Material properties of unidirectional composite
1. Introduction
In the past, the model of thin plate on the elastic foundation was mainly used in structural applications. Currently, thin films of metal, ceramic or synthetic materials deposited on the surface of the structural parts of the electronic devices are used to improve their mechanical, thermal, electrical and tribological properties. These thin films of material are considered as thin plates and in these applications, the substrate of thin film can be simulated as an elastic foundation [12].
The laminated composite rectangular plate is very common in many engineering fields such as aerospace industries, civil engineering and marine engineering. The ability to conduct an accurate free vibration analysis of plates with variable thickness is absolutely essential if the designer is concerned with possible resonance between the plate and driving force [3].
Ungbhakorn and Singhatanadgid [4] investigated the buckling problem of rectangular laminated composite plates with various edge supports by using an extended Kantorovich method is employed.
Setoodeh, Karami [5] investigated A threedimensional elasticity approach to develop a general free vibration and buckling analysis of composite plates with elastic restrained edges.
Luura and Gutierrez [6] studied the vibration of rectangular plates by a nonhomogenous elastic foundation using the RayleighRitz method.
Ashour [7] investigated the vibration analysis of variable thickness plates in one direction with edges elastically restrained against both rotation and translation using the finite strip transition matrix technique.
Grossi, Nallim [8] investigated the free vibration of anisotropic plates of different geometrical shapes and generally restrained boundaries. An analytical formulation, based on the Ritz method and polynomial expressions as approximate functions for analyzing the free vibrations of laminated plates with smooth and nonsmooth boundary with non classical edge supports is presented.
LU, et al [9] presented the exact analysis for free vibration of longspan continuous rectangular plates based on the classical Kirchhoff plate theory, using state space approach associated with joint coupling matrices.
Chopra [10] studied the free vibration of stepped plates by analytical method. Using the solutions to the differential equations for each region of the plate with uniform thickness, he formulated the overall Eigen value problem by introducing the boundary conditions and continuity conditions at the location of abrupt change of thickness. However this method suffers from the drawback of excessive continuity, as in theory the second and third derivatives of the deflection function at the locations of abrupt change of thickness should not be continuous.
Cortinez and Laura [11] computed the natural frequencies of stepped rectangular plates by means of the Kantorovich extended method, whereby the accuracy was improved by inclusion of an exponential optimization parameter in the formulation.
Bambill et al. [12] subsequently obtained the fundamental frequencies of simply supported stepped rectangular plates by the Rayleigh–Ritz method using a truncated double Fourier expansion.
Laura and Gutierrez [13] studied the free vibration problem of uniform rectangular plates supported on a nonhomogeneous elastic foundation based on the Rayleigh–Ritz method using polynomial coordinate functions which identically satisfy the governing boundary conditions.
Harik and Andrade [14] used the “analytical strip method” to the stability analysis of unidirectionally stepped plates. In essence, the stepped plate is divided into rectangular regions of uniform thickness. The differential equations of stability for each region are solved and the continuity conditions at the junction lines as well as the boundary conditions are then imposed.
1.1. The chapter aims
This chapter presents the finite strip transition matrix technique (FSTM) and a semianalytical method to obtain the natural frequencies and mode shapes of symmetric angleply laminated composite rectangular plate with classical boundary conditions (SSFF). The plate has a uniform thickness in x direction and varying thickness h(y) in y direction, as shown in Figure 1. The boundary conditions in the variable thickness direction are simply supported and they are satisfied identically and the boundary conditions in the other direction are free and are approximated. Numerical results for simplefree (SSFF) boundary conditions at the plate edges are presented. The illustrated results are in excellent agreement compared with solutions available in the literature, which validates the accuracy and reliability of the proposed technique.
2. Formulation
The equation of motion governing the vibration of rectangular plate under the assumption of the classical deformation theory in terms of the plate deflection W(x, y, t) is given by:
Where
The flexural rigidities
Where
Where
Or in contraction form:
The substitution of equation (3) into equation (6) given the governing Partial differential equation:
Equation (7) may be written as:
The equation of motion (8) can be normalized using the nonDimensional variables ξ and η as follows :
Where
3. Method of solution
The displacement
The most commonly used is the Eigen function obtained from the solution of beam free vibration under the prescribed boundary conditions at ξ=0 and ξ=1.
The free vibration of a beam of length a can be described by the nonDimensional differential equation:
Where
at ξ=0 and ξ=1
In this paper, the beam shape function in ξdirection is considered as a strip element of the plate and the flexural rigidity
One can obtain the following system of homogenous linear equations by satisfying the boundary conditions (12) at ξ=0 and ξ=1.
The different value of
The roots of equation (15) are represented in the recurrence form:
The substitution of equation (10) into equation (9), multiplying both sides by
Where
and
From the orthogonality of the beam Eigen function,
The system of fourth order partial differential equations in equation (17) can be reduced to a system of first order homogeneous ordinary differential equations:
And after some manipulation, the governing differential equation (17) will become:
Where the frame denotes differentiation with respect to η.
Where:
i= 0, 1, 2, 3, ……….,N, j= 0, 1, 2, 3, ……….,M
where the coefficients of the matrix
Where:
Solving the above system of first order ordinary differential equations using the transition matrix technique yields, at any strip element (i) with boundaries (i1) and (i) to,
Where
Following the same procedure, the above boundary conditions (equations (12)) can be written. The simple boundary conditions at η=0 and η=1 as shown in Figure 3 are:
The boundary conditions at η=0 and η=1 can be expressed as:
Using the assumed solution, equation (10) the boundary conditions can be given by the following equations:
At η=0 and η=1
Or in contraction form:
Where
The solution is found using 2N initial vectors
Where
4. Numerical results and discussion
In this section, some numerical results are presented for symmetrically laminated, angleply variable thickness rectangular plate with simple support in the variable thickness direction and free in the other direction. The designation (SSFF) means that the edges x=0, x=a, y=0, y=b are free, free, simple supported and simple supported respectively. The plates are made up of five laminates with the fiber orientations [θ,  θ, θ,  θ, θ] and the composite material is Graphite/Epoxy, of which mechanical properties are given in Table 1. The Eigen frequencies obtained are expressed in terms of nondimensional frequency parameter
Where







Graphite/Epoxy  138  8.96  7.1  0.3  25  0.8 
In order to validate the proposed technique, a comparison of the results with some results available for other numerical methods [15] for uniform laminated plates with simple support in the ydirection and free in the other direction. The first six natural frequencies of such uniform laminated plates are depicted in Table 2.









1  70.4212  70.7012  140.4421  173.5211  180.6231  235.6753 
2  70.4212  70.7012  140.4421  173.5211  180.6231  235.6753 
3  70.2882  70.5827  140.2496  173.2098  180.2833  235.3197 
4  70.2882  70.5827  140.2496  173.2098  180.2833  235.3197 
5  70.2882  70.5827  140.2496  173.2098  180.2833  235.3197 
Ref*  70.302  70.604  140.255  173.218  180.287  235.322 
Table 3 and Table 4 shows a convergence analysis of the first six frequencies parameters of symmetrically angleply five laminates [45/45/45/45/45] variable thickness plate with tapered ratio
Figure 4 and Figure 5 show the mode shapes of the first six fundamental frequencies of the above plate. Figure 4 and Figure 5 both are divided into two graphics. The first one shows the mode shapes of the plate in surface form and the other shows the mode shapes of the plate in surface contour form. All simulation results and graphics were obtained using MATLAB software.











1  80.2177  82.5621  155.9665  188.6633  194.6253  251.7333 
2  80.2177  82.5621  155.9665  188.6633  194.6253  251.7333 
3  79.8625  82.0025  155.3232  188.1111  194.1002  251.2035 
4  79.8625  82.0025  155.3232  188.1111  194.1002  251.2035 
5  79.8625  82.0025  155.3232  188.1111  194.1002  251.2035 











1  72.7575  73.8666  143.3334  175.4963  183.7825  240.7621 
2  72.7575  73.8666  143.3334  175.4963  183.7825  240.7621 
3  72.1199  73.4444  142.9019  175.0024  183.1121  240.0159 
4  72.1199  73.4444  142.9019  175.0024  183.1121  240.0159 
5  72.1199  73.4444  142.9019  175.0024  183.1121  240.0159 
5. Concluding remarks
A semianalytical solution of the free vibration of angleply symmetrically laminated variable thickness rectangular plate with classical boundary condition (SSFF) is investigated using the finite strip transition matrix technique (FSTM). The numerical results for uniform angleply symmetrically square plate with classical boundary condition (SSFF) is presented and compared with some available results. The results agree very closely with other results available in the literature. It can be observed from Tables 2 and 3 that rapid convergence is achieved with small numbers of N in the series solution. Comparing to other techniques, the finite strip transition matrix (FSTM) proves to be valid enough in this kind of application. In all cases the FSTM method is easily implemented in a computer program a yields a fast convergence and reliable results. Also, the effect of the tapered ratio
Appendix (A)
Plate thickness function
In this appendix the derivation of the relation of the plate thickness h(y) in ydirection as shown in the Figure 6 is given.
By similarity between the triangles (ABG) and (ACF):
By similarity between the triangles (ABG) and (ADE):
From equations (28) and (29) the plate thickness relation is:
Where
and
Using the assumed solution, equation (10) The relation between the thickness of the plate h(y) can be given by the following equation:
References
 1.
Utku M., Citipitioglu E. and Inceleme I, 2000, Circular plate on elastic foundation modeled with annular plates, J. Computinal Structures, 74, 78365.  2.
Chadrashekhara K. and Antony J., 1997, Elastic analysis of an annular slabsoil interaction problem using hybrid method. Compt. Geotech, 76, 20161.  3.
Ng SF, Araar Y, 1989, Free vibration and buckling analysis of clamped rectangular plates of variable thickness by Galerkin Method. J. Sound Vibration, 135(2):26374.  4.
Ungbhakorn V and Singhatanadgid P, 2006, Buckling analysis of symmetrically laminated composite plates by the extended Kantorovich method, J. composite Structures, 73, 120123.  5.
Setoodeh A.R, Karami G, 2003, A solution for the vibration and buckling of composite laminates with elastically restrained edges, J. composite Structures, 60, 245253.  6.
Laura P. and Gutierrez R., 1985, Vibrating non uniform plates on elastic foundation. J. Mechanical Engineering. ASCE, 96 1111185.  7.
Ashour A.S, 2004, vibration of variable thickness plates with edges elastically restrained against rotational and translation, ThinWalled Structures, 42, 124.  8.
Grossi R.O, Nallim L.G, 2008, On the existence of weak solutions of anisotropic generally restrained plates, J. Applied Mathematical Modelling, 32, 22542273.  9.
LU C.F, Lee Y.Y, Lim C.W and Chen W.Q, 2006, free vibration of longspan contagious rectangular Kirchhoff plates with internal rigid line supports, J. Sound and Vibration, 297, 351364.  10.
Chopra I. 1974, Vibration of stepped thickness plates. International Journal of Mechanical Science; 16:337–44.  11.
Cortinez VH, Laura PAA. 1990, Analysis of vibrating rectangular plates of discontinuously varying thickness by means of the Kantorovich extended method. J. of Sound and Vibration; 137(3):457–61.  12.
Bambill DV, Laura PAA, Bergmann A, Carnicer R. 1991, Fundamental frequency of transverse vibration of symmetrically stepped simply supported rectangular plates. J. of Sound and Vibration; 150(1):167–9.  13.
Laura PAA, Gutierrez RH. 1985, Transverse vibrations of rectangular plates on inhomogeneous foundations, Part I: RayleighRitz method. J. of Sound and Vibration; 101(3):307–15.  14.
Harik IE, Andrade MG. 1989, Stability of plates with step variation in thickness. J. Computers and Structures; 33(1):257–63.  15.
Cheung Y.K and Zhou D 2001, Vibration analysis of symmetrically laminated rectangular plates with intermediate linesupports, J. Thinwalled Structures, 79, 3341.