or more than 0.3, almost all measured contact angles are less than 155°; the micro-/submicrotextured AISI304 specimens are only hydrophobic. Higher contact angle up to 170° is attained when tuning this aspect ratio between 0.2 and 0.3; e. g., when using the microtextures with the width of 20 μm, their height might well be 2–6 μm. This implies that local angulation of surface geometry has significant influence on the controllability of hydrophobicity.
\nEffect of the longitudinal aspect ratio on the measured contact angle among 30 nano-/microtextured AISI304 substrates.
Under the strong demand for reduction of environmental burdens in manufacturing, every productive line must be energy-saving and highly material-efficient with less emission to environments [38]. In past, the huge amount of lubricating oils has been utilized to reduce the friction and wear not only in automobile industries but also in machining, metal forming, and so on [39]. In order to reduce this amount down to the minimum quantity, the contact surface of mechanical parts and tool surfaces are microtextured to reduce the friction coefficient and wear rate under minimum quantity lubrication (MQL) [40]. Microdimples on the working interfaces and surfaces play as a lubricating oil pocket to form a thin lubricating oil film on the interface between sliding parts and between work materials and tools [41]. The depth profile of each microdimple reflects on the local pressure distribution; this interfacial lubricating film works as a pressure boundary to support the sufficient film thickness to lubrication under MQL [42]. In addition, these microdimples work as a reservoir to store the wear debris of work materials and tool chips during the semidry machining and metal forming [43]. Here, the microdimples are formed by the picosecond laser texturing onto the dies and tools. The pin-on-ball method is employed to evaluate on the reduction of friction for the microdimpled die. The normal milling test is also utilized to describe the effect of microdimpled cutting tool on the reduction of tool wear.
\nThe picosecond laser microtexturing is employed to form the circular microdimples onto the AISI420 stainless steel dies, with the diameter of 50 and 100 μm and the depth of 10 μm in the regular lattice alignment with the pitch of 100 and 200 μm, respectively, for tribotesting. While, the isosceles triangular microdimples with the bottom edge of 155 μm, the height of 80 μm and the depth of 5 μm are machined onto the WC (Co) cutting tools in the zigzag alignment. Figure 28 depicts these microdimpled specimens and tool together with the SEM-image and three-dimensional profile of microdimples.
\nLaser microdimple texturing. (a) Microdimpled stainless steel die and (b) microdimpled WC (Co) cutting tool.
The pin-on-ball testing is employed to measure the time evolution of frictional force under the constant normal load. In this testing, the counter material ball is on contact with the die material under the applied normal weight as depicted in Figure 29. The frictional force is directly measured by load sensor attached to the arm. In the following tests, SUJ2 hard balls are utilized as a counter material. The friction coefficient is calculated by division of the measured friction force to the applied normal load. Figure 30 depicts the transients of friction coefficient with increasing the sliding distance for three die specimens; e.g., a bare AISI420 die without microdimples, and two microdimpled dies with the microdimple diameter (D) of 100 μm and its pitch (p) of 200 μm and with D = 50 μm and p = 100 μm, respectively. In case of bare die, the friction coefficient increases monotonically with sliding distance up to 0.15. When using the microdimpled die with D = 50 μm and p = 100 μm, lower friction coefficient than 0.07 is preserved during this tribotesting.
\nThe ball-on-disc method for measurement of friction coefficient during the sliding conditions.
Variation of the friction coefficient with increasing the sliding distance for three cases; the bare die without microdimples, and the microdimpled dies with D = 100 μm and p = 200 μm and D = 50 μm and p = 100 μm, respectively.
When milling the aluminum alloys by WC (Co) tools, the tool face is inevitably subjected to adhesion of work material. Microtexturing into the tool face enables to reduce this adhesion by storing the wear debris and cutting chips into these pockets on it. In this experiment, AA5052 aluminum alloy is employed as a work material for normal milling with use of the bare WC (Co) and microtextured one as shown in Figure 28b. Figure 31 compares the adhesion process of work material onto the tool face at the milling distance (L) of 900 and 1800 m, respectively, between the bare and microdimpled tools. Without microdimples, the adhesive area and thickness of work materials onto the tool face enlarges with increasing L; e.g., when L = 1800 m, nearly the whole face is covered by these work adhesives with their film thickness of 10 μm around the tool edge. On the other hand, little adhesion to microdimpled face is noted even after milling up to 1800 m. This significant reduction of adhesion by microtexturing comes from the storing mechanism where the wear debris and cutting chips are reserved into each microdimple. This reduction of adhesion influences on the cutting force; e.g., the cutting force becomes relatively insensitive to cutting distance when using these microtextured tools.
\nComparison of work material adhesion to tool face with increasing the milling distance between the bare and microdimpled WC (Co) tools.
Low friction and wear is indispensable for most of automotive parts and manufacturing tools. They have curved surfaces, the friction coefficient of which must be reduced to save the energy waste and to improve the fuel efficiency. In particular, the piston cylinder as well as piston skirt are important sliding-part. Figure 32a shows the microdimpled AISI316L inner surface of cylinder with the size of 30 × 500 μm2 and the depth of 5 μm in the pitch of 1 mm in the circumferential direction and 0.5 mm along the length. This wedge-shaped microdimples improve the fuel efficiency significantly. The AA7075 piston skirt is also microdimpled to have circular dimples with the diameter of 30 μm, the depth of 3 μm and the pitch of 120 μm, respectively, as shown in Figure 32b.
\nMicrotexturing into the inner surfaces of automotive parts. (a) Microtextured piston cylinder and (b) microtextured piston skirt.
The spatial resolution in this laser machining is first discussed to find out the way to improve its dimensional accuracy. Through the practical survey on the micromachining and texturing into curved surfaces, the feasible applications are understood to search for bio-medical laser processing. In particular, future trend of fast-rate laser technologies is discussed for further improvement of micromachining.
\nLaser drilling of circular holes is employed as a benchmark test to discuss the dimensional accuracy of 25 × 25 holes in square structure with the diameter of 30 mm and the pitch of 50 mm, as depicted in Figure 33a. Silicon nitride plate with the thickness of 125 mm is used as a work material. Figure 33b and c shows the X- and Y-deviation maps at the inlet diameter and outlet diameter for 625 holes. Since both maps are nearly coincident to each other, the straightness and circularity are preserved to be within 1/125 μm ~ 0.7°, and within 2 μm, respectively. The spatial resolution of hole diameter is within 2.5 μm in the 2σ-reliability.
\nBenchmark test to investigate the dimensional accuracy in the laser microdrilling. (a) Test-drilling, (b) deviation map, measured at the inlet, and (c) deviation map, measured at the outlet.
Without specially designed jigs and fixtures, both the micromilling and micro-EDM are difficult or nearly impossible to microdrill the holes and grooves. Laser microdrilling has little constraint in the manufacturing setup; it is readily applied to make direct drilling. AISI304 stainless steel pipe with its outer diameter (Dout) of 0.7 mm and its inner diameter (Din) of 0.58 mm is employed as a work to make microdrilling the holes and grooves. Figure 34 shows three microtexturing cases; e.g., a microdrilled pipe, a spiral-grooved pipe, and a laterally grooved pipe. The designed textures can be accommodated to the curved surfaces by this laser microdrilling.
\nMicrotexturing into the metallic tube. (a) Microdrilling of holes with the diameter of 100 μm into a AISI304 stainless steel pipe with Dout = 0.7 mm and Dιν = 0.58 mm, (b) microgrooving of shallow grooves with the width of 25 μm and the depth of 3 μm into the same pipe as (a), and (c) microgrooving of lateral grooves with the depth of 30 μm into the same pipe as (a).
Another feature of laser microtexturing is developed by changing the beam control. A thin spring is structured from a pipe in Figure 35a. A wide slit is structured into a pipe as depicted in Figure 35b. Any shaped short-cuts are equipped into a pipe as shown in Figure 35c. This suggests that complex microstructure can be built in the micromachine and micromember.
\nFabrication of the geometrically functionalized parts by laser microtexturing. (a) Structuring a spring with the pitch of 150 μm from thin brass pipe with Dout = 160 μm and Din = 80 μm, (b) structuring a slit with the size of 30 × 500 μm2 into AISI304 stainless steel pipe with Dout = 100 μm, and (c) fabrication of short-cuts with the size of 65 × 50 μm2 from the same pipe as (b).
Let us discuss how to make laser-structuring a micropart from commercial components. A polylactic acid (PLA) pipe is employed as a starting component to fabricate the PLA-stents for medical usage. Figure 35 depicts three PLA-stents fabricated from the same PLA-pipe by the laser microtexturing. These three can be selectively made from PLA-pipe only by varying the slit width (Ws) to be 154, 156 and 160 micro-meter, respectively. The topological geometry of stents can be designed and fabricated for each medical treatment by tuning the laser microtexturing parameters as shown in Figure 36.
\nLaser micropart formation of stents from PLA pipe with Dout = 2.55 mm, Din = 2.20 mm, and the length of 25 m. (a) Ws = 154 μm, (b) Ws = 156 μm, and (c) Ws = 160 μm.
Various geometric transformations can be realized only by the laser processing such as the micromachining, microtexturing, and microstructuring in the above. Through the fusion of other manufacturing treatments with the laser processing, further advancement is expected to propose the innovative procedures. With combination of laser nano-/microtexturing with laser polishing, the surface property is selectively controlled to be superhydrophilic or superhydrophobic by tuning the LIPSS-conditions. With combination of laser microtexturing with the mechanical milling, a multimaterial part as well as a structural member with large area can be functionalized as a complex-shaped part or as a functionalized component.
\nAmong the engineering issues related to ultrashort pulse laser processing, how to put the fast-rate microtexturing into practice is one of the important targets. In addition to increase of repetition frequency in laser oscillation, new optical control must be developed to transform the spatial geometry and topology in shape into time sequence of scanning in beam technology.
\nThe picosecond and femtosecond laser processing is designed to be tools for advanced manufacturing; laser microdrilling, laser microtexturing, laser nano-/microtexturing, laser microstructuring, and so on. The dimensional accuracy, the spatial resolution as well as the circularity approaches to 1 μm or less than; every micropart, every microstructure, and every microtexture is fabricated in the product size of 10 to 100 μm range. Most of engineering issues related to surface and interface are well defined in this laser processing to find an optimum solution to each problem. Reduction of friction and wear in tools and works is attained by microtexturing onto the tool and part surfaces. Reliable joining between dissimilar materials and parts is put into practice by chemical adhesion with aid of microtextures on their interface. Surface and interface properties are also controllable by optimization of nano-/microtextures.
\nSustainable manufacturing requires for the well-designed processing to support the efficient circulation of products, parts, and materials in addition to recycle and reuse of second hands. Laser micromachining is useful to prolong the tool life, to revise the product surfaces and interfaces for multiple use and to assist the multimaterialization for second-hand products and parts.
\nFurther research and development on the unknown features of laser processing is necessary to advance new steps in innovative technology and medical engineering to further improve the sustainability in future society.
\nThe authors would like to express their gratitude to Mr. T. Hasegawa, T. Miyagawa (SIT), Dr. K. Wasa (TecDia, Co. Ltd.), Mr. T. Omata, and Mr. K. Sanbongi (LPS-works, Co. Ltd.) for their help in experiments. The present study was financially support in part by the METI with Supporting-Industry Projects in Japanese Government from 2010 to 2017.
\nThe authors declared no conflict of interest.
Customer Satisfaction is of paramount importance at IntechOpen and we take all complaints very seriously. Our Authors, their institutions, and other purchasers, if dissatisfied with the service provided, or the product purchased, can file a written complaint to IntechOpen, 5 Princes Gate Court, London, SW7 2QJ, UK or via the following e-mail address: info@intechopen.com.
',metaTitle:"Customer Complaints",metaDescription:"Our authors, their institutions and other purchasers, if unsatisfied with the service provided or the product purchased, can file a written complaint at IN TECH d.o.o offices at Janeza Trdine 9, 51000 Rijeka, Croatia, or via the following e-mail address: info@intechopen.com.",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"Receipt of complaints will be acknowledged in writing and Intech Limited will respond fully to concerns within 15 business days.
\\n\\nCustomers have the right to terminate the contract without giving any reason (written notice of termination). The deadline for said termination is fourteen (14) days from the date of receipt of goods. Returns are at the expense of the Customer and must be made within the fourteen (14) days from the date of the written notice of termination. Intech Limited will process refunds to the Customer without undue delay.
\\n\\nIn the event that the Publisher ships damaged or misbound copies of products, or duplicate or incorrect copies of the products are received by the Customer, the Publisher will accept returns at the Publisher's expense, provided notice of such damaged or incorrect shipment is given to the Publisher within fourteen (14) working days from the date of receipt.
\\n\\nPublishing errors, including but not limited to typographical errors, having no significant effect on the editorial content or design characteristics of the products, cannot be considered a reason for rejecting payment or, as the case may be, modifying the agreed price.
\\n\\nAt the Publisher's request, the customer should provide evidence of the damaged or incorrect shipment. The Publisher will refund or ship the ordered products without delays.
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Receipt of complaints will be acknowledged in writing and Intech Limited will respond fully to concerns within 15 business days.
\n\nCustomers have the right to terminate the contract without giving any reason (written notice of termination). The deadline for said termination is fourteen (14) days from the date of receipt of goods. Returns are at the expense of the Customer and must be made within the fourteen (14) days from the date of the written notice of termination. Intech Limited will process refunds to the Customer without undue delay.
\n\nIn the event that the Publisher ships damaged or misbound copies of products, or duplicate or incorrect copies of the products are received by the Customer, the Publisher will accept returns at the Publisher's expense, provided notice of such damaged or incorrect shipment is given to the Publisher within fourteen (14) working days from the date of receipt.
\n\nPublishing errors, including but not limited to typographical errors, having no significant effect on the editorial content or design characteristics of the products, cannot be considered a reason for rejecting payment or, as the case may be, modifying the agreed price.
\n\nAt the Publisher's request, the customer should provide evidence of the damaged or incorrect shipment. The Publisher will refund or ship the ordered products without delays.
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6675},{group:"region",caption:"Middle and South America",value:2,count:5955},{group:"region",caption:"Africa",value:3,count:2459},{group:"region",caption:"Asia",value:4,count:12718},{group:"region",caption:"Australia and Oceania",value:5,count:1017},{group:"region",caption:"Europe",value:6,count:17720}],offset:12,limit:12,total:134177},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"-dateEndThirdStepPublish",src:"S-F-0"},books:[{type:"book",id:"9985",title:"Geostatistics",subtitle:null,isOpenForSubmission:!0,hash:"423cb3896195a618c4acb493ce4fd23d",slug:null,bookSignature:"Prof. Jeffrey M. Yarus, Dr. Marko Maucec, Dr. Timothy C. Coburn and Associate Prof. Michael Pyrcz",coverURL:"https://cdn.intechopen.com/books/images_new/9985.jpg",editedByType:null,editors:[{id:"78011",title:"Prof.",name:"Jeffrey M.",surname:"Yarus",slug:"jeffrey-m.-yarus",fullName:"Jeffrey M. Yarus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12215",title:"Cell Death and Disease",subtitle:null,isOpenForSubmission:!0,hash:"dfd456a29478fccf4ebd3294137eb1e3",slug:null,bookSignature:"Dr. Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/12215.jpg",editedByType:null,editors:[{id:"59529",title:"Dr.",name:"Ke",surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12112",title:"The Colorectal Surgery",subtitle:null,isOpenForSubmission:!0,hash:"21c65e742d31d5b69fb681ef78cfa0be",slug:null,bookSignature:"Dr. Muhammad Shamim",coverURL:"https://cdn.intechopen.com/books/images_new/12112.jpg",editedByType:null,editors:[{id:"235128",title:"Dr.",name:"Muhammad",surname:"Shamim",slug:"muhammad-shamim",fullName:"Muhammad Shamim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11998",title:"Biocomposites - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"8bc7ffd7544fff1901301c787e64fada",slug:null,bookSignature:"Prof. Magdy Elnashar",coverURL:"https://cdn.intechopen.com/books/images_new/11998.jpg",editedByType:null,editors:[{id:"12075",title:"Prof.",name:"Magdy",surname:"Elnashar",slug:"magdy-elnashar",fullName:"Magdy Elnashar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12079",title:"Strategies Towards the Synthesis of Heterocycles and Their Applications",subtitle:null,isOpenForSubmission:!0,hash:"bc4022af925c0883636e0819008971ee",slug:null,bookSignature:"Dr. Premlata Kumari and Dr. Amit B Patel",coverURL:"https://cdn.intechopen.com/books/images_new/12079.jpg",editedByType:null,editors:[{id:"177041",title:"Dr.",name:"Premlata",surname:"Kumari",slug:"premlata-kumari",fullName:"Premlata Kumari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11999",title:"Earthquakes - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"b2af07109b13b76e5af9583532ab5bee",slug:null,bookSignature:"Dr. Walter Salazar",coverURL:"https://cdn.intechopen.com/books/images_new/11999.jpg",editedByType:null,editors:[{id:"236461",title:"Dr.",name:"Walter",surname:"Salazar",slug:"walter-salazar",fullName:"Walter Salazar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12058",title:"Future Housing",subtitle:null,isOpenForSubmission:!0,hash:"e7f4a1e57fab392b61156956c1247b9e",slug:null,bookSignature:"Dr. Ivan Oropeza-Perez and Dr. Astrid Helena Petzold-Rodríguez",coverURL:"https://cdn.intechopen.com/books/images_new/12058.jpg",editedByType:null,editors:[{id:"282172",title:"Dr.",name:"Ivan",surname:"Oropeza-Perez",slug:"ivan-oropeza-perez",fullName:"Ivan Oropeza-Perez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12172",title:"Health Risks of Food Additives - Recent Developments and Trends in Food Sector",subtitle:null,isOpenForSubmission:!0,hash:"f6aa23b1045d266d0928fcef04fa3417",slug:null,bookSignature:"Dr. Muhammad Sajid Arshad and Mr. Waseem Khalid",coverURL:"https://cdn.intechopen.com/books/images_new/12172.jpg",editedByType:null,editors:[{id:"192998",title:"Dr.",name:"Muhammad Sajid",surname:"Arshad",slug:"muhammad-sajid-arshad",fullName:"Muhammad Sajid Arshad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12113",title:"Tendons - Trauma, Inflammation, Degeneration, and Treatment",subtitle:null,isOpenForSubmission:!0,hash:"2387a4e0d2a76883b16dcccd452281ab",slug:null,bookSignature:"Dr. Nahum Rosenberg",coverURL:"https://cdn.intechopen.com/books/images_new/12113.jpg",editedByType:null,editors:[{id:"68911",title:"Dr.",name:"Nahum",surname:"Rosenberg",slug:"nahum-rosenberg",fullName:"Nahum Rosenberg"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12196",title:"Sepsis - New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"3590e6f6047122bd96d1d57da29c4054",slug:null,bookSignature:"Dr. Lixing Huang, Dr. Youyu Zhang and Dr. Lingbin Sun",coverURL:"https://cdn.intechopen.com/books/images_new/12196.jpg",editedByType:null,editors:[{id:"333148",title:"Dr.",name:"Lixing",surname:"Huang",slug:"lixing-huang",fullName:"Lixing Huang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11500",title:"Multi-Objective Optimization - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"842f84f308439c0a55c4e8e6a8fd9c01",slug:null,bookSignature:"Dr. Adel El-Shahat",coverURL:"https://cdn.intechopen.com/books/images_new/11500.jpg",editedByType:null,editors:[{id:"193331",title:"Dr.",name:"Adel",surname:"El-Shahat",slug:"adel-el-shahat",fullName:"Adel El-Shahat"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12050",title:"Advanced Biodiesel - Technological Advances, Challenges, and Sustainability Considerations",subtitle:null,isOpenForSubmission:!0,hash:"bb86ab5c5ca0dab95f01941eb350f920",slug:null,bookSignature:"Dr. IMR Fattah",coverURL:"https://cdn.intechopen.com/books/images_new/12050.jpg",editedByType:null,editors:[{id:"463663",title:"Dr.",name:"IMR",surname:"Fattah",slug:"imr-fattah",fullName:"IMR Fattah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:38},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:22},{group:"topic",caption:"Computer and Information Science",value:9,count:23},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:15},{group:"topic",caption:"Materials Science",value:14,count:24},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:114},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:410},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4431},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11043",title:"Endometriosis",subtitle:"Recent Advances, New Perspectives and Treatments",isOpenForSubmission:!1,hash:"7baf1c70b11d41400bb9302ae9411ca4",slug:"endometriosis-recent-advances-new-perspectives-and-treatments",bookSignature:"Giovana Ap. Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11043.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11083",title:"Hazardous Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"d553bd4f6f1c4b115ca69bd19faac7dc",slug:"hazardous-waste-management",bookSignature:"Rajesh Banu Jeyakumar, Kavitha Sankarapandian and Yukesh Kannah Ravi",coverURL:"https://cdn.intechopen.com/books/images_new/11083.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9625",title:"Spinocerebellar Ataxia",subtitle:"Concepts, Particularities and Generalities",isOpenForSubmission:!1,hash:"365a7025fd46eb45de2549bdd9d50b98",slug:"spinocerebellar-ataxia-concepts-particularities-and-generalities",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/9625.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"235",title:"Gerontology",slug:"gerontology",parent:{id:"21",title:"Psychology",slug:"psychology"},numberOfBooks:4,numberOfSeries:0,numberOfAuthorsAndEditors:72,numberOfWosCitations:29,numberOfCrossrefCitations:40,numberOfDimensionsCitations:76,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"235",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7904",title:"Aging",subtitle:"Life Span and Life Expectancy",isOpenForSubmission:!1,hash:"4507619de679dfa85bc6e073d163f3c8",slug:"aging-life-span-and-life-expectancy",bookSignature:"Robert J. Reynolds and Steven M. Day",coverURL:"https://cdn.intechopen.com/books/images_new/7904.jpg",editedByType:"Edited by",editors:[{id:"220737",title:"Dr.",name:"Robert",middleName:null,surname:"J. Reynolds",slug:"robert-j.-reynolds",fullName:"Robert J. Reynolds"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6704",title:"Geriatrics Health",subtitle:null,isOpenForSubmission:!1,hash:"7cac7767e0b34391318cd4a680ca0d68",slug:"geriatrics-health",bookSignature:"Hülya Çakmur",coverURL:"https://cdn.intechopen.com/books/images_new/6704.jpg",editedByType:"Edited by",editors:[{id:"190636",title:"Associate Prof.",name:"Hülya",middleName:null,surname:"Çakmur",slug:"hulya-cakmur",fullName:"Hülya Çakmur"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6381",title:"Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"bf232563c8fe15ef0848ed6ffb8f832d",slug:"gerontology",bookSignature:"Grazia D’Onofrio, Antonio Greco and Daniele Sancarlo",coverURL:"https://cdn.intechopen.com/books/images_new/6381.jpg",editedByType:"Edited by",editors:[{id:"272628",title:"Dr.",name:"Grazia",middleName:null,surname:"D'Onofrio",slug:"grazia-d'onofrio",fullName:"Grazia D'Onofrio"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5925",title:"Perception of Beauty",subtitle:null,isOpenForSubmission:!1,hash:"11f483d631557ad26d48b577e23a724f",slug:"perception-of-beauty",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/5925.jpg",editedByType:"Edited by",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:4,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"60564",doi:"10.5772/intechopen.76249",title:"Ageing Process and Physiological Changes",slug:"ageing-process-and-physiological-changes",totalDownloads:6904,totalCrossrefCites:17,totalDimensionsCites:32,abstract:"Ageing is a natural process. Everyone must undergo this phase of life at his or her own time and pace. In the broader sense, ageing reflects all the changes taking place over the course of life. These changes start from birth—one grows, develops and attains maturity. To the young, ageing is exciting. Middle age is the time when people notice the age-related changes like greying of hair, wrinkled skin and a fair amount of physical decline. Even the healthiest, aesthetically fit cannot escape these changes. Slow and steady physical impairment and functional disability are noticed resulting in increased dependency in the period of old age. According to World Health Organization, ageing is a course of biological reality which starts at conception and ends with death. It has its own dynamics, much beyond human control. However, this process of ageing is also subject to the constructions by which each society makes sense of old age. In most of the developed countries, the age of 60 is considered equivalent to retirement age and it is said to be the beginning of old age. In this chapter, you understand the details of ageing processes and associated physiological changes.",book:{id:"6381",slug:"gerontology",title:"Gerontology",fullTitle:"Gerontology"},signatures:"Shilpa Amarya, Kalyani Singh and Manisha Sabharwal",authors:[{id:"226573",title:"Ph.D.",name:"Shilpa",middleName:null,surname:"Amarya",slug:"shilpa-amarya",fullName:"Shilpa Amarya"},{id:"226593",title:"Dr.",name:"Kalyani",middleName:null,surname:"Singh",slug:"kalyani-singh",fullName:"Kalyani Singh"},{id:"243264",title:"Dr.",name:"Manisha",middleName:null,surname:"Sabharwal",slug:"manisha-sabharwal",fullName:"Manisha Sabharwal"}]},{id:"55388",doi:"10.5772/intechopen.68944",title:"Beauty, Body Image, and the Media",slug:"beauty-body-image-and-the-media",totalDownloads:7723,totalCrossrefCites:5,totalDimensionsCites:12,abstract:"This chapter analyses the role of the mass media in people’s perceptions of beauty. We summarize the research literature on the mass media, both traditional media and online social media, and how they appear to interact with psychological factors to impact appearance concerns and body image disturbances. There is a strong support for the idea that traditional forms of media (e.g. magazines and music videos) affect perceptions of beauty and appearance concerns by leading women to internalize a very slender body type as ideal or beautiful. Rather than simply being passive recipients of unrealistic beauty ideals communicated to them via the media, a great number of individuals actually seek out idealized images in the media. Finally, we review what is known about the role of social media in impacting society’s perception of beauty and notions of idealized physical forms. Social media are more interactive than traditional media and the effects of self‐presentation strategies on perceptions of beauty have just begun to be studied. This is an emerging area of research that is of high relevance to researchers and clinicians interested in body image and appearance concerns.",book:{id:"5925",slug:"perception-of-beauty",title:"Perception of Beauty",fullTitle:"Perception of Beauty"},signatures:"Jennifer S. Mills, Amy Shannon and Jacqueline Hogue",authors:[{id:"202110",title:"Dr.",name:"Jennifer S.",middleName:null,surname:"Mills",slug:"jennifer-s.-mills",fullName:"Jennifer S. Mills"}]},{id:"59227",doi:"10.5772/intechopen.73385",title:"Differentiating Normal Cognitive Aging from Cognitive Impairment No Dementia: A Focus on Constructive and Visuospatial Abilities",slug:"differentiating-normal-cognitive-aging-from-cognitive-impairment-no-dementia-a-focus-on-constructive",totalDownloads:1335,totalCrossrefCites:3,totalDimensionsCites:6,abstract:"Constructive and visuospatial abilities in normal and in pathological aging (cognitive impairment, no dementia, CIND) are investigated. The sample includes 188 participants over 60 years of age, divided in 2 groups: healthy subjects (MMSE ≥28), without cognitive complaints, and individuals with CIND (MMSE between 24 and 27 and subjective cognitive complains). Drawing of cube and drawing of house, Benton Visual Retention Test (BVRT), and Block design are used to test the hypothesis that short visuoconstructive and visuospatial tests can distinguish normal from pathological cognitive aging in its very early stages. Results proved the discriminative sensitivity of BVRT general assessment criteria and of omissions and distortions in CIND. The diagnostic sensitivity of a modification of Moore and Wike [1984] scoring system for house and cube drawing tasks was confirmed as well. Drawing of cube and house could be used for quick screening of CIND in subjects over 60. Principal component analysis with oblimin rotation was performed to explore the different dimensions in the visuospatial and visuoconstructive abilities in old age. A four-factor structure was established, all four factors explaining 71% of the variance.",book:{id:"6381",slug:"gerontology",title:"Gerontology",fullTitle:"Gerontology"},signatures:"Radka Ivanova Massaldjieva",authors:[{id:"75907",title:"Associate Prof.",name:"Radka Ivanova",middleName:null,surname:"Massaldjieva",slug:"radka-ivanova-massaldjieva",fullName:"Radka Ivanova Massaldjieva"}]},{id:"59658",doi:"10.5772/intechopen.74748",title:"Ageing Better in the Netherlands",slug:"ageing-better-in-the-netherlands",totalDownloads:1176,totalCrossrefCites:1,totalDimensionsCites:4,abstract:"The Dutch National Care for the Elderly Programme was an initiative organized by the Netherlands Organisation for Health Research and Development (ZonMw) between 2008 and 2016. The aim of the programme was to collect knowledge about frail elderly, to assess their needs and to provide person-centred and integrated care better suited to their needs. The budget of EUR 88 million was provided by the Dutch Ministry of Health, Welfare and Sports. Putting the needs of elderly people at the heart of the programme and ensuring their active participation were key to the programme’s success. The programme outcomes included the establishment of eight geriatric networks around the medical universities with 650 organisations and the completion of 218 projects. These projects, involving 43,000 elderly people and 8500 central caregivers, resulted in the completion of 45 PhD theses and the publication of more than 400 articles and the development of 300 practice toolkits, one database and a website, www.beteroud.nl. The Dutch National Care for the Elderly Programme has since developed into a movement and continues under the consortium Ageing Better, made up of eight organisations. Through the use of ambassadors, Ageing Better promotes the message that ageing is not a disease but a new phase of life.",book:{id:"6381",slug:"gerontology",title:"Gerontology",fullTitle:"Gerontology"},signatures:"Betty Meyboom-de Jong, Klaske Wynia and Anjo Geluk-Bleumink",authors:[{id:"224997",title:"Emeritus Prof.",name:"Betty",middleName:null,surname:"Meyboom-De Jong",slug:"betty-meyboom-de-jong",fullName:"Betty Meyboom-De Jong"},{id:"232900",title:"Dr.",name:"Klaske",middleName:null,surname:"Wynia",slug:"klaske-wynia",fullName:"Klaske Wynia"},{id:"232901",title:"Mrs.",name:"Anjo",middleName:null,surname:"Geluk-Bleumink",slug:"anjo-geluk-bleumink",fullName:"Anjo Geluk-Bleumink"}]},{id:"57952",doi:"10.5772/intechopen.71904",title:"Neurocognitive Implications of Tangential Speech in Patients with Focal Brain Damage",slug:"neurocognitive-implications-of-tangential-speech-in-patients-with-focal-brain-damage",totalDownloads:1578,totalCrossrefCites:0,totalDimensionsCites:3,abstract:"There are no studies on the neurocognitive implications of tangential speech (TS). This research aims to take a step forward in the study of narrative processing, by evaluating TS in a sample that helps to detect this deficit when it is neurogenic and recently manifested. The relationship between TS, secondary to focal brain injury, and neuropsychological and neuroanatomical variables was explored. A comprehensive neuropsychological battery was administered to 175 volunteers: 95 alert inpatients, without aphasia, without psychiatric history and without TS history, and 80 healthy participants, without TS. Results: TS (prevalence 16%) was independent of type or site of injury. An adverse effect of TS on global neuropsychological performance was observed. This effect was significantly related to attentional errors along with prolonged processing times but not to correct responses. Reliability and validity indices for the present TS screening scale were provided. Conclusion: Present results support the hypothesis that this neurogenic inability to spontaneously find, organize and communicate verbal information, beyond single words, depends on extended brain networks involving processes such as sustained attention, complex-syntax comprehension, the (implicit) interpretation and spontaneous recall of a narrative, and emotional and behavioral alterations. Early TS detection is advisable for prevention and treatment at any age.",book:{id:"6381",slug:"gerontology",title:"Gerontology",fullTitle:"Gerontology"},signatures:"Nora Silvana Vigliecca",authors:[{id:"202008",title:"Dr.",name:"Nora",middleName:"Silvana",surname:"Vigliecca",slug:"nora-vigliecca",fullName:"Nora Vigliecca"}]}],mostDownloadedChaptersLast30Days:[{id:"60564",title:"Ageing Process and Physiological Changes",slug:"ageing-process-and-physiological-changes",totalDownloads:6884,totalCrossrefCites:16,totalDimensionsCites:31,abstract:"Ageing is a natural process. Everyone must undergo this phase of life at his or her own time and pace. In the broader sense, ageing reflects all the changes taking place over the course of life. These changes start from birth—one grows, develops and attains maturity. To the young, ageing is exciting. Middle age is the time when people notice the age-related changes like greying of hair, wrinkled skin and a fair amount of physical decline. Even the healthiest, aesthetically fit cannot escape these changes. Slow and steady physical impairment and functional disability are noticed resulting in increased dependency in the period of old age. According to World Health Organization, ageing is a course of biological reality which starts at conception and ends with death. It has its own dynamics, much beyond human control. However, this process of ageing is also subject to the constructions by which each society makes sense of old age. In most of the developed countries, the age of 60 is considered equivalent to retirement age and it is said to be the beginning of old age. In this chapter, you understand the details of ageing processes and associated physiological changes.",book:{id:"6381",slug:"gerontology",title:"Gerontology",fullTitle:"Gerontology"},signatures:"Shilpa Amarya, Kalyani Singh and Manisha Sabharwal",authors:[{id:"226573",title:"Ph.D.",name:"Shilpa",middleName:null,surname:"Amarya",slug:"shilpa-amarya",fullName:"Shilpa Amarya"},{id:"226593",title:"Dr.",name:"Kalyani",middleName:null,surname:"Singh",slug:"kalyani-singh",fullName:"Kalyani Singh"},{id:"243264",title:"Dr.",name:"Manisha",middleName:null,surname:"Sabharwal",slug:"manisha-sabharwal",fullName:"Manisha Sabharwal"}]},{id:"55388",title:"Beauty, Body Image, and the Media",slug:"beauty-body-image-and-the-media",totalDownloads:7678,totalCrossrefCites:5,totalDimensionsCites:12,abstract:"This chapter analyses the role of the mass media in people’s perceptions of beauty. We summarize the research literature on the mass media, both traditional media and online social media, and how they appear to interact with psychological factors to impact appearance concerns and body image disturbances. There is a strong support for the idea that traditional forms of media (e.g. magazines and music videos) affect perceptions of beauty and appearance concerns by leading women to internalize a very slender body type as ideal or beautiful. Rather than simply being passive recipients of unrealistic beauty ideals communicated to them via the media, a great number of individuals actually seek out idealized images in the media. Finally, we review what is known about the role of social media in impacting society’s perception of beauty and notions of idealized physical forms. Social media are more interactive than traditional media and the effects of self‐presentation strategies on perceptions of beauty have just begun to be studied. This is an emerging area of research that is of high relevance to researchers and clinicians interested in body image and appearance concerns.",book:{id:"5925",slug:"perception-of-beauty",title:"Perception of Beauty",fullTitle:"Perception of Beauty"},signatures:"Jennifer S. Mills, Amy Shannon and Jacqueline Hogue",authors:[{id:"202110",title:"Dr.",name:"Jennifer S.",middleName:null,surname:"Mills",slug:"jennifer-s.-mills",fullName:"Jennifer S. Mills"}]},{id:"56505",title:"Aesthetics of the Naked Human Body: From Pornography (Sexualised Lust Object) to Iconography (Aesthetics of Human Nobility and Wisdom) in an Anthropology of Physical Beauty",slug:"aesthetics-of-the-naked-human-body-from-pornography-sexualised-lust-object-to-iconography-aesthetics",totalDownloads:2081,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"In many religious circles and philosophies of life, the human body is excluded from the realm of spirituality and meaning. Due to a dualistic approach, nudity is viewed as merely a physical and corporeal category. In social media, there is the real danger that the naked human body is exploited for commercial gain. Advertisements often leave the impression that the body, very specifically the genitals, is designed merely for physical desire and corporeal chemistry. They become easily objects for lust, excluded from the beauty of graceful existence and noble courage. It is argued that the naked human body is not designed for pornographic exploitation and promiscuous sensuality but for compassionate intimacy and nurturing care in order to instil a humane dimension in human and sexual encounters. In this regard, antiquity and the Michelangelesque perspective can contribute to a paradigm shift from abusive exploitation to the beauty of vulnerable sensitivity. In order to foster an integrative approach to theory formation in anthropology, the methodology of stereometric thinking is proposed.",book:{id:"5925",slug:"perception-of-beauty",title:"Perception of Beauty",fullTitle:"Perception of Beauty"},signatures:"Daniel J Louw",authors:[{id:"200645",title:"Prof.",name:"Daniel",middleName:"Johannes",surname:"Louw",slug:"daniel-louw",fullName:"Daniel Louw"}]},{id:"56059",title:"A Plastic Surgeon’s Perspective on Stereotyping and the Perception of Beauty",slug:"a-plastic-surgeon-s-perspective-on-stereotyping-and-the-perception-of-beauty",totalDownloads:1890,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"In the world of plastic surgery, misconceptions may lead to irrational requests or outcomes not appreciated by patients. Those who manage aesthetics should always listen and recognize the variability of cultural identities, desires, attitudes, anxieties and uncertainties of the patient. Emerging from a diversity of cultures and its transforming trends, the scope of cosmetic surgery and its practice reflect not only the individual’s personality, but also the culture as a whole. When counseling an individual, one has to recognize that even in groups of seemingly identical social or cultural standards; there are subtle differences in expectations. To illustrate the potential for inaccuracy of ethnic profiling in the field of plastic surgery authors quote their own work on Asian subjects and facial beauty and resort to experience of others. To reaffirm their opinion and to exemplify how sometimes “fine” differences in the perception of beauty exist, an original study that evaluates the preferences among selected groups of Latina women in respect to buttock aesthetics has been included. This dissertation will focus on how cultural factors influence beauty perception; strengthen the fact that beauty is in the eye of the beholder and how variable differences exist even between small subgroups.",book:{id:"5925",slug:"perception-of-beauty",title:"Perception of Beauty",fullTitle:"Perception of Beauty"},signatures:"Johanna D’Agostino and Marek Dobke",authors:[{id:"17590",title:"Dr.",name:"Marek K.",middleName:null,surname:"Dobke",slug:"marek-k.-dobke",fullName:"Marek K. Dobke"},{id:"201244",title:"Dr.",name:"Johanna",middleName:null,surname:"D'Agostino",slug:"johanna-d'agostino",fullName:"Johanna D'Agostino"}]},{id:"80326",title:"Anti-Senescence Therapy",slug:"anti-senescence-therapy",totalDownloads:102,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"The development of therapeutic strategies aimed at the aging process of cells has attracted increasing attention in recent decades due to the involvement of this process in the development of many chronic and age-related diseases. Interestingly, preclinical studies have shown the success of a number of anti-aging approaches in the treatment of a range of chronic diseases. These approaches are directed against aging processes such as oxidative stress, telomerase shortening, inflammation, and deficient autophagy. Many strategies has been shown to be effective in delaying aging, including antiaging strategies based on establishing healthy lifestyle habits and pharmacological interventions aimed at disrupting senescent cells and senescent-associated secretory phenotype. Caloric restriction and intermittent fasting were reported to activate autophagy and reduce inflammation. In turn, immune-based strategies, senolytic agents, and senomorphics mediate their effects either by eliminating senescent cells through inducing apoptosis or by disrupting pathways by which senescent cells mediate their detrimental effects. In addition, given the association of the decline in the regenerative potential of stem cells with aging, many experimental and clinical studies indicate the effectiveness of stem cell transplantation in preventing or slowing the progress of age-related diseases by enhancing the repairing mechanisms and the secretion of many growth factors and cytokines.",book:{id:"10935",slug:null,title:"Mechanisms and Management of Senescence",fullTitle:"Mechanisms and Management of Senescence"},signatures:"Raghad Alshadidi",authors:null}],onlineFirstChaptersFilter:{topicId:"235",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"82112",title:"Comparative Senescence and Lifespan",slug:"comparative-senescence-and-lifespan",totalDownloads:9,totalDimensionsCites:0,doi:"10.5772/intechopen.105137",abstract:"The word senescence is derived from the Latin word “senex” (meaning old). In biology, senescence is a process by which a cell ages and permanently stops dividing. Senescence is a natural universal phenomenon affecting all living organisms (e.g., humans, animals, and plants). It is the process of growing old (aging). The underlying mechanisms of senescence and aging at the cellular level are not fully understood. Senescence is a multifactorial process that can be induced by several stimuli including cellular stress, DNA damage, telomere shortening, and oncogene activation. The most popular theory to explain aging is the free radical theory. Senescence plays a role in the development of several age-related chronic diseases in humans (e.g., ischemic heart disease, osteoporosis, and cancer). Lifespan is a biological characteristic of every species. The lifespan of living organisms ranges from few hours (with mayfly) to potential eternity (with jellyfish and hydra). The maximum theoretical lifespan in humans is around 120 years. The lifespan in humans is influenced by multiple factors including genetic, epigenetic, lifestyle, environmental, metabolic, and endocrine factors. There are several ways to potentially extend the lifespan of humans and eventually surpass the maximum theoretical lifespan of 120 years. The tools that can be proposed include lifestyle, reduction of several life-threatening diseases and disabilities, hormonal replacement, antioxidants, autophagy inducers, senolytic drugs, stem cell therapy, and gene therapy.",book:{id:"10935",title:"Mechanisms and Management of Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg"},signatures:"Hassan M. Heshmati"},{id:"81638",title:"Aging and Neuropsychiatric Disease: A General Overview of Prevalence and Trends",slug:"aging-and-neuropsychiatric-disease-a-general-overview-of-prevalence-and-trends",totalDownloads:25,totalDimensionsCites:0,doi:"10.5772/intechopen.103102",abstract:"The increasing trend of life-expectancy is becoming a significant demographic, societal and economic challenge. Currently, global number of people above sixty years of age is 900 million, while United Nations expect this number to rise to over 1.4 billion in 2030 and over 2.5 billion by 2050. Concordant to this trend, numerous physiological changes are associated with aging and brain-related ones are associated with neuropsychiatric diseases. The main goal of this chapter is to identify the most important neuropsychiatric diseases to assess in older patients to help to promote health and prevent diseases and complications associated with chronic illness, as these changes are progressive and require important psychological and setting-related social adjustments. Findings identify several health-aspects highly present in elderly: stroke, white matter lesions, dementia rise with age, changes in levels of neurotransmitters and hormones, depression as well as the bereavement following loss of the loved one, and the most common neurodegenerative disease—Alzheimer’s disease and Parkinson’s. In conclusion, studying the aging process should include all developmental, circumstantial, and individual aspects of aging. This offers opportunities to improve the health of elderly by using a wide range of skills and knowledge. Thus, further studies are necessary to elucidate what can be done do to improve the aging process and health of elderly in the future.",book:{id:"10935",title:"Mechanisms and Management of Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg"},signatures:"Jelena Milić"},{id:"80326",title:"Anti-Senescence Therapy",slug:"anti-senescence-therapy",totalDownloads:104,totalDimensionsCites:0,doi:"10.5772/intechopen.101585",abstract:"The development of therapeutic strategies aimed at the aging process of cells has attracted increasing attention in recent decades due to the involvement of this process in the development of many chronic and age-related diseases. Interestingly, preclinical studies have shown the success of a number of anti-aging approaches in the treatment of a range of chronic diseases. These approaches are directed against aging processes such as oxidative stress, telomerase shortening, inflammation, and deficient autophagy. Many strategies has been shown to be effective in delaying aging, including antiaging strategies based on establishing healthy lifestyle habits and pharmacological interventions aimed at disrupting senescent cells and senescent-associated secretory phenotype. Caloric restriction and intermittent fasting were reported to activate autophagy and reduce inflammation. In turn, immune-based strategies, senolytic agents, and senomorphics mediate their effects either by eliminating senescent cells through inducing apoptosis or by disrupting pathways by which senescent cells mediate their detrimental effects. In addition, given the association of the decline in the regenerative potential of stem cells with aging, many experimental and clinical studies indicate the effectiveness of stem cell transplantation in preventing or slowing the progress of age-related diseases by enhancing the repairing mechanisms and the secretion of many growth factors and cytokines.",book:{id:"10935",title:"Mechanisms and Management of Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg"},signatures:"Raghad Alshadidi"},{id:"79828",title:"Cellular Senescence in Bone",slug:"cellular-senescence-in-bone",totalDownloads:111,totalDimensionsCites:0,doi:"10.5772/intechopen.101803",abstract:"Senescence is an irreversible cell-cycle arrest process induced by environmental, genetic, and epigenetic factors. An accumulation of senescent cells in bone results in age-related disorders, and one of the common problems is osteoporosis. Deciphering the basic mechanisms contributing to the chronic ailments of aging may uncover new avenues for targeted treatment. This review focuses on the mechanisms and the most relevant research advancements in skeletal cellular senescence. To identify new options for the treatment or prevention of age-related chronic diseases, researchers have targeted hallmarks of aging, including telomere attrition, genomic instability, cellular senescence, and epigenetic alterations. First, this chapter provides an overview of the fundamentals of bone tissue, the causes of skeletal involution, and the role of cellular senescence in bone and bone diseases such as osteoporosis. Next, this review will discuss the utilization of pharmacological interventions in aging tissues and, more specifically, highlight the role of senescent cells to identify the most effective and safe strategies.",book:{id:"10935",title:"Mechanisms and Management of Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg"},signatures:"Danielle Wang and Haitao Wang"},{id:"79668",title:"Identification of RNA Species That Bind to the hnRNP A1 in Normal and Senescent Human Fibroblasts",slug:"identification-of-rna-species-that-bind-to-the-hnrnp-a1-in-normal-and-senescent-human-fibroblasts",totalDownloads:74,totalDimensionsCites:0,doi:"10.5772/intechopen.101525",abstract:"hnRNP A1 is a member of the hnRNPs (heterogeneous nuclear ribonucleoproteins) family of proteins that play a central role in regulating genes responsible for cell proliferation, DNA repair, apoptosis, and telomere biogenesis. Previous studies have shown that hnRNPA1 had reduced protein levels and increased cytoplasmic accumulation in senescent human diploid fibroblasts. The consequence of reduced protein expression and altered cellular localization may account for the alterations in gene expression observed during senescence. There is limited information for gene targets of hnRNP A1 as well as its in vivo function. In these studies, we performed RNA co-immunoprecipitation experiments using hnRNP A1 as the target protein to identify potential mRNA species in ribonucleoprotein (RNP) complexes. Using this approach, we identified the human double minute 2 (HDM2) mRNA as a binding target for hnRNP A1 in young and senescent human diploid fibroblasts cells. It was also observed that alterations of hnRNP A1 expression modulate HDM2 mRNA levels in young IMR-90 cells. We also demonstrated that the levels of HDM2 mRNA increased with the downregulation of hnRNP A1 and decrease with the overexpression of hnRNP A1. Although we did not observe a significant decrease in HDM2 protein level, a concomitant increase in p53 protein level was detected with the overexpression of hnRNP A1. Our studies also show that hnRNP A1 directly interacts with HDM2 mRNA at a region corresponding to its 3′ UTR (untranslated region of a gene). The results from this study demonstrate that hnRNP A1 has a novel role in participating in the regulation of HDM2 gene expression.",book:{id:"10935",title:"Mechanisms and Management of Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg"},signatures:"Heriberto Moran, Shanaz A. Ghandhi, Naoko Shimada and Karen Hubbard"},{id:"79295",title:"Genetic and Epigenetic Influences on Cutaneous Cellular Senescence",slug:"genetic-and-epigenetic-influences-on-cutaneous-cellular-senescence",totalDownloads:123,totalDimensionsCites:0,doi:"10.5772/intechopen.101152",abstract:"Skin is the largest human organ system, and its protective function is critical to survival. The epithelial, dermal, and subcutaneous compartments are heterogeneous mixtures of cell types, yet they all display age-related skin dysfunction through the accumulation of an altered phenotypic cellular state called senescence. Cellular senescence is triggered by complex and dynamic genetic and epigenetic processes. A senescence steady state is achieved in different cell types under various and overlapping conditions of chronological age, toxic injury, oxidative stress, replicative exhaustion, DNA damage, metabolic dysfunction, and chromosomal structural changes. These inputs lead to outputs of cell-cycle withdrawal and the appearance of a senescence-associated secretory phenotype, both of which accumulate as tissue pathology observed clinically in aged skin. This review details the influence of genetic and epigenetic factors that converge on normal cutaneous cellular processes to create the senescent state, thereby dictating the response of the skin to the forces of both intrinsic and extrinsic aging. From this work, it is clear that no single biomarker or process leads to senescence, but that it is a convergence of factors resulting in an overt aging phenotype.",book:{id:"10935",title:"Mechanisms and Management of Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg"},signatures:"Tapash Jay Sarkar, Maiko Hermsmeier, Jessica L. Ross and G. Scott Herron"}],onlineFirstChaptersTotal:6},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 29th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:32,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"10",title:"Animal Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/10.jpg",isOpenForSubmission:!0,editor:{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null},{id:"11",title:"Cell Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/11.jpg",isOpenForSubmission:!0,editor:{id:"133493",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",profilePictureURL:"https://mts.intechopen.com/storage/users/133493/images/3091_n.jpg",biography:"Prof. Dr. Angel Catalá \r\nShort Biography Angel Catalá was born in Rodeo (San Juan, Argentina). He studied \r\nchemistry at the Universidad Nacional de La Plata, Argentina, where received aPh.D. degree in chemistry (Biological Branch) in 1965. From\r\n1964 to 1974, he worked as Assistant in Biochemistry at the School of MedicineUniversidad Nacional de La Plata, Argentina. From 1974 to 1976, he was a Fellowof the National Institutes of Health (NIH) at the University of Connecticut, Health Center, USA. From 1985 to 2004, he served as a Full Professor oBiochemistry at the Universidad Nacional de La Plata, Argentina. He is Member ofthe National Research Council (CONICET), Argentina, and Argentine Society foBiochemistry and Molecular Biology (SAIB). His laboratory has been interested for manyears in the lipid peroxidation of biological membranes from various tissues and different species. Professor Catalá has directed twelve doctoral theses, publishedover 100 papers in peer reviewed journals, several chapters in books andtwelve edited books. Angel Catalá received awards at the 40th InternationaConference Biochemistry of Lipids 1999: Dijon (France). W inner of the Bimbo PanAmerican Nutrition, Food Science and Technology Award 2006 and 2012, South AmericaHuman Nutrition, Professional Category. 2006 award in pharmacology, Bernardo\r\nHoussay, in recognition of his meritorious works of research. Angel Catalá belongto the Editorial Board of Journal of lipids, International Review of Biophysical ChemistryFrontiers in Membrane Physiology and Biophysics, World Journal oExperimental Medicine and Biochemistry Research International, W orld Journal oBiological Chemistry, Oxidative Medicine and Cellular Longevity, Diabetes and thePancreas, International Journal of Chronic Diseases & Therapy, International Journal oNutrition, Co-Editor of The Open Biology Journal.",institutionString:null,institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}},editorTwo:null,editorThree:null},{id:"12",title:"Human Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/12.jpg",isOpenForSubmission:!0,editor:{id:"195829",title:"Prof.",name:"Kunihiro",middleName:null,surname:"Sakuma",slug:"kunihiro-sakuma",fullName:"Kunihiro Sakuma",profilePictureURL:"https://mts.intechopen.com/storage/users/195829/images/system/195829.jpg",biography:"Professor Kunihiro Sakuma, Ph.D., currently works in the Institute for Liberal Arts at the Tokyo Institute of Technology. He is a physiologist working in the field of skeletal muscle. He was awarded his sports science diploma in 1995 by the University of Tsukuba and began his scientific work at the Department of Physiology, Aichi Human Service Center, focusing on the molecular mechanism of congenital muscular dystrophy and normal muscle regeneration. His interest later turned to the molecular mechanism and attenuating strategy of sarcopenia (age-related muscle atrophy). His opinion is to attenuate sarcopenia by improving autophagic defects using nutrient- and pharmaceutical-based treatments.",institutionString:null,institution:{name:"Tokyo Institute of Technology",institutionURL:null,country:{name:"Japan"}}},editorTwo:{id:"331519",title:"Dr.",name:"Kotomi",middleName:null,surname:"Sakai",slug:"kotomi-sakai",fullName:"Kotomi Sakai",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000031QtFXQA0/Profile_Picture_1637053227318",biography:"Senior researcher Kotomi Sakai, Ph.D., MPH, works at the Research Organization of Science and Technology in Ritsumeikan University. She is a researcher in the geriatric rehabilitation and public health field. She received Ph.D. from Nihon University and MPH from St.Luke’s International University. Her main research interest is sarcopenia in older adults, especially its association with nutritional status. Additionally, to understand how to maintain and improve physical function in older adults, to conduct studies about the mechanism of sarcopenia and determine when possible interventions are needed.",institutionString:null,institution:{name:"Ritsumeikan University",institutionURL:null,country:{name:"Japan"}}},editorThree:null},{id:"13",title:"Plant Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/13.jpg",isOpenForSubmission:!0,editor:{id:"332229",title:"Prof.",name:"Jen-Tsung",middleName:null,surname:"Chen",slug:"jen-tsung-chen",fullName:"Jen-Tsung Chen",profilePictureURL:"https://mts.intechopen.com/storage/users/332229/images/system/332229.png",biography:"Dr. Jen-Tsung Chen is currently a professor at the National University of Kaohsiung, Taiwan. He teaches cell biology, genomics, proteomics, medicinal plant biotechnology, and plant tissue culture. Dr. Chen\\'s research interests include bioactive compounds, chromatography techniques, in vitro culture, medicinal plants, phytochemicals, and plant biotechnology. He has published more than ninety scientific papers and serves as an editorial board member for Plant Methods, Biomolecules, and International Journal of Molecular Sciences.",institutionString:"National University of Kaohsiung",institution:{name:"National University of Kaohsiung",institutionURL:null,country:{name:"Taiwan"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:45,paginationItems:[{id:"82135",title:"Carotenoids in Cassava (Manihot esculenta Crantz)",doi:"10.5772/intechopen.105210",signatures:"Lovina I. Udoh, Josephine U. Agogbua, Eberechi R. Keyagha and Itorobong I. Nkanga",slug:"carotenoids-in-cassava-manihot-esculenta-crantz",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"82112",title:"Comparative Senescence and Lifespan",doi:"10.5772/intechopen.105137",signatures:"Hassan M. Heshmati",slug:"comparative-senescence-and-lifespan",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hassan M.",surname:"Heshmati"}],book:{title:"Mechanisms and Management of Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81796",title:"Apoptosis-Related Diseases and Peroxisomes",doi:"10.5772/intechopen.105052",signatures:"Meimei Wang, Yakun Liu, Ni Chen, Juan Wang and Ye Zhao",slug:"apoptosis-related-diseases-and-peroxisomes",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81723",title:"Peroxisomal Modulation as Therapeutic Alternative for Tackling Multiple Cancers",doi:"10.5772/intechopen.104873",signatures:"Shazia Usmani, Shadma Wahab, Abdul Hafeez, Shabana Khatoon and Syed Misbahul Hasan",slug:"peroxisomal-modulation-as-therapeutic-alternative-for-tackling-multiple-cancers",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}}]},overviewPagePublishedBooks:{paginationCount:11,paginationItems:[{type:"book",id:"7264",title:"Calcium and Signal Transduction",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7264.jpg",slug:"calcium-and-signal-transduction",publishedDate:"October 24th 2018",editedByType:"Edited by",bookSignature:"John N. Buchholz and Erik J. Behringer",hash:"e373a3d1123dbd45fddf75d90e3e7c38",volumeInSeries:1,fullTitle:"Calcium and Signal Transduction",editors:[{id:"89438",title:"Dr.",name:"John N.",middleName:null,surname:"Buchholz",slug:"john-n.-buchholz",fullName:"John N. Buchholz",profilePictureURL:"https://mts.intechopen.com/storage/users/89438/images/6463_n.jpg",biography:"Full Professor and Vice Chair, Division of Pharmacology, Loma Linda University, School of Medicine. He received his B.S. Degree in Biology at La Sierra University, Riverside California (1980) and a PhD in Pharmacology from Loma Linda University School of Medicine (1988). Post-Doctoral Fellow at University of California, Irvine, College of Medicine 1989-1992 with a focus on autonomic nerve function in blood vessels and the impact of aging on the function of these nerves and overall blood vessel function. Twenty years of research funding and served on NIH R01 review panels, Editor-In-Chief of Edorium Journal of Aging Research. Serves as a peer reviewer for biomedical journals. Military Reserve Officer serving with the 100 Support Command, 100 Troop Command, 40 Infantry Division, CA National Guard.",institutionString:null,institution:{name:"Loma Linda University",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"6925",title:"Endoplasmic Reticulum",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6925.jpg",slug:"endoplasmic-reticulum",publishedDate:"April 17th 2019",editedByType:"Edited by",bookSignature:"Angel Català",hash:"a9e90d2dbdbc46128dfe7dac9f87c6b4",volumeInSeries:2,fullTitle:"Endoplasmic Reticulum",editors:[{id:"196544",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",profilePictureURL:"https://mts.intechopen.com/storage/users/196544/images/system/196544.jpg",biography:"Angel Catalá studied chemistry at Universidad Nacional de La Plata, Argentina, where he received a Ph.D. in Chemistry (Biological Branch) in 1965. From 1964 to 1974, he worked as an Assistant in Biochemistry at the School of Medicine at the same university. From 1974 to 1976, he was a fellow of the National Institutes of Health (NIH) at the University of Connecticut, Health Center, USA. From 1985 to 2004, he served as a Full Professor of Biochemistry at the Universidad Nacional de La Plata. He is a member of the National Research Council (CONICET), Argentina, and the Argentine Society for Biochemistry and Molecular Biology (SAIB). His laboratory has been interested for many years in the lipid peroxidation of biological membranes from various tissues and different species. Dr. Catalá has directed twelve doctoral theses, published more than 100 papers in peer-reviewed journals, several chapters in books, and edited twelve books. He received awards at the 40th International Conference Biochemistry of Lipids 1999 in Dijon, France. He is the winner of the Bimbo Pan-American Nutrition, Food Science and Technology Award 2006 and 2012, South America, Human Nutrition, Professional Category. In 2006, he won the Bernardo Houssay award in pharmacology, in recognition of his meritorious works of research. Dr. Catalá belongs to the editorial board of several journals including Journal of Lipids; International Review of Biophysical Chemistry; Frontiers in Membrane Physiology and Biophysics; World Journal of Experimental Medicine and Biochemistry Research International; World Journal of Biological Chemistry, Diabetes, and the Pancreas; International Journal of Chronic Diseases & Therapy; and International Journal of Nutrition. He is the co-editor of The Open Biology Journal and associate editor for Oxidative Medicine and Cellular Longevity.",institutionString:"Universidad Nacional de La Plata",institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}}]},{type:"book",id:"6924",title:"Adenosine Triphosphate in Health and Disease",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6924.jpg",slug:"adenosine-triphosphate-in-health-and-disease",publishedDate:"April 24th 2019",editedByType:"Edited by",bookSignature:"Gyula Mozsik",hash:"04106c232a3c68fec07ba7cf00d2522d",volumeInSeries:3,fullTitle:"Adenosine Triphosphate in Health and Disease",editors:[{id:"58390",title:"Dr.",name:"Gyula",middleName:null,surname:"Mozsik",slug:"gyula-mozsik",fullName:"Gyula Mozsik",profilePictureURL:"https://mts.intechopen.com/storage/users/58390/images/system/58390.png",biography:"Gyula Mózsik MD, Ph.D., ScD (med), is an emeritus professor of Medicine at the First Department of Medicine, Univesity of Pécs, Hungary. He was head of this department from 1993 to 2003. His specializations are medicine, gastroenterology, clinical pharmacology, clinical nutrition, and dietetics. His research fields are biochemical pharmacological examinations in the human gastrointestinal (GI) mucosa, mechanisms of retinoids, drugs, capsaicin-sensitive afferent nerves, and innovative pharmacological, pharmaceutical, and nutritional (dietary) research in humans. He has published about 360 peer-reviewed papers, 197 book chapters, 692 abstracts, 19 monographs, and has edited 37 books. He has given about 1120 regular and review lectures. He has organized thirty-eight national and international congresses and symposia. He is the founder of the International Conference on Ulcer Research (ICUR); International Union of Pharmacology, Gastrointestinal Section (IUPHAR-GI); Brain-Gut Society symposiums, and gastrointestinal cytoprotective symposiums. He received the Andre Robert Award from IUPHAR-GI in 2014. Fifteen of his students have been appointed as full professors in Egypt, Cuba, and Hungary.",institutionString:"University of Pécs",institution:{name:"University of Pecs",institutionURL:null,country:{name:"Hungary"}}}]},{type:"book",id:"8008",title:"Antioxidants",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8008.jpg",slug:"antioxidants",publishedDate:"November 6th 2019",editedByType:"Edited by",bookSignature:"Emad Shalaby",hash:"76361b4061e830906267933c1c670027",volumeInSeries:5,fullTitle:"Antioxidants",editors:[{id:"63600",title:"Prof.",name:"Emad",middleName:null,surname:"Shalaby",slug:"emad-shalaby",fullName:"Emad Shalaby",profilePictureURL:"https://mts.intechopen.com/storage/users/63600/images/system/63600.png",biography:"Dr. Emad Shalaby is a professor of biochemistry on the Biochemistry Department Faculty of Agriculture, Cairo University. He\nreceived a short-term scholarship to carry out his post-doctoral\nstudies abroad, from Japan International Cooperation Agency\n(JICA), in coordination with the Egyptian government. Dr.\nShalaby speaks fluent English and his native Arabic. He has 77\ninternationally published research papers, has attended 15 international conferences, and has contributed to 18 international books and chapters.\nDr. Shalaby works as a reviewer on over one hundred international journals and is\non the editorial board of more than twenty-five international journals. He is a member of seven international specialized scientific societies, besides his local one, and\nhe has won seven prizes.",institutionString:"Cairo University",institution:{name:"Cairo University",institutionURL:null,country:{name:"Egypt"}}}]}]},openForSubmissionBooks:{paginationCount:1,paginationItems:[{id:"11478",title:"Recent Advances in the Study of Dyslexia",coverURL:"https://cdn.intechopen.com/books/images_new/11478.jpg",hash:"26764a18c6b776698823e0e1c3022d2f",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 30th 2022",isOpenForSubmission:!0,editors:[{id:"294281",title:"Prof.",name:"Jonathan",surname:"Glazzard",slug:"jonathan-glazzard",fullName:"Jonathan Glazzard"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:36,paginationItems:[{id:"82195",title:"Endoplasmic Reticulum: A Hub in Lipid Homeostasis",doi:"10.5772/intechopen.105450",signatures:"Raúl Ventura and María Isabel Hernández-Alvarez",slug:"endoplasmic-reticulum-a-hub-in-lipid-homeostasis",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82409",title:"Purinergic Signaling in Covid-19 Disease",doi:"10.5772/intechopen.105008",signatures:"Hailian Shen",slug:"purinergic-signaling-in-covid-19-disease",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82374",title:"The Potential of the Purinergic System as a Therapeutic Target of Natural Compounds in Cutaneous Melanoma",doi:"10.5772/intechopen.105457",signatures:"Gilnei Bruno da Silva, Daiane Manica, Marcelo Moreno and Margarete Dulce Bagatini",slug:"the-potential-of-the-purinergic-system-as-a-therapeutic-target-of-natural-compounds-in-cutaneous-mel",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82103",title:"The Role of Endoplasmic Reticulum Stress and Its Regulation in the Progression of Neurological and Infectious Diseases",doi:"10.5772/intechopen.105543",signatures:"Mary Dover, Michael Kishek, Miranda Eddins, Naneeta Desar, Ketema Paul and Milan Fiala",slug:"the-role-of-endoplasmic-reticulum-stress-and-its-regulation-in-the-progression-of-neurological-and-i",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82212",title:"Protein Prenylation and Their Applications",doi:"10.5772/intechopen.104700",signatures:"Khemchand R. Surana, Ritesh B. Pawar, Ritesh A. Khairnar and Sunil K. Mahajan",slug:"protein-prenylation-and-their-applications",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}},{id:"80954",title:"Ion Channels and Neurodegenerative Disease Aging Related",doi:"10.5772/intechopen.103074",signatures:"Marika Cordaro, Salvatore Cuzzocrea and Rosanna Di Paola",slug:"ion-channels-and-neurodegenerative-disease-aging-related",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82096",title:"An Important Component of Tumor Progression: Fatty Acids",doi:"10.5772/intechopen.105087",signatures:"Jin Wang, Qifei Wang and Guangzhen Wu",slug:"an-important-component-of-tumor-progression-fatty-acids",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82029",title:"Synthesis, Characterization and Antimicrobial Properties of Novel Benzimidazole Amide Derivatives Bearing Thiophene Moiety",doi:"10.5772/intechopen.104908",signatures:"Vinayak Adimule, Pravin Kendrekar and Sheetal Batakurki",slug:"synthesis-characterization-and-antimicrobial-properties-of-novel-benzimidazole-amide-derivatives-bea",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}}]},subseriesFiltersForOFChapters:[{caption:"Proteomics",value:18,count:1,group:"subseries"},{caption:"Chemical Biology",value:15,count:5,group:"subseries"},{caption:"Metabolism",value:17,count:13,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:15,group:"subseries"}],publishedBooks:{paginationCount:32,paginationItems:[{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",slug:"starch-evolution-and-recent-advances",publishedDate:"June 28th 2022",editedByType:"Edited by",bookSignature:"Martins Ochubiojo Emeje",hash:"f197f6062c1574a9a90e50a369271bcf",volumeInSeries:33,fullTitle:"Starch - Evolution and Recent Advances",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",institutionURL:null,country:{name:"Nigeria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",slug:"essential-oils-advances-in-extractions-and-biological-applications",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",hash:"742e6cae3a35686f975edc8d7f9afa94",volumeInSeries:32,fullTitle:"Essential Oils - Advances in Extractions and Biological Applications",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira",profilePictureURL:"https://mts.intechopen.com/storage/users/195290/images/system/195290.png",institutionString:"Museu Paraense Emílio Goeldi",institution:{name:"Museu Paraense Emílio Goeldi",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",slug:"protein-detection",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Yusuf Tutar and Lütfi Tutar",hash:"2f1c0e4e0207fc45c936e7d22a5369c4",volumeInSeries:31,fullTitle:"Protein Detection",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",institutionString:"University of Health Sciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10797",title:"Cell Culture",subtitle:"Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",slug:"cell-culture-advanced-technology-and-applications-in-medical-and-life-sciences",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"2c628f4757f9639a4450728d839a7842",volumeInSeries:30,fullTitle:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",slug:"hydrolases",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",hash:"4e868cde273d65a7ff54b1817d640629",volumeInSeries:29,fullTitle:"Hydrolases",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider",profilePictureURL:"https://mts.intechopen.com/storage/users/110708/images/system/110708.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",slug:"reactive-oxygen-species",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Rizwan Ahmad",hash:"176adcf090fdd1f93cb8ce3146e79ca1",volumeInSeries:28,fullTitle:"Reactive Oxygen Species",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",publishedDate:"March 23rd 2022",editedByType:"Edited by",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",hash:"8b43add5389ba85743e0a9491e4b9943",volumeInSeries:27,fullTitle:"Vitamin K - Recent Topics on the Biology and Chemistry",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9659",title:"Fibroblasts",subtitle:"Advances in Inflammation, Autoimmunity and Cancer",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",slug:"fibroblasts-advances-in-inflammation-autoimmunity-and-cancer",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Mojca Frank Bertoncelj and Katja Lakota",hash:"926fa6446f6befbd363fc74971a56de2",volumeInSeries:25,fullTitle:"Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer",editors:[{id:"328755",title:"Ph.D.",name:"Mojca",middleName:null,surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj",profilePictureURL:"https://mts.intechopen.com/storage/users/328755/images/system/328755.jpg",institutionString:"BioMed X Institute",institution:{name:"University Hospital of Zurich",institutionURL:null,country:{name:"Switzerland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8018",title:"Extracellular Matrix",subtitle:"Developments and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/8018.jpg",slug:"extracellular-matrix-developments-and-therapeutics",publishedDate:"October 27th 2021",editedByType:"Edited by",bookSignature:"Rama Sashank Madhurapantula, Joseph Orgel P.R.O. and Zvi Loewy",hash:"c85e82851e80b40282ff9be99ddf2046",volumeInSeries:23,fullTitle:"Extracellular Matrix - Developments and Therapeutics",editors:[{id:"212416",title:"Dr.",name:"Rama Sashank",middleName:null,surname:"Madhurapantula",slug:"rama-sashank-madhurapantula",fullName:"Rama Sashank Madhurapantula",profilePictureURL:"https://mts.intechopen.com/storage/users/212416/images/system/212416.jpg",institutionString:"Illinois Institute of Technology",institution:{name:"Illinois Institute of Technology",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9759",title:"Vitamin E in Health and Disease",subtitle:"Interactions, Diseases and Health Aspects",coverURL:"https://cdn.intechopen.com/books/images_new/9759.jpg",slug:"vitamin-e-in-health-and-disease-interactions-diseases-and-health-aspects",publishedDate:"October 6th 2021",editedByType:"Edited by",bookSignature:"Pınar Erkekoglu and Júlia Scherer Santos",hash:"6c3ddcc13626110de289b57f2516ac8f",volumeInSeries:22,fullTitle:"Vitamin E in Health and Disease - Interactions, Diseases and Health Aspects",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoğlu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoğlu",profilePictureURL:"https://mts.intechopen.com/storage/users/109978/images/system/109978.jpg",institutionString:"Hacettepe University",institution:{name:"Hacettepe University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Proteomics",value:18,count:4},{group:"subseries",caption:"Metabolism",value:17,count:6},{group:"subseries",caption:"Cell and Molecular Biology",value:14,count:9},{group:"subseries",caption:"Chemical Biology",value:15,count:13}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:8},{group:"publicationYear",caption:"2021",value:2021,count:7},{group:"publicationYear",caption:"2020",value:2020,count:12},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:2}],authors:{paginationCount:739,paginationItems:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",biography:"Prof. Dr. Yusuf Tutar conducts his research at the Hamidiye Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Division of Biochemistry, University of Health Sciences, Turkey. He is also a faculty member in the Molecular Oncology Program. He obtained his MSc and Ph.D. at Oregon State University and Texas Tech University, respectively. He pursued his postdoctoral studies at Rutgers University Medical School and the National Institutes of Health (NIH/NIDDK), USA. His research focuses on biochemistry, biophysics, genetics, molecular biology, and molecular medicine with specialization in the fields of drug design, protein structure-function, protein folding, prions, microRNA, pseudogenes, molecular cancer, epigenetics, metabolites, proteomics, genomics, protein expression, and characterization by spectroscopic and calorimetric methods.",institutionString:"University of Health Sciences",institution:null},{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",biography:"Hiroyuki Kagechika received his bachelor’s degree and Ph.D. in Pharmaceutical Sciences from the University of Tokyo, Japan, where he served as an associate professor until 2004. He is currently a professor at the Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU). From 2010 to 2012, he was the dean of the Graduate School of Biomedical Science. Since 2012, he has served as the vice dean of the Graduate School of Medical and Dental Sciences. He has been the director of the IBB since 2020. Dr. Kagechika’s major research interests are the medicinal chemistry of retinoids, vitamins D/K, and nuclear receptors. He has developed various compounds including a drug for acute promyelocytic leukemia.",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",country:{name:"Japan"}}},{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",biography:"Martins Emeje obtained a BPharm with distinction from Ahmadu Bello University, Nigeria, and an MPharm and Ph.D. from the University of Nigeria (UNN), where he received the best Ph.D. award and was enlisted as UNN’s “Face of Research.” He established the first nanomedicine center in Nigeria and was the pioneer head of the intellectual property and technology transfer as well as the technology innovation and support center. Prof. Emeje’s several international fellowships include the prestigious Raman fellowship. He has published more than 150 articles and patents. He is also the head of R&D at NIPRD and holds a visiting professor position at Nnamdi Azikiwe University, Nigeria. He has a postgraduate certificate in Project Management from Walden University, Minnesota, as well as a professional teaching certificate and a World Bank certification in Public Procurement. Prof. Emeje was a national chairman of academic pharmacists in Nigeria and the 2021 winner of the May & Baker Nigeria Plc–sponsored prize for professional service in research and innovation.",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",country:{name:"Nigeria"}}},{id:"268659",title:"Ms.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/268659/images/8143_n.jpg",biography:"Dr. Zhan received his undergraduate and graduate training in the fields of preventive medicine and epidemiology and statistics at the West China University of Medical Sciences in China during 1989 to 1999. He received his post-doctoral training in oncology and cancer proteomics for two years at the Cancer Research Institute of Human Medical University in China. In 2001, he went to the University of Tennessee Health Science Center (UTHSC) in USA, where he was a post-doctoral researcher and focused on mass spectrometry and cancer proteomics. Then, he was appointed as an Assistant Professor of Neurology, UTHSC in 2005. He moved to the Cleveland Clinic in USA as a Project Scientist/Staff in 2006 where he focused on the studies of eye disease proteomics and biomarkers. He returned to UTHSC as an Assistant Professor of Neurology in the end of 2007, engaging in proteomics and biomarker studies of lung diseases and brain tumors, and initiating the studies of predictive, preventive, and personalized medicine (PPPM) in cancer. In 2010, he was promoted to Associate Professor of Neurology, UTHSC. Currently, he is a Professor at Xiangya Hospital of Central South University in China, Fellow of Royal Society of Medicine (FRSM), the European EPMA National Representative in China, Regular Member of American Association for the Advancement of Science (AAAS), European Cooperation of Science and Technology (e-COST) grant evaluator, Associate Editors of BMC Genomics, BMC Medical Genomics, EPMA Journal, and Frontiers in Endocrinology, Executive Editor-in-Chief of Med One. He has\npublished 116 peer-reviewed research articles, 16 book chapters, 2 books, and 2 US patents. His current main research interest focuses on the studies of cancer proteomics and biomarkers, and the use of modern omics techniques and systems biology for PPPM in cancer, and on the development and use of 2DE-LC/MS for the large-scale study of human proteoforms.",institutionString:null,institution:{name:"Xiangya Hospital Central South University",country:{name:"China"}}},{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",biography:"Dr. Rizwan Ahmad is a University Professor and Coordinator, Quality and Development, College of Medicine, Imam Abdulrahman bin Faisal University, Saudi Arabia. Previously, he was Associate Professor of Human Function, Oman Medical College, Oman, and SBS University, Dehradun. Dr. Ahmad completed his education at Aligarh Muslim University, Aligarh. He has published several articles in peer-reviewed journals, chapters, and edited books. His area of specialization is free radical biochemistry and autoimmune diseases.",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",country:{name:"Saudi Arabia"}}},{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",biography:"Farid A. Badria, Ph.D., is the recipient of several awards, including The World Academy of Sciences (TWAS) Prize for Public Understanding of Science; the World Intellectual Property Organization (WIPO) Gold Medal for best invention; Outstanding Arab Scholar, Kuwait; and the Khwarizmi International Award, Iran. He has 250 publications, 12 books, 20 patents, and several marketed pharmaceutical products to his credit. He continues to lead research projects on developing new therapies for liver, skin disorders, and cancer. Dr. Badria was listed among the world’s top 2% of scientists in medicinal and biomolecular chemistry in 2019 and 2020. He is a member of the Arab Development Fund, Kuwait; International Cell Research Organization–United Nations Educational, Scientific and Cultural Organization (ICRO–UNESCO), Chile; and UNESCO Biotechnology France",institutionString:"Mansoura University",institution:{name:"Mansoura University",country:{name:"Egypt"}}},{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",biography:"Dr. Singh received a BPharm (2003) and MPharm (2005) from Panjab University, Chandigarh, India, and a Ph.D. (2013) from Punjab Technical University (PTU), Jalandhar, India. He has more than sixteen years of teaching experience and has supervised numerous postgraduate and Ph.D. students. He has to his credit more than seventy papers in SCI- and SCOPUS-indexed journals, fifty-five conference proceedings, four books, six Best Paper Awards, and five projects from different government agencies. He is currently an editorial board member of eight international journals and a reviewer for more than fifty scientific journals. He received Top Reviewer and Excellent Peer Reviewer Awards from Publons in 2016 and 2017, respectively. He is also on the panel of The International Reviewer for reviewing research proposals for grants from the Royal Society. He also serves as a Publons Academy mentor and Bentham brand ambassador.",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",country:{name:"India"}}},{id:"142388",title:"Dr.",name:"Thiago",middleName:"Gomes",surname:"Gomes Heck",slug:"thiago-gomes-heck",fullName:"Thiago Gomes Heck",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/142388/images/7259_n.jpg",biography:null,institutionString:null,institution:{name:"Universidade Regional do Noroeste do Estado do Rio Grande do Sul",country:{name:"Brazil"}}},{id:"336273",title:"Assistant Prof.",name:"Janja",middleName:null,surname:"Zupan",slug:"janja-zupan",fullName:"Janja Zupan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/336273/images/14853_n.jpeg",biography:"Janja Zupan graduated in 2005 at the Department of Clinical Biochemistry (superviser prof. dr. Janja Marc) in the field of genetics of osteoporosis. Since November 2009 she is working as a Teaching Assistant at the Faculty of Pharmacy, Department of Clinical Biochemistry. In 2011 she completed part of her research and PhD work at Institute of Genetics and Molecular Medicine, University of Edinburgh. She finished her PhD entitled The influence of the proinflammatory cytokines on the RANK/RANKL/OPG in bone tissue of osteoporotic and osteoarthritic patients in 2012. From 2014-2016 she worked at the Institute of Biomedical Sciences, University of Aberdeen as a postdoctoral research fellow on UK Arthritis research project where she gained knowledge in mesenchymal stem cells and regenerative medicine. She returned back to University of Ljubljana, Faculty of Pharmacy in 2016. She is currently leading project entitled Mesenchymal stem cells-the keepers of tissue endogenous regenerative capacity facing up to aging of the musculoskeletal system funded by Slovenian Research Agency.",institutionString:null,institution:{name:"University of Ljubljana",country:{name:"Slovenia"}}},{id:"357453",title:"Dr.",name:"Radheshyam",middleName:null,surname:"Maurya",slug:"radheshyam-maurya",fullName:"Radheshyam Maurya",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/357453/images/16535_n.jpg",biography:null,institutionString:null,institution:{name:"University of Hyderabad",country:{name:"India"}}},{id:"418340",title:"Dr.",name:"Jyotirmoi",middleName:null,surname:"Aich",slug:"jyotirmoi-aich",fullName:"Jyotirmoi Aich",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038Ugi5QAC/Profile_Picture_2022-04-15T07:48:28.png",biography:"Biotechnologist with 15 years of research including 6 years of teaching experience. Demonstrated record of scientific achievements through consistent publication record (H index = 13, with 874 citations) in high impact journals such as Nature Communications, Oncotarget, Annals of Oncology, PNAS, and AJRCCM, etc. Strong research professional with a post-doctorate from ACTREC where I gained experimental oncology experience in clinical settings and a doctorate from IGIB where I gained expertise in asthma pathophysiology. A well-trained biotechnologist with diverse experience on the bench across different research themes ranging from asthma to cancer and other infectious diseases. An individual with a strong commitment and innovative mindset. Have the ability to work on diverse projects such as regenerative and molecular medicine with an overall mindset of improving healthcare.",institutionString:"DY Patil Deemed to Be University",institution:null},{id:"349288",title:"Prof.",name:"Soumya",middleName:null,surname:"Basu",slug:"soumya-basu",fullName:"Soumya Basu",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035QxIDQA0/Profile_Picture_2022-04-15T07:47:01.jpg",biography:"Soumya Basu, Ph.D., is currently working as an Associate Professor at Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India. With 16+ years of trans-disciplinary research experience in Drug Design, development, and pre-clinical validation; 20+ research article publications in journals of repute, 9+ years of teaching experience, trained with cross-disciplinary education, Dr. Basu is a life-long learner and always thrives for new challenges.\r\nHer research area is the design and synthesis of small molecule partial agonists of PPAR-γ in lung cancer. She is also using artificial intelligence and deep learning methods to understand the exosomal miRNA’s role in cancer metastasis. Dr. Basu is the recipient of many awards including the Early Career Research Award from the Department of Science and Technology, Govt. of India. She is a reviewer of many journals like Molecular Biology Reports, Frontiers in Oncology, RSC Advances, PLOS ONE, Journal of Biomolecular Structure & Dynamics, Journal of Molecular Graphics and Modelling, etc. She has edited and authored/co-authored 21 journal papers, 3 book chapters, and 15 abstracts. She is a Board of Studies member at her university. She is a life member of 'The Cytometry Society”-in India and 'All India Cell Biology Society”- in India.",institutionString:"Dr. D.Y. Patil Vidyapeeth, Pune",institution:{name:"Dr. D.Y. Patil Vidyapeeth, Pune",country:{name:"India"}}},{id:"354817",title:"Dr.",name:"Anubhab",middleName:null,surname:"Mukherjee",slug:"anubhab-mukherjee",fullName:"Anubhab Mukherjee",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0033Y0000365PbRQAU/ProfilePicture%202022-04-15%2005%3A11%3A18.480",biography:"A former member of Laboratory of Nanomedicine, Brigham and Women’s Hospital, Harvard University, Boston, USA, Dr. Anubhab Mukherjee is an ardent votary of science who strives to make an impact in the lives of those afflicted with cancer and other chronic/acute ailments. He completed his Ph.D. from CSIR-Indian Institute of Chemical Technology, Hyderabad, India, having been skilled with RNAi, liposomal drug delivery, preclinical cell and animal studies. He pursued post-doctoral research at College of Pharmacy, Health Science Center, Texas A & M University and was involved in another postdoctoral research at Department of Translational Neurosciences and Neurotherapeutics, John Wayne Cancer Institute, Santa Monica, California. In 2015, he worked in Harvard-MIT Health Sciences & Technology as a visiting scientist. He has substantial experience in nanotechnology-based formulation development and successfully served various Indian organizations to develop pharmaceuticals and nutraceutical products. He is an inventor in many US patents and an author in many peer-reviewed articles, book chapters and books published in various media of international repute. Dr. Mukherjee is currently serving as Principal Scientist, R&D at Esperer Onco Nutrition (EON) Pvt. Ltd. and heads the Hyderabad R&D center of the organization.",institutionString:"Esperer Onco Nutrition Pvt Ltd.",institution:null},{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/319365/images/system/319365.png",biography:"Manash K. Paul is a Principal Investigator and Scientist at the University of California Los Angeles. He has contributed significantly to the fields of stem cell biology, regenerative medicine, and lung cancer. His research focuses on various signaling processes involved in maintaining stem cell homeostasis during the injury-repair process, deciphering lung stem cell niche, pulmonary disease modeling, immuno-oncology, and drug discovery. He is currently investigating the role of extracellular vesicles in premalignant lung cell migration and detecting the metastatic phenotype of lung cancer via machine-learning-based analyses of exosomal signatures. Dr. Paul has published in more than fifty peer-reviewed international journals and is highly cited. He is the recipient of many awards, including the UCLA Vice Chancellor’s award, a senior member of the Institute of Electrical and Electronics Engineers (IEEE), and an editorial board member for several international journals.",institutionString:"University of California Los Angeles",institution:{name:"University of California Los Angeles",country:{name:"United States of America"}}},{id:"311457",title:"Dr.",name:"Júlia",middleName:null,surname:"Scherer Santos",slug:"julia-scherer-santos",fullName:"Júlia Scherer Santos",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/311457/images/system/311457.jpg",biography:"Dr. Júlia Scherer Santos works in the areas of cosmetology, nanotechnology, pharmaceutical technology, beauty, and aesthetics. Dr. Santos also has experience as a professor of graduate courses. Graduated in Pharmacy, specialization in Cosmetology and Cosmeceuticals applied to aesthetics, specialization in Aesthetic and Cosmetic Health, and a doctorate in Pharmaceutical Nanotechnology. Teaching experience in Pharmacy and Aesthetics and Cosmetics courses. She works mainly on the following subjects: nanotechnology, cosmetology, pharmaceutical technology, aesthetics.",institutionString:"Universidade Federal de Juiz de Fora",institution:{name:"Universidade Federal de Juiz de Fora",country:{name:"Brazil"}}},{id:"219081",title:"Dr.",name:"Abdulsamed",middleName:null,surname:"Kükürt",slug:"abdulsamed-kukurt",fullName:"Abdulsamed Kükürt",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/219081/images/system/219081.png",biography:"Dr. Kükürt graduated from Uludağ University in Turkey. He started his academic career as a Research Assistant in the Department of Biochemistry at Kafkas University. In 2019, he completed his Ph.D. program in the Department of Biochemistry at the Institute of Health Sciences. He is currently working at the Department of Biochemistry, Kafkas University. He has 27 published research articles in academic journals, 11 book chapters, and 37 papers. He took part in 10 academic projects. He served as a reviewer for many articles. He still serves as a member of the review board in many academic journals. He is currently working on the protective activity of phenolic compounds in disorders associated with oxidative stress and inflammation.",institutionString:null,institution:{name:"Kafkas University",country:{name:"Turkey"}}},{id:"178366",title:"Dr.",name:"Volkan",middleName:null,surname:"Gelen",slug:"volkan-gelen",fullName:"Volkan Gelen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/178366/images/system/178366.jpg",biography:"Volkan Gelen is a Physiology specialist who received his veterinary degree from Kafkas University in 2011. Between 2011-2015, he worked as an assistant at Atatürk University, Faculty of Veterinary Medicine, Department of Physiology. In 2016, he joined Kafkas University, Faculty of Veterinary Medicine, Department of Physiology as an assistant professor. Dr. Gelen has been engaged in various academic activities at Kafkas University since 2016. There he completed 5 projects and has 3 ongoing projects. He has 60 articles published in scientific journals and 20 poster presentations in scientific congresses. His research interests include physiology, endocrine system, cancer, diabetes, cardiovascular system diseases, and isolated organ bath system studies.",institutionString:"Kafkas University",institution:{name:"Kafkas University",country:{name:"Turkey"}}},{id:"418963",title:"Dr.",name:"Augustine Ododo",middleName:"Augustine",surname:"Osagie",slug:"augustine-ododo-osagie",fullName:"Augustine Ododo Osagie",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/418963/images/16900_n.jpg",biography:"Born into the family of Osagie, a prince of the Benin Kingdom. I am currently an academic in the Department of Medical Biochemistry, University of Benin. Part of the duties are to teach undergraduate students and conduct academic research.",institutionString:null,institution:{name:"University of Benin",country:{name:"Nigeria"}}},{id:"192992",title:"Prof.",name:"Shagufta",middleName:null,surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/192992/images/system/192992.png",biography:"Prof. Shagufta Perveen is a Distinguish Professor in the Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia. Dr. Perveen has acted as the principal investigator of major research projects funded by the research unit of King Saud University. She has more than ninety original research papers in peer-reviewed journals of international repute to her credit. She is a fellow member of the Royal Society of Chemistry UK and the American Chemical Society of the United States.",institutionString:"King Saud University",institution:{name:"King Saud University",country:{name:"Saudi Arabia"}}},{id:"49848",title:"Dr.",name:"Wen-Long",middleName:null,surname:"Hu",slug:"wen-long-hu",fullName:"Wen-Long Hu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49848/images/system/49848.jpg",biography:"Wen-Long Hu is Chief of the Division of Acupuncture, Department of Chinese Medicine at Kaohsiung Chang Gung Memorial Hospital, as well as an adjunct associate professor at Fooyin University and Kaohsiung Medical University. Wen-Long is President of Taiwan Traditional Chinese Medicine Medical Association. He has 28 years of experience in clinical practice in laser acupuncture therapy and 34 years in acupuncture. He is an invited speaker for lectures and workshops in laser acupuncture at many symposiums held by medical associations. He owns the patent for herbal preparation and producing, and for the supercritical fluid-treated needle. Dr. Hu has published three books, 12 book chapters, and more than 30 papers in reputed journals, besides serving as an editorial board member of repute.",institutionString:"Kaohsiung Chang Gung Memorial Hospital",institution:{name:"Kaohsiung Chang Gung Memorial Hospital",country:{name:"Taiwan"}}},{id:"298472",title:"Prof.",name:"Andrey V.",middleName:null,surname:"Grechko",slug:"andrey-v.-grechko",fullName:"Andrey V. Grechko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/298472/images/system/298472.png",biography:"Andrey Vyacheslavovich Grechko, Ph.D., Professor, is a Corresponding Member of the Russian Academy of Sciences. He graduated from the Semashko Moscow Medical Institute (Semashko National Research Institute of Public Health) with a degree in Medicine (1998), the Clinical Department of Dermatovenerology (2000), and received a second higher education in Psychology (2009). Professor A.V. Grechko held the position of Сhief Physician of the Central Clinical Hospital in Moscow. He worked as a professor at the faculty and was engaged in scientific research at the Medical University. Starting in 2013, he has been the initiator of the creation of the Federal Scientific and Clinical Center for Intensive Care and Rehabilitology, Moscow, Russian Federation, where he also serves as Director since 2015. He has many years of experience in research and teaching in various fields of medicine, is an author/co-author of more than 200 scientific publications, 13 patents, 15 medical books/chapters, including Chapter in Book «Metabolomics», IntechOpen, 2020 «Metabolomic Discovery of Microbiota Dysfunction as the Cause of Pathology».",institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null},{id:"199461",title:"Prof.",name:"Natalia V.",middleName:null,surname:"Beloborodova",slug:"natalia-v.-beloborodova",fullName:"Natalia V. Beloborodova",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/199461/images/system/199461.jpg",biography:'Natalia Vladimirovna Beloborodova was educated at the Pirogov Russian National Research Medical University, with a degree in pediatrics in 1980, a Ph.D. in 1987, and a specialization in Clinical Microbiology from First Moscow State Medical University in 2004. She has been a Professor since 1996. Currently, she is the Head of the Laboratory of Metabolism, a division of the Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russian Federation. N.V. Beloborodova has many years of clinical experience in the field of intensive care and surgery. She studies infectious complications and sepsis. She initiated a series of interdisciplinary clinical and experimental studies based on the concept of integrating human metabolism and its microbiota. Her scientific achievements are widely known: she is the recipient of the Marie E. Coates Award \\"Best lecturer-scientist\\" Gustafsson Fund, Karolinska Institutes, Stockholm, Sweden, and the International Sepsis Forum Award, Pasteur Institute, Paris, France (2014), etc. Professor N.V. Beloborodova wrote 210 papers, five books, 10 chapters and has edited four books.',institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null},{id:"354260",title:"Ph.D.",name:"Tércio Elyan",middleName:"Azevedo",surname:"Azevedo Martins",slug:"tercio-elyan-azevedo-martins",fullName:"Tércio Elyan Azevedo Martins",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/354260/images/16241_n.jpg",biography:"Graduated in Pharmacy from the Federal University of Ceará with the modality in Industrial Pharmacy, Specialist in Production and Control of Medicines from the University of São Paulo (USP), Master in Pharmaceuticals and Medicines from the University of São Paulo (USP) and Doctor of Science in the program of Pharmaceuticals and Medicines by the University of São Paulo. Professor at Universidade Paulista (UNIP) in the areas of chemistry, cosmetology and trichology. Assistant Coordinator of the Higher Course in Aesthetic and Cosmetic Technology at Universidade Paulista Campus Chácara Santo Antônio. Experience in the Pharmacy area, with emphasis on Pharmacotechnics, Pharmaceutical Technology, Research and Development of Cosmetics, acting mainly on topics such as cosmetology, antioxidant activity, aesthetics, photoprotection, cyclodextrin and thermal analysis.",institutionString:null,institution:{name:"University of Sao Paulo",country:{name:"Brazil"}}},{id:"334285",title:"Ph.D. Student",name:"Sameer",middleName:"Kumar",surname:"Jagirdar",slug:"sameer-jagirdar",fullName:"Sameer Jagirdar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334285/images/14691_n.jpg",biography:"I\\'m a graduate student at the center for biosystems science and engineering at the Indian Institute of Science, Bangalore, India. I am interested in studying host-pathogen interactions at the biomaterial interface.",institutionString:null,institution:{name:"Indian Institute of Science Bangalore",country:{name:"India"}}},{id:"329248",title:"Dr.",name:"Md. Faheem",middleName:null,surname:"Haider",slug:"md.-faheem-haider",fullName:"Md. Faheem Haider",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329248/images/system/329248.jpg",biography:"Dr. Md. Faheem Haider completed his BPharm in 2012 at Integral University, Lucknow, India. In 2014, he completed his MPharm with specialization in Pharmaceutics at Babasaheb Bhimrao Ambedkar University, Lucknow, India. He received his Ph.D. degree from Jamia Hamdard University, New Delhi, India, in 2018. He was selected for the GPAT six times and his best All India Rank was 34. Currently, he is an assistant professor at Integral University. Previously he was an assistant professor at IIMT University, Meerut, India. He has experience teaching DPharm, Pharm.D, BPharm, and MPharm students. He has more than five publications in reputed journals to his credit. Dr. Faheem’s research area is the development and characterization of nanoformulation for the delivery of drugs to various organs.",institutionString:"Integral University",institution:{name:"Integral University",country:{name:"India"}}},{id:"329795",title:"Dr.",name:"Mohd Aftab",middleName:"Aftab",surname:"Siddiqui",slug:"mohd-aftab-siddiqui",fullName:"Mohd Aftab Siddiqui",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329795/images/system/329795.png",biography:"Dr. Mohd Aftab Siddiqui is an assistant professor in the Faculty of Pharmacy, Integral University, Lucknow, India, where he obtained a Ph.D. in Pharmacology in 2020. He also obtained a BPharm and MPharm from the same university in 2013 and 2015, respectively. His area of research is the pharmacological screening of herbal drugs/natural products in liver cancer and cardiac diseases. He is a member of many professional bodies and has guided many MPharm and PharmD research projects. Dr. Siddiqui has many national and international publications and one German patent to his credit.",institutionString:"Integral University",institution:null},{id:"255360",title:"Dr.",name:"Usama",middleName:null,surname:"Ahmad",slug:"usama-ahmad",fullName:"Usama Ahmad",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255360/images/system/255360.png",biography:"Dr. Usama Ahmad holds a specialization in Pharmaceutics from Amity University, Lucknow, India. He received his Ph.D. from Integral University, Lucknow, India, with his work titled ‘Development and evaluation of silymarin nanoformulation for hepatic carcinoma’. Currently, he is an Assistant Professor of Pharmaceutics, at the Faculty of Pharmacy, Integral University. He has been teaching PharmD, BPharm, and MPharm students and conducting research in the novel drug delivery domain. From 2013 to 2014 he worked on a research project funded by SERB-DST, Government of India. He has a rich publication record with more than twenty-four original journal articles, two edited books, four book chapters, and several scientific articles to his credit. He is a member of the American Association for Cancer Research, the International Association for the Study of Lung Cancer, and the British Society for Nanomedicine. Dr. Ahmad’s research focus is on the development of nanoformulations to facilitate the delivery of drugs.",institutionString:"Integral University",institution:{name:"Integral University",country:{name:"India"}}},{id:"333824",title:"Dr.",name:"Ahmad Farouk",middleName:null,surname:"Musa",slug:"ahmad-farouk-musa",fullName:"Ahmad Farouk Musa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/333824/images/22684_n.jpg",biography:"Dato’ Dr Ahmad Farouk Musa\nMD, MMED (Surgery) (Mal), Fellowship in Cardiothoracic Surgery (Monash Health, Aust), Graduate Certificate in Higher Education (Aust), Academy of Medicine (Mal)\n\n\n\nDato’ Dr Ahmad Farouk Musa obtained his Doctor of Medicine from USM in 1992. He then obtained his Master of Medicine in Surgery from the same university in the year 2000 before subspecialising in Cardiothoracic Surgery at Institut Jantung Negara (IJN), Kuala Lumpur from 2002 until 2005. He then completed his Fellowship in Cardiothoracic Surgery at Monash Health, Melbourne, Australia in 2008. He has served in the Malaysian army as a Medical Officer with the rank of Captain upon completing his Internship before joining USM as a trainee lecturer. He is now serving as an academic and researcher at Monash University Malaysia. He is a life-member of the Malaysian Association of Thoracic & Cardiovascular Surgery (MATCVS) and a committee member of the MATCVS Database. He is also a life-member of the College of Surgeons, Academy of Medicine of Malaysia; a life-member of Malaysian Medical Association (MMA), and a life-member of Islamic Medical Association of Malaysia (IMAM). Recently he was appointed as an Interim Chairperson of Examination & Assessment Subcommittee of the UiTM-IJN Cardiothoracic Surgery Postgraduate Program. As an academic, he has published numerous research papers and book chapters. He has also been appointed to review many scientific manuscripts by established journals such as the British Medical Journal (BMJ). He has presented his research works at numerous local and international conferences such as the European Association for Cardiothoracic Surgery (EACTS) and the European Society of Cardiovascular Surgery (ESCVS), to name a few. He has also won many awards for his research presentations at meetings and conferences like the prestigious International Invention, Innovation & Technology Exhibition (ITEX); Design, Research and Innovation Exhibition, the National Conference on Medical Sciences and the Annual Scientific Meetings of the Malaysian Association for Thoracic and Cardiovascular Surgery. He was awarded the Darjah Setia Pangkuan Negeri (DSPN) by the Governor of Penang in July, 2015.",institutionString:null,institution:{name:"Monash University Malaysia",country:{name:"Malaysia"}}},{id:"30568",title:"Prof.",name:"Madhu",middleName:null,surname:"Khullar",slug:"madhu-khullar",fullName:"Madhu Khullar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/30568/images/system/30568.jpg",biography:"Dr. Madhu Khullar is a Professor of Experimental Medicine and Biotechnology at the Post Graduate Institute of Medical Education and Research, Chandigarh, India. She completed her Post Doctorate in hypertension research at the Henry Ford Hospital, Detroit, USA in 1985. She is an editor and reviewer of several international journals, and a fellow and member of several cardiovascular research societies. Dr. Khullar has a keen research interest in genetics of hypertension, and is currently studying pharmacogenetics of hypertension.",institutionString:"Post Graduate Institute of Medical Education and Research",institution:{name:"Post Graduate Institute of Medical Education and Research",country:{name:"India"}}},{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",biography:"Xianquan Zhan received his MD and Ph.D. in Preventive Medicine at West China University of Medical Sciences. He received his post-doctoral training in oncology and cancer proteomics at the Central South University, China, and the University of Tennessee Health Science Center (UTHSC), USA. He worked at UTHSC and the Cleveland Clinic in 2001–2012 and achieved the rank of associate professor at UTHSC. Currently, he is a full professor at Central South University and Shandong First Medical University, and an advisor to MS/PhD students and postdoctoral fellows. He is also a fellow of the Royal Society of Medicine and European Association for Predictive Preventive Personalized Medicine (EPMA), a national representative of EPMA, and a member of the American Society of Clinical Oncology (ASCO) and the American Association for the Advancement of Sciences (AAAS). He is also the editor in chief of International Journal of Chronic Diseases & Therapy, an associate editor of EPMA Journal, Frontiers in Endocrinology, and BMC Medical Genomics, and a guest editor of Mass Spectrometry Reviews, Frontiers in Endocrinology, EPMA Journal, and Oxidative Medicine and Cellular Longevity. He has published more than 148 articles, 28 book chapters, 6 books, and 2 US patents in the field of clinical proteomics and biomarkers.",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",country:{name:"China"}}}]}},subseries:{item:{id:"15",type:"subseries",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11411,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,series:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983"},editorialBoard:[{id:"219081",title:"Dr.",name:"Abdulsamed",middleName:null,surname:"Kükürt",slug:"abdulsamed-kukurt",fullName:"Abdulsamed Kükürt",profilePictureURL:"https://mts.intechopen.com/storage/users/219081/images/system/219081.png",institutionString:null,institution:{name:"Kafkas University",institutionURL:null,country:{name:"Turkey"}}},{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",slug:"azhar-rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},onlineFirstChapters:{paginationCount:5,paginationItems:[{id:"82029",title:"Synthesis, Characterization and Antimicrobial Properties of Novel Benzimidazole Amide Derivatives Bearing Thiophene Moiety",doi:"10.5772/intechopen.104908",signatures:"Vinayak Adimule, Pravin Kendrekar and Sheetal Batakurki",slug:"synthesis-characterization-and-antimicrobial-properties-of-novel-benzimidazole-amide-derivatives-bea",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80168",title:"Benzimidazole: Pharmacological Profile",doi:"10.5772/intechopen.102091",signatures:"Mahender Thatikayala, Anil Kumar Garige and Hemalatha Gadegoni",slug:"benzimidazole-pharmacological-profile",totalDownloads:83,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80130",title:"Exploring the Versatility of Benzimidazole Scaffolds as Medicinal Agents: A Brief Update",doi:"10.5772/intechopen.101942",signatures:"Gopakumar Kavya and Akhil Sivan",slug:"exploring-the-versatility-of-benzimidazole-scaffolds-as-medicinal-agents-a-brief-update",totalDownloads:62,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"79964",title:"The Anticancer Profile of Benzimidazolium Salts and Their Metal Complexes",doi:"10.5772/intechopen.101729",signatures:"Imran Ahmad Khan, Noor ul Amin Mohsin, Sana Aslam and Matloob Ahmad",slug:"the-anticancer-profile-of-benzimidazolium-salts-and-their-metal-complexes",totalDownloads:95,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"79835",title:"Advances of Benzimidazole Derivatives as Anticancer Agents: Bench to Bedside",doi:"10.5772/intechopen.101702",signatures:"Kashif Haider and Mohammad Shahar Yar",slug:"advances-of-benzimidazole-derivatives-as-anticancer-agents-bench-to-bedside",totalDownloads:128,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}}]},publishedBooks:{paginationCount:4,paginationItems:[{type:"book",id:"10839",title:"Protein Detection",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",slug:"protein-detection",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Yusuf Tutar and Lütfi Tutar",hash:"2f1c0e4e0207fc45c936e7d22a5369c4",volumeInSeries:31,fullTitle:"Protein Detection",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",institutionString:"University of Health Sciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9742",title:"Ubiquitin",subtitle:"Proteasome Pathway",coverURL:"https://cdn.intechopen.com/books/images_new/9742.jpg",slug:"ubiquitin-proteasome-pathway",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"af6880d3a5571da1377ac8f6373b9e82",volumeInSeries:18,fullTitle:"Ubiquitin - Proteasome Pathway",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"4",title:"Fungal Infectious Diseases",scope:"Fungi are ubiquitous and there are almost no non-pathogenic fungi. Fungal infectious illness prevalence and prognosis are determined by the exposure between fungi and host, host immunological state, fungal virulence, and early and accurate diagnosis and treatment. \r\nPatients with both congenital and acquired immunodeficiency are more likely to be infected with opportunistic mycosis. Fungal infectious disease outbreaks are common during the post- disaster rebuilding era, which is characterised by high population density, migration, and poor health and medical conditions.\r\nSystemic or local fungal infection is mainly associated with the fungi directly inhaled or inoculated in the environment during the disaster. The most common fungal infection pathways are human to human (anthropophilic), animal to human (zoophilic), and environment to human (soilophile). Diseases are common as a result of widespread exposure to pathogenic fungus dispersed into the environment. \r\nFungi that are both common and emerging are intertwined. In Southeast Asia, for example, Talaromyces marneffei is an important pathogenic thermally dimorphic fungus that causes systemic mycosis. Widespread fungal infections with complicated and variable clinical manifestations, such as Candida auris infection resistant to several antifungal medicines, Covid-19 associated with Trichoderma, and terbinafine resistant dermatophytosis in India, are among the most serious disorders. \r\nInappropriate local or systemic use of glucocorticoids, as well as their immunosuppressive effects, may lead to changes in fungal infection spectrum and clinical characteristics. Hematogenous candidiasis is a worrisome issue that affects people all over the world, particularly ICU patients. CARD9 deficiency and fungal infection have been major issues in recent years. Invasive aspergillosis is associated with a significant death rate. Special attention should be given to endemic fungal infections, identification of important clinical fungal infections advanced in yeasts, filamentous fungal infections, skin mycobiome and fungal genomes, and immunity to fungal infections.\r\nIn addition, endemic fungal diseases or uncommon fungal infections caused by Mucor irregularis, dermatophytosis, Malassezia, cryptococcosis, chromoblastomycosis, coccidiosis, blastomycosis, histoplasmosis, sporotrichosis, and other fungi, should be monitored. \r\nThis topic includes the research progress on the etiology and pathogenesis of fungal infections, new methods of isolation and identification, rapid detection, drug sensitivity testing, new antifungal drugs, schemes and case series reports. It will provide significant opportunities and support for scientists, clinical doctors, mycologists, antifungal drug researchers, public health practitioners, and epidemiologists from all over the world to share new research, ideas and solutions to promote the development and progress of medical mycology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",keywords:"Emerging Fungal Pathogens, Invasive Infections, Epidemiology, Cell Membrane, Fungal Virulence, Diagnosis, Treatment"},{id:"5",title:"Parasitic Infectious Diseases",scope:"Parasitic diseases have evolved alongside their human hosts. In many cases, these diseases have adapted so well that they have developed efficient resilience methods in the human host and can live in the host for years. Others, particularly some blood parasites, can cause very acute diseases and are responsible for millions of deaths yearly. Many parasitic diseases are classified as neglected tropical diseases because they have received minimal funding over recent years and, in many cases, are under-reported despite the critical role they play in morbidity and mortality among human and animal hosts. The current topic, Parasitic Infectious Diseases, in the Infectious Diseases Series aims to publish studies on the systematics, epidemiology, molecular biology, genomics, pathogenesis, genetics, and clinical significance of parasitic diseases from blood borne to intestinal parasites as well as zoonotic parasites. We hope to cover all aspects of parasitic diseases to provide current and relevant research data on these very important diseases. In the current atmosphere of the Coronavirus pandemic, communities around the world, particularly those in different underdeveloped areas, are faced with the growing challenges of the high burden of parasitic diseases. At the same time, they are faced with the Covid-19 pandemic leading to what some authors have called potential syndemics that might worsen the outcome of such infections. Therefore, it is important to conduct studies that examine parasitic infections in the context of the coronavirus pandemic for the benefit of all communities to help foster more informed decisions for the betterment of human and animal health.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",keywords:"Blood Borne Parasites, Intestinal Parasites, Protozoa, Helminths, Arthropods, Water Born Parasites, Epidemiology, Molecular Biology, Systematics, Genomics, Proteomics, Ecology"},{id:"6",title:"Viral Infectious Diseases",scope:"The Viral Infectious Diseases Book Series aims to provide a comprehensive overview of recent research trends and discoveries in various viral infectious diseases emerging around the globe. The emergence of any viral disease is hard to anticipate, which often contributes to death. A viral disease can be defined as an infectious disease that has recently appeared within a population or exists in nature with the rapid expansion of incident or geographic range. This series will focus on various crucial factors related to emerging viral infectious diseases, including epidemiology, pathogenesis, host immune response, clinical manifestations, diagnosis, treatment, and clinical recommendations for managing viral infectious diseases, highlighting the recent issues with future directions for effective therapeutic strategies.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",keywords:"Novel Viruses, Virus Transmission, Virus Evolution, Molecular Virology, Control and Prevention, Virus-host Interaction"}],annualVolumeBook:{},thematicCollection:[{type:"book",id:"11672",title:"Chemokines Updates",subtitle:null,isOpenForSubmission:!0,hash:"c00855833476a514d37abf7c846e16e9",slug:null,bookSignature:"Prof. Murat Şentürk",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",editedByType:null,submissionDeadline:"May 6th 2022",editors:[{id:"14794",title:"Prof.",name:"Murat",middleName:null,surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk",profilePictureURL:"https://mts.intechopen.com/storage/users/14794/images/system/14794.jpeg",biography:"Dr. Murat Şentürk obtained a baccalaureate degree in Chemistry in 2002, a master’s degree in Biochemistry in 2006, and a doctorate degree in Biochemistry in 2009 from Atatürk University, Turkey. Dr. Şentürk currently works as an professor of Biochemistry in the Department of Basic Pharmacy Sciences, Faculty of Pharmacy, Ağri Ibrahim Cecen University, Turkey. \nDr. Şentürk published over 120 scientific papers, reviews, and book chapters and presented several conferences to scientists. \nHis research interests span enzyme inhibitor or activator, protein expression, purification and characterization, drug design and synthesis, toxicology, and pharmacology. \nHis research work has focused on neurodegenerative diseases and cancer treatment. Dr. Şentürk serves as the editorial board member of several international journals.",institutionString:"Ağrı İbrahim Çeçen University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Ağrı İbrahim Çeçen University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}],selectedSeries:{title:"Infectious Diseases",id:"6"},selectedSubseries:null},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 29th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:318,numberOfPublishedBooks:32,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"219081",title:"Dr.",name:"Abdulsamed",middleName:null,surname:"Kükürt",fullName:"Abdulsamed Kükürt",profilePictureURL:"https://mts.intechopen.com/storage/users/219081/images/system/219081.png",institutionString:null,institution:{name:"Kafkas University",institutionURL:null,country:{name:"Turkey"}}},{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://mts.intechopen.com/storage/users/81926/images/system/81926.png",institutionString:"Suez Canal University",institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/50881",hash:"",query:{},params:{id:"50881"},fullPath:"/chapters/50881",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()