\r\n\tHomeostasis is brought about by a natural resistance to change when already in the optimal conditions, and equilibrium is maintained by many regulatory mechanisms. All homeostatic control mechanisms have at least three interdependent components for the variable to be regulated: a receptor, a control center, and an effector. The receptor is the sensing component that monitors and responds to changes in the environment, either external or internal. Receptors include thermoreceptors and mechanoreceptors. Control centers include the respiratory center and the renin-angiotensin system. An effector is a target acted on to bring about the change back to the normal state. At the cellular level, receptors include nuclear receptors that bring about changes in gene expression through up-regulation or down-regulation and act in negative feedback mechanisms. An example of this is in the control of bile acids in the liver.
\r\n\tSome centers, such as the renin-angiotensin system, control more than one variable. When the receptor senses a stimulus, it reacts by sending action potentials to a control center. The control center sets the maintenance range—the acceptable upper and lower limits—for the particular variable, such as temperature. The control center responds to the signal by determining an appropriate response and sending signals to an effector, which can be one or more muscles, an organ, or a gland. When the signal is received and acted on, negative feedback is provided to the receptor that stops the need for further signaling.
\r\n\tThe cannabinoid receptor type 1 (CB1), located at the presynaptic neuron, is a receptor that can stop stressful neurotransmitter release to the postsynaptic neuron; it is activated by endocannabinoids (ECs) such as anandamide (N-arachidonoylethanolamide; AEA) and 2-arachidonoylglycerol (2-AG) via a retrograde signaling process in which these compounds are synthesized by and released from postsynaptic neurons, and travel back to the presynaptic terminal to bind to the CB1 receptor for modulation of neurotransmitter release to obtain homeostasis.
\r\n\tThe polyunsaturated fatty acids (PUFAs) are lipid derivatives of omega-3 (docosahexaenoic acid, DHA, and eicosapentaenoic acid, EPA) or of omega-6 (arachidonic acid, ARA) and are synthesized from membrane phospholipids and used as a precursor for endocannabinoids (ECs) mediate significant effects in the fine-tuning adjustment of body homeostasis.
\r\n\t
\r\n\tThe aim of this book is to discuss further various aspects of homeostasis, information that we hope to be useful to scientists, clinicians, and the wider public alike.
Sport is all forms of usually competitive physical activity. This intense activity might result with injuries associated with the overload to the muscles and joints. During competitive sports activities made under tough conditions, the load over the groin is often excessive. It was suggested that groin injuries are more common in sports that require repetitive fast twisting and turning movements (eg, soccer and hockey). It is caused by muscular imbalances and weaknesses that result in an uneven distribution of forces. In this chapter, common reasons for the groin pain in athletes, namely sports hernia and osteitis pubis will be extensively reviewed and discussed.
It is estimated that groin pain occurs in 5% to 28% of athletes [1]. On the other hand, activity restricting lower abdomen and groin pain is frequent in some sports, such as soccer, accounting for 10% to 13% of all injuries per year [2]. The prevalence of groin pain may be higher in some types of sports activities involving repeated kicking and rapid change of direction, such as soccer, tennis, football, and ice and field hockey. In these higher competitive sports, the incidence may rise to 5–7% of all injuries [3]. The patients presenting with groin pain are usually highly competitive athletes pushing the limits, runners and players who are willing to achieve college auditions or top league. This is a common problem that can be career-limiting or career ending for a player and remains a serious clinical challenge for the sports physician and treating surgeon.
The most common causes of groin pain in athletes are injuries to the adductor longus, iliopsoas, and rectus femoris muscles and injury to the inguinal floor. These conditions may cause hyperextension injury, insertion tendinitis and direct hernia or bulge. Other causes of groin pain include ilioinguinal neuralgia, osteitis pubis, genitourinary sources (prostatitis, epididymitis, urethritis, and hydrocele), nerve compression, bursitis, and arthritis of the hip.
Sports hernia is the overflow of the internal organs and intestine through a particular weak point. This condition is not a complete herniation. However, due to the overuse of the muscles, this pushing movement might cause recurring pain at that area. Since, this condition occurs at every repeating movement, the athlete will eventually avoid making such movements thereby exerting negative influence on his performance. So-called Gilmore’s groin, athletic pubalgia, sports hernia, incipient hernia, and posterior abdominal wall deficiency, the term ‘‘sports hernia’’ (athletic pubalgia), is described as a condition of chronic exercise-related supra-inguinal groin pain, which is associated with an incipient direct bulge of the inguinal wall whenever the abdominal muscles contract forcefully. Sports hernia is also termed as external oblique tear-occult hernia, nonspecific attenuation of the inguinal floor with cord lipoma, internal ring weakness, occult hernia, not true hernia-injury at the rectus insertion, muscular injury due to overexertion of the inguinal region, medial inguinal floor injury, deficiency of the posterior inguinal wall [4-11]. This condition has been poorly understood by the clinicians [12-15].
First described by Beer in 1924, osteitis pubis is a noninfectious, self-limited inflammatory condition of the symphysis pubis involving the adjoining pubic bones, the perichondrium, and the periosteum [16-19]. Osteitis pubis is known as one of the causes of groin pain, which is associated with the overuse related to kicking and running resulting in shearing stress at the symphysis. Thus, it is very common among athletes. It is also typical in sports comprising a lot of sprinting and sudden changes of direction, such as running, basketball, soccer, ice hockey, and tennis [20, 21]. On the other hand, it has been reported to complicate a variety of pelvic surgeries, including abdominoperineal resection, inguinal herniorrhaphy, endoscopic resection of the prostate, after anterior colporrhaphy, retropubic urethropexy, even after periurethral collagen injection and endoscopic inguinal hernia repair resulting from attachment of the stapler to os pubis [22, 23].
The clinician must also consider that athletes with groin pain may have other orthopaedic and nonorthopaedic potential causes of the groin pain. The differential diagnosis is various. Muscle strain (adductor, rectus, iliopsoas), osteitis pubis, stress fracture, avulsion fracture, hip joint injury, nerve entrapment, and lumbar radiculopathy can be orthopaedic problems, such as classic hernia, appendicitis, diverticulitis, irritable bowel syndrome, adhesions, urinary tract infection, prostatitis, testicular pain, varicoceles, endometriosis, ovarian cyst, and round ligament entrapment can be non-orthopaedic conditions [24, 25].
The aetiology of both conditions has not been completely understood. However, excessive physical activity is assumed as the etiological factor since these conditions are quite common among athletes. Athletes with a previous groin injury history, elder athletes, players having inactive periods out of the season, and the players making sports involving only a particular part of their muscles have a higher risk [26, 27]. Various factors have been suggested for the mechanism of sports hernia. Athletic pubalgia is described as an occult hernia process or an incipient hernia, with the major abnormality being a defect in the transversalis fascia, which forms the posterior wall of the inguinal canal, and not a muscle tear [2] (Figure 1).
Abnormality being a defect in the transversalis fascia
Gilmore proposed a mechanism of injury in athletic pubalgia, that was a tear in external oblique aponeurosis, conjoined tendon tears from pubic tubercle and conjoined tendon splits from inguinal ligament (7, 28, 29). Furthermore, Meyers et al. [30] suggested that the primary mechanism for most of these injuries involves hyperextension of the abdomen and/or hyperabduction of the thigh, and the pain occurs primarily with exertion, often in multiple locations, rarely involving the internal ring. The cutaneous nerves include the iliohypogastric nerve (sensory to the lower abdomen), the ilioinguinal nerve (sensory to the groin), and the genital branch of the genitofemoral nerve (sensory to the scrotum and labia)[24]. Muschawek reported that posterior inguinal swelling exerts pressure on genital nerve and this might cause pain [7, 31]. This nerve irritation produces a dull or burning pain that radiates into the inner thigh or scrotum. In addition, external oblique defects traumatize ilioinguinal and iliohypogastric nerves resulting with inguinal pain [30, 32] (Figure 2). As it is understood, this condition cannot be explained with only one mechanism. Muscular imbalances in high performance athletes, coordination disorders, excess weight and continuous training, irregular training are among important factors resulting with groin pain.
External oblique defects traumatize ilioinguinal and iliohypogastric nerves resulting with inguinal pain
The symphysis pubis is a nonsynovial-lined, amphiarthrodial joint located between the two pubic bones. Biomechanical analysis of the pelvis has revealed that the innominate bones function as arches, thus transferring the weight of the upright trunk from the sacrum to the hips. The exact cause of this condition is unclear; however, it appears that the overuse related to kicking and running results in shearing stress at the symphysis. Traction, micro trauma and instability of the sacroiliac joint and symphysis pubis can be the possible causes of osteitis [19, 33]. The four main hypotheses for the cause of postoperative osteitis pubis include trauma, impaired vascular circulation, trophic bone changes related to a causalgia-like mechanism and infection [17, 20, 34]. Osteitis pubis is the result of intraoperative trauma to the symphysis and its muscular attachments either from surgical instruments or retractors [16, 22, 34]. In Marshall-Marchetti-Krantz procedure, in which sutures are placed directly into the periosteum or cartilage of the symphysis pubis, osteitis pubis is uncommon [35, 36].
In sports hernia, moderate pain and discomfort in the region of inguinal area associated with exertion, sneezing and coughing are mostly noted. These are usually abated with rest. The presenting symptom develops during exercise, aggravated by sudden movements. Pain persists after a game, abates during a period of lay-off, but returns on the resumption of sport [37]. In physical examination, physician should evaluate inguinal hernia, pubis, rectus abdominis, hips and adductor muscles. In addition, local tenderness at the conjoined tendon, pubic tubercle, or inguinal canal might be observed. On examination, the athlete usually has pain with passive stretch of the adductors and pain on adduction against resistance. The athlete will often have pain with resisted sit-ups and resisted hip adduction [37]. Coughing, sneezing, and other Valsalva-type maneuvers often worsen the pain. Over the conjoined tendon or medial inguinal canal, the distal rectus insertion, pubic tubercle, and/or adductor origin points are tenderness [38]. The most common finding is a dilated, tender internal inguinal ring, true inguinal hernia is rarely found (1, 6, 10). But, the physician should exclude the presence of an inguinal or femoral hernia. The onset of complaints, the types of movements causing pain, measures for avoiding pain, time of resting and acts for coping with pain should be learned in details. A true herniation is rarely seen in this group of patients; the base of inguinal canal is weakly detected and might be sensitive [39, 40].
The diagnosis of osteitis pubis is based on typical clinical symptoms and abnormal radiographic findings. Common clinical symptoms are suprapubic pain, difficulty, and pain with ambulation. Pain can occur while walking, radiating to the perineal, suprapubic region [41, 42]. The anterior portion of the pelvis and the adductor muscles are tender and spasm may accompany. Pain is usually radiates to the suprapubic area and the adductor surfaces of the thighs and it usually begins ten days to two months after an operation upon the urinary bladder [43]. Pain is the primary symptom associated typically with difficulty in ambulation and the characteristic "waddling gait" [42, 44]. Symptoms may develop from 1 to 8 weeks after the initiating event. The duration of the signs and symptoms is related to the severity of the inflammation and the response to therapy after the appropriate diagnosis is established [42]. Laboratory findings may be mild leucocytosis, raised levels of acute phase proteins (fibrinogen, C reactive protein), and increased erythrocyte sedimentation rate.
Diagnostic tests are required to rule out other pathologies associated with lower abdominal, hip or groin pain. After a complete history and physical exam, the patient should have a complete blood count, urinalysis, and ultrasound of the groin firstly. Diagnostic imaging includes an erect pelvic radiograph (X-ray) with flamingo stress views of the symphysis pubis, real-time ultrasound and, occasionally, computed tomography (CT) scanning and magnetic resonance imaging (MRI), but seldom contrast herniography [25, 37]. The patient is examined with USG while lying in a supine position. A high-resolution linear array transducer of 10 MHz or greater frequency is recommended [15]. Other imaging tests occasionally performed can include nuclear bone scan, limb leg measurement.
A standard athletic pubalgia protocol includes coronal and axial large field-of-view fluid-sensitive, fat-suppressed images that should adequately cover this region and identify the injury and this MRI protocol is generally adequate [45]. Stress fractures, tendon avulsion and hip arthrosis might be detected by x-ray, and ultrasound might show incipient inguinal hernia. If physician suspect bone tumours, hip ring pathologies, spine or retroperitoneal problems may want to see CT. Hip problems and bursitis, MRI be the best choice in determination of aetiology of inguinal pain in sports but it may be normal in sport’s hernia [45]. Pelvic MRI might give more detailed information regarding the condition of pelvis and soft tissue, alterations due to edema and stress, muscle tears, adductor muscle groups, and the location of pubis muscle insertions. An advantage of USG assessment is that this method may show the dynamic movements of inguinal floor with the help of Valsalva maneuver. If the results of these tests are negative and the symptoms continue with sports hernia symptoms, a laparoscopic preperitoneal exploration might be carried out [11].
Early in the course of osteitis pubis, radiographs are typically normal [19]. After approximately 6 months, x-rays of the symphysis may show a frayed appearance of the pubic periosteum, loss of cortex, widening, erosions, and sclerosis along the articular border [15, 35]. These findings included erosion, rarefaction, resorption, and sclerosis of the pubic bones. In its early stages, osteomyelitis presents similarly to osteitis pubis and its make the diagnosis difficulty. Close monitoring of patients diagnosed with osteitis pubis is recommended in these patients. If a question about the diagnosis exists, computed tomography-guided pubic bone aspiration for culture is advocated [22]. The athletes who have this disease with normal AP radiographs had bone scans that demonstrated increased radiotracer (99mTc) uptake throughout the area of the symphysis pubis as a characteristic of osteitis pubis. A bone scan, which is more sensitive than radiography, usually shows the increased uptake in the pubic bones on both sides of the symphysis and pubic ramus, often before any radiographic changes are seen [46, 47] [48]. MRI and computed tomography scans can show inflammatory changes in the bone. MRI illustrates joint-space alteration, articular surface irregularity, para-articular marrow edema and extrusions of the symphyseal disk and includes low intensity signal on T1 weighted and a high intensity signal on T2 weighted images [49]. Sclerosis has low intensity signal on both T1 and T2 weighted images [50]. (Figure 3) High-resolution MRI and ultrasound may identify subtle tears and defects within one or more of the structures that inserts around the groin region [15]. MRI appearances in osteomyelitis and osteitis are similar in the initial stages. Both osteitis pubis, an inflammatory disease, and osteomyelitis, an infectious disease, can appear in one patient at the same time. In these cases, biopsy and culture may be necessary to make a differential diagnosis [18, 49].
MRI illustrates joint-space alteration, articular surface irregularity, para-articular marrow edema and extrusions of the symphyseal disk and includes low intensity signal on T1 weighted and a high intensity signal on T2 weighted images. Osteitis pubis on the right pubic bone.
MRI and ultrasound (US) can be used to exclude co-existing abnormalities in the patients undergoing a groin repair. Bilateral abdominal abnormalities on ultrasound may appear to be a valid marker for inguinal pain and the anatomic injury [51]. According to the location and morphology of the patient medium to high-frequency linear probes can use and colour Doppler examination may be useful. Investigation carried out in dynamic conditions (coughing and the Valsalva maneuver) may important. Additionally US can show the reinforcement positioned in the area of wall weakness after surgery [52]. Posterior inguinal wall deficiency can be demonstrated sonographically, as the contraction of the anterior abdominal wall results in loss of the normal valve-like effect of the canal [15] (Figure 4).
Posterior inguinal wall deficiency can be demonstrated sonographically
In both conditions, the first treatment choice is resting and standard conservative treatment. In sports hernia, it is important to determine the movements causing symptoms and avoiding them. Conservative treatments are effective in relieving pain and returning the athlete to normal sports activities. This approach might involve the application of heat or ice, stretching and strengthening exercises, analgesic medications and other physical-therapy interventions. In elective cases, the use of corticosteroids and local analgesics might relieve symptoms. If the symptoms are relieved and under control, slight lower body exercises might be started. This period may last for 6-8 weeks, or occasionally 10 weeks. There is still no consensus on the surgical treatment techniques. Open primary repair, open mesh repair, laparoscopic mesh repair, neurectomy, and adductor tendon relaxation are among the surgical techniques [24]. Mesh repair technique is so-called Lichtenstein hernia repair. In open repair, Muschawek technique, also called minimal repair might be used [24, 31]. A number of different modified repairs of the posterior wall deficiency have also been described [30, 37]. Groin reconstruction operation consists of a Maloney darn hernia repair technique, repair of the conjoint tendon, transverse adductor tenotomy and obturator nerve release [37]. Laparoscopic mesh repair technique is also used. In this technique, synthetic and biological meshes, which have been advocated to reinforce the posterior wall of the inguinal canal, are preferred [53, 54]. Rehabilitation treatment is important in the post-operative course. On the other hand, sutureless tension-free hernia repair with fibrin glue may be the choose for treatment of hernia[55] Rehabilitation programs in which activities are gradually increased in the 5-8 weeks period are utilized. Specific rehabilitation targeted at abdominal strengthening, adductor muscle flexibility, and a graduated return to activity. Rehabilitation may takes about 3 months after surgery [24, 37, 56].
Management of osteitis pubis can be difficult; whether to make conservative treatment or surgical intervention is controversial. Conservative treatment usually involves rest, oral medication with non-steroidal anti-inflammatory drugs, daily use of therapeutic modalities a progressive rehabilitation programme [57-59]. Earlier return to full activity has been reported injection of corticosteroid and local anaesthetic [21, 60]. Complete recovery can take over a few months. Curettage, arthrodesis, wedge resection and wide resection are described for surgical intervention of osteitis pubis [41, 61].
In conclusion, sports hernia and osteitis pubis are particularly common among athletes making sports with excessive load on their muscles that may compromise their professional careers. Being cautious while training and making exercises might be helpful at preventing such injuries. The diagnosis of these conditions might be easily mixed up with the other causes of groin pain. Treatment is substantially conservative or surgical intervention might be preferred in some cases if required.
It is known that external environmental conditions provoke to the phenotypic and genetic plasticity of plant during vegetative and generative growth and lead to change of duration of ontogenesis of both individual species and populations [1]. Given that exposed to a specific exogenous factor, some plants experience stress, and for other plant species this factor is the optimal condition for life, the definition of stress for the plant is quite complex and problematic. According to many definitions, stress is a harmful adverse force or condition that inhibits the normal functioning of a biological system, such as a plant. According to [2], stress for a plant is its response to the action of adverse or even detrimental to growth and development of plant. For the plant, stress is measured by both signs of survival and signs of adaptation, yield, growth parameters and assimilation. External signals of the environment, such as light, temperature, water status of the soil ̶ these are the most important signals that affect the growth of the plant. The perception of these signals and the plant’s response to them affects a whole cascade of events that require knowledge of the signal and its transduction into a physiological response [3]. In the perception of signals of adverse abiotic stresses, primarily involved protein receptors of the cell wall, that send this signal to the transport system into the cytoplasm. Such receptors of ell wall appear to be arabinogalactan protein molecules that bind the cell wall to the plasmalemma, cytoskeleton elements, and apoplast components. In addition to these proteins, stress receptors can be mitogen-activated protein, numerous kinases, and several transcription factors [4]. Stress is first perceived by cell wall receptors, which send a signal to the receptors of the cytoplasmic membrane, then the signal is reformed and reduced, and the result of this transformation is the participation of secondary mediators [3, 4, 5, 6].
Determination of the plant state in a changing environment in conditions of increased anthropogenic pressure and global climate changes is becoming one of the main problems of plant biology and ecology. In natural conditions plants can be influenced by a complex of unfavorable environmental factors. Despite the long list of abiotic and biotic stresses, including: cold, high temperature, salinity, drought, floods, radiation, air and soil pollutants, pathogens and others, we will consider the most significant adverse environmental factors: drought and flooding, which negatively affect plants’ growth, up to their death. The search for universal biomarkers that would make it possible to determine the state of plants regardless of nature and number of stress factors is urgent. The cell wall of plants can be such a marker, since it is the growth and differentiation of the cell wall during primary and secondary growth that undergoes significant changes under conditions of changes in the water balance of the plant. The basis of this section is the idea that the stability of ontogenesis under conditions of unfavorable climatic and anthropogenic changes in the environment is due to the plasticity of the structural and functional organization of plant cell walls. We put forward a hypothesis about the existence of a coordinated response of the structural and functional systems of the cell wall and the cytoplasm of plant cells, which is involved in the adaptation of the plant to the action of extreme natural factors—drought and flooding.
Drought is a deficit of water in the soil, which affects the growth and development of the plant. Drought stress is seen as a condition in which water potential and turgor of a cell are reduced, although the plant can function normally. Water stress is considered as the loss of water by the plant, which leads to the closure of the stomata and restriction of gas exchange by the plant. Wilting of plants is characterized by an intensive loss of water, which leads to next changes, including of plant metabolism and cell structure, to change of activation of catalytic enzymatic reactions, to inhibiting the process of photosynthesis and destructed metabolism, which can lead to cell death [7, 8]. Drought can be chronic or temporary. The latter is observed when the weather changes rapidly and unpredictably. Moderate drought is a phenomenon in which the plant begins to feel the effects of drought. Under such conditions, plants have developed specific mechanisms of acclimatization and adaptation in response to the short-term or long-term action of the factor [9, 10].
In this respect, the reaction of plants to drought is well studied in psammophytes growing on sand dunes has been better studied. Psammophytes develop mechanisms and specific features that ensure not only a normal state of life, but also functioning under stressful conditions. These mechanisms are reflected in the morpho-anatomical changes in the vegetative organs of plants [7, 11] that help psammophytes to adapt to environmental conditions, and manifested in a decrease in the size of leaf blades, the formation of water-retaining parenchyma, a change in the size of the leaf conducting system, twisting of leaf blades, a change in the cell wall structure, change of density of stomata, an optimization of transpiration, enhanced synthesis of wax and lignin, the formation of trichomes and silicon inclusions in cell walls and formation a thick cuticle [7, 12].
It is showed that even with a slight drought, the growth rate of plant organs decreases: roots and aboveground organs react very strongly to such stress, their growth reduce [13, 14] that connected with structural-functional changes of cell walls [15]. Drought cell growth decreases have been described for leaves for psammophytes, including
Under drought conditions in the roots there revealed a decrease in the size of the parenchyma [20]; in the endoderm, cell walls thicken, and additional layers of cells were with strongly suberinized cell walls are formed around the stele [21]. In the periderm, cell walls were also impregnated with suberin, which reduces the penetration of water through the cells of the cortex. Special lacunae for water storage were formed in root [22]. Whereas in leaves the effect of drought is manifested in the reduction of sugars in the fraction of cell walls, which should certainly be reflected in the composition of polysaccharides in the walls. Studies of the effects of drought on crops have shown that the cell walls of aboveground photosynthetic organs are also sensitive to this factor. Studies of polysaccharides of cell wall matrix in reduced coleoptiles of wheat seedlings under drought from 6 to 15 weeks shown that during the first week of drought exposure, drought-sensitive varieties showed a decrease sugar in the fractions of wall matrix: rhamnose, mannose, galactose, arabinose, xylose, and glucose and uronic acids [23]. In addition, in the hemicellulose fraction of drought-resistant variety was shown decrease in arabinose, mannose, galactose and increase in rhamnose, xylose, glucose, uronic acids in comparison with drought-sensitive variety. These changes were accompanied by an increase in the activity of glucoside hydrolysing enzymes: α-galactosidase, α-L-arabinofuranosidase and 1.3–1.4-β-glucanase in drought-resistant varieties. The observed changes in the matrix of cell wall of coleoptiles of two varieties of wheat under the action of drought reflect changes in cell metabolism, which directly affected the growth rate [23]. Similar changes in the content of sugars (glucose, fructose and sucrose) and the activity of 1.3–1.4-β-glucanase have been previously noted by other researchers in studying the effects of water and salt stress on wheat stalks [24].
Wax and cutin are involved in the regulation of water and lipids transport through the cell wall [25]. Plant’ wax is a mixture of aliphatic and cyclic hydrocarbons and their derivatives. The composition of waxes varies depending on the species and organs’ plant. Cutin is involved in the regulation of the diffusion of gases and moisture in the main cells of the epidermis and the stomata. It is known that the cuticular membrane can be both hydrophobic and hydrophilic. If the cuticular membrane is hydrophobic, the functions of the cuticle are to reduce water loss by the organs; and if the cuticle is hydrophilic, then the function is to transport water, aqueous solutions, and lipids (waxes) [26]. It is known that the aboveground organs of plants that grow in dry climates synthesize a significant amount of wax and cuticle, which are a barrier to transpiration [27]. Wax and cuticle are the main barriers against “uncontrolled” water loss by leaves. Therefore, in the adaptive responses of above-ground bodies, to action of a drought, the strengthened synthesis of these two components of cellular components of epidermis plays a certain role.
Wax can be located the inside cutin layer, or be situated on top of the cuticle. A two-year study of the long-term effects of drought on pine needles (
For plants that grow in drought conditions is characterized by the participation of cell walls of the epidermis of the leaves in the water intake. It is known that the above ground organs of desert plants can absorb water from the leaf surface, intercept precipitation and absorb fog, using an atmosphere saturated with water [34, 35]. To do this, plants use trichomes [36], the specialized glands [37], and also form a hydrophilic surface in specialized epidermal cells that contain water pores [38]. It is shown that the leaves of
Another feature of leaf structure to optimize water balance is twisting and/or folding of leaves. Leaf twisting is designed to maintain the optimal water balance of plants growing in inadequate water supply conditions [40, 41]. The twisting of the leaves of many psammophyte grasses is due to the specialized structure of the epidermis of the leaf blades and the presence of bulliform (motor) cells, the cell walls of which function to enter and exit water, reducing leaf area affected by drought [41, 42]. The cell walls of the bulliform cells of the epidermis synthesize guajacyl monolignol and callose, which helps to quickly change the entry or exit of water from these cells [43]. Twisting preserves optimal heat transfer and optimal water-vapor density in leaf tissues [41].
The presence of trichomes and increased cuticle density in cell walls are typical features of the leaf blades of psammophyte plants growing on coastal dunes [44]. Psammophytes have two types of trichomes: glandular and non-glandular. Glandular trichomes were found in the leaves and stems of psammophyte
Lignin is a branched biopolymer that, together with hemicellulose and pectin, acts as an adhesive matrix for cellulose microfibrils. Lignin provides mechanical strength of tissues and organs, impermeability of water and aqueous solutions through the cell walls. Lignin is a complex of phenylpropanoids (monolignols) [46]. Early work (Barnett, 1976) on the effect of drought on wood lignification showed that the tracheid rings stuck together because the secondary walls of young trees did not contain lignin. The formation of false rings in drought-stricken trees is a well-known phenomenon [47]. According to Lloyd Donald [48], who studied the anatomy of wood and the characteristics of cell walls in
It has been shown that even a slight drought (up to 12 days) caused an increase in lignin precursors (coumaric and caffeic acids) in xylem maize juice, and this was due to a decrease in anionic peroxidase activity, indicating the effect of drought on lignin biosynthesis [49]. Different areas of the corn root respond differently to drought: in the basal part of the roots, growth is inhibited compared to the apical part of the roots, which is associated with the expression of two genes involved in lignin biosynthesis: shinamyl-CoA reductase-1 and -2. Such decrease in growth is due to an increase in lignin deposits, which increase the stiffness of the cell wall and reduce the growth rate, which may also be due to changes in factors such as water, minerals and sugars.
It was shown that after 28 days of drought,
It is established that the impact of drought depends on the duration of its action, the species of plants and the growth stage. It has been shown that even a slight drought (up to 12 days) caused an increase in lignin precursors (coumaric and caffeic acids) in xylem maize juice, and this was due to a decrease in anionic peroxidase activity, indicating the effect of drought on lignin biosynthesis [49]. Roig-Oliver et al. showed for the first time that during long-term water deficiency, changes in the content of lignin, cellulose and hemicellulose in the cell walls of
Abiotic stress, including drought, cause a change in the mechanical strength of the cell wall due to the synthesis of lignin and activation of several the types of reactive oxidative species (ROS). Cell walls become stiffer and the overall mechanical stability of tissues and cells increases provided of an increase of wall peroxidases activity, increase in H2O2 concentration and/or an excess of peroxidase substrates [54]. The resulting increase in mechanical strength of the cell wall is occurred the change of cell’s turgor that enable plant cells to endure the osmotic stress caused by drought [55].
Cell walls not only change their structure in response to drought, to reduce water evaporation by cells, but also act as structures that, accumulate water for the needs of the cell. In particular, plants increase the content of pectins as a wet absorbing structure. This has been shown in the laboratory in the study of roots and stems of wheat seedlings (
The study of the effect of water deficiency on the content of pectins in sunflower leaves showed that this polysaccharide is the most sensitive to water stress, it is the first to react to stress, reducing its content after a short exposure to stress (5 hours), while hemicellulose and lignin changed its contents only after 24 hours of stressful influence [56]. Early was established that pectins are crucial to determine wall characteristics. Changes in pectin physicochemical properties during stress induce the rearrangement of cell wall compounds, thus, modifying wall architecture and influencing on photosynthetic characterization of leaves of
The use of a model object, in particular
It is established that the resistance of plants to drought is due not only to changes in the structure of cell walls of epidermal tissue, but also the deposition of silica in cell walls in the form of amorphous or crystalline inclusions [60]. According to Wang [61] silicon inclusions in epidermal cells reduce the influence of thermal effect on the leaves by reflecting the heat flow in the far infrared region of the sun light flux. This provides a passive mechanism for cooling the leaves in high sunlight. Although the mechanism of this action is not yet known, these issues need further to study. Silicon can deposit in leaf epidermis trichomes giving these structures are hardness and rigidity, making the leaves inedible to animals [62]. As a rule, most silicon is contained in cell wall protopectin, a water-soluble pectin fraction [63].
It has been established that silicon decrease the cuticle transpiration of aboveground organs. This chemical element, which accumulates in the cells of the epidermis of leaves and stems, forms a thickened cuticle-silicon wall, which protects the plant from excessive moisture consumption by reducing the cuticle transpiration. In addition, the plant’s walls can form hydrophilic silicate-galactose complexes that bind free water, thereby increasing the water retention capacity as in specific cells, as and in different tissues and in the organs of plant [64, 65].
Because of the density of cell walls and their ability to retain moisture, silicon compounds can significantly increase plant resistance to drought and protect plants from being lodged (fallen) [66]. Silicon reduces of water evaporation on the leaf surface, as has been shown, for example, on rice seedlings [67], on other crops, in particular in drought-resistant wheat [68] and sorghum [69]. Silicon can also influence water transport by regulating the osmotic potential of cells by increasing synthesis and accumulation of osmotic active substances (e.g., proline, sugars and inorganic ions) [70, 71].
Over the years, significant progress has been made in discovering the cell wall-specific genes related to drought tolerance [72, 73]. These researches were carried out at rice in vegetative and reproductive stages [72]. In the reviews [72, 73] shown the major candidate genes underlying the function of quantitative trait loci directly or indirectly associated with the cell wall plasticization-mediated under drought tolerance or salinity stress of plants. On rice plant during of drought stress was identifying series genes, which take part in tolerance of this species to both drought or salinity stress: 1) drought inducible AP2/ERF family TF gene
Molecular methods have shown that during drought, increased wax and cutin synthesis is accompanied by activation of genes (
Transcription factor that regulates the biosynthesis of the cuticle (
Genes (
Genes involved in the reduction and decarboxylation pathways (
Gene involved in the biosynthesis of wax and cuticle (
An early response of the
The physical properties of the cell wall are also play an important role in water deficiency [80]. Analysis of the
The study of physical properties, stiffness in particular, cell wall from the root elongation zone using atomic force microscopy in
A study of the effects of drought on Arabidopsis mutant plants (with cellulose synthase genes—
Rui and Finneny [86] proposed a model for regulating the cell wall response to stress; according to this model, certain aspects of the wall itself can act as growth-regulating signals. The molecular components of the signaling pathways that determine and maintain cell wall integrity are shown, including sensors that detect changes on the cell surface and downstream signal transduction modules. There are several cell wall receptors that sense stress, including drought or salinity. Such receptors, according to the authors, may be the receptor-like kinase THESEUS1 (THE1) and FERONIA (FER) localized on the plasma membrane or Ca2+.ATPase. Kinase THE1 has been identified by suppressor screening in a cellulose-deficient mutant background; and FER is widely expressed and serves as a signaling node that functions in a wide range of processes, including plant growth, vacuole morphology, mechanosensing, hormonal signaling, and others. In contrast, the FER protein exhibits defects in growth recovery under salt stress as a result of failure to reverse salt-induced softening of the wall and increased frequency of cell rupture.
Summarizing the above material of numerous experimental works, we can propose the following scheme of response of cell walls of plants growing in drought or deserts: perception of drought signal (high air temperature and low soil moisture) leaves and roots → stopping or inhibiting growth of root and leaves → reduction of cell size → closure of stomata in leaves → reduction of stomatal conductivity for CO2 (or cessation of stomata and shedding of leaves) → in the roots of the formation of water lacunae; in stems of succulents (during leaf shedding) water storage in specialized lacunae of the parenchyma → thickening of cell walls, their lignification and suberinization, intensified synthesis of wax, expression of genes associated with the synthesis of extensins, dehydrins and cellulose, activation of enzymes for synthesis of lignin, suberin due to changes in the expression of the corresponding genes (Figure 1).
Schematic representation of the main functional changes of plant cell wall during adaptation to drought.
Flooding is a potentially detrimental stress for many terrestrial plants; flooding occur when water covers the area, caused by both natural (river floods, heavy rainfall, tides) and artificial causes (construction of reservoirs, ponds); it can be short-term, intermittent (during river floods) or long-term, in which many species may die. Peculiarity of flooding as a stress factor is a combination of significant changes in water availability of plant and oxygen respiration in the root system, and as a result there is inhibition of aerobic processes, impaired absorption of ions and nutrients, changes in metabolism and growth processes [87]. The next factors are affected on the flood plant: a decrease in illumination and change in the light spectrum, a lack of acidity and CO2. It is known that water absorb flow of light and disperse of light [88, 89]. In flood conditions, the diffusion of gases is much slower than in air, and this is what limits normal photosynthesis and aerobic respiration [87]. Some plants that are resistant to flooding use the acceleration of stem growth to get out of the water and such a stem rises above the flooded part of the plant. The part of the plant that emerges from the water begins to come into contact with the air environment, renovating aerobic metabolism and photosynthesis [90]. Hydrophytes and wetland plants, which have adapted to both the lack of oxygen in the soil and the constant aquatic environment, have for millennia developed certain mechanisms of adaptation at different levels of the organization. The main signs of rearrangement are a decrease in the thickness of the leaf blade, rearrangement of the mesophyll, the presence of chloroplasts in the epidermis and changes in the structure of cell walls [91]. Cell wall of the epidermis of flooding plants is the first to react to the water environment, changing their structural- functional characteristics to optimize the water balance of plants. Therefore, the analysis of comparative structural and functional studies of flooded and above-water leaves is important for understanding the role of cell wall in the adaptation of plants to the aquatic environment.
The greatest stress for under-water plants is the weakening of gas exchange, which causes a decrease in oxygen in the stem and root, and also [92, 93] can induce enhanced growth by elongation, which promotes the release of leaves from the water to the surface and accelerates their contact with air [94]. Modification of cell walls for underwater growth and elongation requires energy, but, as a rule, such plants are characterized by limited aerobic metabolism. It is studied the structural changes in
In cell walls of flooding leaves is occurred in protein synthesis. Under-water growth of rice is characterized by more elastic cell walls, which are usually characteristic of walls with increased synthesis of expansin [96, 97, 98]. In the cell wall noted protein modification, including expansins, which are activated at acidic pH [99, 100]. Rapid regulation of apoplastic pH provides a rapid way to regulate and modify apoplast expansin activity. The association between decreased cell wall elongations has been attributed to decreased tissue sensitivity to expansins [101]. Changes in the composition and nature of cross-links between cell wall polysaccharides may be limited by the mobility of expansins or their availability to the substrate polymer. The study showed a change in the ability of expansions to bind to cellulose depending on the properties of the hemicelluloses that cover the microfibrils [102].
In low-growing rice, flood resistance is explained by the activation of two genes:
The composition of the wall can also determine the effectiveness of expansins to elongation of a wall under conditions of flooding the plant. The decrease in the elongation of cell walls in the segments of underwater rice stalks at the exit from the water to the air correlates with the changes in the composition of walls: an increase in xylose and pectic acids, such as ferule acid [101], which has the ability to form cross-links between polysaccharides of a cell wall [105]. Deposits of xylose-enriched polysaccharides can change the composition of the cell wall by limiting the action of expansin. It was found that the composition of polysaccharides of flooded plants differs from that of surface organs, as shown by Little [106] in stems of
The outer cell walls of the epidermis of submerging and the above-water leaves are the first barrier, the first transport route of CO2 and water, as well as the point of contact of plant organs with the environment. Cell walls of flooding leaves became thinner and their structure is characterized by loosening. Regarding the loosening of the cell wall, there are many models of this process. The first hypothesis about the acid-induced loosening mechanism was proposed by Cleland [107, 108]. It was later shown that the hydrolysis of polysaccharides during loosening is a complex process in which the enzymatic hydrolysis of polysaccharides of the wall matrix occurs with the participation of endoglucanases and expansins. The latter shown that hydrolyse polysaccharides induce cell expansion and increase the plasticity of the wall depending on the pH of the apoplast [109, 110]. The mechanism of formation of thin cell walls in various plant tissues is explained by changes in cell turgor and a decrease in the activity of enzymes involved in the synthesis of wall polysaccharides [109].
In submerged plants in the epidermis is also synthesized and deposited cuticle in the periclinal walls, and cuticle structure change [111]. In the cuticle of leaves and stems, which grow rapidly by elongation under water, there is an accelerated hydrolysis of cutin polymers [112]. In aquatic plants (hydrophytes) the cuticle of the epidermis of leaves and stems causes the presence of super hydrophobicity; it is this property that prevents the formation of an aqueous film on the surface of the organs submerged in water, which greatly reduces the gas exchange between the surface of the leaf and the gases dissolved in water. Despite the fact that CO2 absorption for photosynthesis is reduced in flooded plants, the air layer or gas film on the surface of underwater leaves continues to exchange O2 and CO2 through the cuticle from the surrounding water layer, and therefore underwater photosynthesis and underwater respiration occur in epidermal cells [113].
Most underwater leaves of hydrophytes have no stomata. Transport functions mainly fall on the cell walls of the epidermis and pores in epidermis. Cuticular pores were revealed on the cross-sections of epidermal cells of underwater
Under-water leaves are characterized by the increase of amorphous cellulose and the decrease of its crystalline form. It is known that water is adsorbed by amorphous zones of cellulose, which are dominated by hydrogen bonds [119]. The crystalline component of cellulose micro fibrils is not involved in the transport or absorption of water molecules [120]. Given the above literature, we hypothesized that one of the adaptive features of the plant to flooding should be not only differences in cellulose content, but also advantages in the synthesis of its amorphous form. An optimal example of such adaptation to flooding can be the data of comparative structural and functional studies of cellulose in plants with underwater and above-water (surface) leaves, in particular in
Callose—a polysaccharide of the cell walls, formed by glucose residues, connected at the base of β-1-3-glucoside bonds and in the lateral branches—1-6 connections. It is known that β—1,3—glucan plays a key role in intercellular water transport, cell growth and differentiation, osmotic stretching of cells, plant protection under biotic and abiotic stresses [127] and increases the elasticity and flexibility of leaves and stems [128, 129, 130]. It was established the effects of natural flooding on callose content in
Lignin is a polymer of aromatic alcohols, which is synthesized in the cell walls, is completed the growth by tension, and it is involved in the adaptation of plants to flooding and in the change of the structure of the matrix of cell wall, providing obstruction of water and aqueous solutions through the cell walls and also form the barrier for pathogens. Lignin is a complex of monolignols formed from p-hydroxyphenyl, guajacyl, syringyl and H-phenylpropanoids components [133], which are involved in the polymerization of lignin, and they differ in the degree of methoxylation [46]. Flooding and siltation affect the lignification of cell walls. The study of mechanisms of adaptation of the root system of rice to flooding and siltation shown the main effect is the deficiency of oxygen, resulting in roots forming aerenchyma for storing of oxygen [134]. Lignin deposition, which counteracts the penetration of ions such as Fe2+, Cu2+ and NaCl [135] has been observed during of flooding roots. It is considered that lignin and suberin can form a barrier to the penetration of oxygen and ions.
The effect of flooding on the lignification of rice stems was found by comparing the stems of three varieties of rice. It was found that the lignin content in rice stems and the activity of two enzymes of the lignification (coniferol alcohol dehydrogenase (CAD) and phenylalanine ammonium lyase (PAL) were reduced after flooding in the flood-sensitive variety and in control. Lignin and the activities of the studied enzymes were interrelated. According to researchers [136, 137], underwater plant organs are stressed due to the tension of the water column and the mechanical action of waves, which should cause stress in flooded organs. Lignin of dicotyledonous plants consists of guajacyl (G), syringyl (S) and phenylpropanoids (H) components, Lignin of most monocotyledons have G and S units, the content of which is almost the same, they may also contain H units [138].
The question of the distribution of lignin in various tissues of submerged plant organs, the role of monolignols and their ratio in cell walls in the process of natural adaptation of plants to flooding has remained open until recently. Recently it was established that in floating leaf walls underwater leaves of
Similar to the increase in lignin in flooded stems
At flooding of terrestrial plants leads to the formation of aerenchyma in roots, nodules, stem or submerged leaves. Aerenchyma helps the plant to survive in conditions of hypoxia by reducing the number of oxygen-consuming cells in vegetative organs [143, 144]. It was established that at lysigenous type of formation of an aerenchyma occurred the lysis not only of cytoplasmic organelles in tissues, but also lysis of their cell walls. The increases in aerenchyma air volume may enable prolonged functioning of aerobic metabolic processes in tissues exposed to low-oxygen conditions. Cellulose, hemicellulose and pectin lysis are occurs during aerenchyma formation. Probably, that modification of the pectin homogalacturonan backbone structure through de-methyl-esterification appears to be one mechanism by which cell walls and middle lamella of tissues is degradate of pectin and enable cavity formation of aerenchyma in roots [143]. Additionally, presence of fully and partially de-methyl-esterified homogalacturonan residues in cell walls of forming tylose-like cells suggests these pectin structures are essential to development of the cells that occlude aerenchyma of
That is, the constant aquatic environment is one of the main exogenous factors of increased synthesis of lignin in the studied hydrophytes. In addition, we see that the presence of syringyl and guajacyl monolignols, as well as their relationship in the cell walls of the epidermis, mesophyll and leaf vessels of hydrophytes is similar to that described for dicotyledonous angiosperms [138, 145]. We do not rule out that the cell walls of the underwater leaves of the studied plants contain a third monolignol—phenylpropanoid (
Schematic representation of the main functional changes of plant cell wall during adaptation to
The results of researches concerning on the role of cell walls in plant response to natural unfavorable conditions influences show that cell wall is one of the compartments of a plant cell that responds to drought and flooding. In most wild species and in cultivated species, cell walls stand a marker of such influence. The inhibition of plant growth, the change of plant morphological and anatomical signs, change of cell wall ultrastructure, its composition is occurred under prolonged drought or flooding. Changes in the structural and functional characteristics of cell walls allow plants to survive. Plant adaptation to these factors is depended on species, stage of growth plant and influence duration. Numerous studies have shown that drought effects negatively on сell walls. The main mechanisms of plant adaptation to the effects of drought involve a decrease in the intensity of transpiration, an increase in the synthesis of wax, suberin, and lignin, as well as the compaction of the walls of the epidermis tissues for preservation of optimal water balance. Upon exposure to flooding, adaptation mechanisms are expressed in the next: decrease stomata density and wax in leaf epidermis; a loosening of cellulose micro fibrils in walls of epidermal tissue and a present of cuticle pores; the decrease of common cellulose content and crystalline form of cellulose; an increase of content of amorphous cellulose, hemicelluloses in a cell wall; an intensification of сallose synthesis; the change of a ratio of monolignols (syringyl and quajacyl) in walls; the activation of peroxidase and expansin, an intensification of ethylene synthesis and a change of calcium balance in apoplast. However, the sequence of these processes has not been fully disclosed. The question of the launch of adaptative processes also remains open. These issues require further research. The question of the relationship between the water balance of the cell, photosynthesis and the values of energy of light photons on the surface of the leaves, which launch an adaptive response in the plant under adverse natural changes or under stress, also remains open.
The author declares that there is no conflict interest.
We believe financial barriers should not prevent researchers from publishing their findings. With the need to make scientific research more publicly available and support the benefits of Open Access, more and more institutions and funders are dedicating resources to assist faculty members and researchers cover Open Access Publishing Fees (OAPFs). In addition, IntechOpen provides several further options presented below, all of which are available to researchers, and could secure the financing of your Open Access publication.
",metaTitle:"Waiver Policy",metaDescription:"We feel that financial barriers should never prevent researchers from publishing their research. With the need to make scientific research more publically available and support the benefits of Open Access, more institutions and funders have dedicated funds to assist their faculty members and researchers cover the APCs associated with publishing in Open Access. Below we have outlined several options available to secure financing for your Open Access publication.",metaKeywords:null,canonicalURL:"/page/waiver-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"At IntechOpen, the majority of OAPFs are paid by an Author’s institution or funding agency - Institutions (73%) vs. Authors (23%).
\\n\\nThe first step in obtaining funds for your Open Access publication begins with your institution or library. IntechOpen’s publishing standards align with most institutional funding programs. Our advice is to petition your institution for help in financing your Open Access publication.
\\n\\nHowever, as Open Access becomes a more commonly used publishing option for the dissemination of scientific and scholarly content, in addition to institutions, there are a growing number of funders who allow the use of grants for covering OA publication costs, or have established separate funds for the same purpose.
\\n\\nPlease consult our Open Access Funding page to explore some of these funding opportunities and learn more about how you could finance your IntechOpen publication. Keep in mind that this list is not definitive, and while we are constantly updating and informing our Authors of new funding opportunities, we recommend that you always check with your institution first.
\\n\\nFor Authors who are unable to obtain funding from their institution or research funding bodies and still need help in covering publication costs, IntechOpen offers the possibility of applying for a Waiver.
\\n\\nOur mission is to support Authors in publishing their research and making an impact within the scientific community. Currently, 14% of Authors receive full waivers and 6% receive partial waivers.
\\n\\nWhile providing support and advice to all our international Authors, waiver priority will be given to those Authors who reside in countries that are classified by the World Bank as low-income economies. In this way, we can help ensure that the scientific work being carried out can make an impact within the worldwide scientific community, no matter where an Author might live.
\\n\\nThe application process is open after your submitted manuscript has been accepted for publication. To apply, please fill out a Waiver Request Form and send it to your Author Service Manager. If you have an official letter from your university or institution showing that funds for your OA publication are unavailable, please attach that as well. The Waiver Request will normally be addressed within one week from the application date. All chapters that receive waivers or partial waivers will be designated as such online.
\\n\\nDownload Waiver Request Form
\\n\\nFeel free to contact us at funders@intechopen.com if you have any questions about Funding options or our Waiver program. If you have already begun the process and require further assistance, please contact your Author Service Manager, who is there to assist you!
\\n\\nNote: All data represented above was collected by IntechOpen from 2013 to 2017.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'At IntechOpen, the majority of OAPFs are paid by an Author’s institution or funding agency - Institutions (73%) vs. Authors (23%).
\n\nThe first step in obtaining funds for your Open Access publication begins with your institution or library. IntechOpen’s publishing standards align with most institutional funding programs. Our advice is to petition your institution for help in financing your Open Access publication.
\n\nHowever, as Open Access becomes a more commonly used publishing option for the dissemination of scientific and scholarly content, in addition to institutions, there are a growing number of funders who allow the use of grants for covering OA publication costs, or have established separate funds for the same purpose.
\n\nPlease consult our Open Access Funding page to explore some of these funding opportunities and learn more about how you could finance your IntechOpen publication. Keep in mind that this list is not definitive, and while we are constantly updating and informing our Authors of new funding opportunities, we recommend that you always check with your institution first.
\n\nFor Authors who are unable to obtain funding from their institution or research funding bodies and still need help in covering publication costs, IntechOpen offers the possibility of applying for a Waiver.
\n\nOur mission is to support Authors in publishing their research and making an impact within the scientific community. Currently, 14% of Authors receive full waivers and 6% receive partial waivers.
\n\nWhile providing support and advice to all our international Authors, waiver priority will be given to those Authors who reside in countries that are classified by the World Bank as low-income economies. In this way, we can help ensure that the scientific work being carried out can make an impact within the worldwide scientific community, no matter where an Author might live.
\n\nThe application process is open after your submitted manuscript has been accepted for publication. To apply, please fill out a Waiver Request Form and send it to your Author Service Manager. If you have an official letter from your university or institution showing that funds for your OA publication are unavailable, please attach that as well. The Waiver Request will normally be addressed within one week from the application date. All chapters that receive waivers or partial waivers will be designated as such online.
\n\nDownload Waiver Request Form
\n\nFeel free to contact us at funders@intechopen.com if you have any questions about Funding options or our Waiver program. If you have already begun the process and require further assistance, please contact your Author Service Manager, who is there to assist you!
\n\nNote: All data represented above was collected by IntechOpen from 2013 to 2017.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6654},{group:"region",caption:"Middle and South America",value:2,count:5944},{group:"region",caption:"Africa",value:3,count:2452},{group:"region",caption:"Asia",value:4,count:12681},{group:"region",caption:"Australia and Oceania",value:5,count:1014},{group:"region",caption:"Europe",value:6,count:17700}],offset:12,limit:12,total:133951},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"11254",title:"Optical Coherence Tomography",subtitle:null,isOpenForSubmission:!0,hash:"a958c09ceaab1fc44c1dd0a817f48c92",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11254.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11616",title:"Foraging",subtitle:null,isOpenForSubmission:!0,hash:"955b60bb658c8d1a09dd4efc9bf6674b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11616.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11632",title:"Updated Research on Bacteriophages",subtitle:null,isOpenForSubmission:!0,hash:"d34dfa0d5d10511184f97ddaeef9936b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11632.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11697",title:"Scoliosis",subtitle:null,isOpenForSubmission:!0,hash:"fa052443744b8f6ba5a87091e373bafe",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11697.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11699",title:"Neonatal Surgery",subtitle:null,isOpenForSubmission:!0,hash:"e52adaee8e54f51c2ba4972daeb410f7",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11699.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11730",title:"Midwifery",subtitle:null,isOpenForSubmission:!0,hash:"95389fcd878d0e929234c441744ba398",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11730.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11843",title:"Abortion Access",subtitle:null,isOpenForSubmission:!0,hash:"e07ed1706ed2bf6ad56aa7399d9edf1a",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11843.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11850",title:"Systemic Sclerosis",subtitle:null,isOpenForSubmission:!0,hash:"df3f380c5949c8d8c977631cac330f67",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11850.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11858",title:"Terahertz Radiation",subtitle:null,isOpenForSubmission:!0,hash:"f08ee0bf20cd8b5fa772b4752081f2fe",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11858.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11770",title:"Feminism",subtitle:null,isOpenForSubmission:!0,hash:"008be465c708a6fde48c8468757a40af",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11770.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11773",title:"Archaeology - Challenges and Updates",subtitle:null,isOpenForSubmission:!0,hash:"17d91462fa926279f65164ac0d5641cd",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11773.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11776",title:"Fashion Industry",subtitle:null,isOpenForSubmission:!0,hash:"e8d53d1029a7bccf825aa55d43fecc68",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11776.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:30},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:7},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:14},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:11},{group:"topic",caption:"Engineering",value:11,count:24},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:7},{group:"topic",caption:"Materials Science",value:14,count:9},{group:"topic",caption:"Mathematics",value:15,count:5},{group:"topic",caption:"Medicine",value:16,count:83},{group:"topic",caption:"Neuroscience",value:18,count:5},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:1},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:25},{group:"topic",caption:"Technology",value:24,count:1}],offset:12,limit:12,total:253},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10774",title:"Model Organisms in Plant Genetics",subtitle:null,isOpenForSubmission:!1,hash:"f6624b58571ac10c9b636c5d85ec5e54",slug:"model-organisms-in-plant-genetics",bookSignature:"Ibrokhim Y. Abdurakhmonov",coverURL:"https://cdn.intechopen.com/books/images_new/10774.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"213344",title:"Prof.",name:"Ibrokhim Y.",middleName:null,surname:"Abdurakhmonov",slug:"ibrokhim-y.-abdurakhmonov",fullName:"Ibrokhim Y. Abdurakhmonov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,isOpenForSubmission:!1,hash:"2f1c0e4e0207fc45c936e7d22a5369c4",slug:"protein-detection",bookSignature:"Yusuf Tutar and Lütfi Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10696",title:"Applications of Calorimetry",subtitle:null,isOpenForSubmission:!1,hash:"8c87f7e2199db33b5dd7181f56973a97",slug:"applications-of-calorimetry",bookSignature:"José Luis Rivera Armenta and Cynthia Graciela Flores Hernández",coverURL:"https://cdn.intechopen.com/books/images_new/10696.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"107855",title:"Dr.",name:"Jose Luis",middleName:null,surname:"Rivera Armenta",slug:"jose-luis-rivera-armenta",fullName:"Jose Luis Rivera Armenta"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"159",title:"Semiconductor",slug:"semiconductor",parent:{id:"14",title:"Materials Science",slug:"materials-science"},numberOfBooks:16,numberOfSeries:0,numberOfAuthorsAndEditors:431,numberOfWosCitations:727,numberOfCrossrefCitations:342,numberOfDimensionsCitations:721,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"159",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7671",title:"Concepts of Semiconductor Photocatalysis",subtitle:null,isOpenForSubmission:!1,hash:"549e8caa1b260cea0dd3fe688cd126f5",slug:"concepts-of-semiconductor-photocatalysis",bookSignature:"Mohammed Rahman, Anish Khan, Abdullah Asiri and Inamuddin Inamuddin",coverURL:"https://cdn.intechopen.com/books/images_new/7671.jpg",editedByType:"Edited by",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6845",title:"Graphene and Its Derivatives",subtitle:"Synthesis and Applications",isOpenForSubmission:!1,hash:"63a9783e678fc42ce981efb35be02096",slug:"graphene-and-its-derivatives-synthesis-and-applications",bookSignature:"Ishaq Ahmad and Fabian I. Ezema",coverURL:"https://cdn.intechopen.com/books/images_new/6845.jpg",editedByType:"Edited by",editors:[{id:"25524",title:"Prof.",name:"Ishaq",middleName:null,surname:"Ahmad",slug:"ishaq-ahmad",fullName:"Ishaq Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8866",title:"Silicon Materials",subtitle:null,isOpenForSubmission:!1,hash:"c7cfb39af7a429ef119b71a2e1f221e7",slug:"silicon-materials",bookSignature:"Beddiaf Zaidi and Slimen Belghit",coverURL:"https://cdn.intechopen.com/books/images_new/8866.jpg",editedByType:"Edited by",editors:[{id:"230574",title:"Dr.",name:"Beddiaf",middleName:null,surname:"Zaidi",slug:"beddiaf-zaidi",fullName:"Beddiaf Zaidi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6815",title:"Advanced Material and Device Applications with Germanium",subtitle:null,isOpenForSubmission:!1,hash:"cbf335cca2531b56745bac330be2a47c",slug:"advanced-material-and-device-applications-with-germanium",bookSignature:"Sanghyun Lee",coverURL:"https://cdn.intechopen.com/books/images_new/6815.jpg",editedByType:"Edited by",editors:[{id:"195331",title:"Prof.",name:"Sanghyun",middleName:null,surname:"Lee",slug:"sanghyun-lee",fullName:"Sanghyun Lee"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6625",title:"Disruptive Wide Bandgap Semiconductors, Related Technologies, and Their Applications",subtitle:null,isOpenForSubmission:!1,hash:"daf5c4f40f80aca648eaed4f4310c2b7",slug:"disruptive-wide-bandgap-semiconductors-related-technologies-and-their-applications",bookSignature:"Yogesh Kumar Sharma",coverURL:"https://cdn.intechopen.com/books/images_new/6625.jpg",editedByType:"Edited by",editors:[{id:"198130",title:"Dr.",name:"Yogesh Kumar",middleName:null,surname:"Sharma",slug:"yogesh-kumar-sharma",fullName:"Yogesh Kumar Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6524",title:"Heterojunctions and Nanostructures",subtitle:null,isOpenForSubmission:!1,hash:"fefc5b353d60c5125f1783fc4208194b",slug:"heterojunctions-and-nanostructures",bookSignature:"Vasilios N. Stavrou",coverURL:"https://cdn.intechopen.com/books/images_new/6524.jpg",editedByType:"Edited by",editors:[{id:"99725",title:"Dr.",name:"Vasilios N.",middleName:null,surname:"Stavrou",slug:"vasilios-n.-stavrou",fullName:"Vasilios N. Stavrou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6695",title:"Design, Simulation and Construction of Field Effect Transistors",subtitle:null,isOpenForSubmission:!1,hash:"304929bc541d961dff8977432a49075e",slug:"design-simulation-and-construction-of-field-effect-transistors",bookSignature:"Dhanasekaran Vikraman and Hyun-Seok Kim",coverURL:"https://cdn.intechopen.com/books/images_new/6695.jpg",editedByType:"Edited by",editors:[{id:"199404",title:"Prof.",name:"Dhanasekaran",middleName:null,surname:"Vikraman",slug:"dhanasekaran-vikraman",fullName:"Dhanasekaran Vikraman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6100",title:"Nonmagnetic and Magnetic Quantum Dots",subtitle:null,isOpenForSubmission:!1,hash:"78673eed1e24eaecb8331eb0efcae2de",slug:"nonmagnetic-and-magnetic-quantum-dots",bookSignature:"Vasilios N. Stavrou",coverURL:"https://cdn.intechopen.com/books/images_new/6100.jpg",editedByType:"Edited by",editors:[{id:"99725",title:"Dr.",name:"Vasilios N.",middleName:null,surname:"Stavrou",slug:"vasilios-n.-stavrou",fullName:"Vasilios N. Stavrou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6083",title:"Semiconductors",subtitle:"Growth and Characterization",isOpenForSubmission:!1,hash:"53bed47ef5d839f8d10d5f1a3b050c49",slug:"semiconductors-growth-and-characterization",bookSignature:"Rosalinda Inguanta and Carmelo Sunseri",coverURL:"https://cdn.intechopen.com/books/images_new/6083.jpg",editedByType:"Edited by",editors:[{id:"174858",title:"Prof.",name:"Rosalinda",middleName:null,surname:"Inguanta",slug:"rosalinda-inguanta",fullName:"Rosalinda Inguanta"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5597",title:"Field",subtitle:"Programmable Gate Array",isOpenForSubmission:!1,hash:"ee9b6139297123dec4d906c950913c0d",slug:"field-programmable-gate-array",bookSignature:"George Dekoulis",coverURL:"https://cdn.intechopen.com/books/images_new/5597.jpg",editedByType:"Edited by",editors:[{id:"9833",title:"Prof.",name:"George",middleName:null,surname:"Dekoulis",slug:"george-dekoulis",fullName:"George Dekoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5699",title:"Thin Film Processes",subtitle:"Artifacts on Surface Phenomena and Technological Facets",isOpenForSubmission:!1,hash:"164177fc1e3eca542ebad5fd34a79d1e",slug:"thin-film-processes-artifacts-on-surface-phenomena-and-technological-facets",bookSignature:"Jagannathan Thirumalai",coverURL:"https://cdn.intechopen.com/books/images_new/5699.jpg",editedByType:"Edited by",editors:[{id:"99242",title:"Prof.",name:"Jagannathan",middleName:null,surname:"Thirumalai",slug:"jagannathan-thirumalai",fullName:"Jagannathan Thirumalai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5541",title:"Modern Technologies for Creating the Thin-film Systems and Coatings",subtitle:null,isOpenForSubmission:!1,hash:"076a9d5440634eb52d02bd45a8ce7cfd",slug:"modern-technologies-for-creating-the-thin-film-systems-and-coatings",bookSignature:"Nikolay N. Nikitenkov",coverURL:"https://cdn.intechopen.com/books/images_new/5541.jpg",editedByType:"Edited by",editors:[{id:"16402",title:"Prof.",name:"Nikolay",middleName:"N.",surname:"Nikitenkov",slug:"nikolay-nikitenkov",fullName:"Nikolay Nikitenkov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:16,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"17728",doi:"10.5772/22607",title:"Defect Related Luminescence in Silicon Dioxide Network: A Review",slug:"defect-related-luminescence-in-silicon-dioxide-network-a-review",totalDownloads:9472,totalCrossrefCites:46,totalDimensionsCites:98,abstract:null,book:{id:"332",slug:"crystalline-silicon-properties-and-uses",title:"Crystalline Silicon",fullTitle:"Crystalline Silicon - Properties and Uses"},signatures:"Roushdey Salh",authors:[{id:"48391",title:"Dr.",name:"Roushdey",middleName:null,surname:"Salh",slug:"roushdey-salh",fullName:"Roushdey Salh"}]},{id:"52684",doi:"10.5772/65702",title:"Advance Deposition Techniques for Thin Film and Coating",slug:"advance-deposition-techniques-for-thin-film-and-coating",totalDownloads:7634,totalCrossrefCites:32,totalDimensionsCites:59,abstract:"Thin films have a great impact on the modern era of technology. Thin films are considered as backbone for advanced applications in the various fields such as optical devices, environmental applications, telecommunications devices, energy storage devices, and so on . The crucial issue for all applications of thin films depends on their morphology and the stability. The morphology of the thin films strongly hinges on deposition techniques. Thin films can be deposited by the physical and chemical routes. In this chapter, we discuss some advance techniques and principles of thin-film depositions. The vacuum thermal evaporation technique, electron beam evaporation, pulsed-layer deposition, direct current/radio frequency magnetron sputtering, and chemical route deposition systems will be discussed in detail.",book:{id:"5541",slug:"modern-technologies-for-creating-the-thin-film-systems-and-coatings",title:"Modern Technologies for Creating the Thin-film Systems and Coatings",fullTitle:"Modern Technologies for Creating the Thin-film Systems and Coatings"},signatures:"Asim Jilani, Mohamed Shaaban Abdel-wahab and Ahmed Hosny\nHammad",authors:[{id:"192377",title:"Dr.",name:"Asim",middleName:null,surname:"Jilani",slug:"asim-jilani",fullName:"Asim Jilani"},{id:"192972",title:"Dr.",name:"M.Sh",middleName:null,surname:"Abdel-Wahab",slug:"m.sh-abdel-wahab",fullName:"M.Sh Abdel-Wahab"},{id:"192973",title:"Dr.",name:"Ahmed",middleName:"H",surname:"Hammad",slug:"ahmed-hammad",fullName:"Ahmed Hammad"}]},{id:"17722",doi:"10.5772/23174",title:"Study of SiO2/Si Interface by Surface Techniques",slug:"study-of-sio2-si-interface-by-surface-techniques",totalDownloads:14141,totalCrossrefCites:13,totalDimensionsCites:35,abstract:null,book:{id:"332",slug:"crystalline-silicon-properties-and-uses",title:"Crystalline Silicon",fullTitle:"Crystalline Silicon - Properties and Uses"},signatures:"Rodica Ghita, Constantin Logofatu, Catalin-Constantin Negrila, Florica Ungureanu, Costel Cotirlan, Adrian-Stefan Manea, Mihail-Florin Lazarescu and Corneliu Ghica",authors:[{id:"50919",title:"Dr.",name:"Rodica V.",middleName:null,surname:"Ghita",slug:"rodica-v.-ghita",fullName:"Rodica V. Ghita"},{id:"57132",title:"Dr.",name:"Constantin",middleName:null,surname:"Logofatu",slug:"constantin-logofatu",fullName:"Constantin Logofatu"},{id:"57133",title:"Dr.",name:"Catalin-Constantin",middleName:null,surname:"Negrila",slug:"catalin-constantin-negrila",fullName:"Catalin-Constantin Negrila"},{id:"57134",title:"Mrs.",name:"Florica",middleName:null,surname:"Ungureanu",slug:"florica-ungureanu",fullName:"Florica Ungureanu"},{id:"57135",title:"Dr.",name:"Costel",middleName:null,surname:"Cotirlan",slug:"costel-cotirlan",fullName:"Costel Cotirlan"},{id:"57136",title:"Dr.",name:"Adrian-Stefan",middleName:null,surname:"Manea",slug:"adrian-stefan-manea",fullName:"Adrian-Stefan Manea"},{id:"57137",title:"Dr.",name:"Mihail-Florin",middleName:null,surname:"Lazarescu",slug:"mihail-florin-lazarescu",fullName:"Mihail-Florin Lazarescu"},{id:"101735",title:"Dr.",name:"Corneliu",middleName:null,surname:"Ghica",slug:"corneliu-ghica",fullName:"Corneliu Ghica"}]},{id:"53225",doi:"10.5772/66396",title:"Radio Frequency Magnetron Sputter Deposition as a Tool for Surface Modification of Medical Implants",slug:"radio-frequency-magnetron-sputter-deposition-as-a-tool-for-surface-modification-of-medical-implants",totalDownloads:2266,totalCrossrefCites:8,totalDimensionsCites:28,abstract:"The resent advances in radio frequency (RF)‐magnetron sputtering of hydroxyapatite films are reviewed and challenges posed. The principles underlying RF‐magnetron sputtering used to prepare calcium phosphate‐based, mainly hydroxyapatite coatings, are discussed in this chapter. The fundamental characteristic of the RF‐magnetron sputtering is an energy input into the growing film. In order to tailor the film properties, one has to adjust the energy input into the substrate depending on the desired film properties. The effect of different deposition control parameters, such as deposition time, substrate temperature, and substrate biasing on the hydroxyapatite (HA) film properties is discussed.",book:{id:"5541",slug:"modern-technologies-for-creating-the-thin-film-systems-and-coatings",title:"Modern Technologies for Creating the Thin-film Systems and Coatings",fullTitle:"Modern Technologies for Creating the Thin-film Systems and Coatings"},signatures:"Roman Surmenev, Alina Vladescu, Maria Surmeneva, Anna Ivanova,\nMariana Braic, Irina Grubova and Cosmin Mihai Cotrut",authors:[{id:"193921",title:"Dr.",name:"Alina",middleName:null,surname:"Vladescu",slug:"alina-vladescu",fullName:"Alina Vladescu"},{id:"193922",title:"Prof.",name:"Roman",middleName:null,surname:"Surmenev",slug:"roman-surmenev",fullName:"Roman Surmenev"},{id:"193923",title:"Dr.",name:"Maria",middleName:null,surname:"Surmeneva",slug:"maria-surmeneva",fullName:"Maria Surmeneva"},{id:"193948",title:"Dr.",name:"Mariana",middleName:null,surname:"Braic",slug:"mariana-braic",fullName:"Mariana Braic"},{id:"194047",title:"Ms.",name:"Anna",middleName:null,surname:"Ivanova",slug:"anna-ivanova",fullName:"Anna Ivanova"},{id:"194048",title:"BSc.",name:"Irina",middleName:null,surname:"Grubova",slug:"irina-grubova",fullName:"Irina Grubova"},{id:"196398",title:"Prof.",name:"Cosmin Mihai",middleName:null,surname:"Cotrut",slug:"cosmin-mihai-cotrut",fullName:"Cosmin Mihai Cotrut"}]},{id:"21157",doi:"10.5772/24330",title:"Compilation on Synthesis, Characterization and Properties of Silicon and Boron Carbonitride Films",slug:"compilation-on-synthesis-characterization-and-properties-of-silicon-and-boron-carbonitride-films",totalDownloads:5194,totalCrossrefCites:6,totalDimensionsCites:19,abstract:null,book:{id:"326",slug:"silicon-carbide-materials-processing-and-applications-in-electronic-devices",title:"Silicon Carbide",fullTitle:"Silicon Carbide - Materials, Processing and Applications in Electronic Devices"},signatures:"P. Hoffmann, N. Fainer, M. Kosinova, O. Baake and W. Ensinger",authors:[{id:"56722",title:"Dr.",name:"Peter",middleName:null,surname:"Hoffmann",slug:"peter-hoffmann",fullName:"Peter Hoffmann"},{id:"56726",title:"Dr.",name:"Marina",middleName:null,surname:"Kosinova",slug:"marina-kosinova",fullName:"Marina Kosinova"},{id:"56727",title:"Prof.",name:"Wolfgang",middleName:null,surname:"Ensinger",slug:"wolfgang-ensinger",fullName:"Wolfgang Ensinger"}]}],mostDownloadedChaptersLast30Days:[{id:"52684",title:"Advance Deposition Techniques for Thin Film and Coating",slug:"advance-deposition-techniques-for-thin-film-and-coating",totalDownloads:7639,totalCrossrefCites:32,totalDimensionsCites:59,abstract:"Thin films have a great impact on the modern era of technology. Thin films are considered as backbone for advanced applications in the various fields such as optical devices, environmental applications, telecommunications devices, energy storage devices, and so on . The crucial issue for all applications of thin films depends on their morphology and the stability. The morphology of the thin films strongly hinges on deposition techniques. Thin films can be deposited by the physical and chemical routes. In this chapter, we discuss some advance techniques and principles of thin-film depositions. The vacuum thermal evaporation technique, electron beam evaporation, pulsed-layer deposition, direct current/radio frequency magnetron sputtering, and chemical route deposition systems will be discussed in detail.",book:{id:"5541",slug:"modern-technologies-for-creating-the-thin-film-systems-and-coatings",title:"Modern Technologies for Creating the Thin-film Systems and Coatings",fullTitle:"Modern Technologies for Creating the Thin-film Systems and Coatings"},signatures:"Asim Jilani, Mohamed Shaaban Abdel-wahab and Ahmed Hosny\nHammad",authors:[{id:"192377",title:"Dr.",name:"Asim",middleName:null,surname:"Jilani",slug:"asim-jilani",fullName:"Asim Jilani"},{id:"192972",title:"Dr.",name:"M.Sh",middleName:null,surname:"Abdel-Wahab",slug:"m.sh-abdel-wahab",fullName:"M.Sh Abdel-Wahab"},{id:"192973",title:"Dr.",name:"Ahmed",middleName:"H",surname:"Hammad",slug:"ahmed-hammad",fullName:"Ahmed Hammad"}]},{id:"68467",title:"Semiconductor Nanocomposites for Visible Light Photocatalysis of Water Pollutants",slug:"semiconductor-nanocomposites-for-visible-light-photocatalysis-of-water-pollutants",totalDownloads:1803,totalCrossrefCites:7,totalDimensionsCites:11,abstract:"Semiconductor photocatalysis gained reputation in the early 1970s when Fujishima and Honda revealed the potential of TiO2 to split water in to hydrogen and oxygen in a photoelectrochemical cell. Their work provided the base for the development of semiconductor photocatalysis for the environmental remediation and energy applications. Photoactivity of some semiconductors was found to be low due to larger band gap energy and higher electron-hole pair recombination rate. To avoid these problems, the development of visible light responsive photocatalytic materials by different approaches, such as metal and/or non-metal doping, co-doping, coupling of semiconductors, composites and heterojunctions materials synthesis has been widely investigated and explored in systematic manner. This chapter emphasizes on the different type of tailored photocatalyst materials having the enhanced visible light absorption properties, lower band gap energy and recombination rate of electron-hole pairs and production of reactive radical species. Visible light active semiconductors for the environmental remediation purposes, particularly for water treatment and disinfection are also discussed in detail. Studies on the photocatalytic degradation of emerging organic compounds like cyanotoxins, VOCs, phenols, pharmaceuticals, etc., by employing variety of modified semiconductors, are summarized, and a mechanistic aspects of the photocatalysis has been discussed.",book:{id:"7671",slug:"concepts-of-semiconductor-photocatalysis",title:"Concepts of Semiconductor Photocatalysis",fullTitle:"Concepts of Semiconductor Photocatalysis"},signatures:"Fatima Imtiaz, Jamshaid Rashid and Ming Xu",authors:[{id:"292882",title:"Dr.",name:"Jamshaid",middleName:null,surname:"Rashid",slug:"jamshaid-rashid",fullName:"Jamshaid Rashid"},{id:"302498",title:"Ms.",name:"Fatima",middleName:null,surname:"Imtiaz",slug:"fatima-imtiaz",fullName:"Fatima Imtiaz"},{id:"308434",title:"Prof.",name:"Ming",middleName:null,surname:"Xu",slug:"ming-xu",fullName:"Ming Xu"}]},{id:"17728",title:"Defect Related Luminescence in Silicon Dioxide Network: A Review",slug:"defect-related-luminescence-in-silicon-dioxide-network-a-review",totalDownloads:9472,totalCrossrefCites:46,totalDimensionsCites:98,abstract:null,book:{id:"332",slug:"crystalline-silicon-properties-and-uses",title:"Crystalline Silicon",fullTitle:"Crystalline Silicon - Properties and Uses"},signatures:"Roushdey Salh",authors:[{id:"48391",title:"Dr.",name:"Roushdey",middleName:null,surname:"Salh",slug:"roushdey-salh",fullName:"Roushdey Salh"}]},{id:"58469",title:"The Electrochemical Performance of Deposited Manganese Oxide-Based Film as Electrode Material for Electrochemical Capacitor Application",slug:"the-electrochemical-performance-of-deposited-manganese-oxide-based-film-as-electrode-material-for-el",totalDownloads:1736,totalCrossrefCites:4,totalDimensionsCites:8,abstract:"The transition metal oxide has been recognized as one of the promising electrode materials for electrochemical capacitor application. Due to the participation of charge transfer reactions, the capacitance offered by transition metal oxide can be higher compared to double layer capacitance. The investigation on hydrous ruthenium oxide has revealed the surface redox reactions that contributed to the wide potential window shown on cyclic voltammetry curve. Although the performance of ruthenium oxide is impressive, its toxicity has limited itself from commercial application. Manganese oxide is a pseudocapacitive material behaves similar to ruthenium oxide. It consists of various oxidation states which allow the occurrence of redox reactions. It is also environmental friendly, low cost, and natural abundant. The charge storage of manganese oxide film takes into account of the redox reactions between Mn3+ and Mn4+ and can be accounted to two mechanisms. The first one involves the intercalation/deintercalation of electrolyte ions and/or protons upon reduction/oxidation processes. The second contributor for the charge storage is due to the surface adsorption of electrolyte ions on the electrode surface.",book:{id:"6083",slug:"semiconductors-growth-and-characterization",title:"Semiconductors",fullTitle:"Semiconductors - Growth and Characterization"},signatures:"Chan Pei Yi and Siti Rohana Majid",authors:[{id:"197956",title:"Associate Prof.",name:"S.R.",middleName:null,surname:"Majid",slug:"s.r.-majid",fullName:"S.R. Majid"},{id:"216449",title:"Ms.",name:"Pei Yi",middleName:null,surname:"Chan",slug:"pei-yi-chan",fullName:"Pei Yi Chan"}]},{id:"60792",title:"TCAD Device Modelling and Simulation of Wide Bandgap Power Semiconductors",slug:"tcad-device-modelling-and-simulation-of-wide-bandgap-power-semiconductors",totalDownloads:2113,totalCrossrefCites:15,totalDimensionsCites:15,abstract:"Technology computer-aided Design (TCAD) is essential for devices technology development, including wide bandgap power semiconductors. However, most TCAD tools were originally developed for silicon and their performance and accuracy for wide bandgap semiconductors is contentious. This chapter will deal with TCAD device modelling of wide bandgap power semiconductors. In particular, modelling and simulating 3C- and 4H-Silicon Carbide (SiC), Gallium Nitride (GaN) and Diamond devices are examined. The challenges associated with modelling the material and device physics are analyzed in detail. It also includes convergence issues and accuracy of predicted performance. Modelling and simulating defects, traps and the effect of these traps on the characteristics are also discussed.",book:{id:"6625",slug:"disruptive-wide-bandgap-semiconductors-related-technologies-and-their-applications",title:"Disruptive Wide Bandgap Semiconductors, Related Technologies, and Their Applications",fullTitle:"Disruptive Wide Bandgap Semiconductors, Related Technologies, and Their Applications"},signatures:"Neophytos Lophitis, Anastasios Arvanitopoulos, Samuel Perkins and\nMarina Antoniou",authors:[{id:"236488",title:"Dr.",name:"Neophytos",middleName:null,surname:"Lophitis",slug:"neophytos-lophitis",fullName:"Neophytos Lophitis"},{id:"247344",title:"Dr.",name:"Marina",middleName:null,surname:"Antoniou",slug:"marina-antoniou",fullName:"Marina Antoniou"},{id:"247347",title:"Mr.",name:"Anastasios",middleName:null,surname:"Arvanitopoulos",slug:"anastasios-arvanitopoulos",fullName:"Anastasios Arvanitopoulos"},{id:"247349",title:"Mr.",name:"Samuel",middleName:null,surname:"Perkins",slug:"samuel-perkins",fullName:"Samuel Perkins"}]}],onlineFirstChaptersFilter:{topicId:"159",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:31,numberOfPublishedChapters:314,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:18,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:14,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403",scope:"Artificial Intelligence (AI) is a rapidly developing multidisciplinary research area that aims to solve increasingly complex problems. In today's highly integrated world, AI promises to become a robust and powerful means for obtaining solutions to previously unsolvable problems. This Series is intended for researchers and students alike interested in this fascinating field and its many applications.",coverUrl:"https://cdn.intechopen.com/series/covers/14.jpg",latestPublicationDate:"June 11th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:9,editor:{id:"218714",title:"Prof.",name:"Andries",middleName:null,surname:"Engelbrecht",slug:"andries-engelbrecht",fullName:"Andries Engelbrecht",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRNR8QAO/Profile_Picture_1622640468300",biography:"Andries Engelbrecht received the Masters and PhD degrees in Computer Science from the University of Stellenbosch, South Africa, in 1994 and 1999 respectively. He is currently appointed as the Voigt Chair in Data Science in the Department of Industrial Engineering, with a joint appointment as Professor in the Computer Science Division, Stellenbosch University. Prior to his appointment at Stellenbosch University, he has been at the University of Pretoria, Department of Computer Science (1998-2018), where he was appointed as South Africa Research Chair in Artifical Intelligence (2007-2018), the head of the Department of Computer Science (2008-2017), and Director of the Institute for Big Data and Data Science (2017-2018). In addition to a number of research articles, he has written two books, Computational Intelligence: An Introduction and Fundamentals of Computational Swarm Intelligence.",institutionString:null,institution:{name:"Stellenbosch University",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:6,paginationItems:[{id:"22",title:"Applied Intelligence",coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",isOpenForSubmission:!0,editor:{id:"27170",title:"Prof.",name:"Carlos",middleName:"M.",surname:"Travieso-Gonzalez",slug:"carlos-travieso-gonzalez",fullName:"Carlos Travieso-Gonzalez",profilePictureURL:"https://mts.intechopen.com/storage/users/27170/images/system/27170.jpeg",biography:"Carlos M. Travieso-González received his MSc degree in Telecommunication Engineering at Polytechnic University of Catalonia (UPC), Spain in 1997, and his Ph.D. degree in 2002 at the University of Las Palmas de Gran Canaria (ULPGC-Spain). He is a full professor of signal processing and pattern recognition and is head of the Signals and Communications Department at ULPGC, teaching from 2001 on subjects on signal processing and learning theory. His research lines are biometrics, biomedical signals and images, data mining, classification system, signal and image processing, machine learning, and environmental intelligence. He has researched in 52 international and Spanish research projects, some of them as head researcher. He is co-author of 4 books, co-editor of 27 proceedings books, guest editor for 8 JCR-ISI international journals, and up to 24 book chapters. He has over 450 papers published in international journals and conferences (81 of them indexed on JCR – ISI - Web of Science). He has published seven patents in the Spanish Patent and Trademark Office. He has been a supervisor on 8 Ph.D. theses (11 more are under supervision), and 130 master theses. He is the founder of The IEEE IWOBI conference series and the president of its Steering Committee, as well as the founder of both the InnoEducaTIC and APPIS conference series. He is an evaluator of project proposals for the European Union (H2020), Medical Research Council (MRC, UK), Spanish Government (ANECA, Spain), Research National Agency (ANR, France), DAAD (Germany), Argentinian Government, and the Colombian Institutions. He has been a reviewer in different indexed international journals (<70) and conferences (<250) since 2001. He has been a member of the IASTED Technical Committee on Image Processing from 2007 and a member of the IASTED Technical Committee on Artificial Intelligence and Expert Systems from 2011. \n\nHe has held the general chair position for the following: ACM-APPIS (2020, 2021), IEEE-IWOBI (2019, 2020 and 2020), A PPIS (2018, 2019), IEEE-IWOBI (2014, 2015, 2017, 2018), InnoEducaTIC (2014, 2017), IEEE-INES (2013), NoLISP (2011), JRBP (2012), and IEEE-ICCST (2005)\n\nHe is an associate editor of the Computational Intelligence and Neuroscience Journal (Hindawi – Q2 JCR-ISI). He was vice dean from 2004 to 2010 in the Higher Technical School of Telecommunication Engineers at ULPGC and the vice dean of Graduate and Postgraduate Studies from March 2013 to November 2017. He won the “Catedra Telefonica” Awards in Modality of Knowledge Transfer, 2017, 2018, and 2019 editions, and awards in Modality of COVID Research in 2020.\n\nPublic References:\nResearcher ID http://www.researcherid.com/rid/N-5967-2014\nORCID https://orcid.org/0000-0002-4621-2768 \nScopus Author ID https://www.scopus.com/authid/detail.uri?authorId=6602376272\nScholar Google https://scholar.google.es/citations?user=G1ks9nIAAAAJ&hl=en \nResearchGate https://www.researchgate.net/profile/Carlos_Travieso",institutionString:null,institution:{name:"University of Las Palmas de Gran Canaria",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"23",title:"Computational Neuroscience",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",isOpenForSubmission:!0,editor:{id:"14004",title:"Dr.",name:"Magnus",middleName:null,surname:"Johnsson",slug:"magnus-johnsson",fullName:"Magnus Johnsson",profilePictureURL:"https://mts.intechopen.com/storage/users/14004/images/system/14004.png",biography:"Dr Magnus Johnsson is a cross-disciplinary scientist, lecturer, scientific editor and AI/machine learning consultant from Sweden. \n\nHe is currently at Malmö University in Sweden, but also held positions at Lund University in Sweden and at Moscow Engineering Physics Institute. \nHe holds editorial positions at several international scientific journals and has served as a scientific editor for books and special journal issues. \nHis research interests are wide and include, but are not limited to, autonomous systems, computer modeling, artificial neural networks, artificial intelligence, cognitive neuroscience, cognitive robotics, cognitive architectures, cognitive aids and the philosophy of mind. \n\nDr. Johnsson has experience from working in the industry and he has a keen interest in the application of neural networks and artificial intelligence to fields like industry, finance, and medicine. \n\nWeb page: www.magnusjohnsson.se",institutionString:null,institution:{name:"Malmö University",institutionURL:null,country:{name:"Sweden"}}},editorTwo:null,editorThree:null},{id:"24",title:"Computer Vision",coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",isOpenForSubmission:!0,editor:{id:"294154",title:"Prof.",name:"George",middleName:null,surname:"Papakostas",slug:"george-papakostas",fullName:"George Papakostas",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002hYaGbQAK/Profile_Picture_1624519712088",biography:"George A. Papakostas has received a diploma in Electrical and Computer Engineering in 1999 and the M.Sc. and Ph.D. degrees in Electrical and Computer Engineering in 2002 and 2007, respectively, from the Democritus University of Thrace (DUTH), Greece. Dr. Papakostas serves as a Tenured Full Professor at the Department of Computer Science, International Hellenic University, Greece. Dr. Papakostas has 10 years of experience in large-scale systems design as a senior software engineer and technical manager, and 20 years of research experience in the field of Artificial Intelligence. Currently, he is the Head of the “Visual Computing” division of HUman-MAchines INteraction Laboratory (HUMAIN-Lab) and the Director of the MPhil program “Advanced Technologies in Informatics and Computers” hosted by the Department of Computer Science, International Hellenic University. He has (co)authored more than 150 publications in indexed journals, international conferences and book chapters, 1 book (in Greek), 3 edited books, and 5 journal special issues. His publications have more than 2100 citations with h-index 27 (GoogleScholar). His research interests include computer/machine vision, machine learning, pattern recognition, computational intelligence. \nDr. Papakostas served as a reviewer in numerous journals, as a program\ncommittee member in international conferences and he is a member of the IAENG, MIR Labs, EUCogIII, INSTICC and the Technical Chamber of Greece (TEE).",institutionString:null,institution:{name:"International Hellenic University",institutionURL:null,country:{name:"Greece"}}},editorTwo:null,editorThree:null},{id:"25",title:"Evolutionary Computation",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",isOpenForSubmission:!0,editor:{id:"136112",title:"Dr.",name:"Sebastian",middleName:null,surname:"Ventura Soto",slug:"sebastian-ventura-soto",fullName:"Sebastian Ventura Soto",profilePictureURL:"https://mts.intechopen.com/storage/users/136112/images/system/136112.png",biography:"Sebastian Ventura is a Spanish researcher, a full professor with the Department of Computer Science and Numerical Analysis, University of Córdoba. Dr Ventura also holds the positions of Affiliated Professor at Virginia Commonwealth University (Richmond, USA) and Distinguished Adjunct Professor at King Abdulaziz University (Jeddah, Saudi Arabia). Additionally, he is deputy director of the Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI) and heads the Knowledge Discovery and Intelligent Systems Research Laboratory. He has published more than ten books and over 300 articles in journals and scientific conferences. Currently, his work has received over 18,000 citations according to Google Scholar, including more than 2200 citations in 2020. In the last five years, he has published more than 60 papers in international journals indexed in the JCR (around 70% of them belonging to first quartile journals) and he has edited some Springer books “Supervised Descriptive Pattern Mining” (2018), “Multiple Instance Learning - Foundations and Algorithms” (2016), and “Pattern Mining with Evolutionary Algorithms” (2016). He has also been involved in more than 20 research projects supported by the Spanish and Andalusian governments and the European Union. He currently belongs to the editorial board of PeerJ Computer Science, Information Fusion and Engineering Applications of Artificial Intelligence journals, being also associate editor of Applied Computational Intelligence and Soft Computing and IEEE Transactions on Cybernetics. Finally, he is editor-in-chief of Progress in Artificial Intelligence. He is a Senior Member of the IEEE Computer, the IEEE Computational Intelligence, and the IEEE Systems, Man, and Cybernetics Societies, and the Association of Computing Machinery (ACM). Finally, his main research interests include data science, computational intelligence, and their applications.",institutionString:null,institution:{name:"University of Córdoba",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"26",title:"Machine Learning and Data Mining",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",isOpenForSubmission:!0,editor:{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null},{id:"27",title:"Multi-Agent Systems",coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",isOpenForSubmission:!0,editor:{id:"148497",title:"Dr.",name:"Mehmet",middleName:"Emin",surname:"Aydin",slug:"mehmet-aydin",fullName:"Mehmet Aydin",profilePictureURL:"https://mts.intechopen.com/storage/users/148497/images/system/148497.jpg",biography:"Dr. Mehmet Emin Aydin is a Senior Lecturer with the Department of Computer Science and Creative Technology, the University of the West of England, Bristol, UK. His research interests include swarm intelligence, parallel and distributed metaheuristics, machine learning, intelligent agents and multi-agent systems, resource planning, scheduling and optimization, combinatorial optimization. Dr. Aydin is currently a Fellow of Higher Education Academy, UK, a member of EPSRC College, a senior member of IEEE and a senior member of ACM. In addition to being a member of advisory committees of many international conferences, he is an Editorial Board Member of various peer-reviewed international journals. He has served as guest editor for a number of special issues of peer-reviewed international journals.",institutionString:null,institution:{name:"University of the West of England",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:19,paginationItems:[{id:"82196",title:"Multi-Features Assisted Age Invariant Face Recognition and Retrieval Using CNN with Scale Invariant Heat Kernel Signature",doi:"10.5772/intechopen.104944",signatures:"Kamarajugadda Kishore Kumar and Movva Pavani",slug:"multi-features-assisted-age-invariant-face-recognition-and-retrieval-using-cnn-with-scale-invariant-",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"82063",title:"Evaluating Similarities and Differences between Machine Learning and Traditional Statistical Modeling in Healthcare Analytics",doi:"10.5772/intechopen.105116",signatures:"Michele Bennett, Ewa J. Kleczyk, Karin Hayes and Rajesh Mehta",slug:"evaluating-similarities-and-differences-between-machine-learning-and-traditional-statistical-modelin",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Machine Learning and Data Mining - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11422.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79345",title:"Application of Jump Diffusion Models in Insurance Claim Estimation",doi:"10.5772/intechopen.99853",signatures:"Leonard Mushunje, Chiedza Elvina Mashiri, Edina Chandiwana and Maxwell Mashasha",slug:"application-of-jump-diffusion-models-in-insurance-claim-estimation-1",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}}]},overviewPagePublishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:null}]},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",institutionURL:null,country:{name:"Romania"}}}]},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]}]},openForSubmissionBooks:{paginationCount:3,paginationItems:[{id:"11601",title:"Econometrics - Recent Advances and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11601.jpg",hash:"bc8ab49e2cf436c217a49ca8c12a22eb",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 13th 2022",isOpenForSubmission:!0,editors:[{id:"452331",title:"Dr.",name:"Brian",surname:"Sloboda",slug:"brian-sloboda",fullName:"Brian Sloboda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12141",title:"Leadership - Advancing Great Leadership Practices and Good Leaders",coverURL:"https://cdn.intechopen.com/books/images_new/12141.jpg",hash:"85f77453916f1d80d80d88ee4fd2f2d1",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 1st 2022",isOpenForSubmission:!0,editors:[{id:"420133",title:"Dr.",name:"Joseph",surname:"Crawford",slug:"joseph-crawford",fullName:"Joseph Crawford"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12139",title:"Global Market and Trade",coverURL:"https://cdn.intechopen.com/books/images_new/12139.jpg",hash:"fa34af07c3a9657fa670404202f8cba5",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 21st 2022",isOpenForSubmission:!0,editors:[{id:"243649",title:"Dr.Ing.",name:"Ireneusz",surname:"Miciuła",slug:"ireneusz-miciula",fullName:"Ireneusz Miciuła"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{},subseriesFiltersForOFChapters:[],publishedBooks:{},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{}},subseries:{item:{},onlineFirstChapters:{},publishedBooks:{},testimonialsList:[]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/46821",hash:"",query:{},params:{id:"46821"},fullPath:"/chapters/46821",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()