The use of impedance technique for bacteria determination
\r\n\tThe purpose of the book is to bring together the latest knowledge about genetic diversity by presenting the studies of some of the scientists who are engaged in development of new tools and ideas used to reveal genetic diversity, often from very different perspectives. The book should prove useful to students, researchers and experts in the area of biology, medicine and agriculture.
",isbn:"978-1-80356-945-1",printIsbn:"978-1-80356-944-4",pdfIsbn:"978-1-80356-946-8",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,isSalesforceBook:!1,isNomenclature:!1,hash:"0b1e679fcacdec2448603a66df71ccc7",bookSignature:"Prof. Mahmut Çalışkan and Dr. Sevcan Aydin",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11643.jpg",keywords:"PCR Based Methods, Protein Based Methods, Sequencing, Conservation of Genetic Resources, Natural Variation, Molecular Markers, Genetic Manipulation in Animals, Resistance to Disease, Genetic Manipulation in Plants, Use of Microorganisms in Biotechnology, Genetic Differentiation, Gene Therapy and Gene Editing",numberOfDownloads:16,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 7th 2022",dateEndSecondStepPublish:"June 16th 2022",dateEndThirdStepPublish:"August 15th 2022",dateEndFourthStepPublish:"November 3rd 2022",dateEndFifthStepPublish:"January 2nd 2023",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"2 months",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Professor of genetics and molecular biology and Head of Biotechnology division at İstanbul University in Turkey whose main research areas include plant molecular genetics, microbial biotechnology and characterization and biotechnological use of halophilic archaeal strains.",coeditorOneBiosketch:"Associate Professor of Biotechnology Division in Department of Biology at Istanbul University in Turkey whose main research areas include genetics, environmental biotechnology and bioengineering.",coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"51528",title:"Prof.",name:"Mahmut",middleName:null,surname:"Çalışkan",slug:"mahmut-caliskan",fullName:"Mahmut Çalışkan",profilePictureURL:"https://mts.intechopen.com/storage/users/51528/images/system/51528.png",biography:"Mahmut Çalışkan is a Professor of Genetics and Molecular Biology in the Department of Biology, Biotechnology Division, Istanbul University, Turkey. He obtained a BSc from Middle East Technical University, Ankara, and a Ph.D. from the University of Leeds, England. His main research areas include the role of germin gene products during early plant development, analysis of genetic variation, polymorphisms, and the characterization and biotechnological use of halophilic archaea.",institutionString:"Istanbul University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"8",institution:{name:"Istanbul University",institutionURL:null,country:{name:"Turkey"}}}],coeditorOne:{id:"462767",title:"Dr.",name:"Sevcan",middleName:null,surname:"Aydin",slug:"sevcan-aydin",fullName:"Sevcan Aydin",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003QRfRpQAL/Profile_Picture_2022-03-24T08:49:06.jpg",biography:"Sevcan Aydın is an Associate Professor of Biotechnology Division in Department of Biology at Istanbul University in Türkiye. She obtained her bachelor's degree from Biology Department of Ege University. She obtained her Ph.D. in Biotechnology Programme of Istanbul Technical University. Her main research areas include genetics, environmental biotechnology and bioengineering.",institutionString:"Istanbul University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Istanbul University",institutionURL:null,country:{name:"Turkey"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"6",title:"Biochemistry, Genetics and Molecular Biology",slug:"biochemistry-genetics-and-molecular-biology"}],chapters:[{id:"82862",title:"Assessment of Genetic Variability of Three Types of Sorghum Cultivated in Burkina Faso Using Morphoagronomic Quantitative Traits and Brix",slug:"assessment-of-genetic-variability-of-three-types-of-sorghum-cultivated-in-burkina-faso-using-morphoa",totalDownloads:17,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"429343",firstName:"Martina",lastName:"Ivancic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/429343/images/19998_n.jpg",email:"martina@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"2252",title:"Genetic Diversity in Plants",subtitle:null,isOpenForSubmission:!1,hash:"f2540f35e6516d6946f6953469c61ff3",slug:"genetic-diversity-in-plants",bookSignature:"Mahmut Çalişkan",coverURL:"https://cdn.intechopen.com/books/images_new/2252.jpg",editedByType:"Edited by",editors:[{id:"51528",title:"Prof.",name:"Mahmut",surname:"Çalışkan",slug:"mahmut-caliskan",fullName:"Mahmut Çalışkan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2253",title:"Genetic Diversity in Microorganisms",subtitle:null,isOpenForSubmission:!1,hash:"209e2075adb4614d4061ea69f1cb3c99",slug:"genetic-diversity-in-microorganisms",bookSignature:"Mahmut Caliskan",coverURL:"https://cdn.intechopen.com/books/images_new/2253.jpg",editedByType:"Edited by",editors:[{id:"51528",title:"Prof.",name:"Mahmut",surname:"Çalışkan",slug:"mahmut-caliskan",fullName:"Mahmut Çalışkan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2251",title:"The Molecular Basis of Plant Genetic Diversity",subtitle:null,isOpenForSubmission:!1,hash:"f095bc4b74c32e0e266755bb77f00171",slug:"the-molecular-basis-of-plant-genetic-diversity",bookSignature:"Mahmut Caliskan",coverURL:"https://cdn.intechopen.com/books/images_new/2251.jpg",editedByType:"Edited by",editors:[{id:"51528",title:"Prof.",name:"Mahmut",surname:"Çalışkan",slug:"mahmut-caliskan",fullName:"Mahmut Çalışkan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1610",title:"Analysis of Genetic Variation in Animals",subtitle:null,isOpenForSubmission:!1,hash:"2dbc70699ec1ca38dc2175c6aeebe710",slug:"analysis-of-genetic-variation-in-animals",bookSignature:"Mahmut Caliskan",coverURL:"https://cdn.intechopen.com/books/images_new/1610.jpg",editedByType:"Edited by",editors:[{id:"51528",title:"Prof.",name:"Mahmut",surname:"Çalışkan",slug:"mahmut-caliskan",fullName:"Mahmut Çalışkan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5508",title:"Carbohydrate",subtitle:null,isOpenForSubmission:!1,hash:"e594b777fe1d4981c5b1adbe5a40f19c",slug:"carbohydrate",bookSignature:"Mahmut Caliskan, I. Halil Kavakli and Gul Cevahir Oz",coverURL:"https://cdn.intechopen.com/books/images_new/5508.jpg",editedByType:"Edited by",editors:[{id:"51528",title:"Prof.",name:"Mahmut",surname:"Çalışkan",slug:"mahmut-caliskan",fullName:"Mahmut Çalışkan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4534",title:"Molecular Approaches to Genetic Diversity",subtitle:null,isOpenForSubmission:!1,hash:"47e298294c997622c48b72b4f6d06f41",slug:"molecular-approaches-to-genetic-diversity",bookSignature:"Mahmut Caliskan, Guul Cevahir Oz, I. Halil Kavakli and Birguul Ozcan",coverURL:"https://cdn.intechopen.com/books/images_new/4534.jpg",editedByType:"Edited by",editors:[{id:"51528",title:"Prof.",name:"Mahmut",surname:"Çalışkan",slug:"mahmut-caliskan",fullName:"Mahmut Çalışkan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7947",title:"The Recent Topics in Genetic Polymorphisms",subtitle:null,isOpenForSubmission:!1,hash:"d77e0df1c9ae7d3721747744650bfcd3",slug:"the-recent-topics-in-genetic-polymorphisms",bookSignature:"Mahmut Çalışkan, Osman Erol and Gül Cevahir Öz",coverURL:"https://cdn.intechopen.com/books/images_new/7947.jpg",editedByType:"Edited by",editors:[{id:"51528",title:"Prof.",name:"Mahmut",surname:"Çalışkan",slug:"mahmut-caliskan",fullName:"Mahmut Çalışkan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10886",title:"Genetic Polymorphisms",subtitle:"New Insights",isOpenForSubmission:!1,hash:"a71558dd7dfd16ad140168409f887f7e",slug:"genetic-polymorphisms-new-insights",bookSignature:"Mahmut Çalışkan",coverURL:"https://cdn.intechopen.com/books/images_new/10886.jpg",editedByType:"Edited by",editors:[{id:"51528",title:"Prof.",name:"Mahmut",surname:"Çalışkan",slug:"mahmut-caliskan",fullName:"Mahmut Çalışkan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6694",title:"New Trends in Ion Exchange Studies",subtitle:null,isOpenForSubmission:!1,hash:"3de8c8b090fd8faa7c11ec5b387c486a",slug:"new-trends-in-ion-exchange-studies",bookSignature:"Selcan Karakuş",coverURL:"https://cdn.intechopen.com/books/images_new/6694.jpg",editedByType:"Edited by",editors:[{id:"206110",title:"Dr.",name:"Selcan",surname:"Karakuş",slug:"selcan-karakus",fullName:"Selcan Karakuş"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"48575",title:"Impedimetric Sensors for Bacteria Detection",doi:"10.5772/60741",slug:"impedimetric-sensors-for-bacteria-detection",body:'Food- and water-borne bacterial outbreaks remain a major cause for disease and mortality throughout the world [1, 2]. The rapid detection of these pathogenic microorganisms is critical for the prevention of these outbursts [3]. The identification and quantification of microorganisms has become a key point in biodefense, food safety, diagnostics, and drug discovery researches. The detection of pathogens and indicator microorganisms in water and food samples plays a vital role in public and environmental health. Globally, there are nearly 1.7 billion cases of diarrheal disease every year, and it is responsible for killing around 760,000 children every year (http://www.who.int/mediacentre/factsheets/fs330/en/).
To date, the detection and identification of pathogens rely mainly on classical culturing techniques, which require several handling steps in most cases, or on advanced “rapid” techniques in microbiology, such as biochemical kits, enzyme-linked immunosorbent assay (ELISA), and polymerase chain reaction (PCR) assays [4, 5].These methods are laborious and time consuming and lack the ability to detect microorganisms in “real time” or outside the laboratory environment [4, 6]. Over the past decade, there has been an immense effort to develop new bioassays and biosensors for the detection of food- and water-borne pathogens [7, 8]. Various biosensors for rapid identification of bacteria in food and water have been reported [2], while the most popular are optical biosensors. These biosensors offer several advantages, including speed, selectivity, sensitivity, and reproducibility of the measurement [2]. To date, the most successful optical-based biosensors are based on surface plasmon resonance (SPR) [8–10], whereby biomolecular binding events cause a change in the refractive index that is recognized by a shift in the SPR signal. However, the widespread application of these technologies for bacteria detection is limited mainly by the labor, high cost (US$10,000–150,000), and complexity of the SPR biosensor system.
Electrochemical biosensors based on impedance technique [11] have proved to be a promising method for pathogenic bacteria detection [12, 13] due to their portability, rapidity, sensitivity, low cost, ease of miniaturization, and label-free operation, and more importantly, they can be used for on-the-spot detection. There is a lot of literature about impedance microbiology, which is based on impedance changes that occurs in culture mediums due to bacterial growth as changes in conductance, due to charged ions and compounds resulting from biological metabolism, or due to bacteria cell adhesion to the electrode surface in interfacial capacitance. It must be noted that traditional impedance microbiology is not a selective method. Some selectivity may be achieved by using selective culture mediums. However, as it is presented in this chapter, functionalization of the electrodes with high-affinity recognition elements, such as antibodies, aptamers, proteins, etc., that selectively bind target cells permit to considerably enhance the selectivity of the method. Along with this, the separation of the target cells from the rest of the sample microorganisms and their preconcentration, as discussed in the chapter “Cell Concentration Systems for Enhanced Biosensor Sensitivity” of this book, may help to reduce the detection limits and raise the selectivity of the method.
Impedance biosensors register changes in the electrical properties at their surface (either capacitance or resistance), affected by interactions between biorecognition element attached to its surface and analyte present in a sample solution. Faradic impedance measurements in the presence of a redox pair in a test solution may be performed on planar metal electrodes. However, to enhance the sensitivity of the measurements and to miniaturize the final sensor element, an impedimetric transducer with two planar interdigitated electrodes called
All important aspects of pathogen detection using electrochemical impedance spectrometry (EIS) will be presented in more detail in the following sections of this review.
The electrochemical technique of impedance has been used in microbiology for detecting and quantifying bacteria during last decades. The integration of impedance technique with biosensor technology in the past few years has allowed the development of impedance biosensors, reducing assay times and detection limits.
One of the positive features of the impedance technique is its simplicity. The impedance
where
The impedance is a complex value because the current can differ in terms of amplitude and also a phase shift compared to the voltage–time function. Thus, impedance, as shown in Figure 1, can be described by the modulus |
Complex impedance plane diagram and relation of voltage, current, and phase.
EIS studies the response of an electrochemical cell to a voltage at different frequencies. Thus, the impedance spectrum obtained allows the characterization of a complex electrode system composed of surfaces, layers, and membranes where electrical charge transfer and ion diffusion process take place. The most difficult part of the EIS is the correct interpretation of spectra that are analyzed using an equivalent circuit (EC), which consists of resistances and capacitances combined in parallel or serially, as required. Since an electrochemical cell is a complex system, an EC with components representing different physicochemical parameters and processes should be selected, reflecting the electrochemical cell’s physical characteristics. However, it must be noted that typically more than one circuit model can fit obtained experimental data. Monitoring the variation of impedance elements as a function of the system properties (e.g., solution composition), it is possible to correlate total impedance changes to individual EC components and thus to confirm correct selection of the EC.
The weight with which individual EC components give their input into the total impedance depends on the applied frequency. This means that in some cases, it is possible to simplify the measurements by working in a limited range of frequencies or just one selected frequency where the relative changes of the component under interest are the largest.
Basically, for EIS performed on a metal electrode in an electrolyte solution in the presence of electroactive compounds, the elements of the EC are well known from general electrochemistry and include ohmic resistance of electrolyte (the bulk medium resistance), double-layer capacitance, charge transfer resistance, and the Warburg impedance, as is presented in Figure 2. For more complex experimental systems, additional components such as dielectric capacitor, polarization resistance, constant-phase element, interfacial impedance, coating capacitance, stray capacitance, and virtual inductors may be required to include. The measured impedance depends on all the individual contributions and distribution of this elements within the EC [12]. However, the impedimetric response in real systems is very complex, and some of the processes cannot be presented in the EC by simple (capacitor, resistance) elements. In this case, some additional EIS elements, such as constant phase element (CPE) or Warburg impedance, with known frequency response are introduced [16].
Resuming, EIS is a very powerful tool as it permits to elucidate physical and chemical phenomena occurring in an electrochemical system, thus allowing to obtain information on changes produced by the interaction of analytes of interest, such as proteins, antibodies, or whole microorganisms, with an impedimetric sensor surface [11].
Impedimetric detection can be achieved either in a direct manner in an anylyte solution or in the presence of an additional redox probe used as a marker. In the presence of electron mediator as Fe(CN6)3–/4– (ferricyanide/ferrocyanide) or Ru(NH3)63+/2+ (hexaammineruthenium III/II ions), the impedance is termed faradic impedance. The use of electron mediators requires a plentiful supply of redox species to guarantee that impedance does not become limited by the charge transfer process between electrolyte and electrode surface. In faradic impedance measurements, the main parameter is the charge transfer resistance that depends on the interface blocking by surface products of biochemical reactions and thus may be used to measure concentration dependencies.
The behavior of simple impedance biosensors systems in faradic processes is typically interpreted by a Randles EC presented in Figure 2.
The Randles EC (a) and the Nyquist plot (b) of its frequency response.
The Randles EC, presented in Figure 2a, consists of solution resistance (
The Nyquist plot (Figure 2b) is the best way to visualize and determinate the Randles EC elements. The semicircle observed at high frequencies corresponds to the electron transfer limited process and linear part at lower frequencies represents the diffusion limited process. The intercept of semicircle at high frequencies with the
In the case when a redox pair is absent in the electrolyte solution, the impedance is termed nonfaradic [19] and depends on the conductivity of the supporting electrolyte and impedimetric electrode interfacial properties (interfacial capacitance or surface conductivity). Figure 3 shows the basic elements of EC in the case of nonfaradic process:
Typical electrical components on ECs characterizing nonfaradic impedance. (a) General circuit elements; (b) the resistance
In the absence of a redox pair or if its charge transfer rate on the electrode is very slow, no faradic process occurs, and subsequent electron transfer is not produced. In these cases, the interfacial capacitance changes are often studied [20]. These capacitance changes occur when the dielectric constant or the thickness of the interfacial capacitance layer on the transducer surface change their values due to surface chemical reactions [17]. The formation of biochemical reaction products may be represented by an additional capacitor that depending on the process may be included in parallel or in series with the double-layer capacitor (Figure 3c).
It must be noted that a lot of published works refer to changes in capacitance registered by impedance spectroscopy as variations produced in the electrical double-layer capacitance. However, the double-layer capacitance, defined as an outer capacitance at the solid/liquid interface, depends basically on ionic species concentration, while interfacial capacitance depends on the presence of adsorbed species or interfacial layer formation on the electrode surface. On the other hand,
All these show once again the importance of accurate interpretation of impedance data that should be based on a correct EC choice with the components that unambiguously reflect real physicochemical processes at the electrode surface.
The use of different impedimetric sensors designs, the advances in microfabrication technologies resulting in miniaturization and integration of sensors into a chip format, and better understanding of biochemical interfacial phenomena helping the analysis of impedance components using ECs should help us to improve the biosensor detection systems serving to reduce the assay time and improve the bacteria detection limits [18].
Metabolism refers to all the biochemical reactions that occur in a cell or organism. By metabolic pathways, bacteria convert large molecules, such as polysaccharides, lipids, nucleic acids, and proteins, into smaller units as monosaccharides, fatty acids, nucleotides, and amino acids, respectively, to release energy. Consequently, this conversion of large organic substrate molecules in the medium into charged, small and more mobile ionic metabolites, which can include lactic acid, acetic acid, carbon dioxide, ammonia, bicarbonate, and urea, results in a change of the ionic composition of the growth media. In this way, these changes can be measured and related to bacterial concentration for determination of microbial growth.
Different electrochemical transduction techniques have been used for the detection of products of microbial metabolism. Amperometric technique has been reported by the use of mediators [21], which are reduced by the microorganism as a consequence of substrate metabolism; however, no examples of direct metabolite detection are found in the literature, probably due to the electroactive interference produced by the sample matrix, which can cause the transducer to generate a false current reading [22]. Potentiometric methods have been developed to detect changes resulting from metabolite accumulation of hydrogen ions [23]. Nevertheless, these electrochemical methods show some disadvantages such as insufficient sensitivity, selectivity, and sample matrix effect [22]. In addition, these methods require the use of a reference electrode, which complicates the system miniaturization and prevents its use in a small volume samples. Among different electrochemical techniques, the most extended transduction method is based on measurements of electrical impedance changes in the medium resulting from the bacterial growth.
The correlation between microbial growth and impedance was first defined by Stewart in 1899 [24]. However, it was starting from 1970s when much attention and efforts were put in this research [25–30] to monitor bacterial activity detecting changes in electrical impedance caused by growing bacterial culture. Impedance technique was shown to be useful for the estimation of microbial biomass [31], detection of microbial metabolism, and determination of the physiological state of bacteria [32–37]. The advantages of this approach are high sensitivity, relative simplicity, and comparatively low cost of the required experimental equipment [25]. In 1992, the impedance method was approved by the Association of Official Analytical Chemists (AOAC) International as a first action method for screening
Impedance microbiology is one of the most successful of all the recently introduced rapid methods. Several analytical systems have been developed for bacteria detection, such as Bactometer (Bio Merieux, Nuertingen, Germany), Malthus systems (Malthus Instruments Ltd., Crawley, UK), rapid automated bacterial impedance technique (RABIT) (Don Whitley Scientific Ltd., Shipley, UK), and BacTrac (Sy-Lab, Purkersdorf, Austria) [18, 40–42]. They have been validated against other conventional methods, such as the most probable number method (MPN) [36] or microbial colony counts [43], showing a sensitivity comparable to these standard methods. Existing commercial instruments are widely used for different applications. For example, all these systems have been reported to detect and make quantitative estimations and differentiation of bacteria, such as
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t
Enterobacteriaceae Family | \n\t\t\tBHI1 + 0.1% yeast extract | \n\t\t\t-(8-Channel Mathus-Meter Bactometer 32) | \n\t\t\t10 4 cell·cm-2\n\t\t\t | \n\t\t\t8-9 | \n\t\t\t[37] | \n\t\t
- | \n\t\t\tBHI1\n\t\t\t | \n\t\t\tGold plated and stainless-steel (Bactometer, 2kHz) | \n\t\t\t105 cell·mL-1\n\t\t\t | \n\t\t\t2,6 | \n\t\t\t[28] | \n\t\t
\n\t\t\t\t | \n\t\t\tTSB2\n\t\t\t | \n\t\t\tStainless steel (Bactometer, 2kHz) | \n\t\t\t105 cell·mL-1\n\t\t\t | \n\t\t\t5-6 | \n\t\t\t[29] | \n\t\t
\n\t\t\t\t | \n\t\t\tTris-Gly3 buffer + dextrose | \n\t\t\tInterdigitated platinum electrodes (11.43 kHz) | \n\t\t\t105 -107 cell·mL-1\n\t\t\t | \n\t\t\t2 | \n\t\t\t[51] | \n\t\t
\n\t\t\t\t | \n\t\t\tTris-Gly3 buffer + dextrose | \n\t\t\tInterdigitated platinum electrodes (11.43 kHz) | \n\t\t\t107 -108 cell·mL-1\n\t\t\t | \n\t\t\t2 | \n\t\t\t[52] | \n\t\t
Coliforms ( | \n\t\t\tSM4\n\t\t\t | \n\t\t\t-(Bactometer, 2kHz) | \n\t\t\t104 cell·mL-1\n\t\t\t | \n\t\t\t5 | \n\t\t\t[42] | \n\t\t
\n\t\t\t\t | \n\t\t\tYPLT5\n\t\t\t | \n\t\t\tInterdigitated electrodes | \n\t\t\t8-8·108 cell·mL-1\n\t\t\t | \n\t\t\t14.7-0.8 | \n\t\t\t[53] | \n\t\t
\n\t\t\t\t | \n\t\t\tSM4\n\t\t\t | \n\t\t\t-(Bac Trac) | \n\t\t\t108 cell·mL-1\n\t\t\t | \n\t\t\t6 | \n\t\t\t[48] | \n\t\t
The use of impedance technique for bacteria determination
1 Brain Heart Infusion broth; 2 Trypticase Soy Broth; 3 Buffer Tris-glicine; 4 Specific Medium; 5 Low conductivity Yeast-Peptone-Lactose-TMAO medium
Impedance microbiological techniques can be used to monitor bacteria viability during growth. Since only live bacteria cells present metabolic activity and are able to produce changes in the conductivity of the medium, impedance microbiology is used for differentiating live and dead cells [51–53]. Kinetics monitoring may give additional information since the impedance growth curves under different conditions are found to be characteristic for different bacteria species. Most applications of the traditional microbiological impedance technique for the detection of bacteria were reviewed by Silley and Forsythe in 1996 [41] and Wawerla et al. in 1999 [54].
Impedance changes associated with metabolic activity of microbial cells are often expressed as the ratio of the reference impedance (medium without bacteria) to the sum of the reference and the sample, resulting in the parameter known as normalized impedance change (NIC):
which is related to microbial growth.
The typical impedance growth curve is presented in Figure 4, where the measured impedance values are graphically plotted in relation to the incubation times.
Microbial impedance growth curve with typical bacterial growth phases showing impedance changes (solid line) and live cell number (dashed line) in time.
To provide detectable changes in the measured impedance, a minimum concentration of microorganisms is needed in the medium. However, these microorganisms replicate and in time reach numbers sufficient to cause a detectable impedance change. This concentration of bacterial cells is defined as a threshold concentration. Thus, the threshold concentration, also called
The time required for the organisms to grow to threshold concentrations is called
the initial concentration of microorganisms;
lag phase (the initial period in which cellular metabolism is accelerated, cells are increasing in size, but the bacteria are not able to replicate);
the generation time of the population of microorganisms (time it takes bacterial to double its concentration)
From this, it follows that if a population of organisms has similar generation times growing in a concrete medium, the detection time can be used to estimate initial concentrations [28, 29].
Metabolic activity measurements can be performed in either direct or indirect ways. In direct measurements, impedance electrodes immersed in the growth medium detect changes of the bacterial metabolism taking place in the bulk of a growth media. Indirect technique, however, detects CO2 produced by microorganisms [51]. In this indirect impedance technique, the CO2 produced due to bacteria biological activity reacts with potassium hydroxide (KOH) solution in a separate chamber. The formation of carbonates causes decrease in the solution conductivity. This technique was first described by Owens et al. [55], and it has been adapted for rapid automated bacterial impedance apparatus in other works [32]. Using this approach, a recent work of Johnson et al. [56] studies the viability of indirect impedance method using a commercial system to study microbial growth in complex food matrices. The ability of the system to detect different microorganisms in different food matrices was clearly demonstrated [56].
In direct measurements, the impedance changes may be produced by two primary sources: microbial metabolism, which alter the conductivity of the medium, and electrode interfacial impedance, changes in the surface properties of the electrodes affecting the capacitance of the electrode/electrolyte interface due to bacteria presence [26, 29, 57]. Thus, the growth of microorganisms usually results in an increase in both conductance and capacitance, causing a decrease in impedance [58]. To account for this, the detection of microbial metabolism by impedance systems is typically conducted by measuring relative or absolute changes in impedance at different frequencies at regular time intervals during the growth of bacteria at a given temperature. From the frequency dependence of the impedance using an appropriate EC, the system conductance/resistance and capacitance may be determined.
Different studies have analyzed the relationship between microbial growth and relative changes in both the capacitive and the resistive parts of impedance showing that both components are indicative of bacterial growth. In low conductivity media, the change in the conductance of the media clearly correlates with bacterial growth, whereas in more conductive media, the relative changes in conductance are smaller in comparison to impedance changes caused by polarization interfacial capacitance, the effect that can also be useful for monitoring bacterial growth [59].
As it was noted, both components can be studied separately by measuring impedance in a different frequency ranges. Various works have demonstrated the predominance at low frequency of electrode surface impedance, while impedance at high frequencies is associated with media conductance effect [60, 61]. However, the frequency range in which certain EC components give the main input into the overall impedance may vary depending on the dimensions of the electrodes and their separation. The differentiation of the impedance effects into electrode/electrolyte interfacial capacitance and medium resistance changes at different frequencies has led to the development of impedance-splitting methods for the detection of bacteria [18].
However, in most of publications on the impedance microbiology, only the conductance of the medium is measured. In this case, impedance always decreases with time, indicating that the microorganisms are consuming growth media substrates of low conductivity metabolizing them into ionic products of higher conductivity [59].
Thus, altogether, changes registered in the microbiological impedance are dependent on bacteria species, the number of microorganisms and properties of the medium in which they are growing in, the frequency of the applied signal, the surface properties and geometry of the measuring electrodes, and the temperature [31].
Since impedance microbiology relies on determining the changes in electrical impedance of a culture medium resulting from the bacterial growth, it depends largely on the design of the growth medium since the culture medium not only supports the bacteria growth but also provides high, noninterfering signals to the overall impedance or its components. Therefore, medium, besides providing the optimum growth, activity, products yield, and morphology of the microorganisms, should contain substrates with low conductivity contribution to the overall conductivity of the medium. In this case, the sensitivity of the impedance detection strongly depends on designing an appropriate culture medium [62]. For this reason, in recent years, much of the research in the field has been directed to find or design selective media with low conductivity [49, 52, 62]. Another important feature of the culture media is its selectivity that gives the main priority for growing only for specific bacteria. In the case of nonselective detection, growth media changes in impedance may be induced by the growth of different bacteria, not only the target microorganism one wants to determine. To solve the problem, selectivity can be provided by using specific culture media designed for certain microbial type by using specific inhibitors such as antibiotics [47].
Recently, Lopez Rodriguez and co-workers [62] designed a specific medium to impedance monitoring of
Much attention has also been paid to miniaturization of impedimetric sensor systems by using microelectronics lithographic techniques to fabricate microelectrodes in order to improve sensitivities or add functionalities. Interdigitated array microelectrodes has been demonstrated as a promise in impedance measurements for monitoring the growth of bacteria since they present advantages in terms of the fast establishment of the steady-state signal, the increased signal-to-noise ratio, and the use of small sample solution volumes [63, 64].
To enhance and facilitate the impedance sensing, microfluidic flow cells can be added to the interdigitated microelectrodes to achieve a fully integrated microchip. This brings different benefits such as high-detection sensitivity, small volume handling, low contamination during bacterial growth, ability to concentrate cells, and rapid detection of small number of cells [64].
With the aim to study whether impedance measurements in the microscale could provide information about the metabolic activity of bacteria, Gomez
Varshney
(A) Calibration curves showing changes in sensor impedance at different concentrations of
It should be noted that most of the bacteria metabolic products are of acidic nature, so that the produced conductivity changes due to ionic products are accompanied by pH changes [25] of the growth media. On this effect, measurements of pH to control the bacteria growth are based [66].
Experiments performed in our research group [67] with
In order to miniaturize the system, an IDEA [11] was used instead of the pH sensor and the reference electrode. Experimental results presented in Figure 5A show that changes of
Thus, this method of measuring impedance using interdigitated microelectrodes at a fix frequency to control the bacterial growth was used for
Summarizing, we may conclude that impedance microbiology, being a useful and well established bacteria control method, finds itself in a new stage of development based on the application of modern technologies oriented on a chip-based method. Advances in microfabrication are allowing the transfer of impedance microbiology to microdevices increasing signal and therefore sensitivity, minimizing sample volume, and reducing assay time [18].
Most of bacteria cells are electrically charged, so due to bacterial cells, immobilization on the electrode surface of impedimetric biosensor variations in electrical impedance may be produced. The bacterial attachment also implies a reduction of the effective electrode area that may affect the charge transfer resistance in faradic impedance measurements. This means that bacterial cells attached to the sensor surface may produce variations in interfacial impedance due to changes in surface conductivity produced by their electrical charge or the surface layer capacitance. Direct label-free impedance method of bacteria detection has gained much interest permitting to reduce substantially the detection time compared with growth-based impedance methods because this methodology is not dependent on cells replication in a culture medium or the production of metabolites [18, 68]. Different kind of electrodes, especially IDEAs, also named as interdigitated array microelectrodes (IDAM), differing in their geometry and immobilization strategies can be used as impedimetric transducers for bacteria detection.
IDEA transducers present promising advantages compared to other impedimetric biosensors as rapid detection kinetics, increase of signal-to-noise ratio, fast establishment of a steady-state response, potential low cost, and ease of miniaturization. Moreover, IDEA eliminates the requirement of a reference electrode compared to three or four electrode systems or potentiometric and amperometric devices. IDEA devices consist of a pair of comblike metal electrodes formed on a planar insulating substrate, in which a series of parallel microband electrodes are connected together by a common bus, forming a set of interdigitating electrode fingers. At present, IDEAs are widely used as impedimetric biosensors for bacterial detection [12].
Parameter designs and materials employed for electrode fabrication are important as they affect the sensitivity and operation of an IDEA. The selection of materials for electrode fabrication depends on the future application, chosen surface modification method, ionic species involved, production costs, and fabrication process. The number of electrode fingers, the spacing between each pairs, and the width, length, or height will determinate the sensitivity of the sensor [69]. Several studies show the importance of geometry for microbiological applications [70]. Bratov et al. [15] developed a transducer for biosensor applications based on a three-dimensional interdigitated electrode array (3D-IDEA) with electrode digits separated by an insulating barrier. This sensor presented considerable improvement in sensitivity compared with a standard planar IDEA design, resulting in a viable option for integrated biosensing applications.
The majority of detection systems in impedimetric biosensors involve a biorecognition element directly immobilized on the electrode surface to react and attach bacterial cells. However, some studies [12] pointed out that when antibodies or another biomolecules with affinity against bacteria are immobilized on the surface of electrode, the functional area of the electrode is not optimally utilized. Moreover, these biosensors show lack of reproducibility as it is difficult to repeatedly achieve the same surface density of biorecognition molecules on the sensor surface. Different strategies of the detection of bacteria without the direct immobilization of biodetection molecules are discussed here.
Varshney and Li [12] suggested the use of biofunctionalized microbeads or nanoparticles as an indirect impedance measurement. The same authors developed a biosensor based on an IDEA coupled with magnetic nanoparticle–antibody conjugates for the rapid and specific detection of
Recent studies of Kanayeva et al. [73] used a preconcentration technique for
Advantages of using microbeads and nanoparticles are based in the separation and concentration of a specific strain of bacteria from the native sample previous to registration process, which permits to reduce the background noise caused by nontarget compounds or other bacteria. Furthermore, in some cases, the surface of the electrodes can be used multiple times because recognition elements are not attached to the sensor surface. However, the increase in number of the detection process steps from the initial sample treatment to the final bacteria detection could result in the sensitivity and reproducibility loss of a biosensor device.
In this field of detection without chemical attachment of a biorecognition element to the sensor surface, our group has recently developed a modified TaSi2 IDEA on a SiO2 substrate to study interactions with bacteria present in a sample solution [74]. Bacteria immobilized on the sensor affect the surface charge and produce changes in the superficial impedance. In the studied case, the sensor surface was chemically modified by a layer-by-layer method [75] with oppositely charged polyelectrolyte layers by alternating polyethyleneimine (PEI) and poly(sodium 4-styrenesulfonate) (PSS).
Despite the satisfactory results obtained, the main drawback of this technique was the nonspecificity of this methodology because all other negatively charged particles that might be present in the sample would adhere to the sensor surface as well. Moreover, the reuse of thus fabricated sensors is very complicated due to a very strong adhesion of PEI polyelectrolyte to silicon dioxide sensor surface. However, in combination with preconcentration and separation techniques mentioned above, this device [74] may be advantageous due to its higher sensitivity.
Most of the studied impedimetric biosensors have been functionalized by the immobilization of biorecognition elements on their surface. A biorecognition element is a biomolecule (antibody, protein, peptide, etc.) with specific affinity that selectively reacts with a specific target analyte [17, 76]. The detection process involves the formation of a complex between the sensing recognition biomolecule and the specific analyte (proteins, nucleic acids, antibodies, antigens, microorganisms, or whole cells). Generally, the electrical properties of the sensor surface are altered by the two components, the biorecognition element in a first phase and the specific target in a second phase.
Different strategies are used to promote the immobilization of the biorecognition element on impedimetric biosensors [7, 17, 77]:
Bioaffinity layers (avidin–biotin system)
Thiol containing self-assembled monolayers (SAMs) on gold
Langmuir–Blodgett films
Chemical grafting through silanization strategies
Thin polymers
Polyelectrolyte films (layer by layer)
The choice of the appropriate immobilization technique depends on the biomolecule nature, reproducibility, cost, and difficulty of immobilization. Immobilized biomolecules have to maintain their active structure, function, high sensitivity and selectivity, fast reaction kinetics, and high stability and not to be desorbed during the use of biosensor. More information on immobilization strategies may be found in a specific review [78].
Previously in Section 2, the main differences between faradic and nonfaradic impedance has been reported. In next sections, impedimetric biosensors functionalized with biorecognition elements attached on electrode surface will be discussed, taking into account whether faradic or nonfaradic processes are responsible for sensitivity.
Immunochemistry is a well-studied and developed area, so the implementation of this technique to different kinds of electrochemical impedimetric biosensors has been widely used in the past years. The major advantage of immunosensors is the specificity and sensitivity of biomolecular interactions between the antibody and the antigen (from a little target molecule to bacteria). Moreover, the advances in production techniques of monoclonal antibodies, genetic engineering, and recombinant antibodies have improved binding-ability and stability on biosensor surfaces [79]. However, the main drawback of antibodies that prevents their widespread use in biosensors is the lack of stability, as many of them lose their activity quite rapidly. A few examples of reported impedimetric immunobiosensors for microbiological applications are discussed later in this section, stressing the impact of sensor geometry and electrodes configurations and their materials, antibodies, and bacteria species detected.
A high number of impedimetric immunobiosensors reported in literature are based on faradic impedance measurements. One of the earliest works on electrochemical impedance spectroscopic biosensors is by Ruan and Yang in 2002 [80], who reported an immunosensor based on a planar IDEA with indium tin-oxide (ITO) electrodes. Anti-
It should be noted that faradic impedance measurements with a redox probe do not use any possible advantages presented by IDEAs, as the charge transfer resistance is not dependent on the electrode geometry and is affected only by the total electrode area [11]. For these measurements, simple plane electrodes can be used as well.
Although
The most important challenge in microbial sensor development is the reduction of the detection limit and detection time. One of the latest publications [84] report
On the other hand, other studies were focused on nonfaradic impedance measurements. Radke and co-workers [85] used an IDEA chip with gold electrodes modified by a 3-mercaptomethyldimethylethoxysilane and a heterobifunctional cross-linker to immobilize antibodies. The reported optimum width and spacing were 3 and 4 µm, respectively. The impedance across the interdigitated electrode was measured after immersing the functionalized biosensor in a peptone solution with
Tan et al. [86] developed a PDMS microfluidic immunosensor integrated with specific antibodies on an alumina nanoporus membrane for the rapid detection of
One of the main problems of immunosensors is the difficulty to reuse the biosensor once bacteria are attached. Single-use disposable sensors are attractive; however, their production cost should be very low, and this typically is not the case. Hence, it is required to find some treatment to remove the sensor surface coating in order to use it several times. Dweik et al. [87] established a cleaning protocol for a biosensor based on a gold interdigitated microelectrodes for the detection of viable
Without any doubt, antibodies are the most widely used bioreceptors in biosensor research and development. However, as it was mentioned, the main problem of the stability of antibodies after the immobilization on a sensor surface remains a challenge as well as short shelf lifetime and decrease of binding efficiency over time [19]. Furthermore, antibodies production and purification costs are an added difficulty. For this reason, there is a permanent search for other biorecognition elements as bioreceptors for biosensing.
Aptamers are short series of single-stranded DNA or RNA oligonucleotides obtained artificially via in vitro process called systematic evolution of ligands exponential enrichment (SELEX) [88]. Aptamers have been used for biosensing applications due to their ability to bind with high selectivity to a specific target molecule. These artificial nucleic acid ligands can be generated against amino acids, proteins, drugs, and other molecules, and they can be applied for the detection of various targets molecules and even whole cells or organisms [12]. The high specificity and affinity to target molecules, the ease of synthesis, and immobilization without compromising their biological activity allows their use as biorecognition elements for bacterial detection. The majority of aptasensors are focused on the detection of protein targets, but recently appeared publications devoted to direct bacterial detection. During the SELEX process, whole microorganisms can be employed as target during aptamer synthesis because of the interesting membrane proteins bound specifically to aptamer [89]. One of principal advantages of this method of aptamer synthesis is the ability to target and specifically differentiate microbial strains without having previous knowledge of the membrane molecules or structural changes present in that particular microorganism [90]. Compared to antibodies, aptamers can be chemically modified and labeled more easily facilitating the functionalization of solid surfaces and nanoparticles and can be used in real samples, which is especially useful for environmental and food control applications. The major disadvantage is probably that DNA and RNA structures are highly sensitive to nuclease degradation, but in biosensing applications, the presence of nucleases is not very common.
The majority of assays with aptamers in impedimetric biosensing applications have been reported in terms of faradic measurements. Labib and co-workers reported impedimetric sensors for bacteria viability and typing [91, 92]. In particular, they developed DNA aptamers against
More recent studies has been focused on developing electrochemical impedimetric biosensors for Salmonella detection using a specific ssDNA aptamer [93]. In this case, the biosensor was based on a glassy carbon electrode modified with graphene oxide and gold nanoparticles. Nanoparticles were used for signal amplification and better biocompatibility to detect biological molecules. The modified electrode was incubated in the presence of Salmonella, and its faradic impedance was measured. The optimal incubation time was determined to be 35 min, while the detection limit obtained was as low as 3 cfu mL–1. Furthermore, the specificity was also compared with different strains of bacteria as
Probably, alluding to advantages mentioned previously, the use of aptamers in biosensing by electrochemical techniques will increase in the subsequent years.
The use of antimicrobial peptides (AMPs) as biorecognition elements for bacterial detection on impedimetric sensors has progressed in recent years. AMPs are a family of biomolecules that are crucial in the innate immune defense of many organisms that display a broad spectrum of activity against gram-negative and gram-positive bacteria. Basically, the antimicrobial activity has been attributed to their capacity to target and disrupt bacterial membranes [94, 95]. First experiments of AMPs for biosensor applications were conducted by Kulagina et al. [96, 97]. They reported two biosensor assays using magainin I as the recognition molecule in the fluorescent-based detection of
Firsts experiments with electrochemical nonfaradic impedance technique with an APM immobilized on IDEAs were done by Mannoor et al. [98] in 2010. They accentuated the high stability of AMPs in harsh environmental conditions, the durability of AMPs immobilized on sensors under natural ambient environment, and their semiselective binding nature to target cells that allows to bind a variety of pathogens [98]. In this case, the AMPs were immobilized on a gold a microcapacitive electrodes via a C-terminal cysteine residue, and the biosensor was exposed to various bacteria concentrations ranging from 103 to 107 cfu mL–1. The variation in impedance change at a fixed frequency of 10 Hz was observed directly proportional to the number of bacterial cells bound to the immobilized AMPs and manifested in a logarithmic increase with serially diluted bacterial concentrations. The detection limit of the device to
Similar studies were conducted by Lillehoj et al. [100], who reported a microfluidic chip for the multiplexed detection of bacterial cells using AMPs. Peptide immobilization on the sensors was made via cysteine–gold interactions, revealing robust surface binding. Samples containing
Other works used interdigitated impedimetric arrays for gram-positive bacteria detection with naturally produced AMPs from class IIa bactericins. Etayash et al. [101] used leucocin A, a representative a class IIa bacteriocin, chemically synthesized and immobilized on interdigitated gold microlelectrodes via C-terminal carboxylic acid of the peptide and free amines of a preattached thiolated linker, as antilisterial microbial peptide. In this case, the authors highlighted the narrow activity spectrum of class IIa bacteriocins with high effectiveness with which they act by receptor-mediated mechanism with the target bacterial cells. In this case, leucocin A was used for the real-time detection of
Finally, Li et al. [102] developed a novel biosensor based on faradic impedance for the detection of
Although the use of antimicrobial peptides in biosensing applications offers a robustness and stability compared to other biorecognition elements such as antibodies, the main drawback of these elements is the low or lack of specificity against different species and especially different bacterial strains. We have mentioned some examples of aptamer biosensors with more affinity for certain species than others, but for real biomedical or biosafety applications, where the identification of pathogenic bacteria causing human diseases is really important, AMPs performance remains a challenge and has to be studied more in detail.
Another kind of biorecognition element described in literature is lectin, a carbohydrate-binding protein or glycoprotein produced by many organisms (from viruses and microorganisms to plants and mammals) that selectively and reversibly react with mono- and oligosaccharides, widely present on bacterial cell surface [103]. The recognition of these carbohydrates on bacteria surface can be used for the specific detection of bacteria. Carbohydrate–protein interaction is much weaker than protein–protein interaction, but these molecules are more stable and smaller than antibodies, and they can neither be denatured easily nor lose their activity [104]. Moreover, the small size of lectins allows to obtain higher densities of carbohydrate-sensing elements on a sensor surface, leading to higher sensitivity and lower nonspecific adsorption [13].
Gamella et al. [105] reported a lectin-based screen-printed gold electrode for the impedimetric detection of bacteria based on faradic impedimetric measurements. In this case, concanavalin A (ConA), a mannose- and glucose-binding lectin, was used as biorecognition element for interaction with carbohydrate of
Other studies have been conducted to detect sulfate-reducing bacteria such as
Recent studies has been performed by our group [74] developing an impedimetric transducer based on an interdigitated electrode where ConA lectin was utilized as a biorecognition element. Nonfaradic processes were monitored through
Despite advantages presented by lectins as biorecognition elements for biosensing applications described previously, some drawbacks have to be mentioned. The inherent disadvantage of lectins is that several lectins can bind different carbohydrates as well as different carbohydrates can bind the same lectin [107]. These properties of lectins reduce significantly the specificity between bacterial species and especially between bacterial strains. Therefore, in bacterial detection where bacterial membrane consists of a series of different carbohydrates and lipopolysaccharides (aside from other components), the specific detection of bacterial species can produce false positive in complex samples.
As a recent alternative, the use of bacteriophages as biorecognition elements has been proposed [108, 109]. Bacteriophages are virus of bacteria that utilize bioreplicative machinery to multiply and bind selectively against outer membrane of the bacterial cell-surface proteins, lipopolysaccharides, pili, and lipoproteins. Therefore, bacteriophages can be used as biorecognition element due to additional properties such as high specificity, low-cost production, long shelf life, and thermostability during handling. Furthermore, metabolic products or intracellular components of bacteria realized by lytic action of phages can be an alternative route for biosensing.
Mejri and co-workers [110] developed a biosensor based on the use of T4 bacteriophage for
Other recent work conducted by Tlili et al. [111] studies a bacteriophage-impedimetric biosensor for the identification and quantification of
Some drawbacks on the use of bacteriophages in biosensing applications have to be mentioned. During lytic process of bacterium, the signal on a biosensor would be lost or significantly affected due to the components released with bacterial cell disruption [112]. Moreover, some studies suggest that phages bound to the sensor lose their bacterial binding capability upon drying because their tail fibers collapse and are unavailable to bind to the bacterial host [113]. In addition, phages have relatively large sizes, which limit their biosensing applications on particular sensor where detection is limited by distance.
Electrochemical biosensors based on impedance detection each year are used more widely due to their high sensitivity and rapid response, which makes this technique extremely useful to detect biological interactions. The detection of pathogenic bacteria using impedance techniques, introduced in this chapter, is an important field that still requires further development.
The detection of bacteria by EIS may be performed in two ways: (1) by the detection of metabolites produced by bacterial growth and involving conductivity changes in the sample and (2) by bacterial detection based on the immobilization of bacteria on electrode surface through biorecognition elements (antibodies, antimicrobial peptides, aptamers, etc.), which is oriented basically on registration of changes in charge transfer resistance (faradic process) and interfacial impedance (nonfaradic process).
The first method is simpler but requires working with low conductivity media and takes longer times. The second method, especially accompanied by some preconcentration technique, may be very fast, selective, and sensitive. Nevertheless, there are still a lot of challenges to be overcome aimed on lower detection limits, shorter detection times, selectivity, and sensitivity. A great help in resolving some of these problems may arrive from using IDEAs. However, analyzing current publications, we may note that there is poor understanding of how biochemical interactions on a sensor surface affect its electrical properties. Without clear knowledge of interfacial chemical processes and their effect on a complex interfacial impedance, it would not be possible to optimize the measurement procedures and sensor geometry, thus improving sensors performance.
Authors acknowledge financial support from Spanish Ministry of Economy and Competitiveness (projects CTQ2014-54553-C3-1-R and CTQ2011-29163-C03-02).
Electrospinning (ES), as a nanotechnology, exhibits strong evolution of materials used across a broad spectrum from bioactive (microorganisms-infused for biomedical applications) to manufacturing (adhesion, proliferation, and differentiation of the mimetic for mechanical, chemical and electrochemical applications) nanofibers [1]. The advent of bioeconomy and innovation technological development presented opportunities for remarkable progress in the expansion of methods and multiple applicability for the electrospun nanofibers. Waste biomass and other recyclable materials are also finding use in ES as an adaptable and sustainable innovative approach for making ultrathin fibers [2]. Valorization of biomass waste materials such as plant biomass, waste plastic, industrial effluent and other waste biomass streams have been processed through various technologies to produce a wide range of higher hierarchical recycled fibrous products. These including biodegradable bio plastic, filtration membranes, nanofibers as macro, micro and nanomaterials. Advancement in innovative ES techniques allows for intrinsic control of the physicochemical factors, including physical (morphology, diameter, orientation); surface (volumetric dispersion, porosity and thickness) and chemical (functional groups) characteristics of the final product [2].
Electrospinning method entails the utilization of voltage to create an electric field, polymer solution of specific concentration and electrospinning pump to introduce the spinneret onto collector plate. The resulting products are electrospun nanofibers characterized by their fibrous morphology, three-dimensional (3D) porous framework, nanoscale and chemical character that enable unique capabilities across multiple fields; which are difficult to create using conventional methods. Thermally induced phase separation nanofibers, and electrospun nanofiber scaffolds, for example, are being developed and are widely regarded as an emerging technology and a potential strategy for biosensing, drug delivery, soft tissue regeneration, hard tissue regeneration, and wound healing. The capacity to alter numerous control aspects of the functional scaffold, such as fiber geometrical features and alignment, architecture, and subsequent material performance, is the technique’s most prominent feature [1]. More importantly, electrospinning allows for the creation of a wide range of novel materials, including polymer alloys, nanoparticles, and active agents.
Nanofiber preparation employing the ES method has proved to be a future-proof materials technology, with numerous appealing characteristics such as outstanding mechanical properties and large specific surface areas. Due to the versatility, utility, and simplicity of the ES technology, the fibers produced are particularly appealing for numerous applications from a simple process capable of producing diverse morphologies [3]. The use of metal organic frameworks (MOFs) due to its flexible and functionalized molecular structures, nanofibers composites were fabricated as a novel molecular system with highly engineered structures for tailored applications. The usage of MOFs/carbon nanofibers (CNFs) as good electrode materials in energy transformation and storage technologies that include supercapacitors, sensors, and electrocatalysts is one of the most basic applications [4].
Electrospinning for materials technology of the future have seen a wide range of innovations of the technology including home-made re-designing of the technology to improve the ES apparatus reproducibility. Thus hybrid electrospun structures on different types of polymers have been developed and optimized to create products for various applications [5]. This chapter explores electrospinning innovation technology and the materials of the future, their properties and characteristics and applications. The focus materials of the future will be products fabricated from recyclable waste biomass materials as a way of valorization for higher hierarchical bioeconomic products.
The ability to tailor structural and morphological aspects of electrospun materials, such as the surface topography of nanofibers, and their porosity that allows enhanced mimicking of the manufactured material matrix, has sparked interest in the ES technology. This is accomplished by the ability to modify the electrospinning assembly in numerous ways in order to combine polymers with a wide range of materials (incorporate active materials such as drugs, inorganic catalysts, growth factors, functional groups and DNA/RNA as necessary in the various applications of the fabricated nanofibers [6]. Figure 1 is a schematic diagram showing a simple set up of the electrospinning system.
Schematic illustration of vertical electrospinning setup [
Mokhtari et al. compared the technical assembly of the electrospraying and the electrospinning systems. This is because the two systems have different mechanisms of performing the fabrication of carbon materials they produce in unique distinct ways as shown in Figure 2. Electrospinning (Figure 2a) supports the formation of micro-scale and in some cases nano-scale fibers while the formation of thin films is facilitated by the electrospraying system (Figure 2b) aids in the formation of thin films [7]. As a result of insufficient polymer-chain entanglements in the polymer chains network, it was discovered that applying a high voltage below the minimum concentration causes electrospraying rather than electrospinning.
(a) Schematic drawing of a typical electrospray setup. (b) Schematic drawing of a typical electrospinning setup.
It was observed that varying the ratio of the polymer solution and the electrospinning potential difference results in the formation of unique materials ranging from beaded carbon deposits, heterogeneous fibers, uniform fibers, and entangled fibers [7]. Advanced efforts to improve electrospinning performance and the quality of the nanofibers while increasing cost-effective productivity of electrospinning and other nanofiber assembly technologies include integration of key concepts of conventional fiber production methods with nanotechnology. Electro-blowing, gas-jet/gas-assisted electrospinning, and solution blowing, which advanced from melt blowing, combined with electro-centrifugal processing, centrifugal spinning, near field electrospinning with dip-pen nanolithography, and XanoShear, which combines shearing with wet spinning, are among the merged electrospinning conceptual technologies [8].
A look into a study of electrospinning as a versatile technique for fibrous material manufacturing in advanced fabrication of the electrospun biopolymer-based biomaterials compared the conventional needle-based and an innovative needless-based electrospinning processes. Figure 3 presents the unique feature of the needless-based ES process is that the polymer solution is positioned in a bath and a high voltage polarized spinning mandrill is immersed into the bath.
Electrospinning setups needle-based (left) and needleless (right) [
When the rotating mandrill comes into contact with the grounded collection electrode, it collects a thin layer of polymer solution, which is subsequently subjected to an electric field. The electrostatic forces of the field at the needle’s tip, or the thin layer of polymer solution at the rotating mandrill, overcome the solution’s surface tension, pushing it to form several or a single Taylor cone, as illustrated in Figure 4. On its way to the collector, the charged polymer jet from the cones is ejected and extended. The solvent evaporates from the solution, weakening the continuous jet of pure polymer and depositing it in a fibrous form on the collector [2].
Needleless roller for electrospinning of polymer solutions.
A needleless mechanism performs the electrospinning of the polymer solution from the surface of a revolving roller. The roller is partially immersed in a tank containing material to be electrospun, as shown in Figure 4. On the roller’s surface, a layer of consistently new material is generated by a rotating roller. When compared to needle electrospinning, the technique produces a large number of Taylor cones on the roller’s surface, resulting in the technology’s industrial applicability in mass manufacture of nanofibers materials [9].
Complex fibrous nanostructures have been prepared through manipulation of many experimental parameters of a multifluid electrospinning process. This is an innovative shift from the traditional single-fluid blending electrospinning process. However, there are difficulties in using multifluid processes, such as compatibility concerns of set up parameters including fluids, rate of stock feed and average proportions, interfacial tensions, and electrospinning sustainability [10]. Mass production of nanofibers using electrospinning was determined through the development of the macromolecular ES principle. The molecular flow in the spinning process, as well as the molecular direction in nanofibers, can be tailored to advance the electronic, and physico-chemical properties of nanofibrous materials, which influence their applications, molecular orientation in nanofibers, and structural hierarchical significance [11]. Several recent methods were developed to manufacture nanofibers using macromolecular ES processes. For example, industrial yarn production processes were only applicable for solution electrospinning via the innovative conceptualized gas-assisted melt ES. (GAME) as shown in Figure 5.
Macromolecular electrospinning equipment showing a possible laminar flow in the suction tube [
The unique characteristic of the innovative technique is the observed occurrence that turbulent air applies a pulling force, subsequently leading to an increase in output and a 10% reduction in melt jet width, with an additional 20-fold thinning when the air jet temperature is increased [12].
Multi-temperature control electrospinning (MTCES) is a practical way to spin molten polymers on a submicron level fiber than the conventional molten/solution ES. The molten precursor polymer was treated to quad-heating regions in the proposed MTCES design: needle, nozzle, rotating area, and collector to augment and regulate fiber size and morphology. The nozzle, spinning thermal parameters and dimensions, electric field, and flow rate of the MTCES are all adjusted to change the fiber diameter [13]. The MTCES setup is depicted in Figure 6. The technical mechanism demonstrates that the jet propagation begins to bend significantly near the collector at 25°C, and at 80°C, a strong melt jet propagation increases the dwelling time of the jet in the rotary region, demonstrating a distinct multi-control ES scheme, which was characterized by extensive preliminary work and models that used the same or similar setup schemes.
The multi-temperature control electrospinning setup showing the multi-heating zone melt electrospinning [
Energy materials have been fabricated by ES techniques as an alternative to fossil fuels and environmental mitigation initiatives. The nanofibrous materials produced by ES are extensively used in electrochemical energy storage devices. This is because the materials have inherent excellent properties, including an increased surface area, high dimensional ratio, good flexibility, high permeability, with several functionalities. A shift from the conventional ES methods saw the development of innovative enhanced ES techniques that produce nanofibers with novel special hierarchical nanostructures [14].
The core-shell structure was chosen because of its distinctive features, which can help to improve the preferred properties. Co-electrospinning creates core-shell fibers by filling two distinct precursor solutions into the double nozzles, as shown in Figure 7 [14].
Scheme for coaxial electrospinning [
The simplicity of setup and low cost, together with the ability to fabricate nanofibers with a wide range of compositions and morphologies, has aided ES technology’s innovative advancement. Electrospinning-created nanofibrous structures provide appealing extracellular matrix conditions for the fixing, migration, and variation of materials matrix, including those giving rise to hard structure regeneration. The creation of structural materials regenerating nanofibers has been utilized by ES technology developments, which include material simulating composite/hybrid configurations and surface functionalization such as mineralization [16].
A special trifluid electrospinning technology was also developed as an innovation to the co-electrospinning process. This advancement provided for complex multi-chamber nanostructures for designing novel functional nanomaterials. The complex structure consisted of a collective shell and two independent openings of a multi-chamber nanostructure, with each having its own unique complex property, and these compartments form a total composite assembly within a region limited by nanofiber diameter. The sheath-separate-core fused nanostructure synchronized the functionalities of the three ES monolithic nanocomposites to afford a smart regulated release profile of a multi-chamber nanostructure, with each chamber characterized by distinct intrinsic complex property, and the structural compartments constituting a whole fused structure inside a section restricted by the diameter of nanofiber as shown in Figure 8 [17].
Designs of the complex spinneret for implementing trifluid electrospinning: (a) a digital image showing a full view of the spinneret; (b) front view; (c) side view; and (d) a diagram about the organization of a structural outlet from three inlets [
Precision electrospinning, enabled by recent improvements in ES technology, is being envisioned as a viable option for fabricating 3D nanofibrous materials with a desired microstructure. Internal access to setup parameters such as solvent and fiber collecting method has increased intrinsic control of final nanofibrous architecture creation mechanism, as shown in Figure 9 [18].
Setup used to form 3D nanofibrous scaffold using a negatively charged electrode or negative ion generator [
Plastic and other waste materials from industrial, domestic and agricultural activities, are the modern scourge on the face of the planet. The global call for re-use and recycle is gaining tremendous recognition with scientist scrambling for innovative ways of using waste materials in the circular economy. Waste biomass has been explored as an alternative source of polymers that may be used in wide range of ES processes targeting specific valorized products. As new materials use emerge and novel materials are electrospun into nanofibers, it is becoming increasingly critical to grasp current breakthroughs in biomass conversion into polymer sources for nanofibrous structures in order to fully exploit their potential. Advancements in waste biomass conversion technologies such as bio digestion, pyrolysis of plastic, and waste agricultural plant biomass wastes into bio oils and other polymers have preceded this.
Biomass is organic substances that is renewable and comprises plants and animals matter and may be combusted for heat or treated into renewable polymeric materials or fuels using a range of technologies. Most of the biomass end up as environmental waste materials that contaminate the land, rivers and oceans. Waste biomass include waste plant materials from crops, animal waste (dung and sewage), industrial waste in the form of effluent coming from industries such as petrochemical, food processing, textile dye effluent, pharmaceutical, and solid waste biomass including plastics, plant residues, (bagasse and other dregs), timber offcuts and sawdust, pulp and paper processing waste etc. These various biomass waste streams may be used as an alternative source of polymeric materials that may be used in electrospinning to produce materials for the future. Three classes of the waste biomass will be discussed namely synthetic waste biomass, natural flora waste biomass and natural fauna-based waste biomass.
Plastic is the largest solid waste biomass on the face of the earth’s surface while textile and pharmaceutical effluent are major synthetic liquid waste biomass. Unless great strides are made to valorize these waste streams and find hierarchical bioeconomic applications of these materials, they will persist in the environment as contaminants. Due to its tunable features, including wettability, surface charge, transparency, elasticity, porosity, and surface to volume proportion, various polymeric fibrous nano materials have been developed as simulated extracellular matrix. Using ES nanofibers of natural polymers (NPs) and synthetic polymers (SPs) as simulated extracellular matrix for tissue regeneration, a comprehensive investigation identified five basic kinds of nanofibrous polymers. NP–NP composites, NP–SP composites, SP–SP composites, cross-linked, and modified polymers with mineral materials are some of the polymers available [19]. Polycaprolactone (PCL), polylactic acid (PLA), poly(lactic-co-glycolic acid) (PLGA), and polyethylene terephthalate (PET) are some of prevalent well-known synthetic polymers [20, 21].
In recent years, a variety of processing technologies have been utilized in the manufacture of polymeric fibrous nano materials, including drawing, 3D printing, template synthesis, phase separation, self-assembly, ES, and so on. Synthetic ES nanofibrous materials processing allows for internal control of the electrospinning mechanism and foster chemical crosslinking to generate covalent connections between polymeric fibers. In either in situ electrospinning or post-spinning crosslinking, this manipulation is done to target qualities of the material of application in which the fibers will be used. Highly porous electrospun nanofibrous membranes, for example, have sparked a lot of interest in water filtering applications. Figure 10 presents some of the common synthetic biomass materials used in ES of nanofibers. The creation of a reduced pore size and its distribution is highly favored by a thicker membrane with a lower mean fiber diameter, albeit the influence of membrane thickness is rather restricted. A high flux microfiltration (MF) sheath was fabricated based on efficient control of the total composite structure containing the electrospun layer thickness of 200 ± 10 m and a mean fiber diameter of 100 ± 20 nm [22].
Synthetic polymers used in electrospinning of nanofibrous materials.
A previous study looked at the spinnibility of various polymers, such as aqueous poly(ethylene oxide) (PEO) dispersed in alcohol-to-water mixtures. Fiber production was found to be possible with viscosities ranging from 1 to 20 poises and superficial tensions of 35−55 dynes/cm. Electrospinning, however, was not feasible at viscosities more than 20 poises due to flow instability produced by the solution’s high cohesiveness [23].
Spongy pomelo peels, rice husk, rice straw, sugar cane bagasse, coffee beans, coconut shells, and peanut shells have all been investigated as alternative sources of carbonaceous materials from biomass. In comparison to other carbonaceous precursors, these and other natural plant/floral biomass resources have grown increasingly appealing due to their availability, low cost, easy accessibility, and environmental friendliness. As a result, floral biomass has gotten a lot of attention in the electrospinning, biomedical, and energy storage fields [24]. Okara, soy pulp, or tofu dregs, for example, is a pulp made up of insoluble components of the soybean that remain after pureed soybeans are filtered for soy milk and tofu manufacture. Recent reviews have reported on the feasibility of ES fibrous nano materials made from a variety of decomposable and biocompatible matter, including natural proteins like floral and faunal collagen, gelatin, silk, chitosan, and alginate [25].
The preparation of the waste floral/plant biomass for ES of nanofibrous materials involves a number of steps that extract plant proteins in the insoluble parts of the waste biomass. Silk fibroin (SF), for example, is made by degumming raw silk fibers twice with a 0.5% (W/W) NaHCO3 base medium at 100°C, over half an hour period followed by rinsing with warm dH2O. At 70°C for 6 h, degummed silk (SF) is dispersed in a ternary aqueous medium of calcium chloride-ethanol-water (1:2:8 in molar ratio). The SF was filtered and lyophilized after 3 days of dialysis using cellulose hollow sheath (250-7u; Sigma) in dH2O to get the regenerated SF sponges. Dispersing the SF sponges in 98% methanoic acid (Aldrich) for 3 h makes SF solutions. The molar quantities of SF solutions for electrospinning range from 3% to 15% by weight [26].
Extracted silk fibroin was used to prepare silk electrospinning as presented in Figure 11. Electrospun SF nanofibers with varied silicon fibroin concentrations of 3%, 6%, 9%, and 12% are shown in SEM micrographs. The most prevalent natural polymers used as ES nanofiber materials include chitosan, collagen, gelatin and silk [20, 21]. Natural polymer nanofibers present distinguished features like biodegradability and biocompatibility, a phenomenon that makes them suitable materials in biological environments. Figure 12 presents some of the abundant natural polymers adapted for ES nanofibers production. Chitin and its over 50% deacetylated derivative, chitosan, for example, are commonly used natural polysaccharides as scaffolds. Blending with other materials are thus required to tailor-make materials with a set of acceptable features and attributes in order to achieve a stronger composite. Chitin/silk fibroin (chitin/SF) nanofibers, for example, were used to make novel ECM scaffolds [27].
SEM micrographs of electrospun SF nanofibers with concentration of (a) 3%, (b) 6%, (c) 9%, and (d) 12% [
Natural polymers used in electrospinning of nanofibrous materials.
Biocompatibility and biological activity are two characteristics of natural polymers. However, these polymers have some drawbacks, such as engineering and processing difficulties due to poor mechanical strength, restricted processing and manufacturing capacities, batch-to-batch variability, and the possibility of pathogen transmission [20]. Collagen and proteoglycans, for example, make up the majority of the body’s natural extracellular matrices (ECMs), which vary in composition depending on tissue type. Nanofibrous scaffolds made of collagen fused with glycosaminoglycans (GAGs), the major constituent of proteoglycans like condroitin sulfates and hyaluronic acid, are suitable for creating a perfect scaffold that mimics the natural ECM. Collagen and GAGs’ utility, on the other hand, has been limited because of their exorbitant price and poor mechanical qualities. In biomedical applications, this phenomenon can be addressed by fusing natural polymers such as proteins polymeric strands and polysaccharides fibrous materials, which can improve biotic transformation of cells and accelerate tissue development [27].
Most of the insoluble floral biomass is in the form of lignocellulosic and chitin material. The success of tapping into the floral biomass as a resource for ES of nanofibrous material depends on the ability to depolymerize the lignin and chitin long polymer chains. It is these polymers that will be used for ES processes to produce electrospun nanofibers. Recently, there has been renewed interest in producing carbon fibers from sustainable cellulosic precursors [28]. The abundance and cost effectiveness of cellulose as a material generator, as well as the relatively ecologically friendly fiber production methods used preceded this interest. Recent research on regenerated cellulose fibers from a fluid crystalline fabrication route as a carbon fiber precursor generated strands with a modulus of 140 GPa for the shell area and 40 GPa for the core area, indicating that CNFs resulting from nano-sized cellulosic precursors are even more competent as physical reinforcement than micron-sized fibers; because of their reduced diameters, providing a greater surface area for bonding and stress transfer [29].
Animal manure, agricultural residues, organic portion of municipal solid garbage, industrial waste biomass, and natural vegetation cycle waste are all examples of enormous amounts of organic waste produced by many sectors. Similarly, fauna waste biomass, primarily in the form of keratin, a durable, fibrous protein found in advanced vertebrates (mammals, birds, and reptiles) and human epithelial cells, has been widely employed in ES for the creation of nanofibrous materials. Millions of tons of keratin-containing biomass are produced by the food business, particularly the meat market, slaughterhouses, and wool manufacturers. These sectors are rapidly expanding, with the United States, Brazil, and China accounting for more than 40 million tons of fauna-based biomass annually [30]. Inadequate management of these organic wastes can harm the environment by polluting water and air, lowering people’s quality of life [31].
If controlled with scientific interventions, organic waste no longer persists as garbage, but instead becomes a rich source of substrate, polymers, and molecules for the production of a variety of value ES nanofibrous products [32]. Detailed studies explored potential applications of the fauna generated organic waste in the production of biogas for energy production. Human waste is disposed of as sewage in the form of biological wastewater. Technological advances unravelled biological wastewater treatment plants (WWTP) as an approach to converting biomass into rich materials for precursor molecules for polymerization in ES nanofibrous material fabrication or for energy production [33]. Fauna waste biomass in the form of dung (Figure 13), piggery or fowl wastewater treatment with purple phototrophic bacteria was explored as a promising platform for electrospinning biomass resource recovery process under optimized operational conditions [34].
Fauna biomass: cow dung is co-digested with sewage for production of gas in an anaerobic bio digester.
It is important to note that fauna waste biomass is a natural phenomenal bio digestive process of converting lignocellulosic and chitin organic biomass and transform it into shorter chains of polysaccharides and other polymeric substrates for ES nanofibrous materials production. Anaerobic bio digestion followed by catalytic polymerization of biogas molecules such as methane, ethane and propane, will produce tailor-made polymeric materials that may be used in electrospinning production of carbon nanofibrous materials. Figure 14 is an advanced industrial scale bio digestion plant for production of biogas.
Sewage treatment plant for gas production.
Bio digestion of fauna waste biomass is a significant alternative supply of materials for electrospinning of nanofibrous materials when modern methods are used. Previous research on bio digestion of fauna waste biomass for methane production found that the influence of pre-treatment results in a substantial increase in gas production of up to 67%, with a 52% methane content in the biogas. As a result, it was determined that pretreatment of both feed and biomass improves biogas output but not methane content [35]. According to recent studies, the valorization of bio or organic waste is being prioritized in order to tackle the rapid accumulation of waste generated from food production activities, as well as to create sustainable feedstock for industrial materials and chemicals in place of fossils and synthetic materials (see Section 3.1). Biogas, compost, and small platform molecules are currently produced from biowaste via anaerobic bio digestion, fermentation, and thermo-chemical methods as shown in Figure 15. There are currently no commercial low-temperature chemical methods for valorizing organic lignin fractions as feedstock for modified compounds. Thus, research has been conducted to fill this technological gap, demonstrating that moderate thermal hydrolysis of municipal bio-waste manure reserve is a safe, environmentally sustainable, and affordable process for transforming lignin-like material from compost into value-added specialty chemicals for the production of ES nanofibrous materials (Figure 15) [37].
Auger/screw pyrolysis reactor concept using heat carrier [
Biomass is a readily available and long-lasting ES material that may be turned into carbon based smart energy storage device and other uses. For carbon nanofiber manufacture, many strategies were used to meet various goals, including an increased productivity, easy dimensional parameters manipulation, energy efficient, and a high turnover. Nonetheless, several critical features of biomass-based fibrous carbon nano materials are yet to be extensively studied, thus information gaps still exist for each process to be supplied. As a result, more research is needed to expand our knowledge of the essential characteristics of various processes in order to generate highly desirable precursor materials for ES fibrous carbon nano materials manufacture from organic matter for sustainable materials manufacturing and energy smart storage applications [38].
An example of fauna waste biomass material rich in extractable materials for ES nanofibers materials is feathers from the poultry industry. Chicken feathers, comprises 90% raw keratin protein and 70% amino acids, can be employed as one of the primary sources for extracting keratin. Keratin is used in a variety of industries, including biotechnology, waste management, cosmetics, and medicine [39]. Waste feathers can be converted into keratin in a cost-effective and environmentally beneficial manner. Keratin is an insoluble protein of the cytoskeletal element with a size of 8–10 nm that belongs to a group known as intermediate filaments (IFs). Keratin is a fibrous protein with a helical structure, as seen in Figure 16, and is the ecosystem’s third most prevalent natural biomass polymer after chitin and cellulose [41].
An α-helix and β-pleated sheet keratin and the molecular structure [
Electrospun fibers fabricated from waste biomass sources has resulted in manufacturability of bioactive electrospun nanofibers and has been reported as potential drug delivery agents [42], wound dressing with antibacterial activity, filtration, cosmetics, protective clothing, electrical applications [43] catalysis [44], food industry [44], facial mask [45], and smart energy storage devices, such as supercapacitors as illustrated in Figure 17.
Applications of nanofibers in different fields for day to day activities.
Natural biopolymer electrospun products are made up of ultrafine fibers that are reusable, nontoxic, biocompatible, biodegradable and antibacterial properties. The fibers have been reported to possess excellent physical and chemical characteristics such as high degrees of crystallinity, aspect ratio, large specific surface area, number of surface hydroxyl groups, thermal resistance and excellent mechanical properties [45, 46]. However, the substantial chemical and energy consumption associated with the isolation of macro-sized fibers to nano-sized fibers creates manufacturing hurdles for waste bioactive electrospun nanofibers [46]. As a result, findings on waste bioactive electrospun nanofibers are still in their infancy in the literature [46].
In the biomedical field, literature reports on manufactured products made from biomass electrospun fibers range from medication delivery agents to biomaterials [42], wound dressing with antibacterial activity, facial mask [45], and tissue regenerative biomedical applications as presented in Figure 18.
Illustration of various applications of bioactive electrospun fibers in the biomedical field [
The ultrafine fibers have been previously reported to result in high-performance filters and applicability in facial masks [45, 47]. Various ultrafine fiber filters have been created that can filter particles larger than 10 nm with excellent efficiency. Spider-web network filters are described in the literature as having a combination of extremely efficient, long-range electrostatic property, low air resistance, and great transparency [45, 47]. Viruses can be blocked by ultrafine fiber filters [47]. Irrespective of the challenges associated with the fabrication of bioactive electrospun fibers products. The choice of polymer used aid in fabricating fibers with antimicrobial activities [45].
Figure 19a presents a typical electrospinning technology. Choice of polymer, concentration, flow rate, needle, and tip-to-collector distance all affect fiber quality. Figure 19b shows various types of electrospun fibers. The structure of a hybrid filter that works as both a filter and a hydrophobic layer is shown in Figure 19c and d.
(a) Scheme of electrospinning technology. (b) Various SEM images of electrospun nanofibers. (c) Scheme of generally utilized masks. (d) The proposed structure of electrospun ultrafine fibrous masks.
Facial masks constructed from electrospun biomass possess key characteristic performance features that has the potential to outcompete with the masks in the market. Advantages of biomass electrospun masks vary from the transparent, reusability, antiviral, degradable smart masks that possess filtration, thermal stability, and water resistance [45]. The facial mask technique has a wide range of possible uses, including filtration systems in water treatment, protective garments, and cosmetics [45].
As a result of the structure and bioactivity of loaded pharmaceuticals remaining unaltered during the spinning process, electrospun drug-delivery agents drew interest. They also reduced in vitro drug burst release and can contain a range of biomolecules [48]. Drug delivery agents fabricated from all forms of cellulose polymer results in drug delivery systems that are hydrophilic, eco-friendly, bio-degradable, and biocompatible [42].
Incorporation of NPs, natural biomass onto the polymer through the electrostatic interaction between their functional groups has a stabilizing effect on NPs [44, 49]. These electrospun catalyst found application in catalysis, supercapacitors, corrosion inhibition, and within the food industry natural polymers [44, 49].
Carbon-based supercapacitors with a large interactive surface and high permeability have sparked interest in natural floral and faunal waste materials, owing to the growing ecological consciousness. Electrospun cellulose-based supercapacitors are still in the laboratory stage, despite their rich carbon abundance of roughly 44%, great stability, and exceptional permeability linked with its hierarchical conformation and exceedingly efficient rigid lateral chains in cellulose [49]. The energy density of cellulose-based supercapacitors is low [49]. Hence the poor electrical performance and cell voltage. Another limitation is time consumption associated with economic factor in the optimization stage of cellulose electrospun mats.
As an alternate technique for increasing the electrochemical properties of lignin/cellulose nanofiber electrodes, creating compound electrode materials with a lignin/cellulose backbone can be used to address these constraints [49, 50]. Literature presented flexibility, wide surface area, outstanding mechanical flexibility, and particularly good electrical conductivity, composite nanofibers and ES activated carbon fiber network (ACFN) as attributes to improved performance. When employed as supercapacitor electrodes, they have a high electrical performance, a phenomenon attributed to their pseudo-capacitance [51, 52]. As a result, ACFNs lignin/cellulose nanofiber composites could be an attractive electrode material for biomass-based flexible supercapacitors [49]. Furthermore, when the electrolyte penetrates the micropores of the electrospun mats, as shown in Figure 20, the characteristics of the electrospun biomass composites can be adjusted, allowing for the wettability feasible with the preferred electrolyte [53].
Supercapacitive cell with thin film-coated carbon powder-based electrodes and free-standing and flexible flexible carbon nanofiber electrodes in conjunction with a polymer electrolyte [
In aqueous electrolytes, heteroatoms have been reported to enhance wettability of carbonaceous surfaces [54]. Lignin has a lot of oxygen functional groups and a lot of active hydrophilic surface. However, biomass-derived ECNF p-doped performed worse relative to the commercial CF. The lower performance could be attributable to the starting material’s higher number of oxygen functional groups. P-doping has been reported to block micro/mesopores, reduce conductivity and electron transport [50]. Jet viscosity of the polymer was not measured, as such further research still has to be done.
As a result, environmentally friendly biomass electrospun fibers with improved performance in working electrochemical devices have demonstrated that the fabrication of future smart energy storage materials will be ecologically viable, providing a completely green alternative to the powering of transportation and conventional storage [50].
The versatility of waste biomass electrospun fibers, as well as their controllable physical and chemical properties, make them a model technique for electrode fabricating and flow media for a variable of smart energy devices, with the ability to reduce mass transport and activate overpotentials, thereby increasing competence [50]. Natural biomass is being used as a polymer of choice because of its capacity to infuse sustainable principles in electrochemical device materials. This also contributes to their capacity to increase the use of renewable electricity through their application [50]. Lignin is a waste by-product derived from natural flora that has been documented to exist in three different types: Different molecular weights and mechanical and thermal stabilities of kraft (KL), ethanol organosolvents (EOL), and phosphoric acid lignin (PL) [50]. For vanadium redox couples, electrospun carbon nanofibers produced from PL and KL at 9 kV demonstrated excellent cyclic voltammetry electrochemical performance. Figure 20 clearly illustrates potential electrical products that can be fabricated from waste biomass electrospun fibers. Redox flow batteries (RFBs), fuel cells, and metal air batteries are some of the potential products shown in Figure 20 [50]. The use of electrospun material in RFBs is still in its infancy and requires further development. Nonetheless, the improved redox couple’s catalytic activity of waste biomass electrospun fibers provides an alternate solution to commercial electrodes’ high overpotential when discharge current density is large [50].
Electrospun fibers made from waste biomass have the potential to be used in redox flow batteries because they form microstructures with large surface areas and mass transport qualities in the electrodes. Similarly, improved biomass electrospun fiber applicability in fuel cells and metal air batteries offers a conductive-advanced structure for the gas diffusion layers that can dope and/or support catalytic nanoparticles, as well as electrochemically active fibers [50].
The advancement of electrospinning (ES) technologies and the industrial production of ES fibrous carbon nano materials to suit or facilitate different bioeconomic uses was aided by technical innovation. It may be inferred that the capacity to change the electrospinning assembly in various ways, in order to combine different materials with a wide variety of properties as well as incorporate active elements, will have a substantial impact on the production of materials in the future. By combining essential concepts from traditional fiber manufacturing techniques with nanotechnology, the performance of electrospinning technology and the quality of nanofibers can be increased. In comparison to other carbonaceous precursors, natural flora and fauna waste biomass for future electrospinning material technology has become increasingly appealing due to its abundance, low cost, easy accessibility, and environmental friendliness. Most of the insoluble floral biomass is in the form of lignocellulosic and chitin material while the soluble biomass is in the form of proteins and polysaccharides. Fauna waste biomass is mainly in the form of keratin. Millions of tons of keratin biomass are produced by industry, particularly the meat market, slaughterhouses, and wool manufacturers. The determination of marketable low thermal chemical procedures to valorize bio and organic waste lignin fractions as feedstock for commercial chemicals will be the focus of future work aimed at advancing electrospinning materials.
Content alerts
",metaTitle:"Content alerts",metaDescription:"Content alerts",metaKeywords:null,canonicalURL:"/page/content-alerts",contentRaw:'[{"type":"htmlEditorComponent","content":"Content alerts
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Content alerts
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13404},{group:"region",caption:"Middle and South America",value:2,count:11681},{group:"region",caption:"Africa",value:3,count:4213},{group:"region",caption:"Asia",value:4,count:22421},{group:"region",caption:"Australia and Oceania",value:5,count:2020},{group:"region",caption:"Europe",value:6,count:33697}],offset:12,limit:12,total:135705},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"11369",title:"RNA Viruses Infection",subtitle:null,isOpenForSubmission:!0,hash:"52f8a3a1486912beae40b34ac557fed3",slug:null,bookSignature:"Ph.D. Yogendra Shah",coverURL:"https://cdn.intechopen.com/books/images_new/11369.jpg",editedByType:null,editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11027",title:"Basics of Hypoglycemia",subtitle:null,isOpenForSubmission:!0,hash:"98ebc1e36d02be82c204b8fd5d24f97a",slug:null,bookSignature:"Dr. Alok Raghav",coverURL:"https://cdn.intechopen.com/books/images_new/11027.jpg",editedByType:null,editors:[{id:"334465",title:"Dr.",name:"Alok",surname:"Raghav",slug:"alok-raghav",fullName:"Alok Raghav"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11124",title:"Next-Generation Textiles",subtitle:null,isOpenForSubmission:!0,hash:"093f9e26bb829b8d414d13626aea1086",slug:null,bookSignature:"Dr. Hassan Ibrahim",coverURL:"https://cdn.intechopen.com/books/images_new/11124.jpg",editedByType:null,editors:[{id:"90645",title:"Dr.",name:"Hassan",surname:"Ibrahim",slug:"hassan-ibrahim",fullName:"Hassan Ibrahim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11610",title:"New Insights in Herbicide Science",subtitle:null,isOpenForSubmission:!0,hash:"eb3830b8176caf3d1fd52c32313c5168",slug:null,bookSignature:"Ph.D. Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/11610.jpg",editedByType:null,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11561",title:"Zeolite From Wastes - New Perspectives on Innovative Resources and Their Valorization Process",subtitle:null,isOpenForSubmission:!0,hash:"3ed0dfd842de9cd1143212415903e6ad",slug:null,bookSignature:"Dr. Claudia Belviso",coverURL:"https://cdn.intechopen.com/books/images_new/11561.jpg",editedByType:null,editors:[{id:"61457",title:"Dr.",name:"Claudia",surname:"Belviso",slug:"claudia-belviso",fullName:"Claudia Belviso"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11814",title:"Liposomes - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"62d8542d18b8cddcf507f7948b2ae74b",slug:null,bookSignature:"Dr. Rajeev K. Tyagi",coverURL:"https://cdn.intechopen.com/books/images_new/11814.jpg",editedByType:null,editors:[{id:"269120",title:"Dr.",name:"Rajeev",surname:"Tyagi",slug:"rajeev-tyagi",fullName:"Rajeev Tyagi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11778",title:"Correctional Facilities and Correctional Treatment - International Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"a933550a6966a04e4677a4c0aea8f5b2",slug:null,bookSignature:"Prof. Rui Abrunhosa Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11778.jpg",editedByType:null,editors:[{id:"198691",title:"Prof.",name:"Rui",surname:"Abrunhosa Gonçalves",slug:"rui-abrunhosa-goncalves",fullName:"Rui Abrunhosa Gonçalves"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11709",title:"Type 1 Diabetes Mellitus",subtitle:null,isOpenForSubmission:!0,hash:"cc0e61f864a2a8a9595f4975ce301f70",slug:null,bookSignature:"Dr. Shilpa Mehta",coverURL:"https://cdn.intechopen.com/books/images_new/11709.jpg",editedByType:null,editors:[{id:"342545",title:"Dr.",name:"Shilpa",surname:"Mehta",slug:"shilpa-mehta",fullName:"Shilpa Mehta"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11889",title:"Sexual Disorders and Dysfunctions",subtitle:null,isOpenForSubmission:!0,hash:"b988fda30a4e2364ee9d47e417bd0ba9",slug:null,bookSignature:"Dr. Dhastagir Sultan Sheriff",coverURL:"https://cdn.intechopen.com/books/images_new/11889.jpg",editedByType:null,editors:[{id:"167875",title:"Dr.",name:"Dhastagir Sultan",surname:"Sheriff",slug:"dhastagir-sultan-sheriff",fullName:"Dhastagir Sultan Sheriff"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11867",title:"Echocardiography",subtitle:null,isOpenForSubmission:!0,hash:"d9159ce31733bf78cc2a79b18c225994",slug:null,bookSignature:"Dr. Gabriel Cismaru",coverURL:"https://cdn.intechopen.com/books/images_new/11867.jpg",editedByType:null,editors:[{id:"191888",title:"Dr.",name:"Gabriel",surname:"Cismaru",slug:"gabriel-cismaru",fullName:"Gabriel Cismaru"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11513",title:"Gas Sensors",subtitle:null,isOpenForSubmission:!0,hash:"8eeb7ab232fa8d5c723b61e0da251857",slug:null,bookSignature:"Dr. Soumen Dhara and Dr. Gorachand Dutta",coverURL:"https://cdn.intechopen.com/books/images_new/11513.jpg",editedByType:null,editors:[{id:"196334",title:"Dr.",name:"Soumen",surname:"Dhara",slug:"soumen-dhara",fullName:"Soumen Dhara"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12107",title:"Contemporary Topics in Patient Safety - Volume 2",subtitle:null,isOpenForSubmission:!0,hash:"3fe674b93710773f0db746ca96d6e048",slug:null,bookSignature:"Dr. Philip Salen and Dr. Stanislaw P. Stawicki",coverURL:"https://cdn.intechopen.com/books/images_new/12107.jpg",editedByType:null,editors:[{id:"217603",title:"Dr.",name:"Philip",surname:"Salen",slug:"philip-salen",fullName:"Philip Salen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:22},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:6},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:15},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:8},{group:"topic",caption:"Engineering",value:11,count:37},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:8},{group:"topic",caption:"Materials Science",value:14,count:15},{group:"topic",caption:"Mathematics",value:15,count:8},{group:"topic",caption:"Medicine",value:16,count:61},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:5},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:240},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3737",title:"MATLAB",subtitle:"Modelling, Programming and Simulations",isOpenForSubmission:!1,hash:null,slug:"matlab-modelling-programming-and-simulations",bookSignature:"Emilson Pereira Leite",coverURL:"https://cdn.intechopen.com/books/images_new/3737.jpg",editors:[{id:"12051",title:"Prof.",name:"Emilson",middleName:null,surname:"Pereira Leite",slug:"emilson-pereira-leite",fullName:"Emilson Pereira Leite"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"1770",title:"Gel Electrophoresis",subtitle:"Principles and Basics",isOpenForSubmission:!1,hash:"279701f6c802cf02deef45103e0611ff",slug:"gel-electrophoresis-principles-and-basics",bookSignature:"Sameh Magdeldin",coverURL:"https://cdn.intechopen.com/books/images_new/1770.jpg",editors:[{id:"123648",title:"Dr.",name:"Sameh",middleName:null,surname:"Magdeldin",slug:"sameh-magdeldin",fullName:"Sameh Magdeldin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4802},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7175,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1981,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2308,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1473,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318571,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271836,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",publishedDate:"July 1st 2013",numberOfDownloads:243450,editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1582,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2082,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",publishedDate:"October 17th 2012",numberOfDownloads:256294,editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8452",title:"Organizational Conflict",subtitle:"New Insights",isOpenForSubmission:!1,hash:"96bdaaba38a7850a7e7379aa5a505748",slug:"organizational-conflict-new-insights",bookSignature:"Josiane Fahed-Sreih",coverURL:"https://cdn.intechopen.com/books/images_new/8452.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"103784",title:"Dr.",name:"Josiane",middleName:null,surname:"Fahed-Sreih",slug:"josiane-fahed-sreih",fullName:"Josiane Fahed-Sreih"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10778",title:"Model-Based Control Engineering",subtitle:"Recent Design and Implementations for Varied Applications",isOpenForSubmission:!1,hash:"e39a567d9b6d2a45d0a1d927362c9005",slug:"model-based-control-engineering-recent-design-and-implementations-for-varied-applications",bookSignature:"Umar Zakir Abdul Hamid and Ahmad `Athif Mohd Faudzi",coverURL:"https://cdn.intechopen.com/books/images_new/10778.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"268173",title:"Dr.",name:"Umar Zakir Abdul",middleName:null,surname:"Hamid",slug:"umar-zakir-abdul-hamid",fullName:"Umar Zakir Abdul Hamid"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10780",title:"Current Trends in Orthodontics",subtitle:null,isOpenForSubmission:!1,hash:"badce0e23eb5176fd653b049d5295c0a",slug:"current-trends-in-orthodontics",bookSignature:"Farid Bourzgui",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"52177",title:"Prof.",name:"Farid",middleName:null,surname:"Bourzgui",slug:"farid-bourzgui",fullName:"Farid Bourzgui"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10793",title:"Molecular Mechanisms in Cancer",subtitle:null,isOpenForSubmission:!1,hash:"3ed2817275edb3de6f5683602314706e",slug:"molecular-mechanisms-in-cancer",bookSignature:"Metin Budak and Rajamanickam Rajkumar",coverURL:"https://cdn.intechopen.com/books/images_new/10793.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"226275",title:"Ph.D.",name:"Metin",middleName:null,surname:"Budak",slug:"metin-budak",fullName:"Metin Budak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11308",title:"Selected Topics on Infant Feeding",subtitle:null,isOpenForSubmission:!1,hash:"213c3e403327a2919eca1dc5e82a0ec3",slug:"selected-topics-on-infant-feeding",bookSignature:"Isam Jaber AL-Zwaini and Haider Hadi AL-Musawi",coverURL:"https://cdn.intechopen.com/books/images_new/11308.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"30993",title:"Prof.",name:"Isam Jaber",middleName:null,surname:"Al-Zwaini",slug:"isam-jaber-al-zwaini",fullName:"Isam Jaber Al-Zwaini"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11331",title:"Secondary Metabolites",subtitle:"Trends and Reviews",isOpenForSubmission:!1,hash:"7d6274f42d5441e537c5fa744bc84523",slug:"secondary-metabolites-trends-and-reviews",bookSignature:"Ramasamy Vijayakumar and Suresh Selvapuram Sudalaimuthu Raja",coverURL:"https://cdn.intechopen.com/books/images_new/11331.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"176044",title:"Dr.",name:"Ramasamy",middleName:null,surname:"Vijayakumar",slug:"ramasamy-vijayakumar",fullName:"Ramasamy Vijayakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10820",title:"Data Clustering",subtitle:null,isOpenForSubmission:!1,hash:"086d299ffd05aacd2311c3ca4ebf0d3a",slug:"data-clustering",bookSignature:"Niansheng Tang",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"221831",title:"Prof.",name:"Niansheng",middleName:null,surname:"Tang",slug:"niansheng-tang",fullName:"Niansheng Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10827",title:"Oral Health Care",subtitle:"An Important Issue of the Modern Society",isOpenForSubmission:!1,hash:"9a0ceb9ced4598aea3f3723f6dc4ea04",slug:"oral-health-care-an-important-issue-of-the-modern-society",bookSignature:"Lavinia Cosmina Ardelean and Laura Cristina Rusu",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"180569",title:"Dr.",name:"Lavinia",middleName:null,surname:"Ardelean",slug:"lavinia-ardelean",fullName:"Lavinia Ardelean"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11139",title:"Geochemistry and Mineral Resources",subtitle:null,isOpenForSubmission:!1,hash:"928cebbdce21d9b3f081267b24f12dfb",slug:"geochemistry-and-mineral-resources",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11139.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1170",title:"Crystallography",slug:"nanotechnology-and-nanomaterials-material-science-crystallography",parent:{id:"208",title:"Material Science",slug:"nanotechnology-and-nanomaterials-material-science"},numberOfBooks:3,numberOfSeries:0,numberOfAuthorsAndEditors:27,numberOfWosCitations:40,numberOfCrossrefCitations:27,numberOfDimensionsCitations:60,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"1170",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9205",title:"Electron Crystallography",subtitle:null,isOpenForSubmission:!1,hash:"9185ce16fc6f5756cf55fe6082f09fab",slug:"electron-crystallography",bookSignature:"Devinder Singh and Simona Condurache-Bota",coverURL:"https://cdn.intechopen.com/books/images_new/9205.jpg",editedByType:"Edited by",editors:[{id:"184180",title:"Dr.",name:"Devinder",middleName:null,surname:"Singh",slug:"devinder-singh",fullName:"Devinder Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8506",title:"Some Aspects of Diamonds in Scientific Research and High Technology",subtitle:null,isOpenForSubmission:!1,hash:"7ab81202ec11afae75334956029ebd31",slug:"some-aspects-of-diamonds-in-scientific-research-and-high-technology",bookSignature:"Evgeniy Lipatov",coverURL:"https://cdn.intechopen.com/books/images_new/8506.jpg",editedByType:"Edited by",editors:[{id:"21254",title:"Mr.",name:"Evgeniy",middleName:null,surname:"Lipatov",slug:"evgeniy-lipatov",fullName:"Evgeniy Lipatov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6638",title:"Handbook of Stillinger-Weber Potential Parameters for Two-Dimensional Atomic Crystals",subtitle:null,isOpenForSubmission:!1,hash:"e174b9329a7cb36d22d4e14768667ac4",slug:"handbook-of-stillinger-weber-potential-parameters-for-two-dimensional-atomic-crystals",bookSignature:"Jin-Wu Jiang and Yu-Ping Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/6638.jpg",editedByType:"Authored by",editors:[{id:"228449",title:"Dr.",name:"Jin-Wu",middleName:null,surname:"Jiang",slug:"jin-wu-jiang",fullName:"Jin-Wu Jiang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}}],booksByTopicTotal:3,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"57994",doi:"10.5772/intechopen.71929",title:"Parameterization of Stillinger-Weber Potential for Two- Dimensional Atomic Crystals",slug:"parameterization-of-stillinger-weber-potential-for-two-dimensional-atomic-crystals",totalDownloads:1803,totalCrossrefCites:19,totalDimensionsCites:40,abstract:"We parametrize the Stillinger-Weber potential for 156 two-dimensional atomic crystals (TDACs). Parameters for the Stillinger-Weber potential are obtained from the valence force field (VFF) model following the analytic approach (Nanotechnology. 2015;26:315706), in which the valence force constants are determined by the phonon spectrum. The Stillinger-Weber potential is an efficient nonlinear interaction and is applicable for numerical simulations of nonlinear physical or mechanical processes. The supplemental resources for all simulations in the present work are available online in http://jiangjinwu.org/sw, including a Fortran code to generate crystals’ structures, files for molecular dynamics simulations using LAMMPS, files for phonon calculations with the Stillinger-Weber potential using GULP, and files for phonon calculations with the valence force field model using GULP.",book:{id:"6638",slug:"handbook-of-stillinger-weber-potential-parameters-for-two-dimensional-atomic-crystals",title:"Handbook of Stillinger-Weber Potential Parameters for Two-Dimensional Atomic Crystals",fullTitle:"Handbook of Stillinger-Weber Potential Parameters for Two-Dimensional Atomic Crystals"},signatures:"Jin-Wu Jiang and Yu-Ping Zhou",authors:[{id:"228449",title:"Dr.",name:"Jin-Wu",middleName:null,surname:"Jiang",slug:"jin-wu-jiang",fullName:"Jin-Wu Jiang"}]},{id:"71414",doi:"10.5772/intechopen.91281",title:"Micro-/Nano-Structuring in Stainless Steels by Metal Forming and Materials Processing",slug:"micro-nano-structuring-in-stainless-steels-by-metal-forming-and-materials-processing",totalDownloads:726,totalCrossrefCites:2,totalDimensionsCites:6,abstract:"Austenitic stainless steel type AISI304 sheets and plates as well as fine-grained type AISI316 (FGSS316) substrates and wires were employed as a work material in the intense rolling, the piercing and the plasma nitriding. AISI304 sheet after intense rolling had textured microstructure in the rolling direction. Crystallographic state changed itself to have distorted polycrystalline state along the shearing plane by piercing, with the strain induced phase transformation. FGSS316 substrates were plasma nitrided at 623 K for 14.4 ks to have two-phase fine nanostructure with the average grain size of 100 nm as a surface layer with the thickness of 30 μm. FGSS316 wires were also plasma nitrided at the same conditions to form the nitrided surface down to the depth of 30 μm. This nitrided wire was further uniaxially loaded in tensile to attain more homogeneously nitrided surface nano-structure and to form the austenitic and martensitic fiber structure aligned in the tensile direction. Each crystallographic structure intrinsic to metals and metallic alloys was tailored to have preferable micro−/nano-structured cells by metal forming and nitrogen supersaturation. The crystallographic change by metal forming in a priori and posterior to nitriding was discussed to find out a new way for materials design.",book:{id:"9205",slug:"electron-crystallography",title:"Electron Crystallography",fullTitle:"Electron Crystallography"},signatures:"Tatsuhiko Aizawa, Tomomi Shiratori and Takafumi Komatsu",authors:[{id:"251217",title:"Prof.",name:"Tatsuhiko",middleName:null,surname:"Aizawa",slug:"tatsuhiko-aizawa",fullName:"Tatsuhiko Aizawa"},{id:"312068",title:"Dr.",name:"Takafumi",middleName:null,surname:"Komatsu",slug:"takafumi-komatsu",fullName:"Takafumi Komatsu"},{id:"313724",title:"Prof.",name:"Tomomi",middleName:null,surname:"Shiratori",slug:"tomomi-shiratori",fullName:"Tomomi Shiratori"}]},{id:"67682",doi:"10.5772/intechopen.86865",title:"Simulation of Diamond Surface Chemistry: Reactivity and Properties",slug:"simulation-of-diamond-surface-chemistry-reactivity-and-properties",totalDownloads:954,totalCrossrefCites:2,totalDimensionsCites:5,abstract:"The diamond material possesses very attractive properties, such as superior electronic properties (when doped), in addition to a controllable surface termination. During the process of diamond synthesis, the resulting chemical properties will depend not only on the adsorbed species but also on the type of substitutional doping element. The combination of adsorbate and dopant will thus have the ability to influence both the chemical and electronic properties of a diamond surface. All resulting (and interesting) properties of doped and terminated diamond surfaces make it clear that these types of material modifications are very important for a variety of applications that are based on photoactivated chemical processes. Theoretical modeling has been shown to act as an important scientific tool in explaining and predicting experimental results. Simulation of the dependence of, e.g. surface termination and doping on diamond material properties, is expected to give important information about various surface electronic properties (like photo-induced surface electrochemistry).",book:{id:"8506",slug:"some-aspects-of-diamonds-in-scientific-research-and-high-technology",title:"Some Aspects of Diamonds in Scientific Research and High Technology",fullTitle:"Some Aspects of Diamonds in Scientific Research and High Technology"},signatures:"Karin Larsson",authors:[{id:"292193",title:"Prof.",name:"Karin",middleName:null,surname:"Larsson",slug:"karin-larsson",fullName:"Karin Larsson"}]},{id:"66249",doi:"10.5772/intechopen.85349",title:"Development, Properties, and Applications of CVD Diamond-Based Heat Sinks",slug:"development-properties-and-applications-of-cvd-diamond-based-heat-sinks",totalDownloads:1112,totalCrossrefCites:1,totalDimensionsCites:3,abstract:"Heat sink is an essential component to nanoelectronics, microelectronics, and optoelectronics applications because it allows the thermal management of devices such as integrated circuits (ICs), microelectromechanical systems (MEMSs), and graphic unit processing. There are different materials being employed for heat sink production. Among them, diamond has stood out due to its excellent chemical and physical properties. This book chapter focuses on the development, properties, and applications of CVD diamond heat sinks. It covers the basic concepts of heat conduction applied to CVD diamond as a heat sink material and its production as freestanding CVD wafers of polycrystalline CVD diamond, since the literature about this topic is extensive, giving the reader a comprehensive overview. We will comprise the use and potential widening of applications of in CVD diamond heat sink technology, providing the reader with a substantial background at the current development of solutions and new frontiers in the practical use of CVD diamond thermal management devices.",book:{id:"8506",slug:"some-aspects-of-diamonds-in-scientific-research-and-high-technology",title:"Some Aspects of Diamonds in Scientific Research and High Technology",fullTitle:"Some Aspects of Diamonds in Scientific Research and High Technology"},signatures:"José Vieira da Silva Neto, Mariana Amorim Fraga and Vladimir Jesus Trava-Airoldi",authors:[{id:"285413",title:"M.Sc.",name:"José",middleName:null,surname:"Vieira",slug:"jose-vieira",fullName:"José Vieira"},{id:"285414",title:"Dr.",name:"Mariana Amorim",middleName:null,surname:"Fraga",slug:"mariana-amorim-fraga",fullName:"Mariana Amorim Fraga"},{id:"285416",title:"Dr.",name:"Vladimir Jesus",middleName:null,surname:"Trava-Airoldi",slug:"vladimir-jesus-trava-airoldi",fullName:"Vladimir Jesus Trava-Airoldi"}]},{id:"72080",doi:"10.5772/intechopen.92212",title:"Transmission Electron Microscopy of Nanomaterials",slug:"transmission-electron-microscopy-of-nanomaterials",totalDownloads:901,totalCrossrefCites:1,totalDimensionsCites:2,abstract:"Structural and analytical characterization, in the nanometer scale, has become very important for all types of materials in recent years. Transmission electron microscope (TEM) is a perfect instrument for this purpose, which is summarized in this chapter. Parameters such as particle size, grain size, lattice type, morphological information, crystallographic details, chemical composition, phase-type, and distribution can be obtained by transmission electron micrographs. Electron diffraction patterns of nanomaterials are also used to acquire quantitative information containing size, phase identification, orientation relationship and crystal defects in the lattice structure, etc. In this chapter, typical electron diffraction, high-resolution transmission and scanning transmission electron microscope imaging in materials research, especially in the study of nanoscience are presented.",book:{id:"9205",slug:"electron-crystallography",title:"Electron Crystallography",fullTitle:"Electron Crystallography"},signatures:"Mohammad Jafari Eskandari, Reza Gostariani and Mohsen Asadi Asadabad",authors:[{id:"176352",title:"Dr.",name:"Mohsen",middleName:null,surname:"Asadi Asadabad",slug:"mohsen-asadi-asadabad",fullName:"Mohsen Asadi Asadabad"},{id:"177600",title:"Dr.",name:"Mohammad",middleName:null,surname:"Jafari Eskandari",slug:"mohammad-jafari-eskandari",fullName:"Mohammad Jafari Eskandari"},{id:"318141",title:"Dr.",name:"Reza",middleName:null,surname:"Gostariani",slug:"reza-gostariani",fullName:"Reza Gostariani"}]}],mostDownloadedChaptersLast30Days:[{id:"70590",title:"Strongly Fluorescent Heterocyclic Molecule: Crystallography, 3D Hydrogen-Bonded, Fluorescence Study and QTAIM/TD-DFT/MESP Theoretical Analysis",slug:"strongly-fluorescent-heterocyclic-molecule-crystallography-3d-hydrogen-bonded-fluorescence-study-and",totalDownloads:521,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"In this chapter we explored the fluorescence properties of the title compound 1–10 phenanthroline hydrate (phh), {(C12N2H8)·H2O}. The structure of phh is stabilized by strong as well as weak intermolecular interactions in the crystal. These interactions O▬H⋯O, O▬H⋯N, C▬H⋯O and C▬H⋯N hold the crystal structure in a three-dimensional network. Optical analysis (fluorescence) was performed on the test compound. The measurements in solvents of different polarities were carried out at ambient temperature (298 K). These results prompted us to investigate some photoluminescence applications for heterocyclic compounds as the sensing of blue-light luminescent materials. The time-dependent density functional theory (TD-DFT) calculations were performed on this compound, with the purpose to identify the origin of absorption and emission band, the nature of the electronic transitions. The atoms in molecules (AIM) theory and orbital analysis and molecular electrostatic potential (MESP) were applied to analyze the electron densities, their properties and the energy diagram of the molecular orbitals. The AIM and MESP analysis have been applied for part B of phh to demonstrate that the O1W▬H11W⋯N1B type of interaction has the strongest hydrogen bond.",book:{id:"9205",slug:"electron-crystallography",title:"Electron Crystallography",fullTitle:"Electron Crystallography"},signatures:"Ouahida Zeghouan, Seifeddine Sellami and Mohamed AbdEsselem Dems",authors:[{id:"308001",title:"Dr.",name:"Ouahida",middleName:null,surname:"Zeghouan",slug:"ouahida-zeghouan",fullName:"Ouahida Zeghouan"}]},{id:"68159",title:"Significance of Diamond as a Cutting Tool in Ultra-Precision Machining Process",slug:"significance-of-diamond-as-a-cutting-tool-in-ultra-precision-machining-process",totalDownloads:935,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"This chapter focuses on the purpose of using diamond as a cutting tool in various ultra-precision machining applications. The complicated structures such as resin and ceramic mold used for making optical lenses are machined by the diamond tool to improve the precision of the finished product. It is difficult to machine hard and brittle materials such as glasses, ceramics, and composites with the assistance of diamond tool due to the complexity in the aspheric surfaces. Moreover, the tool wear is a major problem in machining these hard materials to a fine dimensional accuracy and tolerances. The microscopic defect forms at the cutting edge lead to the damage of the surface finish of the workpiece material. Therefore, the discussions are associated with the achievement of machining hard materials using a diamond tool in ultra-precision applications.",book:{id:"8506",slug:"some-aspects-of-diamonds-in-scientific-research-and-high-technology",title:"Some Aspects of Diamonds in Scientific Research and High Technology",fullTitle:"Some Aspects of Diamonds in Scientific Research and High Technology"},signatures:"P. Suya Prem Anand",authors:[{id:"285029",title:"Dr.",name:"Suya Prem",middleName:null,surname:"Anand P",slug:"suya-prem-anand-p",fullName:"Suya Prem Anand P"}]},{id:"67682",title:"Simulation of Diamond Surface Chemistry: Reactivity and Properties",slug:"simulation-of-diamond-surface-chemistry-reactivity-and-properties",totalDownloads:955,totalCrossrefCites:2,totalDimensionsCites:5,abstract:"The diamond material possesses very attractive properties, such as superior electronic properties (when doped), in addition to a controllable surface termination. During the process of diamond synthesis, the resulting chemical properties will depend not only on the adsorbed species but also on the type of substitutional doping element. The combination of adsorbate and dopant will thus have the ability to influence both the chemical and electronic properties of a diamond surface. All resulting (and interesting) properties of doped and terminated diamond surfaces make it clear that these types of material modifications are very important for a variety of applications that are based on photoactivated chemical processes. Theoretical modeling has been shown to act as an important scientific tool in explaining and predicting experimental results. Simulation of the dependence of, e.g. surface termination and doping on diamond material properties, is expected to give important information about various surface electronic properties (like photo-induced surface electrochemistry).",book:{id:"8506",slug:"some-aspects-of-diamonds-in-scientific-research-and-high-technology",title:"Some Aspects of Diamonds in Scientific Research and High Technology",fullTitle:"Some Aspects of Diamonds in Scientific Research and High Technology"},signatures:"Karin Larsson",authors:[{id:"292193",title:"Prof.",name:"Karin",middleName:null,surname:"Larsson",slug:"karin-larsson",fullName:"Karin Larsson"}]},{id:"67995",title:"Polycrystalline Diamond Characterisations for High End Technologies",slug:"polycrystalline-diamond-characterisations-for-high-end-technologies",totalDownloads:955,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"Characterisations of polycrystalline diamond (PCD) coatings have routinely been done over the past three decades of diamond research, but there is less number of reports on some of its very unique properties. For example, diamond is the hardest known material and, in probing such hard surfaces with any indenter tip, it may lead to damage of the instrument. Due to such chances of experimental accidents, researchers have performed very few attempts in evaluating the mechanical properties of PCDs. In the present work, some of these very special properties of diamond that are less reported in the literature are being re-investigated. PCDs were characterised by photoluminescence (PL), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscope (TEM), and X-ray diffraction (XRD) techniques. The diamond surface was also polished to bring the as-grown micron level of surface roughness (detrimental for wear application) down to few hundreds of nanometer. The tribological properties of such polished and smooth surfaces were found to be appropriate for wear protective coating application. This chapter revisits some of the unreported issues in the synthesis and characterisation of PCD coatings grown on Si wafer by the innovative 915 MHz microwave plasma chemical vapour deposition (MPCVD) technique.",book:{id:"8506",slug:"some-aspects-of-diamonds-in-scientific-research-and-high-technology",title:"Some Aspects of Diamonds in Scientific Research and High Technology",fullTitle:"Some Aspects of Diamonds in Scientific Research and High Technology"},signatures:"Awadesh Kumar Mallik",authors:[{id:"178218",title:"Dr.",name:"Awadesh",middleName:null,surname:"Mallik",slug:"awadesh-mallik",fullName:"Awadesh Mallik"}]},{id:"66249",title:"Development, Properties, and Applications of CVD Diamond-Based Heat Sinks",slug:"development-properties-and-applications-of-cvd-diamond-based-heat-sinks",totalDownloads:1112,totalCrossrefCites:1,totalDimensionsCites:3,abstract:"Heat sink is an essential component to nanoelectronics, microelectronics, and optoelectronics applications because it allows the thermal management of devices such as integrated circuits (ICs), microelectromechanical systems (MEMSs), and graphic unit processing. There are different materials being employed for heat sink production. Among them, diamond has stood out due to its excellent chemical and physical properties. This book chapter focuses on the development, properties, and applications of CVD diamond heat sinks. It covers the basic concepts of heat conduction applied to CVD diamond as a heat sink material and its production as freestanding CVD wafers of polycrystalline CVD diamond, since the literature about this topic is extensive, giving the reader a comprehensive overview. We will comprise the use and potential widening of applications of in CVD diamond heat sink technology, providing the reader with a substantial background at the current development of solutions and new frontiers in the practical use of CVD diamond thermal management devices.",book:{id:"8506",slug:"some-aspects-of-diamonds-in-scientific-research-and-high-technology",title:"Some Aspects of Diamonds in Scientific Research and High Technology",fullTitle:"Some Aspects of Diamonds in Scientific Research and High Technology"},signatures:"José Vieira da Silva Neto, Mariana Amorim Fraga and Vladimir Jesus Trava-Airoldi",authors:[{id:"285413",title:"M.Sc.",name:"José",middleName:null,surname:"Vieira",slug:"jose-vieira",fullName:"José Vieira"},{id:"285414",title:"Dr.",name:"Mariana Amorim",middleName:null,surname:"Fraga",slug:"mariana-amorim-fraga",fullName:"Mariana Amorim Fraga"},{id:"285416",title:"Dr.",name:"Vladimir Jesus",middleName:null,surname:"Trava-Airoldi",slug:"vladimir-jesus-trava-airoldi",fullName:"Vladimir Jesus Trava-Airoldi"}]}],onlineFirstChaptersFilter:{topicId:"1170",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:11,numberOfPublishedChapters:91,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:333,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:11,numberOfPublishedChapters:144,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:124,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:23,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:12,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"23",title:"Education and Human Development",doi:"10.5772/intechopen.100360",issn:null,scope:"\r\n\tEducation and Human Development is an interdisciplinary research area that aims to shed light on topics related to both learning and development. This Series is intended for researchers, practitioners, and students who are interested in understanding more about these fields and their applications.
",coverUrl:"https://cdn.intechopen.com/series/covers/23.jpg",latestPublicationDate:"August 17th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:0,editor:{id:"280770",title:"Dr.",name:"Katherine K.M.",middleName:null,surname:"Stavropoulos",slug:"katherine-k.m.-stavropoulos",fullName:"Katherine K.M. Stavropoulos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRdFuQAK/Profile_Picture_2022-05-24T09:03:48.jpg",biography:"Katherine Stavropoulos received her BA in Psychology from Trinity College, in Connecticut, USA and her Ph.D. in Experimental Psychology from the University of California, San Diego. She completed her postdoctoral work at the Yale Child Study Center with Dr. James McPartland. Dr. Stavropoulos’ doctoral dissertation explored neural correlates of reward anticipation to social versus nonsocial stimuli in children with and without autism spectrum disorders (ASD). She has been a faculty member at the University of California, Riverside in the School of Education since 2016. Her research focuses on translational studies to explore the reward system in ASD, as well as how anxiety contributes to social challenges in ASD. She also investigates how behavioral interventions affect neural activity, behavior, and school performance in children with ASD. She is also involved in the diagnosis of children with ASD and is a licensed clinical psychologist in California. She is the Assistant Director of the SEARCH Center at UCR and is a faculty member in the Graduate Program in Neuroscience.",institutionString:null,institution:{name:"University of California, Riverside",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:2,paginationItems:[{id:"89",title:"Education",coverUrl:"https://cdn.intechopen.com/series_topics/covers/89.jpg",isOpenForSubmission:!1,editor:{id:"260066",title:"Associate Prof.",name:"Michail",middleName:null,surname:"Kalogiannakis",slug:"michail-kalogiannakis",fullName:"Michail Kalogiannakis",profilePictureURL:"https://mts.intechopen.com/storage/users/260066/images/system/260066.jpg",biography:"Michail Kalogiannakis is an Associate Professor of the Department of Preschool Education, University of Crete, and an Associate Tutor at School of Humanities at the Hellenic Open University. He graduated from the Physics Department of the University of Crete and continued his post-graduate studies at the University Paris 7-Denis Diderot (D.E.A. in Didactic of Physics), University Paris 5-René Descartes-Sorbonne (D.E.A. in Science Education) and received his Ph.D. degree at the University Paris 5-René Descartes-Sorbonne (PhD in Science Education). His research interests include science education in early childhood, science teaching and learning, e-learning, the use of ICT in science education, games simulations, and mobile learning. He has published over 120 articles in international conferences and journals and has served on the program committees of numerous international conferences.",institutionString:"University of Crete",institution:{name:"University of Crete",institutionURL:null,country:{name:"Greece"}}},editorTwo:{id:"422488",title:"Dr.",name:"Maria",middleName:null,surname:"Ampartzaki",slug:"maria-ampartzaki",fullName:"Maria Ampartzaki",profilePictureURL:"https://mts.intechopen.com/storage/users/422488/images/system/422488.jpg",biography:"Dr Maria Ampartzaki is an Assistant Professor in Early Childhood Education in the Department of Preschool Education at the University of Crete. Her research interests include ICT in education, science education in the early years, inquiry-based and art-based learning, teachers’ professional development, action research, and the Pedagogy of Multiliteracies, among others. She has run and participated in several funded and non-funded projects on the teaching of Science, Social Sciences, and ICT in education. She also has the experience of participating in five Erasmus+ projects.",institutionString:"University of Crete",institution:{name:"University of Crete",institutionURL:null,country:{name:"Greece"}}},editorThree:null},{id:"90",title:"Human Development",coverUrl:"https://cdn.intechopen.com/series_topics/covers/90.jpg",isOpenForSubmission:!0,editor:{id:"191040",title:"Dr.",name:"Tal",middleName:null,surname:"Dotan Ben-Soussan",slug:"tal-dotan-ben-soussan",fullName:"Tal Dotan Ben-Soussan",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBf1QAG/Profile_Picture_2022-03-18T07:56:11.jpg",biography:"Tal Dotan Ben-Soussan, Ph.D., is the director of the Research Institute for Neuroscience, Education and Didactics (RINED) – Paoletti Foundation. Ben-Soussan leads international studies on training and neuroplasticity from neurophysiological and psychobiological perspectives. As a neuroscientist and bio-psychologist, she has published numerous articles on neuroplasticity, movement and meditation. She acts as an editor and reviewer in several renowned journals and coordinates international conferences integrating theoretical, methodological and practical approaches on various topics, such as silence, logics and neuro-education. She lives in Assisi, Italy.",institutionString:"Research Institute for Neuroscience, Education and Didactics, Patrizio Paoletti Foundation",institution:null},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:12,paginationItems:[{id:"83113",title:"Agoraphobic Dispositions towards Action Research: Teacher Education Students’ Perceptions and Experiences",doi:"10.5772/intechopen.106188",signatures:"Davison Zireva",slug:"agoraphobic-dispositions-towards-action-research-teacher-education-students-perceptions-and-experien",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Davison",surname:"Zireva"}],book:{title:"Active Learning - Research and Practice for STEAM and social sciences education",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"83053",title:"Apologies in L2 French in Canadian Context",doi:"10.5772/intechopen.106557",signatures:"Bernard Mulo Farenkia",slug:"apologies-in-l2-french-in-canadian-context",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Bernard",surname:"Mulo Farenkia"}],book:{title:"Second Language Acquisition - Learning Theories and Recent Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11480.jpg",subseries:{id:"89",title:"Education"}}},{id:"82903",title:"Walking Accessibility to Primary Healthcare Services: An Inequity Factor for Olders in the Lisbon Metropolitan Area (Portugal)",doi:"10.5772/intechopen.106265",signatures:"Eduarda Marques da Costa, Ana Louro, Nuno Marques da Costa, Mariana Dias and Marcela Barata",slug:"walking-accessibility-to-primary-healthcare-services-an-inequity-factor-for-olders-in-the-lisbon-met",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Social Aspects of Ageing - Selected Challenges, Analyses, and Solutions",coverURL:"https://cdn.intechopen.com/books/images_new/11479.jpg",subseries:{id:"90",title:"Human Development"}}},{id:"82622",title:"Contemporary Geographical Gerontology: Reconciling Space and Place in Population Ageing",doi:"10.5772/intechopen.105863",signatures:"Hamish Robertson",slug:"contemporary-geographical-gerontology-reconciling-space-and-place-in-population-ageing",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hamish",surname:"Robertson"}],book:{title:"Social Aspects of Ageing - Selected Challenges, Analyses, and Solutions",coverURL:"https://cdn.intechopen.com/books/images_new/11479.jpg",subseries:{id:"90",title:"Human Development"}}}]},overviewPagePublishedBooks:{paginationCount:0,paginationItems:[]},openForSubmissionBooks:{paginationCount:2,paginationItems:[{id:"12141",title:"Leadership - Advancing Great Leadership Practices and Good Leaders",coverURL:"https://cdn.intechopen.com/books/images_new/12141.jpg",hash:"85f77453916f1d80d80d88ee4fd2f2d1",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 1st 2022",isOpenForSubmission:!0,editors:[{id:"420133",title:"Dr.",name:"Joseph",surname:"Crawford",slug:"joseph-crawford",fullName:"Joseph Crawford"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12139",title:"Global Market and Trade",coverURL:"https://cdn.intechopen.com/books/images_new/12139.jpg",hash:"fa34af07c3a9657fa670404202f8cba5",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 21st 2022",isOpenForSubmission:!0,editors:[{id:"243649",title:"Dr.Ing.",name:"Ireneusz",surname:"Miciuła",slug:"ireneusz-miciula",fullName:"Ireneusz Miciuła"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:21,paginationItems:[{id:"83000",title:"Purine and Pyrimidine Pathways as Antimalarial Targets",doi:"10.5772/intechopen.106468",signatures:"Yacoba V.T. Minnow and Vern L. Schramm",slug:"purine-and-pyrimidine-pathways-as-antimalarial-targets",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Malaria - Recent Advances, and New Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11576.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"83065",title:"Interventions and Practical Approaches to Reduce the Burden of Malaria on School-Aged Children",doi:"10.5772/intechopen.106469",signatures:"Andrew Macnab",slug:"interventions-and-practical-approaches-to-reduce-the-burden-of-malaria-on-school-aged-children",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Andrew",surname:"Macnab"}],book:{title:"Malaria - Recent Advances, and New Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11576.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"82804",title:"Psychiatric Problems in HIV Care",doi:"10.5772/intechopen.106077",signatures:"Seggane Musisi and Noeline Nakasujja",slug:"psychiatric-problems-in-hiv-care",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Future Opportunities and Tools for Emerging Challenges for HIV/AIDS Control",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82827",title:"Epidemiology and Control of Schistosomiasis",doi:"10.5772/intechopen.105170",signatures:"Célestin Kyambikwa Bisangamo",slug:"epidemiology-and-control-of-schistosomiasis",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"New Horizons for Schistosomiasis Research",coverURL:"https://cdn.intechopen.com/books/images_new/10829.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"82817",title:"Perspective Chapter: Microfluidic Technologies for On-Site Detection and Quantification of Infectious Diseases - The Experience with SARS-CoV-2/COVID-19",doi:"10.5772/intechopen.105950",signatures:"Andres Escobar and Chang-qing Xu",slug:"perspective-chapter-microfluidic-technologies-for-on-site-detection-and-quantification-of-infectious",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82667",title:"Perspective Chapter: Analysis of SARS-CoV-2 Indirect Spreading Routes and Possible Countermeasures",doi:"10.5772/intechopen.105914",signatures:"Cesare Saccani, Marco Pellegrini and Alessandro Guzzini",slug:"perspective-chapter-analysis-of-sars-cov-2-indirect-spreading-routes-and-possible-countermeasures",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82559",title:"Perspective Chapter: Bioinformatics Study of the Evolution of SARS-CoV-2 Spike Protein",doi:"10.5772/intechopen.105915",signatures:"Črtomir Podlipnik, Radostina Alexandrova, Sebastian Pleško, Urban Bren and Marko Jukič",slug:"perspective-chapter-bioinformatics-study-of-the-evolution-of-sars-cov-2-spike-protein",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82521",title:"Challenges in Platelet Functions in HIV/AIDS Management",doi:"10.5772/intechopen.105731",signatures:"Gordon Ogweno",slug:"challenges-in-platelet-functions-in-hiv-aids-management",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Future Opportunities and Tools for Emerging Challenges for HIV/AIDS Control",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82701",title:"Pathology of Streptococcal Infections",doi:"10.5772/intechopen.105814",signatures:"Yutaka Tsutsumi",slug:"pathology-of-streptococcal-infections",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Yutaka",surname:"Tsutsumi"}],book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"82634",title:"Bacterial Sexually Transmitted Disease",doi:"10.5772/intechopen.105747",signatures:"Lebeza Alemu Tenaw",slug:"bacterial-sexually-transmitted-disease",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Bacterial Sexually Transmitted Infections - New Findings, Diagnosis, Treatment, and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/11569.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}}]},subseriesFiltersForOFChapters:[{caption:"Fungal Infectious Diseases",value:4,count:1,group:"subseries"},{caption:"Parasitic Infectious Diseases",value:5,count:5,group:"subseries"},{caption:"Bacterial Infectious Diseases",value:3,count:5,group:"subseries"},{caption:"Viral Infectious Diseases",value:6,count:10,group:"subseries"}],publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10843",title:"Persistent Organic Pollutants (POPs)",subtitle:"Monitoring, Impact and Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10843.jpg",slug:"persistent-organic-pollutants-pops-monitoring-impact-and-treatment",publishedDate:"April 13th 2022",editedByType:"Edited by",bookSignature:"Mohamed Nageeb Rashed",hash:"f5b1589f0a990b6114fef2dadc735dd9",volumeInSeries:1,fullTitle:"Persistent Organic Pollutants (POPs) - Monitoring, Impact and Treatment",editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Pollution",value:38,count:1}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1}],authors:{paginationCount:303,paginationItems:[{id:"280338",title:"Dr.",name:"Yutaka",middleName:null,surname:"Tsutsumi",slug:"yutaka-tsutsumi",fullName:"Yutaka Tsutsumi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/280338/images/7961_n.jpg",biography:null,institutionString:null,institution:{name:"Fujita Health University",country:{name:"Japan"}}},{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",biography:"Professor Nima Rezaei obtained an MD from Tehran University of Medical Sciences, Iran. He also obtained an MSc in Molecular and Genetic Medicine, and a Ph.D. in Clinical Immunology and Human Genetics from the University of Sheffield, UK. He also completed a short-term fellowship in Pediatric Clinical Immunology and Bone Marrow Transplantation at Newcastle General Hospital, England. Dr. Rezaei is a Full Professor of Immunology and Vice Dean of International Affairs and Research, at the School of Medicine, Tehran University of Medical Sciences, and the co-founder and head of the Research Center for Immunodeficiencies. He is also the founding president of the Universal Scientific Education and Research Network (USERN). Dr. Rezaei has directed more than 100 research projects and has designed and participated in several international collaborative projects. He is an editor, editorial assistant, or editorial board member of more than forty international journals. He has edited more than 50 international books, presented more than 500 lectures/posters in congresses/meetings, and published more than 1,100 scientific papers in international journals.",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",country:{name:"Iran"}}},{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",biography:"Dr. Jean Engohang-Ndong was born and raised in Gabon. After obtaining his Associate Degree of Science at the University of Science and Technology of Masuku, Gabon, he continued his education in France where he obtained his BS, MS, and Ph.D. in Medical Microbiology. He worked as a post-doctoral fellow at the Public Health Research Institute (PHRI), Newark, NJ for four years before accepting a three-year faculty position at Brigham Young University-Hawaii. Dr. Engohang-Ndong is a tenured faculty member with the academic rank of Full Professor at Kent State University, Ohio, where he teaches a wide range of biological science courses and pursues his research in medical and environmental microbiology. Recently, he expanded his research interest to epidemiology and biostatistics of chronic diseases in Gabon.",institutionString:"Kent State University",institution:{name:"Kent State University",country:{name:"United States of America"}}},{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",biography:"Emmanuel Drouet, PharmD, is a Professor of Virology at the Faculty of Pharmacy, the University Grenoble-Alpes, France. As a head scientist at the Institute of Structural Biology in Grenoble, Dr. Drouet’s research investigates persisting viruses in humans (RNA and DNA viruses) and the balance with our host immune system. He focuses on these viruses’ effects on humans (both their impact on pathology and their symbiotic relationships in humans). He has an excellent track record in the herpesvirus field, and his group is engaged in clinical research in the field of Epstein-Barr virus diseases. He is the editor of the online Encyclopedia of Environment and he coordinates the Universal Health Coverage education program for the BioHealth Computing Schools of the European Institute of Science.",institutionString:null,institution:{name:"Grenoble Alpes University",country:{name:"France"}}},{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},{id:"332819",title:"Dr.",name:"Chukwudi Michael",middleName:"Michael",surname:"Egbuche",slug:"chukwudi-michael-egbuche",fullName:"Chukwudi Michael Egbuche",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/332819/images/14624_n.jpg",biography:"I an Dr. Chukwudi Michael Egbuche. I am a Senior Lecturer in the Department of Parasitology and Entomology, Nnamdi Azikiwe University, Awka.",institutionString:null,institution:{name:"Nnamdi Azikiwe University",country:{name:"Nigeria"}}},{id:"284232",title:"Mr.",name:"Nikunj",middleName:"U",surname:"Tandel",slug:"nikunj-tandel",fullName:"Nikunj Tandel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/284232/images/8275_n.jpg",biography:'Mr. Nikunj Tandel has completed his Master\'s degree in Biotechnology from VIT University, India in the year of 2012. He is having 8 years of research experience especially in the field of malaria epidemiology, immunology, and nanoparticle-based drug delivery system against the infectious diseases, autoimmune disorders and cancer. He has worked for the NIH funded-International Center of Excellence in Malaria Research project "Center for the study of complex malaria in India (CSCMi)" in collaboration with New York University. The preliminary objectives of the study are to understand and develop the evidence-based tools and interventions for the control and prevention of malaria in different sites of the INDIA. Alongside, with the help of next-generation genomics study, the team has studied the antimalarial drug resistance in India. Further, he has extended his research in the development of Humanized mice for the study of liver-stage malaria and identification of molecular marker(s) for the Artemisinin resistance. At present, his research focuses on understanding the role of B cells in the activation of CD8+ T cells in malaria. Received the CSIR-SRF (Senior Research Fellow) award-2018, FIMSA (Federation of Immunological Societies of Asia-Oceania) Travel Bursary award to attend the IUIS-IIS-FIMSA Immunology course-2019',institutionString:"Nirma University",institution:{name:"Nirma University",country:{name:"India"}}},{id:"334383",title:"Ph.D.",name:"Simone",middleName:"Ulrich",surname:"Ulrich Picoli",slug:"simone-ulrich-picoli",fullName:"Simone Ulrich Picoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334383/images/15919_n.jpg",biography:"Graduated in Pharmacy from Universidade Luterana do Brasil (1999), Master in Agricultural and Environmental Microbiology from Federal University of Rio Grande do Sul (2002), Specialization in Clinical Microbiology from Universidade de São Paulo, USP (2007) and PhD in Sciences in Gastroenterology and Hepatology (2012). She is currently an Adjunct Professor at Feevale University in Medicine and Biomedicine courses and a permanent professor of the Academic Master\\'s Degree in Virology. She has experience in the field of Microbiology, with an emphasis on Bacteriology, working mainly on the following topics: bacteriophages, bacterial resistance, clinical microbiology and food microbiology.",institutionString:null,institution:{name:"Universidade Feevale",country:{name:"Brazil"}}},{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",biography:"Dr. Amjad Islam Aqib obtained a DVM and MSc (Hons) from University of Agriculture Faisalabad (UAF), Pakistan, and a PhD from the University of Veterinary and Animal Sciences Lahore, Pakistan. Dr. Aqib joined the Department of Clinical Medicine and Surgery at UAF for one year as an assistant professor where he developed a research laboratory designated for pathogenic bacteria. Since 2018, he has been Assistant Professor/Officer in-charge, Department of Medicine, Manager Research Operations and Development-ORIC, and President One Health Club at Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan. He has nearly 100 publications to his credit. His research interests include epidemiological patterns and molecular analysis of antimicrobial resistance and modulation and vaccine development against animal pathogens of public health concern.",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:{name:"University of Agriculture Faisalabad",country:{name:"Pakistan"}}},{id:"333753",title:"Dr.",name:"Rais",middleName:null,surname:"Ahmed",slug:"rais-ahmed",fullName:"Rais Ahmed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/333753/images/20168_n.jpg",biography:null,institutionString:null,institution:{name:"University of Agriculture Faisalabad",country:{name:"Pakistan"}}},{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",biography:"Professor Fethi Derbel was born in 1960 in Tunisia. He received his medical degree from the Sousse Faculty of Medicine at Sousse, University of Sousse, Tunisia. He completed his surgical residency in General Surgery at the University Hospital Farhat Hached of Sousse and was a member of the Unit of Liver Transplantation in the University of Rennes, France. He then worked in the Department of Surgery at the Sahloul University Hospital in Sousse. Professor Derbel is presently working at the Clinique les Oliviers, Sousse, Tunisia. His hospital activities are mostly concerned with laparoscopic, colorectal, pancreatic, hepatobiliary, and gastric surgery. He is also very interested in hernia surgery and performs ventral hernia repairs and inguinal hernia repairs. He has been a member of the GREPA and Tunisian Hernia Society (THS). During his residency, he managed patients suffering from diabetic foot, and he was very interested in this pathology. For this reason, he decided to coordinate a book project dealing with the diabetic foot. Professor Derbel has published many articles in journals and collaborates intensively with IntechOpen Access Publisher as an editor.",institutionString:"Clinique les Oliviers",institution:null},{id:"300144",title:"Dr.",name:"Meriem",middleName:null,surname:"Braiki",slug:"meriem-braiki",fullName:"Meriem Braiki",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/300144/images/system/300144.jpg",biography:"Dr. Meriem Braiki is a specialist in pediatric surgeon from Tunisia. She was born in 1985. She received her medical degree from the University of Medicine at Sousse, Tunisia. She achieved her surgical residency training periods in Pediatric Surgery departments at University Hospitals in Monastir, Tunis and France.\r\nShe is currently working at the Pediatric surgery department, Sidi Bouzid Hospital, Tunisia. Her hospital activities are mostly concerned with laparoscopic, parietal, urological and digestive surgery. She has published several articles in diffrent journals.",institutionString:"Sidi Bouzid Regional Hospital",institution:null},{id:"229481",title:"Dr.",name:"Erika M.",middleName:"Martins",surname:"de Carvalho",slug:"erika-m.-de-carvalho",fullName:"Erika M. de Carvalho",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229481/images/6397_n.jpg",biography:null,institutionString:null,institution:{name:"Oswaldo Cruz Foundation",country:{name:"Brazil"}}},{id:"186537",title:"Prof.",name:"Tonay",middleName:null,surname:"Inceboz",slug:"tonay-inceboz",fullName:"Tonay Inceboz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/186537/images/system/186537.jfif",biography:"I was graduated from Ege University of Medical Faculty (Turkey) in 1988 and completed his Med. PhD degree in Medical Parasitology at the same university. I became an Associate Professor in 2008 and Professor in 2014. I am currently working as a Professor at the Department of Medical Parasitology at Dokuz Eylul University, Izmir, Turkey.\n\nI have given many lectures, presentations in different academic meetings. I have more than 60 articles in peer-reviewed journals, 18 book chapters, 1 book editorship.\n\nMy research interests are Echinococcus granulosus, Echinococcus multilocularis (diagnosis, life cycle, in vitro and in vivo cultivation), and Trichomonas vaginalis (diagnosis, PCR, and in vitro cultivation).",institutionString:"Dokuz Eylül University",institution:{name:"Dokuz Eylül University",country:{name:"Turkey"}}},{id:"71812",title:"Prof.",name:"Hanem Fathy",middleName:"Fathy",surname:"Khater",slug:"hanem-fathy-khater",fullName:"Hanem Fathy Khater",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/71812/images/1167_n.jpg",biography:"Prof. Khater is a Professor of Parasitology at Benha University, Egypt. She studied for her doctoral degree, at the Department of Entomology, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, USA. She has completed her Ph.D. degrees in Parasitology in Egypt, from where she got the award for “the best scientific Ph.D. dissertation”. She worked at the School of Biological Sciences, Bristol, England, the UK in controlling insects of medical and veterinary importance as a grant from Newton Mosharafa, the British Council. Her research is focused on searching of pesticides against mosquitoes, house flies, lice, green bottle fly, camel nasal botfly, soft and hard ticks, mites, and the diamondback moth as well as control of several parasites using safe and natural materials to avoid drug resistances and environmental contamination.",institutionString:null,institution:{name:"Banha University",country:{name:"Egypt"}}},{id:"99780",title:"Prof.",name:"Omolade",middleName:"Olayinka",surname:"Okwa",slug:"omolade-okwa",fullName:"Omolade Okwa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/99780/images/system/99780.jpg",biography:"Omolade Olayinka Okwa is presently a Professor of Parasitology at Lagos State University, Nigeria. She has a PhD in Parasitology (1997), an MSc in Cellular Parasitology (1992), and a BSc (Hons) Zoology (1990) all from the University of Ibadan, Nigeria. She teaches parasitology at the undergraduate and postgraduate levels. She was a recipient of a Commonwealth fellowship supported by British Council tenable at the Centre for Entomology and Parasitology (CAEP), Keele University, United Kingdom between 2004 and 2005. She was awarded an Honorary Visiting Research Fellow at the same university from 2005 to 2007. \nShe has been an external examiner to the Department of Veterinary Microbiology and Parasitology, University of Ibadan, MSc programme between 2010 and 2012. She is a member of the Nigerian Society of Experimental Biology (NISEB), Parasitology and Public Health Society of Nigeria (PPSN), Science Association of Nigeria (SAN), Zoological Society of Nigeria (ZSN), and is Vice Chairperson of the Organisation of Women in Science (OWSG), LASU chapter. She served as Head of Department of Zoology and Environmental Biology, Lagos State University from 2007 to 2010 and 2014 to 2016. She is a reviewer for several local and international journals such as Unilag Journal of Science, Libyan Journal of Medicine, Journal of Medicine and Medical Sciences, and Annual Research and Review in Science. \nShe has authored 45 scientific research publications in local and international journals, 8 scientific reviews, 4 books, and 3 book chapters, which includes the books “Malaria Parasites” and “Malaria” which are IntechOpen access publications.",institutionString:"Lagos State University",institution:{name:"Lagos State University",country:{name:"Nigeria"}}},{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/273100/images/system/273100.jpeg",biography:"Dr. Vijay Bhaskar Reddy Gayam is currently practicing as an internist at Interfaith Medical Center in Brooklyn, New York, USA. He is also a Clinical Assistant Professor at the SUNY Downstate University Hospital and Adjunct Professor of Medicine at the American University of Antigua. He is a holder of an M.B.B.S. degree bestowed to him by Osmania Medical College and received his M.D. at Interfaith Medical Center. His career goals thus far have heavily focused on direct patient care, medical education, and clinical research. He currently serves in two leadership capacities; Assistant Program Director of Medicine at Interfaith Medical Center and as a Councilor for the American\r\nFederation for Medical Research. As a true academician and researcher, he has more than 50 papers indexed in international peer-reviewed journals. He has also presented numerous papers in multiple national and international scientific conferences. His areas of research interest include general internal medicine, gastroenterology and hepatology. He serves as an editor, editorial board member and reviewer for multiple international journals. His research on Hepatitis C has been very successful and has led to multiple research awards, including the 'Equity in Prevention and Treatment Award” from the New York Department of Health Viral Hepatitis Symposium (2018) and the 'Presidential Poster Award” awarded to him by the American College of Gastroenterology (2018). He was also awarded 'Outstanding Clinician in General Medicine” by Venus International Foundation for his extensive research expertise and services, perform over and above the standard expected in the advancement of healthcare, patient safety and quality of care.",institutionString:"Interfaith Medical Center",institution:{name:"Interfaith Medical Center",country:{name:"United States of America"}}},{id:"93517",title:"Dr.",name:"Clement",middleName:"Adebajo",surname:"Meseko",slug:"clement-meseko",fullName:"Clement Meseko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/93517/images/system/93517.jpg",biography:"Dr. Clement Meseko obtained DVM and PhD degree in Veterinary Medicine and Virology respectively. He has worked for over 20 years in both private and public sectors including the academia, contributing to knowledge and control of infectious disease. Through the application of epidemiological skill, classical and molecular virological skills, he investigates viruses of economic and public health importance for the mitigation of the negative impact on people, animal and the environment in the context of Onehealth. \r\nDr. Meseko’s field experience on animal and zoonotic diseases and pathogen dynamics at the human-animal interface over the years shaped his carrier in research and scientific inquiries. He has been part of the investigation of Highly Pathogenic Avian Influenza incursions in sub Saharan Africa and monitors swine Influenza (Pandemic influenza Virus) agro-ecology and potential for interspecies transmission. He has authored and reviewed a number of journal articles and book chapters.",institutionString:"National Veterinary Research Institute",institution:{name:"National Veterinary Research Institute",country:{name:"Nigeria"}}},{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",country:{name:"India"}}},{id:"94928",title:"Dr.",name:"Takuo",middleName:null,surname:"Mizukami",slug:"takuo-mizukami",fullName:"Takuo Mizukami",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94928/images/6402_n.jpg",biography:null,institutionString:null,institution:{name:"National Institute of Infectious Diseases",country:{name:"Japan"}}},{id:"233433",title:"Dr.",name:"Yulia",middleName:null,surname:"Desheva",slug:"yulia-desheva",fullName:"Yulia Desheva",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/233433/images/system/233433.png",biography:"Dr. Yulia Desheva is a leading researcher at the Institute of Experimental Medicine, St. Petersburg, Russia. She is a professor in the Stomatology Faculty, St. Petersburg State University. She has expertise in the development and evaluation of a wide range of live mucosal vaccines against influenza and bacterial complications. Her research interests include immunity against influenza and COVID-19 and the development of immunization schemes for high-risk individuals.",institutionString:'Federal State Budgetary Scientific Institution "Institute of Experimental Medicine"',institution:null},{id:"238958",title:"Mr.",name:"Atamjit",middleName:null,surname:"Singh",slug:"atamjit-singh",fullName:"Atamjit Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/238958/images/6575_n.jpg",biography:null,institutionString:null,institution:null},{id:"252058",title:"M.Sc.",name:"Juan",middleName:null,surname:"Sulca",slug:"juan-sulca",fullName:"Juan Sulca",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252058/images/12834_n.jpg",biography:null,institutionString:null,institution:null},{id:"191392",title:"Dr.",name:"Marimuthu",middleName:null,surname:"Govindarajan",slug:"marimuthu-govindarajan",fullName:"Marimuthu Govindarajan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/191392/images/5828_n.jpg",biography:"Dr. M. Govindarajan completed his BSc degree in Zoology at Government Arts College (Autonomous), Kumbakonam, and MSc, MPhil, and PhD degrees at Annamalai University, Annamalai Nagar, Tamil Nadu, India. He is serving as an assistant professor at the Department of Zoology, Annamalai University. His research interests include isolation, identification, and characterization of biologically active molecules from plants and microbes. He has identified more than 20 pure compounds with high mosquitocidal activity and also conducted high-quality research on photochemistry and nanosynthesis. He has published more than 150 studies in journals with impact factor and 2 books in Lambert Academic Publishing, Germany. He serves as an editorial board member in various national and international scientific journals.",institutionString:null,institution:null},{id:"274660",title:"Dr.",name:"Damodar",middleName:null,surname:"Paudel",slug:"damodar-paudel",fullName:"Damodar Paudel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274660/images/8176_n.jpg",biography:"I am DrDamodar Paudel,currently working as consultant Physician in Nepal police Hospital.",institutionString:null,institution:null},{id:"241562",title:"Dr.",name:"Melvin",middleName:null,surname:"Sanicas",slug:"melvin-sanicas",fullName:"Melvin Sanicas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241562/images/6699_n.jpg",biography:null,institutionString:null,institution:null},{id:"117248",title:"Dr.",name:"Andrew",middleName:null,surname:"Macnab",slug:"andrew-macnab",fullName:"Andrew Macnab",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of British Columbia",country:{name:"Canada"}}},{id:"322007",title:"Dr.",name:"Maria Elizbeth",middleName:null,surname:"Alvarez-Sánchez",slug:"maria-elizbeth-alvarez-sanchez",fullName:"Maria Elizbeth Alvarez-Sánchez",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",country:{name:"Mexico"}}},{id:"337443",title:"Dr.",name:"Juan",middleName:null,surname:"A. Gonzalez-Sanchez",slug:"juan-a.-gonzalez-sanchez",fullName:"Juan A. Gonzalez-Sanchez",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Puerto Rico System",country:{name:"United States of America"}}},{id:"337446",title:"Dr.",name:"Maria",middleName:null,surname:"Zavala-Colon",slug:"maria-zavala-colon",fullName:"Maria Zavala-Colon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Puerto Rico, Medical Sciences Campus",country:{name:"United States of America"}}}]}},subseries:{item:{id:"5",type:"subseries",title:"Parasitic Infectious Diseases",keywords:"Blood Borne Parasites, Intestinal Parasites, Protozoa, Helminths, Arthropods, Water Born Parasites, Epidemiology, Molecular Biology, Systematics, Genomics, Proteomics, Ecology",scope:"Parasitic diseases have evolved alongside their human hosts. In many cases, these diseases have adapted so well that they have developed efficient resilience methods in the human host and can live in the host for years. Others, particularly some blood parasites, can cause very acute diseases and are responsible for millions of deaths yearly. Many parasitic diseases are classified as neglected tropical diseases because they have received minimal funding over recent years and, in many cases, are under-reported despite the critical role they play in morbidity and mortality among human and animal hosts. The current topic, Parasitic Infectious Diseases, in the Infectious Diseases Series aims to publish studies on the systematics, epidemiology, molecular biology, genomics, pathogenesis, genetics, and clinical significance of parasitic diseases from blood borne to intestinal parasites as well as zoonotic parasites. We hope to cover all aspects of parasitic diseases to provide current and relevant research data on these very important diseases. In the current atmosphere of the Coronavirus pandemic, communities around the world, particularly those in different underdeveloped areas, are faced with the growing challenges of the high burden of parasitic diseases. At the same time, they are faced with the Covid-19 pandemic leading to what some authors have called potential syndemics that might worsen the outcome of such infections. Therefore, it is important to conduct studies that examine parasitic infections in the context of the coronavirus pandemic for the benefit of all communities to help foster more informed decisions for the betterment of human and animal health.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11401,editor:{id:"67907",title:"Dr.",name:"Amidou",middleName:null,surname:"Samie",slug:"amidou-samie",fullName:"Amidou Samie",profilePictureURL:"https://mts.intechopen.com/storage/users/67907/images/system/67907.jpg",biography:"Dr. Amidou Samie is an Associate Professor of Microbiology at the University of Venda, in South Africa, where he graduated for his PhD in May 2008. He joined the Department of Microbiology the same year and has been giving lectures on topics covering parasitology, immunology, molecular biology and industrial microbiology. He is currently a rated researcher by the National Research Foundation of South Africa at category C2. He has published widely in the field of infectious diseases and has overseen several MSc’s and PhDs. His research activities mostly cover topics on infectious diseases from epidemiology to control. His particular interest lies in the study of intestinal protozoan parasites and opportunistic infections among HIV patients as well as the potential impact of childhood diarrhoea on growth and child development. He also conducts research on water-borne diseases and water quality and is involved in the evaluation of point-of-use water treatment technologies using silver and copper nanoparticles in collaboration with the University of Virginia, USA. He also studies the use of medicinal plants for the control of infectious diseases as well as antimicrobial drug resistance.",institutionString:null,institution:{name:"University of Venda",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null,series:{id:"6",title:"Infectious Diseases",doi:"10.5772/intechopen.71852",issn:"2631-6188"},editorialBoard:[{id:"188881",title:"Dr.",name:"Fernando José",middleName:null,surname:"Andrade-Narváez",slug:"fernando-jose-andrade-narvaez",fullName:"Fernando José Andrade-Narváez",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRIV7QAO/Profile_Picture_1628834308121",institutionString:null,institution:{name:"Autonomous University of Yucatán",institutionURL:null,country:{name:"Mexico"}}},{id:"269120",title:"Dr.",name:"Rajeev",middleName:"K.",surname:"Tyagi",slug:"rajeev-tyagi",fullName:"Rajeev Tyagi",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRaBqQAK/Profile_Picture_1644331884726",institutionString:"CSIR - Institute of Microbial Technology, India",institution:null},{id:"336849",title:"Prof.",name:"Ricardo",middleName:null,surname:"Izurieta",slug:"ricardo-izurieta",fullName:"Ricardo Izurieta",profilePictureURL:"https://mts.intechopen.com/storage/users/293169/images/system/293169.png",institutionString:null,institution:{name:"University of South Florida",institutionURL:null,country:{name:"United States of America"}}}]},onlineFirstChapters:{paginationCount:10,paginationItems:[{id:"82112",title:"Comparative Senescence and Lifespan",doi:"10.5772/intechopen.105137",signatures:"Hassan M. Heshmati",slug:"comparative-senescence-and-lifespan",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hassan M.",surname:"Heshmati"}],book:{title:"Mechanisms and Management of Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81796",title:"Apoptosis-Related Diseases and Peroxisomes",doi:"10.5772/intechopen.105052",signatures:"Meimei Wang, Yakun Liu, Ni Chen, Juan Wang and Ye Zhao",slug:"apoptosis-related-diseases-and-peroxisomes",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81723",title:"Peroxisomal Modulation as Therapeutic Alternative for Tackling Multiple Cancers",doi:"10.5772/intechopen.104873",signatures:"Shazia Usmani, Shadma Wahab, Abdul Hafeez, Shabana Khatoon and Syed Misbahul Hasan",slug:"peroxisomal-modulation-as-therapeutic-alternative-for-tackling-multiple-cancers",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81638",title:"Aging and Neuropsychiatric Disease: A General Overview of Prevalence and Trends",doi:"10.5772/intechopen.103102",signatures:"Jelena Milić",slug:"aging-and-neuropsychiatric-disease-a-general-overview-of-prevalence-and-trends",totalDownloads:30,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Mechanisms and Management of Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81290",title:"Musculoskeletal Abnormalities Caused by Cystic Fibrosis",doi:"10.5772/intechopen.104591",signatures:"Mark Lambrechts",slug:"musculoskeletal-abnormalities-caused-by-cystic-fibrosis",totalDownloads:30,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Advances in Skeletal Muscle Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11675.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81226",title:"Computational Methods for the Study of Peroxisomes in Health and Disease",doi:"10.5772/intechopen.103178",signatures:"Naomi van Wijk and Michal Linial",slug:"computational-methods-for-the-study-of-peroxisomes-in-health-and-disease",totalDownloads:32,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"80326",title:"Anti-Senescence Therapy",doi:"10.5772/intechopen.101585",signatures:"Raghad Alshadidi",slug:"anti-senescence-therapy",totalDownloads:111,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Mechanisms and Management of Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"79828",title:"Cellular Senescence in Bone",doi:"10.5772/intechopen.101803",signatures:"Danielle Wang and Haitao Wang",slug:"cellular-senescence-in-bone",totalDownloads:119,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Mechanisms and Management of Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"79668",title:"Identification of RNA Species That Bind to the hnRNP A1 in Normal and Senescent Human Fibroblasts",doi:"10.5772/intechopen.101525",signatures:"Heriberto Moran, Shanaz A. Ghandhi, Naoko Shimada and Karen Hubbard",slug:"identification-of-rna-species-that-bind-to-the-hnrnp-a1-in-normal-and-senescent-human-fibroblasts",totalDownloads:81,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Mechanisms and Management of Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"79295",title:"Genetic and Epigenetic Influences on Cutaneous Cellular Senescence",doi:"10.5772/intechopen.101152",signatures:"Tapash Jay Sarkar, Maiko Hermsmeier, Jessica L. Ross and G. Scott Herron",slug:"genetic-and-epigenetic-influences-on-cutaneous-cellular-senescence",totalDownloads:136,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Mechanisms and Management of Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}}]},publishedBooks:{paginationCount:5,paginationItems:[{type:"book",id:"8737",title:"Rabies Virus at the Beginning of 21st Century",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",slug:"rabies-virus-at-the-beginning-of-21st-century",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Sergey Tkachev",hash:"49cce3f548da548c718c865feb343509",volumeInSeries:9,fullTitle:"Rabies Virus at the Beginning of 21st Century",editors:[{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev",profilePictureURL:"https://mts.intechopen.com/storage/users/61139/images/system/61139.png",institutionString:"Russian Academy of Sciences",institution:{name:"Russian Academy of Sciences",institutionURL:null,country:{name:"Russia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10497",title:"Canine Genetics, Health and Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10497.jpg",slug:"canine-genetics-health-and-medicine",publishedDate:"June 2nd 2021",editedByType:"Edited by",bookSignature:"Catrin Rutland",hash:"b91512e31ce34032e560362e6cbccc1c",volumeInSeries:7,fullTitle:"Canine Genetics, Health and Medicine",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9081",title:"Equine Science",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9081.jpg",slug:"equine-science",publishedDate:"September 23rd 2020",editedByType:"Edited by",bookSignature:"Catrin Rutland and Albert Rizvanov",hash:"ac415ef2f5450fa80fdb9cf6cf32cd2d",volumeInSeries:5,fullTitle:"Equine Science",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Naceur M'Hamdi",hash:"2aa2a9a0ec13040bbf0455e34625504e",volumeInSeries:3,fullTitle:"Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi",profilePictureURL:"https://mts.intechopen.com/storage/users/73376/images/system/73376.jpg",institutionString:null,institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",slug:"veterinary-anatomy-and-physiology",publishedDate:"March 13th 2019",editedByType:"Edited by",bookSignature:"Catrin Sian Rutland and Valentina Kubale",hash:"75cdacb570e0e6d15a5f6e69640d87c9",volumeInSeries:2,fullTitle:"Veterinary Anatomy and Physiology",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:11,numberOfPublishedChapters:91,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:333,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:11,numberOfPublishedChapters:144,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:124,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:23,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:12,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"3",title:"Bacterial Infectious Diseases",scope:"