Electron beam current values needed to produce the selected doses for alanine pellets running under the beam at 20.32 cm/s.
\\n\\n
More than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\\n\\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\\n\\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\\n\\nAdditionally, each book published by IntechOpen contains original content and research findings.
\\n\\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:{caption:"IntechOpen Maintains",originalUrl:"/media/original/113"}},components:[{type:"htmlEditorComponent",content:'
Simba Information has released its Open Access Book Publishing 2020 - 2024 report and has again identified IntechOpen as the world’s largest Open Access book publisher by title count.
\n\nSimba Information is a leading provider for market intelligence and forecasts in the media and publishing industry. The report, published every year, provides an overview and financial outlook for the global professional e-book publishing market.
\n\nIntechOpen, De Gruyter, and Frontiers are the largest OA book publishers by title count, with IntechOpen coming in at first place with 5,101 OA books published, a good 1,782 titles ahead of the nearest competitor.
\n\nSince the first Open Access Book Publishing report published in 2016, IntechOpen has held the top stop each year.
\n\n\n\nMore than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\n\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\n\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\n\nAdditionally, each book published by IntechOpen contains original content and research findings.
\n\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\n\n\n\n
\n'}],latestNews:[{slug:"intechopen-supports-asapbio-s-new-initiative-publish-your-reviews-20220729",title:"IntechOpen Supports ASAPbio’s New Initiative Publish Your Reviews"},{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"}]},book:{item:{type:"book",id:"5682",leadTitle:null,fullTitle:"Physiologic and Pathologic Angiogenesis - Signaling Mechanisms and Targeted Therapy",title:"Physiologic and Pathologic Angiogenesis",subtitle:"Signaling Mechanisms and Targeted Therapy",reviewType:"peer-reviewed",abstract:"The purpose of this book is to highlight novel advances in the field and to incentivize scientists from a variety of fields to pursue angiogenesis as a research avenue. Blood vessel formation and maturation to capillaries, arteries, or veins is a fascinating area which can appeal to multiple scientists, students, and professors alike. Angiogenesis is relevant to medicine, engineering, pharmacology, and pathology and to the many patients suffering from blood vessel diseases and cancer, among others. We are hoping that this book will become a source of inspiration and novel ideas for all.",isbn:"978-953-51-3024-6",printIsbn:"978-953-51-3023-9",pdfIsbn:"978-953-51-4101-3",doi:"10.5772/64121",price:139,priceEur:155,priceUsd:179,slug:"physiologic-and-pathologic-angiogenesis-signaling-mechanisms-and-targeted-therapy",numberOfPages:464,isOpenForSubmission:!1,isInWos:1,isInBkci:!0,hash:"847efcb8c059798ea2a963d9578de2f5",bookSignature:"Dan Simionescu and Agneta Simionescu",publishedDate:"April 5th 2017",coverURL:"https://cdn.intechopen.com/books/images_new/5682.jpg",numberOfDownloads:35563,numberOfWosCitations:67,numberOfCrossrefCitations:33,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:84,numberOfDimensionsCitationsByBook:0,hasAltmetrics:1,numberOfTotalCitations:184,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 24th 2016",dateEndSecondStepPublish:"June 14th 2016",dateEndThirdStepPublish:"September 10th 2016",dateEndFourthStepPublish:"December 9th 2016",dateEndFifthStepPublish:"February 7th 2017",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,8",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"66196",title:"Dr.",name:"Dan",middleName:"T.",surname:"Simionescu",slug:"dan-simionescu",fullName:"Dan Simionescu",profilePictureURL:"https://mts.intechopen.com/storage/users/66196/images/system/66196.jpg",biography:"Dr. Dan Simionescu is the Harriet and Jerry Dempsey Professor of Bioengineering and Director of the Biocompatibility and Tissue Regeneration Laboratories at the Clemson University, Clemson, SC. He has published more than 95 peer-reviewed papers in highly ranked journals such as Circulation, Cardiovascular Pathology, American Journal of Pathology, Tissue Engineering, and Biomaterials and has more than 180 peer-reviewed conference proceedings presented worldwide. Dr. Simionescu’s general research interests include cardiovascular biology, pathology, and regeneration using scaffolds, stem cells and bioreactors. His current interest is preclinical validation of translational tissue engineering approaches and is being generously funded by the NIH and the biomedical industry for his efforts in the field of cardiovascular biology, pathology, and regenerative medicine.",institutionString:"Clemson University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Clemson University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"191041",title:"Dr.",name:"Agneta",middleName:null,surname:"Simionescu",slug:"agneta-simionescu",fullName:"Agneta Simionescu",profilePictureURL:"https://mts.intechopen.com/storage/users/191041/images/5341_n.jpg",biography:"Dr. Agneta Simionescu received her PhD degree in Biochemistry/Cell Biology for the study of matrix remodeling in cardiac diseases. Agneta has research interests in translational tissue engineering, angiogenesis, remodeling, and mechanotransduction. She was the first to show that matrix metalloproteinases (MMPs) are involved in degeneration of implanted cardiovascular biomaterials and that matrix-derived degradation products (matrikines) induce pathologic osteogenic activation of cardiovascular cells. She has also shown that stabilization of biomaterials and scaffolds with mild and reversible cross-linking agents might counteract these effects. In recent years, she has developed a passion for investigating the effects of diabetes on cardiovascular tissue engineering, including diabetes-related alterations of biomaterials and scaffolds, stem cell differentiation, matrix remodeling, and microvascular network formation in vitro and in vivo models of diabetes.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"985",title:"Cardiogeriatrics",slug:"cardiogeriatrics"}],chapters:[{id:"53316",title:"TGF-β Activation and Signaling in Angiogenesis",doi:"10.5772/66405",slug:"tgf-activation-and-signaling-in-angiogenesis",totalDownloads:2476,totalCrossrefCites:13,totalDimensionsCites:25,hasAltmetrics:0,abstract:"The transforming growth factor-β (TGF-β) signaling pathway regulates various cellular processes during tissue and organ development and homeostasis. Deregulation of the expression and/or functions of TGF-β ligands, receptors or their intracellular signaling components leads to multiple diseases including vascular pathologies, autoimmune disorders, fibrosis and cancer. In vascular development, physiology and disease TGF-β signaling can have angiogenic and angiostatic properties, depending on expression levels and the tissue context. The objective of this chapter is to analyze the mechanisms that contribute to the activation and signaling of TGF-β in developmental, physiological and pathological angiogenesis, with a particular emphasis on the importance of TGF-β signaling in the mammalian central nervous system (CNS).",signatures:"Paola A. Guerrero and Joseph H. McCarty",downloadPdfUrl:"/chapter/pdf-download/53316",previewPdfUrl:"/chapter/pdf-preview/53316",authors:[{id:"193482",title:"Dr.",name:"Paola",surname:"Guerrero",slug:"paola-guerrero",fullName:"Paola Guerrero"},{id:"195670",title:"Dr.",name:"Joseph",surname:"McCarty",slug:"joseph-mccarty",fullName:"Joseph McCarty"}],corrections:null},{id:"53457",title:"Role of Notch, SDF-1 and Mononuclear Cells Recruitment in Angiogenesis",doi:"10.5772/66761",slug:"role-of-notch-sdf-1-and-mononuclear-cells-recruitment-in-angiogenesis",totalDownloads:1524,totalCrossrefCites:1,totalDimensionsCites:4,hasAltmetrics:0,abstract:"Intussusceptive angiogenesis (IA) known also as splitting angiogenesis is a recently described mechanism of vascular growth alternative to sprouting. It plays an essential role in the vascular remodeling and adaptation of vessels during normal and pathological angiogenesis. It is an “escape” mechanism during and after irradiation and anti-VEGF therapy, both inducing angiogenic switch from sprouting to IA by formation of multiple transluminal tissue pillars. Our recently published data revealed the significant induction of IA after inhibition of Notch signaling associated with an increased capillary density by more than 50%. The induced IA was accompanied by detachment of pericytes from basement membrane, increased vessel permeability and recruitment of mononuclear cells toward the pillars; the process was dramatically enhanced after injection of bone marrow-derived mononuclear cells. The extravasation of mononuclear cells with eventual bone marrow origin was associated with upregulation of chemotaxis factors SDF-1 and CXCR4. In addition, SDF-1 expression was upregulated in the endothelium of liver sinusoids in Notch1 knockout mouse, together with vascular remodeling by intussusception. In this chapter, we discuss this important mechanism of angiogenesis, as well as the role of Notch signaling, SDF-1 signaling and mononuclear cells in the complex process of angiogenesis.",signatures:"Ivanka Dimova and Valentin Djonov",downloadPdfUrl:"/chapter/pdf-download/53457",previewPdfUrl:"/chapter/pdf-preview/53457",authors:[{id:"193572",title:"Prof.",name:"Ivanka",surname:"Dimova",slug:"ivanka-dimova",fullName:"Ivanka Dimova"},{id:"195601",title:"Prof.",name:"Valentin",surname:"Djonov",slug:"valentin-djonov",fullName:"Valentin Djonov"}],corrections:null},{id:"53381",title:"Angiogenesis Meets Skeletogenesis: The Cross-Talk between Two Dynamic Systems",doi:"10.5772/66497",slug:"angiogenesis-meets-skeletogenesis-the-cross-talk-between-two-dynamic-systems",totalDownloads:1399,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"In this chapter, we describe the complex relationship between angiogenesis and skeletogenesis. While much is known about the interactions of these two dynamic systems for bones that ossify via a cartilage template, comparatively little is known about directly ossifying bones. Most of the bones of the head develop from osteogenic condensations and undergo intramembranous (direct) ossification during development. Our understanding of the relationship between osteogenic cell condensations (in particular) and angiogenesis is currently inadequate and prevents a comprehensive understanding of vertebrate head development. This chapter highlights our understanding of both direct and indirectly ossifying bones shedding light on where there are important gaps in our understanding.",signatures:"Tamara A. Franz-Odendaal, Daniel Andrews and Shruti Kumar",downloadPdfUrl:"/chapter/pdf-download/53381",previewPdfUrl:"/chapter/pdf-preview/53381",authors:[{id:"192854",title:"Dr.",name:"Tamara",surname:"Franz-Odendaal",slug:"tamara-franz-odendaal",fullName:"Tamara Franz-Odendaal"},{id:"197559",title:"Mr.",name:"Daniel",surname:"Andrews",slug:"daniel-andrews",fullName:"Daniel Andrews"},{id:"197560",title:"Ms.",name:"Shruti",surname:"Kumar",slug:"shruti-kumar",fullName:"Shruti Kumar"}],corrections:null},{id:"53374",title:"Corneal Angiogenesis: Etiologies, Complications, and Management",doi:"10.5772/66713",slug:"corneal-angiogenesis-etiologies-complications-and-management",totalDownloads:1838,totalCrossrefCites:0,totalDimensionsCites:2,hasAltmetrics:0,abstract:"A large subset of corneal pathologies involves the formation of new blood vessels, leading to compromised visual acuity. Additionally, neovascularization of the cornea worsens the prognosis of subsequent penetrating keratoplasty, keeping the patient in a vicious circle of poor prognosis. Ocular angiogenesis results from the upregulation of proangiogenic and downregulation of antiangiogenic factors. There is a tremendous need for developing effective measures to prevent and/or treat corneal neovascularization. Topical steroid medication, cautery, argon and yellow dye laser, and fine needle diathermy have all been advocated with varying degrees of success. The process of corneal neovascularization is primarily mediated by the vascular endothelial growth factor family of proteins, and current therapies are aimed at disrupting the various steps in this pathway. This article aims to review the clinical causes and presentations of corneal neovascularization caused by different etiologies. Moreover, this chapter reviews different complications caused by corneal neovascularization and summarizes the most relevant treatments available so far.",signatures:"Sepehr Feizi",downloadPdfUrl:"/chapter/pdf-download/53374",previewPdfUrl:"/chapter/pdf-preview/53374",authors:[{id:"37619",title:"Dr.",name:"Sepehr",surname:"Feizi",slug:"sepehr-feizi",fullName:"Sepehr Feizi"}],corrections:null},{id:"53142",title:"Angiogenesis-Related Factors in Early Pregnancy Loss",doi:"10.5772/66410",slug:"angiogenesis-related-factors-in-early-pregnancy-loss",totalDownloads:1530,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"The habitual loss of early pregnancy is one of the major problems of obstetrics nowadays, provided that the cause of more than 50% of all early pregnancy losses is unknown. Adequate angiogenesis is one of the main indicators of proper formation of placental system, making the basis of fetal life support. The objective description of angiogenesis in physiological development of pregnancy and in pathological conditions is complicated by the difficulties in obtaining and characterizing placental tissue in early pregnancy. Thus, angiogenesis‐related factors are promising indicators to characterize angiogenesis in pregnancy. This chapter draws attention to alteration in angiogenesis‐related factors in peripheral blood of patients with habitual early pregnancy losses. Investigation of factors (vascular endothelial growth factor (VEGF), sFlt‐1, sKDR, metalloproteinase (MMP)‐2, MMP‐9, tissue inhibitor (TIMP)‐1, TIMP‐2 and placental growth factor (PLGF)), which specifically and nonspecifically regulate angiogenesis in pregnancy, was performed in the most significant terms for placentogenesis: 6 weeks, 7–8 weeks and 11–14 weeks of pregnancy. It was found that in a missed abortion there was a significant imbalance of angiogenesis‐related factors compared with normal pregnancy. These results reflect a disturbance of angiogenesis in a missed abortion and point to the importance of the studied factors in the pathogenesis of early pregnancy losses.",signatures:"Marina M. Ziganshina, Lyubov V. Krechetova, Lyudmila V. Vanko,\nZulfiya S. Khodzhaeva, Ekaterina L. Yarotskaya and Gennady T.\nSukhikh",downloadPdfUrl:"/chapter/pdf-download/53142",previewPdfUrl:"/chapter/pdf-preview/53142",authors:[{id:"193025",title:"Ph.D.",name:"Marina",surname:"Ziganshina",slug:"marina-ziganshina",fullName:"Marina Ziganshina"},{id:"196923",title:"Dr.",name:"Lyubov V.",surname:"Krechetova",slug:"lyubov-v.-krechetova",fullName:"Lyubov V. Krechetova"},{id:"196924",title:"Prof.",name:"Lyudmila V.",surname:"Vanko",slug:"lyudmila-v.-vanko",fullName:"Lyudmila V. Vanko"},{id:"196925",title:"Prof.",name:"Zulfiya S.",surname:"Khodzhaeva",slug:"zulfiya-s.-khodzhaeva",fullName:"Zulfiya S. Khodzhaeva"},{id:"196926",title:"Dr.",name:"Ekaterina L.",surname:"Yarotskaya",slug:"ekaterina-l.-yarotskaya",fullName:"Ekaterina L. Yarotskaya"},{id:"196927",title:"Prof.",name:"Gennady T.",surname:"Sukhikh",slug:"gennady-t.-sukhikh",fullName:"Gennady T. Sukhikh"}],corrections:null},{id:"53441",title:"Pathogenic Angiogenic Mechanisms in Alzheimer's Disease",doi:"10.5772/66403",slug:"pathogenic-angiogenic-mechanisms-in-alzheimer-s-disease",totalDownloads:1306,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:"Vascular dysfunction is a crucial pathological hallmark of Alzheimer's disease (AD). Studies have reported that beta amyloid (Aβ) causes increased blood vessel growth in the brains of AD mouse models, a phenomenon that is also seen in AD patients. This has given way to an alternative angiogenesis hypothesis according to which, increased leakiness in the blood vessels disrupts the blood‐brain barrier (BBB) and allows unwanted blood products to enter the brain causing progression of disease pathology, promoting amyloid clumping and aggregation along with impaired cerebral blood flow. Furthermore, the expression of melanotransferrin in AD model and patients may contribute to angiogenesis. The objective of this chapter is to attempt to establish a link between the vascular damage and AD pathology. Curbing the vascular changes and resulting damage seen in the brains of AD model mice and improving their cognition by treating with FDA‐approved anti‐angiogenic drugs may expedite the translational potential of this research into clinical trials in human patients. This direction into targeting angiogenesis will facilitate new preventive and therapeutic interventions for AD and related vascular diseases.",signatures:"Chaahat Singh, Cheryl G. Pfeifer and Wilfred A. Jefferies",downloadPdfUrl:"/chapter/pdf-download/53441",previewPdfUrl:"/chapter/pdf-preview/53441",authors:[{id:"193311",title:"Prof.",name:"Wilfred",surname:"Jefferies",slug:"wilfred-jefferies",fullName:"Wilfred Jefferies"},{id:"196143",title:"Dr.",name:"Singh",surname:"Chaahat",slug:"singh-chaahat",fullName:"Singh Chaahat"},{id:"196144",title:"Dr.",name:"Cheryl G",surname:"Pfeifer",slug:"cheryl-g-pfeifer",fullName:"Cheryl G Pfeifer"}],corrections:null},{id:"53523",title:"Hypoxia, Angiogenesis and Atherogenesis",doi:"10.5772/66714",slug:"hypoxia-angiogenesis-and-atherogenesis",totalDownloads:1855,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:1,abstract:"The balance between vascular oxygen supply and metabolic demand for oxygen within the vasculature is tightly regulated. An imbalance leads to hypoxia and a consequential cascade of cellular signals that attempt to offset the effects of hypoxia. Hypoxia is invariably associated with atherosclerosis, wound repair, inflammation and vascular disease. There is now substantial evidence that hypoxia plays an essential role in angiogenesis as well as plaque angiogenesis. It controls the metabolism, and responses of many of the cell types found within the developing plaque and whether the plaque will evolve into a stable or unstable phenotype. Hypoxia is characterized in molecular terms by the stabilization of hypoxia-inducible factor (HIF)-1α, a subunit of the heterodimeric nuclear transcriptional factor HIF-1 and a master regulator of oxygen homeostasis. The expression of HIF-1 is localized to perivascular tissues, inflammatory macrophages and smooth muscle cells where it regulates several genes that are important to vascular function including vascular endothelial growth factor, nitric oxide synthase, endothelin-1 and erythropoietin. This chapter summarizes the effects of hypoxia on the functions of cells involved in angiogenesis as well as atherogenesis (plaque angiogenesis) and the evidence for its potential importance from experimental models and clinical studies.",signatures:"Lamia Heikal and Gordon Ferns",downloadPdfUrl:"/chapter/pdf-download/53523",previewPdfUrl:"/chapter/pdf-preview/53523",authors:[{id:"195461",title:"Dr.",name:"Lamia",surname:"Heikal",slug:"lamia-heikal",fullName:"Lamia Heikal"},{id:"199995",title:"Prof.",name:"Gordon",surname:"Ferns",slug:"gordon-ferns",fullName:"Gordon Ferns"}],corrections:[{id:"79243",title:"Corrigendum to: Hypoxia, Angiogenesis and Atherogenesis",doi:null,slug:"corrigendum-to-hypoxia-angiogenesis-and-atherogenesis",totalDownloads:null,totalCrossrefCites:null,correctionPdfUrl:null}]},{id:"54134",title:"Coronary Collateral Growth: Clinical Perspectives and Recent Insights",doi:"10.5772/67164",slug:"coronary-collateral-growth-clinical-perspectives-and-recent-insights",totalDownloads:1498,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"This chapter summarizes recent research on the coronary collateral circulation. The chapter is focused on clinical perspectives and importance of a well-developed coronary collateral circulation, the mechanisms of growth induced by chemical factors and a role for stem cells in the process. Some discussion is devoted to the role of shear stress and mechanical signaling, but because this topic has been reviewed so extensively in the recent past, there is only small mention of its role in the growth of the coronary collateral circulation.",signatures:"Bhamini Patel, Peter Hopmann, Mansee Desai, Kanithra Sekaran,\nKathleen Graham, Liya Yin and William Chilian",downloadPdfUrl:"/chapter/pdf-download/54134",previewPdfUrl:"/chapter/pdf-preview/54134",authors:[{id:"192680",title:"Dr.",name:"Wiliam M.",surname:"Chilian",slug:"wiliam-m.-chilian",fullName:"Wiliam M. Chilian"},{id:"203403",title:"Dr.",name:"Liya",surname:"Yin",slug:"liya-yin",fullName:"Liya Yin"},{id:"203404",title:"Dr.",name:"Peter",surname:"Hopmann",slug:"peter-hopmann",fullName:"Peter Hopmann"},{id:"203405",title:"Dr.",name:"Kathleen",surname:"Graham",slug:"kathleen-graham",fullName:"Kathleen Graham"},{id:"203406",title:"Dr.",name:"Bhamini",surname:"Patel",slug:"bhamini-patel",fullName:"Bhamini Patel"},{id:"203407",title:"Dr.",name:"Kanithra",surname:"Sekaran",slug:"kanithra-sekaran",fullName:"Kanithra Sekaran"},{id:"203408",title:"Dr.",name:"Mansee",surname:"Desai",slug:"mansee-desai",fullName:"Mansee Desai"}],corrections:null},{id:"53407",title:"Angiogenesis and Cardiovascular Diseases: The Emerging Role of HDACs",doi:"10.5772/66409",slug:"angiogenesis-and-cardiovascular-diseases-the-emerging-role-of-hdacs",totalDownloads:1980,totalCrossrefCites:0,totalDimensionsCites:2,hasAltmetrics:0,abstract:"Cardiovascular diseases (CVD) continue to be the leading cause of death in the world despite recent therapeutic advances. Although many CVDs remain incurable, enormous efforts have been placed in harnessing angiogenesis as therapeutics for these diseases. Epigenetics, the modification of gene expression post-transcriptionally and post-translationally, are important in regulating many biological processes. One of the main post-translational epigenetic modifications, modification of chromatin structure by the acetylation of histone tails within the chromatin by either histone deacetylases (HDACs) or histone acetyltransferases (HATs), is important in modulating gene transcription and has emerged as an important regulatory player from pathogenesis to therapeutics in CVDs. Particularly, HDACs, which are largely involved in promoting chromatin compaction and hence inhibitions of gene transcription, have been implicated in the pathogenic signalling underlying many aspects of CVDs. Recently, histone modifications have been demonstrated to play important roles in the angiogenesis process. Pharmacological inhibitions of HDACs have displayed promising therapeutic potentials in several pre-clinical models of CVDs where angiogenesis is of paramount importance. There are many evidences proving that pro- and anti-angiogenic therapies—and the impact of epigenetics in these processes—can help to artificially reconstruct the vasculature in patients with cardiovascular diseases. Conversely, utilising knowledge of HDACs in angiogenesis might help to develop anti-angiogenic therapies in tackling diseases that are characterised with excessive pathological angiogenesis, including cancer and age-related macular degeneration. Understanding the molecular mechanisms underlying HDACs in modulating angiogenesis will undoubtedly benefit future therapeutics development. This chapter focuses on the emerging role of HDACs in angiogenesis and discuss their potentials and challenges in utilising HDAC inhibitors as therapeutics in several major cardiovascular diseases.",signatures:"Ana Moraga, Ka Hou Lao and Lingfang Zeng",downloadPdfUrl:"/chapter/pdf-download/53407",previewPdfUrl:"/chapter/pdf-preview/53407",authors:[{id:"192735",title:"Dr.",name:"Lingfang",surname:"Zeng",slug:"lingfang-zeng",fullName:"Lingfang Zeng"},{id:"193673",title:"Dr.",name:"Ana",surname:"Moraga",slug:"ana-moraga",fullName:"Ana Moraga"},{id:"196605",title:"Dr.",name:"Ka Hou",surname:"Lao",slug:"ka-hou-lao",fullName:"Ka Hou Lao"}],corrections:null},{id:"53248",title:"Unique Phenotypes of Endothelial Cells in Developing Arteries: A Lesson from the Ductus Arteriosus",doi:"10.5772/66501",slug:"unique-phenotypes-of-endothelial-cells-in-developing-arteries-a-lesson-from-the-ductus-arteriosus",totalDownloads:1287,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Endothelial cells (ECs) play a critical role in regulating vascular pathophysiology. Various growth factors and relaxation factors such as vascular endothelial growth factor (VEGF) and nitric oxide (NO), which are derived from ECs, are known to maintain homeostasis and regulate vessel remodeling. Although the inner lumens of all types of vessels are covered by an EC monolayer, the characteristics of ECs differ in each tissue and developing stage of a vessel. Previously, we identified the heterogeneity of ECs of the ductus arteriosus (DA) by analyzing its gene profiles. The DA is a fetal artery that closes immediately after birth due to the changes in concentrations of oxygen and vasoactive factors such as NO and prostaglandin E. Studying the unique gene profile of ECs in the DA can therefore uncover the novel key genes involved in developing vascular function and morphology such as O2 sensitivity and physiological vascular remodeling. A comprehensive gene analysis identified a number of genes related to morphogenesis and development in the DA. In this chapter, we discuss the heterogeneity of vascular ECs in the developing vessel in the DA.",signatures:"Norika Mengchia Liu and Susumu Minamisawa",downloadPdfUrl:"/chapter/pdf-download/53248",previewPdfUrl:"/chapter/pdf-preview/53248",authors:[{id:"160350",title:"Prof.",name:"Susumu",surname:"Minamisawa",slug:"susumu-minamisawa",fullName:"Susumu Minamisawa"},{id:"192875",title:"MSc.",name:"Norika",surname:"Liu",slug:"norika-liu",fullName:"Norika Liu"}],corrections:null},{id:"54438",title:"Vascular Repair and Remodeling: A Review",doi:"10.5772/67485",slug:"vascular-repair-and-remodeling-a-review",totalDownloads:1752,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Vascular remodeling is alterations in the structure of resistance vessels contributing to elevated systemic vascular resistance in hypertension. In this review, physiopathology of vascular remodeling is discussed, and the impact of antihypertensive drug treatment on remodeling is described, emphasizing on human data, fundamentally as an independent predictor of cardiovascular risk in hypertensive patients. Then we discussed a vascular repair by endothelial progenitor cells (EPCs) that play important roles in the regeneration of the vascular endothelial cells (ECs). The normal arterial vessel wall is mostly composed of ECs, vascular smooth muscle cells (VSMCs), and macrophages. Endothelial impairment is a major contributor to atherosclerosis and restenosis after percutaneous coronary intervention (PCI). Reendothelialization can effectively inhibit VSMC migration and proliferation and decrease neointimal thickening.",signatures:"Nicolás F. Renna, Rodrigo Garcia, Jesica Ramirez and Roberto M.\nMiatello",downloadPdfUrl:"/chapter/pdf-download/54438",previewPdfUrl:"/chapter/pdf-preview/54438",authors:[{id:"192616",title:"Dr.",name:"Nicolás",surname:"Renna",slug:"nicolas-renna",fullName:"Nicolás Renna"},{id:"202536",title:"Dr.",name:"Rodrigo",surname:"García",slug:"rodrigo-garcia",fullName:"Rodrigo García"},{id:"202537",title:"Dr.",name:"Jesica",surname:"Ramirez",slug:"jesica-ramirez",fullName:"Jesica Ramirez"},{id:"202539",title:"Dr.",name:"Roberto M.",surname:"Miatello",slug:"roberto-m.-miatello",fullName:"Roberto M. Miatello"}],corrections:[{id:"79244",title:"Corrigendum to: Vascular Repair and Remodeling: A Review",doi:null,slug:"corrigendum-to-vascular-repair-and-remodeling-a-review",totalDownloads:null,totalCrossrefCites:null,correctionPdfUrl:null}]},{id:"53018",title:"Tumor Angiogenesis: A Focus on the Role of Cancer Stem Cells",doi:"10.5772/66402",slug:"tumor-angiogenesis-a-focus-on-the-role-of-cancer-stem-cells",totalDownloads:1787,totalCrossrefCites:2,totalDimensionsCites:4,hasAltmetrics:1,abstract:"Angiogenesis is the process of growth of new blood vessels. Tumor angiogenesis plays pivotal roles in tumor development, progression, and metastasis. The conventional notion of tumor vasculature is that new tumor blood vessels sprout from preexisting vasculature near the tumor; hence, tumor endothelial cells are derived from normal endothelial cells. However, recent evidence suggests that CD133‐positive cancer stem cells (CSCs) in glioblastomas generate tumor endothelial progenitor cells, which further differentiate into tumor endothelial cells. This chapter offers an overview of current knowledge on the role of CSCs in tumor angiogenesis. Furthermore, we discuss our recent discoveries related to human hepatoblastoma stem cells. Future efforts to elucidate the characteristics of tumor angiogenesis should enable the development of effective new anti‐angiogenic therapies.",signatures:"Keiko Fujita and Masumi Akita",downloadPdfUrl:"/chapter/pdf-download/53018",previewPdfUrl:"/chapter/pdf-preview/53018",authors:[{id:"26281",title:"Prof.",name:"Masumi",surname:"Akita",slug:"masumi-akita",fullName:"Masumi Akita"},{id:"192582",title:"Dr.",name:"Keiko",surname:"Fujita",slug:"keiko-fujita",fullName:"Keiko Fujita"}],corrections:null},{id:"53461",title:"VEGF-Mediated Signal Transduction in Tumor Angiogenesis",doi:"10.5772/66764",slug:"vegf-mediated-signal-transduction-in-tumor-angiogenesis",totalDownloads:1739,totalCrossrefCites:2,totalDimensionsCites:8,hasAltmetrics:0,abstract:"The vascular endothelial growth factor-A (VEGF) plays a crucial role in tumor angiogenesis. Through its primary receptor VEGFR-2, VEGF exerts the activity of a multitasking cytokine, which is able to stimulate endothelial cell survival, invasion and migration into surrounding tissues, proliferation, as well as vascular permeability and inflammation. The core components of VEGF signaling delineate well-defined intracellular routes. However, the whole scenario is complicated by the fact that cascades of signals converge and branch at many points in VEGF signaling, thus depicting a complex signal transduction network that is also finely regulated by different mechanisms. In this chapter, we present a careful collection of the best-characterized VEGF-induced signal transduction pathways, attempting to offer an overview of the complexity of VEGF signaling in the context of tumor angiogenesis.",signatures:"Lucia Napione, Maria Alvaro and Federico Bussolino",downloadPdfUrl:"/chapter/pdf-download/53461",previewPdfUrl:"/chapter/pdf-preview/53461",authors:[{id:"193680",title:"Ph.D.",name:"Lucia",surname:"Napione",slug:"lucia-napione",fullName:"Lucia Napione"},{id:"196917",title:"Dr.",name:"Maria",surname:"Alvaro",slug:"maria-alvaro",fullName:"Maria Alvaro"},{id:"196992",title:"Prof.",name:"Federico",surname:"Bussolino",slug:"federico-bussolino",fullName:"Federico Bussolino"}],corrections:null},{id:"54103",title:"Noncoding RNAs in Lung Cancer Angiogenesis",doi:"10.5772/66529",slug:"noncoding-rnas-in-lung-cancer-angiogenesis",totalDownloads:1716,totalCrossrefCites:3,totalDimensionsCites:8,hasAltmetrics:1,abstract:"Lung cancer is the major death-related cancer in both men and women, due to late diagnostic and limited treatment efficacy. The angiogenic process that is responsible for the support of tumor progression and metastasis represents one of the main hallmarks of cancer. The role of VEGF signaling in angiogenesis is well‐established, and we summarize the role of semaphorins and their related receptors or hypoxia‐related factors role as prone of tumor microenvironment in angiogenic mechanisms. Newly, noncoding RNA transcripts (ncRNA) were identified to have vital functions in miscellaneous biological processes, including lung cancer angiogenesis. Therefore, due to their capacity to regulate almost all molecular pathways related with altered key genes, including those involved in angiogenesis and its microenvironment, ncRNAs can serve as diagnosis and prognosis markers or therapeutic targets. We intend to summarize the latest progress in the field of ncRNAs in lung cancer and their relation with hypoxia‐related factors and angiogenic genes, with a particular focus on ncRNAs relation to semaphorins.",signatures:"Ioana Berindan-Neagoe, Cornelia Braicu, Diana Gulei, Ciprian\nTomuleasa and George Adrian Calin",downloadPdfUrl:"/chapter/pdf-download/54103",previewPdfUrl:"/chapter/pdf-preview/54103",authors:[{id:"193102",title:"Dr.",name:"Ioana",surname:"Berindan-Neagoe",slug:"ioana-berindan-neagoe",fullName:"Ioana Berindan-Neagoe"},{id:"193316",title:"Dr.",name:"Cornelia",surname:"Braicu",slug:"cornelia-braicu",fullName:"Cornelia Braicu"},{id:"193317",title:"Dr.",name:"Ciprian",surname:"Tomuleasa",slug:"ciprian-tomuleasa",fullName:"Ciprian Tomuleasa"},{id:"193318",title:"BSc.",name:"Diana",surname:"Gulei",slug:"diana-gulei",fullName:"Diana Gulei"},{id:"193319",title:"Prof.",name:"George Adrian",surname:"Calin",slug:"george-adrian-calin",fullName:"George Adrian Calin"}],corrections:null},{id:"53402",title:"Recent Advances in Angiogenesis Assessment Methods and their Clinical Applications",doi:"10.5772/66504",slug:"recent-advances-in-angiogenesis-assessment-methods-and-their-clinical-applications",totalDownloads:1828,totalCrossrefCites:1,totalDimensionsCites:3,hasAltmetrics:0,abstract:"Angiogenesis, a natural phenomenon of developing new blood vessels, is an integral part of normal developmental processes as well as numerous pathological states in humans. The angiogenic assays are reliable predictors of certain pathologies in particular tumor growth, metastasis, inflammation, wound healing, tissue regeneration, ischemia, cardiovascular, and ocular diseases. The angiogenic inducer and inhibitor studies rely on both in vivo and in vitro angiogenesis methods, and various animal models are also standardized to assess qualitative and quantitative angiogenesis. Analogously, the discovery and development of anti-angiogenic agents are also based on the choice of suitable angiogenic assays and potential drug targeted sites within the angiogenic process. Similarly, the selection of cell types and compatible experimental conditions resembling the angiogenic disease being studied are also potential challenging tasks in recent angiogenesis studies. The imaging analysis systems for data acquisition from in vivo, in vitro, and in ova angiogenesis assay to preclinic, and clinical research also requires novel but easy-to-use tools and well-established protocols. The proposition of this pragmatic book chapter overviews the recent advances in angiogenesis assessment methods and discusses their applications in numerous disease pathogenesis.",signatures:"Imran Shahid, Waleed H. AlMalki, Mohammed W. AlRabia,\nMuhammad Ahmed, Mohammad T. Imam, Muhammed K. Saifullah\nand Muhammad H. Hafeez",downloadPdfUrl:"/chapter/pdf-download/53402",previewPdfUrl:"/chapter/pdf-preview/53402",authors:[{id:"188219",title:"Prof.",name:"Imran",surname:"Shahid",slug:"imran-shahid",fullName:"Imran Shahid"},{id:"191256",title:"Prof.",name:"Waleed",surname:"Almalki",slug:"waleed-almalki",fullName:"Waleed Almalki"},{id:"191259",title:"Dr.",name:"Muhammad",surname:"Hassan Hafeez",slug:"muhammad-hassan-hafeez",fullName:"Muhammad Hassan Hafeez"},{id:"195198",title:"Prof.",name:"Muhammad",surname:"Ahmed",slug:"muhammad-ahmed",fullName:"Muhammad Ahmed"},{id:"195199",title:"MSc.",name:"Muhammed",surname:"Saifullah",slug:"muhammed-saifullah",fullName:"Muhammed Saifullah"},{id:"195200",title:"Prof.",name:"Mohammad",surname:"Imam",slug:"mohammad-imam",fullName:"Mohammad Imam"},{id:"195201",title:"Prof.",name:"Mohammed",surname:"Al Rabia",slug:"mohammed-al-rabia",fullName:"Mohammed Al Rabia"}],corrections:null},{id:"53313",title:"Novel Methods to Study Angiogenesis Using Tissue Explants",doi:"10.5772/66400",slug:"novel-methods-to-study-angiogenesis-using-tissue-explants",totalDownloads:1541,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Tissue explants of skeletal muscles, brain, kidney, liver and spleen from mice were cultured using collagen gel. Electron microscopic observation revealed that formation of capillary tubes with pericyte-like cells occurred only from the tissue explant of skeletal muscles. The capillary tubes formed in the collagen gel were positive for tomato lectin and platelet/endothelial cell adhesion molecule (PCAM)-1 antibody. Formation of capillary tubes in the rat was more predominant than in the mouse. Plasmalemmal vesicles were clearly observed in the capillary tubes from rat tissue explant. Muscle fiber-type differences were also observed. In the soleus muscle, the formation of capillary tubes was predominant than the tibialis anterior muscle. Using this culture model from the rat soleus muscle, effects of α-isoproterenol (β-adrenergic receptor agonist) and low-frequency electrical stimulation were examined on the formation of capillary tubes and fine structures of skeletal muscle explant. The formation of capillary tubes was promoted by α-isoproterenol administration. At low-frequency electrical stimulation, the formation of capillary tubes was inhibited. Both α-isoproterenol and electrical stimulation reduced the degeneration of skeletal muscles. This culture method of skeletal muscles may provide a useful model that can examine the effects of various drugs and physical stimulations.",signatures:"Tomoko Takahashi, Keiko Fujita and Masumi Akita",downloadPdfUrl:"/chapter/pdf-download/53313",previewPdfUrl:"/chapter/pdf-preview/53313",authors:[{id:"26281",title:"Prof.",name:"Masumi",surname:"Akita",slug:"masumi-akita",fullName:"Masumi Akita"},{id:"192582",title:"Dr.",name:"Keiko",surname:"Fujita",slug:"keiko-fujita",fullName:"Keiko Fujita"},{id:"192585",title:"MSc.",name:"Tomoko",surname:"Takahashi",slug:"tomoko-takahashi",fullName:"Tomoko Takahashi"}],corrections:null},{id:"53219",title:"Therapeutic Angiogenesis: Foundations and Practical Application",doi:"10.5772/66411",slug:"therapeutic-angiogenesis-foundations-and-practical-application",totalDownloads:1432,totalCrossrefCites:2,totalDimensionsCites:6,hasAltmetrics:0,abstract:"Angiogenesis as therapeutic target has emerged since early works by Judah Folkman, yet his “holy grail” was inhibiting vascular growth to block tumor nutrition. However, in modern biomedicine, “therapeutic angiogenesis” became a large field focusing on stimulation of blood vessel growth for ischemia relief to reduce its detrimental effects in the tissues. In this review, we introduce basic principles of tissue vascularization in response to ischemia exploited in this field. An overview of recent status in therapeutic angiogenesis is given with introduction to emerging technologies, including gene therapy, genetic modification of cells ex vivo and tissue engineering.",signatures:"Pavel Igorevich Makarevich and Yelena Viktorovna Parfyonova",downloadPdfUrl:"/chapter/pdf-download/53219",previewPdfUrl:"/chapter/pdf-preview/53219",authors:[{id:"75221",title:"Prof.",name:"Yelena",surname:"Parfyonova",slug:"yelena-parfyonova",fullName:"Yelena Parfyonova"},{id:"192434",title:"Dr.",name:"Pavel",surname:"Makarevich",slug:"pavel-makarevich",fullName:"Pavel Makarevich"}],corrections:null},{id:"53828",title:"Platelet Lysate to Promote Angiogenic Cell Therapies",doi:"10.5772/66934",slug:"platelet-lysate-to-promote-angiogenic-cell-therapies",totalDownloads:1416,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Cellular therapies for patients with ischemic muscle have been limited by poor cell retention and survivability. Platelets are a robust source of growth factors and structural proteins, and extracts from this peripheral blood component may be manipulated to improve both cell retention and survivability in percutaneous delivery methods. Human platelet lysate is generated from pooled human platelets and contains a growth factor milieu that promotes robust human mesenchymal stem cell (MSC) proliferation without risk of xenogenic contamination. As such, platelet lysate is a practical alternative to animal serum for MSC culture and, with minor adjustments to the production process, can also be used as a scaffold for cell delivery. Human platelet lysate is a promising substrate that can provide nutritive delivery both in vitro and during cell implantation, potentially improving retention and survivability of MSCs that may improve angiogenic function for cell therapy in treatment of ischemic tissues.",signatures:"Scott T. Robinson and Luke P. Brewster",downloadPdfUrl:"/chapter/pdf-download/53828",previewPdfUrl:"/chapter/pdf-preview/53828",authors:[{id:"193297",title:"Dr.",name:"Luke",surname:"Brewster",slug:"luke-brewster",fullName:"Luke Brewster"},{id:"193532",title:"Dr.",name:"Scott",surname:"Robinson",slug:"scott-robinson",fullName:"Scott Robinson"}],corrections:null},{id:"53483",title:"Anti-VEGF Therapy in Cancer: A Double-Edged Sword",doi:"10.5772/66763",slug:"anti-vegf-therapy-in-cancer-a-double-edged-sword",totalDownloads:2474,totalCrossrefCites:5,totalDimensionsCites:13,hasAltmetrics:0,abstract:"Vascular endothelial growth factor (VEGF) is a mitogen that plays a crucial role in angiogenesis and lymphangiogenesis. It is involved in tumor survival through inducing tumor angiogenesis and by increasing chemoresistance through autocrine signaling. Because of its importance in tumor formation and survival, several medications have been developed to inhibit VEGF and reduce blood vessel formation in cancer. Although these medications have proven to be effective for late-stage and metastatic cancers, they have been shown to cause side effects such as hypertension, artery clots, complications in wound healing, and, more rarely, gastrointestinal perforation and fistulas. Current research in using anti-VEGF medication as a part of cancer treatments is focusing on elucidating the mechanisms of tumor resistance to VEGF medication, developing predictive biomarkers that assess whether a patient will respond to VEGF therapy and creating novel treatments and techniques that increase the efficacy of antiangiogenic medication. This chapter aims to review the role of VEGF in tumor angiogenesis and metastasis, the structure and function of VEGF and its receptors, and VEGF’s role in cancer are discussed. Furthermore, tumor therapies targeting VEGF along with their side effects are presented and, finally, new directions in anti-VEGF therapy are considered along with the challenges.",signatures:"Victor Gardner, Chikezie O. Madu and Yi Lu",downloadPdfUrl:"/chapter/pdf-download/53483",previewPdfUrl:"/chapter/pdf-preview/53483",authors:[{id:"40915",title:"Dr.",name:"Yi",surname:"Lu",slug:"yi-lu",fullName:"Yi Lu"},{id:"195224",title:"Mr.",name:"Victor",surname:"Gardner",slug:"victor-gardner",fullName:"Victor Gardner"},{id:"195226",title:"Dr.",name:"Chikezie",surname:"Madu",slug:"chikezie-madu",fullName:"Chikezie Madu"}],corrections:null},{id:"53575",title:"Antiangiogenic Therapy for Hepatocellular Carcinoma",doi:"10.5772/66503",slug:"antiangiogenic-therapy-for-hepatocellular-carcinoma",totalDownloads:1640,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Angiogenesis plays a pivotal role in many pathological processes, including hepatocellular carcinoma (HCC). This indicates that antiangiogenic agents could be promising candidates for chemoprevention against HCC. Several inhibitors targeting receptor tyrosine kinases (RTKs) for the regulation of tumoral vascularization have been developed and employed in clinical practice, including sorafenib. However, there seem to be several issues for the long-term use of this agent as some patients have experienced adverse effects while taking sorafenib. Therefore, it is desirable for patients with chronic liver diseases to be administered sorafenib as little as possible by combining other safe-to-use antiangiogenic compounds. Various factors, such as renin-angiotensin-aldosterone system (RAAS) and insulin resistance (IR), reciprocally contribute to the promotion of angiogenesis. A blockade of RAAS with an angiotensin-converting enzyme inhibitor (ACE-I) or angiotensin-II (AT-II) receptor blocker (ARB) markedly attenuates HCC in conjunction with the suppression of angiogenesis. Moreover, the IR status has demonstrated direct acceleration in the progression of HCC via the augmentation of tumoral neovascularization. These findings suggest that a combination therapy involving a lower dose of sorafenib with other clinically used agents [e.g., RAAS blockers, insulin sensitizer agents, and branched-chain amino acids (BCAA)] may reduce the adverse effects of sorafenib without attenuating the inhibitory effect against HCC in comparison to a high-dose administration.",signatures:"Kosuke Kaji and Hitoshi Yoshiji",downloadPdfUrl:"/chapter/pdf-download/53575",previewPdfUrl:"/chapter/pdf-preview/53575",authors:[{id:"192883",title:"Dr.",name:"Kosuke",surname:"Kaji",slug:"kosuke-kaji",fullName:"Kosuke Kaji"},{id:"195636",title:"Prof.",name:"Hitoshi",surname:"Yoshiji",slug:"hitoshi-yoshiji",fullName:"Hitoshi Yoshiji"}],corrections:null},{id:"53335",title:"MCAM and its Isoforms as Novel Targets in Angiogenesis Research and Therapy",doi:"10.5772/66765",slug:"mcam-and-its-isoforms-as-novel-targets-in-angiogenesis-research-and-therapy",totalDownloads:1550,totalCrossrefCites:0,totalDimensionsCites:2,hasAltmetrics:1,abstract:"Melanoma cell adhesion molecule (MCAM) (CD146) is a membrane glycoprotein of the mucin family. It is one of the numerous proteins composing the junction of the vascular endothelium, and it is expressed in other cell types such as cancer cells, smooth muscle cells, and pericytes. Some recent works were designed to highlight its structural features, its location in the endothelium, and its role in angiogenesis, vascular permeability, and monocyte transmigration, but also in the maintenance of endothelial junctions and tumor development. MCAM exists in different splice variants and is shedded from the vascular membrane by metalloproteases. Studies about MCAM spliced and cleaved variant on human angiogenic physiological and pathological models permit a better understanding on the roles initially described for this protein. Furthermore, this knowledge will help in the future to develop therapeutic and diagnostic tools targeting specifically the different MCAM variant. Recent advances in research on angiogenesis and in the implication of MCAM in this process are discussed in this chapter.",signatures:"Jimmy Stalin, Lucie Vivancos, Nathalie Bardin, Françoise Dignat-\nGeorge and Marcel Blot-Chabaud",downloadPdfUrl:"/chapter/pdf-download/53335",previewPdfUrl:"/chapter/pdf-preview/53335",authors:[{id:"192897",title:"Dr.",name:"Jimmy",surname:"Stalin",slug:"jimmy-stalin",fullName:"Jimmy Stalin"},{id:"195979",title:"Ms.",name:"Lucie",surname:"Vivancos",slug:"lucie-vivancos",fullName:"Lucie Vivancos"},{id:"195980",title:"Prof.",name:"Nathalie",surname:"Bardin",slug:"nathalie-bardin",fullName:"Nathalie Bardin"},{id:"195981",title:"Prof.",name:"Francoise",surname:"Dignat-George",slug:"francoise-dignat-george",fullName:"Francoise Dignat-George"},{id:"195982",title:"Dr.",name:"Marcel",surname:"Blot-Chabaud",slug:"marcel-blot-chabaud",fullName:"Marcel Blot-Chabaud"}],corrections:[{id:"79245",title:"Corrigendum to: MCAM and its isoforms as novel targets in angiogenesis research and therapy",doi:null,slug:"corrigendum-to-mcam-and-its-isoforms-as-novel-targets-in-angiogenesis-research-and-therapy",totalDownloads:null,totalCrossrefCites:null,correctionPdfUrl:null}]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:[{id:"65",label:"highly cited contributor"}]},relatedBooks:[{type:"book",id:"830",title:"Vasculogenesis and Angiogenesis",subtitle:"from Embryonic Development to Regenerative Medicine",isOpenForSubmission:!1,hash:"1c8f85e5c4786ba9d585dfcdef77aa2e",slug:"vasculogenesis-and-angiogenesis-from-embryonic-development-to-regenerative-medicine",bookSignature:"Dan T. Simionescu and Agneta Simionescu",coverURL:"https://cdn.intechopen.com/books/images_new/830.jpg",editedByType:"Edited by",editors:[{id:"66196",title:"Dr.",name:"Dan",surname:"Simionescu",slug:"dan-simionescu",fullName:"Dan Simionescu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"950",title:"Cardiomyopathies",subtitle:"From Basic Research to Clinical Management",isOpenForSubmission:!1,hash:"c7d7b0f4e23517aad0ba9d2b3b71e544",slug:"cardiomyopathies-from-basic-research-to-clinical-management",bookSignature:"Josef Veselka",coverURL:"https://cdn.intechopen.com/books/images_new/950.jpg",editedByType:"Edited by",editors:[{id:"77776",title:"Prof.",name:"Josef",surname:"Veselka",slug:"josef-veselka",fullName:"Josef Veselka"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4477",title:"Hypercholesterolemia",subtitle:null,isOpenForSubmission:!1,hash:"dae17abe1c80b18efb287a9a1d2bb64e",slug:"hypercholesterolemia",bookSignature:"Sekar Ashok Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/4477.jpg",editedByType:"Edited by",editors:[{id:"170928",title:"Dr.",name:"Sekar",surname:"Ashok Kumar",slug:"sekar-ashok-kumar",fullName:"Sekar Ashok Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"965",title:"Novel Strategies in Ischemic Heart Disease",subtitle:null,isOpenForSubmission:!1,hash:"4aacb23e8594bdc279097abdfcde0eb8",slug:"novel-strategies-in-ischemic-heart-disease",bookSignature:"Umashankar Lakshmanadoss",coverURL:"https://cdn.intechopen.com/books/images_new/965.jpg",editedByType:"Edited by",editors:[{id:"13913",title:"Dr.",name:"Umashankar",surname:"Lakshmanadoss",slug:"umashankar-lakshmanadoss",fullName:"Umashankar Lakshmanadoss"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"940",title:"Atherogenesis",subtitle:null,isOpenForSubmission:!1,hash:"65accab87dc266373e16c0a9b1298a28",slug:"atherogenesis",bookSignature:"Sampath Parthasarathy",coverURL:"https://cdn.intechopen.com/books/images_new/940.jpg",editedByType:"Edited by",editors:[{id:"139179",title:"Dr.",name:"Sampath",surname:"Parthasarathy",slug:"sampath-parthasarathy",fullName:"Sampath Parthasarathy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"484",title:"Etiology, Pathogenesis and Pathophysiology of Aortic Aneurysms and Aneurysm Rupture",subtitle:null,isOpenForSubmission:!1,hash:"7474d0a284e963e957ff6d58739e244c",slug:"etiology-pathogenesis-and-pathophysiology-of-aortic-aneurysms-and-aneurysm-rupture",bookSignature:"Reinhart Grundmann",coverURL:"https://cdn.intechopen.com/books/images_new/484.jpg",editedByType:"Edited by",editors:[{id:"37604",title:"Prof.",name:"Reinhart",surname:"Grundmann",slug:"reinhart-grundmann",fullName:"Reinhart Grundmann"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2818",title:"Aneurysm",subtitle:null,isOpenForSubmission:!1,hash:"70d1e8d9391850d228c30e307c25f534",slug:"aneurysm",bookSignature:"Yasuo Murai",coverURL:"https://cdn.intechopen.com/books/images_new/2818.jpg",editedByType:"Edited by",editors:[{id:"147938",title:"Dr.",name:"Yasuo",surname:"Murai",slug:"yasuo-murai",fullName:"Yasuo Murai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"955",title:"Congenital Heart Disease",subtitle:"Selected Aspects",isOpenForSubmission:!1,hash:"fbdf1e5d7a52527014f83610d02e4a86",slug:"congenital-heart-disease-selected-aspects",bookSignature:"P. Syamasundar Rao",coverURL:"https://cdn.intechopen.com/books/images_new/955.jpg",editedByType:"Edited by",editors:[{id:"68531",title:"Dr.",name:"P. Syamasundar",surname:"Rao",slug:"p.-syamasundar-rao",fullName:"P. Syamasundar Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"222",title:"Diagnosis, Screening and Treatment of Abdominal, Thoracoabdominal and Thoracic Aortic Aneurysms",subtitle:null,isOpenForSubmission:!1,hash:"5414d5b88ca007aeb24487e703cf0351",slug:"diagnosis-screening-and-treatment-of-abdominal-thoracoabdominal-and-thoracic-aortic-aneurysms",bookSignature:"R.T. Grundmann",coverURL:"https://cdn.intechopen.com/books/images_new/222.jpg",editedByType:"Edited by",editors:[{id:"37604",title:"Prof.",name:"Reinhart",surname:"Grundmann",slug:"reinhart-grundmann",fullName:"Reinhart Grundmann"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"568",title:"Cardiovascular Risk Factors",subtitle:null,isOpenForSubmission:!1,hash:"5ab7eb89c85c33d3beac8d23897d0b95",slug:"cardiovascular-risk-factors",bookSignature:"Armen Yuri Gasparyan",coverURL:"https://cdn.intechopen.com/books/images_new/568.jpg",editedByType:"Edited by",editors:[{id:"89267",title:"Dr.",name:"Armen Yuri",surname:"Gasparyan",slug:"armen-yuri-gasparyan",fullName:"Armen Yuri Gasparyan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"79356",slug:"corrigendum-to-fruit-flies-diptera-tephritoidea-biology-host-plants-natural-enemies-and-the-implicat",title:"Corrigendum to: Fruit Flies (Diptera: Tephritoidea): Biology, Host Plants, Natural Enemies, and the Implications to Their Natural Control",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/74443.pdf",downloadPdfUrl:"/chapter/pdf-download/74443",previewPdfUrl:"/chapter/pdf-preview/74443",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/74443",risUrl:"/chapter/ris/74443",chapter:{id:"29609",slug:"fruit-flies-diptera-tephritoidea-biology-host-plants-natural-enemies-and-the-implications-to-their-n",signatures:"M. A. Uchoa",dateSubmitted:"March 31st 2011",dateReviewed:"September 21st 2011",datePrePublished:null,datePublished:"February 24th 2012",book:{id:"874",title:"Integrated Pest Management and Pest Control",subtitle:"Current and Future Tactics",fullTitle:"Integrated Pest Management and Pest Control - Current and Future Tactics",slug:"integrated-pest-management-and-pest-control-current-and-future-tactics",publishedDate:"February 24th 2012",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/874.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"14863",title:"Dr.",name:"Sonia",middleName:null,surname:"Soloneski",slug:"sonia-soloneski",fullName:"Sonia Soloneski"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"87919",title:"Dr.",name:"Manoel",middleName:null,surname:"Uchoa",fullName:"Manoel Uchoa",slug:"manoel-uchoa",email:"uchoa.manoel@gmail.com",position:null,institution:{name:"Universidade Federal da Grande Dourados",institutionURL:null,country:{name:"Brazil"}}}]}},chapter:{id:"29609",slug:"fruit-flies-diptera-tephritoidea-biology-host-plants-natural-enemies-and-the-implications-to-their-n",signatures:"M. A. Uchoa",dateSubmitted:"March 31st 2011",dateReviewed:"September 21st 2011",datePrePublished:null,datePublished:"February 24th 2012",book:{id:"874",title:"Integrated Pest Management and Pest Control",subtitle:"Current and Future Tactics",fullTitle:"Integrated Pest Management and Pest Control - Current and Future Tactics",slug:"integrated-pest-management-and-pest-control-current-and-future-tactics",publishedDate:"February 24th 2012",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/874.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"14863",title:"Dr.",name:"Sonia",middleName:null,surname:"Soloneski",slug:"sonia-soloneski",fullName:"Sonia Soloneski"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"87919",title:"Dr.",name:"Manoel",middleName:null,surname:"Uchoa",fullName:"Manoel Uchoa",slug:"manoel-uchoa",email:"uchoa.manoel@gmail.com",position:null,institution:{name:"Universidade Federal da Grande Dourados",institutionURL:null,country:{name:"Brazil"}}}]},book:{id:"874",title:"Integrated Pest Management and Pest Control",subtitle:"Current and Future Tactics",fullTitle:"Integrated Pest Management and Pest Control - Current and Future Tactics",slug:"integrated-pest-management-and-pest-control-current-and-future-tactics",publishedDate:"February 24th 2012",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/874.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"14863",title:"Dr.",name:"Sonia",middleName:null,surname:"Soloneski",slug:"sonia-soloneski",fullName:"Sonia Soloneski"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"3210",leadTitle:null,title:"Advances in Ferroelectrics",subtitle:null,reviewType:"peer-reviewed",abstract:"Ferroelectricity is one of the most studied phenomena in the scientific community due the importance of ferroelectric materials in a wide range of applications including high dielectric constant capacitors, pyroelectric devices, transducers for medical diagnostic, piezoelectric sonars, electrooptic light valves, electromechanical transducers and ferroelectric random access memories. Actually the ferroelectricity at nanoscale receives a great attention to the development of new technologies. The demand for ferroelectric systems with specific applications enforced the in-depth research in addition to the improvement of processing and characterization techniques. This book contains twenty two chapters and offers an up-to-date view of recent research into ferroelectricity. The chapters cover various formulations, their forms (bulk, thin films, ferroelectric liquid crystals), fabrication, properties, theoretical topics and ferroelectricity at nanoscale.",isbn:null,printIsbn:"978-953-51-0885-6",pdfIsbn:"978-953-51-6280-3",doi:"10.5772/45744",price:159,priceEur:175,priceUsd:205,slug:"advances-in-ferroelectrics",numberOfPages:544,isOpenForSubmission:!1,isSalesforceBook:!1,isNomenclature:!1,hash:"4706ad2bc11c32090c362c0026f67d37",bookSignature:"Aimé Peláiz Barranco",publishedDate:"November 19th 2012",coverURL:"https://cdn.intechopen.com/books/images_new/3210.jpg",keywords:null,numberOfDownloads:61232,numberOfWosCitations:74,numberOfCrossrefCitations:39,numberOfDimensionsCitations:84,numberOfTotalCitations:197,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 3rd 2012",dateEndSecondStepPublish:"April 24th 2012",dateEndThirdStepPublish:"July 21st 2012",dateEndFourthStepPublish:"August 20th 2012",dateEndFifthStepPublish:"November 19th 2012",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"10 years",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:5,editedByType:"Edited by",kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"14679",title:"Dr.",name:"Aimé",middleName:null,surname:"Peláiz-Barranco",slug:"aime-pelaiz-barranco",fullName:"Aimé Peláiz-Barranco",profilePictureURL:"https://mts.intechopen.com/storage/users/14679/images/3416_n.jpg",biography:"Dr. Aimé Peláiz Barranco is a professor in the Physics Faculty, Havana University, Cuba. Her activities range from teaching,to advising undergraduate and graduate students and doing high quality research. She is one of the leaders in the development of ferroelectric and antiferroelectric materials research in Cuba. She has authored several scientific papers in refereed journals and presented an important number of research works at national and international conferences. Her results have been recognized in Cuba and worldwide through several awards, such as TWOWS Award for Young Women Scientists in Physics/Mathematics (2010) and TWAS-ROLAC Award for Young Scientists in Physics (2011). She is the international coordinator of the Latin American Network of Ferroelectrics Materials.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Havana",institutionURL:null,country:{name:"Cuba"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"940",title:"Electromagnetism",slug:"metals-and-nonmetals-electromagnetism"}],chapters:[{id:"41304",title:"Electronic Structures of Tetragonal ABX3: Role of the B-X Coulomb Repulsions for Ferroelectricity and Piezoelectricity",slug:"electronic-structures-of-tetragonal-abx3-role-of-the-b-x-coulomb-repulsions-for-ferroelectricity-and",totalDownloads:2969,totalCrossrefCites:2,authors:[{id:"28477",title:"Dr.",name:"Kaoru",surname:"Miura",slug:"kaoru-miura",fullName:"Kaoru Miura"},{id:"29311",title:"Prof.",name:"Funakubo",surname:"Hiroshi",slug:"funakubo-hiroshi",fullName:"Funakubo Hiroshi"}]},{id:"41716",title:"Advances in Thermodynamics of Ferroelectric Phase Transitions",slug:"advances-in-thermodynamics-of-ferroelectric-phase-transitions",totalDownloads:2510,totalCrossrefCites:1,authors:[{id:"13804",title:"Dr.",name:"Shu-Tao",surname:"Ai",slug:"shu-tao-ai",fullName:"Shu-Tao Ai"}]},{id:"41284",title:"Pb(Mg1/3Nb2/3)O3 (PMN) Relaxor: Dipole Glass or Nano-Domain Ferroelectric?",slug:"pb-mg1-3nb2-3-o3-pmn-relaxor-dipole-glass-or-nano-domain-ferroelectric-",totalDownloads:3048,totalCrossrefCites:4,authors:[{id:"27794",title:"Prof.",name:"Desheng",surname:"Fu",slug:"desheng-fu",fullName:"Desheng Fu"},{id:"38996",title:"Prof.",name:"Mitsuru",surname:"Itoh",slug:"mitsuru-itoh",fullName:"Mitsuru Itoh"},{id:"154948",title:"Dr.",name:"Hiroki",surname:"Taniguchi",slug:"hiroki-taniguchi",fullName:"Hiroki Taniguchi"},{id:"154949",title:"Prof.",name:"Shigeo",surname:"Mori",slug:"shigeo-mori",fullName:"Shigeo Mori"}]},{id:"40966",title:"Self Assembled Nanoscale Relaxor Ferroelectrics",slug:"self-assembled-nanoscale-relaxor-ferroelectrics",totalDownloads:2500,totalCrossrefCites:3,authors:[{id:"151538",title:"Prof.",name:"Ram S.",surname:"Katiyar",slug:"ram-s.-katiyar",fullName:"Ram S. Katiyar"},{id:"154717",title:"Dr.",name:"Ashok",surname:"Kumar",slug:"ashok-kumar",fullName:"Ashok Kumar"},{id:"158382",title:"Dr.",name:"M",surname:"Correa",slug:"m-correa",fullName:"M Correa"},{id:"166698",title:"Dr.",name:"Nora",surname:"Ortega",slug:"nora-ortega",fullName:"Nora Ortega"},{id:"166699",title:"Mr.",name:"Shalini",surname:"Kumari",slug:"shalini-kumari",fullName:"Shalini Kumari"}]},{id:"38919",title:"Optical Properties of Ferroelectrics and Measurement Procedures",slug:"optical-properties-of-ferroelectrics-and-measurement-procedures",totalDownloads:2464,totalCrossrefCites:0,authors:[{id:"25044",title:"Dr.",name:"Ashim",surname:"Bain",slug:"ashim-bain",fullName:"Ashim Bain"},{id:"155291",title:"Dr.",name:"Prem",surname:"Chand",slug:"prem-chand",fullName:"Prem Chand"}]},{id:"41273",title:"Relaxor Behaviour in Ferroelectric Ceramics",slug:"relaxor-behavior-in-ferroelectric-ceramics",totalDownloads:5183,totalCrossrefCites:10,authors:[{id:"14679",title:"Dr.",name:"Aimé",surname:"Peláiz-Barranco",slug:"aime-pelaiz-barranco",fullName:"Aimé Peláiz-Barranco"},{id:"156562",title:"Dr.",name:"Francisco",surname:"Calderón-Piñar",slug:"francisco-calderon-pinar",fullName:"Francisco Calderón-Piñar"},{id:"156563",title:"MSc.",name:"Osmany",surname:"García-Zaldívar",slug:"osmany-garcia-zaldivar",fullName:"Osmany García-Zaldívar"},{id:"156564",title:"MSc.",name:"Yuslin",surname:"González-Abreu",slug:"yuslin-gonzalez-abreu",fullName:"Yuslin González-Abreu"}]},{id:"41603",title:"Electronic Band Structures and Phase Transitions of Ferroelectric and Multiferroic Oxides",slug:"electronic-band-structures-and-phase-transitions-of-ferroelectric-and-multiferroic-oxides",totalDownloads:2788,totalCrossrefCites:0,authors:[{id:"15342",title:"Dr.",name:"Zhigao",surname:"Hu",slug:"zhigao-hu",fullName:"Zhigao Hu"},{id:"15584",title:"Dr.",name:"Yawei",surname:"Li",slug:"yawei-li",fullName:"Yawei Li"},{id:"15587",title:"Prof.",name:"Junhao",surname:"Chu",slug:"junhao-chu",fullName:"Junhao Chu"},{id:"15629",title:"Prof.",name:"Ziqiang",surname:"Zhu",slug:"ziqiang-zhu",fullName:"Ziqiang Zhu"},{id:"165570",title:"Dr.",name:"Kai",surname:"Jiang",slug:"kai-jiang",fullName:"Kai Jiang"}]},{id:"39950",title:"Phase Diagram of The Ternary BaO-Bi2O3-B2O3 System: New Compounds and Glass Ceramics Characterisation",slug:"phase-diagramm-of-the-ternary-bao-bi2o3-b2o3-system-new-compounds-and-glass-ceramics-characterisatio",totalDownloads:3578,totalCrossrefCites:0,authors:[{id:"37702",title:"Mr.",name:"Martun",surname:"Hovhannisyan",slug:"martun-hovhannisyan",fullName:"Martun Hovhannisyan"}]},{id:"41275",title:"Ferroelectric Domain Imaging Multiferroic Films Using Piezoresponse Force Microscopy",slug:"ferroelectric-domain-imaging-multiferroic-films-using-piezoresponse-force-microscopy",totalDownloads:2493,totalCrossrefCites:0,authors:[{id:"36512",title:"Dr.",name:"Hongyang",surname:"Zhao",slug:"hongyang-zhao",fullName:"Hongyang Zhao"},{id:"36515",title:"Prof.",name:"Xiaolin",surname:"Wang",slug:"xiaolin-wang",fullName:"Xiaolin Wang"},{id:"54425",title:"Dr.",name:"Qiwen",surname:"Yao",slug:"qiwen-yao",fullName:"Qiwen Yao"},{id:"359576",title:"Dr.",name:"Hideo",surname:"Kimura",slug:"hideo-kimura",fullName:"Hideo Kimura"},{id:"359577",title:"Dr.",name:"Lei",surname:"Guo",slug:"lei-guo",fullName:"Lei Guo"},{id:"359578",title:"Dr.",name:"Zhenxiang",surname:"Cheng",slug:"zhenxiang-cheng",fullName:"Zhenxiang Cheng"}]},{id:"41276",title:"Gelcasting of Ferroelectric Ceramics: Doping Effect and Further Development",slug:"gelcasting-of-ferroelectric-ceramic-parts-and-the-doping-effect-of-additives",totalDownloads:2334,totalCrossrefCites:0,authors:[{id:"31255",title:"Dr.",name:"Kai",surname:"Cai",slug:"kai-cai",fullName:"Kai Cai"},{id:"37956",title:"Dr.",name:"Dong",surname:"Guo",slug:"dong-guo",fullName:"Dong Guo"}]},{id:"41736",title:"Electronic Ferroelectricity in II-VI Semiconductor ZnO",slug:"electronic-ferroelectricity-in-ii-vi-semiconductor-zno",totalDownloads:4109,totalCrossrefCites:5,authors:[{id:"154766",title:"Prof.",name:"Akira",surname:"Onodera",slug:"akira-onodera",fullName:"Akira Onodera"},{id:"359777",title:"Dr.",name:"Masaki",surname:"Takesada",slug:"masaki-takesada",fullName:"Masaki Takesada"}]},{id:"41283",title:"Doping-Induced Ferroelectric Phase Transition and Ultraviolet-Illumination Effect in a Quantum Paraelectric Material Studied by Coherent Phonon Spectroscopy",slug:"doping-induced-ferroelectric-phase-transition-and-ultraviolet-illumination-effect-in-a-quantum-parae",totalDownloads:2143,totalCrossrefCites:0,authors:[{id:"27366",title:"Prof.",name:"Toshiro",surname:"Kohmoto",slug:"toshiro-kohmoto",fullName:"Toshiro Kohmoto"}]},{id:"41617",title:"Raman Scattering Study on the Phase Transition Dynamics of Ferroelectric Oxides",slug:"raman-scattering-study-on-the-phase-transition-dynamics-of-ferroelectric-oxides",totalDownloads:2585,totalCrossrefCites:1,authors:[{id:"38996",title:"Prof.",name:"Mitsuru",surname:"Itoh",slug:"mitsuru-itoh",fullName:"Mitsuru Itoh"},{id:"154948",title:"Dr.",name:"Hiroki",surname:"Taniguchi",slug:"hiroki-taniguchi",fullName:"Hiroki Taniguchi"},{id:"30571",title:"Prof.",name:"Toshirou",surname:"Yagi",slug:"toshirou-yagi",fullName:"Toshirou Yagi"},{id:"155508",title:"Dr.",name:"Hiroki",surname:"Moriwake",slug:"hiroki-moriwake",fullName:"Hiroki Moriwake"}]},{id:"41299",title:"Electromechanical Coupling Multiaxial Experimental and Micro-Constitutive Model Study of Pb(Mg1/3Nb2/3)O3- 0.32PbTiO3 Ferroelectric Single Crystal",slug:"electromechanical-coupling-multiaxial-experimental-and-micro-constitutive-model-study-of-pb-mg1-3nb2",totalDownloads:1947,totalCrossrefCites:1,authors:[{id:"155758",title:"Associate Prof.",name:"Qiang",surname:"Wan",slug:"qiang-wan",fullName:"Qiang Wan"},{id:"165107",title:"Prof.",name:"Changqing",surname:"Chen",slug:"changqing-chen",fullName:"Changqing Chen"},{id:"165108",title:"Prof.",name:"Yapeng",surname:"Shen",slug:"yapeng-shen",fullName:"Yapeng Shen"}]},{id:"41231",title:"'Universal' Synthesis of PZT (1-X)/X Submicrometric Structures Using Highly Stable Colloidal Dispersions: A Bottom-Up Approach",slug:"-universal-synthesis-of-pzt-1-x-x-submicrometric-structures-using-highly-stable-colloidal-dispersion",totalDownloads:2676,totalCrossrefCites:1,authors:[{id:"27222",title:"Dr.",name:"Amaury",surname:"Suárez-Gómez",slug:"amaury-suarez-gomez",fullName:"Amaury Suárez-Gómez"},{id:"112242",title:"Dr.",name:"José-Manuel",surname:"Saniger",slug:"jose-manuel-saniger",fullName:"José-Manuel Saniger"},{id:"156463",title:"Dr.",name:"Francisco",surname:"Calderón-Piñar",slug:"francisco-calderon-pinar",fullName:"Francisco Calderón-Piñar"}]},{id:"40006",title:"Phase Transitions, Dielectric and Ferroelectric Properties of Lead-free NBT-BT Thin Films",slug:"phase-transitions-dielectric-and-ferroelectric-properties-of-lead-free-ferroelectric-nbt-bt-thin-fil",totalDownloads:3038,totalCrossrefCites:0,authors:[{id:"12887",title:"Dr.",name:"Carmen",surname:"Galassi",slug:"carmen-galassi",fullName:"Carmen Galassi"},{id:"32241",title:"Dr.",name:"Maria",surname:"Dinescu",slug:"maria-dinescu",fullName:"Maria Dinescu"},{id:"156497",title:"Dr.",name:"Nicu",surname:"Scarisoreanu",slug:"nicu-scarisoreanu",fullName:"Nicu Scarisoreanu"},{id:"156560",title:"Prof.",name:"Ruxandra",surname:"Birjega",slug:"ruxandra-birjega",fullName:"Ruxandra Birjega"},{id:"156567",title:"MSc.",name:"Andreea",surname:"Andrei",slug:"andreea-andrei",fullName:"Andreea Andrei"},{id:"165542",title:"Dr.",name:"Floriana",surname:"Craciun",slug:"floriana-craciun",fullName:"Floriana Craciun"}]},{id:"41380",title:"Thin-Film Process Technology for Ferroelectric Application",slug:"thin-film-process-technology-for-ferroelectric-application",totalDownloads:3513,totalCrossrefCites:0,authors:[{id:"30547",title:"Dr.",name:"Koukou",surname:"Suu",slug:"koukou-suu",fullName:"Koukou Suu"}]},{id:"41605",title:"Ferroelectrics at the Nanoscale: A First Principle Approach",slug:"ferroelectrics-at-the-nanoscale-a-first-principle-approach",totalDownloads:1930,totalCrossrefCites:0,authors:[{id:"159522",title:"Dr.",name:"Matias",surname:"Nunez",slug:"matias-nunez",fullName:"Matias Nunez"}]},{id:"40446",title:"The Influence of Vanadium Doping on the Physical and Electrical Properties of Non-Volatile Random Access Memory Using the BTV, BLTV, and BNTV Oxide Thin Films",slug:"the-influence-of-vanadium-doping-on-the-physical-and-electrical-properties-of-non-volatile-random-ac",totalDownloads:2143,totalCrossrefCites:0,authors:[{id:"24971",title:"Prof.",name:"Kai-Huang",surname:"Chen",slug:"kai-huang-chen",fullName:"Kai-Huang Chen"},{id:"46115",title:"Prof.",name:"Chien-Min",surname:"Cheng",slug:"chien-min-cheng",fullName:"Chien-Min Cheng"},{id:"156499",title:"Dr.",name:"Sean",surname:"Wu",slug:"sean-wu",fullName:"Sean Wu"},{id:"156501",title:"Prof.",name:"Jen-Hwan",surname:"Tsai",slug:"jen-hwan-tsai",fullName:"Jen-Hwan Tsai"},{id:"364400",title:"Dr.",name:"Chin-Hsiung",surname:"Liao",slug:"chin-hsiung-liao",fullName:"Chin-Hsiung Liao"}]},{id:"40488",title:"Nanoscale Ferroelectric Films, Strips and Boxes",slug:"nanoscale-ferroelectric-films-strips-and-boxes",totalDownloads:1592,totalCrossrefCites:0,authors:[{id:"33774",title:"Dr.",name:"Jeffrey",surname:"Webb",slug:"jeffrey-webb",fullName:"Jeffrey Webb"}]},{id:"41303",title:"Emerging Applications of Ferroelectric Nanoparticles in Materials Technologies, Biology and Medicine",slug:"emerging-applications-of-ferroelectric-nanoparticles-in-materials-technologies-biology-and-medicine",totalDownloads:3599,totalCrossrefCites:11,authors:[{id:"33546",title:"Dr.",name:"Anatoliy",surname:"Glushchenko",slug:"anatoliy-glushchenko",fullName:"Anatoliy Glushchenko"},{id:"154759",title:"Dr.",name:"Yuriy",surname:"Garbovskiy",slug:"yuriy-garbovskiy",fullName:"Yuriy Garbovskiy"},{id:"160008",title:"MSc.",name:"Olena",surname:"Zribi",slug:"olena-zribi",fullName:"Olena Zribi"}]},{id:"41306",title:"Photorefractive Effect in Ferroelectric Liquid Crystals",slug:"photorefractive-effect-in-ferroelectric-liquid-crystals",totalDownloads:2092,totalCrossrefCites:0,authors:[{id:"26788",title:"Prof.",name:"Takeo",surname:"Sasaki",slug:"takeo-sasaki",fullName:"Takeo Sasaki"}]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"24368",firstName:"Ana",lastName:"Pantar",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/24368/images/4736_n.jpg",email:"ana.p@intechopen.com",biography:"As a Commissioning Editor at IntechOpen, I work closely with our collaborators in the selection of book topics for the yearly publishing plan and in preparing new book catalogues for each season. This requires extensive analysis of developing trends in scientific research in order to offer our readers relevant content. Creating the book catalogue is also based on keeping track of the most read, downloaded and highly cited chapters and books and relaunching similar topics. I am also responsible for consulting with our Scientific Advisors on which book topics to add to our catalogue and sending possible book proposal topics to them for evaluation. Once the catalogue is complete, I contact leading researchers in their respective fields and ask them to become possible Academic Editors for each book project. Once an editor is appointed, I prepare all necessary information required for them to begin their work, as well as guide them through the editorship process. I also assist editors in inviting suitable authors to contribute to a specific book project and each year, I identify and invite exceptional editors to join IntechOpen as Scientific Advisors. I am responsible for developing and maintaining strong relationships with all collaborators to ensure an effective and efficient publishing process and support other departments in developing and maintaining such relationships."}},relatedBooks:[{type:"book",id:"4598",title:"Ferroelectric Materials",subtitle:"Synthesis and Characterization",isOpenForSubmission:!1,hash:"0a1b887e8f700fddbf9686538317a660",slug:"ferroelectric-materials-synthesis-and-characterization",bookSignature:"Aime Pelaiz Barranco",coverURL:"https://cdn.intechopen.com/books/images_new/4598.jpg",editedByType:"Edited by",editors:[{id:"14679",title:"Dr.",name:"Aimé",surname:"Peláiz-Barranco",slug:"aime-pelaiz-barranco",fullName:"Aimé Peláiz-Barranco"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"424",title:"Ferroelectrics",subtitle:"Physical Effects",isOpenForSubmission:!1,hash:"d9d8a531dfb92ccd58e2a8b9a426dcd4",slug:"ferroelectrics-physical-effects",bookSignature:"Mickaël Lallart",coverURL:"https://cdn.intechopen.com/books/images_new/424.jpg",editedByType:"Edited by",editors:[{id:"10041",title:"Dr.",name:"Mickaël",surname:"Lallart",slug:"mickael-lallart",fullName:"Mickaël Lallart"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"174",title:"Ferroelectrics",subtitle:"Material Aspects",isOpenForSubmission:!1,hash:"4489eb7544dc5c1014f4e1280e677371",slug:"ferroelectrics-material-aspects",bookSignature:"Mickaël Lallart",coverURL:"https://cdn.intechopen.com/books/images_new/174.jpg",editedByType:"Edited by",editors:[{id:"10041",title:"Dr.",name:"Mickaël",surname:"Lallart",slug:"mickael-lallart",fullName:"Mickaël Lallart"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5514",title:"Magnetic Spinels",subtitle:"Synthesis, Properties and Applications",isOpenForSubmission:!1,hash:"c3c43611e3fb0a8ab988acc896eae935",slug:"magnetic-spinels-synthesis-properties-and-applications",bookSignature:"Mohindar Singh Seehra",coverURL:"https://cdn.intechopen.com/books/images_new/5514.jpg",editedByType:"Edited by",editors:[{id:"48086",title:"Prof.",name:"Mohindar",surname:"Seehra",slug:"mohindar-seehra",fullName:"Mohindar Seehra"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1873",title:"Advanced Magnetic Materials",subtitle:null,isOpenForSubmission:!1,hash:"24a0c00844ead5d9264572db1b120866",slug:"advanced-magnetic-materials",bookSignature:"Leszek Malkinski",coverURL:"https://cdn.intechopen.com/books/images_new/1873.jpg",editedByType:"Edited by",editors:[{id:"115596",title:"Dr.",name:"Leszek",surname:"Malkinski",slug:"leszek-malkinski",fullName:"Leszek Malkinski"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"428",title:"Ferroelectrics",subtitle:"Characterization and Modeling",isOpenForSubmission:!1,hash:null,slug:"ferroelectrics-characterization-and-modeling",bookSignature:"Mickaël Lallart",coverURL:"https://cdn.intechopen.com/books/images_new/428.jpg",editedByType:"Edited by",editors:[{id:"10041",title:"Dr.",name:"Mickaël",surname:"Lallart",slug:"mickael-lallart",fullName:"Mickaël Lallart"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"429",title:"Ferroelectrics",subtitle:"Applications",isOpenForSubmission:!1,hash:null,slug:"ferroelectrics-applications",bookSignature:"Mickaël Lallart",coverURL:"https://cdn.intechopen.com/books/images_new/429.jpg",editedByType:"Edited by",editors:[{id:"10041",title:"Dr.",name:"Mickaël",surname:"Lallart",slug:"mickael-lallart",fullName:"Mickaël Lallart"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6198",title:"Magnetism and Magnetic Materials",subtitle:null,isOpenForSubmission:!1,hash:"ccf0a4d8e8e42ef4e29f805286ab43f9",slug:"magnetism-and-magnetic-materials",bookSignature:"Neeraj Panwar",coverURL:"https://cdn.intechopen.com/books/images_new/6198.jpg",editedByType:"Edited by",editors:[{id:"289829",title:"Dr.",name:"Neeraj",surname:"Panwar",slug:"neeraj-panwar",fullName:"Neeraj Panwar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8653",title:"Electromagnetic Materials and Devices",subtitle:null,isOpenForSubmission:!1,hash:"0cc0489a203ae888b1105719a4e70ecd",slug:"electromagnetic-materials-and-devices",bookSignature:"Man-Gui Han",coverURL:"https://cdn.intechopen.com/books/images_new/8653.jpg",editedByType:"Edited by",editors:[{id:"250649",title:"Prof.",name:"Man-Gui",surname:"Han",slug:"man-gui-han",fullName:"Man-Gui Han"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"50277",title:"Elimination of Potential Pathogenic Microorganisms in Sewage Sludge Using Electron Beam Irradiation",doi:"10.5772/62705",slug:"elimination-of-potential-pathogenic-microorganisms-in-sewage-sludge-using-electron-beam-irradiation",body:'\n
Radiation processing has been used in biotechnological applications for more than 50 years. The effect of radiation on pathogenic microorganisms was first initiated in 1956 by Ethicon Inc. (a subsidiary of Johnson and Johnson) together with High Voltage Engineering Corp. (a manufacturer of accelerators) in order to sterilize single-use medical devices such as gloves, hypodermic needles, sutures, surgical drapes. Nowadays, it is worldwide used, not only for medical devices, but also for cosmetics. The exact mechanism by which radiation kills microorganisms is not very well understood, but it is certainly related to the damage caused by the radiation to the DNA molecule of the microorganisms. Also it is generally accepted that the smaller the microorganism the larger the dose of radiation needed to kill it. So, the radiation dose needed to kill bacteria will be larger than the dose needed to kill human cells, and it will be smaller than the dose needed to kill a virus.
\nSterilization is not the only area in which radiation can be used in biotechnological applications. Radiation is being used to develop new implant materials which are biocompatible. An example of this is the irradiation of water-soluble polymers in aqueous solutions, with or without the addition of another monomer which gives rise to a variety of cross-linked gels which can be used in the biomedical field. Some of these hydrogels can be used to hydrate the skin of patients with severe burns.
\nRadiation is also used in the area of food preservation. Depending on the dose used on a food commodity, the radiation can either sterilize (e.g., in meat products), kill bacteria including
The commercial use of irradiation to disinfect sludge started in 1973 when an industrial gamma ray facility from Geiselbullach near Munich (Germany) used Co-60 and Cs-137 sources [1]. The facility used 90,000 Ci of Co-60 and 570,000 Ci of Cs-137 and treated up to 180 m3/day of sludge. More recently, a new technology using electron beam accelerators was developed in Miami, Florida where a 1.5 MeV 50 mA accelerator with a throughput of 645 m3/day, and in Brazil where a 1.5 MeV 37.5 kW accelerator, with a maximum throughput of 45 l/min were described [2]. However, these two studies only addressed the engineering aspects of the facilities and the possibilities to use electron beam irradiation for environmental applications. The radiation effects on the bacterial load and removal of noxious chemical compounds have been performed mostly in small samples of sludge irradiated under laboratory conditions and mainly address either only the microbiological or the chemical effect of radiation in a sample of sludge [3–5]. Processing and disposal of wastewater sludge are a critical problem worldwide [5]; therefore, new technologies to solve this problem are constantly being sought.
\nSludge is commonly used as a soil amendment and fertilizer but must be treated in order to remove various bacteria, toxic compounds, parasites, and viruses. Many researchers have shown that exposing sludge to high-energy radiation successfully removes all the bacteria and other organisms from the sludge. Thus, the right dose of radiation will ensure proper sludge disinfection. It has been shown that even a small dose of radiation will remove 99.9% of all bacteria in sludge [6]. In addition to disinfection, irradiation of sludge often accelerates sedimentation and filtration, which helps facilitate removal of water from the sludge. Even while changing the physical makeup of sludge, this does not affect the ability of using sludge as a good fertilizer.
\nThe generation of offensive odors from sewage sludge is also a concern in the subsequent disposal and/or use of sludge. Volatile sulfur-containing compounds (carbon disulfide CS2, dimethylsulfide [(CH3)2S], dimethyldisulfide [(CH3S)2] and volatile carboxylic acids (acetic acid, propanoic acid, butanoic acid) have been identified as odor causing compounds in sewage sludge [7].
\nPrior to the determination of the dose using different accelerator parameters, the scanned beam on top of the sludge delivery system needed to be mapped in order to verify that all the water coming through the weir length of the sludge delivery system would be exposed to the electron beam. The delivery system consists of a stainless steel box 152 cm (59.8 in) long with two compartments, one for the incoming sludge and the other one to drain the irradiated sludge. The sludge is transferred from one compartment to the other through a weir located in the center of the box. Irradiation takes place at the top of the weir (Figure 1).
\nIrradiation dispositive used to irradiate sludge. (a) Overall view of the system, showing the accelerator scanner (1), the window blower (2), the electron beam shutter (3), the sludge delivery system (4), and the pipes delivering the sludge to the system (5). (b) Simulation of the process using tap water. (1) Lower portion of the accelerator scanner, (2) beam shutter, (3) weir, and (4) incoming water. The depth of the sludge layer at the top of the weir was about 0.3–0.4 cm. (c) sludge sample (adapted from [7]).
To map the extent of the irradiation zone along the weir, a CTA film was taped to the top of the delivery system just underneath the scanner system of the accelerator and irradiated for 5 s using the following accelerator conditions: E = 3 MeV, I = 15 mA, and S = 100%. After irradiation, the optical absorption at 280 nm was measured along the film using a Genesys 5 spectrophotometer fitted with a driving mechanism to measure film strips. Aerial™ software determined the dose from the absorbance measurements.
\n\nFigure 2 shows a graph of the dose along the top surface of the weir to treat the sludge. The graph shows two features, the extent of the irradiation zone on top of the weir system and the dose uniformity along the weir. The graph shows an effective irradiation length of 127.5 cm which is shorter than the length of the weir itself (152 cm). In order to ensure that all sludge falling over the weir was irradiated, two pieces of aluminum tabs 10 cm long were fastened to each edge of the weir using C-clamps. These tabs shortened the effective weir by a total of 20 cm and allowed for all the sludge falling over the weir to be irradiated by the electron beam given the fact that the scanning angle of the electron beam is 18.5°. The graph also gives information about the uniformity of the electron beam on top of the weir and shows that the dose at the two ends of the weir is about 25% lower than the dose in the idle section of the weir. However, this measurement was taken under static conditions, and in the case of water or sludge, the liquid will not move on a laminar flow fashion and might have been receiving an average dose with variations of up to ± 12.5% assuming that part of the liquid moved on the middle section and another part on the extreme end of the weir. So, then it is reasonable to assume that with the movement of the sludge as well as with its mixing, this might be the maximum difference in dose achieved by the sludge.
\nDose along the sludge delivery system. The measurements were taken using cellulose triacetate film irradiated with 3 MeV electrons, 15 mA of current, 5 s of exposure time and 100% scanning aperture [7].
The dose delivered to the sludge was determined from temperature measurements made on the sludge before and after irradiation, after calibration in terms of dose with alanine pellets and films. The irradiation of alanine dosimeters produces free radicals that become trapped inside the solid matrix of the dosimeter and can be measured by electron spin resonance (ESR) spectrometry. The trapped radicals are stable over long periods of time, and their concentration can be directly related to the absorbed dose as determined from a calibration curve.
\nFor the experiments described in this chapter, a Bruker eScan ESR spectrometer using an insert FL0041 to measure the alanine films and an insert PH0027 to measure the alanine pellets were used to measure the free radicals. In a first experiment, 40 alanine pellets and 40 alanine film strips were randomly selected and irradiated in order to make a calibration curve of the pellets. The pellets would be used to measure the dose in sludge once they were calibrated with the alanine films.
\nThe 40 alanine pellets were divided into ten groups of four and were placed in small plastic bags 1.5 cm long and 0.5 cm wide, and sealed with heat. The bags with the pellets were placed on a piece of cardboard, one at a time, on top of one of the carts that would be conveyed through the electron beam. On the side of the individual bags, four alanine film strips were placed, to measure the dose. The cardboard was irradiated in the cart conveyor system of the NEO Beam facility Dynamitron electron accelerator and irradiated using the following beam parameters: 3 MeV electron energy and 100% scanning angle; the dosimeters were moving under the beam at a constant speed of 20.32 cm/s, and the current changed to give different dose values ranging from 2 to 40 kGy, according to Table 1. Once all the dosimeters were irradiated, the alanine films were measured to determine the dose in each run, and with this information and the measurement of the intensity of the ESR signal of the irradiated pellets, a calibration curve was constructed.
\nDose (kGy) | \nBeam current (mA) | \n
---|---|
2 | \n3.4 | \n
5 | \n8.4 | \n
8 | \n13.4 | \n
10 | \n16.8 | \n
13 | \n21.8 | \n
16 | \n26.9 | \n
20 | \n33.6 | \n
24 | \n40.3 | \n
27 | \n45.3 | \n
30 | \n50.4 | \n
Electron beam current values needed to produce the selected doses for alanine pellets running under the beam at 20.32 cm/s.
A second experiment consisted in irradiating a set of pellets in a pyrex baking dish containing cold tap water at a depth of 1.1 cm (7/16 in). The purpose of this experiment was to simulate the accelerator conditions needed to irradiate the sludge. Four vials per run were used, each containing three alanine pellets. These vials were placed into the baking dish and floated on top of the water. The electron beam parameters were set up such that the electron energy was 3 MeV and five runs were conducted underneath the electron beam. Each run had a constant speed of the samples equal to 23.3 cm/s and the following beam currents: 3.8, 9.6, 19.1, 38.3, and 45.9 mA. After irradiations, the dose from the ESR intensity of each alanine pellet using the Bruker eScan instrument was determined.
\nThe next experiment measured the dose for a sample of water running through the delivery system to irradiate sludge and to relate those measurements to the temperature of the water coming in and going out of the system as measured by a set of thermocouples installed near the sludge delivery system in the influent and effluent pipes. Small sealed plastic bags containing two alanine pellets were introduced into the system through a “Tee” connection into the pipe where the water flowed and sent them through the irradiation zone. At this point, 300 gallons of water was being recirculated through the system at 50 GPM. Two sets of five runs were conducted. Beam conditions for each set were as follows for each run: E = 3 MeV, S = 100%, I = 3.8, 9.6, 19.1, 38.5, and 46.2 mA, respectively. After irradiation, the plastic bags with the alanine pellets were collected in a catch basket that would separate the sealed bags from the water. Some of the bags leaked water when they passed through the water pump that removed the irradiated water from the system. The bags that did not show water leaks were used to measure the dose. Dose measurements were then related to the temperature measurements from the thermocouples.
\nFinally, the dose in the sludge was determined from the temperature measurements with the thermocouples, after correcting for the dose measured by the alanine pellets.
\nAs mentioned earlier, the dose absorbed by the sludge was determined from temperature measurements in the sludge after a calibration with alanine pellets was performed. Figure 3 shows the result of the dose calibration of the pellets when irradiated with alanine films in the cart conveyor system of the NEO Beam facility.
\nAs stated in the experimental section, the pellets were calibrated using alanine films calibrated at Risø National Laboratory and then used to calibrate the in-house Bruker eScan spectrometer that measured the doses. After this, the calibrated pellets were used to determine the dose in the experimental setup to irradiate the sludge with the electron accelerator using different beam currents. Thus, the graph in Figure 4 shows the dose recorded by the pellets run through the irradiation dispositive using water at different beam currents of the electron accelerator.
\nCalibration curve for the alanine pellets used to measure dose in this experiment. The dose was measured by alanine films and the response of the pellets as the ratio of the ESR intensity of the alanine to the internal marker of the pellet holder. The eScan instrument performed a trendline analysis on the experimental data obtaining a 4° polynomial as the best fit to the experimental data with a standard error of 0.0076 and an R2 = 0.9989.
Doses of electron beam irradiation in water. Doses were measured by alanine pellets as a function of the electron beam current of the accelerator. Water was running in the system at a rate of 50 gpm, and the electron energy was 3.0 MeV [7].
At the same time, the increase in temperature of the water running through the sludge delivery system at constant flow rate of 50 gpm and different beam currents was recorded and compared with the dose given by the alanine pellets. This relationship was later used to determine the dose absorbed by the sludge when irradiated with the electron beam.
\nThe flow rate during the irradiation of the sludge sample was 30 gpm instead of the 50 gpm originally selected for this experiment. In order to keep the doses within the interval selected for this experiment, it was decided to run the experiment at a reduced level of electron beam currents to compensate for this effect. The dose was determined then from temperature increase of the sludge by measuring the temperatures at the input and exit ports of the irradiation setup. Table 2 presents results of the temperature increments and dose measurements as a function of the beam currents for the sludge sample running through the delivery system.
\nBeam current (mA) | \nTemperature increase (°c) | \nDose (kGy) | \n
---|---|---|
2.3 | \n0.6 | \n2.7 | \n\n
5.8 | \n1.6 | \n6.7 | \n
11.5 | \n3.1 | \n13.2 | \n
23.0 | \n6.1 | \n25.7 | \n
27.6 | \n7.3 | \n30.7 | \n
Irradiation conditions used to achieve targeted doses. Sludge samples were flowing at a rate of 30 gpm [7].
Sample collection, transport, and storage are crucial when studying the effect of electron beam irradiation on microbial population found in municipal sewage sludge. In these experiments, sewage sludge samples were collected in two separate batches. First batch contains pretreated municipal sewage sludge or influent samples, and a second batch is made of municipal sewage sludge treated with electron beam irradiation or effluent samples. In the case reported here, since the sludge was treated with different doses of electron beam irradiation, samples were collected prior to (influent) and after (effluent) irradiation of sludge at each dose. Several 100 ml influent and effluent samples of sewage sludge were harvested in sterile-caped plastic vials for bacterial count and survival. Each sample was then placed on ice immediately after collection and transported in an isotherm ice container (a cooler) from the electron beam irradiation facility to the microbiology laboratory for microbial analysis. For accurate observation of the direct effect of electron beam irradiation on bacterial population, samples should be analyzed as soon as possible after treatment.
\nEach sample was thoroughly mixed, and serial dilutions were performed in 1× phosphate-buffered saline. Influent samples were diluted up to 10−8, while effluent samples were diluted up to 10−6. Diluted samples were filtered using disposable filter funnels. For filtration, 10 ml of the diluted sample was transferred with a sterile pipette into the middle of a sterile 45 mm (diameter) and 0.45 μm (pore size) gridded membrane filter. After filtration, the filter was washed with three volumes of 1× phosphate-buffered saline. The filter was then removed and transferred on a 50-mm (diameter)-padded Petri dish plate containing 2 ml of culture medium for total heterotrophic bacterial (THB), total coliform (TC), and fecal coliform (FC) counts. In order to perform THB counts, mHPC Heterotrophic medium was used and for TC counts, mEndo medium was used, while m-FC medium supplemented with Rosolic acid was used for FC counts. Plates were placed in plastic bags containing moistened paper towels and transferred in an incubator. Heterotrophic plates were placed in an incubator for 48 h at 35 ± 0.5°C, and TC plates were incubated for 22–14 h at 35 ± 0.5°C, while FC were incubated at 44.5 ± 0.2°C. Known positive and negative controls were used in order to verify accuracy of analytical procedures for identification and counts of heterotrophic, TCs, and FCs. Thus, for TC media,
Bacterial counts before and after irradiation were performed with the electron beam at doses 2.7, 6.7, 13.2, 25.7, and 30.7 kGy. The counts were done specifically for THB, TC, and FC. Figure 5 shows the effect of electron beam irradiation on bacterial survival in municipal sewage sludge after treatment. It appears that THB, TC, and FC counts decreased in a dose-dependent manner. This decrease in bacterial population is directly associated with the ionizing effect of electron beam irradiation that damages bacterial DNA and biomembranes, and the production of reactive oxygen species which also damage cell components. A similar observation was recently made by Cao and Wang [8] when they treated municipal sludge with electron beam irradiation. However, these authors did not count specific types of bacteria.
\nEffect of electron beam irradiation on bacterial survival in municipal sewage sludge samples. (a) Survival of total heterotrophic bacteria, (b) survival of total coliforms, and (c) survival of fecal coliforms [7].
Looking more into details, it was shown that when irradiating sludge with electron beam, a dose of 2.7 kGy, 93.3 ± 8.5% THB survived the treatment, while only 21.1 ± 11.4% of TC and 67.2 ± 1.8% of FC survived at the same irradiation dose. At a dose of 6.7 kGy, while 31 ± 15% of THB survived the treatment, only 0.85 ± 0.23% and 1.85 ± 0.65% of the initial populations of TC and FC survived, respectively. At doses of 13.2 kGy and above, neither TC bacteria nor FC were detected. Nevertheless, at a 13.2 kGy irradiation dose, 8.9 ± 1.3% of THB from the initial population survived the treatment. At a dose of 25.7 kGy and above, no significant THB from the initial population were left in treated sewage sludge samples [7]. Table 3 summarizes bacterial counts per gram of sludge dry weight at different electron beam doses. From these results, D10-values were determined as 8.94, 3.16, and 3.17 kGy for THB, TC, and FC respectively. D10-values are defined as doses necessary to kill 90% of the bacterial populations in the sample for irradiation conditions applied, or the dose needed to reduce the bacterial population by a factor of 10. A close look at Table 2 shows that dose 6.7 kGy reduces the FC counts to 180 colony forming unit (CFU) per gram of sludge dry weight, a count that is within the Environmental Protection Agency (EPA) norm to classify such treated municipal sewage sludge as class A sludge utilizable for land application in agriculture [9]. However, from the D10-value determined for FC, based on initial population of FC in influent samples, the dose required to convert this sludge to class A was estimated to be 4.5 kGy. Although no previous work similar to this one is known to perform a comparison with our estimated D10-value, nevertheless, water-based and surface membrane
Dose (kGy) | \nSluge dry weight (gram) percent | \nTotal heterotrophic bacteria | \nTotal coliforms | \nFecal coliforms | \n
---|---|---|---|---|
\n | \n | Counts (CFU) per gram of dry weight | \n||
0.0 | \n15.00% | \n1.4 × 106 | \n1.7 × 105 | \n2.0 × 104 | \n
2.7 | \n25.75% | \n8.6 × 105 | \n8.2 × 104 | \n1.5 × 104 | \n
6.7 | \n20.46% | \n3.2 × 105 | \n9.3 × 102 | \n1.8 × 102 | \n
13.2 | \n12.29% | \n4.5 × 104 | \n0.0 | \n0.0 | \n
25.7 | \n3.67% | \n1.3 × 104 | \n0.0 | \n0.0 | \n
30.7 | \n3.25% | \n6.1 × 102 | \n0.0 | \n0.0 | \n
Bacterial counts in sludge samples at different irradiation doses [7].
Compared to bacterial analyses of influent and effluent sewage sludge samples,
From each 1 l sample, 500 ml of well-mixed sludge was transferred in a blender, then 200 ml of sterile water was added, and the mixture was blended for 1 min at high speed. The blended mixture was transferred to a 1-l tall beaker to which 1% 7× detergent was added in order to reach 900 ml final volume. The same procedure was repeated for the second half the sludge sample, and the homogenized mixtures were combined and allowed to settle overnight in a cold (4°C) room or in a refrigerator. At this stage, some floating materials may be observed; therefore, stirring occasionally the mixture with a wooden applicator has shown to help settle the material. The supernatant was discarded by vacuum aspirating it to right above the layer of biosolids. The settled sediments were then transferred into a blender to which 500 ml of sterile water, blended again for 1 min at high speed, and transferred to a beaker. The blender was rinsed, and 1% 7× detergent was added to reach 900 ml final volume. Samples were allowed to settle for 2 h at 4°C after which the supernatant was discarded by vacuum aspirating it to right above the layer of biosolids. The biosolids were resuspended into 300 ml of 1% 7× detergent and stirred for 5 min using a magnetic stirrer. Homogenized sample was then strained through a 50 mesh (300 μm) sieve placed in a funnel over a beaker. Samples were washed through the sieve with a spray of 1% 7× detergent from a spray bottle. The sample volume in the beaker was adjusted to 900 ml by adding the necessary amount of 1% 7× detergent and allowed to settle for 2 h at 4°C. The supernatant was discarded using a vacuum, while the sediments were mixed and equally distributed in 50-ml centrifuge sterile tubes. In each tube, the sample volumes were adjusted to 50 ml with sterile water and centrifuged for 10 min at 1000×g. The supernatant was then discarded, and the pellet (biosolids) that should not exceed 5 ml was resuspend in 10 ml of MgSO4 (specific gravity 1.2). Each tube was vortexed for 2 min, and more MgSO4 was added to each tube to reach a volume of 50 ml. The tubes were then centrifuged for 10 min at 1000×g. The top 25–35 ml of supernatant of each tube was poured through a 400 mesh (38 μm) sieve supported in a funnel over a beaker. Biosolids retained on the sieve were washed, rinsed, and collected into a 100 ml beaker. The suspension of biosolids was then transferred into 15 ml centrifuge tubes. Tubes were centrifuged for 3 min at 800×g, and supernatants were discarded. If the previous step generated more than one tube for one initial sample, the sediments should be transferred into one single 15 ml tube and the centrifugation step repeated. Finally, after discarding the supernatant, the biosolids were resuspended in 4 ml 0.1 N H2SO4. The vials were incubated at 26°C for 3 weeks. After 24 days of incubation, when the majority of the controls were fully embryonated, samples were ready to be examined microscopically (10×) using a Sedgwick Rafter cell to enumerate the detected ova. Ova were classified as either nonviable (unembryonated) or viable (embryonated to the first, second, or third larval stage, those with the potential to become adult
Ova/g dry wt = (NO) × (CV) × (FV) / (SP) × (TS)
\nwhere NO = no ova, CV = chamber volume (=1 ml), FV = final volume in ml, SP = sample processed in ml or g, TS = % total solids.
\nIn order to determine
Effect of electron beam irradiation on
Similar to bacterial counts, the results indicate that the viability of
An important aspect in the implementation of a new technology such as an electron accelerator in a wastewater treatment plant is to anticipate its impact on the operation costs of the facility and on the environment. In a recent investigation, the number of kWh used during the irradiation process of the sewage sludge was considered. Data were obtained from the electrical supply company delivering power to the NEO Beam accelerator facility (Toledo Edison, Toledo, Ohio) on the day of the experiment. Energy consumed by the electron accelerator recorded in Figure 7 shows a relatively stable plateau in the power consumed at the facility prior to sample irradiation. The dosimetry calibration of the irradiation setup started at 9:30 am with an increase of the beam current from 0 to 46.2 mA in equal time intervals. From 9:30 am until the end of the irradiation procedure, we observed a constant increase in power consumption. However, the graph only shows electricity consumption from 9:30 am until 10:00 am.
\nAverage power consumed at the NEO Beam electron facility on the day of the experiment (information provided by Toledo Edison, Ohio, USA) [7].
The power consumed at a specific irradiation dose was obtained in terms of the beam current used, and the cost was determined to be $0.115/kWh. Therefore, at irradiation doses 6.7 and 25.7 kGy, the costs were $1.10 and $1.26 per m3 of sludge, respectively. This represents only 15% of increase of the cost when quadrupling the dose of irradiation to achieve the required
Electron beam irradiation technology is able to decrease microbial populations in a dose-dependent manner. In the experiments described in this chapter, it has been estimated that 4.5 kGy of irradiation is sufficient to reduce bacterial populations to safe levels for agricultural use. However, a dose of 14.5 kGy is required to eliminate risks of infection by helminths. Altogether, these observations suggest that irradiation of municipal sludge with electron beam requires at least a dose of 14.5 kGy to eliminate risks of microbial infection. Furthermore, electron beam technology is more cost-effective and less time-consuming than incineration in order to achieve a class A sludge according to EPA standards.
\nWear is a central topic in tribology. As a system property, it is defined as a continuous loss of material out of a solid surface, caused by mechanical impact, e.g., contact and relative motion of counterpart such as solids, liquids, or gases [1, 2, 3, 4, 5, 6].
As such, wear is not a property of a single component. Drivetrain components (e.g., bearings, gears, clutches, etc.) are constructed due to their life expectation in order to come to a predictive reliability in the life cycle. However, in reality they are exposed to wear processes as an incidental or continuous impact. Hence, it is important to know how the entrance of wear in drivetrain components will influence their life expectations and the reliability of the drivetrain as such.
Within a construction, the expected life is a function of the load capacity of the materials, e.g., their fatigue strength with respect to load cycles and pressure.
As reliability is defined yet by the load capacity of the involved materials due to cyclic stress, the question is about how wear relates to fatigue. In a classical view, fatigue is a matter related to stress-strain properties due to the elastic plastic behavior of the load carrying components. If a pressure with no tangential component acts on moving parts, the fatigue phenomena are given by slow changes of the subsurface microstructure due to phase alterations, migration of interstitial atoms, and dislocations. As tangential forces due to slip are coming up, the fatigue processes moves up toward the surface. However, fatigue phenomena near the surface will bring up the question at which point fatigue crosses wear and vice versa. While reliability up to now is defined by fatigue properties of the material, the crossing between fatigue and wear, especially those, induced by lubricants is still not solved. Within real applications it might be the case that, due to the operating conditions, fatigue comes to lubricant-induced wear and does not fit with the standard construction guidelines.
We present here a basic study, how fatigue and lubricant-induced wear push each other in a standard gear and bearing test. It comes up that this stimulation is due to the basic behavior of lubricant components, e.g., the reactivity of additives combined with the mechanical loading. As a main and future question of research, it addresses the need of advanced understanding on a molecular scale (10–9 m), molecular modeling, and in situ spectrometry to embed them in future construction guidelines.
Pitting and gray staining in gears and bearings appear as surface features. In a worst case, they may promote a decay in life expectation, due to their progression in time.
Within the traditional view, they are interpreted by the assumption that loading exceeds the load capacity of the material. Consequently the mating parts will get in touch and come to rupture. As such, lubricants as separating media are only seen as a material to avoid this by separating the surfaces due to viscous effects. However, it is well known that lubricants as a matter of their composition will influence the surface load capacity as well (see Figure 1) [7, 8] as seen for gears in FZG standard test conditions, using SAE 4320 case-hardened material [7, 8, 9].
The influence of different oils and additives on gear load cycles referring to the FZG test (DIN ISO 14635) [
Figure 2 shows the wear rate by the use of different anti-wear and extreme pressure additives base on the FZG test rig (16) as a function of the pitch line speed:
Wear rate of lubricants as a function of pitch line speed.
Same as for gears, bearings are impacted also by wear raising from the composition of a lubricant [10, 11] (see Figure 3), using the Schaeffler FE8 test rig as a standard (2100 MPa contact pressure, 80 rpm, 80 h, cylindrical roller bearing, SAE 52100, Martensite):
Wear rate (roller) at a cylindrical roller bearing (CRB) from the Schaeffler test rig FE8 (DIN 51819) as a function of lubricants. While oil 1 and oil 3 do not show any wear, oil 2 is high in wear.
Within the FZG gear test rig [9, 12, 13, 14, 15, 16, 17] (DIN ISO 14635), different lubricants (A, B) differ in wear as a fact of temperature. While oil A shows a decay by raising the temperature, oil B is opposite (see Figure 4).
Influence on wear due to temperature.
As a result of those studies, reaction layers with different thicknesses under mechanical influence are created. While thick and uncontrolled layers cause early fatigue and wear, thin oxide layers with a strong bonding to the interface cause no wear, same as reported earlier [1, 11]. It is of interest to describe these effects with respect to their chemical structures of the reactive components and how they undergo a transformation of the tribological contact area by creating those layers. Structure property relationship would lead to predictors for wear derived from the chemical structure of a given lubricant.
As a standard the FZG test rig (DIN ISO 14635) as a back-to-back gear test is used (Figure 5) [7, 18, 19, 20]. The gears, type FZG C-PT, are set in a gearbox, fully lubricated. Cylindrical roller bearings (type NJ406, steel cage) are used for the pinion shaft 1 and cylindrical roller bearings, type NJ308, for the motor shaft. Investigations were made on the gears and the cylindrical roller bearings NJ 406.
FZG test rig (DIN ISO 14635).
The test conditions are given in Table 1. The oil temperature is set constant to 90°C and motor speed to 1500 rpm. A running-in period with 1025 N/mm2 is set for 2 h; the test run at 1700 N/mm2 till pitting is reached is recorded. The speed at the pinion is set to 2250 rpm, the torque moment T1 to 372.6 Nm. The tangential speed at the pinion is calculated to 2.42 m/s, at the wheel to 3.87 m/s, the sliding speed at the pinion to −1.45 m/s (reflecting the negative slip), the sliding speed at the wheel to 1.45 m/s, and the sum of speed to 6.29 m/s. As the slip percentage is given by the ratio of sliding speed to the sum of the speed, the slip at the pinion is −23% and at the wheel +23%.
Conditions of the test.
The material of the gears applies for a case-hardener SAE 4320.
The test specific data of the CRB NJ206 are given in Table 2.
Data from the CRB NJ206 bearing.
The material of the bearing accords to the
Two lubricants were tested (Table 3).
Lubricants used for the test.
The organic chain length of the phosphorus-sulfur core is given by four C atoms, meaning that during the synthesis of the additives, a C4 (butyl) alcohol component was used.
The structure of the additives are shown in Figures 6 and 7, both looking rather complex. In detail a core of sulfur, phosphorus, and zinc is attached to the carbon sites, containing four C atoms (ZndtPC4) (Figure 6).
Zincalkyldithiophosphate (C4ZndtP).
Ammoniumdithiophosphate (C4NdtP) as an ionic liquid-like structure.
Figure 7 represents the C4NdtP; two structures are held together by an ionic bonding: a sulfur-phosphorus component with two carbon sites, each containing four C atoms and their attached hydrogen and nitrogen component with a positively charged nitrogen at the edge, attached to a carbon site with eight C atoms (C4NdtP). The principal of this substance is similar to ionic liquids, where opposite-charged atoms create an ionic binding, while the carbon sites are responsible for the liquid structure.
The test runs by the use of the different additives are given in Table 4 for both gears and bearings (NJ406) as a function of the load cycles. Clearly the table shows how the change in the chemical structure of the additive, despite the same chain lengths on the carbon edge (C4), end up in different load cycles (Table 4):
Test conditions set on the different additive structures.
While the C4-Zincalkyldithiophosphate (C4ZndtP) causes pitting and does not meet the expected load cycles, the test carried out with the C4NdtP was out of failure [7]. Secondary neutral mass spectrometry (SNMS) profiles [21, 22, 23] were carried out at the pinion
Gear tooth segment with addendum Position 1 (pitch line), Position 2, and Position 3 as dedendum.
The relevant depth profiles were taken at the dedendum of the pinion tooth flank for the additives C4-zincalkyldithiophosphate (C4ZndtP) and C4-aminealkyldithiophosphate (C4NdtP) with respect to load cycles are shown in Figure 9 (C4ZndtP: 9 × 106 load cycles); Figure 10 (C4ZndtP: 10 × 1010 load cycles); Figure 11 (C4NdtP: 12 × 106 load cycles); and Figure 12 (C4ZndtP: 16 × 1010 load cycles).
SNMS depth profile: C4ZndtP in FZG pitting test at 9 × 106 load cycles.
SNMS depth profile: C4ZndtP in FZG pitting test at 10 × 106 load cycles.
SNMS depth profile: C4NdtP in FZG pitting test at 12 × 106 load cycles.
SNMS depth profile: C4NdtP in FZG pitting test at 16 × 106 load cycles.
As a result from
The calculation of the load distribution is shown in Table 5 and Figure 13.
Conditions at the bearing NJ406.
Load distribution for the NJ406 bearing.
The maximum force is acting on roller nr. 7 with a contact pressure of 1481 N/mm2 [7].
The results (see Figures 14 and 15) show an impact of zinc, assumed to be a mixture of phosphates and zinc oxide in the case of the C4ZndtP at 19 × 106 load cycles (Figure 14), while compared with the oxygen in the case of the C4NdtP stays low (Figure 15).
SNMS depth profile: rollers, C4ZndtP in FE8 bearing test at 19 × 106 load cycles.
SNMS depth profile: C4NdtP in the FE8 wear test, rollers at 29 × 106 load cycles.
The bearing thus gives a different reaction by embedding zinc oxide in the near surface. The results for the C4NdtP are quite similar to the reactions seen in the gear.
For the gear (pinion, dedendum) the reaction turnover stays constant or slightly decreases for the C4ZndtP (Figure 16) but increases in depth by the use of C4NdTP (Figure 17).
SNMS profiles: reaction rate (elements phosphorus and oxygen) in the FZG gear tests for C4ZndtP as a function of load cycles.
SNMS profiles: reaction rate (elements phosphorus and oxygen) in the FZG gear test for C4NdtP as a function of load cycles.
The reaction film thickness shows a progression in the case for the C4ZndtP (Figure 18), while the C4NdtP shows a regression in time (Figure 19).
C4ZndtP: process of film thickness formation as a matter of load cycles.
C4NdtP: process of film thickness formation as a matter of load cycles.
Nanohardness measurements are shown in Figures 20–22: Figure 20 shows the as-received hardness profile of the dedendum, pitch, and addendum for the as-received pinion tooth flank material (case-hardener SAE 4320).
Nanohardness measurements for the as-received pinion (from dedendum via pitch to the addendum).
C4ZndtP: pinion tooth nanohardness as a function of depth (nanometer) and location (dedendum, pitch, and addendum).
C4NdtP: pinion tooth nanohardness as a function of depth (nanometer) and location (dedendum, pitch, and addendum).
Figure 21 shows a
Figure 22 shows a
As functional groups in additives determine the reliability of drivetrain components, it is of interest how those processes are to interpret. Coming from the molecular perspective with a size of 10–9 m, it takes effort to interpret effects on 10–9 till 10–3 m, e.g., magnitudes of 106 in length scale. However, considerable progress in multi-scale modeling has become real in the last years; it is of interest how to predict the observed effects reported here by the use of predictors. Basically predicators are obtained by the properties of a molecule, e.g., coming from the chemical bonding. Exploring molecules by quantitative structure property relationship (QSPR) [24] and the molecular properties by the use of density functional theory (DFT) is a standard [25]. The interaction of molecules with themselves and with surfaces is part of molecular dynamics and ab initio methods.
Figure 24A and B shows the surface of the additive C4ZndtP with one molecule PAO (as a hydrogenated Di-Dec-1-ene, C20H42) (A) and the additive C4NdtP with one molecule PAO (as a hydrogenated Di-Dec-1-ene, C20H42) (B) energy minimized by the use of molecular dynamics.
(A) C4ZndtP structure in PAO and (B) C4NdtP structure in PAO.
Figure 24A shows the surface of the additive C4ZndtP with one molecule PAO (as a hydrogenated Di-Dec-1-ene, C20H42) and the additive C4NdtP with one molecule PAO (as a hydrogenated Di-Dec-1-ene, C20H42) (B) attached to an ideal body-centered cubic (bcc) iron surface as C for the C4ZndtP and D for the C4NdtP, energy minimized by the use of molecular dynamics.
(A) Approaching a (A) C4ZndtP and (B) C4NdtP to an ideal bcc, iron surface. Labeled atoms are: red: iron; dark red: oxygen; blue: carbon; gray: hydrogen; and yellow: sulfur.
Figure 23B shows the surface of the additive C4ZndtP with one molecule PAO (as a hydrogenated Di-Dec-1-ene, C20H42), and the additive C4NdtP with one molecule PAO (as a hydrogenated Di-Dec-1-ene, C20H42) (B) attached to an ideal body-centered cubic (bcc) iron surface as C for the C4ZndtP and D for the C4NdtP, energy minimized by the use of molecular dynamics. Approaching this system to an ideal iron surface, it is obvious that the C4Zn is attached with the polar edge (Zn, P, S) to the surface (see Figure 24A), while the C4NdtP is attached via the carbon shell (see Figure 24B).
The results shown here may give a reasoning about the elementary analyses found by SNMS where the C4ZndtP progressively acts in time by increasing the reaction layers toward 50 nm constituted by P, O, and Zn oxides, while the C4NdtP shows an initial reaction in the beginning, but regressing the layer to a constant film at 10 nm [26].
As for the C4ZndtP, the reactive core is near to the surface; the reaction may proceed by continuous load cycling, which is found in the SNMS profiles. Due to the continuous degression of the surface toward oxides, the C4ZndtP shows a decrease in the nanohardness by the fact that the surface gets covered with material softer than the base. Also the reaction rate goes down due to fact that the reaction layers are chemically inert compared to iron. The remote position of the reactive group in the C4NdtP exposes the sulfur-phosphorus core to the environment as oxygen. Tribological impacting may then promote the oxidation of the reactive site, rather than a reaction with the metal surface. This means that in the first step the C4NdtP reacts with oxygen at the reactive site, coming to phosphoric acid specie. Those would turn to the surface as they are not soluble in the base oil and naturally get attracted by the oxide sites at the metal surface. The amine would be dissolved back into the base oil. As a fact those phosphoric acid specie are found to be detached on the surface of the pinion dedendum. The oxidation will continue; hence, it is expected that the phosphorus-oxide layer will increase on top, but no material will be leached out due to the fact that the phosphates and polyphosphates are uniquely covering the surface, not being soluble in the matrix.
While the C4ZndtP obviously causes a successive exchange of near-surface material (e.g., iron), the C4NdtP does not. The hardness profiles might be coherent with the carbon profile (SNMS): while the C4ZndtP converts constantly the surface material by smooth oxides, the C4NdtP creates a thin phosphorus-oxide layer on top on a size of 10 nm. The carbon site exposed to the metal might protect it against oxidation, and as the reactive phosphorus-sulfur site is remote, the hardness at least does not go down. The steep increase could be caused by a hardening process of the surface due to carbide formation at the interface as a degradation process of the carbon site. It is noteworthy to say that this interpretation is related to the positions of negative slip and speculative.
Hence, the structure of an additive determines how it approaches and how the subsequent reactions take place, either on the site of the functional head or on the site of the carbon, ending up in the reliability of the application with respect to pitting.
The reliability of drivetrain with respect to its expected life cycle is of key interest in the value chain of an installation. Each component contributes to this by the matter of load impacting the load capacity of the materials involved. As load capacity is well defined for the construction materials, e.g., gears and bearings, this definition becomes vague for lubricants. Even though a malfunction of a lubricant could cause damage features, like wear, friction, and tribocorrosion, the understanding of the real function and how to judge it by robust predictors is still missing. Lubricants may give malfunction even in the case of a proper application due to the interaction of functional additives with the mating surfaces. Plenty of contributions worldwide show that the “construction” of a lubricant by adding functional additives into a base oil may lead to premature failures given by the interaction of the functional additives with the given surface. Normally additives are readily dissolved in a base oil and as such transported to the points of interacting surfaces, there getting released in order to uptake a function like wear prevention or friction reduction. However, the energy offered by the contact due to sliding and contact pressure makes additives reactive, causing chemical reactions. The chemical reactions with different additives are seen by the use of specific test conditions, presented in the study as an FZG back-to-back gear test rig. The study brings out that a traditional anti-wear additive such as a zincdithiophosphate (C4ZndtP) reacts continuously at a given threshold with the surface, exchanging the near-surface material. The softening causes continuously material loss over time, ending up in pitting. In contrast, just by changing the chemical structure from a zincdithiophosphate to an ionic liquid like amine-neutralized dithiophosphate (C4NdtP); it is obvious that the application fulfills the complete life cycle without pitting. Compared to the zincdithiophosphate (C4ZndtP), it comes out that the amine-neutralized dithiophosphate (C4NdtP) hardens up at the area of negative slip at the pinion dedendum. Technical data are not to explain this elementary topic. Hence, it has to be seen in a deeper aspect. As additives are dissolved readily in the base oil, the tribological process makes them approach the surface. This brings up the question how the additive is released from the base oil toward the surface as the initial step. In the given example, a simple molecular model shows that in the case of the zincdithiophosphate, the additive approaches the surface with the reactive site given by the sulfur and phosphorus core, continuously leaching iron out of the surface with a subsequent weakening created by reaction layers with little binding to the core of the material. In the case of ammonium-neutralized dithiophosphate, the molecular model shows that this additive approaches the surface by the carbon site, while the sulfur-phosphorus site is remote. This additive gives a hardness increase during the tribological interaction, and as a speculation, the tribological energy may crack the molecule to carbon specie, subsequently hardening the surface up by carbides and preventing an excessive penetration of reaction products.
Additives are part of a drivetrain reliability. It comes clearly that within a construction, the tribological energy offered by the kinematics, the surrounding temperature and environment plus the material involved, has to be judged in terms of the structure of lubricants in the molecular level and how those structures compete with the offer of tribological energy.
Starting from a very basic and standard molecular model, it is essential to understand how additives dissolve in a base oil and how they get released and redissolved at a tribological contact area. Even though how additives act toward a surface might be a minor question, it turns out to be very essential and at least the limiting factor of an application reliability if the criticality of those processes are unknown and might pop up in a given application as premature failure.
C4ZndtP | isobutyl-zincdithiophosphate |
C4NdtP | isobutyl-dithiophosphoric acid reacted with an alkylamine |
FZG | gear test rig (DIN ISO 14635) |
FE8 | bearing test rig (DIN 51819) |
PAO | poly-α-olefine as a hydrogenated poly-dec-1-ene |
SNMS | secondary neutral mass spectrometry |
CRB | cylindrical roller bearing |
bcc | body-centered cubic |
MPa | megapascal (106 Pa) |
IntechOpen books and journals are available online by accessing all published content on a chapter/article level.
",metaTitle:"Access policy",metaDescription:"IntechOpen books are available online by accessing all published content on a chapter level",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"All IntechOpen published chapters and articles are available OPEN ACCESS and can be read without the requirement for registration of any kind, immediately upon publication, without any barrier.
\\n\\nThe HTML version, as well as the PDF version of publications dated before 2012 that are accessible through a reader, are available to readers with no restriction.
\\n\\nThe full content of chapters and articles can be read, copied and printed from the link location of the chapter/article and these actions are not limited or restricted in any way.
\\n\\nRegistration is requested only to download the PDF of the chapter/article. There are no subscription fees and there is no charge to user groups.
\\n\\nIntechOpen chapters and articles are distributed under CC BY 3.0 licences allowing users to “copy, use, distribute, transmit and display the work publicly and to make and distribute derivative works, in any digital medium for any responsible purpose, subject to proper attribution of authorship...” and there is no non-commercial restriction.
\\n\\nAuthors may post published works to any repository or website with no delay, and Authors and Editors of IntechOpen books have direct access to the PDF of the full book.
\\n\\nAll published content can be crawled for indexing. Full text and metadata may be accessed with instructions publicly posted.
\\n\\nAll IntechOpen books and Journal articles are indexed in CLOCKSS and preservation of access to published content is clearly indicated.
\\n\\nPolicy last updated: 2022-04-14
\\n"}]'},components:[{type:"htmlEditorComponent",content:"All IntechOpen published chapters and articles are available OPEN ACCESS and can be read without the requirement for registration of any kind, immediately upon publication, without any barrier.
\n\nThe HTML version, as well as the PDF version of publications dated before 2012 that are accessible through a reader, are available to readers with no restriction.
\n\nThe full content of chapters and articles can be read, copied and printed from the link location of the chapter/article and these actions are not limited or restricted in any way.
\n\nRegistration is requested only to download the PDF of the chapter/article. There are no subscription fees and there is no charge to user groups.
\n\nIntechOpen chapters and articles are distributed under CC BY 3.0 licences allowing users to “copy, use, distribute, transmit and display the work publicly and to make and distribute derivative works, in any digital medium for any responsible purpose, subject to proper attribution of authorship...” and there is no non-commercial restriction.
\n\nAuthors may post published works to any repository or website with no delay, and Authors and Editors of IntechOpen books have direct access to the PDF of the full book.
\n\nAll published content can be crawled for indexing. Full text and metadata may be accessed with instructions publicly posted.
\n\nAll IntechOpen books and Journal articles are indexed in CLOCKSS and preservation of access to published content is clearly indicated.
\n\nPolicy last updated: 2022-04-14
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13389},{group:"region",caption:"Middle and South America",value:2,count:11660},{group:"region",caption:"Africa",value:3,count:4168},{group:"region",caption:"Asia",value:4,count:22334},{group:"region",caption:"Australia and Oceania",value:5,count:2019},{group:"region",caption:"Europe",value:6,count:33642}],offset:12,limit:12,total:135275},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"16,19,25"},books:[{type:"book",id:"11027",title:"Basics of Hypoglycemia",subtitle:null,isOpenForSubmission:!0,hash:"98ebc1e36d02be82c204b8fd5d24f97a",slug:null,bookSignature:"Dr. Alok Raghav",coverURL:"https://cdn.intechopen.com/books/images_new/11027.jpg",editedByType:null,editors:[{id:"334465",title:"Dr.",name:"Alok",surname:"Raghav",slug:"alok-raghav",fullName:"Alok Raghav"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11814",title:"Liposomes - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"62d8542d18b8cddcf507f7948b2ae74b",slug:null,bookSignature:"Dr. Rajeev K. Tyagi",coverURL:"https://cdn.intechopen.com/books/images_new/11814.jpg",editedByType:null,editors:[{id:"269120",title:"Dr.",name:"Rajeev",surname:"Tyagi",slug:"rajeev-tyagi",fullName:"Rajeev Tyagi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11709",title:"Type 1 Diabetes Mellitus",subtitle:null,isOpenForSubmission:!0,hash:"cc0e61f864a2a8a9595f4975ce301f70",slug:null,bookSignature:"Dr. Shilpa Mehta and Dr. Resmy Palliyil Gopi",coverURL:"https://cdn.intechopen.com/books/images_new/11709.jpg",editedByType:null,editors:[{id:"342545",title:"Dr.",name:"Shilpa",surname:"Mehta",slug:"shilpa-mehta",fullName:"Shilpa Mehta"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11889",title:"Sexual Disorders and Dysfunctions",subtitle:null,isOpenForSubmission:!0,hash:"b988fda30a4e2364ee9d47e417bd0ba9",slug:null,bookSignature:"Dr. Dhastagir Sultan Sheriff",coverURL:"https://cdn.intechopen.com/books/images_new/11889.jpg",editedByType:null,editors:[{id:"167875",title:"Dr.",name:"Dhastagir Sultan",surname:"Sheriff",slug:"dhastagir-sultan-sheriff",fullName:"Dhastagir Sultan Sheriff"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11867",title:"Echocardiography",subtitle:null,isOpenForSubmission:!0,hash:"d9159ce31733bf78cc2a79b18c225994",slug:null,bookSignature:"Dr. Gabriel Cismaru",coverURL:"https://cdn.intechopen.com/books/images_new/11867.jpg",editedByType:null,editors:[{id:"191888",title:"Dr.",name:"Gabriel",surname:"Cismaru",slug:"gabriel-cismaru",fullName:"Gabriel Cismaru"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11698",title:"Pigmentation Disorders",subtitle:null,isOpenForSubmission:!0,hash:"2ac6c9f424eec37ed85232c2c97ef6f6",slug:null,bookSignature:"Associate Prof. Shahin Aghaei",coverURL:"https://cdn.intechopen.com/books/images_new/11698.jpg",editedByType:null,editors:[{id:"64024",title:"Associate Prof.",name:"Shahin",surname:"Aghaei",slug:"shahin-aghaei",fullName:"Shahin Aghaei"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11701",title:"Magnetic Resonance Spectroscopy",subtitle:null,isOpenForSubmission:!0,hash:"ba8e8f4710bed414568846f8162a4942",slug:null,bookSignature:"Prof. Ahmet Mesrur Halefoğlu",coverURL:"https://cdn.intechopen.com/books/images_new/11701.jpg",editedByType:null,editors:[{id:"51736",title:"Prof.",name:"Ahmet Mesrur",surname:"Halefoğlu",slug:"ahmet-mesrur-halefoglu",fullName:"Ahmet Mesrur Halefoğlu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11599",title:"Leukemia - From Biology to Diagnosis and Treatment",subtitle:null,isOpenForSubmission:!0,hash:"30b431385424f0b84aee499d839f46cc",slug:null,bookSignature:"Prof. Margarita Guenova and Prof. Gueorgui Balatzenko",coverURL:"https://cdn.intechopen.com/books/images_new/11599.jpg",editedByType:null,editors:[{id:"52938",title:"Prof.",name:"Margarita",surname:"Guenova",slug:"margarita-guenova",fullName:"Margarita Guenova"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11651",title:"Bone Tumors - Recent Updates",subtitle:null,isOpenForSubmission:!0,hash:"cf7dd688b160a1ba07e3179613684f16",slug:null,bookSignature:"Dr. Hiran Wimal Amarasekera",coverURL:"https://cdn.intechopen.com/books/images_new/11651.jpg",editedByType:null,editors:[{id:"67634",title:"Dr.",name:"Hiran",surname:"Amarasekera",slug:"hiran-amarasekera",fullName:"Hiran Amarasekera"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11717",title:"Gastroesophageal Reflux Disease - A Growing Concern",subtitle:null,isOpenForSubmission:!0,hash:"0396d89369495b63682157e938f788fa",slug:null,bookSignature:"Dr. Jianyuan Chai",coverURL:"https://cdn.intechopen.com/books/images_new/11717.jpg",editedByType:null,editors:[{id:"28281",title:"Dr.",name:"Jianyuan",surname:"Chai",slug:"jianyuan-chai",fullName:"Jianyuan Chai"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11874",title:"Craniofacial Surgery - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"91dd1465d7b60e227877563c5f978c16",slug:null,bookSignature:"Dr. Belma Işik Aslan and Prof. Ayşe Gülşen",coverURL:"https://cdn.intechopen.com/books/images_new/11874.jpg",editedByType:null,editors:[{id:"42847",title:"Dr.",name:"Belma",surname:"Işik Aslan",slug:"belma-isik-aslan",fullName:"Belma Işik Aslan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12107",title:"Contemporary Topics in Patient Safety - Volume 2",subtitle:null,isOpenForSubmission:!0,hash:"3fe674b93710773f0db746ca96d6e048",slug:null,bookSignature:"Dr. Philip Salen and Dr. Stanislaw P. Stawicki",coverURL:"https://cdn.intechopen.com/books/images_new/12107.jpg",editedByType:null,editors:[{id:"217603",title:"Dr.",name:"Philip",surname:"Salen",slug:"philip-salen",fullName:"Philip Salen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:27},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:7},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:16},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:8},{group:"topic",caption:"Engineering",value:11,count:42},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:8},{group:"topic",caption:"Materials Science",value:14,count:17},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:68},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:3},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:6},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:7},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:77},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3737",title:"MATLAB",subtitle:"Modelling, Programming and Simulations",isOpenForSubmission:!1,hash:null,slug:"matlab-modelling-programming-and-simulations",bookSignature:"Emilson Pereira Leite",coverURL:"https://cdn.intechopen.com/books/images_new/3737.jpg",editors:[{id:"12051",title:"Prof.",name:"Emilson",middleName:null,surname:"Pereira Leite",slug:"emilson-pereira-leite",fullName:"Emilson Pereira Leite"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"1770",title:"Gel Electrophoresis",subtitle:"Principles and Basics",isOpenForSubmission:!1,hash:"279701f6c802cf02deef45103e0611ff",slug:"gel-electrophoresis-principles-and-basics",bookSignature:"Sameh Magdeldin",coverURL:"https://cdn.intechopen.com/books/images_new/1770.jpg",editors:[{id:"123648",title:"Dr.",name:"Sameh",middleName:null,surname:"Magdeldin",slug:"sameh-magdeldin",fullName:"Sameh Magdeldin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4798},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7175,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1981,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2308,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1473,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318571,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271836,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",publishedDate:"July 1st 2013",numberOfDownloads:243450,editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1582,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2082,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",publishedDate:"October 17th 2012",numberOfDownloads:256294,editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11328",title:"Botulinum Toxin",subtitle:"Recent Topics and Applications",isOpenForSubmission:!1,hash:"7dd05a316001cef143e209eda51387a7",slug:"botulinum-toxin-recent-topics-and-applications",bookSignature:"Suna Sabuncuoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11328.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"270856",title:"Associate Prof.",name:"Suna",middleName:null,surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11085",title:"Polycystic Ovary Syndrome",subtitle:"Functional Investigation and Clinical Application",isOpenForSubmission:!1,hash:"3066dd3ff29e1fac072fd60b08d4d3e7",slug:"polycystic-ovary-syndrome-functional-investigation-and-clinical-application",bookSignature:"Zhengchao Wang",coverURL:"https://cdn.intechopen.com/books/images_new/11085.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"204883",title:"Dr.",name:"Zhengchao",middleName:null,surname:"Wang",slug:"zhengchao-wang",fullName:"Zhengchao Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10833",title:"Tumor Angiogenesis and Modulators",subtitle:null,isOpenForSubmission:!1,hash:"f29b575c46128b2da061ef7f9bd1070b",slug:"tumor-angiogenesis-and-modulators",bookSignature:"Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/10833.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"59529",title:"Dr.",name:"Ke",middleName:null,surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11356",title:"Molecular Cloning",subtitle:null,isOpenForSubmission:!1,hash:"671c629dd86e97f0fb467b9e70e92296",slug:"molecular-cloning",bookSignature:"Sadık Dincer, Hatice Aysun Mercimek Takcı and Melis Sumengen Ozdenef",coverURL:"https://cdn.intechopen.com/books/images_new/11356.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"188141",title:"Prof.",name:"Sadik",middleName:null,surname:"Dincer",slug:"sadik-dincer",fullName:"Sadik Dincer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Advanced Topics of Topology",subtitle:null,isOpenForSubmission:!1,hash:"bf964c52f9e653fac20a7fcab58070e5",slug:"advanced-topics-of-topology",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"92918",title:"Dr.",name:"Francisco",middleName:null,surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11195",title:"Recent Advances in Biometrics",subtitle:null,isOpenForSubmission:!1,hash:"2d32e33e0f499cb5241734bb75dd2a83",slug:"recent-advances-in-biometrics",bookSignature:"Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/11195.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"227",title:"Nuclear Physics",slug:"nuclear-physics",parent:{id:"20",title:"Physics",slug:"physics"},numberOfBooks:8,numberOfSeries:0,numberOfAuthorsAndEditors:140,numberOfWosCitations:171,numberOfCrossrefCitations:115,numberOfDimensionsCitations:259,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"227",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10074",title:"Recent Techniques and Applications in Ionizing Radiation Research",subtitle:null,isOpenForSubmission:!1,hash:"129deeec2186f6392f154ed41f64477a",slug:"recent-techniques-and-applications-in-ionizing-radiation-research",bookSignature:"Ahmed M. Maghraby and Basim Almayyahi",coverURL:"https://cdn.intechopen.com/books/images_new/10074.jpg",editedByType:"Edited by",editors:[{id:"102209",title:"Dr.",name:"Ahmed M.",middleName:null,surname:"Maghraby",slug:"ahmed-m.-maghraby",fullName:"Ahmed M. Maghraby"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8437",title:"Fusion Energy",subtitle:null,isOpenForSubmission:!1,hash:"ae4950c5b74da69a166ed0405f3f5ade",slug:"fusion-energy",bookSignature:"Aamir Shahzad",coverURL:"https://cdn.intechopen.com/books/images_new/8437.jpg",editedByType:"Edited by",editors:[{id:"288354",title:"Dr.",name:"Aamir",middleName:null,surname:"Shahzad",slug:"aamir-shahzad",fullName:"Aamir Shahzad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6607",title:"Ion Beam Applications",subtitle:null,isOpenForSubmission:!1,hash:"53c2938c2e40ea953ca3cb4a686d348c",slug:"ion-beam-applications",bookSignature:"Ishaq Ahmad and Malik Maaza",coverURL:"https://cdn.intechopen.com/books/images_new/6607.jpg",editedByType:"Edited by",editors:[{id:"204045",title:"Dr.",name:"Ishaq",middleName:null,surname:"Ahmad",slug:"ishaq-ahmad",fullName:"Ishaq Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6149",title:"Ionizing Radiation Effects and Applications",subtitle:null,isOpenForSubmission:!1,hash:"9d3bc531cb8e2ffbe4a436ab42b70653",slug:"ionizing-radiation-effects-and-applications",bookSignature:"Boualem Djezzar",coverURL:"https://cdn.intechopen.com/books/images_new/6149.jpg",editedByType:"Edited by",editors:[{id:"18189",title:"Prof.",name:"Boualem",middleName:null,surname:"Djezzar",slug:"boualem-djezzar",fullName:"Boualem Djezzar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5451",title:"New Insights on Gamma Rays",subtitle:null,isOpenForSubmission:!1,hash:"0fe8c3174bbb6d68493d39220cdec7ca",slug:"new-insights-on-gamma-rays",bookSignature:"Ahmed M. Maghraby",coverURL:"https://cdn.intechopen.com/books/images_new/5451.jpg",editedByType:"Edited by",editors:[{id:"102209",title:"Dr.",name:"Ahmed M.",middleName:null,surname:"Maghraby",slug:"ahmed-m.-maghraby",fullName:"Ahmed M. Maghraby"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5094",title:"Neutron Scattering",subtitle:null,isOpenForSubmission:!1,hash:"8c7f3fac75e54e8345b01ca5cb1a4e68",slug:"neutron-scattering",bookSignature:"Waldemar Alfredo Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/5094.jpg",editedByType:"Edited by",editors:[{id:"118821",title:"Dr.",name:"Waldemar Alfredo",middleName:null,surname:"Monteiro",slug:"waldemar-alfredo-monteiro",fullName:"Waldemar Alfredo Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1616",title:"Particle Physics",subtitle:null,isOpenForSubmission:!1,hash:"29e08be0c8877548d8d9daa55a06fe3b",slug:"particle-physics",bookSignature:"Eugene Kennedy",coverURL:"https://cdn.intechopen.com/books/images_new/1616.jpg",editedByType:"Edited by",editors:[{id:"101837",title:"Dr.",name:"Eugene",middleName:null,surname:"Kennedy",slug:"eugene-kennedy",fullName:"Eugene Kennedy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1590",title:"Gamma Radiation",subtitle:null,isOpenForSubmission:!1,hash:"30f1336f3c9399366ea01d1f1a33f920",slug:"gamma-radiation",bookSignature:"Feriz Adrovic",coverURL:"https://cdn.intechopen.com/books/images_new/1590.jpg",editedByType:"Edited by",editors:[{id:"106756",title:"Prof.",name:"Feriz",middleName:null,surname:"Adrovic",slug:"feriz-adrovic",fullName:"Feriz Adrovic"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:8,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"32842",doi:"10.5772/34901",title:"Sterilization by Gamma Irradiation",slug:"sterilization-by-gamma-irradiation",totalDownloads:74823,totalCrossrefCites:37,totalDimensionsCites:85,abstract:null,book:{id:"1590",slug:"gamma-radiation",title:"Gamma Radiation",fullTitle:"Gamma Radiation"},signatures:"Kátia Aparecida da Silva Aquino",authors:[{id:"102109",title:"Dr.",name:"Katia",middleName:"Aparecida Da S.",surname:"Aquino",slug:"katia-aquino",fullName:"Katia Aquino"}]},{id:"58998",doi:"10.5772/intechopen.73234",title:"Ionizing Radiation-Induced Polymerization",slug:"ionizing-radiation-induced-polymerization",totalDownloads:1822,totalCrossrefCites:8,totalDimensionsCites:17,abstract:"Ionizing radiation can induce some kinds of reactions, other than polymerization, such as dimerization, oligomerization, curing, and grafting. These reactions occur through a regular radical chain causing growth of polymer by three steps, namely, initiation, propagation, and termination. To understand ionizing radiation-induced polymerization, the water radiolysis must be taken into consideration. This chapter explores the mechanism of water molecules radiolysis paying especial attention to the basic regularities of solvent radicals’ interaction with the polymer molecules for forming the crosslinked polymer. Water radiolysis is the main engine of the polymerization processes, especially the “free-radical polymerization.” The mechanisms of the free-radical polymerization and crosslinking will be discussed in detail later. Since different polymers respond differently to radiation, it is useful to quantify the response, namely in terms of crosslinking and chain scission. A parameter called the G-value is frequently used for this purpose. It represents the chemical yield of crosslinks, scissions and double bonds, etc. For the crosslinked polymer, the crosslinking density increases with increasing the radiation dose, this is reflected by the swelling degree of the polymer while being immersed in a compatible solvent. If crosslinking predominates, the crosslinking density increases and the extent of swelling decreases. If chain scission predominates, the opposite occurs. A further detailed discussion of these aspects is presented throughout this chapter.",book:{id:"6149",slug:"ionizing-radiation-effects-and-applications",title:"Ionizing Radiation Effects and Applications",fullTitle:"Ionizing Radiation Effects and Applications"},signatures:"Mohamed Mohamady Ghobashy",authors:[{id:"212371",title:"Dr.",name:"Mohamed",middleName:null,surname:"Mohamady Ghobashy",slug:"mohamed-mohamady-ghobashy",fullName:"Mohamed Mohamady Ghobashy"}]},{id:"53504",doi:"10.5772/66925",title:"Applications of Ionizing Radiation in Mutation Breeding",slug:"applications-of-ionizing-radiation-in-mutation-breeding",totalDownloads:3509,totalCrossrefCites:9,totalDimensionsCites:13,abstract:"As a predicted result of increasing population worldwide, improvements in the breeding strategies in agriculture are valued as mandatory. The natural resources are limited, and due to the natural disasters like sudden and severe abiotic stress factors, excessive floods, etc., the production capacities are changed per year. In contrast, the yield potential should be significantly increased to cope with this problem. Despite rich genetic diversity, manipulation of the cultivars through alternative techniques such as mutation breeding becomes important. Radiation is proven as an effective method as a unique method to increase the genetic variability of the species. Gamma radiation is the most preferred physical mutagen by plant breeders. Several mutant varieties have been successfully introduced into commercial production by this method. Combinational use of in vitro tissue culture and mutation breeding methods makes a significant contribution to improve new crops. Large populations and the target mutations can be easily screened and identified by new methods. Marker assisted selection and advanced techniques such as microarray, next generation sequencing methods to detect a specific mutant in a large population will help to the plant breeders to use ionizing radiation efficiently in breeding programs.",book:{id:"5451",slug:"new-insights-on-gamma-rays",title:"New Insights on Gamma Rays",fullTitle:"New Insights on Gamma Rays"},signatures:"Özge Çelik and Çimen Atak",authors:[{id:"147362",title:"Dr.",name:"Özge",middleName:null,surname:"Çelik",slug:"ozge-celik",fullName:"Özge Çelik"},{id:"147364",title:"Prof.",name:"Çimen",middleName:null,surname:"Atak",slug:"cimen-atak",fullName:"Çimen Atak"}]},{id:"32846",doi:"10.5772/36950",title:"Current Importance and Potential Use of Low Doses of Gamma Radiation in Forest Species",slug:"current-importance-and-potential-use-of-low-doses-of-gamma-radiation-in-forest-species",totalDownloads:5301,totalCrossrefCites:2,totalDimensionsCites:13,abstract:null,book:{id:"1590",slug:"gamma-radiation",title:"Gamma Radiation",fullTitle:"Gamma Radiation"},signatures:"L. G. Iglesias-Andreu, P. Octavio-Aguilar and J. Bello-Bello",authors:[{id:"110581",title:"Dr.",name:"Lourdes",middleName:null,surname:"Iglesias-Andreu",slug:"lourdes-iglesias-andreu",fullName:"Lourdes Iglesias-Andreu"}]},{id:"58410",doi:"10.5772/intechopen.72074",title:"Radiation-Induced Degradation of Organic Compounds and Radiation Technologies for Purification of Aqueous Systems",slug:"radiation-induced-degradation-of-organic-compounds-and-radiation-technologies-for-purification-of-aq",totalDownloads:1437,totalCrossrefCites:8,totalDimensionsCites:13,abstract:"Environmental application of radiation technologies is an important part of radiation processing. Radiation treatment of aqueous systems contaminated with organic compounds is a promising method of water and wastewater purification and corresponding technologies are being developed. In this chapter, the following aspects of radiation treatment process are considered: sources of contamination and major contaminants of water and wastewater; primary processes in aqueous systems initiated by ionizing radiation; principal ways of contaminant conversion as consequences of primary processes (complete mineralization of organic compounds, partial decomposition of organic molecules resulted in detoxification, decolorization, disinfection of polluted water, and improvement in biological degradation of contaminant, polymerization of monomers’ contaminants, oxidation-reduction processes, and coagulation of colloids); sources of ionizing radiation; and main equipment applied in radiation technologies of aqueous system purification.",book:{id:"6149",slug:"ionizing-radiation-effects-and-applications",title:"Ionizing Radiation Effects and Applications",fullTitle:"Ionizing Radiation Effects and Applications"},signatures:"Igor E. Makarov and Alexander V. Ponomarev",authors:[{id:"213652",title:"Dr.",name:"Igor",middleName:null,surname:"Makarov",slug:"igor-makarov",fullName:"Igor Makarov"},{id:"213657",title:"Dr.",name:"Alexander",middleName:null,surname:"Ponomarev",slug:"alexander-ponomarev",fullName:"Alexander Ponomarev"}]}],mostDownloadedChaptersLast30Days:[{id:"32842",title:"Sterilization by Gamma Irradiation",slug:"sterilization-by-gamma-irradiation",totalDownloads:74818,totalCrossrefCites:37,totalDimensionsCites:85,abstract:null,book:{id:"1590",slug:"gamma-radiation",title:"Gamma Radiation",fullTitle:"Gamma Radiation"},signatures:"Kátia Aparecida da Silva Aquino",authors:[{id:"102109",title:"Dr.",name:"Katia",middleName:"Aparecida Da S.",surname:"Aquino",slug:"katia-aquino",fullName:"Katia Aquino"}]},{id:"32837",title:"Environmental Gamma-Ray Observation in Deep Sea",slug:"environmental-gamma-ray-observation-in-deep-sea-",totalDownloads:2931,totalCrossrefCites:4,totalDimensionsCites:6,abstract:null,book:{id:"1590",slug:"gamma-radiation",title:"Gamma Radiation",fullTitle:"Gamma Radiation"},signatures:"Hidenori Kumagai, Ryoichi Iwase, Masataka Kinoshita, Hideaki Machiyama, Mutsuo Hattori and Masaharu Okano",authors:[{id:"108174",title:"Dr.",name:"Hidenori",middleName:null,surname:"Kumagai",slug:"hidenori-kumagai",fullName:"Hidenori Kumagai"},{id:"108237",title:"Dr.",name:"Masa",middleName:null,surname:"Kinoshita",slug:"masa-kinoshita",fullName:"Masa Kinoshita"},{id:"137650",title:"Dr.",name:"Ryoichi",middleName:null,surname:"Iwase",slug:"ryoichi-iwase",fullName:"Ryoichi Iwase"},{id:"137656",title:"Dr.",name:"Hideaki",middleName:null,surname:"Machiyama",slug:"hideaki-machiyama",fullName:"Hideaki Machiyama"},{id:"146918",title:"Dr.",name:"Mutsuo",middleName:null,surname:"Hattori",slug:"mutsuo-hattori",fullName:"Mutsuo Hattori"},{id:"146919",title:"Dr.",name:"Masaharu",middleName:null,surname:"Okano",slug:"masaharu-okano",fullName:"Masaharu Okano"}]},{id:"58998",title:"Ionizing Radiation-Induced Polymerization",slug:"ionizing-radiation-induced-polymerization",totalDownloads:1820,totalCrossrefCites:8,totalDimensionsCites:17,abstract:"Ionizing radiation can induce some kinds of reactions, other than polymerization, such as dimerization, oligomerization, curing, and grafting. These reactions occur through a regular radical chain causing growth of polymer by three steps, namely, initiation, propagation, and termination. To understand ionizing radiation-induced polymerization, the water radiolysis must be taken into consideration. This chapter explores the mechanism of water molecules radiolysis paying especial attention to the basic regularities of solvent radicals’ interaction with the polymer molecules for forming the crosslinked polymer. Water radiolysis is the main engine of the polymerization processes, especially the “free-radical polymerization.” The mechanisms of the free-radical polymerization and crosslinking will be discussed in detail later. Since different polymers respond differently to radiation, it is useful to quantify the response, namely in terms of crosslinking and chain scission. A parameter called the G-value is frequently used for this purpose. It represents the chemical yield of crosslinks, scissions and double bonds, etc. For the crosslinked polymer, the crosslinking density increases with increasing the radiation dose, this is reflected by the swelling degree of the polymer while being immersed in a compatible solvent. If crosslinking predominates, the crosslinking density increases and the extent of swelling decreases. If chain scission predominates, the opposite occurs. A further detailed discussion of these aspects is presented throughout this chapter.",book:{id:"6149",slug:"ionizing-radiation-effects-and-applications",title:"Ionizing Radiation Effects and Applications",fullTitle:"Ionizing Radiation Effects and Applications"},signatures:"Mohamed Mohamady Ghobashy",authors:[{id:"212371",title:"Dr.",name:"Mohamed",middleName:null,surname:"Mohamady Ghobashy",slug:"mohamed-mohamady-ghobashy",fullName:"Mohamed Mohamady Ghobashy"}]},{id:"53780",title:"Gamma-Ray Spectrometry and the Investigation of Environmental and Food Samples",slug:"gamma-ray-spectrometry-and-the-investigation-of-environmental-and-food-samples",totalDownloads:2529,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"Gamma radiation consists of high‐energy photons and penetrates matter. This is an advantage for the detection of gamma rays, as gamma spectrometry does not need the elimination of the matrix. The disadvantage is the need of shielding to protect against this radiation. Gamma rays are everywhere: in the atmosphere; gamma nuclides are produced by radiation of the sun; in the Earth, the primordial radioactive nuclides thorium and uranium are sources for gamma and other radiation. The technical enrichment and use of radioisotopes led to the unscrupulously use of radioactive material and to the Cold War, with over 900 bomb tests from 1945 to 1990, combined with global fallout over the northern hemisphere. The friendly use of radiation in medicine and for the production of energy at nuclear power plants (NPPs) has caused further expositions with ionising radiation. This chapter describes in a practical manner the instrumentation for the detection of gamma radiation and some results of the use of these techniques in environmental and food investigations.",book:{id:"5451",slug:"new-insights-on-gamma-rays",title:"New Insights on Gamma Rays",fullTitle:"New Insights on Gamma Rays"},signatures:"Markus R. Zehringer",authors:[{id:"311750",title:"Dr.",name:"Markus R.",middleName:null,surname:"Zehringer",slug:"markus-r.-zehringer",fullName:"Markus R. Zehringer"}]},{id:"54118",title:"Gamma Rays from Space",slug:"gamma-rays-from-space",totalDownloads:2089,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"An overview of gamma rays from space is presented. We highlight the most powerful astrophysical explosions, known as gamma-ray bursts. The main features observed in detectors onboard satellites are indicated. In addition, we also highlight a chronological description of the efforts made to observe their high energy counterpart at ground level. Some candidates of the GeV counterpart of gamma-ray bursts, observed by Tupi telescopes, are also presented.",book:{id:"5451",slug:"new-insights-on-gamma-rays",title:"New Insights on Gamma Rays",fullTitle:"New Insights on Gamma Rays"},signatures:"Carlos Navia and Marcel Nogueira de Oliveira",authors:[{id:"189908",title:"Dr.",name:"Carlos",middleName:null,surname:"Navia",slug:"carlos-navia",fullName:"Carlos Navia"},{id:"243084",title:"MSc.",name:"Marcel",middleName:null,surname:"De Oliveira",slug:"marcel-de-oliveira",fullName:"Marcel De Oliveira"}]}],onlineFirstChaptersFilter:{topicId:"227",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"82739",title:"Experimental Breeder Reactor II",slug:"experimental-breeder-reactor-ii",totalDownloads:12,totalDimensionsCites:0,doi:"10.5772/intechopen.105800",abstract:"The Experimental Breeder Reactor II (EBR-II) operated from 1964 to 1994. EBR-II was a sodium-cooled fast reactor operating at 69 MWth producing 19 MWe. Rather than using a loop approach for the coolant, EBR-II used a pool arrangement where the reactor core, primary coolant piping, and primary reactor coolant pumps were contained within the pool of sodium. Also contained within the pool was a heat exchanger where primary coolant, which is radioactive, transferred heat to secondary, nonradioactive, sodium. The nuclear power plant included a sodium boiler building where heat from the secondary sodium generated superheated steam, which was delivered to a turbine/generator for electricity production. EBR-II fuel was metallic uranium alloyed with various metals providing significant performance and safety enhancements over oxide fuel. The most significant EBR-II experiments occurred in April 1986. Relying on inherent physical properties of the reactor, two experiments were performed subjecting the reactor to loss of primary coolant flow without reactor SCRAM and loss of the secondary system heat removal without reactor SCRAM. In both experiments, the reactor experienced no damage. This chapter provides a description of the most important design features of EBR-II along with a summary of the landmark reactor safety experiments.",book:{id:"10982",title:"Nuclear Reactors - Spacecraft Propulsion, Research Reactors, and Reactor Analysis Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10982.jpg"},signatures:"Chad L. Pope, Ryan Stewart and Edward Lum"},{id:"82712",title:"Idaho State University AGN-201 Low Power Teaching Reactor: An Overlooked Gem",slug:"idaho-state-university-agn-201-low-power-teaching-reactor-an-overlooked-gem",totalDownloads:10,totalDimensionsCites:0,doi:"10.5772/intechopen.105799",abstract:"A category of reactors called university research and teaching reactors, includes relatively high-power pool-type and low-power solid-core reactors. Many high-power university reactors are largely used for irradiations and isotope production. Their almost constant operation tends to impede student access. A university reactor can be particularly relevant to the university’s mission of preparing well-rounded students who have theoretical knowledge, reinforced by focused laboratory reactor experience. The solid-core Idaho State University Aerojet General Nucleonics (AGN) model 201 reactor operates at such a low power (5 W maximum) that it is not useful for isotope production activities. However, the AGN-201 reactor is well suited for teaching and research activities. The solid-core AGN-201 reactor requires no active cooling system, uses a simple shielding arrangement, and the very low operating power results in trivial burnup providing an operating lifetime exceeding many decades. It is thus worthwhile to examine the Idaho State University AGN-201 nuclear reactor more closely because it offers a wide range of research and teaching capabilities while being widely available to students.",book:{id:"10982",title:"Nuclear Reactors - Spacecraft Propulsion, Research Reactors, and Reactor Analysis Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10982.jpg"},signatures:"Chad L. Pope and William Phoenix"},{id:"81424",title:"Core Reload Analysis Techniques in the Advanced Test Reactor",slug:"core-reload-analysis-techniques-in-the-advanced-test-reactor",totalDownloads:13,totalDimensionsCites:0,doi:"10.5772/intechopen.103896",abstract:"Since becoming a national user facility in 2007, the type of irradiation campaigns the Advanced Test Reactor (ATR) supports has become much more diverse and complex. In prior years, test complexity was limited by the computational ability to analyze the tests’ influence on the fuel. Large volume tests are irradiated in flux traps which are designed to receive excess neutrons from the surrounding fuel elements. Typically, fuel elements drive the test conditions, not vice versa. The computational tool, PDQ, was used for core physics analysis for decades. The PDQ code was adequate so long as the diffusion approximation between test and fuel element remained valid. This paradigm changed with the introduction of the Ki-Jang Research Reactor—Fuel Assembly Irradiation (KJRR-FAI) in 2015. The KJRR-FAI was a prototypic fuel element for the KJRR research reactor project in the Republic of Korea. The KJRR-FAI irradiation presented multiple modeling and simulation challenges for which PDQ was ill suited. To demonstrate that the KJRR-FAI could be irradiated and meet safety requirements, the modern neutron transport codes, HELIOS and MCNP, were extensively verified and validated to replace PDQ. The hybrid 3D/2D methodology devised with these codes made analysis of the ATR with KJRR-FAI possible. The KJRR-FAI was irradiated in 2015-2016.",book:{id:"10982",title:"Nuclear Reactors - Spacecraft Propulsion, Research Reactors, and Reactor Analysis Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10982.jpg"},signatures:"Samuel E. Bays and Joseph W. Nielsen"},{id:"81555",title:"Nuclear Thermal Propulsion",slug:"nuclear-thermal-propulsion",totalDownloads:113,totalDimensionsCites:0,doi:"10.5772/intechopen.103895",abstract:"This chapter will cover the fundamentals of nuclear thermal propulsion systems, covering basic principles of operation and why nuclear is a superior option to chemical rockets for interplanetary travel. It will begin with a historical overview from early efforts in the early 1950s up to current interests, with respect to fuel types, core materials, and ongoing testing efforts. An overview will be provided of reactor types and design elements for reactor concepts or testing systems for nuclear thermal propulsion, followed by a discussion of nuclear thermal design concepts. A section on system design and modeling will be presented to discuss modeling and simulation of driving phenomena: neutronics, materials performance, heat transfer, and structural mechanics, solved in a tightly coupled multiphysics system. Finally, it will show the results of a coupled physics model for a conceptual design with simulation of rapid startup transients needed to maximize hydrogen efficiency.",book:{id:"10982",title:"Nuclear Reactors - Spacecraft Propulsion, Research Reactors, and Reactor Analysis Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10982.jpg"},signatures:"Mark D. DeHart, Sebastian Schunert and Vincent M. Labouré"},{id:"81013",title:"Cyber-Informed Engineering for Nuclear Reactor Digital Instrumentation and Control",slug:"cyber-informed-engineering-for-nuclear-reactor-digital-instrumentation-and-control",totalDownloads:32,totalDimensionsCites:0,doi:"10.5772/intechopen.101807",abstract:"As nuclear reactors transition from analog to digital technology, the benefits of enhanced operational capabilities and improved efficiencies are potentially offset by cyber risks. Cyber-Informed Engineering (CIE) is an approach that can be used by engineers and staff to characterize and reduce new cyber risks in digital instrumentation and control systems. CIE provides guidance that can be applied throughout the entire systems engineering lifecycle, from conceptual design to decommissioning. In addition to outlining the use of CIE in nuclear reactor applications, this chapter provides a brief primer on nuclear reactor instrumentation and control and the associated cyber risks in existing light water reactors as well as the digital technology that will likely be used in future reactor designs and applications.",book:{id:"10982",title:"Nuclear Reactors - Spacecraft Propulsion, Research Reactors, and Reactor Analysis Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10982.jpg"},signatures:"Shannon Eggers and Robert Anderson"},{id:"79671",title:"Fault Detection by Signal Reconstruction in Nuclear Power Plants",slug:"fault-detection-by-signal-reconstruction-in-nuclear-power-plants",totalDownloads:105,totalDimensionsCites:0,doi:"10.5772/intechopen.101276",abstract:"In this work, the recently developed auto associative bilateral kernel regression (AABKR) method for on-line condition monitoring of systems, structures, and components (SSCs) during transient process operation of a nuclear power plant (NPP) is improved. The advancement enhances the capability of reconstructing abnormal signals to the values expected in normal conditions during both transient and steady-state process operations. The modification introduced to the method is based on the adoption of two new approaches using dynamic time warping (DTW) for the identification of the time position index (the position of the nearest vector within the historical data vectors to the current on-line query measurement) used by the weighted-distance algorithm that captures temporal dependences in the data. Applications are provided to a steady-state numerical process and a case study concerning sensor signals collected from a reactor coolant system (RCS) during start-up operation of a NPP. The results demonstrate the effectiveness of the proposed method for fault detection during steady-state and transient operations.",book:{id:"10982",title:"Nuclear Reactors - Spacecraft Propulsion, Research Reactors, and Reactor Analysis Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10982.jpg"},signatures:"Ibrahim Ahmed, Enrico Zio and Gyunyoung Heo"}],onlineFirstChaptersTotal:8},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:139,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:123,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:21,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"August 2nd, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:33,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"7",title:"Bioinformatics and Medical Informatics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",isOpenForSubmission:!0,editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",slug:"slawomir-wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",biography:"Professor Sławomir Wilczyński, Head of the Chair of Department of Basic Biomedical Sciences, Faculty of Pharmaceutical Sciences, Medical University of Silesia in Katowice, Poland. His research interests are focused on modern imaging methods used in medicine and pharmacy, including in particular hyperspectral imaging, dynamic thermovision analysis, high-resolution ultrasound, as well as other techniques such as EPR, NMR and hemispheric directional reflectance. Author of over 100 scientific works, patents and industrial designs. Expert of the Polish National Center for Research and Development, Member of the Investment Committee in the Bridge Alfa NCBiR program, expert of the Polish Ministry of Funds and Regional Policy, Polish Medical Research Agency. Editor-in-chief of the journal in the field of aesthetic medicine and dermatology - Aesthetica.",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},{id:"8",title:"Bioinspired Technology and Biomechanics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",isOpenForSubmission:!0,editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",slug:"adriano-andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",biography:"Dr. Adriano de Oliveira Andrade graduated in Electrical Engineering at the Federal University of Goiás (Brazil) in 1997. He received his MSc and PhD in Biomedical Engineering respectively from the Federal University of Uberlândia (UFU, Brazil) in 2000 and from the University of Reading (UK) in 2005. He completed a one-year Post-Doctoral Fellowship awarded by the DFAIT (Foreign Affairs and International Trade Canada) at the Institute of Biomedical Engineering of the University of New Brunswick (Canada) in 2010. Currently, he is Professor in the Faculty of Electrical Engineering (UFU). He has authored and co-authored more than 200 peer-reviewed publications in Biomedical Engineering. He has been a researcher of The National Council for Scientific and Technological Development (CNPq-Brazil) since 2009. He has served as an ad-hoc consultant for CNPq, CAPES (Coordination for the Improvement of Higher Education Personnel), FINEP (Brazilian Innovation Agency), and other funding bodies on several occasions. He was the Secretary of the Brazilian Society of Biomedical Engineering (SBEB) from 2015 to 2016, President of SBEB (2017-2018) and Vice-President of SBEB (2019-2020). He was the head of the undergraduate program in Biomedical Engineering of the Federal University of Uberlândia (2015 - June/2019) and the head of the Centre for Innovation and Technology Assessment in Health (NIATS/UFU) since 2010. He is the head of the Postgraduate Program in Biomedical Engineering (UFU, July/2019 - to date). He was the secretary of the Parkinson's Disease Association of Uberlândia (2018-2019). Dr. Andrade's primary area of research is focused towards getting information from the neuromuscular system to understand its strategies of organization, adaptation and controlling in the context of motor neuron diseases. His research interests include Biomedical Signal Processing and Modelling, Assistive Technology, Rehabilitation Engineering, Neuroengineering and Parkinson's Disease.",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",isOpenForSubmission:!0,editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",biography:"Dr. Luis Villarreal is a research professor from the Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México. Dr. Villarreal is the editor in chief and founder of the Revista de Ciencias Tecnológicas (RECIT) (https://recit.uabc.mx/) and is a member of several editorial and reviewer boards for numerous international journals. He has published more than thirty international papers and reviewed more than ninety-two manuscripts. His research interests include biomaterials, nanomaterials, bioengineering, biosensors, drug delivery systems, and tissue engineering.",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:26,paginationItems:[{id:"82800",title:"Repurposing Drugs as Potential Therapeutics for the SARS-Cov-2 Viral Infection: Automatizing a Blind Molecular Docking High-throughput Pipeline",doi:"10.5772/intechopen.105792",signatures:"Aldo Herrera-Rodulfo, Mariana Andrade-Medina and Mauricio Carrillo-Tripp",slug:"repurposing-drugs-as-potential-therapeutics-for-the-sars-cov-2-viral-infection-automatizing-a-blind-",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Molecular Docking - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11451.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82582",title:"Protecting Bioelectric Signals from Electromagnetic Interference in a Wireless World",doi:"10.5772/intechopen.105951",signatures:"David Marcarian",slug:"protecting-bioelectric-signals-from-electromagnetic-interference-in-a-wireless-world",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82586",title:"Fundamentals of Molecular Docking and Comparative Analysis of Protein–Small-Molecule Docking Approaches",doi:"10.5772/intechopen.105815",signatures:"Maden Sefika Feyza, Sezer Selin and Acuner Saliha Ece",slug:"fundamentals-of-molecular-docking-and-comparative-analysis-of-protein-small-molecule-docking-approac",totalDownloads:26,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Molecular Docking - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11451.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82392",title:"Nanomaterials as Novel Biomarkers for Cancer Nanotheranostics: State of the Art",doi:"10.5772/intechopen.105700",signatures:"Hao Yu, Zhihai Han, Cunrong Chen and Leisheng Zhang",slug:"nanomaterials-as-novel-biomarkers-for-cancer-nanotheranostics-state-of-the-art",totalDownloads:23,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11405.jpg",subseries:{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering"}}}]},overviewPagePublishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}]},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",biography:"Michele Lanza is Associate Professor of Ophthalmology at Università della Campania, Luigi Vanvitelli, Napoli, Italy. His fields of interest are anterior segment disease, keratoconus, glaucoma, corneal dystrophies, and cataracts. His research topics include\nintraocular lens power calculation, eye modification induced by refractive surgery, glaucoma progression, and validation of new diagnostic devices in ophthalmology. \nHe has published more than 100 papers in international and Italian scientific journals, more than 60 in journals with impact factors, and chapters in international and Italian books. He has also edited two international books and authored more than 150 communications or posters for the most important international and Italian ophthalmology conferences.",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}]},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}]},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}]}]},openForSubmissionBooks:{paginationCount:2,paginationItems:[{id:"12086",title:"Cattle Diseases - Molecular and Biochemical Approach",coverURL:"https://cdn.intechopen.com/books/images_new/12086.jpg",hash:"afdbf57e32d996556a94528c06623cf3",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 5th 2022",isOpenForSubmission:!0,editors:[{id:"219081",title:"Dr.",name:"Abdulsamed",surname:"Kükürt",slug:"abdulsamed-kukurt",fullName:"Abdulsamed Kükürt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11579",title:"Animal Welfare - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11579.jpg",hash:"12e4f41264cbe99028655e5463fa941a",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 8th 2022",isOpenForSubmission:!0,editors:[{id:"51520",title:"Dr.",name:"Shao-Wen",surname:"Hung",slug:"shao-wen-hung",fullName:"Shao-Wen Hung"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:19,paginationItems:[{id:"82804",title:"Psychiatric Problems in HIV Care",doi:"10.5772/intechopen.106077",signatures:"Seggane Musisi and Noeline Nakasujja",slug:"psychiatric-problems-in-hiv-care",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Future Opportunities and Tools for Emerging Challenges for HIV/AIDS Control",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82827",title:"Epidemiology and Control of Schistosomiasis",doi:"10.5772/intechopen.105170",signatures:"Célestin Kyambikwa Bisangamo",slug:"epidemiology-and-control-of-schistosomiasis",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"New Horizons for Schistosomiasis Research",coverURL:"https://cdn.intechopen.com/books/images_new/10829.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"82817",title:"Perspective Chapter: Microfluidic Technologies for On-Site Detection and Quantification of Infectious Diseases - The Experience with SARS-CoV-2/COVID-19",doi:"10.5772/intechopen.105950",signatures:"Andres Escobar and Chang-qing Xu",slug:"perspective-chapter-microfluidic-technologies-for-on-site-detection-and-quantification-of-infectious",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82667",title:"Perspective Chapter: Analysis of SARS-CoV-2 Indirect Spreading Routes and Possible Countermeasures",doi:"10.5772/intechopen.105914",signatures:"Cesare Saccani, Marco Pellegrini and Alessandro Guzzini",slug:"perspective-chapter-analysis-of-sars-cov-2-indirect-spreading-routes-and-possible-countermeasures",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82559",title:"Perspective Chapter: Bioinformatics Study of the Evolution of SARS-CoV-2 Spike Protein",doi:"10.5772/intechopen.105915",signatures:"Črtomir Podlipnik, Radostina Alexandrova, Sebastian Pleško, Urban Bren and Marko Jukič",slug:"perspective-chapter-bioinformatics-study-of-the-evolution-of-sars-cov-2-spike-protein",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82521",title:"Challenges in Platelet Functions in HIV/AIDS Management",doi:"10.5772/intechopen.105731",signatures:"Gordon Ogweno",slug:"challenges-in-platelet-functions-in-hiv-aids-management",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Future Opportunities and Tools for Emerging Challenges for HIV/AIDS Control",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82701",title:"Pathology of Streptococcal Infections",doi:"10.5772/intechopen.105814",signatures:"Yutaka Tsutsumi",slug:"pathology-of-streptococcal-infections",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Yutaka",surname:"Tsutsumi"}],book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"82634",title:"Bacterial Sexually Transmitted Disease",doi:"10.5772/intechopen.105747",signatures:"Lebeza Alemu Tenaw",slug:"bacterial-sexually-transmitted-disease",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Bacterial Sexually Transmitted Infections - New Findings, Diagnosis, Treatment, and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/11569.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"82552",title:"Perspective Chapter: SARS-CoV-2 Variants - Two Years Post-Onset of the Pandemic",doi:"10.5772/intechopen.105913",signatures:"Adekunle Sanyaolu, Aleksandra Marinkovic, Stephanie Prakash, Chuku Okorie, Abdul Jan, Priyank Desai, Abu Fahad Abbasi, Jasmine Mangat, Zaheeda Hosein, Kareem Hamdy, Nafees Haider, Nasar Khan, Rochelle Annan, Olanrewaju Badaru, Ricardo Izurieta and Stella Smith",slug:"perspective-chapter-sars-cov-2-variants-two-years-post-onset-of-the-pandemic",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82380",title:"Evolution of Parasitism and Pathogenic Adaptations in Certain Medically Important Fungi",doi:"10.5772/intechopen.105206",signatures:"Gokul Shankar Sabesan, Ranjit Singh AJA, Ranjith Mehenderkar and Basanta Kumar Mohanty",slug:"evolution-of-parasitism-and-pathogenic-adaptations-in-certain-medically-important-fungi",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fungal Infectious Diseases - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11400.jpg",subseries:{id:"4",title:"Fungal Infectious Diseases"}}}]},subseriesFiltersForOFChapters:[{caption:"Fungal Infectious Diseases",value:4,count:1,group:"subseries"},{caption:"Parasitic Infectious Diseases",value:5,count:3,group:"subseries"},{caption:"Bacterial Infectious Diseases",value:3,count:5,group:"subseries"},{caption:"Viral Infectious Diseases",value:6,count:10,group:"subseries"}],publishedBooks:{paginationCount:13,paginationItems:[{type:"book",id:"7102",title:"Pneumonia",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7102.jpg",slug:"pneumonia",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Nima Rezaei",hash:"9fd70142814192dcec58a176749f1b60",volumeInSeries:13,fullTitle:"Pneumonia",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",institutionURL:null,country:{name:"Iran"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9615",title:"Chikungunya Virus",subtitle:"A Growing Global Public Health Threat",coverURL:"https://cdn.intechopen.com/books/images_new/9615.jpg",slug:"chikungunya-virus-a-growing-global-public-health-threat",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Jean Engohang-Ndong",hash:"c960d94a63867dd12a8ab15176a3ff06",volumeInSeries:12,fullTitle:"Chikungunya Virus - A Growing Global Public Health Threat",editors:[{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",institutionString:"Kent State University",institution:{name:"Kent State University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9619",title:"Epstein-Barr Virus",subtitle:"New Trends",coverURL:"https://cdn.intechopen.com/books/images_new/9619.jpg",slug:"epstein-barr-virus-new-trends",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Emmanuel Drouet",hash:"a2128c53becb6064589570cbe8d976f8",volumeInSeries:11,fullTitle:"Epstein-Barr Virus - New Trends",editors:[{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",institutionString:null,institution:{name:"Grenoble Alpes University",institutionURL:null,country:{name:"France"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9525",title:"Insights Into Drug Resistance in Staphylococcus aureus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9525.jpg",slug:"insights-into-drug-resistance-in-staphylococcus-aureus",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Amjad Aqib",hash:"98bb6c1ddb067da67185c272f81c0a27",volumeInSeries:10,fullTitle:"Insights Into Drug Resistance in Staphylococcus aureus",editors:[{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:{name:"University of Agriculture Faisalabad",institutionURL:null,country:{name:"Pakistan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9614",title:"Advances in Candida albicans",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9614.jpg",slug:"advances-in-candida-albicans",publishedDate:"November 17th 2021",editedByType:"Edited by",bookSignature:"Xinhui Wang",hash:"31d6882518ca749b12715266eed0a018",volumeInSeries:9,fullTitle:"Advances in Candida albicans",editors:[{id:"296531",title:"Dr.",name:"Xinhui",middleName:null,surname:"Wang",slug:"xinhui-wang",fullName:"Xinhui Wang",profilePictureURL:"https://mts.intechopen.com/storage/users/296531/images/system/296531.jpg",institutionString:"Qinghai Normal University",institution:{name:"University of Luxembourg",institutionURL:null,country:{name:"Luxembourg"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9528",title:"Current Topics and Emerging Issues in Malaria Elimination",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9528.jpg",slug:"current-topics-and-emerging-issues-in-malaria-elimination",publishedDate:"July 21st 2021",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"7f178329cc42e691efe226b32f14e2ea",volumeInSeries:8,fullTitle:"Current Topics and Emerging Issues in Malaria Elimination",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9613",title:"Dengue Fever in a One Health Perspective",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9613.jpg",slug:"dengue-fever-in-a-one-health-perspective",publishedDate:"October 28th 2020",editedByType:"Edited by",bookSignature:"Márcia Aparecida Sperança",hash:"77ecce8195c11092230b4156df6d83ff",volumeInSeries:7,fullTitle:"Dengue Fever in a One Health Perspective",editors:[{id:"176579",title:"Dr.",name:"Márcia Aparecida",middleName:null,surname:"Sperança",slug:"marcia-aparecida-speranca",fullName:"Márcia Aparecida Sperança",profilePictureURL:"https://mts.intechopen.com/storage/users/176579/images/system/176579.jpg",institutionString:null,institution:{name:"Universidade Federal do ABC",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7981",title:"Overview on Echinococcosis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7981.jpg",slug:"overview-on-echinococcosis",publishedDate:"April 22nd 2020",editedByType:"Edited by",bookSignature:"Fethi Derbel and Meriem Braiki",hash:"24dee9209f3fd6b7cd28f042da0076f0",volumeInSeries:6,fullTitle:"Overview on Echinococcosis",editors:[{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",institutionString:"Clinique les Oliviers",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7887",title:"Hepatitis B and C",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7887.jpg",slug:"hepatitis-b-and-c",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Luis Rodrigo",hash:"8dd6dab483cf505d83caddaeaf497f2c",volumeInSeries:5,fullTitle:"Hepatitis B and C",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo",profilePictureURL:"https://mts.intechopen.com/storage/users/73208/images/system/73208.jpg",institutionString:"University of Oviedo",institution:{name:"University of Oviedo",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7839",title:"Malaria",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",slug:"malaria",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Fyson H. Kasenga",hash:"91cde4582ead884cb0f355a19b67cd56",volumeInSeries:4,fullTitle:"Malaria",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga",profilePictureURL:"https://mts.intechopen.com/storage/users/86725/images/system/86725.jpg",institutionString:"Malawi Adventist University",institution:{name:"Malawi Adventist University",institutionURL:null,country:{name:"Malawi"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",slug:"current-topics-in-neglected-tropical-diseases",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"61c627da05b2ace83056d11357bdf361",volumeInSeries:3,fullTitle:"Current Topics in Neglected Tropical Diseases",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Bacterial Infectious Diseases",value:3,count:2},{group:"subseries",caption:"Parasitic Infectious Diseases",value:5,count:4},{group:"subseries",caption:"Viral Infectious Diseases",value:6,count:7}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:2},{group:"publicationYear",caption:"2021",value:2021,count:4},{group:"publicationYear",caption:"2020",value:2020,count:3},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:302,paginationItems:[{id:"280338",title:"Dr.",name:"Yutaka",middleName:null,surname:"Tsutsumi",slug:"yutaka-tsutsumi",fullName:"Yutaka Tsutsumi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/280338/images/7961_n.jpg",biography:null,institutionString:null,institution:{name:"Fujita Health University",country:{name:"Japan"}}},{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",biography:"Professor Nima Rezaei obtained an MD from Tehran University of Medical Sciences, Iran. He also obtained an MSc in Molecular and Genetic Medicine, and a Ph.D. in Clinical Immunology and Human Genetics from the University of Sheffield, UK. He also completed a short-term fellowship in Pediatric Clinical Immunology and Bone Marrow Transplantation at Newcastle General Hospital, England. Dr. Rezaei is a Full Professor of Immunology and Vice Dean of International Affairs and Research, at the School of Medicine, Tehran University of Medical Sciences, and the co-founder and head of the Research Center for Immunodeficiencies. He is also the founding president of the Universal Scientific Education and Research Network (USERN). Dr. Rezaei has directed more than 100 research projects and has designed and participated in several international collaborative projects. He is an editor, editorial assistant, or editorial board member of more than forty international journals. He has edited more than 50 international books, presented more than 500 lectures/posters in congresses/meetings, and published more than 1,100 scientific papers in international journals.",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",country:{name:"Iran"}}},{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",biography:"Dr. Jean Engohang-Ndong was born and raised in Gabon. After obtaining his Associate Degree of Science at the University of Science and Technology of Masuku, Gabon, he continued his education in France where he obtained his BS, MS, and Ph.D. in Medical Microbiology. He worked as a post-doctoral fellow at the Public Health Research Institute (PHRI), Newark, NJ for four years before accepting a three-year faculty position at Brigham Young University-Hawaii. Dr. Engohang-Ndong is a tenured faculty member with the academic rank of Full Professor at Kent State University, Ohio, where he teaches a wide range of biological science courses and pursues his research in medical and environmental microbiology. Recently, he expanded his research interest to epidemiology and biostatistics of chronic diseases in Gabon.",institutionString:"Kent State University",institution:{name:"Kent State University",country:{name:"United States of America"}}},{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",biography:"Emmanuel Drouet, PharmD, is a Professor of Virology at the Faculty of Pharmacy, the University Grenoble-Alpes, France. As a head scientist at the Institute of Structural Biology in Grenoble, Dr. Drouet’s research investigates persisting viruses in humans (RNA and DNA viruses) and the balance with our host immune system. He focuses on these viruses’ effects on humans (both their impact on pathology and their symbiotic relationships in humans). He has an excellent track record in the herpesvirus field, and his group is engaged in clinical research in the field of Epstein-Barr virus diseases. He is the editor of the online Encyclopedia of Environment and he coordinates the Universal Health Coverage education program for the BioHealth Computing Schools of the European Institute of Science.",institutionString:null,institution:{name:"Grenoble Alpes University",country:{name:"France"}}},{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},{id:"332819",title:"Dr.",name:"Chukwudi Michael",middleName:"Michael",surname:"Egbuche",slug:"chukwudi-michael-egbuche",fullName:"Chukwudi Michael Egbuche",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/332819/images/14624_n.jpg",biography:"I an Dr. Chukwudi Michael Egbuche. I am a Senior Lecturer in the Department of Parasitology and Entomology, Nnamdi Azikiwe University, Awka.",institutionString:null,institution:{name:"Nnamdi Azikiwe University",country:{name:"Nigeria"}}},{id:"284232",title:"Mr.",name:"Nikunj",middleName:"U",surname:"Tandel",slug:"nikunj-tandel",fullName:"Nikunj Tandel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/284232/images/8275_n.jpg",biography:'Mr. Nikunj Tandel has completed his Master\'s degree in Biotechnology from VIT University, India in the year of 2012. He is having 8 years of research experience especially in the field of malaria epidemiology, immunology, and nanoparticle-based drug delivery system against the infectious diseases, autoimmune disorders and cancer. He has worked for the NIH funded-International Center of Excellence in Malaria Research project "Center for the study of complex malaria in India (CSCMi)" in collaboration with New York University. The preliminary objectives of the study are to understand and develop the evidence-based tools and interventions for the control and prevention of malaria in different sites of the INDIA. Alongside, with the help of next-generation genomics study, the team has studied the antimalarial drug resistance in India. Further, he has extended his research in the development of Humanized mice for the study of liver-stage malaria and identification of molecular marker(s) for the Artemisinin resistance. At present, his research focuses on understanding the role of B cells in the activation of CD8+ T cells in malaria. Received the CSIR-SRF (Senior Research Fellow) award-2018, FIMSA (Federation of Immunological Societies of Asia-Oceania) Travel Bursary award to attend the IUIS-IIS-FIMSA Immunology course-2019',institutionString:"Nirma University",institution:{name:"Nirma University",country:{name:"India"}}},{id:"334383",title:"Ph.D.",name:"Simone",middleName:"Ulrich",surname:"Ulrich Picoli",slug:"simone-ulrich-picoli",fullName:"Simone Ulrich Picoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334383/images/15919_n.jpg",biography:"Graduated in Pharmacy from Universidade Luterana do Brasil (1999), Master in Agricultural and Environmental Microbiology from Federal University of Rio Grande do Sul (2002), Specialization in Clinical Microbiology from Universidade de São Paulo, USP (2007) and PhD in Sciences in Gastroenterology and Hepatology (2012). She is currently an Adjunct Professor at Feevale University in Medicine and Biomedicine courses and a permanent professor of the Academic Master\\'s Degree in Virology. She has experience in the field of Microbiology, with an emphasis on Bacteriology, working mainly on the following topics: bacteriophages, bacterial resistance, clinical microbiology and food microbiology.",institutionString:null,institution:{name:"Universidade Feevale",country:{name:"Brazil"}}},{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",biography:"Dr. Amjad Islam Aqib obtained a DVM and MSc (Hons) from University of Agriculture Faisalabad (UAF), Pakistan, and a PhD from the University of Veterinary and Animal Sciences Lahore, Pakistan. Dr. Aqib joined the Department of Clinical Medicine and Surgery at UAF for one year as an assistant professor where he developed a research laboratory designated for pathogenic bacteria. Since 2018, he has been Assistant Professor/Officer in-charge, Department of Medicine, Manager Research Operations and Development-ORIC, and President One Health Club at Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan. He has nearly 100 publications to his credit. His research interests include epidemiological patterns and molecular analysis of antimicrobial resistance and modulation and vaccine development against animal pathogens of public health concern.",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:{name:"University of Agriculture Faisalabad",country:{name:"Pakistan"}}},{id:"333753",title:"Dr.",name:"Rais",middleName:null,surname:"Ahmed",slug:"rais-ahmed",fullName:"Rais Ahmed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/333753/images/20168_n.jpg",biography:null,institutionString:null,institution:{name:"University of Agriculture Faisalabad",country:{name:"Pakistan"}}},{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",biography:"Professor Fethi Derbel was born in 1960 in Tunisia. He received his medical degree from the Sousse Faculty of Medicine at Sousse, University of Sousse, Tunisia. He completed his surgical residency in General Surgery at the University Hospital Farhat Hached of Sousse and was a member of the Unit of Liver Transplantation in the University of Rennes, France. He then worked in the Department of Surgery at the Sahloul University Hospital in Sousse. Professor Derbel is presently working at the Clinique les Oliviers, Sousse, Tunisia. His hospital activities are mostly concerned with laparoscopic, colorectal, pancreatic, hepatobiliary, and gastric surgery. He is also very interested in hernia surgery and performs ventral hernia repairs and inguinal hernia repairs. He has been a member of the GREPA and Tunisian Hernia Society (THS). During his residency, he managed patients suffering from diabetic foot, and he was very interested in this pathology. For this reason, he decided to coordinate a book project dealing with the diabetic foot. Professor Derbel has published many articles in journals and collaborates intensively with IntechOpen Access Publisher as an editor.",institutionString:"Clinique les Oliviers",institution:null},{id:"300144",title:"Dr.",name:"Meriem",middleName:null,surname:"Braiki",slug:"meriem-braiki",fullName:"Meriem Braiki",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/300144/images/system/300144.jpg",biography:"Dr. Meriem Braiki is a specialist in pediatric surgeon from Tunisia. She was born in 1985. She received her medical degree from the University of Medicine at Sousse, Tunisia. She achieved her surgical residency training periods in Pediatric Surgery departments at University Hospitals in Monastir, Tunis and France.\r\nShe is currently working at the Pediatric surgery department, Sidi Bouzid Hospital, Tunisia. Her hospital activities are mostly concerned with laparoscopic, parietal, urological and digestive surgery. She has published several articles in diffrent journals.",institutionString:"Sidi Bouzid Regional Hospital",institution:null},{id:"229481",title:"Dr.",name:"Erika M.",middleName:"Martins",surname:"de Carvalho",slug:"erika-m.-de-carvalho",fullName:"Erika M. de Carvalho",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229481/images/6397_n.jpg",biography:null,institutionString:null,institution:{name:"Oswaldo Cruz Foundation",country:{name:"Brazil"}}},{id:"186537",title:"Prof.",name:"Tonay",middleName:null,surname:"Inceboz",slug:"tonay-inceboz",fullName:"Tonay Inceboz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/186537/images/system/186537.jfif",biography:"I was graduated from Ege University of Medical Faculty (Turkey) in 1988 and completed his Med. PhD degree in Medical Parasitology at the same university. I became an Associate Professor in 2008 and Professor in 2014. I am currently working as a Professor at the Department of Medical Parasitology at Dokuz Eylul University, Izmir, Turkey.\n\nI have given many lectures, presentations in different academic meetings. I have more than 60 articles in peer-reviewed journals, 18 book chapters, 1 book editorship.\n\nMy research interests are Echinococcus granulosus, Echinococcus multilocularis (diagnosis, life cycle, in vitro and in vivo cultivation), and Trichomonas vaginalis (diagnosis, PCR, and in vitro cultivation).",institutionString:"Dokuz Eylül University",institution:{name:"Dokuz Eylül University",country:{name:"Turkey"}}},{id:"71812",title:"Prof.",name:"Hanem Fathy",middleName:"Fathy",surname:"Khater",slug:"hanem-fathy-khater",fullName:"Hanem Fathy Khater",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/71812/images/1167_n.jpg",biography:"Prof. Khater is a Professor of Parasitology at Benha University, Egypt. She studied for her doctoral degree, at the Department of Entomology, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, USA. She has completed her Ph.D. degrees in Parasitology in Egypt, from where she got the award for “the best scientific Ph.D. dissertation”. She worked at the School of Biological Sciences, Bristol, England, the UK in controlling insects of medical and veterinary importance as a grant from Newton Mosharafa, the British Council. Her research is focused on searching of pesticides against mosquitoes, house flies, lice, green bottle fly, camel nasal botfly, soft and hard ticks, mites, and the diamondback moth as well as control of several parasites using safe and natural materials to avoid drug resistances and environmental contamination.",institutionString:null,institution:{name:"Banha University",country:{name:"Egypt"}}},{id:"99780",title:"Prof.",name:"Omolade",middleName:"Olayinka",surname:"Okwa",slug:"omolade-okwa",fullName:"Omolade Okwa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/99780/images/system/99780.jpg",biography:"Omolade Olayinka Okwa is presently a Professor of Parasitology at Lagos State University, Nigeria. She has a PhD in Parasitology (1997), an MSc in Cellular Parasitology (1992), and a BSc (Hons) Zoology (1990) all from the University of Ibadan, Nigeria. She teaches parasitology at the undergraduate and postgraduate levels. She was a recipient of a Commonwealth fellowship supported by British Council tenable at the Centre for Entomology and Parasitology (CAEP), Keele University, United Kingdom between 2004 and 2005. She was awarded an Honorary Visiting Research Fellow at the same university from 2005 to 2007. \nShe has been an external examiner to the Department of Veterinary Microbiology and Parasitology, University of Ibadan, MSc programme between 2010 and 2012. She is a member of the Nigerian Society of Experimental Biology (NISEB), Parasitology and Public Health Society of Nigeria (PPSN), Science Association of Nigeria (SAN), Zoological Society of Nigeria (ZSN), and is Vice Chairperson of the Organisation of Women in Science (OWSG), LASU chapter. She served as Head of Department of Zoology and Environmental Biology, Lagos State University from 2007 to 2010 and 2014 to 2016. She is a reviewer for several local and international journals such as Unilag Journal of Science, Libyan Journal of Medicine, Journal of Medicine and Medical Sciences, and Annual Research and Review in Science. \nShe has authored 45 scientific research publications in local and international journals, 8 scientific reviews, 4 books, and 3 book chapters, which includes the books “Malaria Parasites” and “Malaria” which are IntechOpen access publications.",institutionString:"Lagos State University",institution:{name:"Lagos State University",country:{name:"Nigeria"}}},{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/273100/images/system/273100.jpeg",biography:"Dr. Vijay Bhaskar Reddy Gayam is currently practicing as an internist at Interfaith Medical Center in Brooklyn, New York, USA. He is also a Clinical Assistant Professor at the SUNY Downstate University Hospital and Adjunct Professor of Medicine at the American University of Antigua. He is a holder of an M.B.B.S. degree bestowed to him by Osmania Medical College and received his M.D. at Interfaith Medical Center. His career goals thus far have heavily focused on direct patient care, medical education, and clinical research. He currently serves in two leadership capacities; Assistant Program Director of Medicine at Interfaith Medical Center and as a Councilor for the American\r\nFederation for Medical Research. As a true academician and researcher, he has more than 50 papers indexed in international peer-reviewed journals. He has also presented numerous papers in multiple national and international scientific conferences. His areas of research interest include general internal medicine, gastroenterology and hepatology. He serves as an editor, editorial board member and reviewer for multiple international journals. His research on Hepatitis C has been very successful and has led to multiple research awards, including the 'Equity in Prevention and Treatment Award” from the New York Department of Health Viral Hepatitis Symposium (2018) and the 'Presidential Poster Award” awarded to him by the American College of Gastroenterology (2018). He was also awarded 'Outstanding Clinician in General Medicine” by Venus International Foundation for his extensive research expertise and services, perform over and above the standard expected in the advancement of healthcare, patient safety and quality of care.",institutionString:"Interfaith Medical Center",institution:{name:"Interfaith Medical Center",country:{name:"United States of America"}}},{id:"93517",title:"Dr.",name:"Clement",middleName:"Adebajo",surname:"Meseko",slug:"clement-meseko",fullName:"Clement Meseko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/93517/images/system/93517.jpg",biography:"Dr. Clement Meseko obtained DVM and PhD degree in Veterinary Medicine and Virology respectively. He has worked for over 20 years in both private and public sectors including the academia, contributing to knowledge and control of infectious disease. Through the application of epidemiological skill, classical and molecular virological skills, he investigates viruses of economic and public health importance for the mitigation of the negative impact on people, animal and the environment in the context of Onehealth. \r\nDr. Meseko’s field experience on animal and zoonotic diseases and pathogen dynamics at the human-animal interface over the years shaped his carrier in research and scientific inquiries. He has been part of the investigation of Highly Pathogenic Avian Influenza incursions in sub Saharan Africa and monitors swine Influenza (Pandemic influenza Virus) agro-ecology and potential for interspecies transmission. He has authored and reviewed a number of journal articles and book chapters.",institutionString:"National Veterinary Research Institute",institution:{name:"National Veterinary Research Institute",country:{name:"Nigeria"}}},{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",country:{name:"India"}}},{id:"94928",title:"Dr.",name:"Takuo",middleName:null,surname:"Mizukami",slug:"takuo-mizukami",fullName:"Takuo Mizukami",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94928/images/6402_n.jpg",biography:null,institutionString:null,institution:{name:"National Institute of Infectious Diseases",country:{name:"Japan"}}},{id:"233433",title:"Dr.",name:"Yulia",middleName:null,surname:"Desheva",slug:"yulia-desheva",fullName:"Yulia Desheva",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/233433/images/system/233433.png",biography:"Dr. Yulia Desheva is a leading researcher at the Institute of Experimental Medicine, St. Petersburg, Russia. She is a professor in the Stomatology Faculty, St. Petersburg State University. She has expertise in the development and evaluation of a wide range of live mucosal vaccines against influenza and bacterial complications. Her research interests include immunity against influenza and COVID-19 and the development of immunization schemes for high-risk individuals.",institutionString:'Federal State Budgetary Scientific Institution "Institute of Experimental Medicine"',institution:null},{id:"238958",title:"Mr.",name:"Atamjit",middleName:null,surname:"Singh",slug:"atamjit-singh",fullName:"Atamjit Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/238958/images/6575_n.jpg",biography:null,institutionString:null,institution:null},{id:"252058",title:"M.Sc.",name:"Juan",middleName:null,surname:"Sulca",slug:"juan-sulca",fullName:"Juan Sulca",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252058/images/12834_n.jpg",biography:null,institutionString:null,institution:null},{id:"191392",title:"Dr.",name:"Marimuthu",middleName:null,surname:"Govindarajan",slug:"marimuthu-govindarajan",fullName:"Marimuthu Govindarajan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/191392/images/5828_n.jpg",biography:"Dr. M. Govindarajan completed his BSc degree in Zoology at Government Arts College (Autonomous), Kumbakonam, and MSc, MPhil, and PhD degrees at Annamalai University, Annamalai Nagar, Tamil Nadu, India. He is serving as an assistant professor at the Department of Zoology, Annamalai University. His research interests include isolation, identification, and characterization of biologically active molecules from plants and microbes. He has identified more than 20 pure compounds with high mosquitocidal activity and also conducted high-quality research on photochemistry and nanosynthesis. He has published more than 150 studies in journals with impact factor and 2 books in Lambert Academic Publishing, Germany. He serves as an editorial board member in various national and international scientific journals.",institutionString:null,institution:null},{id:"274660",title:"Dr.",name:"Damodar",middleName:null,surname:"Paudel",slug:"damodar-paudel",fullName:"Damodar Paudel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274660/images/8176_n.jpg",biography:"I am DrDamodar Paudel,currently working as consultant Physician in Nepal police Hospital.",institutionString:null,institution:null},{id:"241562",title:"Dr.",name:"Melvin",middleName:null,surname:"Sanicas",slug:"melvin-sanicas",fullName:"Melvin Sanicas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241562/images/6699_n.jpg",biography:null,institutionString:null,institution:null},{id:"322007",title:"Dr.",name:"Maria Elizbeth",middleName:null,surname:"Alvarez-Sánchez",slug:"maria-elizbeth-alvarez-sanchez",fullName:"Maria Elizbeth Alvarez-Sánchez",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",country:{name:"Mexico"}}},{id:"337443",title:"Dr.",name:"Juan",middleName:null,surname:"A. Gonzalez-Sanchez",slug:"juan-a.-gonzalez-sanchez",fullName:"Juan A. Gonzalez-Sanchez",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Puerto Rico System",country:{name:"United States of America"}}},{id:"337446",title:"Dr.",name:"Maria",middleName:null,surname:"Zavala-Colon",slug:"maria-zavala-colon",fullName:"Maria Zavala-Colon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Puerto Rico, Medical Sciences Campus",country:{name:"United States of America"}}},{id:"338856",title:"Mrs.",name:"Nur Alvira",middleName:null,surname:"Pascawati",slug:"nur-alvira-pascawati",fullName:"Nur Alvira Pascawati",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universitas Respati Yogyakarta",country:{name:"Indonesia"}}}]}},subseries:{item:{id:"1",type:"subseries",title:"Oral Health",keywords:"Oral Health, Dental Care, Diagnosis, Diagnostic Imaging, Early Diagnosis, Oral Cancer, Conservative Treatment, Epidemiology, Comprehensive Dental Care, Complementary Therapies, Holistic Health",scope:"\r\n\tThis topic aims to provide a comprehensive overview of the latest trends in Oral Health based on recent scientific evidence. Subjects will include an overview of oral diseases and infections, systemic diseases affecting the oral cavity, prevention, diagnosis, treatment, epidemiology, as well as current clinical recommendations for the management of oral, dental, and periodontal diseases.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/1.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11397,editor:{id:"173955",title:"Prof.",name:"Sandra",middleName:null,surname:"Marinho",slug:"sandra-marinho",fullName:"Sandra Marinho",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRGYMQA4/Profile_Picture_2022-06-01T13:22:41.png",biography:"Dr. Sandra A. Marinho is an Associate Professor and Brazilian researcher at the State University of Paraíba (Universidade Estadual da Paraíba- UEPB), Campus VIII, located in Araruna, state of Paraíba since 2011. She holds a degree in Dentistry from the Federal University of Alfenas (UNIFAL), while her specialization and professional improvement in Stomatology took place at Hospital Heliopolis (São Paulo, SP). Her qualifications are: a specialist in Dental Imaging and Radiology, Master in Dentistry (Periodontics) from the University of São Paulo (FORP-USP, Ribeirão Preto, SP), and Doctor (Ph.D.) in Dentistry (Stomatology Clinic) from Hospital São Lucas of the Pontifical Catholic University of Rio Grande do Sul (HSL-PUCRS, Porto Alegre, RS). She held a postdoctoral internship at the Federal University from Jequitinhonha and Mucuri Valleys (UFVJM, Diamantina, MG). She is currently a member of the Brazilian Society for Dental Research (SBPqO) and the Brazilian Society of Stomatology and Pathology (SOBEP). Dr. Marinho's experience in Dentistry mainly covers the following subjects: oral diagnosis, oral radiology; oral medicine; lesions and oral infections; oral pathology, laser therapy and epidemiological studies.",institutionString:null,institution:{name:"State University of Paraíba",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null,series:{id:"3",title:"Dentistry",doi:"10.5772/intechopen.71199",issn:"2631-6218"},editorialBoard:[{id:"267724",title:"Prof.",name:"Febronia",middleName:null,surname:"Kahabuka",slug:"febronia-kahabuka",fullName:"Febronia Kahabuka",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRZpJQAW/Profile_Picture_2022-06-27T12:00:42.JPG",institutionString:"Muhimbili University of Health and Allied Sciences, Tanzania",institution:{name:"Muhimbili University of Health and Allied Sciences",institutionURL:null,country:{name:"Tanzania"}}},{id:"70530",title:"Dr.",name:"Márcio",middleName:"Campos",surname:"Oliveira",slug:"marcio-oliveira",fullName:"Márcio Oliveira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRm0AQAS/Profile_Picture_2022-08-01T12:34:46.jpg",institutionString:null,institution:{name:"State University of Feira de Santana",institutionURL:null,country:{name:"Brazil"}}}]},onlineFirstChapters:{paginationCount:25,paginationItems:[{id:"82654",title:"Atraumatic Restorative Treatment: More than a Minimally Invasive Approach?",doi:"10.5772/intechopen.105623",signatures:"Manal A. Ablal",slug:"atraumatic-restorative-treatment-more-than-a-minimally-invasive-approach",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"82735",title:"The Influence of Salivary pH on the Prevalence of Dental Caries",doi:"10.5772/intechopen.106154",signatures:"Laura-Cristina Rusu, Alexandra Roi, Ciprian-Ioan Roi, Codruta Victoria Tigmeanu and Lavinia Cosmina Ardelean",slug:"the-influence-of-salivary-ph-on-the-prevalence-of-dental-caries",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"82357",title:"Caries Management Aided by Fluorescence-Based Devices",doi:"10.5772/intechopen.105567",signatures:"Atena Galuscan, Daniela Jumanca and Aurora Doris Fratila",slug:"caries-management-aided-by-fluorescence-based-devices",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"81894",title:"Diet and Nutrition and Their Relationship with Early Childhood Dental Caries",doi:"10.5772/intechopen.105123",signatures:"Luanna Gonçalves Ferreira, Giuliana de Campos Chaves Lamarque and Francisco Wanderley Garcia Paula-Silva",slug:"diet-and-nutrition-and-their-relationship-with-early-childhood-dental-caries",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80964",title:"Upper Airway Expansion in Disabled Children",doi:"10.5772/intechopen.102830",signatures:"David Andrade, Joana Andrade, Maria-João Palha, Cristina Areias, Paula Macedo, Ana Norton, Miguel Palha, Lurdes Morais, Dóris Rocha Ruiz and Sônia Groisman",slug:"upper-airway-expansion-in-disabled-children",totalDownloads:43,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80839",title:"Herbs and Oral Health",doi:"10.5772/intechopen.103715",signatures:"Zuhair S. Natto",slug:"herbs-and-oral-health",totalDownloads:69,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80441",title:"Periodontitis and Heart Disease: Current Perspectives on the Associative Relationships and Preventive Impact",doi:"10.5772/intechopen.102669",signatures:"Alexandra Roman, Andrada Soancă, Bogdan Caloian, Alexandru Bucur, Gabriela Valentina Caracostea, Andreia Paraschiva Preda, Dora Maria Popescu, Iulia Cristina Micu, Petra Șurlin, Andreea Ciurea, Diana Oneț, Mircea Viorel Ciurea, Dragoș Alexandru Țermure and Marius Negucioiu",slug:"periodontitis-and-heart-disease-current-perspectives-on-the-associative-relationships-and-preventive",totalDownloads:65,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79498",title:"Oral Aspects and Dental Management of Special Needs Patient",doi:"10.5772/intechopen.101067",signatures:"Pinar Kiymet Karataban",slug:"oral-aspects-and-dental-management-of-special-needs-patient",totalDownloads:110,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Pinar",surname:"Karataban"}],book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79699",title:"Metabolomics Distinction of Cigarette Smokers from Non-Smokers Using Non-Stationary Benchtop Nuclear Magnetic Resonance (NMR) Analysis of Human Saliva",doi:"10.5772/intechopen.101414",signatures:"Benita C. Percival, Angela Wann, Sophie Taylor, Mark Edgar, Miles Gibson and Martin Grootveld",slug:"metabolomics-distinction-of-cigarette-smokers-from-non-smokers-using-non-stationary-benchtop-nuclear",totalDownloads:56,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80295",title:"Preventive Methods and Treatments of White Spot Lesions in Orthodontics",doi:"10.5772/intechopen.102064",signatures:"Elif Nadide Akay",slug:"preventive-methods-and-treatments-of-white-spot-lesions-in-orthodontics",totalDownloads:87,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79876",title:"Management and Prevention Strategies for Treating Dentine Hypersensitivity",doi:"10.5772/intechopen.101495",signatures:"David G. Gillam",slug:"management-and-prevention-strategies-for-treating-dentine-hypersensitivity",totalDownloads:93,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80020",title:"Alternative Denture Base Materials for Allergic Patients",doi:"10.5772/intechopen.101956",signatures:"Lavinia Cosmina Ardelean, Laura-Cristina Rusu and Codruta Victoria Tigmeanu",slug:"alternative-denture-base-materials-for-allergic-patients",totalDownloads:195,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79297",title:"Oral Health and Prevention in Older Adults",doi:"10.5772/intechopen.101043",signatures:"Irma Fabiola Díaz-García, Dinorah Munira Hernández-Santos, Julio Alberto Díaz-Ramos and Neyda Ma. Mendoza-Ruvalcaba",slug:"oral-health-and-prevention-in-older-adults",totalDownloads:112,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79903",title:"Molecular Docking of Phytochemicals against Streptococcus mutans Virulence Targets: A Proteomic Insight into Drug Planning",doi:"10.5772/intechopen.101506",signatures:"Diego Romário da Silva, Tahyná Duda Deps, Otavio Akira Souza Sakaguchi, Edja Maria Melo de Brito Costa, Carlus Alberto Oliveira dos Santos, Joanilda Paolla Raimundo e Silva, Bruna Dantas da Silva, Frederico Favaro Ribeiro, Francisco Jaime Bezerra Mendonça-Júnior and Andréa Cristina Barbosa da Silva",slug:"molecular-docking-of-phytochemicals-against-em-streptococcus-mutans-em-virulence-targets-a-proteomic",totalDownloads:114,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79754",title:"Evaluation of Trans-Resveratrol as a Treatment for Periodontitis",doi:"10.5772/intechopen.101477",signatures:"Tracey Lynn Harney",slug:"evaluation-of-trans-resveratrol-as-a-treatment-for-periodontitis",totalDownloads:110,totalCrossrefCites:1,totalDimensionsCites:1,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79515",title:"White Spot Lesions and Remineralization",doi:"10.5772/intechopen.101372",signatures:"Monisha Khatri, Shreya Kishore, S. Nagarathinam, Suvetha Siva and Vanita Barai",slug:"white-spot-lesions-and-remineralization",totalDownloads:80,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}}]},publishedBooks:{paginationCount:2,paginationItems:[{type:"book",id:"9525",title:"Insights Into Drug Resistance in Staphylococcus aureus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9525.jpg",slug:"insights-into-drug-resistance-in-staphylococcus-aureus",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Amjad Aqib",hash:"98bb6c1ddb067da67185c272f81c0a27",volumeInSeries:10,fullTitle:"Insights Into Drug Resistance in Staphylococcus aureus",editors:[{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:{name:"University of Agriculture Faisalabad",institutionURL:null,country:{name:"Pakistan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9614",title:"Advances in Candida albicans",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9614.jpg",slug:"advances-in-candida-albicans",publishedDate:"November 17th 2021",editedByType:"Edited by",bookSignature:"Xinhui Wang",hash:"31d6882518ca749b12715266eed0a018",volumeInSeries:9,fullTitle:"Advances in Candida albicans",editors:[{id:"296531",title:"Dr.",name:"Xinhui",middleName:null,surname:"Wang",slug:"xinhui-wang",fullName:"Xinhui Wang",profilePictureURL:"https://mts.intechopen.com/storage/users/296531/images/system/296531.jpg",institutionString:"Qinghai Normal University",institution:{name:"University of Luxembourg",institutionURL:null,country:{name:"Luxembourg"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:139,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:122,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:21,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"August 3rd, 2022",hasOnlineFirst:!0,numberOfOpenTopics:3,numberOfPublishedChapters:107,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},subseries:[{id:"7",title:"Bioinformatics and Medical Informatics",keywords:"Biomedical Data, Drug Discovery, Clinical Diagnostics, Decoding Human Genome, AI in Personalized Medicine, Disease-prevention Strategies, Big Data Analysis in Medicine",scope:"Bioinformatics aims to help understand the functioning of the mechanisms of living organisms through the construction and use of quantitative tools. The applications of this research cover many related fields, such as biotechnology and medicine, where, for example, Bioinformatics contributes to faster drug design, DNA analysis in forensics, and DNA sequence analysis in the field of personalized medicine. Personalized medicine is a type of medical care in which treatment is customized individually for each patient. Personalized medicine enables more effective therapy, reduces the costs of therapy and clinical trials, and also minimizes the risk of side effects. Nevertheless, advances in personalized medicine would not have been possible without bioinformatics, which can analyze the human genome and other vast amounts of biomedical data, especially in genetics. The rapid growth of information technology enabled the development of new tools to decode human genomes, large-scale studies of genetic variations and medical informatics. The considerable development of technology, including the computing power of computers, is also conducive to the development of bioinformatics, including personalized medicine. In an era of rapidly growing data volumes and ever lower costs of generating, storing and computing data, personalized medicine holds great promises. Modern computational methods used as bioinformatics tools can integrate multi-scale, multi-modal and longitudinal patient data to create even more effective and safer therapy and disease prevention methods. Main aspects of the topic are: Applying bioinformatics in drug discovery and development; Bioinformatics in clinical diagnostics (genetic variants that act as markers for a condition or a disease); Blockchain and Artificial Intelligence/Machine Learning in personalized medicine; Customize disease-prevention strategies in personalized medicine; Big data analysis in personalized medicine; Translating stratification algorithms into clinical practice of personalized medicine.",annualVolume:11403,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"5886",title:"Dr.",name:"Alexandros",middleName:"T.",surname:"Tzallas",fullName:"Alexandros Tzallas",profilePictureURL:"https://mts.intechopen.com/storage/users/5886/images/system/5886.png",institutionString:"University of Ioannina, Greece & Imperial College London",institution:{name:"University of Ioannina",institutionURL:null,country:{name:"Greece"}}},{id:"257388",title:"Distinguished Prof.",name:"Lulu",middleName:null,surname:"Wang",fullName:"Lulu Wang",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRX6kQAG/Profile_Picture_1630329584194",institutionString:"Shenzhen Technology University",institution:{name:"Shenzhen Technology University",institutionURL:null,country:{name:"China"}}},{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",fullName:"Reda R. Gharieb",profilePictureURL:"https://mts.intechopen.com/storage/users/225387/images/system/225387.jpg",institutionString:"Assiut University",institution:{name:"Assiut University",institutionURL:null,country:{name:"Egypt"}}}]},{id:"8",title:"Bioinspired Technology and Biomechanics",keywords:"Bioinspired Systems, Biomechanics, Assistive Technology, Rehabilitation",scope:'Bioinspired technologies take advantage of understanding the actual biological system to provide solutions to problems in several areas. Recently, bioinspired systems have been successfully employing biomechanics to develop and improve assistive technology and rehabilitation devices. The research topic "Bioinspired Technology and Biomechanics" welcomes studies reporting recent advances in bioinspired technologies that contribute to individuals\' health, inclusion, and rehabilitation. Possible contributions can address (but are not limited to) the following research topics: Bioinspired design and control of exoskeletons, orthoses, and prostheses; Experimental evaluation of the effect of assistive devices (e.g., influence on gait, balance, and neuromuscular system); Bioinspired technologies for rehabilitation, including clinical studies reporting evaluations; Application of neuromuscular and biomechanical models to the development of bioinspired technology.',annualVolume:11404,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"49517",title:"Prof.",name:"Hitoshi",middleName:null,surname:"Tsunashima",fullName:"Hitoshi Tsunashima",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTP4QAO/Profile_Picture_1625819726528",institutionString:null,institution:{name:"Nihon University",institutionURL:null,country:{name:"Japan"}}},{id:"425354",title:"Dr.",name:"Marcus",middleName:"Fraga",surname:"Vieira",fullName:"Marcus Vieira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003BJSgIQAX/Profile_Picture_1627904687309",institutionString:null,institution:{name:"Universidade Federal de Goiás",institutionURL:null,country:{name:"Brazil"}}},{id:"196746",title:"Dr.",name:"Ramana",middleName:null,surname:"Vinjamuri",fullName:"Ramana Vinjamuri",profilePictureURL:"https://mts.intechopen.com/storage/users/196746/images/system/196746.jpeg",institutionString:"University of Maryland, Baltimore County",institution:{name:"University of Maryland, Baltimore County",institutionURL:null,country:{name:"United States of America"}}}]},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",keywords:"Biotechnology, Biosensors, Biomaterials, Tissue Engineering",scope:"The Biotechnology - Biosensors, Biomaterials and Tissue Engineering topic within the Biomedical Engineering Series aims to rapidly publish contributions on all aspects of biotechnology, biosensors, biomaterial and tissue engineering. We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics can include but are not limited to: Biotechnology such as biotechnological products and process engineering; Biotechnologically relevant enzymes and proteins; Bioenergy and biofuels; Applied genetics and molecular biotechnology; Genomics, transcriptomics, proteomics; Applied microbial and cell physiology; Environmental biotechnology; Methods and protocols. Moreover, topics in biosensor technology, like sensors that incorporate enzymes, antibodies, nucleic acids, whole cells, tissues and organelles, and other biological or biologically inspired components will be considered, and topics exploring transducers, including those based on electrochemical and optical piezoelectric, thermal, magnetic, and micromechanical elements. Chapters exploring biomaterial approaches such as polymer synthesis and characterization, drug and gene vector design, biocompatibility, immunology and toxicology, and self-assembly at the nanoscale, are welcome. Finally, the tissue engineering subcategory will support topics such as the fundamentals of stem cells and progenitor cells and their proliferation, differentiation, bioreactors for three-dimensional culture and studies of phenotypic changes, stem and progenitor cells, both short and long term, ex vivo and in vivo implantation both in preclinical models and also in clinical trials.",annualVolume:11405,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"35539",title:"Dr.",name:"Cecilia",middleName:null,surname:"Cristea",fullName:"Cecilia Cristea",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYQ65QAG/Profile_Picture_1621007741527",institutionString:null,institution:{name:"Iuliu Hațieganu University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"40735",title:"Dr.",name:"Gil",middleName:"Alberto Batista",surname:"Gonçalves",fullName:"Gil Gonçalves",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYRLGQA4/Profile_Picture_1628492612759",institutionString:null,institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}},{id:"211725",title:"Associate Prof.",name:"Johann F.",middleName:null,surname:"Osma",fullName:"Johann F. Osma",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDv7QAG/Profile_Picture_1626602531691",institutionString:null,institution:{name:"Universidad de Los Andes",institutionURL:null,country:{name:"Colombia"}}},{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",fullName:"Mani T. Valarmathi",profilePictureURL:"https://mts.intechopen.com/storage/users/69697/images/system/69697.jpg",institutionString:"Religen Inc. | A Life Science Company, United States of America",institution:null},{id:"205081",title:"Dr.",name:"Marco",middleName:"Vinícius",surname:"Chaud",fullName:"Marco Chaud",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDGeQAO/Profile_Picture_1622624307737",institutionString:null,institution:{name:"Universidade de Sorocaba",institutionURL:null,country:{name:"Brazil"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/50277",hash:"",query:{},params:{id:"50277"},fullPath:"/chapters/50277",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()