Two-ray SISO model.
\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\\n"}]',published:!0,mainMedia:{caption:"Highly Cited",originalUrl:"/media/original/117"}},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"intechopen-supports-asapbio-s-new-initiative-publish-your-reviews-20220729",title:"IntechOpen Supports ASAPbio’s New Initiative Publish Your Reviews"},{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"}]},book:{item:{type:"book",id:"3581",leadTitle:null,fullTitle:"Recent Optical and Photonic Technologies",title:"Recent Optical and Photonic Technologies",subtitle:null,reviewType:"peer-reviewed",abstract:"Research and development in modern optical and photonic technologies have witnessed quite fast growing advancements in various fundamental and application areas due to availability of novel fabrication and measurement techniques, advanced numerical simulation tools and methods, as well as due to the increasing practical demands. The recent advancements have also been accompanied by the appearance of various interdisciplinary topics. \r\n\r\nThe book attempts to put together state-of-the-art research and development in optical and photonic technologies. It consists of 21 chapters that focus on interesting four topics of photonic crystals (first 5 chapters), THz techniques and applications (next 7 chapters), nanoscale optical techniques and applications (next 5 chapters), and optical trapping and manipulation (last 4 chapters), in which a fundamental theory, numerical simulation techniques, measurement techniques and methods, and various application examples are considered. \r\n\r\nThis book deals with recent and advanced research results and comprehensive reviews on optical and photonic technologies covering the aforementioned topics. I believe that the advanced techniques and research described here may also be applicable to other contemporary research areas in optical and photonic technologies. Thus, I hope the readers will be inspired to start or to improve further their own research and technologies and to expand potential applications. I would like to express my sincere gratitude to all the authors for their outstanding contributions to this book.",isbn:null,printIsbn:"978-953-7619-71-8",pdfIsbn:"978-953-51-4568-4",doi:"10.5772/116",price:139,priceEur:155,priceUsd:179,slug:"recent-optical-and-photonic-technologies",numberOfPages:468,isOpenForSubmission:!1,isInWos:1,isInBkci:!0,hash:null,bookSignature:"Ki Young Kim",publishedDate:"January 1st 2010",coverURL:"https://cdn.intechopen.com/books/images_new/3581.jpg",numberOfDownloads:68927,numberOfWosCitations:99,numberOfCrossrefCitations:32,numberOfCrossrefCitationsByBook:2,numberOfDimensionsCitations:81,numberOfDimensionsCitationsByBook:3,hasAltmetrics:0,numberOfTotalCitations:212,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:null,dateEndSecondStepPublish:null,dateEndThirdStepPublish:null,dateEndFourthStepPublish:null,dateEndFifthStepPublish:null,currentStepOfPublishingProcess:1,indexedIn:"1,2,3,4,5,6,7,8",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"12009",title:"Dr.",name:"Ki Young",middleName:null,surname:"Kim",slug:"ki-young-kim",fullName:"Ki Young Kim",profilePictureURL:"https://mts.intechopen.com/storage/users/12009/images/system/12009.jpg",biography:"Http://m80.knu.ac.kr/~doors",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"4",institution:{name:"National Cheng Kung University",institutionURL:null,country:{name:"Taiwan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1226",title:"Optoelectronics",slug:"optics-and-lasers-optoelectronics"}],chapters:[{id:"6522",title:"Dual-Periodic Photonic Crystal Structures",doi:"10.5772/6904",slug:"dual-periodic-photonic-crystal-structures",totalDownloads:2558,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Alexey Yamilov and Mark Herrera",downloadPdfUrl:"/chapter/pdf-download/6522",previewPdfUrl:"/chapter/pdf-preview/6522",authors:[null],corrections:null},{id:"6523",title:"Two-Dimensional Photonic Crystal Micro-Cavities for Chip-Scale Laser Applications",doi:"10.5772/6905",slug:"two-dimensional-photonic-crystal-micro-cavities-for-chip-scale-laser-applications",totalDownloads:2726,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Adam Mock and Ling Lu",downloadPdfUrl:"/chapter/pdf-download/6523",previewPdfUrl:"/chapter/pdf-preview/6523",authors:[null],corrections:null},{id:"6524",title:"Anisotropy of Light Extraction Emission with High Polarization Ratio from GaN-based Photonic Crystal Light-Emitting Diodes",doi:"10.5772/6906",slug:"anisotropy-of-light-extraction-emission-with-high-polarization-ratio-from-gan-based-photonic-crystal",totalDownloads:3111,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Chun-Feng Lai, Chia-Hsin Chao, and Hao-Chung Kuo",downloadPdfUrl:"/chapter/pdf-download/6524",previewPdfUrl:"/chapter/pdf-preview/6524",authors:[null],corrections:null},{id:"6525",title:"Holographic Fabrication of Three-Dimensional Woodpile-Type Photonic Crystal Templates Using Phase Mask Technique",doi:"10.5772/6907",slug:"holographic-fabrication-of-three-dimensional-woodpile-type-photonic-crystal-templates-using-phase-ma",totalDownloads:3052,totalCrossrefCites:2,totalDimensionsCites:3,hasAltmetrics:0,abstract:null,signatures:"Di Xu, Kevin P. Chen, Kris Ohlinger and Yuankun Lin",downloadPdfUrl:"/chapter/pdf-download/6525",previewPdfUrl:"/chapter/pdf-preview/6525",authors:[null],corrections:null},{id:"6526",title:"Quantum Electrodynamics in Photonic Crystal Nanocavities towards Quantum Information Processing",doi:"10.5772/6908",slug:"quantum-electrodynamics-in-photonic-crystal-nanocavities-towards-quantum-information-processing",totalDownloads:2754,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Yun-Feng Xiao, Xu-Bo Zou, Qihuang Gong, Guang-Can Guo, and Chee Wei Wong",downloadPdfUrl:"/chapter/pdf-download/6526",previewPdfUrl:"/chapter/pdf-preview/6526",authors:[null],corrections:null},{id:"6527",title:"Terahertz-Wave Parametric Sources",doi:"10.5772/6909",slug:"terahertz-wave-parametric-sources",totalDownloads:4244,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Shin’ichiro Hayashi and Kodo Kawase",downloadPdfUrl:"/chapter/pdf-download/6527",previewPdfUrl:"/chapter/pdf-preview/6527",authors:[null],corrections:null},{id:"6528",title:"Cherenkov Phase Matched Monochromatic Tunable Terahertz Wave Generation",doi:"10.5772/6910",slug:"cherenkov-phase-matched-monochromatic-tunable-terahertz-wave-generation",totalDownloads:3453,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Koji Suizu, Takayuki Shibuya and Kodo Kawase",downloadPdfUrl:"/chapter/pdf-download/6528",previewPdfUrl:"/chapter/pdf-preview/6528",authors:[null],corrections:null},{id:"6529",title:"Nonreciprocal Phenomena on Reflection of Terahertz Radiation off Antiferromagnets",doi:"10.5772/6911",slug:"nonreciprocal-phenomena-on-reflection-of-terahertz-radiation-off-antiferromagnets",totalDownloads:2584,totalCrossrefCites:0,totalDimensionsCites:4,hasAltmetrics:0,abstract:null,signatures:"T. Dumelow, J. A. P. da Costa, F. Lima and E. L. Albuquerque",downloadPdfUrl:"/chapter/pdf-download/6529",previewPdfUrl:"/chapter/pdf-preview/6529",authors:[null],corrections:null},{id:"6530",title:"Microsoft Room Temperature Integrated Terahertz Emitters Based on Three-Wave Mixing in Semiconductor Microcylinders",doi:"10.5772/6912",slug:"microsoft-room-temperature-integrated-terahertz-emitters-based-on-three-wave-mixing-in-semiconductor",totalDownloads:2477,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"A. Taormina, A. Andronico, F. Ghiglieno, S. Ducci, I. Favero and G. Leo",downloadPdfUrl:"/chapter/pdf-download/6530",previewPdfUrl:"/chapter/pdf-preview/6530",authors:[null],corrections:null},{id:"6531",title:"Terahertz Time-Domain Spectroscopy of Metallic Particle Ensembles",doi:"10.5772/6913",slug:"terahertz-time-domain-spectroscopy-of-metallic-particle-ensembles",totalDownloads:3060,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Kenneth J. Chau",downloadPdfUrl:"/chapter/pdf-download/6531",previewPdfUrl:"/chapter/pdf-preview/6531",authors:[null],corrections:null},{id:"6532",title:"Applications of Tilted-Pulse-Front Excitation",doi:"10.5772/6914",slug:"applications-of-tilted-pulse-front-excitation",totalDownloads:4155,totalCrossrefCites:0,totalDimensionsCites:10,hasAltmetrics:0,abstract:null,signatures:"József András Fülöp and János Hebling",downloadPdfUrl:"/chapter/pdf-download/6532",previewPdfUrl:"/chapter/pdf-preview/6532",authors:[null],corrections:null},{id:"6533",title:"Applications of Effective Medium Theories in the Terahertz Regime",doi:"10.5772/6915",slug:"applications-of-effective-medium-theories-in-the-terahertz-regime",totalDownloads:4446,totalCrossrefCites:18,totalDimensionsCites:35,hasAltmetrics:0,abstract:null,signatures:"Maik Scheller, Christian Jansen, and Martin Koch",downloadPdfUrl:"/chapter/pdf-download/6533",previewPdfUrl:"/chapter/pdf-preview/6533",authors:[null],corrections:null},{id:"6534",title:"Local Electric Polarization Vector Detection",doi:"10.5772/6916",slug:"local-electric-polarization-vector-detection",totalDownloads:2634,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Kwang Geol Lee and DaiSik Kim",downloadPdfUrl:"/chapter/pdf-download/6534",previewPdfUrl:"/chapter/pdf-preview/6534",authors:[null],corrections:null},{id:"6535",title:"Nanoimprint Lithography - Next Generation Nanopatterning Methods for Nanophotonics Fabrication",doi:"10.5772/6917",slug:"nanoimprint-lithography-next-generation-nanopatterning-methods-for-nanophotonics-fabrication",totalDownloads:8326,totalCrossrefCites:6,totalDimensionsCites:11,hasAltmetrics:0,abstract:null,signatures:"Jukka Viheriälä, Tapio Niemi, Juha Kontio and Markus Pessa",downloadPdfUrl:"/chapter/pdf-download/6535",previewPdfUrl:"/chapter/pdf-preview/6535",authors:[null],corrections:null},{id:"6536",title:"Nanoscale Photodetector Array and Its Application to Near-Field Nano-Imaging",doi:"10.5772/6918",slug:"nanoscale-photodetector-array-and-its-application-to-near-field-nano-imaging",totalDownloads:3334,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Boyang Liu, Ki Young Kim, and Seng-Tiong Ho",downloadPdfUrl:"/chapter/pdf-download/6536",previewPdfUrl:"/chapter/pdf-preview/6536",authors:[null],corrections:null},{id:"6537",title:"Spontaneous and Stimulated Transitions in Impurity Dielectric Nanoparticles",doi:"10.5772/6919",slug:"spontaneous-and-stimulated-transitions-in-impurity-dielectric-nanoparticles",totalDownloads:2143,totalCrossrefCites:1,totalDimensionsCites:4,hasAltmetrics:0,abstract:null,signatures:"K.K. Pukhov, Yu.V. Orlovskii and T.T. Basiev",downloadPdfUrl:"/chapter/pdf-download/6537",previewPdfUrl:"/chapter/pdf-preview/6537",authors:[null],corrections:null},{id:"6538",title:"Photon-Number-Resolution at Telecom Wavelength with Superconducting Nanowires",doi:"10.5772/6920",slug:"photon-number-resolution-at-telecom-wavelength-with-superconducting-nanowires",totalDownloads:2216,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Francesco Marsili, David Bitauld, Andrea Fiore, Alessandro Gaggero, Francesco Mattioli, Roberto Leoni, Aleksander Divochiy and Gregory Gol'tsman",downloadPdfUrl:"/chapter/pdf-download/6538",previewPdfUrl:"/chapter/pdf-preview/6538",authors:[null],corrections:null},{id:"6539",title:"Optoelectronic Tweezers for the Manipulation of Cells, Microparticles, and Nanoparticles",doi:"10.5772/6921",slug:"optoelectronic-tweezers-for-the-manipulation-of-cells-microparticles-and-nanoparticles",totalDownloads:3717,totalCrossrefCites:0,totalDimensionsCites:6,hasAltmetrics:0,abstract:null,signatures:"Aaron T. Ohta, Pei-Yu Chiou, Arash Jamshidi, Hsan-Yin Hsu, Justin K. Valley, Steven L. Neale, and Ming C. Wu",downloadPdfUrl:"/chapter/pdf-download/6539",previewPdfUrl:"/chapter/pdf-preview/6539",authors:[null],corrections:null},{id:"6540",title:"An Asymmetric Magneto-Optical Trap",doi:"10.5772/6922",slug:"an-asymmetric-magneto-optical-trap",totalDownloads:3002,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Heung-Ryoul Noh and Wonho Jhe",downloadPdfUrl:"/chapter/pdf-download/6540",previewPdfUrl:"/chapter/pdf-preview/6540",authors:[null],corrections:null},{id:"6541",title:"The Photonic Torque Microscope: Measuring Non-Conservative Force-Fields",doi:"10.5772/6923",slug:"the-photonic-torque-microscope-measuring-non-conservative-force-fields",totalDownloads:2211,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Giovanni Volpe, Giorgio Volpe and Giuseppe Pesce",downloadPdfUrl:"/chapter/pdf-download/6541",previewPdfUrl:"/chapter/pdf-preview/6541",authors:[null],corrections:null},{id:"6542",title:"Dynamics of a Kerr Nanoparticle in a Single Beam Optical Trap",doi:"10.5772/6924",slug:"dynamics-of-a-kerr-nanoparticle-in-a-single-beam-optical-trap",totalDownloads:2725,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Romeric Pobre and Caesar Saloma",downloadPdfUrl:"/chapter/pdf-download/6542",previewPdfUrl:"/chapter/pdf-preview/6542",authors:[null],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"2245",title:"Plasmonics",subtitle:"Principles and Applications",isOpenForSubmission:!1,hash:"e74f79681a8c87bb027f48ad33a3e068",slug:"plasmonics-principles-and-applications",bookSignature:"Ki Young Kim",coverURL:"https://cdn.intechopen.com/books/images_new/2245.jpg",editedByType:"Edited by",editors:[{id:"12009",title:"Dr.",name:"Ki Young",surname:"Kim",slug:"ki-young-kim",fullName:"Ki Young Kim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3582",title:"Advances in Optical and Photonic Devices",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"advances-in-optical-and-photonic-devices",bookSignature:"Ki Young Kim",coverURL:"https://cdn.intechopen.com/books/images_new/3582.jpg",editedByType:"Edited by",editors:[{id:"12009",title:"Dr.",name:"Ki Young",surname:"Kim",slug:"ki-young-kim",fullName:"Ki Young Kim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1073",title:"Wireless Power Transfer",subtitle:"Principles and Engineering Explorations",isOpenForSubmission:!1,hash:"539623d2f9a1dca563421e451940e4e1",slug:"wireless-power-transfer-principles-and-engineering-explorations",bookSignature:"Ki Young Kim",coverURL:"https://cdn.intechopen.com/books/images_new/1073.jpg",editedByType:"Edited by",editors:[{id:"12009",title:"Dr.",name:"Ki Young",surname:"Kim",slug:"ki-young-kim",fullName:"Ki Young Kim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1505",title:"Scanning Electron Microscopy",subtitle:null,isOpenForSubmission:!1,hash:"3305b759b0efc22e8ed16e9048818817",slug:"scanning-electron-microscopy",bookSignature:"Viacheslav Kazmiruk",coverURL:"https://cdn.intechopen.com/books/images_new/1505.jpg",editedByType:"Edited by",editors:[{id:"100815",title:"Dr.",name:"Viacheslav",surname:"Kazmiruk",slug:"viacheslav-kazmiruk",fullName:"Viacheslav Kazmiruk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2397",title:"Advanced Aspects of Spectroscopy",subtitle:null,isOpenForSubmission:!1,hash:"bcc83fcd6b4bbfdaa677b37d94bdbdb6",slug:"advanced-aspects-of-spectroscopy",bookSignature:"Muhammad Akhyar Farrukh",coverURL:"https://cdn.intechopen.com/books/images_new/2397.jpg",editedByType:"Edited by",editors:[{id:"63182",title:"Dr.",name:"Muhammad Akhyar",surname:"Farrukh",slug:"muhammad-akhyar-farrukh",fullName:"Muhammad Akhyar Farrukh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2018",title:"Recent Progress in Optical Fiber Research",subtitle:null,isOpenForSubmission:!1,hash:"c9f4716122beee57c42cff13c357a2cb",slug:"recent-progress-in-optical-fiber-research",bookSignature:"Moh. Yasin, Sulaiman W. Harun and Hamzah Arof",coverURL:"https://cdn.intechopen.com/books/images_new/2018.jpg",editedByType:"Edited by",editors:[{id:"294347",title:"Dr.",name:"Moh",surname:"Yasin",slug:"moh-yasin",fullName:"Moh Yasin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3166",title:"Optoelectronics",subtitle:"Advanced Materials and Devices",isOpenForSubmission:!1,hash:"b7263978cf34e637a4b9592eb4975f3e",slug:"optoelectronics-advanced-materials-and-devices",bookSignature:"Sergei L. Pyshkin and John M. Ballato",coverURL:"https://cdn.intechopen.com/books/images_new/3166.jpg",editedByType:"Edited by",editors:[{id:"43016",title:"Prof.",name:"Sergei",surname:"Pyshkin",slug:"sergei-pyshkin",fullName:"Sergei Pyshkin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10",title:"Coherence and Ultrashort Pulse Laser Emission",subtitle:null,isOpenForSubmission:!1,hash:"e1bd25a76712d1cb8792820acf2ff001",slug:"coherence-and-ultrashort-pulse-laser-emission",bookSignature:"F. J. Duarte",coverURL:"https://cdn.intechopen.com/books/images_new/10.jpg",editedByType:"Edited by",editors:[{id:"13752",title:"Dr.",name:"F. J.",surname:"Duarte",slug:"f.-j.-duarte",fullName:"F. J. Duarte"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3710",title:"Advances in Solid State Lasers",subtitle:"Development and Applications",isOpenForSubmission:!1,hash:null,slug:"advances-in-solid-state-lasers-development-and-applications",bookSignature:"Mikhail Grishin",coverURL:"https://cdn.intechopen.com/books/images_new/3710.jpg",editedByType:"Edited by",editors:[{id:"4862",title:"Mr.",name:"Mikhail",surname:"Grishin",slug:"mikhail-grishin",fullName:"Mikhail Grishin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"256",title:"Optoelectronics",subtitle:"Materials and Techniques",isOpenForSubmission:!1,hash:"2c0d6a2a51ac114edd58f2c667297503",slug:"optoelectronics-materials-and-techniques",bookSignature:"Padmanabhan Predeep",coverURL:"https://cdn.intechopen.com/books/images_new/256.jpg",editedByType:"Edited by",editors:[{id:"36735",title:"Prof.",name:"P.",surname:"Predeep",slug:"p.-predeep",fullName:"P. Predeep"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"79356",slug:"corrigendum-to-a-brief-overview-of-ophthalmic-ultrasound-imaging",title:"Corrigendum to: A Brief Overview of Ophthalmic Ultrasound Imaging",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/69566.pdf",downloadPdfUrl:"/chapter/pdf-download/69566",previewPdfUrl:"/chapter/pdf-preview/69566",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/69566",risUrl:"/chapter/ris/69566",chapter:{id:"65491",slug:"a-brief-overview-of-ophthalmic-ultrasound-imaging",signatures:"David B. Rosen, Mandi D. Conway, Charles P. Ingram, Robin D. Ross and Leonardo G. Montilla",dateSubmitted:"November 6th 2018",dateReviewed:"December 12th 2018",datePrePublished:"February 5th 2019",datePublished:"September 4th 2019",book:{id:"8633",title:"Novel Diagnostic Methods in Ophthalmology",subtitle:null,fullTitle:"Novel Diagnostic Methods in Ophthalmology",slug:"novel-diagnostic-methods-in-ophthalmology",publishedDate:"September 4th 2019",bookSignature:"Anna Nowinska",coverURL:"https://cdn.intechopen.com/books/images_new/8633.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"261466",title:"Dr.",name:"Anna",middleName:"Karolina",surname:"Nowińska",slug:"anna-nowinska",fullName:"Anna Nowińska"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"274007",title:"Prof.",name:"Mandi D.",middleName:null,surname:"Conway",fullName:"Mandi D. Conway",slug:"mandi-d.-conway",email:"mconway1@yahoo.com",position:null,institution:null},{id:"283754",title:"Dr.",name:"Robin",middleName:"Demi",surname:"Ross",fullName:"Robin Ross",slug:"robin-ross",email:"robindross@email.arizona.edu",position:null,institution:null},{id:"284051",title:"BSc.",name:"David",middleName:null,surname:"Rosen",fullName:"David Rosen",slug:"david-rosen",email:"davidrosen@email.arizona.edu",position:null,institution:null},{id:"284377",title:"BSc.",name:"Leonardo",middleName:null,surname:"Montilla",fullName:"Leonardo Montilla",slug:"leonardo-montilla",email:"funrunner13@gmail.com",position:null,institution:null},{id:"284378",title:"MSc.",name:"Charles",middleName:null,surname:"Ingram",fullName:"Charles Ingram",slug:"charles-ingram",email:"cingram@optics.arizona.edu",position:null,institution:null}]}},chapter:{id:"65491",slug:"a-brief-overview-of-ophthalmic-ultrasound-imaging",signatures:"David B. Rosen, Mandi D. Conway, Charles P. Ingram, Robin D. Ross and Leonardo G. Montilla",dateSubmitted:"November 6th 2018",dateReviewed:"December 12th 2018",datePrePublished:"February 5th 2019",datePublished:"September 4th 2019",book:{id:"8633",title:"Novel Diagnostic Methods in Ophthalmology",subtitle:null,fullTitle:"Novel Diagnostic Methods in Ophthalmology",slug:"novel-diagnostic-methods-in-ophthalmology",publishedDate:"September 4th 2019",bookSignature:"Anna Nowinska",coverURL:"https://cdn.intechopen.com/books/images_new/8633.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"261466",title:"Dr.",name:"Anna",middleName:"Karolina",surname:"Nowińska",slug:"anna-nowinska",fullName:"Anna Nowińska"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"274007",title:"Prof.",name:"Mandi D.",middleName:null,surname:"Conway",fullName:"Mandi D. Conway",slug:"mandi-d.-conway",email:"mconway1@yahoo.com",position:null,institution:null},{id:"283754",title:"Dr.",name:"Robin",middleName:"Demi",surname:"Ross",fullName:"Robin Ross",slug:"robin-ross",email:"robindross@email.arizona.edu",position:null,institution:null},{id:"284051",title:"BSc.",name:"David",middleName:null,surname:"Rosen",fullName:"David Rosen",slug:"david-rosen",email:"davidrosen@email.arizona.edu",position:null,institution:null},{id:"284377",title:"BSc.",name:"Leonardo",middleName:null,surname:"Montilla",fullName:"Leonardo Montilla",slug:"leonardo-montilla",email:"funrunner13@gmail.com",position:null,institution:null},{id:"284378",title:"MSc.",name:"Charles",middleName:null,surname:"Ingram",fullName:"Charles Ingram",slug:"charles-ingram",email:"cingram@optics.arizona.edu",position:null,institution:null}]},book:{id:"8633",title:"Novel Diagnostic Methods in Ophthalmology",subtitle:null,fullTitle:"Novel Diagnostic Methods in Ophthalmology",slug:"novel-diagnostic-methods-in-ophthalmology",publishedDate:"September 4th 2019",bookSignature:"Anna Nowinska",coverURL:"https://cdn.intechopen.com/books/images_new/8633.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"261466",title:"Dr.",name:"Anna",middleName:"Karolina",surname:"Nowińska",slug:"anna-nowinska",fullName:"Anna Nowińska"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"12301",leadTitle:null,title:"Ion Exchange - Newest Research and Advances",subtitle:null,reviewType:"peer-reviewed",abstract:"\r\n\tThe goal of this book is to give the reader an overview of a field related to various applications in chemistry, chemical engineering, and nanotechnology. This book aims to provide information about the design of ion exchangers, their application in environmental technologies, and in biotechnology and pharmaceutical applications. This book will be written by authors in the field of experimental methods and critical reviews from multi-disciplines such as chemistry, membranes, and materials science. Among others, some of the topics covered will be Structure of ion exchangers, Synthesis of ion exchangers, Synthesis of inorganic ion exchangers, Properties of ion exchangers, Ion exchange voltammetry, Ion exchange as a separations method, Ion exchange in analytical chemistry, Ion exchange and extraction, Ion exchange membranes, Preparation of organic-inorganic hybrid ion exchangers, Application in environmental technologies, Application in biotechnology and pharmaceutical applications.
\r\n\r\n\tIn this book, the authors will focus on recent studies, applications, and new technological developments on the fundamental properties of ion exchangers.
",isbn:"978-1-83768-391-8",printIsbn:"978-1-83768-390-1",pdfIsbn:"978-1-83768-392-5",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"8dd8a87a8e42422ab2f346d7d33f2f18",bookSignature:"Dr. Selcan Karakuş",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/12301.jpg",keywords:"Selectivity, Diffusion, Isotherm, Electrodialyzer, Computer Simulation, Activity Coefficients, Thermodynamic, Kinetic Model, Semiempirical Models, Ion Exchange Resins, Ion Exchange Composites, Biosorbents",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"June 10th 2022",dateEndSecondStepPublish:"July 8th 2022",dateEndThirdStepPublish:"September 6th 2022",dateEndFourthStepPublish:"November 25th 2022",dateEndFifthStepPublish:"January 24th 2023",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"a month",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Multidisciplinary Nanoscience Technology Research Group Leader from Istanbul University (Cerrahpasa) and holder of three registered patents on advanced metal/ metal oxide-based nanostructures. Assoc. Prof. Selcan Karakuş has research experience in nanoparticles, nanocomposites, nanoemulsions, metal oxide nanostructures, and sensors.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"206110",title:"Dr.",name:"Selcan",middleName:null,surname:"Karakuş",slug:"selcan-karakus",fullName:"Selcan Karakuş",profilePictureURL:"https://mts.intechopen.com/storage/users/206110/images/system/206110.jpeg",biography:"Assoc. Prof. Selcan Karakuş is currently working at the Department of Chemistry, Istanbul University - Cerrahpasa, Turkey. She obtained her Master of Science degree in Physical Chemistry from Istanbul University (IU) in 2006. She obtained her Doctor of Philosophy degree in Physical Chemistry from IU in 2011. She has worked as a visiting researcher at the University of Massachusetts, Department of Polymer Science and Engineering. She has research experience in nanoparticles, nanocomposites, nanoemulsions, metal oxide nanostructures, and sensors. She has worked on different projects funded by Istanbul University - Cerrahpasa and has published several research articles and book chapters in her area of interest.",institutionString:"Istanbul University Cerrahpaşa",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"4",institution:{name:"Istanbul University Cerrahpaşa",institutionURL:null,country:{name:"Turkey"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"8",title:"Chemistry",slug:"chemistry"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"429341",firstName:"Paula",lastName:"Gavran",middleName:null,title:"Ms.",imageUrl:"//cdnintech.com/web/frontend/www/assets/author.svg",email:"paula@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"6519",title:"Science and Technology Behind Nanoemulsions",subtitle:null,isOpenForSubmission:!1,hash:"f4dd10764e9841064827609a62952748",slug:"science-and-technology-behind-nanoemulsions",bookSignature:"Selcan Karakuş",coverURL:"https://cdn.intechopen.com/books/images_new/6519.jpg",editedByType:"Edited by",editors:[{id:"206110",title:"Dr.",name:"Selcan",surname:"Karakuş",slug:"selcan-karakus",fullName:"Selcan Karakuş"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9199",title:"Sonochemical Reactions",subtitle:null,isOpenForSubmission:!1,hash:"72f3010437d022fd2a932421ff4a9200",slug:"sonochemical-reactions",bookSignature:"Selcan Karakuş",coverURL:"https://cdn.intechopen.com/books/images_new/9199.jpg",editedByType:"Edited by",editors:[{id:"206110",title:"Dr.",name:"Selcan",surname:"Karakuş",slug:"selcan-karakus",fullName:"Selcan Karakuş"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6694",title:"New Trends in Ion Exchange Studies",subtitle:null,isOpenForSubmission:!1,hash:"3de8c8b090fd8faa7c11ec5b387c486a",slug:"new-trends-in-ion-exchange-studies",bookSignature:"Selcan Karakuş",coverURL:"https://cdn.intechopen.com/books/images_new/6694.jpg",editedByType:"Edited by",editors:[{id:"206110",title:"Dr.",name:"Selcan",surname:"Karakuş",slug:"selcan-karakus",fullName:"Selcan Karakuş"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7604",title:"Colloid Science in Pharmaceutical Nanotechnology",subtitle:null,isOpenForSubmission:!1,hash:"f3940914be015381c3928eae31c2457e",slug:"colloid-science-in-pharmaceutical-nanotechnology",bookSignature:"Selcan Karakuş",coverURL:"https://cdn.intechopen.com/books/images_new/7604.jpg",editedByType:"Edited by",editors:[{id:"206110",title:"Dr.",name:"Selcan",surname:"Karakuş",slug:"selcan-karakus",fullName:"Selcan Karakuş"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"46138",title:"Laparoscopic Inguinal Preperitoneal Injection (LIPI) — Novel Experimental Technique for Inguinal Hernia Repair in Children",doi:"10.5772/57159",slug:"laparoscopic-inguinal-preperitoneal-injection-lipi-novel-experimental-technique-for-inguinal-hernia-",body:'Inguinal hernia repair is the most common procedure in pediatric surgery. Suture techniques for laparoscopic inguinal hernia repair in children are easy to perform and popular with a low recurrence rate. The aim of this study was to evaluate the effect of laparoscopic preperitoneal injection of 3-dimensional gel on closing of the inguinal hernia sac (IHS) in laboratory animals. We performed peritoneoscopy by 12 male Chinchilla rabbits weighing 1200 to 1400 g. Endoscope was introduced in abdominal cavity and bilateral deep inguinal rings were identified. The needle Tuohy with the injectable polymeric bulking agent DAM+ (3-Dimensional Polyacrylamide gel with Ions of Silver “Argiform”, Bioform®) was introduced preperitoneally. The implant was then injected across the entire orifice of the deep inguinal rings and draped over the cord structures. After completion of bilateral repairs, the rabbits were extubated and observed in animal laboratory. Then the second laparoscopy was performed 6 months after and the deep inguinal rings were inspected. At second laparoscopy no reopening to the entire orifice of the deep inguinal rings were noted. Accurate placement the polymeric agent and adequate coverage of the vas deferens was accomplished in all animals. This scientific report demonstrates that the biopolymeric implant gives good postoperative results and a stable trend of closing IHS in long-term follow-up. We hope that the injectable polymeric bulking agents can be used for treatment of inguinal hernias at pediatric patients after additional animal and human researches.
Inguinal hernia is the most frequent diagnosis in pediatric surgery. Familiarity with embryology is necessary to understand the inguinal abnormalities. During fetal life, the descent of the testis into the inguinal canal and scrotum brings a small pouch of peritoneum alongside. This peritoneal extension is the processus vaginalis. In females, the formation of the labia has the same peritoneal remnant, referred to as the canal of Nuck. The peritoneal canals are obliterated in up to 95–98% of fetuses before birth. Failure of this peritoneal fusion results in a spectrum of abnormalities. The degree of fusion failure results in either a hydrocele or a hernia [1, 2]. There are two types of inguinal hernia: direct, where the abdominal musculature is weak and visceral contents protrude through the wall of the inguinal canal and exit via the superficial inguinal ring, and indirect inguinal hernia, where visceral contents pass into the patent processus vaginalis (PPV) via an open deep inguinal ring and exit via the superficial inguinal rings. The latter is the most common finding in children.
Inguinal hernia in children can be repaired through either an open or laparoscopic technique. In 1995, Shcheben\'kov [3] first reported on laparoscopic inguinal hernia repair in pediatric patients. Since that time, laparoscopic ligation of inguinal hernias has been performed in many institutions with a variety of methods of suturing of open inguinal rings.
The laparoscopic approach can be performed either transperitoneally or through a preperitoneal approach with transperitoneal visualization. The transperitoneal method incorporates a telescope through an umbilical port, allowing direct visualization of the deep inguinal rings, followed by the controlled passage of instruments either with or without the assistance of trocars. The deep ring is then closed with either an absorbable or nonabsorbable suture either as purse string or similar (Fig.1).
Transperitoneal ligation of the internal inguinal ring by Schier (Z-suture)
Since the description of extraperitoneally ligation of the internal inguinal ring by Takehara [4] and Ozdegiz [5], the treatment of inguinal hernias at children was transformed to «story of needles and hooks». A small hook or Tuohy needle, loaded with a suture, is passed around the deep ring after making a small inguinal skin incision. The passage of the suture is observed via an endoscope at the umbilicus (Fig.2). The ligature is then brought extracorporally and tied, thus closing the hernial orifice. The transabdominal extraperitoneal repair has some support for a lower recurrence rate, when compared to the traditional open procedure. A slightly higher recurrence rate appears to exist when comparing the transperitoneal to the extraperitoneal and open repair. The advantages of a reduced injury to the vas and vessels, a reduction in testicular atrophy, and improved cosmesis are not supported by current levels of evidence.
Preperitoneal ligation of the internal inguinal ring by Ozdegiz
Complications are rare following surgery for hernia or hydrocele. Injury to the vas deferens during inguinal or hydrocele repair is a potential risk [6] with treatment requiring microsurgical repair. Visceral injury during laparoscopic repair is very rare and can be treated either by open or laparoscopic surgery. Injury to the genitofemoral nerve, resulting in chronic pain, is a rare occurrence [7]. Testicular ascent following inguinal tissue contracture is another possible long-term problem as well as testicular atrophy, though the latter is associated usually with preoperative incarceration.
The surgical principal in laparoscopic repair in children is to close the inguinal hernia sac (IHS) at its neck as in the open repair. Different techniques of laparoscopic hernia repair have been developed, but there are two basic approaches – a purely intracorporeal [8-11] ligation and laparoscopic-assisted extracorporeal ligation [4, 5]. Therefore, further development in minimal access surgery for pediatric inguinal hernia is to decrease the number and size of skin incisions. With a trend toward increasing use of extracorporeal knotting and decreasing use of working ports and endoscopic instruments, single-port endoscopy-assisted percutaneous extraperitoneal closure with variable devices is the attainment.
Laparoscopic approach to inguinal hernia in children has become an alternative to the conventional open procedure. Advantages of endoscopic repairs include the ability to evaluate the contralateral side, avoidance of access trauma to the vas deferens and gonadal vessels, iatrogenic cryptorchidism, shorter operative time, less postoperative pain and length of hospital stay. According to the literature, open herniorhaphy in children has been reported to have recurrence rate of 0.8% to 3.8% and postoperative contralateral hernia rates up to 30% [12, 17]. Recurrence rates in laparoscopic approach has ranged from 0.7% to 4.3% [13, 14].
There are some technical limitations, although modifications on laparoscopic surgery continue to be refined. The known limitations of the laparoscopic surgery are as follows - the necessity for intra-abdominal skills, such as intracorporeal suturing, knot tying, and manipulation of the suture on a needle, high operating costs and cardiorespiratory changes by pneumoperitoneum. In fact, compared with open herniotomy, laparoscopic approach did not take any superiority in cosmesis. Conversely, the procedure was thought not to be a minimally invasive surgery because of the necessity of multiple skin incisions and pneumoperitoneum during operation.
Laparoscopic inguinal hernia repair involves less dissection of the abdominal wall and spermatic cord structures, so the risk for complications may be lower, but some kind of suture (ie, z-suture, n-suture, purse string suture, and extraperitoneal closure) must be used. Placing his sutures correctly is difficult, and there is a considerable learning curve involved, especially in premature, because of the extremely limited operative field. In contrast, deep inguinal ring does not require surgical ligation, and can be closed using injected tissue adhesive.
Laparoscopic hernia surgery continues to evolve with new polymeric products allowing surgeons multiple choices in treating their patients. In 2004 Miyano G. et al. [15], published experimental work with injection of 2-octyl-cyanoacrylate (Dermabond®) into right IHS under laparoscopic control. Herniography results showed no flow of gastrografin solution into treated inguinal hernia sac in rats. Histologic examination in the treated HIS demonstrated localized mild inflammation, and foreign body giant cells were observed around the Dermabond®. The spermatic vessels, vas deferens, and testes were normal. All testes had large numbers of normal sperm. This technique is innovative concept for the treatment of inguinal hernia because it uses tissue adhesives to close hernia sac. This approach eliminates dissection of the spermatic cord and ligation of the IHS, thus virtually completely lowering the risks of injuries. Later, in 2005, the same group of authors published paper comparing several types of tissue adhesives in the treatment of inguinal hernia [16]. This experimental work has shown high efficiency of Dermabond® for closing IHS. Explanation of this efficiency is that this tissue agent is not absorbable. The other tissue adhesives are all absorbable, and may have become ineffective within months. Comparing different tissue adhesives Kato Y. et al. have shown that laparoscopic injection of 2-octyl-cyanoacrylate (Dermabond®) was highly effective for closing the orifice of the IHS [16]. Following study [17] demonstrates that fibrin glue and cyanoacrylate are better tolerated than sutures by patients, and that the glues lead to better results during initial follow-up and a better trend in long-term data. The glues were recommended for use in adults for mesh fixation of tension-free inguinal repair.
Injectable soft tissue fillers play an important role in cosmetic and reconstructive surgery. Since the acceptance of collagen as a filler, new reabsorbable and non-absorbable implants have appeared with varying degrees of success. Today, as we know more about products and their potential complications, a more accurate treatment plan can be arranged for the patient. The ideal desired characteristics for a soft tissue filler are that they must be safe, biocompatible, easy to inject, long lasting effect, and not provoke any complications. Nonbiodegradable fillers must give a definitive correction. The advantage of these products is longevity. One of these products is polyacrylamide. The chemical properties of polyacrylamide gel with a high proportion of water cause fewer foreign body reactions. The capsule gets thicker with fibroblasts and macrophage accumulation. This product is the first choice for facial soft tissue augmentation, such a cheek, chin, or mandibular augmentation. Polyacrylamide adds volume to the subcutaneous tissue, thereby restoring of augmentic facial and body contours. It is also used for lip augmentation, nasolabial folds, perioral wrinkles, glabellar frown lines, and depressed mouth corners. This product must be injected deeply in the subcutaneous tissues. Polyacrylamide implantation is considered permanent. It cannot be reabsorbed into the body. Hydrophilic polyacrylamide gels are non-toxic, non-sensitizing, non-mutagenic, biocompatible and chemically stable. After injection the water content is absorbed by the body whilst the gel becomes encapsulated. It remains soft and pliable like the body\'s own tissue.
In our experimental study we proposed the laparoscopic preperitoneal injection of 3-Dimensional gel (DAM+™) on closing the orifice of the IHS in laboratory animals. This polymer is injectable hydrophilic polyacrylamide gel with 0.03% residual unpolymerized acrylamide monomer. It is manufactured by Bioform in Russia. This product is the second generation polyacrylamide gel comprised of 95% polyacrylamide and 5% water, it is also manufactured using a silver ion process to help repel bacteria. It comes in sterile syringe with a needle of 25Gx1½ (Fig.3). Prepacked and tested for microbiological cleanness the gel DAM+ is then sterilized in an autoclave chamber and tested for sterility. The 3-D polymeric gel is the most physiological and the safest implant out of the rest existing implants. Its structure and properties respond in the best way to the inner space of the human body. It contains silver, which creates unfavorable medium against bacterial invasion and development of pathogenic microbiological flora. This filling agent is inert, does not react to the previously injected gels, admits possibility of its multiple injections into the same anatomical region in the case it has been not enough injected or applied in stage-by-stage corrections. DAM+ can be injected through thin needles, hence it causes minimal traumas. It is very important that it does not cause an inflammation, nor any allergy or non-compatibility with the tissues thanks to absence in it of initiators of immune reactions. During long-term localization within the injection zone, DAM+ does not exert any inflammatory reactions. When injected correctly, it does not migrate from the injection zone.
Polyacrylamide gel DAM+ in packing
This agent is used in clinical practice for endoprothesis of the soft tissues by increases of their volume. Polyacrylamide in fact has been used for decades in the preparation of soft contact lenses. Besides, the toxicity of polyacrylamide has been studied for more than 30 years. Research indicates that polyacrylamide is non toxic and practically non biodegradable. DAM+ is absolutely safe because of the presence of silver ions, known for their antibacterial properties. There are also no allergy issues with this gel. There are some articles with good results of using this gel in bronchial surgery for endoscopic treatment of bronchial fistulas and prophylaxis, treatment of primary insufficiency of bronchial stump after pneumonectomy [18, 19] and in endoscopic treatment of vesico-ureteral reflux in children [20]. Safety of the hydrophilic gel DAM+ has been repeatedly confirmed by its pre-clinical tests on animals, also by its experimental clinical application [21]. In this experimental study it was shown that polyacrylamide gel had low reactivity with surrounding tissue. Ions of silver contribute to this low reactivity and reduce the risks of local inflammation. The histological examination has shown development of good capsule with macrophageal infiltration, marked vascularity and absence of any signs of local inflammation. In microscopic research 1 month after the operation, the implanted material remained located in the subcutaneous cellular tissue in the form of grid structures of fibrous character. There was a round cell reaction observed with excess of macrophage elements. Three months after the implantation, the histopathologic feature got changed. Thin polymer taenias penetrating into the tissue had developed in all directions from the main conglomerate of the implanted material. That phenomenon was explained by the fact that a conjunctive capsule began its formation. Within the connective tissue, not far from the implanted material, vessels were seen enlarged plethoric blood vessels. After six months, around the implanted material revealed a connective tissue infiltrated with macrophages and other round cell elements and marked the development of the capsule. In some areas around the implanted material observed a mature connective capsule isolating the polymer from the surrounding tissues. The main components of that capsule were collagen fibers and mature fusiform fibroblasts between them. Reaction of the blood system remained expressive, some vessels were enlarged and plethoric.
Minimally invasive surgery has become more frequent in children in the last decade. These techniques require special training because of the low incidence of many surgical diseases in children, and the skills needed are difficult to acquire. For this purpose, several training models have been used, including endotraining boxes, animals, and, more recently, virtual reality. The smaller size of pediatric patients requires not only adequate endoscopic instruments but also an appropriate animal model for teaching and training pediatric minimally invasive surgery.
The most commonly used animals are pigs, which are good models only for big children and adolescents; furthermore, they are expensive and hard to obtain. Rabbits are commonly used in experimental medicine, easy to obtain, very similar in weight to a newborn, and less expensive than pigs. Reports of laparoscopy performed for experimental laparoscopic surgical procedures in rabbits, including the gasless model [22], and other procedures, mainly in gynecology [23-26], prompted us to choose the adult rabbit as our training model for treatment of inguinal hernia. The naturally opened inguinal duct in rabbits resembles the human inguinal hernia with peritoneal fold. Because of inguinal canal of rabbits remains open and patent throughout life and the internal inguinal ring is also open and wide, they are chosen for laboratory study. Simple cohort of twelve male Chinchilla rabbits weighing 1200 to 1400 g was used as subjects. All animals had unrestricted access to food and water pre- and postoperatively. Experimental work was done according to the “Hospital experimental work state” and was approved by hospital ethical committee.
This work was developed at the Experimental Surgery Center of the Institute of Surgery Irkutsk, Russia. A 5-mm 30-degree endoscope without additional laparoscopic instruments was used. All procedures were recorded on hard disk of the videohub. All animals were placed supine and laparoscopy was done under general anesthesia. Acepromazine (0,25 mg/kg), midazolam (1 mg/kg) and meperidine (5 mg/kg) were administrated intramuscularly as premedication. The induction to general anesthesia was performed with Isoflurane 5%, using a tracheal tube, and maintained with Isoflurane 3-4% under manual ventilation. The animals were positioned supine over a surgical table and kept in place with elastic bands. The abdomen had previously been shaved. All needle movements are performed from outside the body cavity under camera control. To choose the location for the needle puncture, the position of the internal inguinal ring is assessed by pressing the inguinal region from the outside with the tip of a Pean forceps (Fig.4).
Position telescope and Tuohy needle during laparoscopic inguinal preperitoneal injection (LIPI)
At the beginning of procedure was performed the inspection of deep inguinal rings and cord structures (Fig.5). The Tuohy needle with injectable polymeric bulking agent DAM+™ (3-Dimensional polyacrylamide gel with ions of silver “Argiform”, Bioform®) was introduced preperitoneally (Fig.6). The 2.0 ml of implant was then injected across the entire orifice of the internal inguinal rings (Fig.7) and draped over the cord structures (Fig.8). Mean operative time ranged from 10 to 12 minutes for bilateral hernia repair. Time required to inject the DAM+™ was less than 1 minute Postoperative recovery was rapid and all animals returned to their normal activity after the procedure.
Laparoscopic view on the orifice of the inguinal hernia sac (IHS), the spermatic cord and vas deferens in rabbit
Tip of the Tuohy needle (a) before the gels implantation
Tip of the Tuohy needle (a) after the gels implantation (b – spermatic cord)
View of the inguinal hernia sac after LIPI procedure with preperitoneal placement of the polymeric agent (a)
After injection of the bulking agent and closing of the orifice of the IHS, the rabbits were extubated and observed in animal laboratory. Second laparoscopy was performed six month later using the same technique. At the second procedure the integrity of the closed internal inguinal rings and the presence of ring abscess, peritonitis and adhesions were recorded. At second laparoscopy integrity of the closed internal inguinal ring was present. No opening of the rings was observed. Accurate placement of the polymeric agent and adequate coverage of the vas deferens were accomplished in all animals. Adhesions between the closed orifice of the IHS and the small bowel were absent in all rabbits. There were no signs of peritonitis and abscess formation.
In the current study, histologic examination clearly showed that mild inflammation was localized within the IHS only adjacent to the gel and there were no histopathologic changes detected around the vas deferens and spermatic vessels. Our results has shown that after six months of DAM+™ injection closing of internal inguinal ring was observed with no reopening in all cases. This technique is simple, safe, and does not require any laparoscopic skills. Our method is highly successful, but in preparation for its use clinically, we must perform a particular studies requiring investigation local tissue reaction and long-term follow-up after the gel injection. In addition, we have concerns about hernia recurrence because polyacrylamide gel may lose its volume effect. Such research will confirm if there are any detrimental sequelae associated with this technique.
Progress in pediatric surgery and anesthesia has reduced the risk of the procedure of the hernioraphy so that in most centers it is performed as a day surgery. Further development in minimal access surgery for pediatric inguinal hernia is to decrease the number and size of skin incisions. With a trend toward increasing use of extracorporeal knotting and decreasing use of working ports and endoscopic instruments, laparoscopic inguinal preperitoneal injection (LIPI) of 3-D gel may be the attainment. We develop a modified technique of non-operative treatment of the inguinal hernia in children and we assume that gel injection in preperitoneale space can be performed under ultrasound visualization without laparoscopic control.
A technology of ultrasound guided nerve block in infants undergoing inguinal hernioraphy gained special popularity in pediatric anesthesia recently. The ilioinguinal/iliohypogastric nerve block is a popular regional anesthetic technique for postoperative pain relief after inguinal surgery in children [27, 28]. It is not easily to perform because the peritoneal cavity is just millimeters from the ilioinguinal and iliohypogastric nerves in small children. Needle placement and spread of local anesthetic is easily seen with high-resolution ultrasonography. Using ultrasound guidance, greater success can be achieved by more accurate placement of reduced volumes of local anesthetics closer to the targeted nerves.
We can transfer this technique and make similar procedure for a gel injection at pediatric patients with inguinal hernia. The idea consists in the following. Before placement of the 3-D polyacrylamide gel an initial ultrasound exploration of the area of the proposed injection site is performed by an experienced ultrasonographer using a stationary or transportable ultrasound unit and a 5–10 MHz linear probe with an active area of 20-30 mm. Inguinal masses in children must be carefully evaluated. The proposed site of injection will be then prepared with chlorhexidine.
The position of the needle tip in a particular anatomical structure (transverse abdominal muscle, internal oblique abdominal muscle, external oblique abdominal muscle; within the peritoneal cavity or subcutaneous) will be recorded. After that gel injection will be made. The injection of the gel will be performed by surgeon with experience of performing inguinal hernia repair. However this technique demands approbation on animal (rabbits) and then can be transfered on the humans.
Inguinal hernia repair is one of the most common pediatric surgical procedure worldwide. During the last 10 years, laparoscopic surgery has rapidly invaved the pediatric surgical practice. The hopes associated with introduction of a laparoscopy in treatment of pediatric inguinal hernias didn\'t come true. Unexpectedly, but the randomized, single-blinded, prospective repair between elective laparoscopic and open repair of unilateral inguinal hernia in children showed that recovery and surgical outcome were similar [28]. Besides, laparoscopic repair significantly increased the postoperative time and operative room time.
Injection implants can be regarded as a self-sufficient non-surgical alternative for correction of inguinal hernia in children. No doubt, materials of such kind must be safe and effective, and respond to a number of requirements: biocompatibility, non-toxicity, long-term effect, absence of antigenic properties and pyrogenic reactions. The injection method is excellent alternative to open and laparoscopic methods of treatment of inguinal hernia in children which use an anesthesia and an incision for operation performance. The advantages of this technique are that there is no dissection of the spermatic cord and there is no ligation of the IHS. The near future will show viability of this method.
MIMO communication systems have received significant research activities both in industry and academia since the emergence of 3G systems and are currently attracting many developers of 5G and 6G systems [1, 2, 3]. Services such as eMBB and URLLC have played an important role in the development of the 5G NR and Intelligent Transport System (ITS) and their network performance in V2X communications which incorporates Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I) and Vehicle-to-Pedestrians (V2P) communication modes. Wireless channel modeling plays a significant role in designing, assessing, and optimizing the performance of the systems components including the physical layer, networking protocols, and the antenna arrays at the Transmitter (Tx) and Receiver (Rx) using either RT or SCM tools [4, 5, 6, 7]. However, very little research has been reported on the differences between these two channel modeling approaches including their strength, limitations and how they consequently affect the evaluation of the MIMO channel capacity for realistic scenarios [8, 9, 10, 11, 12, 13, 14].
Comparisons between deterministic and SCM are reported in [8, 9, 10, 11, 12, 13, 14]. However, none of them provided sufficient comparison based on a rigorous representation of the antenna arrays in terms of circuit parameters and 3D far-field patterns for both the co- and cross-polarized vector field components. In [8], the difference in the MIMO channel capacity between the SCM COST 259 and a deterministic urban city model simulated using RT for 3G cellular system is reported. However, only omni-directional antennas with no consideration for the mutual coupling are used and the results are only simulated in outdoor scenarios under one SNR. In addition, the testing scenarios are not identical, as for the RT model, they used varying heights for the base station towers, but for the SCM, fixed heights are used.
A comparison of the angles of arrival between 3GPP 3D statistical channel model and a deterministic urban channel model is presented in [9]. However, the MIMO channel capacity and throughput results are not evaluated. The authors in [10] considered a large-scale massive MIMO system to compare the downlink throughput between an outdoor urban deterministic model and the statistical i.i.d. Rayleigh model. However, the i.i.d. Rayleigh model is not suitable to represent urban channel models. In addition, the i.i.d. Rayleigh model uses data generated from the RT software.
An evaluation of the MIMO channel capacity is presented in [11] using deterministic and stochastic indoor channel models. TGn C, D and E are used as indoor office SCM and a close representation is created and used in an RT scenario as the deterministic model. The RT channel capacity show close comparison to the results from the TGn stochastic model E. However, in the deterministic channel model, the Mobile Terminal (MT) antennas are placed in only two rooms while ignoring other locations in the building which would subsequently affect the accuracy of the calculated results. Considering the asymmetric distribution of rooms and the small size of the model, the results should be studied for different locations of Tx and a complete distribution of Rx antennas in the entire model’s area.
In [12], the difference between RT and SCM for network connectivity is reported. Neither capacity nor throughput results are presented, and all the simulations are for Single-Input Single-Output (SISO) scenarios. A massive MIMO study is presented in [13] comparing RT generated MIMO channel capacity with results from i.i.d. Rayleigh statistical channel model. Similar to [10], the i.i.d. Rayleigh is not a realistic representation of indoor nor urban channel models. The results were also calculated for only one SNR. Lastly, in [14], the authors presented a survey about different channel modeling approaches and the challenges that accompany them in 5G networks. However, the paper did not present comparison data nor case studies.
The main objective of this chapter to provide a fair comparison between the two channel modeling techniques in terms of the MIMO channel capacity. To this end, several important parameters have to be taken into consideration when evaluating the channel capacity, such as the 3D radiation patterns of transmitting and receiving antennas for both the co- and cross-polarized components, the scattering parameters of the antenna arrays under consideration to invoke direct and mutual coupling between the antenna elements, the distribution of the Tx and Rx components using different channel environments (indoor and outdoor) for the 5G NR and the ITS V2X systems. We utilize state-of-art commercial channel modeling tools for our case studies. MIMObit [15] is used for SCM and Wireless InSite [16] is used to represent deterministic models. MIMObit is an electromagnetic propagation simulator that utilizes standardized stochastic spatiotemporal channel models and uses rigorous analytical electromagnetic formulation to produce precise antenna-to-antenna channels and evaluate the performance of MIMO systems in different propagation models [15]. Wireless InSite is a 3D RT wireless electromagnetic solver that considers the physical characteristics of the materials in an environment and uses shooting and bouncing rays as electromagnetic waves to track their reflection, diffraction, transmission and scattering through objects and evaluate the received power, capacity and throughput at each point in a study area [16].
The new contributions of this chapter can be summarized as follows. A comprehensive research of the capabilities and limitations of stochastic and deterministic channel modeling tools is presented for the first time in different indoor and outdoor channel environments. The effects of the antenna’s 3D radiation patterns and scattering parameters on the MIMO channel capacity for 5G and V2X applications are considered using cutting-edge SCM [15] and RT [16] tools. It should be noted that all the simulations included in this chapter are intended for the downlink transmission utilizing the 2.45 GHz ISM band and the 3.7 GHz 5G NR FR1 N77/N78 bands.
The rest of the chapter is organized as follows. In Section 2, we present a case study involving the evaluation of the SISO and MIMO channel capacity for the Two-Ray model using Wireless InSite and MIMObit in order to validate the results against analytical formulation. In Section 3, we study the MIMO channel capacity in an indoor office environment using RT and SCM. Section 4 presents an evaluation of the MIMO channel capacity in an outdoor scenario using RT and SCM. In Section 5, the performance of the two channel modeling tools is presented for a V2X scenario involving a fixed gNodeB base station (gNB) and a moving vehicle. Finally, the chapter is concluded in Section 6.
Initially, the accuracy of the RT and SCM tools are verified using a simple scenario involving the channel capacity of the classical Two-Ray channel model over a flat Perfect Electrically Conducting (PEC) surface since an analytical solution is already available. Wireless InSite by Remcom is used for the RT approach while MIMObit is used to calculate the channel characteristics for a set of Tx and Rx antennas inserted in a half free-space environment above an infinite PEC surface.
To test the various settings and parameters for the proper operation of both software tools, the first case focused on evaluating the SISO channel capacity in a Two-Ray model and compare it to the theoretical calculations. The Two-Ray model consists of a single large flat layer of PEC. A single half-wavelength dipole transmitting antenna operating at 2.45 GHz and an identical receiving antenna are placed 30 m apart at a height of 2 m. The model consists of two rays, a Line-of-Sight (LOS) component and a Non-Line-of-Sight (NLOS) component that is reflected over the ground plane. Figure 1 shows the two rays between the Tx antenna and the Rx antenna.
Two-ray model.
To evaluate the received power at the receiver, Eq. (1) is used [17].
where
The Shannon capacity formula is used to find the SISO channel capacity [18] as shown in Eq. (3).
where
Two-ray model in wireless insite.
Model | Channel capacity (bps/Hz) | Difference % compared to theoretical calculations |
---|---|---|
Theoretical Calculations | 22.98 | — |
Wireless InSite | 23 | 0.09% |
MIMObit | 22.87 | 0.48% |
Two-ray SISO model.
Table 1 shows a close agreement between the SISO channel capacity results obtained from the RT tool, SCM tool and analytical calculations. A difference of 0.09% is noted between the RT tool and theoretical channel capacity while 0.48% difference is observed between the SCM capacity and the theoretical one. This provides impetus to perform precise channel modeling comparisons when moving to the more realistic indoor and outdoor environments.
To provide further validation over the reliability of the software tools, the next comparison uses the same Two-Ray model, however, this time using a 2x2 MIMO scenario. Two-vertically polarized, half-wavelength dipole antennas with a separation of 2λ between the elements, operating at 2.45 GHz are used as the Tx and Rx antennas, centered at the same locations as the SISO two-ray model, separated by 30 m horizontally at a height of 2.5 m and 1.5 m, respectively. A single LOS ray and a single NLOS ray propagate from each Tx antenna element to each Rx antenna element, resulting in a total of eight rays in the model. The MIMO channel capacity can be expressed as shown in Eq. (4) [19]:
where
The achieved MIMO channel capacity is 24.92 bps/Hz in RT and 23.01 bps/Hz in SCM with a difference of 7.98% which further validates the operation of these channel modeling tools.
The second case concerns the evaluation of the MIMO channel capacity in a deterministic indoor channel model and comparison against a stochastic indoor channel model. The indoor floor plan shown in Figure 3 is provided by Remcom. It has a width of 66 m, a length of 35 m and a height of 3 m and consisting of 23 offices, one main lobby and two big office areas containing 22 desks. Wood, concrete, glass, drywall and metallic materials were used to build the model. It provides a multipath-rich environment which is essential for MIMO applications. A corresponding SCM is created in MIMObit with similar dimensions using TGn 802.11n channel model B which is used to represent indoor office environments with NLOS conditions. A two-element MIMO antenna array is used as a transmitter and two-element half-wavelength dipole arrays are used as the receiving antennas in both models.
RT indoor model.
The transmitting antenna array used in both the RT and SCM tools is a modification of the design reported in [4] which is a miniaturized two-element monopole antenna array decoupled using a frequency selective structure, mounted on a grounded dielectric substrate and fed by two coaxial cables. The array operates at 3.7 GHz with a bandwidth of 160 MHz extending from 3.62 GHz to 3.78 GHz as determined by the S-parameters presented in Figure 4. The antenna has a minimum S11 of −30.7 dB and a reduced mutual coupling below −20 dB with a minimum of −38 dB over the operating bandwidth. The array achieves orthogonality between the main lobes of the 3D radiation patterns of the antenna elements as shown in Figures 5 and 6, which is favorable for spatial diversity and multiplexing. Each element pattern has a maximum gain of 7.01 dBi at boresight.
Tx/Rx antenna S-parameters.
3D antenna radiation pattern.
2D antenna radiation pattern (
The array is placed 36 m from the west main wall and 6.5 m below the north wall of the floor plan (blue spot in Figure 3) at a height of 2.5 m and is rotated 180o across the length as an Access Point (AP) with an input power of 1 W. 1056 two-element half-wavelength dipole antenna arrays operating at 3.7 GHz are uniformly distributed over the model at a height of 1.5 m and are used as the MT receiving antennas. The MT dipole elements are separated by 2λ where λ is the free-space wavelength at the operating frequency. The maximum number of ray reflection, transmission and diffraction per path is seven, one and two, respectively. These numbers are chosen after a trade-off between simulation time and accuracy. The space between the transmitted rays is chosen as 0.25°. MIMO open-loop scheme with no channel-state information is chosen as the MIMO scheme with no precoding or beamforming using 20 MHz bandwidth. Equal gain combining is used as the combining method operated at the receivers. With the absence of interference in the channel, each MT will experience a unique multipath from the AP and hence resulting in different MIMO channel capacities as shown in Figure 7. The average capacity over the 1056 locations considered in the simulation is displayed in Figure 9 for different SNRs ranging from 5 to 30 dB as the deterministic channel model MIMO capacity results.
Indoor model channel capacity.
A similar scenario is created using MIMObit’s TGn 108.11n model B SCM where the AP antenna is used at the same coordinates. However, only one receiving MT antenna is placed at (−10 m, −5 m, 1.5 m) as shown in Figure 8 and the average capacity is computed over a certain number of channel realizations in the time domain. The model is simulated over 1000 channel realizations where the channel environment changes at each realization resulting in a different set of multipath experienced by the signal traveling from the AP to the MT and hence resulting in a different MIMO channel capacity. The number of realizations has been chosen to achieve statistically reliable results. Comparison of the average MIMO channel capacity is shown versus SNR ranging from 5 to 30 dB in Figure 9.
SCM indoor model.
Indoor MIMO channel capacity.
The MIMO channel capacity in the SCM is higher than the capacity obtained from the deterministic channel model at SNR values larger than 20 dB. A maximum difference of 23.9% is observed at a SNR of 30 dB where the capacities are 13.1 and 10.3 bps/Hz from the SCM and RT models, respectively.
To further improve the results obtained from the SCM model, a new simulation scheme is developed in which the number of the receiving MT is increased in MIMObit to six of different locations ranging from 3.16 m to 33.02 m away from the AP all at a height of 1.5 m as shown in Figure 10.
SCM indoor model with different Rx positions.
Figure 11 reveals that at a constant SNR, changing the location of the receiving antenna does not have a significant impact on the MIMO channel capacity since each position is simulated 1000 times as the stochastic channel changes resulting in a maximum difference of 3.31% between any two Rx locations at SNR = 15 dB. Therefore, it is concluded that any Rx location within the geometry is valid for the comparison with the MIMO channel capacity generated from the RT tool.
Indoor MIMO channel capacity for different Rx positions.
Finally, we conclude that our results provide close agreement in the MIMO channel capacity between the SCM and the RT tools particularly at SNRs below 20 dB. The difference slightly increases at higher SNRs because the effect of MIMO is more prominent and. It should be emphasized that the observed 20% difference in results leads to a difference of only 3 bps/Hz which is accepted given that the SCM and RT are based on entirely different analytical formulations and numerical implementation. Due to space limitation, only one indoor model has been considered in the RT and SCM channel models. We recommend that future research should include different indoor environments to be compared with different SCM models.
To further investigate the strengths and limitations of RT and SCM tools, the third case study considers the MIMO channel capacity in a realistic outdoor environment. The same software, MIMObit and Wireless InSite are used to model the stochastic and deterministic outdoor channels, respectively. A 2x2 MIMO antenna array operating in the 5G NR N77/N78 bands is used in the gNB. The 3GPP 3D Urban Macro cell (UMa) channel model is used as the SCM of the urban model.
The deterministic urban channel model is imported from Remcom’s example library and is shown in Figure 12. It contains 39 buildings with different structures and heights. The gNB MIMO antenna used in this study is the same two-element array from the indoor study operating at 3.7 GHz and is placed at the edge of the rooftop on a building (the green box in Figure 12) at a height of 126.57 m with 180° tilt about the x-axis so that the antenna pattern’s main-lobes are pointing towards the ground. The MT antennas are two-element dipole arrays operating at 3.7 GHz. 500 MT antennas are placed randomly across the city at different heights ranging from 1.5 to 50 m.
RT outdoor channel model.
The antenna array at the gNB is fed with a total of 1 W power. The maximum number of ray reflection, transmission and diffraction per path is seven, one and two, respectively. The spacing between the transmitted rays is 0.25°. The MIMO open-loop diversity method is chosen for the study with no precoding or beamforming with 20 MHz allocated signal bandwidth. Equal Gain Combining is used as the combining method operated at the receivers. The average MIMO channel capacity perceived at the MTs is displayed in Figure 13 under different SNR values ranging from 5 to 30 dB.
Outdoor MIMO channel capacity.
The 3GPP 3D UMa SCM is used to represent the stochastic urban environment in a squarish geometry with a length of 500 m. The 3GPP UMa model is used for cities with gNBs located above roof tops of building [20]. The number of clusters and rays per cluster vary with the model and could reaching up to 23 clusters and 20 rays per cluster [20]. Both LOS and NLOS propagations are considered in this model. The same gNB antenna operating at 3.7 GHz is placed at a height of 126.57 m and a location/orientation similar to that from the RT software. The receiving MT antenna is a two-element half-wavelength dipole array operating at 3.7 GHz and is placed at the center of the model at a height of 1.5 m. The model is simulated under 1000 instantiations and the average MIMO channel capacity for SNRs ranging from 5 to 30 dB is shown in Figure 13.
Similar to the results obtained in the indoor environment case study, the MIMO channel capacity in the SCM is close to the one obtained from RT. The difference in the capacity between the two channel modeling tools is 12.3% at SNR = 5 dB where the SCM achieved 2.41 bps/Hz and the deterministic model achieved 2.13 bps/Hz, 14.9% at SNR = 15 dB where 5.97 bps/Hz and 5.14 bps/Hz capacities are achieved in the stochastic and deterministic models, respectively, and 31.9% at SNR = 30 dB where 13.8 bps/Hz and 10 bps/Hz capacities are achieved in the stochastic and deterministic models, respectively.
Traditionally, deterministic channel modeling tools are often used in V2X studies to evaluate the performance of antennas designed to operate in free-space when installed on a mast or a vehicle, Advanced Driver-Assistance Systems (ADAS), and interference among different vehicles [21, 22, 23, 24]. Specific models have been recently developed for these particular applications utilizing various geometries to assess V2X communication systems in dynamic scenarios, the review of which is provided in [25, 26]. The IEEE 802.11p and LTE-V standards are widely used for V2X communications. However, nowadays, 5G technologies are also being utilized for vehicle communications after the massive development in 5G networks and their capabilities in delivering high speed and reliable links between devices and equipment. In this section, we compare the capabilities and limitations of SCM and RT tools in assessing the performance of V2X communication systems in the physical (PHY) layer.
It should be noted that the RT approach is the method of choice for static indoor and outdoor environments in particular for the initial design and deployment as well as the optimal number of transmitters to ensure coverage for the desired coverage area. Once the network is deployed and operational, the performance will obviously degrade in certain spots due to relative motion between different objects in the network which can be resolved by increasing the transmitted power, adjusting the tilt of the antenna array or installing additional transmitters as needed. In a realistic simulation involving multiple vehicles moving at different speeds on a highway, multiple trajectories have to be defined for several vehicles involved in the scenario. Each vehicle should be represented with the proper geometry to represent the vehicle type such as, sedans, trucks, motorcycles and SUVs with their respective material properties and included in the RT solution at different positions, the number of which depends on the speed of the fastest vehicle and the data rate of the V2X system in order to relate the sampling in time to the channel coherence time. Obviously, this leads to extremely large computational demands that can only be achieved on highly dedicated cluster computers.
Instead, the approach we followed to model simple V2X scenarios involves several simplifying assumptions in order to make the computational demands tractable. The vehicle structure has not been included in the RT approach since a dense outdoor environment is involved. We selected a path as shown in Figure 14 for which the capacity has been evaluated along 410 m of discrete path points each separated by 1 m.
V2X route MIMO channel capacity.
The same outdoor urban channel model in the previous section is utilized in studying the channel capacity available to vehicles traversing a path of 410 m at a given speed in a city surrounded by concrete buildings while transmitting and receiving signals from a gNB located close to the pathway in a 2 × 2 closed-loop MIMO system with no interference as shown in Figure 14. The channel parameters obtained from this model can be used in post processing to test different V2X scenarios. The vehicle has a two-element MIMO antenna array operating in the 5G N77/N78 bands at 3.7 GHz. The radiation patterns of the array shown in Figures 5 and 6 are used in the simulation. The antenna is placed on the vehicle rooftop, 1.5 m above ground level.
The 2 × 2 MIMO system is simulated with 1 W total transmission power from the gNB. The maximum number of ray reflection, transmission and diffraction per path is seven, one and two, respectively. The spacing between the transmitted rays is 0.25°. The model is simulated as a closed-loop MIMO system with beamforming. The orthogonal radiation patterns of the antenna arrays is optimal for beamforming applications as they provide a narrow beam pointing at the vehicle while it moves, with Maximum Ratio Transmission (MRT) as the precoding scheme. The average MIMO capacity perceived at the vehicle’s antenna array is 14.05 bps/Hz at an average SNR of 40 dB. Figure 14 shows the MIMO channel capacity at each vehicle point along the traversed path in Mbit/sec with 20 MHz bandwidth.
In the absence of a vehicular model in the current version of MIMObit, we utilized the 3GPP 3D Urban UMa channel model as the stochastic channel where a gNB is placed at the coordinates (−150, 0, 50) as illustrated in Figure 15 with the same MIMO antenna array used in the RT software. Both LOS and NLOS components are considered. To represent a vehicle movement in the SCM, we developed a new approach in which 20 independent MT antenna arrays are placed at different locations along the path. In this approach, each array is assigned a temporal behavior where it turns on momentarily at the time the vehicle reaches that point. For example, assuming the vehicle is moving at 50 km/h, Rx1 turns on at time, t = 0 s, then turns off, Rx2 turns on at t = 1.8 s then turns off, Rx3 turns on at t = 3.6 s then turns off, and so on. The model is simulated as a closed-loop 2x2 MIMO system with beamforming and the average achieved MIMO channel capacity is 15.3 bps/Hz at an average SNR equal to 40.
SCM V2X model.
A 4.32% difference in the closed-loop beamforming MIMO channel capacity between the two modeling approaches is observed. This is due to that the RT study involves a static environment with no object mobility due to the limitations of the available computational resources and hence there is no time-varying signal distortion caused by mobility. However, the cluster birth-death process in different channel realizations accommodates for the non-static channel behavior of the SCM. Additionally, the temporal characteristics of the Rx antenna defines the vehicle movement in the SCM. Nevertheless, incorporating a large number of vehicles in an RT tool moving in an urban environment with different speeds and trajectories places severe limitations in terms of computational time and resources.
In the near future, more RT and SCM tools will be developed as the demand and applications of various wireless systems relying on these channel modeling tools constantly grow for the advancement of wireless communications. This chapter provided a case study for the evaluation of the SISO and MIMO channel capacity using the Two-Ray model for validation purpose, studies of the MIMO channel capacity evaluation using RT and SCM tools for indoor and outdoor environments, and a performance evaluation of RT and SCM tools for a V2X communication scenario. In spite of the assumptions made in the RT approach, especially for the V2X applications, there are only minor differences in the MIMO channel capacity between RT and SCM. The SCM is capable of characterizing stationary and non-stationary dynamic V2X communication systems operating at different velocities since it considers the temporal and spatial domains while the deterministic model is capable of representing realistic object geometries. However, in the RT approach, the vehicles’ models can only be included at discrete positions and the simulations have to be performed at each location. RT tools, however, yield more accurate results for link-level simulations of static networks as it can model objects such as buildings, road obstacles, traffic signs, etc. and achieve channel information characterizing precise channel effects such as path loss, shadowing and multipath fading. While SCM tools also model these channel effects, its adaptation for temporal behavior and non-stationary channel models makes it more suitable for link- and system-level simulations analyzing data transmission and communications at the bit level.
"Open access contributes to scientific excellence and integrity. It opens up research results to wider analysis. It allows research results to be reused for new discoveries. And it enables the multi-disciplinary research that is needed to solve global 21st century problems. Open access connects science with society. It allows the public to engage with research. To go behind the headlines. And look at the scientific evidence. And it enables policy makers to draw on innovative solutions to societal challenges".
\n\nCarlos Moedas, the European Commissioner for Research Science and Innovation at the STM Annual Frankfurt Conference, October 2016.
",metaTitle:"About Open Access",metaDescription:"Open access contributes to scientific excellence and integrity. It opens up research results to wider analysis. It allows research results to be reused for new discoveries. And it enables the multi-disciplinary research that is needed to solve global 21st century problems. Open access connects science with society. It allows the public to engage with research. To go behind the headlines. And look at the scientific evidence. And it enables policy makers to draw on innovative solutions to societal challenges.\n\nCarlos Moedas, the European Commissioner for Research Science and Innovation at the STM Annual Frankfurt Conference, October 2016.",metaKeywords:null,canonicalURL:"about-open-access",contentRaw:'[{"type":"htmlEditorComponent","content":"The Open Access publishing movement started in the early 2000s when academic leaders from around the world participated in the formation of the Budapest Initiative. They developed recommendations for an Open Access publishing process, “which has worked for the past decade to provide the public with unrestricted, free access to scholarly research—much of which is publicly funded. Making the research publicly available to everyone—free of charge and without most copyright and licensing restrictions—will accelerate scientific research efforts and allow authors to reach a larger number of readers” (reference: http://www.budapestopenaccessinitiative.org)
\\n\\nIntechOpen’s co-founders, both scientists themselves, created the company while undertaking research in robotics at Vienna University. Their goal was to spread research freely “for scientists, by scientists’ to the rest of the world via the Open Access publishing model. The company soon became a signatory of the Budapest Initiative, which currently has more than 1000 supporting organizations worldwide, ranging from universities to funders.
\\n\\nAt IntechOpen today, we are still as committed to working with organizations and people who care about scientific discovery, to putting the academic needs of the scientific community first, and to providing an Open Access environment where scientists can maximize their contribution to scientific advancement. By opening up access to the world’s scientific research articles and book chapters, we aim to facilitate greater opportunity for collaboration, scientific discovery and progress. We subscribe wholeheartedly to the Open Access definition:
\\n\\n“By “open access” to [peer-reviewed research literature], we mean its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. The only constraint on reproduction and distribution, and the only role for copyright in this domain, should be to give authors control over the integrity of their work and the right to be properly acknowledged and cited” (reference: http://www.budapestopenaccessinitiative.org)
\\n\\nOAI-PMH
\\n\\nAs a firm believer in the wider dissemination of knowledge, IntechOpen supports the Open Access Initiative Protocol for Metadata Harvesting (OAI-PMH Version 2.0). Read more
\\n\\nLicense
\\n\\nBook chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen upholds a very flexible Copyright Policy. There is no copyright transfer to the publisher and Authors retain exclusive copyright to their work. All Monographs/Compacts are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). Read more
\\n\\nPeer Review Policies
\\n\\nAll scientific works are Peer Reviewed prior to publishing. Read more
\\n\\nOA Publishing Fees
\\n\\nThe Open Access publishing model employed by IntechOpen eliminates subscription charges and pay-per-view fees, enabling readers to access research at no cost. In order to sustain operations and keep our publications freely accessible we levy an Open Access Publishing Fee for manuscripts, which helps us cover the costs of editorial work and the production of books. Read more
\\n\\nDigital Archiving Policy
\\n\\nIntechOpen is committed to ensuring the long-term preservation and the availability of all scholarly research we publish. We employ a variety of means to enable us to deliver on our commitments to the scientific community. Apart from preservation by the Croatian National Library (for publications prior to April 18, 2018) and the British Library (for publications after April 18, 2018), our entire catalogue is preserved in the CLOCKSS archive.
\\n\\nOpen Science is transparent and accessible knowledge that is shared and developed through collaborative networks.
\\n\\nOpen Science is about increased rigour, accountability, and reproducibility for research. It is based on the principles of inclusion, fairness, equity, and sharing, and ultimately seeks to change the way research is done, who is involved and how it is valued. It aims to make research more open to participation, review/refutation, improvement and (re)use for the world to benefit.
\\n\\nOpen Science refers to doing traditional science with more transparency involved at various stages, for example by openly sharing code and data. It implies a growing set of practices - within different disciplines - aiming at:
\\n\\nWe aim at improving the quality and availability of scholarly communication by promoting and practicing:
\\n\\n\\n"}]'},components:[{type:"htmlEditorComponent",content:'
The Open Access publishing movement started in the early 2000s when academic leaders from around the world participated in the formation of the Budapest Initiative. They developed recommendations for an Open Access publishing process, “which has worked for the past decade to provide the public with unrestricted, free access to scholarly research—much of which is publicly funded. Making the research publicly available to everyone—free of charge and without most copyright and licensing restrictions—will accelerate scientific research efforts and allow authors to reach a larger number of readers” (reference: http://www.budapestopenaccessinitiative.org)
\n\nIntechOpen’s co-founders, both scientists themselves, created the company while undertaking research in robotics at Vienna University. Their goal was to spread research freely “for scientists, by scientists’ to the rest of the world via the Open Access publishing model. The company soon became a signatory of the Budapest Initiative, which currently has more than 1000 supporting organizations worldwide, ranging from universities to funders.
\n\nAt IntechOpen today, we are still as committed to working with organizations and people who care about scientific discovery, to putting the academic needs of the scientific community first, and to providing an Open Access environment where scientists can maximize their contribution to scientific advancement. By opening up access to the world’s scientific research articles and book chapters, we aim to facilitate greater opportunity for collaboration, scientific discovery and progress. We subscribe wholeheartedly to the Open Access definition:
\n\n“By “open access” to [peer-reviewed research literature], we mean its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. The only constraint on reproduction and distribution, and the only role for copyright in this domain, should be to give authors control over the integrity of their work and the right to be properly acknowledged and cited” (reference: http://www.budapestopenaccessinitiative.org)
\n\nOAI-PMH
\n\nAs a firm believer in the wider dissemination of knowledge, IntechOpen supports the Open Access Initiative Protocol for Metadata Harvesting (OAI-PMH Version 2.0). Read more
\n\nLicense
\n\nBook chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen upholds a very flexible Copyright Policy. There is no copyright transfer to the publisher and Authors retain exclusive copyright to their work. All Monographs/Compacts are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). Read more
\n\nPeer Review Policies
\n\nAll scientific works are Peer Reviewed prior to publishing. Read more
\n\nOA Publishing Fees
\n\nThe Open Access publishing model employed by IntechOpen eliminates subscription charges and pay-per-view fees, enabling readers to access research at no cost. In order to sustain operations and keep our publications freely accessible we levy an Open Access Publishing Fee for manuscripts, which helps us cover the costs of editorial work and the production of books. Read more
\n\nDigital Archiving Policy
\n\nIntechOpen is committed to ensuring the long-term preservation and the availability of all scholarly research we publish. We employ a variety of means to enable us to deliver on our commitments to the scientific community. Apart from preservation by the Croatian National Library (for publications prior to April 18, 2018) and the British Library (for publications after April 18, 2018), our entire catalogue is preserved in the CLOCKSS archive.
\n\nOpen Science is transparent and accessible knowledge that is shared and developed through collaborative networks.
\n\nOpen Science is about increased rigour, accountability, and reproducibility for research. It is based on the principles of inclusion, fairness, equity, and sharing, and ultimately seeks to change the way research is done, who is involved and how it is valued. It aims to make research more open to participation, review/refutation, improvement and (re)use for the world to benefit.
\n\nOpen Science refers to doing traditional science with more transparency involved at various stages, for example by openly sharing code and data. It implies a growing set of practices - within different disciplines - aiming at:
\n\nWe aim at improving the quality and availability of scholarly communication by promoting and practicing:
\n\n\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13389},{group:"region",caption:"Middle and South America",value:2,count:11661},{group:"region",caption:"Africa",value:3,count:4168},{group:"region",caption:"Asia",value:4,count:22334},{group:"region",caption:"Australia and Oceania",value:5,count:2019},{group:"region",caption:"Europe",value:6,count:33642}],offset:12,limit:12,total:135275},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"-dateEndThirdStepPublish"},books:[{type:"book",id:"9985",title:"Geostatistics",subtitle:null,isOpenForSubmission:!0,hash:"423cb3896195a618c4acb493ce4fd23d",slug:null,bookSignature:"Prof. Jeffrey M. Yarus, Dr. Marko Maucec, Dr. Timothy C. Coburn and Associate Prof. Michael Pyrcz",coverURL:"https://cdn.intechopen.com/books/images_new/9985.jpg",editedByType:null,editors:[{id:"78011",title:"Prof.",name:"Jeffrey M.",surname:"Yarus",slug:"jeffrey-m.-yarus",fullName:"Jeffrey M. Yarus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12456",title:"Arthroscopis Surgery",subtitle:null,isOpenForSubmission:!0,hash:"7c8c783b20d7e2e1ee6cf53df3bf0750",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12456.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12112",title:"The Colorectal Surgery",subtitle:null,isOpenForSubmission:!0,hash:"21c65e742d31d5b69fb681ef78cfa0be",slug:null,bookSignature:"Dr. Muhammad Shamim",coverURL:"https://cdn.intechopen.com/books/images_new/12112.jpg",editedByType:null,editors:[{id:"235128",title:"Dr.",name:"Muhammad",surname:"Shamim",slug:"muhammad-shamim",fullName:"Muhammad Shamim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12215",title:"Cell Death and Disease",subtitle:null,isOpenForSubmission:!0,hash:"dfd456a29478fccf4ebd3294137eb1e3",slug:null,bookSignature:"Dr. Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/12215.jpg",editedByType:null,editors:[{id:"59529",title:"Dr.",name:"Ke",surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11998",title:"Biocomposites - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"8bc7ffd7544fff1901301c787e64fada",slug:null,bookSignature:"Prof. Magdy Elnashar",coverURL:"https://cdn.intechopen.com/books/images_new/11998.jpg",editedByType:null,editors:[{id:"12075",title:"Prof.",name:"Magdy",surname:"Elnashar",slug:"magdy-elnashar",fullName:"Magdy Elnashar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11999",title:"Earthquakes - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"b2af07109b13b76e5af9583532ab5bee",slug:null,bookSignature:"Dr. Walter Salazar",coverURL:"https://cdn.intechopen.com/books/images_new/11999.jpg",editedByType:null,editors:[{id:"236461",title:"Dr.",name:"Walter",surname:"Salazar",slug:"walter-salazar",fullName:"Walter Salazar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12058",title:"Future Housing",subtitle:null,isOpenForSubmission:!0,hash:"e7f4a1e57fab392b61156956c1247b9e",slug:null,bookSignature:"Dr. Ivan Oropeza-Perez and Dr. Astrid Helena Petzold-Rodríguez",coverURL:"https://cdn.intechopen.com/books/images_new/12058.jpg",editedByType:null,editors:[{id:"282172",title:"Dr.",name:"Ivan",surname:"Oropeza-Perez",slug:"ivan-oropeza-perez",fullName:"Ivan Oropeza-Perez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12079",title:"Strategies Towards the Synthesis of Heterocycles and Their Applications",subtitle:null,isOpenForSubmission:!0,hash:"bc4022af925c0883636e0819008971ee",slug:null,bookSignature:"Dr. Premlata Kumari and Dr. Amit B Patel",coverURL:"https://cdn.intechopen.com/books/images_new/12079.jpg",editedByType:null,editors:[{id:"177041",title:"Dr.",name:"Premlata",surname:"Kumari",slug:"premlata-kumari",fullName:"Premlata Kumari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12208",title:"Metformin - A Prospective Alternative for the Treatment of Chronic Diseases",subtitle:null,isOpenForSubmission:!0,hash:"aa4b8aac3f44ba3ab334530c5d5646ea",slug:null,bookSignature:"Prof. Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/12208.jpg",editedByType:null,editors:[{id:"41865",title:"Prof.",name:"Farid A.",surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12172",title:"Health Risks of Food Additives - Recent Developments and Trends in Food Sector",subtitle:null,isOpenForSubmission:!0,hash:"f6aa23b1045d266d0928fcef04fa3417",slug:null,bookSignature:"Dr. Muhammad Sajid Arshad and Mr. Waseem Khalid",coverURL:"https://cdn.intechopen.com/books/images_new/12172.jpg",editedByType:null,editors:[{id:"192998",title:"Dr.",name:"Muhammad Sajid",surname:"Arshad",slug:"muhammad-sajid-arshad",fullName:"Muhammad Sajid Arshad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12196",title:"Sepsis - New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"3590e6f6047122bd96d1d57da29c4054",slug:null,bookSignature:"Dr. Lixing Huang, Dr. Youyu Zhang and Dr. Lingbin Sun",coverURL:"https://cdn.intechopen.com/books/images_new/12196.jpg",editedByType:null,editors:[{id:"333148",title:"Dr.",name:"Lixing",surname:"Huang",slug:"lixing-huang",fullName:"Lixing Huang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12113",title:"Tendons - Trauma, Inflammation, Degeneration, and Treatment",subtitle:null,isOpenForSubmission:!0,hash:"2387a4e0d2a76883b16dcccd452281ab",slug:null,bookSignature:"Dr. Nahum Rosenberg",coverURL:"https://cdn.intechopen.com/books/images_new/12113.jpg",editedByType:null,editors:[{id:"68911",title:"Dr.",name:"Nahum",surname:"Rosenberg",slug:"nahum-rosenberg",fullName:"Nahum Rosenberg"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:24},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:7},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:16},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:8},{group:"topic",caption:"Engineering",value:11,count:39},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:8},{group:"topic",caption:"Materials Science",value:14,count:15},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:64},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:5},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:480},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3737",title:"MATLAB",subtitle:"Modelling, Programming and Simulations",isOpenForSubmission:!1,hash:null,slug:"matlab-modelling-programming-and-simulations",bookSignature:"Emilson Pereira Leite",coverURL:"https://cdn.intechopen.com/books/images_new/3737.jpg",editors:[{id:"12051",title:"Prof.",name:"Emilson",middleName:null,surname:"Pereira Leite",slug:"emilson-pereira-leite",fullName:"Emilson Pereira Leite"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"1770",title:"Gel Electrophoresis",subtitle:"Principles and Basics",isOpenForSubmission:!1,hash:"279701f6c802cf02deef45103e0611ff",slug:"gel-electrophoresis-principles-and-basics",bookSignature:"Sameh Magdeldin",coverURL:"https://cdn.intechopen.com/books/images_new/1770.jpg",editors:[{id:"123648",title:"Dr.",name:"Sameh",middleName:null,surname:"Magdeldin",slug:"sameh-magdeldin",fullName:"Sameh Magdeldin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4797},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7175,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1981,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2308,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1473,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318571,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271836,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",publishedDate:"July 1st 2013",numberOfDownloads:243450,editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1582,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2082,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",publishedDate:"October 17th 2012",numberOfDownloads:256294,editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11328",title:"Botulinum Toxin",subtitle:"Recent Topics and Applications",isOpenForSubmission:!1,hash:"7dd05a316001cef143e209eda51387a7",slug:"botulinum-toxin-recent-topics-and-applications",bookSignature:"Suna Sabuncuoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11328.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"270856",title:"Associate Prof.",name:"Suna",middleName:null,surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11085",title:"Polycystic Ovary Syndrome",subtitle:"Functional Investigation and Clinical Application",isOpenForSubmission:!1,hash:"3066dd3ff29e1fac072fd60b08d4d3e7",slug:"polycystic-ovary-syndrome-functional-investigation-and-clinical-application",bookSignature:"Zhengchao Wang",coverURL:"https://cdn.intechopen.com/books/images_new/11085.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"204883",title:"Dr.",name:"Zhengchao",middleName:null,surname:"Wang",slug:"zhengchao-wang",fullName:"Zhengchao Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10833",title:"Tumor Angiogenesis and Modulators",subtitle:null,isOpenForSubmission:!1,hash:"f29b575c46128b2da061ef7f9bd1070b",slug:"tumor-angiogenesis-and-modulators",bookSignature:"Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/10833.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"59529",title:"Dr.",name:"Ke",middleName:null,surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11356",title:"Molecular Cloning",subtitle:null,isOpenForSubmission:!1,hash:"671c629dd86e97f0fb467b9e70e92296",slug:"molecular-cloning",bookSignature:"Sadık Dincer, Hatice Aysun Mercimek Takcı and Melis Sumengen Ozdenef",coverURL:"https://cdn.intechopen.com/books/images_new/11356.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"188141",title:"Prof.",name:"Sadik",middleName:null,surname:"Dincer",slug:"sadik-dincer",fullName:"Sadik Dincer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Advanced Topics of Topology",subtitle:null,isOpenForSubmission:!1,hash:"bf964c52f9e653fac20a7fcab58070e5",slug:"advanced-topics-of-topology",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"92918",title:"Dr.",name:"Francisco",middleName:null,surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11195",title:"Recent Advances in Biometrics",subtitle:null,isOpenForSubmission:!1,hash:"2d32e33e0f499cb5241734bb75dd2a83",slug:"recent-advances-in-biometrics",bookSignature:"Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/11195.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"202",title:"Surgery",slug:"surgery",parent:{id:"16",title:"Medicine",slug:"medicine"},numberOfBooks:142,numberOfSeries:0,numberOfAuthorsAndEditors:3738,numberOfWosCitations:1281,numberOfCrossrefCitations:1010,numberOfDimensionsCitations:2311,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"202",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10708",title:"Topics in Regional Anesthesia",subtitle:null,isOpenForSubmission:!1,hash:"264f7f37033b4867cace7912287fccaa",slug:"topics-in-regional-anesthesia",bookSignature:"Víctor M. Whizar-Lugo, José Ramón Saucillo-Osuna and Guillermo Castorena-Arellano",coverURL:"https://cdn.intechopen.com/books/images_new/10708.jpg",editedByType:"Edited by",editors:[{id:"169249",title:"Prof.",name:"Víctor M.",middleName:null,surname:"Whizar-Lugo",slug:"victor-m.-whizar-lugo",fullName:"Víctor M. Whizar-Lugo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11238",title:"Hernia Surgery",subtitle:null,isOpenForSubmission:!1,hash:"1663b79cce4c6cddb688a027bd0cd34d",slug:"hernia-surgery",bookSignature:"Selim Sözen and Hasan Erdem",coverURL:"https://cdn.intechopen.com/books/images_new/11238.jpg",editedByType:"Edited by",editors:[{id:"90616",title:"Associate Prof.",name:"Selim",middleName:null,surname:"Sözen",slug:"selim-sozen",fullName:"Selim Sözen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10351",title:"Enhanced Liposuction",subtitle:"New Perspectives and Techniques",isOpenForSubmission:!1,hash:"f08ed6de16da357614586c5b58ed4dfa",slug:"enhanced-liposuction-new-perspectives-and-techniques",bookSignature:"Diane Irvine Duncan",coverURL:"https://cdn.intechopen.com/books/images_new/10351.jpg",editedByType:"Edited by",editors:[{id:"279869",title:"Dr.",name:"Diane Irvine",middleName:null,surname:"Duncan",slug:"diane-irvine-duncan",fullName:"Diane Irvine Duncan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10866",title:"Skin Grafts for Successful Wound Closure",subtitle:null,isOpenForSubmission:!1,hash:"7f96063ba4feb9aab82c344a88a8c90c",slug:"skin-grafts-for-successful-wound-closure",bookSignature:"Madhuri Gore",coverURL:"https://cdn.intechopen.com/books/images_new/10866.jpg",editedByType:"Edited by",editors:[{id:"157243",title:"Dr.",name:"Madhuri",middleName:null,surname:"Gore",slug:"madhuri-gore",fullName:"Madhuri Gore"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10711",title:"Arthroscopy",subtitle:null,isOpenForSubmission:!1,hash:"afa83f11ba2442e7612f5b8c6aa3c659",slug:"arthroscopy",bookSignature:"Carlos Suarez-Ahedo",coverURL:"https://cdn.intechopen.com/books/images_new/10711.jpg",editedByType:"Edited by",editors:[{id:"235976",title:"M.D.",name:"Carlos",middleName:null,surname:"Suarez-Ahedo",slug:"carlos-suarez-ahedo",fullName:"Carlos Suarez-Ahedo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10723",title:"Brachial Plexus Injury",subtitle:"New Techniques and Ideas",isOpenForSubmission:!1,hash:"94c1a38f1ee7a078ee6ec640360c39f2",slug:"brachial-plexus-injury-new-techniques-and-ideas",bookSignature:"Jörg Bahm",coverURL:"https://cdn.intechopen.com/books/images_new/10723.jpg",editedByType:"Edited by",editors:[{id:"78207",title:"Prof.",name:"Jörg",middleName:null,surname:"Bahm",slug:"jorg-bahm",fullName:"Jörg Bahm"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10447",title:"The Art and Science of Abdominal Hernia",subtitle:null,isOpenForSubmission:!1,hash:"d3ace0f00ca1fdef094c105930ad353a",slug:"the-art-and-science-of-abdominal-hernia",bookSignature:"Muhammad Shamim",coverURL:"https://cdn.intechopen.com/books/images_new/10447.jpg",editedByType:"Edited by",editors:[{id:"235128",title:"Dr.",name:"Muhammad",middleName:null,surname:"Shamim",slug:"muhammad-shamim",fullName:"Muhammad Shamim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10492",title:"Advances in Minimally Invasive Surgery",subtitle:null,isOpenForSubmission:!1,hash:"99d1149818bdb9bfa83675488599529c",slug:"advances-in-minimally-invasive-surgery",bookSignature:"Andrea Sanna",coverURL:"https://cdn.intechopen.com/books/images_new/10492.jpg",editedByType:"Edited by",editors:[{id:"327116",title:"M.D.",name:"Andrea",middleName:null,surname:"Sanna",slug:"andrea-sanna",fullName:"Andrea Sanna"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10302",title:"Aortic Aneurysm",subtitle:"Clinical Findings, Diagnostic, Treatment and Special Situations",isOpenForSubmission:!1,hash:"edb4662797c08616dc42b7796f1d17fe",slug:"aortic-aneurysm-clinical-findings-diagnostic-treatment-and-special-situations",bookSignature:"Ana Terezinha Guillaumon and Daniel Emilio Dalledone Siqueira",coverURL:"https://cdn.intechopen.com/books/images_new/10302.jpg",editedByType:"Edited by",editors:[{id:"251226",title:"Prof.",name:"Ana Terezinha",middleName:null,surname:"Guillaumon",slug:"ana-terezinha-guillaumon",fullName:"Ana Terezinha Guillaumon"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10537",title:"Frontiers in Clinical Neurosurgery",subtitle:null,isOpenForSubmission:!1,hash:"908c7edd9fcb3cbafbf42d30232db9a0",slug:"frontiers-in-clinical-neurosurgery",bookSignature:"Xianli Lv, Guihuai Wang, James Wang and Zhongxue Wu",coverURL:"https://cdn.intechopen.com/books/images_new/10537.jpg",editedByType:"Edited by",editors:[{id:"153155",title:"Dr.",name:"Xianli",middleName:null,surname:"Lv",slug:"xianli-lv",fullName:"Xianli Lv"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9818",title:"Bariatric Surgery",subtitle:"From the Non-Surgical Approach to the Post-Surgery Individual Care",isOpenForSubmission:!1,hash:"6083018185852f95759958b4d9e5e33b",slug:"bariatric-surgery-from-the-non-surgical-approach-to-the-post-surgery-individual-care",bookSignature:"Nieves Saiz-Sapena and Juan Miguel Oviedo",coverURL:"https://cdn.intechopen.com/books/images_new/9818.jpg",editedByType:"Edited by",editors:[{id:"204651",title:"Dr.",name:"Nieves",middleName:null,surname:"Saiz-Sapena",slug:"nieves-saiz-sapena",fullName:"Nieves Saiz-Sapena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9790",title:"Surgical Management of Head and Neck Pathologies",subtitle:null,isOpenForSubmission:!1,hash:"8ae195fe1164fd55b69b775d596f1e8a",slug:"surgical-management-of-head-and-neck-pathologies",bookSignature:"Ho-Hyun (Brian) Sun",coverURL:"https://cdn.intechopen.com/books/images_new/9790.jpg",editedByType:"Edited by",editors:[{id:"184302",title:"Dr.",name:"H. Brian",middleName:null,surname:"Sun",slug:"h.-brian-sun",fullName:"H. Brian Sun"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:142,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"26862",doi:"10.5772/27413",title:"Titanium as a Biomaterial for Implants",slug:"titanium-as-a-biomaterial-for-implants",totalDownloads:16274,totalCrossrefCites:52,totalDimensionsCites:128,abstract:null,book:{id:"938",slug:"recent-advances-in-arthroplasty",title:"Recent Advances in Arthroplasty",fullTitle:"Recent Advances in Arthroplasty"},signatures:"Carlos Oldani and Alejandro Dominguez",authors:[{id:"70012",title:"Dr.",name:"Carlos",middleName:null,surname:"Oldani",slug:"carlos-oldani",fullName:"Carlos Oldani"},{id:"73445",title:"MSc.",name:"Alejandro",middleName:"Anibal",surname:"Dominguez",slug:"alejandro-dominguez",fullName:"Alejandro Dominguez"}]},{id:"58199",doi:"10.5772/intechopen.71963",title:"Virtual and Augmented Reality in Medical Education",slug:"virtual-and-augmented-reality-in-medical-education",totalDownloads:3107,totalCrossrefCites:21,totalDimensionsCites:41,abstract:"Virtual reality (VR) and augmented reality (AR) are two contemporary simulation models that are currently upgrading medical education. VR provides a 3D and dynamic view of structures and the ability of the user to interact with them. The recent technological advances in haptics, display systems, and motion detection allow the user to have a realistic and interactive experience, enabling VR to be ideal for training in hands-on procedures. Consequently, surgical and other interventional procedures are the main fields of application of VR. AR provides the ability of projecting virtual information and structures over physical objects, thus enhancing or altering the real environment. The integration of AR applications in the understanding of anatomical structures and physiological mechanisms seems to be beneficial. Studies have tried to demonstrate the validity and educational effect of many VR and AR applications, in many different areas, employed via various hardware platforms. Some of them even propose a curriculum that integrates these methods. This chapter provides a brief history of VR and AR in medicine, as well as the principles and standards of their function. Finally, the studies that show the effect of the implementation of these methods in different fields of medical training are summarized and presented.",book:{id:"6211",slug:"medical-and-surgical-education-past-present-and-future",title:"Medical and Surgical Education",fullTitle:"Medical and Surgical Education - Past, Present and Future"},signatures:"Panteleimon Pantelidis, Angeliki Chorti, Ioanna Papagiouvanni,\nGeorgios Paparoidamis, Christos Drosos, Thrasyvoulos\nPanagiotakopoulos, Georgios Lales and Michail Sideris",authors:[{id:"211650",title:"M.D.",name:"Panteleimon",middleName:null,surname:"Pantelidis",slug:"panteleimon-pantelidis",fullName:"Panteleimon Pantelidis"},{id:"211654",title:"Ms.",name:"Angeliki",middleName:null,surname:"Chorti",slug:"angeliki-chorti",fullName:"Angeliki Chorti"},{id:"220557",title:"Ms.",name:"Ioanna",middleName:null,surname:"Papagiouvanni",slug:"ioanna-papagiouvanni",fullName:"Ioanna Papagiouvanni"},{id:"220558",title:"Mr.",name:"Georgios",middleName:null,surname:"Paparoidamis",slug:"georgios-paparoidamis",fullName:"Georgios Paparoidamis"},{id:"220559",title:"Mr.",name:"Georgios",middleName:null,surname:"Lales",slug:"georgios-lales",fullName:"Georgios Lales"},{id:"220560",title:"Mr.",name:"Thrasyvoulos",middleName:null,surname:"Panagiotakopoulos",slug:"thrasyvoulos-panagiotakopoulos",fullName:"Thrasyvoulos Panagiotakopoulos"},{id:"220561",title:"Mr.",name:"Christos",middleName:null,surname:"Drosos",slug:"christos-drosos",fullName:"Christos Drosos"},{id:"220562",title:"Dr.",name:"Michail",middleName:null,surname:"Sideris",slug:"michail-sideris",fullName:"Michail Sideris"}]},{id:"50915",doi:"10.5772/63266",title:"Doped Bioactive Glass Materials in Bone Regeneration",slug:"doped-bioactive-glass-materials-in-bone-regeneration",totalDownloads:3504,totalCrossrefCites:13,totalDimensionsCites:34,abstract:"In the arena of orthopaedic surgery, autograft is considered to be the gold standard for correction of fracture repair or other bone pathologies. But, it has some limitations such as donor site morbidity and shortage of supply, which evolved the use of allograft that also has some disadvantages such as immunogenic response to the host, low osteogenicity as well as possibilities of disease transmission. Despite the benefits of autografts and allografts, the limitations of each have necessitated the pursuit of alternatives biomaterials that has the ability to initiate osteogenesis, and the graft should closely mimic the natural bone along with regeneration of fibroblasts. A variety of artificial materials such as demineralised bone matrix, coralline hydroxyapatite and calcium phosphate-based ceramics such as hydroxyapatite (HA), β-tricalcium phosphate (β-TCP) and bioactive glass have been used over the decades to fill bone defects almost without associated soft tissue development. Most of them were having only the properties of osteointegration and osteoconduction. Only bioactive glass possesses osteogenic property that stimulates proliferation and differentiation of osteoprogenitor cells and in some cases influencing the fibroblastic properties. But, this material has also some disadvantages such as short-term and low mechanical strength along with decreased fracture resistance; but, this was further minimised by ion doping that positively enhanced new bone formation. There are many metal ions such as magnesium (Mg), strontium (Sr), manganese (Mn), iron (Fe), zinc (Zn), silver (Ag) and some rare earths that have been doped successfully into bioactive glass to enhance their mechanical and biological properties. In some of the cases, mesoporous bioactive glass materials with or without such doping have also been employed (with homogeneous distribution of pores in the size ranging between 2 and 50 nm). These biomaterials can be served as scaffold for bone regeneration with adequate mechanical properties to restore bone defects and facilitate healing process by regeneration of soft tissues as well. This chapter encompasses the use of bioactive glass in bulk and mesoporous form with doped therapeutic ions, their role in bone tissue regeneration, use as delivery of growth factors as well as coating material for orthopaedic implants.",book:{id:"5164",slug:"advanced-techniques-in-bone-regeneration",title:"Advanced Techniques in Bone Regeneration",fullTitle:"Advanced Techniques in Bone Regeneration"},signatures:"Samit Kumar Nandi, Arnab Mahato, Biswanath Kundu and Prasenjit\nMukherjee",authors:[{id:"60514",title:"Dr.",name:"Samit",middleName:null,surname:"Nandi",slug:"samit-nandi",fullName:"Samit Nandi"}]},{id:"37120",doi:"10.5772/29607",title:"Trigeminocardiac Reflex in Neurosurgery - Current Knowledge and Prospects",slug:"the-trigeminocardiac-reflex-in-neurosurgery-current-knowledge-and-prospects",totalDownloads:3438,totalCrossrefCites:10,totalDimensionsCites:27,abstract:null,book:{id:"749",slug:"explicative-cases-of-controversial-issues-in-neurosurgery",title:"Explicative Cases of Controversial Issues in Neurosurgery",fullTitle:"Explicative Cases of Controversial Issues in Neurosurgery"},signatures:"Amr Abdulazim, Martin N. Stienen, Pooyan Sadr-Eshkevari, Nora Prochnow, Nora Sandu, Benham Bohluli and Bernhard Schaller",authors:[{id:"78171",title:"Prof.",name:"Bernhard",middleName:null,surname:"Schaller",slug:"bernhard-schaller",fullName:"Bernhard Schaller"},{id:"78525",title:"Mr.",name:"Amr",middleName:null,surname:"Abdulazim",slug:"amr-abdulazim",fullName:"Amr Abdulazim"},{id:"78530",title:"Dr",name:"Pooyan",middleName:null,surname:"Sadr-Eshkevari",slug:"pooyan-sadr-eshkevari",fullName:"Pooyan Sadr-Eshkevari"},{id:"126039",title:"Dr.",name:"Martin",middleName:"Nikolaus",surname:"Stienen",slug:"martin-stienen",fullName:"Martin Stienen"},{id:"126040",title:"Dr.",name:"Nora",middleName:null,surname:"Prochnow",slug:"nora-prochnow",fullName:"Nora Prochnow"},{id:"126041",title:"Dr.",name:"Benham",middleName:null,surname:"Bohluli",slug:"benham-bohluli",fullName:"Benham Bohluli"}]},{id:"26863",doi:"10.5772/26362",title:"The Bearing Surfaces in Total Hip Arthroplasty – Options, Material Characteristics and Selection",slug:"the-bearing-surfaces-in-total-hip-arthroplasty-options-material-characteristics-and-selection",totalDownloads:9530,totalCrossrefCites:10,totalDimensionsCites:21,abstract:null,book:{id:"938",slug:"recent-advances-in-arthroplasty",title:"Recent Advances in Arthroplasty",fullTitle:"Recent Advances in Arthroplasty"},signatures:"Hamid Reza Seyyed Hosseinzadeh, Alireza Eajazi and Ali Sina Shahi",authors:[{id:"66361",title:"Dr.",name:"Alireza",middleName:null,surname:"Eajazi",slug:"alireza-eajazi",fullName:"Alireza Eajazi"},{id:"74857",title:"Dr.",name:"Hamid Reza",middleName:null,surname:"Seyyed Hosseinzadeh",slug:"hamid-reza-seyyed-hosseinzadeh",fullName:"Hamid Reza Seyyed Hosseinzadeh"},{id:"173207",title:"Dr.",name:"Alisina",middleName:null,surname:"Shahi",slug:"alisina-shahi",fullName:"Alisina Shahi"}]}],mostDownloadedChaptersLast30Days:[{id:"65467",title:"Anesthesia Management for Large-Volume Liposuction",slug:"anesthesia-management-for-large-volume-liposuction",totalDownloads:6203,totalCrossrefCites:1,totalDimensionsCites:2,abstract:"The apparent easiness with which liposuction is performed favors that patients, young surgeons, and anesthesiologists without experience in this field ignore the many events that occur during this procedure. Liposuction is a procedure to improve the body contour and not a surgery to reduce weight, although recently people who have failed in their plans to lose weight look at liposuction as a means to contour their body figure. Tumescent liposuction of large volumes requires a meticulous selection of each patient; their preoperative evaluation and perioperative management are essential to obtain the expected results. The various techniques of general anesthesia are the most recommended and should be monitored in the usual way, as well as monitoring the total doses of infiltrated local anesthetics to avoid systemic toxicity. The management of intravenous fluids is controversial, but the current trend is the restricted use of hydrosaline solutions. The most feared complications are deep vein thrombosis, pulmonary thromboembolism, fat embolism, lung edema, hypothermia, infections and even death. The adherence to the management guidelines and prophylaxis of venous thrombosis/thromboembolism is mandatory.",book:{id:"6221",slug:"anesthesia-topics-for-plastic-and-reconstructive-surgery",title:"Anesthesia Topics for Plastic and Reconstructive Surgery",fullTitle:"Anesthesia Topics for Plastic and Reconstructive Surgery"},signatures:"Sergio Granados-Tinajero, Carlos Buenrostro-Vásquez, Cecilia\nCárdenas-Maytorena and Marcela Contreras-López",authors:[{id:"273532",title:"Dr.",name:"Sergio Octavio",middleName:null,surname:"Granados Tinajero",slug:"sergio-octavio-granados-tinajero",fullName:"Sergio Octavio Granados Tinajero"}]},{id:"42855",title:"Critical Care Issues After Major Hepatic Surgery",slug:"critical-care-issues-after-major-hepatic-surgery",totalDownloads:8935,totalCrossrefCites:2,totalDimensionsCites:2,abstract:null,book:{id:"3164",slug:"hepatic-surgery",title:"Hepatic Surgery",fullTitle:"Hepatic Surgery"},signatures:"Ashok Thorat and Wei-Chen Lee",authors:[{id:"52360",title:"Prof.",name:"Wei-Chen",middleName:null,surname:"Lee",slug:"wei-chen-lee",fullName:"Wei-Chen Lee"},{id:"157213",title:"Dr.",name:"Ashok",middleName:null,surname:"Thorat",slug:"ashok-thorat",fullName:"Ashok Thorat"}]},{id:"72175",title:"Fontan Operation: A Comprehensive Review",slug:"fontan-operation-a-comprehensive-review",totalDownloads:1299,totalCrossrefCites:3,totalDimensionsCites:2,abstract:"Since the first description of the Fontan operation in the early 1970s, a number of modifications have been introduced and currently staged, total cavopulmonary connection with fenestration has become the most commonly used multistage surgery in diverting the vena caval blood flow into the lungs. The existing ventricle, whether it is left or right, is utilized to supply systemic circuit. During Stage I, palliative surgery is performed, usually at presentation in the neonatal period/early infancy, on the basis of pathophysiology of the cardiac defect. During Stage II, a bidirectional Glenn procedure is undertaken in which the superior vena caval flow is diverted into the lungs at an approximate age of 6 months. During Stage IIIA, the blood flow from the inferior vena cava (IVC) is rerouted into the pulmonary arteries, typically by an extra-cardiac conduit along with a fenestration, generally around 2 years of age. During Stage IIIB, the fenestration is closed by transcatheter methodology 6–12 months after Stage IIIA. The evolution of Fontan concepts, the indications for Fontan surgery, and the results of old and current types of Fontan operation form the focus of this review.",book:{id:"9585",slug:"advances-in-complex-valvular-disease",title:"Advances in Complex Valvular Disease",fullTitle:"Advances in Complex Valvular Disease"},signatures:"P. Syamasundar Rao",authors:[{id:"68531",title:"Dr.",name:"P. Syamasundar",middleName:null,surname:"Rao",slug:"p.-syamasundar-rao",fullName:"P. Syamasundar Rao"}]},{id:"45712",title:"Serdev Sutures® in Middle Face",slug:"serdev-sutures-in-middle-face",totalDownloads:4952,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"2989",slug:"miniinvasive-face-and-body-lifts-closed-suture-lifts-or-barbed-thread-lifts",title:"Miniinvasive Face and Body Lifts",fullTitle:"Miniinvasive Face and Body Lifts - Closed Suture Lifts or Barbed Thread Lifts"},signatures:"Nikolay Serdev",authors:[{id:"32585",title:"Dr.",name:"Nikolay",middleName:null,surname:"Serdev",slug:"nikolay-serdev",fullName:"Nikolay Serdev"}]},{id:"55812",title:"Postural Restoration: A Tri-Planar Asymmetrical Framework for Understanding, Assessing, and Treating Scoliosis and Other Spinal Dysfunctions",slug:"postural-restoration-a-tri-planar-asymmetrical-framework-for-understanding-assessing-and-treating-sc",totalDownloads:7701,totalCrossrefCites:0,totalDimensionsCites:1,abstract:"Current medical practice does not recognize the influence of innate, physiological, human asymmetry on scoliosis and other postural disorders. Interventions meant to correct these conditions are commonly based on symmetrical models of appearance and do not take into account asymmetric organ weight distribution, asymmetries of respiratory mechanics, and dominant movement patterns that are reinforced in daily functional activities. A model of innate, human asymmetry derived from the theoretical framework of the Postural Restoration Institute® (PRI) explicitly describes the physiological, biomechanical, and respiratory components of human asymmetry. This model is important because it gives an accurate baseline for understanding predisposing factors for the development of postural disorders, which, without intervention, will likely progress to structural dysfunction. Clinical tests to evaluate tri-planar musculoskeletal relationships and function, developed by PRI, are based on this asymmetric model. These tests are valuable for assessing patient’s status in the context of human asymmetry and in guiding appropriate exercise prescription and progression. Balancing musculoskeletal asymmetry is the aim of PRI treatment. Restoration of relative balance decreases pain, restores improved alignment, and strengthens appropriate muscle function. It can also halt the progression of dysfunction and improve respiration, quality of life, and appearance. PRI’s extensive body of targeted exercise progressions are highly effective due to their basis in the tri-planar asymmetric human model.",book:{id:"5816",slug:"innovations-in-spinal-deformities-and-postural-disorders",title:"Innovations in Spinal Deformities and Postural Disorders",fullTitle:"Innovations in Spinal Deformities and Postural Disorders"},signatures:"Susan Henning, Lisa C. Mangino and Jean Massé",authors:[{id:"204825",title:"Dr.",name:"Susan",middleName:null,surname:"Henning",slug:"susan-henning",fullName:"Susan Henning"},{id:"206242",title:"Dr.",name:"Lisa C",middleName:null,surname:"Mangino",slug:"lisa-c-mangino",fullName:"Lisa C Mangino"},{id:"206245",title:"Dr.",name:"Jean",middleName:null,surname:"Massé",slug:"jean-masse",fullName:"Jean Massé"}]}],onlineFirstChaptersFilter:{topicId:"202",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"82020",title:"Minimally Invasive Transforaminal Lumbar Interbody Fusion: A Novel Technique and Technology with Case Series",slug:"minimally-invasive-transforaminal-lumbar-interbody-fusion-a-novel-technique-and-technology-with-case",totalDownloads:6,totalDimensionsCites:0,doi:"10.5772/intechopen.105187",abstract:"Minimally invasive spine surgery (MIS) transforaminal lumbar interbody fusion (MI-TLIF) has been utilized to treat a variety of spinal disorders. Like other minimally invasive spine surgery techniques and technology, the MI-TLIF approach has the potential to limit the morbidity associated with larger exposures required for open surgery. The MI-TLIF approach has a number of advantages over many other minimally invasive spine surgery approaches including direct decompression of neural elements, collection of morselized autograph from the surgical site to achieve high fusion rates, restoration of spinal canal diameter, foraminal diameter, disk height, and reduction of spondylolisthesis. In this chapter, we discuss a novel technique for performing MI-TLIF developed by the senior author who is a leading minimally invasive spine surgeon. The technique and technology illustrated in this chapter were developed out of a recognition of a need to reduce the learning curve for performing MI-TLIF, as well as need for a cost-effective method that provides a high fusion rate, excellent clinical outcomes, and low complication rate. The indications, surgical planning, postoperative care, complications, and patient outcomes in a large series will be reviewed using this novel MI-TLIF technique.",book:{id:"10634",title:"Minimally Invasive Spine Surgery - Advances and Innovations",coverURL:"https://cdn.intechopen.com/books/images_new/10634.jpg"},signatures:"Mick Perez-Cruet, Ramiro Pérez de la Torre and Siddharth Ramanathan"},{id:"78335",title:"Safety and Efficiency of Cervical Disc Arthroplasty in Ambulatory Surgery Centers",slug:"safety-and-efficiency-of-cervical-disc-arthroplasty-in-ambulatory-surgery-centers",totalDownloads:5,totalDimensionsCites:0,doi:"10.5772/intechopen.99589",abstract:"Introduction Anterior cervical surgeries have been safely performed in ambulatory surgery centers since 1995 with the first cases being one level anterior cervical discectomies without fusion, then in 1996, one level anterior cervical discectomies with fusion (ACDF). When it is was certain that outpatient fusion was safe, the number of ACDF levels slowly and methodically were increased to the now standard outpatient maximum of four level ACDF. During this evolution, with the introduction of arthroplasty surgery, one level arthroplasties were considered appropriate for outpatient surgery and now two-level outpatient cervical arthroplasties are routine and some three level arthroplasties have been performed with no additional morbidity compared to one level procedures. The author first reported a series of 27 patients in 2010 who underwent cervical disc replacement at an ASC. (Wohns, R. Safety and cost-effectiveness of outpatient cervical disc arthroplasty. Surg. Neurol. Int. 1, 77, 2010). The average operative time was 40 minutes and the patients were observed over a period of three hours prior to discharge. None of the patients had major complications and there were no reports of worsening or persistent pain. The results of a Delphi study in 2018 compared the safety and efficiency of one-level and two-level arthroplasty procedures performed in an ASC and in a hospital setting. (Gornet et al. Safety and Efficiency of Cervical Disc Arthroplasty in Ambulatory Surgery Centers vs Hospital Settings. Int’l J of Spine Surgery. Vol. 12, No.5, 2018, pp. 557-564). The study analyzed outcomes of 145 ASC patients, 348 hospital outpatients and 65 hospital inpatients and the conclusion was that both one and two-level arthroplasties may be performed safely in an ASC. Surgeries in ASCs are of shorter duration and performed with less blood loss without increased AEs. At the present time, there does not appear to be any contra-indication to performing the vast majority of cervical arthroplasties in an ambulatory surgery center (ASC). Furthermore, the cost of an outpatient arthroplasty is commonly 30% to 50% of the cost of hospital-based procedures.",book:{id:"10634",title:"Minimally Invasive Spine Surgery - Advances and Innovations",coverURL:"https://cdn.intechopen.com/books/images_new/10634.jpg"},signatures:"Richard N.W. Wohns"},{id:"82255",title:"Minimally Invasive Laminectomy for Lumbar Stenosis with Case Series of Patients with Multi-level (3 or More Levels) Stenosis",slug:"minimally-invasive-laminectomy-for-lumbar-stenosis-with-case-series-of-patients-with-multi-level-3-o",totalDownloads:28,totalDimensionsCites:0,doi:"10.5772/intechopen.105186",abstract:"Lumbar stenosis is the most common pathology seen and treated by spine surgeons. It is often seen in the elderly population who frequently have multiple medical co-morbidities. Traditional approaches remove the spinous process and detach paraspinous muscles to achieve adequate canal decompression. This approach can damage the posterior tension band leading to permanent muscle damage, scar tissue formation, iatrogenic flatback syndrome, and increase risk of adjacent segment disease requiring reoperation. Performing lumbar laminectomy in a cost-effective manner is critical in effectively treating patients with lumbar stenosis. This chapter reviews a minimally invasive muscle-sparing approach to treating lumbar stenosis. The technique is performed through a tubular retractor. Direct decompression of the spinal stenosis is achieved while preserving the paraspinous muscle attachments and spinous process. This technique has multiple advantages and can potentially reduce load stress on adjacent levels and subsequent adjacent level pathology leading to further surgical intervention. In addition, the procedure shows how facet fusion is performed using the patient’s own locally harvested drilled morselized autograph to achieve bilateral facet fusion. By fusing the facets, we have shown that restenosis at the operative level is less likely to occur. This chapter will review a case series of multilevel lumbar stenosis including clinical outcomes.",book:{id:"10634",title:"Minimally Invasive Spine Surgery - Advances and Innovations",coverURL:"https://cdn.intechopen.com/books/images_new/10634.jpg"},signatures:"Mick Perez-Cruet, Ramiro Pérez de la Torre and Siddharth Ramanathan"},{id:"80705",title:"Cervical Arthroplasty",slug:"cervical-arthroplasty",totalDownloads:38,totalDimensionsCites:0,doi:"10.5772/intechopen.102964",abstract:"Technological advances have allowed spine surgery to follow the trend toward minimally invasive surgery in general. Specifically, we have seen a corresponding rise in the popularity of cervical arthroplasty. For the treatment of cervical disc disease, arthroplasty is a less invasive option than the gold standard of cervical discectomy and arthrodesis, which by nature is more disruptive to surrounding tissues. Arthroplasty preserves the facets, maintains motion, and reduces the rate of adjacent segment breakdown. These factors counteract the negative impacts of fusion while maintaining the benefits. Arthroplasty implants themselves have become more streamlined to implant as well with less native bone destruction, and biomechanics more compatible with the native disc. While initial implants were ball and socket devices with complex fixation and plane-specific movements, later devices incorporated such motions as translation and compression. Viscoelastic components and materials more closely resembling native tissues afford a more biocompatible implant profile. Until cell-based therapies can successfully reproduce native tissue, we will rely on artificial components that closely resemble and assimilate them.",book:{id:"10634",title:"Minimally Invasive Spine Surgery - Advances and Innovations",coverURL:"https://cdn.intechopen.com/books/images_new/10634.jpg"},signatures:"Jason M. Highsmith"},{id:"80605",title:"Minimally Invasive Treatment of Spinal Metastasis",slug:"minimally-invasive-treatment-of-spinal-metastasis",totalDownloads:42,totalDimensionsCites:0,doi:"10.5772/intechopen.102485",abstract:"Advancements in the treatment of systemic cancer have improved life expectancy in cancer patients and consequently the incidence of spinal metastasis. Traditionally, open spinal approaches combined with cEBRT (conventional external beam radiation therapy) allowed for local tumor control as well as stabilization and decompression of the spine and neural elements, but these larger operations can be fraught with one complications and delayed healing as well as additional morbidity. Recently, minimally invasive spine techniques are becoming increasingly popular in the treatment of spinal metastasis for many reasons, including smaller incisions with less perioperative complications and potential for expedited time to radiation therapy. These techniques include kyphoplasty with radiofrequency ablation, percutaneous stabilization, laminectomy, and epidural tumor resection through tubular retractors, as well as minimally invasive corpectomy. These techniques combined with highly conformal stereotactic radiosurgery have led to the advent of separation surgery, which allows for decompression of neural elements while creating space between neural elements and the tumor so adequate radiation may be delivered, improving local tumor control. The versatility of these minimally invasive techniques has significantly improved the modern management of metastatic disease of the spine by protecting and restoring the patient’s quality of life while allowing them to quickly resume radiation and systemic treatment.",book:{id:"10634",title:"Minimally Invasive Spine Surgery - Advances and Innovations",coverURL:"https://cdn.intechopen.com/books/images_new/10634.jpg"},signatures:"Eric R. Mong and Daniel K. Fahim"},{id:"76620",title:"Minimally Invasive Lateral Approach for Anterior Spinal Cord Decompression in Thoracic Myelopathy",slug:"minimally-invasive-lateral-approach-for-anterior-spinal-cord-decompression-in-thoracic-myelopathy",totalDownloads:146,totalDimensionsCites:0,doi:"10.5772/intechopen.97669",abstract:"Myelopathy can result from a thoracic disc herniation (TDH) compressing the anterior spinal cord. Disc calcification and difficulty in accessing the anterior spinal cord pose an operative challenge. A mini-open lateral approach to directly decompress the anterior spinal cord can be performed with or without concomitant interbody fusion depending on pre-existing or iatrogenic spinal instability. Experience using stand-alone expandable spacers to achieve interbody fusion in this setting is limited. Technical advantages, risks and limitations of this technique are discussed. We conducted a retrospective chart review of all patients with thoracic and upper lumbar myelopathy treated with a lateral mini-open lateral approach. Review of the literature identified 6 other case series using similar lateral minimally invasive approaches to treat thoracic or upper lumbar disc herniation showing efficient and safe thoracic disc decompression procedure for myelopathy. This technique can be combined with interbody arthrodesis when instability is suspected.",book:{id:"10634",title:"Minimally Invasive Spine Surgery - Advances and Innovations",coverURL:"https://cdn.intechopen.com/books/images_new/10634.jpg"},signatures:"Edna E. Gouveia, Mansour Mathkour, Erin McCormack, Jonathan Riffle, Olawale A. Sulaiman and Daniel J. Denis"}],onlineFirstChaptersTotal:12},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:141,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:123,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:22,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"24",title:"Sustainable Development",doi:"10.5772/intechopen.100361",issn:"2753-6580",scope:"