",isbn:"978-1-80356-357-2",printIsbn:"978-1-80356-356-5",pdfIsbn:"978-1-80356-358-9",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,isSalesforceBook:!1,isNomenclature:!1,hash:"3aba1eb3600a8c9ff880c628f70b3298",bookSignature:"Ph.D. Delfín Ortega-Sánchez",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",keywords:"Integrated Curriculum, Transdisciplinarity, Integrated Active Learning, Educational Programs, Contemporary Social Problems, Critical Thinking, Creative Thinking, Social Thinking, Agenda 2030, Sustainable Development Goals, Educational Paradigm, Social Reality",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 18th 2022",dateEndSecondStepPublish:"March 18th 2022",dateEndThirdStepPublish:"May 17th 2022",dateEndFourthStepPublish:"August 5th 2022",dateEndFifthStepPublish:"October 4th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"2 months",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Internationally recognized researcher in the field of historical and social science education. Author of more than 100 publications, awarded three Doctorate degrees and the National End of Degree Award, granted by the Ministry of Education to the best academic records of Bachelor's degrees in Spain. Dr. Ortega-Sánchez has been Vice-Rector for Social Responsibility, Culture, and Sports at the University of Burgos since 2021.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"302925",title:"Ph.D.",name:"Delfín",middleName:null,surname:"Ortega-Sánchez",slug:"delfin-ortega-sanchez",fullName:"Delfín Ortega-Sánchez",profilePictureURL:"https://mts.intechopen.com/storage/users/302925/images/system/302925.jpg",biography:"I hold a PhD in Didactics of Social Sciences from the Autonomous University of Barcelona, a PhD in Educational Sciences from the University of Burgos, and a PhD in History from the University of Extremadura. My research interests focus on the construction of identities in the History and Geography teaching, gender mainstreaming in initial education and training for teachers, the didactic treatment of relevant social problems and controversial issues in the teaching of the social and human sciences, and the application of educational technology in the specific field of social sciences. I am currently a Social Sciences teacher and researcher at University of Burgos (Spain).",institutionString:"University of Burgos",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Burgos",institutionURL:null,country:{name:"Spain"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"23",title:"Social Sciences",slug:"social-sciences"}],chapters:[{id:"81996",title:"Perspective Chapter: New Active Learning Models in Africa",slug:"perspective-chapter-new-active-learning-models-in-africa",totalDownloads:0,totalCrossrefCites:null,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"429339",firstName:"Jelena",lastName:"Vrdoljak",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/429339/images/20012_n.jpg",email:"jelena.v@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6926",title:"Biological Anthropology",subtitle:"Applications and Case Studies",isOpenForSubmission:!1,hash:"5bbb192dffd37a257febf4acfde73bb8",slug:"biological-anthropology-applications-and-case-studies",bookSignature:"Alessio Vovlas",coverURL:"https://cdn.intechopen.com/books/images_new/6926.jpg",editedByType:"Edited by",editors:[{id:"313084",title:"Ph.D.",name:"Alessio",surname:"Vovlas",slug:"alessio-vovlas",fullName:"Alessio Vovlas"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6942",title:"Global Social Work",subtitle:"Cutting Edge Issues and Critical Reflections",isOpenForSubmission:!1,hash:"222c8a66edfc7a4a6537af7565bcb3de",slug:"global-social-work-cutting-edge-issues-and-critical-reflections",bookSignature:"Bala Raju Nikku",coverURL:"https://cdn.intechopen.com/books/images_new/6942.jpg",editedByType:"Edited by",editors:[{id:"263576",title:"Dr.",name:"Bala",surname:"Nikku",slug:"bala-nikku",fullName:"Bala Nikku"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"44721",title:"Notch Signaling in Congenital and Acquired Aortic Valve Disease",doi:"10.5772/56533",slug:"notch-signaling-in-congenital-and-acquired-aortic-valve-disease",body:'
1. Introduction
Calcific aortic valve disease represents the predominant pathology of tricuspid (trileaflet) and bicuspid aortic valves in developed countries (Ladich et al., 2011). Accounting for approximately half of anatomically isolated aortic stenosis and 25 percent of patients with aortic regurgitation (Roberts, 1970), calcific bicuspid aortic valves requiring surgical intervention present at least two decades earlier than the tricuspid counterpart (Ward, 2000). Mechanisms important in cardiac and organ development — notably, the Notch pathway — have emerged as central players recapitulated and reused during the pathogenesis of calcific aortic valve disease, and support also a common etiology for bicuspid aortic valve and aortic valve calcification (Garg et al., 2005) (Table 1). Active engagement of inflammatory, remodeling, neovascularization and osteogenic (Aikawa et al., 2007a; Aikawa et al., 2007b; Miller et al., 2010; Rajamannan et al., 2003) pathways has conceptually replaced ‘degeneration’ in calcific aortic valve disease pathogenesis and progression (Dweck et al., 2012). Moreover, these pathways invoke similar mechanisms during cardiac morphogenesis. Dysregulated Notch activity has also been reported in vascular inflammation, macrophage activation (Fung et al., 2007), cardiometabolic disorder, and vascular and aortic valve calcification (Fukuda et al., 2012). Preclinical studies suggest that specific blockade of Notch ligand–receptor signaling potently suppresses vascular calcification and calcific aortic valve disease (Fukuda et al., 2012). In this chapter, we review the mechanisms of Notch signaling, aortic valve dysmorphology pertinent to accelerated valve calcification, and discuss the pathways involving Notch that lead to aortic valve calcification and disease.
\n\t\t
\n\t\t
\n\t\t
\n\t\t
\n\t\t\t
\n\t\t\t
\n\t\t\t\t\n\t\t\t\t\tRole in cardiac and aortic valve development\n\t\t\t\t\n\t\t\t
\n\t\t\t
\n\t\t\t\t\n\t\t\t\t\tRole in aortic valve calcification\n\t\t\t\t\n\t\t\t
\n\t\t
\n\t\t
\n\t\t\t
NOTCH1
\n\t\t\t
cardiac morphogenesis
\n\t\t\t
inhibits calcification
\n\t\t
\n\t\t
\n\t\t\t
Hey1/2
\n\t\t\t
downstream effector of Notch inhibits action of BMP2
\n\t\t\t
inhibits calcification, decreases ostepontin
\n\t\t
\n\t\t
\n\t\t\t
BMP2
\n\t\t\t
coordination of cardiac patterning and EMT required for valve formation
\n\t\t\t
promotes calcification
\n\t\t
\n\t\t
\n\t\t\t
Sox9
\n\t\t\t
increased by Hey2 and mediates chondrogenesis
\n\t\t\t
suppresses osteogenesis
\n\t\t
\n\t\t
\n\t\t\t
Runx2
\n\t\t\t
repressed by NOTCH1 and Hey1/2
\n\t\t\t
promotes calcification
\n\t\t
\n\t\t
\n\t\t\t
JAG1
\n\t\t\t
boundary definition in myocardium; vasculogenesis
\n\t\t\t
inhibits calcification
\n\t\t
\n\t\t
\n\t\t\t
DLL4
\n\t\t\t
formation of heart fields and boundary definition in endocardium; vasculogenesis
\n\t\t\t
neovascularization (angioneogenesis) & hemorrhage leading to calcific aortic valve disease
\n\t\t
\n\t
Table 1.
Major components of the Notch1-Hey-BMP2 axis and their actions in cardiac and aortic valve development, and in aortic valve calcification. BMP, bone morphogenetic protein. DLL4, Delta-like 4. JAG1, Jagged1.
2. Notch signaling
The human Notch receptor family comprises four members, Notch1 through Notch4, expressed as transmembrane molecules on the cell surface of neighboring cells that enable canonical signaling in a contact-dependent manner (Bray, 2006; Kopan and Ilagan, 2009). Canonical Notch signaling describes the ‘classic’ interaction between membrane-bound receptors and ligands expressed on the surface of neighboring (signaling and receiving) cells, whereas non-canonical signaling encompasses a diverse group of structurally unrelated ligands that contribute to the pleiotropic effect of Notch signaling (Kopan and Ilagan, 2009). In mammals, five members of the Delta-Serrate-LAG-2 (DSL) family have the capacity to activate or modify canonical Notch signaling — Delta-like 1 (Dll1), Dll3, Dll4, Jagged1, and Jagged2. Interaction between Notch receptor and ligand is tightly controlled, and the signaling outcome is determined by the receptor:ligand ratio (Artavanis-Tsakonas and Muskavitch, 2010; Gibert and Simpson, 2003; Heitzler and Simpson, 1991; Wilkinson et al., 1994) that critically determines asymmetry in cell fate and development of neighboring cells. This interaction between receptor and ligand can be modified posttranslationally through Notch glycosylation by lunatic, manic and radical glycosyltransferases (Bray, 2006). The receptor:ligand ratio is dependent on the differential expression of competing ligands on neighboring cells in trans, as opposed to cis interaction through which receptor and ligand expressed on the same cell can also modulate Notch signaling. The complexity of receptor–ligand interaction is further increased by the requirement of heterodimerization of the receptor (Kopan and Ilagan, 2009). Canonical interaction between Notch receptor and ligand leads to two sequential cleavage events at site 2 (S2) and S3. S2 is a ‘permissive’ extracellular juxtamembrane cleavage by a disintegrin and metalloprotease 17 (ADAM17, known also as tumor necrosis factor-α converting enzyme/TACE) and/or ADAM10 (Artavanis-Tsakonas and Muskavitch, 2010; Bray, 2006), whereas S3 is executed by γ-secretase, a protease with many substrates (McCarthy et al., 2009; Wakabayashi and De Strooper, 2008). S1 cleavage is carried out by a furin-like convertase occurring posttranslationally in the trans-Golgi apparatus before translocation of the nascent Notch receptor to the cell surface (Bray, 2006; Kopan and Ilagan, 2009). Following S3 cleavage, the Notch intracellular domain is liberated and enters the nucleus to form a transcription activational complex with the transcriptional factor RBP-Jκ, and the transcriptional coactivator Mastermind to promote target gene transcription (Bray, 2006; Kopan and Ilagan, 2009). Targets indicative of Notch activity include the basic-helix-loop-helix genes of the hairy and enhancer of split (HES) and the hairy-related (HRT or Hey) family (Bray, 2006; Kopan and Ilagan, 2009).
Functionality of Notch signaling components is highly context-dependent and conventionally requires cell-to-cell contact to specify cell fate, differentiation, growth, proliferation, survival and apoptosis (Bray, 2006; Fiuza and Arias, 2007; Guruharsha et al., 2012). Interaction between Notch receptor and ligand on adjacent cells results in asymmetric signal transduction, leading to potentially divergent cell fate decision, phenotypic development and growth (Bray, 2006; Kopan and Ilagan, 2009).
3. Congenital aortic valve disease
3.1. Notch dysfunction in aortic valve anomalies and other congenital heart diseases
Congenital aortic valve anomalies frequently associate with other abnormalities in neighboring structures, including the aortic root (e.g. dilatation, aneurysm), aorta (e.g. coarctation of aorta), ventricular outflow tract (e.g. septal defect, transposition of great vessels), and/or coronary arteries (e.g. coronary anomalies) (Perloff, 2003; Ward, 2000). The association of anomalies is due in part to the complexity and critical function of the endocardial cushion, and its formation during cardiac valve and septum development (Camenisch et al., 2010).
The tight regulation of Notch signaling during murine cardiac morphogenesis, particularly of the cardiac outflow tract and semilunar (aortic and pulmonary) valves, have been recently reviewed in detail by de la Pompa and Epstein (de la Pompa and Epstein, 2012). The evolutionarily conserved nature of Notch across mammalian species is generally recognized to be applicable to human. The highly coordinated action of Notch in progenitor cell proliferation and differentiation is instrumental during development. Earliest signs of cardiac morphogenesis occur with formation of the cardiac crescent by midline fusion of first and second heart fields that feature expression of Notch1, Dll4 and Jagged1 in the primitive endocardium (de la Pompa and Epstein, 2012; del Monte et al., 2007; Duarte et al., 2004). Continuing cell proliferation and development leads to the generation of the heart tube, consisting of an outer myocardial layer, middle cardiac jelly of extracellular matrix, and an inner endocardial endothelium (Camenisch et al., 2010; de la Pompa and Epstein, 2012). Demarcation of boundary and tissue layers is marked by expression of Jagged1 limited to the myocardial layer, and Dll4, Notch1, Notch2 and Notch4 in the endocardium. The heart tube gradually undergoes a complex morphologic change with a rightward bend, converting the anterior-posterior polarity of the heart tube into a right-left (R-) loop. As the looped heart further develops, the valve territories of the atrioventricular canal (AVC) and outflow tract (OFT) are demarcated. The AVC and OFT cushions become the sites for formation of the mitral and aortic valves, respectively, in the left ventricle and the tricuspid and pulmonary valves in the right ventricule (Person et al., 2005). Contribution of endocardium-derived mesenchyme to the development of AVC and OFT valve primordia diverge as the neural crest contribute additionally to the development of the OFT valve primordium (de la Pompa and Epstein, 2012; Zhang et al., 2010). At this stage of development, Jagged1 expression is present in the endocardium and chamber myocardium, whereas expression of Dll4 and Notch1 localizes to the valve and atrial endocardium. Here, Notch coordinates cardiac patterning through regulation of the Notch-Hey-Bmp2 axis (MacGrogan et al., 2011). Bmp2, or bone morphogenetic protein 2, is responsible for AVC specification together with Tbx2/3, members of the T-box transcription factor family with crucial roles in cardiac development (de la Pompa and Epstein, 2012; Ma et al., 2005). Tbx2 is repressible by Tbx20, which has regulatory function in ion channel expression (Shen et al., 2011). Importantly, TBX20 nonsense and missense germline mutations result in complex septal, chamber and valvular anomalies in human (Kirk et al., 2007). Tbx transcription factors carry strong activation and repression domains and, especially Tbx20, interact with other important cardiac developmental factors including Nkx2.5, Gata4, Gata5 and Tbx5 (Brown et al., 2005; Combs and Yutzey, 2009; Kirk et al., 2007; Plageman and Yutzey, 2005; Stennard et al., 2003). Targeted disruption of Gata5 has been demonstrated to associate with the development of bicuspid aortic valve in the mouse (Laforest et al., 2011), and one study on patients with bicuspid aortic valve found that approximately 4% had rare non-synonymous mutations within the GATA5 transcriptional activation domains (Padang et al., 2012). A functional connection between gata5 and notch1 was reported in a zebrafish study of endoderm formation (Kikuchi et al., 2004), and those findings may potentially be generalized to human, given the evolutionarily conserved nature of the Notch pathway (Artavanis-Tsakonas and Muskavitch, 2010).
Cardiac valve formation begins with myocardial cells signaling to endocardial cells in the AVC and OFT cushions to undergo epithelial-mesenchymal transformation (transition) (EMT) (de la Pompa and Epstein, 2012). Coordinated by Notch and RBP-Jκ (del Monte et al., 2007; Timmerman et al., 2004), Bmp2 instructs cushion endocardial cells to invade the extracellular matrix and become the cushion mesenchyme (Hinton and Yutzey, 2011), and acting via Snail1/2, the Notch–Hey–Bmp2/4 axis promotes EMT and subsequent completion of valve tissue development (MacGrogan et al., 2011) (Figure 1). Interference with Notch signaling results in abnormal development of the aortic valve and cardiac outflow tract as demonstrated in animal studies (de la Pompa and Epstein, 2012; Garg et al., 2005; Mohamed et al., 2006; van den Akker et al., 2012). As discussed below, BMP2 also mediates aortic valve calcification.
Figure 1.
Diagram of a looped heart expanded to show the outflow tract (OFT) and the atrioventricular canal (AVC) endocardial cushions where epithelial-mesenchymal transition (EMT) occurs and precedes the development of semilunar and atrioventricular valves, respectively. Factors important during cardiac EMT and valve morphogenesis are shown. Myocardium, red; endocardium, blue; extracellular matrix, gray. Bmp, bone morphogenetic protein. Fgf, fibroblast growth factor. sGC, soluble guanylyl cyclase. Tbx, T-box transcription factor. Tgf, transforming growth factor. Adapted with permission from Elsevier.
Bicuspid aortic valve represents one of the most common anomalies of the heart or vessels (Roberts, 1970; Roberts et al., 2012; Ward, 2000), and its association with other anomalies is well recognized. For instance, ~10% of relatives of patients with hypoplastic left heart syndrome have bicuspid aortic valve (Loffredo et al., 2004), and aortic abnormalities such as coarctation of aorta and interrupted aortic arch are present in 20–85% (Presbitero et al., 1987; Stewart et al., 1993) and ~27% (Roberts et al., 2012) of cases, respectively. Individuals with bicuspid aortic valve consistently have dilatation of the ascending aorta (Hahn et al., 1992). As a common variation noted by several investigators (Higgins and Wexler, 1975; Hutchins et al., 1978), a higher incidence of left coronary arterial system dominance (defined by the presence of the posterior descending artery arising from the left circumflex artery, as opposed to the right coronary artery) is observed in patients with bicuspid aortic valve. The phenotypic heterogeneity and overlap suggest common developmental mechanisms and gene networks that closely interact; the extent of the interactions may vary depending on the penetrance of the mutation(s), effect size of the variants, and the interaction between genes and signaling pathway.
In a study of two unrelated families, one of which included five generations, Garg and colleagues observed mutations in NOTCH1 that segregated with aortic valve disease, particularly with bicuspid aortic valve and aortic valve calcification; but also, to a lesser extent, with tetralogy of Fallot, ventricular septal defect, mitral atresia, double-outlet right ventricle, or hypoplastic left ventricle (Garg et al., 2005). NOTCH1 is located on chromosome 9q34.3 and encodes the 2,556-amino acid transmembrane Notch1 receptor. Affected members of one of the families analyzed had autosomal dominant inheritance of a point mutation (R1108X) resulting from a C-to-T transition of nucleotide 3322. Another unrelated family analyzed had a single base pair deletion leading to a frameshift mutation (H1505del) at position 4515. These mutations produced truncated transcripts that are believed to undergo nonsense-mediated decay, supporting haploinsufficiency of NOTCH1 in the pathogenesis of congenital heart disease (Garg et al., 2005). Of note, despite the high propensity to development of bicuspid aortic valve and other cardiac anomalies in individuals with the NOTCH1 mutation (R1108X) (Garg et al., 2005), aortic valve calcification was present even in a minority of family members with the mutation who did not have bicuspid or dysmorphic aortic valves, suggesting that the penetrance of the NOTCH1 mutation is variable (or the effects compensated for by another Notch receptor or other mechanisms), and that maldistribution of mechanical stress alone can not explain accelerated valve calcification in these individuals.
Mutations or abnormal copy number variants in the gene (JAG1) encoding Jagged1, a Notch ligand, on chromosome 20p12 can cause a range of cardiovascular anomalies (McElhinney et al., 2002; Oda et al., 1997). However, the distribution and manifestations of cardiovascular anomalies, including the frequency of bicuspid aortic valve and calcific aortic valve disease, differ considerably between the JAG1 and NOTCH1 mutations (Garg et al., 2005; McElhinney et al., 2002). Although JAG1 mutation is well recognized as a primary cause of Alagille syndome, familial as well as ‘sporadic’ tetralogy of Fallot, among other anomalies, has been reported (Eldadah et al., 2001; Greenway et al., 2009). Tetralogy of Fallot is a syndrome that comprises ventricular septal defect, pulmonary stenosis, right ventricular hypertrophy and an overriding aorta, in association with aortic regurgitation in ~6% of patients (Abraham et al., 1979). Mutations in JAG1 have been identified in 60–75% of individuals with Alagille syndrome (Colliton et al., 2001; Li et al., 1997; Oda et al., 1997; Spinner et al., 2001), a condition characterized by cholestatic jaundice due to biliary tree anomalies, skeletal deformities, systemic vascular malformations and aneurysms (Kamath et al., 2004), and a high frequency of right-sided cardiovascular anomalies (62% of 200 patients) (McElhinney et al., 2002). In patients with left-sided anomalies (22 of 200 individuals (McElhinney et al., 2002)), a comparison of those with (n = 17) and without (n = 5) JAG1 mutation did not reveal an obvious trend favoring the distribution nor preponderance of valvular aortic stenosis, supravalvular aortic stenosis, aortic coarctation, or bicuspid aortic stenosis without stenosis (McElhinney et al., 2002). Those findings suggest that aortic valve disease, such as bicuspid aortic valve and at least moderate-severe aortic stenosis, is relatively uncommon (<5%) in patients with Alagille syndrome (McElhinney et al., 2002), and implies that JAG1 mutation per se does not predispose to aortic valve calcification in human, as evidenced by the paucity of left-sided abnormalities. Interestingly, although previous mouse studies have reported high lethality associated with endothelial-specific deletion of Jag1 (Benedito et al., 2009; High et al., 2008), one recent study demonstrated a high frequency of cardiac, great vessel, coronary, and valve defects resembling features of tetralogy of Fallot in human; and in animals, chondrogenic nodules and calcification were observed in the aortic valve (5 of 10 transgenic animals versus 0 of 10 controls) (Hofmann et al., 2012). The authors of the study postulated that murine Jag1 was essential to morphogenesis of the interventricular septum and cardiac valves, and particularly, in valve remodeling postnatally through modulation of extracellular matrix (Hofmann et al., 2012).
The complexity of gene-phenotype effects in human is highlighted by variable penetrance of JAG1 mutation (e.g. G274D missense mutation) and phenotypic expression, as demonstrated by differences in the degree of glycosylation, protein trafficking and cell-surface protein expression given the same mutation (Lu et al., 2003). This heterogeneity is reminiscent of the variable effects of NOTCH1 in the pathogenesis of bicuspid aortic valve and other cardiovascular anomalies (Garg et al., 2005), and epigenetic factors such as intracardiac fluid forces may be important contributors that couple with transcription factors to affect cardiogenesis and valve development (Hove et al., 2003; Lee et al., 2006; Vermot et al., 2009).
3.2. Aortic valve dysmorphology, bicuspid aortic valve and calcification
Anomalies of the aortic valve can be classified based on size, shape, the number of valve leaflets, cuspal inequality, nature of commissures (e.g. unicomissural, acquired fusion), and location of a false raphé if present (Perloff, 2003; Ward, 2000). Unicuspid, quadricuspid and six-cuspid aortic valves occur rarely (Perloff, 2003), and associated mutations have not been reported, unlike bicuspid aortic valves resulting from impaired Notch1 signaling (Garg et al., 2005). Unicuspid and bicuspid aortic valves often prematurely develop valve calcification at least two decades earlier than their normal trileaflet counterpart (Pachulski and Chan, 1993). Although maldistribution of mechanical stress contributes to the fibrocalcific process, additional factors apart from biomechanical forces including inflammatory and profibrotic processes direct the differentiation of valve fibroblasts into myofibroblasts and osteoblasts that promote osteogenesis (Dweck et al., 2012; Rajamannan et al., 2003).
Maldistribution of shear stress on valve cusps is thought to promote calcification of the aortic valve seen in unicuspid, bicuspid, and tricuspid aortic valve with cuspal inequality (Perloff, 2003). Bicuspid aortic valve is found in 1–2% of the general population in the United States, with a slight male predominance reported in some studies (Roberts et al., 2012; Ward, 2000). Maldistribution of diastolic force among valve cusps and sinus attachment is thought also to promote ascending aortic dilatation or aneurysm (Burks et al., 1998; Perloff, 2003; Roberts, 1970). However, it remains unclear whether these aortic manifestations are genetically determined or represent a byproduct of mechanical stress, given that aortic dilatation is indistinct among regurgitant, stenotic and functionally normal bicuspid aortic valves (Hahn et al., 1992). Emerging evidence supports increased proteolytic activity in the aortic valve and adjacent areas including the aorta that may enhance the remodeling processes (Aikawa et al., 2007b).
Valvular calcification in the early stages causes aortic sclerosis, which predicts increased risks for cardiovascular morbidity and mortality (Otto et al., 1999). As the process progresses, the aortic valve orifice narrows while the valve anatomy and function become gradually distorted to produce valvular aortic stenosis with or without regurgitation, myocardial hypertrophic response, myocardial fibrosis, heart failure, and hemodynamic instability (Dweck et al., 2012). In recent years, the concept of degeneration in the pathogenesis of calcific aortic valve disease has been superseded by that of phenotypic modulation recapitulating embryonic development, angiogenesis, acquired and innate immune activation, wound healing and bone formation (Hakuno et al., 2009).
4. Acquired aortic valve disease
4.1. Aortic valve calcification and systemic inflammation
Aortic valve sclerosis has been estimated to affect at least 20% of adults over 65 years of age in the general population (Lindroos et al., 1993; Stewart et al., 1997). Calcific aortic valve disease represents a continuum of maladapted calcification in the aortic valve arising from active inflammatory and oxidative processes (Kaden et al., 2004; New and Aikawa, 2011; Towler, 2008), as well as a shift in the valve interstitial phenotype from chondrogenic to osteogenic. Early calcification of the aortic valve leads to increased valve leaflet thickness and stiffness in a condition termed aortic valve sclerosis (Otto et al., 1999). Continuation of the inflammatory process propagates angioneogenesis and biomineralization, leading to formation of calcium nodules that distort valve geometry and function, culminating in outflow-limiting aortic stenosis with or without regurgitation (Dweck et al., 2012; Rajamannan et al., 2011). Conditions that promote systemic inflammation, such as atherosclerosis, dyslipidemia and diabetes mellitus, have been shown to exacerbate the development of calcific aortic valve disease (Rajamannan et al., 2011). While statins may stabilize atheromatous plaques, reduce vascular calcification and clinical adverse outcomes, they have unfortunately not been shown to benefit calcific aortic valve disease in disease progression or patient outcomes (Chan et al., 2010; Cowell et al., 2005; Rossebo et al., 2008).
Studies exploring Notch signaling beyond congenital disorders and developmental biology identified Dll4 in macrophage-mediated inflammation (Fung et al., 2007). Recently, Fukuda and colleagues demonstrated that blockade of Dll4-Notch signaling using anti-Dll4 monoclonal antibody decreased BMP2, a central regulator of osteogenesis and bone mineralization (Fukuda et al., 2012), in line with other studies showing reduced aortic valve calcification with BMP2 knockdown by siRNA (Nigam and Srivastava, 2009), and the proinflammatory cytokine, TNF-α, accelerated BMP2-mediated calcification of human aortic valve interstitial cells from patients with calcific aortic valve stenosis (Yu et al., 2011). BMP2 mediates aortic valve calcification via Runx2 (Osf2/Cbfa1), a transcriptional activator of osteoblast development or gene expression (Ducy et al., 1997; Kaden et al., 2004; Mohler et al., 2001), and is suppressible by activation of Notch1 via Hey (HRT) (Acharya et al., 2011; Nigam and Srivastava, 2009). Moreover, the marked attenuation of aortic valvular calcification and stenosis through the blockade of angiogenesis-promoting Dll4 in a mouse model of hypercholesterolemia (Figure 2) also supports the current theory that angioneogenesis is a crucial stage in the natural history of calcific aortic valve disease (Dweck et al., 2012), recapitulating cardiogenesis and valve development (de la Pompa and Epstein, 2012; van den Akker et al., 2012). Thus, Dll4 critically bridges inflammation and angioneogenesis to osteogenesis in calcific aortic valve disease (Fukuda et al., 2012). These effects are probably independent of Notch 1 (Nus et al., 2011), since activation of the receptor presumably leads to inhibition of valve calcification (Acharya et al., 2011), whereas evidence on the benefits of Dll4 blockade (i.e. interruption of Dll4–Notch signaling) suggests that a Notch receptor other than Notch1, when activated, potentiates the development and progression of valve calcification. A shift in the Notch receptor:ligand ratio and/or the DLL:Jagged (Notch ligands) ratio may plausibly alter the cell-to-cell signalling strength and modality in cis and/or in trans, thus, modifying the final functional outcome. Much work remains to be done to fully delineate the mechanisms through which anti-Dll4 antibody exert inhibitory effects on inflammation and calcification.
Figure 2.
Ex vivo mapping using fluorescence reflectance imaging to grossly visualize the biomineralization of the hearts and vessels of atherosclerosis-prone (low-density lipoprotein receptor-deficient, Ldlr–/–) animals fed a hypercholesterolemic diet, and independently treated with IgG isotype control or anti-Dll4 monoclonal antibody (Dll4 Ab). 750-nm CLIO750 nanoparticles were used to image macrophages, and 680-nm VisEn OsteoSense680 was used for the detection of osteogenic activity (top and bottom rows). Decreased osteogenic activity in the anti-Dll4 monoclonal antibody treated specimen is visualized using alkaline phosphatase (ALP) staining (middle row). Adapted from Fukuda and colleagues (Fukuda et al., 2012).
5. Clinical implications
Calcific aortic valve disease in individuals with severe aortic stenosis can progress quickly after presentation with symptoms, usually portending limited short-term survival (Turina et al., 1987). Clinical trials on medical therapy including statins have found little benefit and utility in forestalling disease progression, with no demonstrated impact on survival. Since the evidence suggests that inflammatory cells, particularly macrophages, play a crucial role in calcification, anti-inflammatory therapies may prevent development of arterial and valvular calcification. We and others have demonstrated that lipid lowering reduces inflammation (Aikawa et al., 1998; Aikawa et al., 2001; Chu et al., 2012; Libby and Aikawa, 2002; Libby et al., 2011). However, clinical trials (e.g. SALTIRE, SEAS, etc.) have failed to demonstrate that lipid lowering attenuates development of aortic stenosis. Preclinical findings suggest that macrophage accumulation precedes calcific changes in arteries and valves while lesions with advanced calcification are often unassociated with macrophages (Aikawa et al., 2007a; Aikawa et al., 2007b). This may suggest that anti-inflammatory therapies need to be initiated early (Aikawa and Otto, 2012), and thus clinical trials involving patients who had been diagnosed with aortic stenosis due to advanced calcification did not show substantial benefits of lipid lowering therapy. To establish more effective therapies, it is crucial to better understand the complex mechanisms for aortic valve calcification. To identify individuals with subclinical aortic valve calcification and those with high probability or propensity of developing severe aortic valvular stenosis, methods for early detection of calcific changes (e.g., molecular imaging, biomarkers) need to be developed. National Institutes of Health of the United States of America has formed the Working Group of Calcific Aortic Valve Disease to facilitate basic research on this devastating global health threat and initiated federal funding (Rajamannan et al., 2011).
\n',keywords:null,chapterPDFUrl:"https://cdn.intechopen.com/pdfs/44721.pdf",chapterXML:"https://mts.intechopen.com/source/xml/44721.xml",downloadPdfUrl:"/chapter/pdf-download/44721",previewPdfUrl:"/chapter/pdf-preview/44721",totalDownloads:2178,totalViews:249,totalCrossrefCites:2,totalDimensionsCites:2,totalAltmetricsMentions:0,impactScore:1,impactScorePercentile:72,impactScoreQuartile:3,hasAltmetrics:0,dateSubmitted:"June 29th 2012",dateReviewed:"April 10th 2013",datePrePublished:null,datePublished:"June 12th 2013",dateFinished:"May 13th 2013",readingETA:"0",abstract:null,reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/44721",risUrl:"/chapter/ris/44721",book:{id:"3384",slug:"calcific-aortic-valve-disease"},signatures:"Erik Fung and Masanori Aikawa",authors:[{id:"164342",title:"Dr.",name:"Masanori",middleName:null,surname:"Aikawa",fullName:"Masanori Aikawa",slug:"masanori-aikawa",email:"maikawa@rics.bwh.harvard.edu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"Harvard University",institutionURL:null,country:{name:"United States of America"}}}],sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Notch signaling",level:"1"},{id:"sec_3",title:"3. Congenital aortic valve disease",level:"1"},{id:"sec_3_2",title:"3.1. Notch dysfunction in aortic valve anomalies and other congenital heart diseases",level:"2"},{id:"sec_4_2",title:"3.2. Aortic valve dysmorphology, bicuspid aortic valve and calcification",level:"2"},{id:"sec_6",title:"4. Acquired aortic valve disease",level:"1"},{id:"sec_6_2",title:"4.1. Aortic valve calcification and systemic inflammation",level:"2"},{id:"sec_8",title:"5. Clinical implications",level:"1"}],chapterReferences:[{id:"B1",body:'Abraham, K.A., Cherian, G., Rao, V.D., Sukumar, I.P., Krishnaswami, S., and John, S. (1979). Tetralogy of Fallot in adults. A report on 147 patients. Am J Med 66, 811-816.'},{id:"B2",body:'Acharya, A., Hans, C.P., Koenig, S.N., Nichols, H.A., Galindo, C.L., Garner, H.R., Merrill, W.H., Hinton, R.B., and Garg, V. (2011). Inhibitory role of Notch1 in calcific aortic valve disease. PLoS One 6, e27743.'},{id:"B3",body:'Aikawa, E., Nahrendorf, M., Figueiredo, J.L., Swirski, F.K., Shtatland, T., Kohler, R.H., Jaffer, F.A., Aikawa, M., and Weissleder, R. (2007a). Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo. Circulation 116, 2841-2850.'},{id:"B4",body:'Aikawa, E., Nahrendorf, M., Sosnovik, D., Lok, V.M., Jaffer, F.A., Aikawa, M., and Weissleder, R. (2007b). Multimodality molecular imaging identifies proteolytic and osteogenic activities in early aortic valve disease. Circulation 115, 377-386.'},{id:"B5",body:'Aikawa, E., and Otto, C.M. (2012). Look more closely at the valve: imaging calcific aortic valve disease. Circulation 125, 9-11.'},{id:"B6",body:'Aikawa, M., Rabkin, E., Okada, Y., Voglic, S.J., Clinton, S.K., Brinckerhoff, C.E., Sukhova, G.K., and Libby, P. (1998). Lipid lowering by diet reduces matrix metalloproteinase activity and increases collagen content of rabbit atheroma: a potential mechanism of lesion stabilization. Circulation 97, 2433-2444.'},{id:"B7",body:'Aikawa, M., Rabkin, E., Sugiyama, S., Voglic, S.J., Fukumoto, Y., Furukawa, Y., Shiomi, M., Schoen, F.J., and Libby, P. (2001). An HMG-CoA reductase inhibitor, cerivastatin, suppresses growth of macrophages expressing matrix metalloproteinases and tissue factor in vivo and in vitro. Circulation 103, 276-283.'},{id:"B8",body:'Artavanis-Tsakonas, S., and Muskavitch, M.A. (2010). Notch: the past, the present, and the future. Curr Top Dev Biol 92, 1-29.'},{id:"B9",body:'Benedito, R., Roca, C., Sorensen, I., Adams, S., Gossler, A., Fruttiger, M., and Adams, R.H. (2009). The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 137, 1124-1135.'},{id:"B10",body:'Bray, S.J. (2006). Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 7, 678-689.'},{id:"B11",body:'Brown, D.D., Martz, S.N., Binder, O., Goetz, S.C., Price, B.M., Smith, J.C., and Conlon, F.L. (2005). Tbx5 and Tbx20 act synergistically to control vertebrate heart morphogenesis. Development 132, 553-563.'},{id:"B12",body:'Burks, J.M., Illes, R.W., Keating, E.C., and Lubbe, W.J. (1998). Ascending aortic aneurysm and dissection in young adults with bicuspid aortic valve: implications for echocardiographic surveillance. Clin Cardiol 21, 439-443.'},{id:"B13",body:'Camenisch, T.D., Runyan, R.B., and Markwald, R.R., eds.Molecular regulation of cushion morphogenesis, In: Heart Development and Regeneration, 363-413, 1st edn (London, UK, Academic Press).'},{id:"B14",body:'Chan, K.L., Teo, K., Dumesnil, J.G., Ni, A., and Tam, J. (2010). Effect of Lipid lowering with rosuvastatin on progression of aortic stenosis: results of the aortic stenosis progression observation: measuring effects of rosuvastatin (ASTRONOMER) trial. Circulation 121, 306-314.'},{id:"B15",body:'Chu, A.Y., Guilianini, F., Barratt, B.J., Nyberg, F., Chasman, D.I., and Ridker, P.M. (2012). Pharmacogenetic determinants of statin-induced reductions in C-reactive protein. Circ Cardiovasc Genet 5, 58-65.'},{id:"B16",body:'Colliton, R.P., Bason, L., Lu, F.M., Piccoli, D.A., Krantz, I.D., and Spinner, N.B. (2001). Mutation analysis of Jagged1 (JAG1) in Alagille syndrome patients. Hum Mutat 17, 151-152.'},{id:"B17",body:'Combs, M.D., and Yutzey, K.E. (2009). Heart valve development: regulatory networks in development and disease. Circ Res 105, 408-421.'},{id:"B18",body:'Cowell, S.J., Newby, D.E., Prescott, R.J., Bloomfield, P., Reid, J., Northridge, D.B., and Boon, N.A. (2005). A randomized trial of intensive lipid-lowering therapy in calcific aortic stenosis. N Engl J Med 352, 2389-2397.'},{id:"B19",body:'de la Pompa, J.L., and Epstein, J.A. (2012). Coordinating tissue interactions: Notch signaling in cardiac development and disease. Dev Cell 22, 244-254.'},{id:"B20",body:'Del Monte, G., Grego-Bessa, J., Gonzalez-Rajal, A., Bolos, V., and De La Pompa, J.L. (2007). Monitoring Notch1 activity in development: evidence for a feedback regulatory loop. Dev Dyn 236, 2594-2614.'},{id:"B21",body:'Duarte, A., Hirashima, M., Benedito, R., Trindade, A., Diniz, P., Bekman, E., Costa, L., Henrique, D., and Rossant, J. (2004). Dosage-sensitive requirement for mouse Dll4 in artery development. Genes Dev 18, 2474-2478.'},{id:"B22",body:'Ducy, P., Zhang, R., Geoffroy, V., Ridall, A.L., and Karsenty, G. (1997). Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89, 747-754.'},{id:"B23",body:'Dweck, M.R., Boon, N.A., and Newby, D.E. (2012). Calcific aortic stenosis: a disease of the valve and the myocardium. J Am Coll Cardiol 60, 1854-1863.'},{id:"B24",body:'Eldadah, Z.A., Hamosh, A., Biery, N.J., Montgomery, R.A., Duke, M., Elkins, R., and Dietz, H.C. (2001). Familial Tetralogy of Fallot caused by mutation in the jagged1 gene. Hum Mol Genet 10, 163-169.'},{id:"B25",body:'Fiuza, U.M., and Arias, A.M. (2007). Cell and molecular biology of Notch. J Endocrinol 194, 459-474.'},{id:"B26",body:'Fukuda, D., Aikawa, E., Swirski, F.K., Novobrantseva, T.I., Kotelianski, V., Gorgun, C.Z., Chudnovskiy, A., Yamazaki, H., Croce, K., Weissleder, R., et al. (2012). Notch ligand Delta-like 4 blockade attenuates atherosclerosis and metabolic disorders. Proc Natl Acad Sci U S A 109, E1868-1877.'},{id:"B27",body:'Fung, E., Tang, S.M., Canner, J.P., Morishige, K., Arboleda-Velasquez, J.F., Cardoso, A.A., Carlesso, N., Aster, J.C., and Aikawa, M. (2007). Delta-like 4 induces notch signaling in macrophages: implications for inflammation. Circulation 115, 2948-2956.'},{id:"B28",body:'Garg, V., Muth, A.N., Ransom, J.F., Schluterman, M.K., Barnes, R., King, I.N., Grossfeld, P.D., and Srivastava, D. (2005). Mutations in NOTCH1 cause aortic valve disease. Nature 437, 270-274.'},{id:"B29",body:'Gibert, J.M., and Simpson, P. (2003). Evolution of cis-regulation of the proneural genes. Int J Dev Biol 47, 643-651.'},{id:"B30",body:'Greenway, S.C., Pereira, A.C., Lin, J.C., DePalma, S.R., Israel, S.J., Mesquita, S.M., Ergul, E., Conta, J.H., Korn, J.M., McCarroll, S.A., et al. (2009). De novo copy number variants identify new genes and loci in isolated sporadic tetralogy of Fallot. Nat Genet 41, 931-935.'},{id:"B31",body:'Guruharsha, K.G., Kankel, M.W., and Artavanis-Tsakonas, S. (2012). The Notch signalling system: recent insights into the complexity of a conserved pathway. Nat Rev Genet 13, 654-666.'},{id:"B32",body:'Hahn, R.T., Roman, M.J., Mogtader, A.H., and Devereux, R.B. (1992). Association of aortic dilation with regurgitant, stenotic and functionally normal bicuspid aortic valves. J Am Coll Cardiol 19, 283-288.'},{id:"B33",body:'Hakuno, D., Kimura, N., Yoshioka, M., and Fukuda, K. (2009). Molecular mechanisms underlying the onset of degenerative aortic valve disease. J Mol Med (Berl) 87, 17-24.'},{id:"B34",body:'Heitzler, P., and Simpson, P. (1991). The choice of cell fate in the epidermis of Drosophila. Cell 64, 1083-1092.'},{id:"B35",body:'Higgins, C.B., and Wexler, L. (1975). Reversal of dominance of the coronary arterial system in isolated aortic stenosis and bicuspid aortic valve. Circulation 52, 292-296.'},{id:"B36",body:'High, F.A., Lu, M.M., Pear, W.S., Loomes, K.M., Kaestner, K.H., and Epstein, J.A. (2008). Endothelial expression of the Notch ligand Jagged1 is required for vascular smooth muscle development. Proc Natl Acad Sci U S A 105, 1955-1959.'},{id:"B37",body:'Hinton, R.B., and Yutzey, K.E. (2011). Heart valve structure and function in development and disease. Annu Rev Physiol 73, 29-46.'},{id:"B38",body:'Hofmann, J.J., Briot, A., Enciso, J., Zovein, A.C., Ren, S., Zhang, Z.W., Radtke, F., Simons, M., Wang, Y., and Iruela-Arispe, M.L. (2012). Endothelial deletion of murine Jag1 leads to valve calcification and congenital heart defects associated with Alagille syndrome. Development 139, 4449-4460.'},{id:"B39",body:'Hove, J.R., Koster, R.W., Forouhar, A.S., Acevedo-Bolton, G., Fraser, S.E., and Gharib, M. (2003). Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 421, 172-177.'},{id:"B40",body:'Hutchins, G.M., Nazarian, I.H., and Bulkley, B.H. (1978). Association of left dominant coronary arterial system with congenital bicuspid aortic valve. Am J Cardiol 42, 57-59.'},{id:"B41",body:'Kaden, J.J., Bickelhaupt, S., Grobholz, R., Vahl, C.F., Hagl, S., Brueckmann, M., Haase, K.K., Dempfle, C.E., and Borggrefe, M. (2004). Expression of bone sialoprotein and bone morphogenetic protein-2 in calcific aortic stenosis. J Heart Valve Dis 13, 560-566.'},{id:"B42",body:'Kamath, B.M., Spinner, N.B., Emerick, K.M., Chudley, A.E., Booth, C., Piccoli, D.A., and Krantz, I.D. (2004). Vascular anomalies in Alagille syndrome: a significant cause of morbidity and mortality. Circulation 109, 1354-1358.'},{id:"B43",body:'Kikuchi, Y., Verkade, H., Reiter, J.F., Kim, C.H., Chitnis, A.B., Kuroiwa, A., and Stainier, D.Y. (2004). Notch signaling can regulate endoderm formation in zebrafish. Dev Dyn 229, 756-762.'},{id:"B44",body:'Kirk, E.P., Sunde, M., Costa, M.W., Rankin, S.A., Wolstein, O., Castro, M.L., Butler, T.L., Hyun, C., Guo, G., Otway, R., et al. (2007). Mutations in cardiac T-box factor gene TBX20 are associated with diverse cardiac pathologies, including defects of septation and valvulogenesis and cardiomyopathy. Am J Hum Genet 81, 280-291.'},{id:"B45",body:'Kopan, R., and Ilagan, M.X. (2009). The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137, 216-233.'},{id:"B46",body:'Ladich, E., Nakano, M., Carter-Monroe, N., and Virmani, R. (2011). Pathology of calcific aortic stenosis. Future Cardiol 7, 629-642.'},{id:"B47",body:'Laforest, B., Andelfinger, G., and Nemer, M. (2011). Loss of Gata5 in mice leads to bicuspid aortic valve. J Clin Invest 121, 2876-2887.'},{id:"B48",body:'Lee, J.S., Yu, Q., Shin, J.T., Sebzda, E., Bertozzi, C., Chen, M., Mericko, P., Stadtfeld, M., Zhou, D., Cheng, L., et al. (2006). Klf2 is an essential regulator of vascular hemodynamic forces in vivo. Dev Cell 11, 845-857.'},{id:"B49",body:'Li, L., Krantz, I.D., Deng, Y., Genin, A., Banta, A.B., Collins, C.C., Qi, M., Trask, B.J., Kuo, W.L., Cochran, J., et al. (1997). Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nat Genet 16, 243-251.'},{id:"B50",body:'Libby, P., and Aikawa, M. (2002). Stabilization of atherosclerotic plaques: new mechanisms and clinical targets. Nat Med 8, 1257-1262.'},{id:"B51",body:'Libby, P., Ridker, P.M., and Hansson, G.K. (2011). Progress and challenges in translating the biology of atherosclerosis. Nature 473, 317-325.'},{id:"B52",body:'Lindroos, M., Kupari, M., Heikkila, J., and Tilvis, R. (1993). Prevalence of aortic valve abnormalities in the elderly: an echocardiographic study of a random population sample. J Am Coll Cardiol 21, 1220-1225.'},{id:"B53",body:'Loffredo, C.A., Chokkalingam, A., Sill, A.M., Boughman, J.A., Clark, E.B., Scheel, J., and Brenner, J.I. (2004). Prevalence of congenital cardiovascular malformations among relatives of infants with hypoplastic left heart, coarctation of the aorta, and d-transposition of the great arteries. Am J Med Genet A 124A, 225-230.'},{id:"B54",body:'Lu, F., Morrissette, J.J., and Spinner, N.B. (2003). Conditional JAG1 mutation shows the developing heart is more sensitive than developing liver to JAG1 dosage. Am J Hum Genet 72, 1065-1070.'},{id:"B55",body:'Ma, L., Lu, M.F., Schwartz, R.J., and Martin, J.F. (2005). Bmp2 is essential for cardiac cushion epithelial-mesenchymal transition and myocardial patterning. Development 132, 5601-5611.'},{id:"B56",body:'MacGrogan, D., Luna-Zurita, L., and de la Pompa, J.L. (2011). Notch signaling in cardiac valve development and disease. Birth Defects Res A Clin Mol Teratol 91, 449-459.'},{id:"B57",body:'McCarthy, J.V., Twomey, C., and Wujek, P. (2009). Presenilin-dependent regulated intramembrane proteolysis and gamma-secretase activity. Cell Mol Life Sci 66, 1534-1555.'},{id:"B58",body:'McElhinney, D.B., Krantz, I.D., Bason, L., Piccoli, D.A., Emerick, K.M., Spinner, N.B., and Goldmuntz, E. (2002). Analysis of cardiovascular phenotype and genotype-phenotype correlation in individuals with a JAG1 mutation and/or Alagille syndrome. Circulation 106, 2567-2574.'},{id:"B59",body:'Miller, J.D., Weiss, R.M., Serrano, K.M., Castaneda, L.E., Brooks, R.M., Zimmerman, K., and Heistad, D.D. (2010). Evidence for active regulation of pro-osteogenic signaling in advanced aortic valve disease. Arterioscler Thromb Vasc Biol 30, 2482-2486.'},{id:"B60",body:'Mohamed, S.A., Aherrahrou, Z., Liptau, H., Erasmi, A.W., Hagemann, C., Wrobel, S., Borzym, K., Schunkert, H., Sievers, H.H., and Erdmann, J. (2006). Novel missense mutations (p.T596M and p.P1797H) in NOTCH1 in patients with bicuspid aortic valve. Biochem Biophys Res Commun 345, 1460-1465.'},{id:"B61",body:'Mohler, E.R., 3rd, Gannon, F., Reynolds, C., Zimmerman, R., Keane, M.G., and Kaplan, F.S. (2001). Bone formation and inflammation in cardiac valves. Circulation 103, 1522-1528.'},{id:"B62",body:'New, S.E., and Aikawa, E. (2011). Molecular imaging insights into early inflammatory stages of arterial and aortic valve calcification. Circ Res 108, 1381-1391.'},{id:"B63",body:'Nigam, V., and Srivastava, D. (2009). Notch1 represses osteogenic pathways in aortic valve cells. J Mol Cell Cardiol 47, 828-834.'},{id:"B64",body:'Nus, M, MacGrogan, D, Martínez-Poveda, B, Benito, Y, Casanova, J. C, Fernández-Avilés, F, Bermejo, J, de la Pompa J. L. (2011). Diet-induced aortic valve disease in mice haploinsufficient for the Notch pathway effector RBPJK/CSL. Arterioscler Thromb Vasc Biol, 31, 1580-1588.'},{id:"B65",body:'Oda, T., Elkahloun, A.G., Pike, B.L., Okajima, K., Krantz, I.D., Genin, A., Piccoli, D.A., Meltzer, P.S., Spinner, N.B., Collins, F.S., et al. (1997). Mutations in the human Jagged1 gene are responsible for Alagille syndrome. Nat Genet 16, 235-242.'},{id:"B66",body:'Otto, C.M., Lind, B.K., Kitzman, D.W., Gersh, B.J., and Siscovick, D.S. (1999). Association of aortic-valve sclerosis with cardiovascular mortality and morbidity in the elderly. N Engl J Med 341, 142-147.'},{id:"B67",body:'Pachulski, R.T., and Chan, K.L. (1993). Progression of aortic valve dysfunction in 51 adult patients with congenital bicuspid aortic valve: assessment and follow up by Doppler echocardiography. Br Heart J 69, 237-240.'},{id:"B68",body:'Padang, R., Bagnall, R.D., Richmond, D.R., Bannon, P.G., and Semsarian, C. (2012). Rare non-synonymous variations in the transcriptional activation domains of GATA5 in bicuspid aortic valve disease. J Mol Cell Cardiol 53, 277-281.'},{id:"B69",body:'Perloff, J.K. (2003). Congenital aortic stenosis, In: The Clinical Recognition of Congenital Heart Disease, 81-112, 3rd edn (Philadelphia, PA, Saunders).'},{id:"B70",body:'Person, A.D., Klewer, S.E., and Runyan, R.B. (2005). Cell biology of cardiac cushion development. Int Rev Cytol 243, 287-335.'},{id:"B71",body:'Plageman, T.F., Jr., and Yutzey, K.E. (2005). T-box genes and heart development: putting the "T" in heart. Dev Dyn 232, 11-20.'},{id:"B72",body:'Presbitero, P., Demarie, D., Villani, M., Perinetto, E.A., Riva, G., Orzan, F., Bobbio, M., Morea, M., and Brusca, A. (1987). Long term results (15-30 years) of surgical repair of aortic coarctation. Br Heart J 57, 462-467.'},{id:"B73",body:'Rajamannan, N.M., Evans, F.J., Aikawa, E., Grande-Allen, K.J., Demer, L.L., Heistad, D.D., Simmons, C.A., Masters, K.S., Mathieu, P., O\'Brien, K.D., et al. (2011). Calcific aortic valve disease: not simply a degenerative process: A review and agenda for research from the National Heart and Lung and Blood Institute Aortic Stenosis Working Group. Executive summary: Calcific aortic valve disease-2011 update. Circulation 124, 1783-1791.'},{id:"B74",body:'Rajamannan, N.M., Subramaniam, M., Rickard, D., Stock, S.R., Donovan, J., Springett, M., Orszulak, T., Fullerton, D.A., Tajik, A.J., Bonow, R.O., et al. (2003). Human aortic valve calcification is associated with an osteoblast phenotype. Circulation 107, 2181-2184.'},{id:"B75",body:'Roberts, W.C. (1970). The structure of the aortic valve in clinically isolated aortic stenosis: an autopsy study of 162 patients over 15 years of age. Circulation 42, 91-97.'},{id:"B76",body:'Roberts, W.C., Vowels, T.J., and Ko, J.M. (2012). Natural history of adults with congenitally malformed aortic valves (unicuspid or bicuspid). Medicine (Baltimore) 91, 287-308.'},{id:"B77",body:'Rossebo, A.B., Pedersen, T.R., Boman, K., Brudi, P., Chambers, J.B., Egstrup, K., Gerdts, E., Gohlke-Barwolf, C., Holme, I., Kesaniemi, Y.A., et al. (2008). Intensive lipid lowering with simvastatin and ezetimibe in aortic stenosis. N Engl J Med 359, 1343-1356.'},{id:"B78",body:'Shen, T., Aneas, I., Sakabe, N., Dirschinger, R.J., Wang, G., Smemo, S., Westlund, J.M., Cheng, H., Dalton, N., Gu, Y., et al. (2011). Tbx20 regulates a genetic program essential to adult mouse cardiomyocyte function. J Clin Invest 121, 4640-4654.'},{id:"B79",body:'Spinner, N.B., Colliton, R.P., Crosnier, C., Krantz, I.D., Hadchouel, M., and Meunier-Rotival, M. (2001). Jagged1 mutations in alagille syndrome. Hum Mutat 17, 18-33.'},{id:"B80",body:'Stennard, F.A., Costa, M.W., Elliott, D.A., Rankin, S., Haast, S.J., Lai, D., McDonald, L.P., Niederreither, K., Dolle, P., Bruneau, B.G., et al. (2003). Cardiac T-box factor Tbx20 directly interacts with Nkx2-5, GATA4, and GATA5 in regulation of gene expression in the developing heart. Dev Biol 262, 206-224.'},{id:"B81",body:'Stewart, A.B., Ahmed, R., Travill, C.M., and Newman, C.G. (1993). Coarctation of the aorta life and health 20-44 years after surgical repair. Br Heart J 69, 65-70.'},{id:"B82",body:'Stewart, B.F., Siscovick, D., Lind, B.K., Gardin, J.M., Gottdiener, J.S., Smith, V.E., Kitzman, D.W., and Otto, C.M. (1997). Clinical factors associated with calcific aortic valve disease. Cardiovascular Health Study. J Am Coll Cardiol 29, 630-634.'},{id:"B83",body:'Timmerman, L.A., Grego-Bessa, J., Raya, A., Bertran, E., Perez-Pomares, J.M., Diez, J., Aranda, S., Palomo, S., McCormick, F., Izpisua-Belmonte, J.C., et al. (2004). Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev 18, 99-115.'},{id:"B84",body:'Towler, D.A. (2008). Oxidation, inflammation, and aortic valve calcification peroxide paves an osteogenic path. J Am Coll Cardiol 52, 851-854.'},{id:"B85",body:'Turina, J., Hess, O., Sepulcri, F., and Krayenbuehl, H.P. (1987). Spontaneous course of aortic valve disease. Eur Heart J 8, 471-483.'},{id:"B86",body:'van den Akker, N.M., Caolo, V., and Molin, D.G. (2012). Cellular decisions in cardiac outflow tract and coronary development: an act by VEGF and NOTCH. Differentiation 84, 62-78.'},{id:"B87",body:'Vermot, J., Forouhar, A.S., Liebling, M., Wu, D., Plummer, D., Gharib, M., and Fraser, S.E. (2009). Reversing blood flows act through klf2a to ensure normal valvulogenesis in the developing heart. PLoS Biol 7, e1000246.'},{id:"B88",body:'Wakabayashi, T., and De Strooper, B. (2008). Presenilins: members of the gamma-secretase quartets, but part-time soloists too. Physiology (Bethesda) 23, 194-204.'},{id:"B89",body:'Ward, C. (2000). Clinical significance of the bicuspid aortic valve. Heart 83, 81-85.'},{id:"B90",body:'Wilkinson, H.A., Fitzgerald, K., and Greenwald, I. (1994). Reciprocal changes in expression of the receptor lin-12 and its ligand lag-2 prior to commitment in a C. elegans cell fate decision. Cell 79, 1187-1198.'},{id:"B91",body:'Yu, Z., Seya, K., Daitoku, K., Motomura, S., Fukuda, I., and Furukawa, K. (2011). Tumor necrosis factor-alpha accelerates the calcification of human aortic valve interstitial cells obtained from patients with calcific aortic valve stenosis via the BMP2-Dlx5 pathway. J Pharmacol Exp Ther 337, 16-23.'},{id:"B92",body:'Zhang, J., Chang, J.Y., Huang, Y., Lin, X., Luo, Y., Schwartz, R.J., Martin, J.F., and Wang, F. (2010). The FGF-BMP signaling axis regulates outflow tract valve primordium formation by promoting cushion neural crest cell differentiation. Circ Res 107, 1209-1219.'}],footnotes:[],contributors:[{corresp:null,contributorFullName:"Erik Fung",address:null,affiliation:'
Section of Cardiology, Heart & Vascular Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, New Hampshire, USA
Center for Excellence in Vascular Biology, Cardiovascular Division, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
'}],corrections:null},book:{id:"3384",type:"book",title:"Calcific Aortic Valve Disease",subtitle:null,fullTitle:"Calcific Aortic Valve Disease",slug:"calcific-aortic-valve-disease",publishedDate:"June 12th 2013",bookSignature:"Elena Aikawa",coverURL:"https://cdn.intechopen.com/books/images_new/3384.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:null,printIsbn:"978-953-51-1150-4",pdfIsbn:"978-953-51-7163-8",reviewType:"peer-reviewed",numberOfWosCitations:65,isAvailableForWebshopOrdering:!0,editors:[{id:"37703",title:"Dr.",name:"Elena",middleName:null,surname:"Aikawa",slug:"elena-aikawa",fullName:"Elena Aikawa"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"987"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"44726",type:"chapter",title:"Extracellular Matrix Organization, Structure, and Function",slug:"extracellular-matrix-organization-structure-and-function",totalDownloads:3119,totalCrossrefCites:12,signatures:"Dena Wiltz, C. Alexander Arevalos, Liezl R. Balaoing, Alicia A.\nBlancas, Matthew C. Sapp, Xing Zhang and K. Jane Grande-Allen",reviewType:"peer-reviewed",authors:[{id:"159730",title:"Ph.D. Student",name:"Dena",middleName:null,surname:"Wiltz",fullName:"Dena Wiltz",slug:"dena-wiltz"},{id:"160472",title:"Dr.",name:"Alicia",middleName:null,surname:"Blancas",fullName:"Alicia Blancas",slug:"alicia-blancas"},{id:"160474",title:"Ms.",name:"Liezl",middleName:null,surname:"Balaoing",fullName:"Liezl Balaoing",slug:"liezl-balaoing"},{id:"160476",title:"Mr.",name:"Alex",middleName:null,surname:"Arevalos",fullName:"Alex Arevalos",slug:"alex-arevalos"},{id:"160477",title:"Mr.",name:"Matthew",middleName:null,surname:"Sapp",fullName:"Matthew Sapp",slug:"matthew-sapp"},{id:"160478",title:"Dr.",name:"Xing",middleName:null,surname:"Zhang",fullName:"Xing Zhang",slug:"xing-zhang"},{id:"160479",title:"Dr.",name:"K. Jane",middleName:null,surname:"Grande-Allen",fullName:"K. Jane Grande-Allen",slug:"k.-jane-grande-allen"}]},{id:"45005",type:"chapter",title:"Anatomy and Function of Normal Aortic Valvular Complex",slug:"anatomy-and-function-of-normal-aortic-valvular-complex",totalDownloads:5089,totalCrossrefCites:4,signatures:"Ioan Tilea, Horatiu Suciu, Brindusa Tilea, Cristina Maria Tatar,\nMihaela Ispas and Razvan Constantin Serban",reviewType:"peer-reviewed",authors:[{id:"36673",title:"Prof.",name:"Ioan",middleName:null,surname:"Tilea",fullName:"Ioan Tilea",slug:"ioan-tilea"},{id:"55118",title:"Dr.",name:"Brindusa",middleName:null,surname:"Tilea",fullName:"Brindusa Tilea",slug:"brindusa-tilea"},{id:"55128",title:"Dr.",name:"Mihaela",middleName:null,surname:"Ispas",fullName:"Mihaela Ispas",slug:"mihaela-ispas"},{id:"160672",title:"Dr.",name:"Horatiu",middleName:null,surname:"Suciu",fullName:"Horatiu Suciu",slug:"horatiu-suciu"},{id:"160674",title:"Dr.",name:"Cristina Maria",middleName:null,surname:"Tatar",fullName:"Cristina Maria Tatar",slug:"cristina-maria-tatar"},{id:"160675",title:"Dr.",name:"Razvan Constantin",middleName:null,surname:"Serban",fullName:"Razvan Constantin Serban",slug:"razvan-constantin-serban"}]},{id:"45076",type:"chapter",title:"Developmental Pathways in CAVD",slug:"developmental-pathways-in-cavd",totalDownloads:2477,totalCrossrefCites:0,signatures:"Elaine E. Wirrig and Katherine E. Yutzey",reviewType:"peer-reviewed",authors:[{id:"160015",title:"Prof.",name:"Katherine",middleName:null,surname:"Yutzey",fullName:"Katherine Yutzey",slug:"katherine-yutzey"},{id:"160016",title:"Dr.",name:"Elaine",middleName:null,surname:"Wirrig",fullName:"Elaine Wirrig",slug:"elaine-wirrig"}]},{id:"44721",type:"chapter",title:"Notch Signaling in Congenital and Acquired Aortic Valve Disease",slug:"notch-signaling-in-congenital-and-acquired-aortic-valve-disease",totalDownloads:2178,totalCrossrefCites:2,signatures:"Erik Fung and Masanori Aikawa",reviewType:"peer-reviewed",authors:[{id:"164342",title:"Dr.",name:"Masanori",middleName:null,surname:"Aikawa",fullName:"Masanori Aikawa",slug:"masanori-aikawa"}]},{id:"45090",type:"chapter",title:"Role of MicroRNAs in Cardiovascular Calcification",slug:"role-of-micrornas-in-cardiovascular-calcification",totalDownloads:2445,totalCrossrefCites:1,signatures:"Claudia Goettsch and Elena Aikawa",reviewType:"peer-reviewed",authors:[{id:"157042",title:"Ph.D.",name:"Claudia",middleName:null,surname:"Goettsch",fullName:"Claudia Goettsch",slug:"claudia-goettsch"}]},{id:"45088",type:"chapter",title:"Proteomics and Metabolomics in Aortic Stenosis: Studying Healthy Valves for a Better Understanding of the Disease",slug:"proteomics-and-metabolomics-in-aortic-stenosis-studying-healthy-valves-for-a-better-understanding-of",totalDownloads:2095,totalCrossrefCites:0,signatures:"L. Mourino-Alvarez, C.M. Laborde and M.G. Barderas",reviewType:"peer-reviewed",authors:[{id:"39753",title:"Dr.",name:"Maria G.",middleName:null,surname:"Barderas",fullName:"Maria G. Barderas",slug:"maria-g.-barderas"}]},{id:"45202",type:"chapter",title:"Genetics of Bicuspid Aortic Valve and Calcific Aortic Valve Disease",slug:"genetics-of-bicuspid-aortic-valve-and-calcific-aortic-valve-disease",totalDownloads:2119,totalCrossrefCites:1,signatures:"Robert B. Hinton",reviewType:"peer-reviewed",authors:[{id:"157038",title:"Dr.",name:"Robert",middleName:"B",surname:"Hinton",fullName:"Robert Hinton",slug:"robert-hinton"}]},{id:"45069",type:"chapter",title:"The Immune Response in In Situ Tissue Engineering of Aortic Heart Valves",slug:"the-immune-response-in-in-situ-tissue-engineering-of-aortic-heart-valves",totalDownloads:5212,totalCrossrefCites:16,signatures:"S. L. M. van Loon, A. I. P. M. Smits, A. Driessen-Mol, F. P. T. Baaijens\nand C. V. C. Bouten",reviewType:"peer-reviewed",authors:[{id:"159635",title:"Prof.",name:"Carlijn",middleName:"V",surname:"Bouten",fullName:"Carlijn Bouten",slug:"carlijn-bouten"},{id:"161227",title:"MSc.",name:"Saskia",middleName:null,surname:"Van Loon",fullName:"Saskia Van Loon",slug:"saskia-van-loon"},{id:"161228",title:"MSc.",name:"Anthal",middleName:null,surname:"Smits",fullName:"Anthal Smits",slug:"anthal-smits"},{id:"161229",title:"Dr.",name:"Anita",middleName:null,surname:"Driessen-Mol",fullName:"Anita Driessen-Mol",slug:"anita-driessen-mol"},{id:"161230",title:"Prof.",name:"Frank",middleName:null,surname:"Baaijens",fullName:"Frank Baaijens",slug:"frank-baaijens"}]},{id:"45096",type:"chapter",title:"Cutting-Edge Regenerative Medicine Technologies for the Treatment of Heart Valve Calcification",slug:"cutting-edge-regenerative-medicine-technologies-for-the-treatment-of-heart-valve-calcification",totalDownloads:3918,totalCrossrefCites:2,signatures:"Laura Iop and Gino Gerosa",reviewType:"peer-reviewed",authors:[{id:"158747",title:"Prof.",name:"Gino",middleName:null,surname:"Gerosa",fullName:"Gino Gerosa",slug:"gino-gerosa"},{id:"160154",title:"Dr.",name:"Laura",middleName:null,surname:"Iop",fullName:"Laura Iop",slug:"laura-iop"}]},{id:"45063",type:"chapter",title:"Bicuspid Aortic Valve",slug:"bicuspid-aortic-valve",totalDownloads:3239,totalCrossrefCites:0,signatures:"George Tokmaji, Berto J. Bouma, Dave R. Koolbergen and Bas A.J.M.\nde Mol",reviewType:"peer-reviewed",authors:[{id:"161005",title:"M.D.",name:"George",middleName:null,surname:"Tokmaji",fullName:"George Tokmaji",slug:"george-tokmaji"},{id:"167344",title:"Dr.",name:"Berto",middleName:null,surname:"Bouma",fullName:"Berto Bouma",slug:"berto-bouma"},{id:"167345",title:"Dr.",name:"Dave",middleName:null,surname:"Koolbergen",fullName:"Dave Koolbergen",slug:"dave-koolbergen"},{id:"167346",title:"Prof.",name:"Bas",middleName:null,surname:"De Mol",fullName:"Bas De Mol",slug:"bas-de-mol"}]},{id:"44003",type:"chapter",title:"The Bicuspid Aortic Valve",slug:"the-bicuspid-aortic-valve",totalDownloads:2247,totalCrossrefCites:0,signatures:"Mehmet Demir",reviewType:"peer-reviewed",authors:[{id:"156991",title:"M.D.",name:"Mehmet",middleName:null,surname:"Demir",fullName:"Mehmet Demir",slug:"mehmet-demir"}]},{id:"45028",type:"chapter",title:"Surgical Valve Replacement (Bioprosthetic vs. Mechanical)",slug:"surgical-valve-replacement-bioprosthetic-vs-mechanical-",totalDownloads:2519,totalCrossrefCites:0,signatures:"Stamenko Šušak, Lazar Velicki, Dušan Popović and Ivana Burazor",reviewType:"peer-reviewed",authors:[{id:"36168",title:"Dr.",name:"Lazar",middleName:null,surname:"Velicki",fullName:"Lazar Velicki",slug:"lazar-velicki"},{id:"44962",title:"Prof.",name:"Stamenko",middleName:"S.",surname:"Šušak",fullName:"Stamenko Šušak",slug:"stamenko-susak"},{id:"159613",title:"Dr.",name:"Marijan",middleName:null,surname:"Majin",fullName:"Marijan Majin",slug:"marijan-majin"},{id:"166252",title:"Dr.",name:"Dušan",middleName:null,surname:"Popović",fullName:"Dušan Popović",slug:"dusan-popovic"},{id:"166253",title:"Dr.",name:"Ivana",middleName:null,surname:"Burazor",fullName:"Ivana Burazor",slug:"ivana-burazor"}]},{id:"45031",type:"chapter",title:"Current Treatment Options in Aortic Stenosis",slug:"current-treatment-options-in-aortic-stenosis",totalDownloads:2733,totalCrossrefCites:0,signatures:"Fahrettin Oz, Fatih Tufan, Ahmet Ekmekci, Omer A. Sayın and\nHuseyin Oflaz",reviewType:"peer-reviewed",authors:[{id:"46702",title:"Dr.",name:"Fatih",middleName:null,surname:"Tufan",fullName:"Fatih Tufan",slug:"fatih-tufan"},{id:"54338",title:"Dr.",name:"Fahrettin",middleName:null,surname:"Oz",fullName:"Fahrettin Oz",slug:"fahrettin-oz"},{id:"54339",title:"Prof.",name:"Huseyin",middleName:null,surname:"Oflaz",fullName:"Huseyin Oflaz",slug:"huseyin-oflaz"},{id:"105818",title:"Dr.",name:"Omer A.",middleName:null,surname:"Sayin",fullName:"Omer A. Sayin",slug:"omer-a.-sayin"},{id:"157232",title:"Dr.",name:"Ahmet",middleName:null,surname:"Ekmekcı",fullName:"Ahmet Ekmekcı",slug:"ahmet-ekmekci"}]},{id:"44352",type:"chapter",title:"Stentless Bioprostheses for Aortic Valve Replacement in Calcific Aortic Stenosis",slug:"stentless-bioprostheses-for-aortic-valve-replacement-in-calcific-aortic-stenosis",totalDownloads:3146,totalCrossrefCites:0,signatures:"Kaan Kirali",reviewType:"peer-reviewed",authors:[{id:"155565",title:"Prof.",name:"Kaan",middleName:null,surname:"Kırali",fullName:"Kaan Kırali",slug:"kaan-kirali"}]},{id:"42632",type:"chapter",title:"New Therapeutic Approaches to Conventional Surgery for Aortic Stenosis in High-Risk Patients",slug:"new-therapeutic-approaches-to-conventional-surgery-for-aortic-stenosis-in-high-risk-patients",totalDownloads:2119,totalCrossrefCites:1,signatures:"Omer Leal, Juan Bustamante, Sergio Cánovas and Ángel G. Pinto",reviewType:"peer-reviewed",authors:[{id:"81913",title:"Dr.",name:"Sergio",middleName:"Juan",surname:"Cánovas López",fullName:"Sergio Cánovas López",slug:"sergio-canovas-lopez"},{id:"158616",title:"Dr.",name:"Juan",middleName:null,surname:"Bustamante-Munguira",fullName:"Juan Bustamante-Munguira",slug:"juan-bustamante-munguira"},{id:"166872",title:"Dr.",name:"Ángel G.",middleName:null,surname:"Pinto",fullName:"Ángel G. Pinto",slug:"angel-g.-pinto"},{id:"166873",title:"Dr.",name:"Omer",middleName:null,surname:"Leal",fullName:"Omer Leal",slug:"omer-leal"}]},{id:"42052",type:"chapter",title:"Indications for Transcatheter Aortic Valve Implantation",slug:"indications-for-transcatheter-aortic-valve-implantation",totalDownloads:1991,totalCrossrefCites:0,signatures:"Ibrahim Akin, Stephan Kische, Henrik Schneider, Tim C. Rehders,\nChristoph A. Nienaber and Hüseyin Ince",reviewType:"peer-reviewed",authors:[{id:"43442",title:"Dr.",name:"Ibrahim",middleName:null,surname:"Akin",fullName:"Ibrahim Akin",slug:"ibrahim-akin"}]},{id:"44417",type:"chapter",title:"Aortic Valve Replacement for Calcified Aortic Valves",slug:"aortic-valve-replacement-for-calcified-aortic-valves",totalDownloads:3217,totalCrossrefCites:0,signatures:"Kazumasa Orihashi",reviewType:"peer-reviewed",authors:[{id:"49709",title:"Dr.",name:"Kazumasa",middleName:null,surname:"Orihashi",fullName:"Kazumasa Orihashi",slug:"kazumasa-orihashi"}]},{id:"45032",type:"chapter",title:"Congenital Aortic Stenosis in Children",slug:"congenital-aortic-stenosis-in-children",totalDownloads:2011,totalCrossrefCites:0,signatures:"Hirofumi Saiki and Hideaki Senzaki",reviewType:"peer-reviewed",authors:[{id:"155985",title:"Prof.",name:"Hideaki",middleName:null,surname:"Senzaki",fullName:"Hideaki Senzaki",slug:"hideaki-senzaki"},{id:"158926",title:"Dr.",name:"Hirofumi",middleName:null,surname:"Saiki",fullName:"Hirofumi Saiki",slug:"hirofumi-saiki"}]}]},relatedBooks:[{type:"book",id:"830",title:"Vasculogenesis and Angiogenesis",subtitle:"from Embryonic Development to Regenerative Medicine",isOpenForSubmission:!1,hash:"1c8f85e5c4786ba9d585dfcdef77aa2e",slug:"vasculogenesis-and-angiogenesis-from-embryonic-development-to-regenerative-medicine",bookSignature:"Dan T. Simionescu and Agneta Simionescu",coverURL:"https://cdn.intechopen.com/books/images_new/830.jpg",editedByType:"Edited by",editors:[{id:"66196",title:"Dr.",name:"Dan",surname:"Simionescu",slug:"dan-simionescu",fullName:"Dan Simionescu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"23039",title:"Human Embryonic Blood Vessels: What Do They Tell Us About Vasculogenesis and Angiogenesis?",slug:"human-embryonic-blood-vessels-what-do-they-tell-us-about-vasculogenesis-and-angiogenesis-",signatures:"Simona Sârb, Marius Raica and Anca Maria Cîmpean",authors:[{id:"69908",title:"Dr.",name:"Simona",middleName:null,surname:"Sarb",fullName:"Simona Sarb",slug:"simona-sarb"},{id:"137504",title:"Dr.",name:"Anca Maria",middleName:null,surname:"Cimpean",fullName:"Anca Maria Cimpean",slug:"anca-maria-cimpean"},{id:"137582",title:"Dr.",name:"Marius",middleName:null,surname:"Raica",fullName:"Marius Raica",slug:"marius-raica"}]},{id:"23040",title:"Cardiac Vasculature: Development and Pathology",slug:"cardiac-vasculature-development-and-pathology",signatures:"Michiko Watanabe, Jamie Wikenheiser, Diana Ramirez-Bergeron, Saul Flores, Amir Dangol, Ganga Karunamuni, Akshay Thomas, Monica Montano and Ravi Ashwath",authors:[{id:"69946",title:"Prof.",name:"Michiko",middleName:null,surname:"Watanabe",fullName:"Michiko Watanabe",slug:"michiko-watanabe"},{id:"137433",title:"Dr.",name:"Jamie",middleName:null,surname:"Wikenheiser",fullName:"Jamie Wikenheiser",slug:"jamie-wikenheiser"},{id:"137434",title:"Dr.",name:"Diana",middleName:null,surname:"Ramirez-Bergeron",fullName:"Diana Ramirez-Bergeron",slug:"diana-ramirez-bergeron"},{id:"137435",title:"Dr.",name:"Saul",middleName:null,surname:"Flores",fullName:"Saul Flores",slug:"saul-flores"},{id:"137437",title:"Dr.",name:"Ganga",middleName:null,surname:"Karunamuni",fullName:"Ganga Karunamuni",slug:"ganga-karunamuni"},{id:"137438",title:"Dr.",name:"Akshay",middleName:null,surname:"Thomas",fullName:"Akshay Thomas",slug:"akshay-thomas"},{id:"137439",title:"Dr.",name:"Monica",middleName:null,surname:"Montano",fullName:"Monica Montano",slug:"monica-montano"},{id:"137440",title:"Dr.",name:"Ravi",middleName:null,surname:"Ashwath",fullName:"Ravi Ashwath",slug:"ravi-ashwath"}]},{id:"23041",title:"Vascular Growth in the Fetal Lung",slug:"vascular-growth-in-the-fetal-lung",signatures:"Stephen C. Land",authors:[{id:"66637",title:"Dr.",name:"Stephen",middleName:"C",surname:"Land",fullName:"Stephen Land",slug:"stephen-land"}]},{id:"23042",title:"Apelin Signalling: Lineage Marker and Functional Actor of Blood Vessel Formation",slug:"apelin-signalling-lineage-marker-and-functional-actor-of-blood-vessel-formation",signatures:"Yves Audigier",authors:[{id:"67425",title:"Dr.",name:"Yves",middleName:null,surname:"Audigier",fullName:"Yves Audigier",slug:"yves-audigier"}]},{id:"23043",title:"Regulation of Endothelial Progenitor Cell Function by Plasma Kallikrein-Kinin System",slug:"regulation-of-endothelial-progenitor-cell-function-by-plasma-kallikrein-kinin-system",signatures:"Yi Wu and Jihong Dai",authors:[{id:"67089",title:"Dr.",name:"Yi",middleName:null,surname:"Wu",fullName:"Yi Wu",slug:"yi-wu"},{id:"138258",title:"Dr.",name:"Jihong",middleName:null,surname:"Dai",fullName:"Jihong Dai",slug:"jihong-dai"}]},{id:"23044",title:"Vasculogenesis in Diabetes-Associated Diseases: Unraveling the Diabetic Paradox",slug:"vasculogenesis-in-diabetes-associated-diseases-unraveling-the-diabetic-paradox",signatures:"Carla Costa",authors:[{id:"64924",title:"Prof.",name:"Carla",middleName:null,surname:"Costa",fullName:"Carla Costa",slug:"carla-costa"}]},{id:"23045",title:"Modeling Tumor Angiogenesis with Zebrafish",slug:"modeling-tumor-angiogenesis-with-zebrafish",signatures:"Alvin C.H. Ma, Yuhan Guo, Alex B.L. He and Anskar Y.H. Leung",authors:[{id:"75276",title:"Dr.",name:"Anskar",middleName:null,surname:"Leung",fullName:"Anskar Leung",slug:"anskar-leung"},{id:"75279",title:"Dr.",name:"Alvin",middleName:null,surname:"Ma",fullName:"Alvin Ma",slug:"alvin-ma"},{id:"121215",title:"Ms.",name:"Yuhan",middleName:null,surname:"Guo",fullName:"Yuhan Guo",slug:"yuhan-guo"},{id:"121216",title:"Mr.",name:"Alex",middleName:null,surname:"He",fullName:"Alex He",slug:"alex-he"}]},{id:"23046",title:"Therapeutic and Toxicological Inhibition of Vasculogenesis and Angiogenesis Mediated by Artesunate, a Compound with Both Antimalarial and Anticancer Efficacy",slug:"therapeutic-and-toxicological-inhibition-of-vasculogenesis-and-angiogenesis-mediated-by-artesunate-a",signatures:"Qigui Li, Mark Hickman and Peter Weina",authors:[{id:"65014",title:"Dr.",name:"Qigui",middleName:null,surname:"Li",fullName:"Qigui Li",slug:"qigui-li"},{id:"70382",title:"Dr.",name:"Mark",middleName:null,surname:"Hickman",fullName:"Mark Hickman",slug:"mark-hickman"},{id:"70383",title:"Dr.",name:"Peter",middleName:null,surname:"Weina",fullName:"Peter Weina",slug:"peter-weina"}]},{id:"23047",title:"The Mechanics of Blood Vessel Growth",slug:"the-mechanics-of-blood-vessel-growth",signatures:"Rui D. M. Travasso",authors:[{id:"100937",title:"Dr.",name:"Rui",middleName:null,surname:"Travasso",fullName:"Rui Travasso",slug:"rui-travasso"}]},{id:"23048",title:"A Novel Adult Marrow Stromal Stem Cell Based 3-D Postnatal De Novo Vasculogenesis for Vascular Tissue Engineering",slug:"a-novel-adult-marrow-stromal-stem-cell-based-3-d-postnatal-de-novo-vasculogenesis-for-vascular-tissu",signatures:"Mani T. Valarmathi and John W. Fuseler",authors:[{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",fullName:"Mani T. Valarmathi",slug:"mani-t.-valarmathi"},{id:"138260",title:"Dr.",name:"John",middleName:null,surname:"Fuseler",fullName:"John Fuseler",slug:"john-fuseler"}]}]}],publishedBooks:[{type:"book",id:"3301",title:"Diagnosis and Treatment of Myocarditis",subtitle:null,isOpenForSubmission:!1,hash:"26205b1915136aa4fe13aa5764c81dcb",slug:"diagnosis-and-treatment-of-myocarditis",bookSignature:"José Milei and Giuseppe Ambrosio",coverURL:"https://cdn.intechopen.com/books/images_new/3301.jpg",editedByType:"Edited by",editors:[{id:"43176",title:"Prof.",name:"Jose",surname:"Milei",slug:"jose-milei",fullName:"Jose Milei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3384",title:"Calcific Aortic Valve Disease",subtitle:null,isOpenForSubmission:!1,hash:"7d164bdd0560d68ddbb0f5aa8c8c63cd",slug:"calcific-aortic-valve-disease",bookSignature:"Elena Aikawa",coverURL:"https://cdn.intechopen.com/books/images_new/3384.jpg",editedByType:"Edited by",editors:[{id:"37703",title:"Dr.",name:"Elena",surname:"Aikawa",slug:"elena-aikawa",fullName:"Elena Aikawa"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3539",title:"Arteriovenous Fistulas",subtitle:"Diagnosis and Management",isOpenForSubmission:!1,hash:"76a0b35ed058a347a41b56970cfdbf53",slug:"arteriovenous-fistulas-diagnosis-and-management",bookSignature:"Stavropoula I. Tjoumakaris",coverURL:"https://cdn.intechopen.com/books/images_new/3539.jpg",editedByType:"Edited by",editors:[{id:"74387",title:"Dr.",name:"Stavropoula",surname:"Tjoumakaris",slug:"stavropoula-tjoumakaris",fullName:"Stavropoula Tjoumakaris"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3796",title:"Basic Cardiopulmonary Resuscitation Manual",subtitle:null,isOpenForSubmission:!1,hash:"2c8df0000792ee150e759d51acf37f21",slug:"basic-cardiopulmonary-resuscitation-manual",bookSignature:"Jose A. Morales Gonzalez",coverURL:"https://cdn.intechopen.com/books/images_new/3796.jpg",editedByType:"Edited by",editors:[{id:"109774",title:"Dr.",name:"Jose Antonio",surname:"Morales-Gonzalez",slug:"jose-antonio-morales-gonzalez",fullName:"Jose Antonio Morales-Gonzalez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}},{type:"book",id:"5596",title:"Angiography and Endovascular Therapy for Peripheral Artery Disease",subtitle:null,isOpenForSubmission:!1,hash:"80ff1222aa5a8ec7e4eb5f157e5d9ce0",slug:"angiography-and-endovascular-therapy-for-peripheral-artery-disease",bookSignature:"Yoshiaki Yokoi, Keisuke Fukuda, Masahiko Fujihara, Akihiro Higashimori and Osami Kawarada",coverURL:"https://cdn.intechopen.com/books/images_new/5596.jpg",editedByType:"Authored by",editors:[{id:"66538",title:"Dr.",name:"Yoshiaki",surname:"Yokoi",slug:"yoshiaki-yokoi",fullName:"Yoshiaki Yokoi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}}],publishedBooksByAuthor:[{type:"book",id:"3384",title:"Calcific Aortic Valve Disease",subtitle:null,isOpenForSubmission:!1,hash:"7d164bdd0560d68ddbb0f5aa8c8c63cd",slug:"calcific-aortic-valve-disease",bookSignature:"Elena Aikawa",coverURL:"https://cdn.intechopen.com/books/images_new/3384.jpg",editedByType:"Edited by",editors:[{id:"37703",title:"Dr.",name:"Elena",surname:"Aikawa",slug:"elena-aikawa",fullName:"Elena Aikawa"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4610",title:"Muscle Cell and Tissue",subtitle:null,isOpenForSubmission:!1,hash:"f2719cb06d2a1327298528772eacec55",slug:"muscle-cell-and-tissue",bookSignature:"Kunihiro Sakuma",coverURL:"https://cdn.intechopen.com/books/images_new/4610.jpg",editedByType:"Edited by",editors:[{id:"173502",title:"Dr.",name:"Kunihiro",surname:"Sakuma",slug:"kunihiro-sakuma",fullName:"Kunihiro Sakuma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},onlineFirst:{chapter:{type:"chapter",id:"74791",title:"Keeping the Dream Alive: Is Propellant-less Propulsion Possible?",doi:"10.5772/intechopen.95603",slug:"keeping-the-dream-alive-is-propellant-less-propulsion-possible-",body:'
1. Introduction
The dream of getting to the stars is at least as old as it has been understood that the stars are Sun-like objects at vast distances. A dream because of the vast distances; 4 light years being the distance to the nearest star. No technology that is widely accepted is presently known that will get us to the stars in some preferably small fraction of a human lifetime. The mainstays of current space access are chemical rockets for heavy lift and electric propulsion for in-space propulsion. They both require the transport of propellant that is accelerated as it is ejected from the spacecraft to produce thrust. Much less than getting to the nearest stars, even getting to the outer Solar System quickly requires prohibitive amounts of propellant. This problem has led to a number of speculative solution suggestions within well understood physics – none of them convincingly practicable.
Some years ago, I pointed out that were Einstein correct in claiming that inertia is an inductive gravitational phenomenon, as he asserted in his general relativity theory, then one could predict that masses of bodies with changing internal energies subjected to proper accelerations should transiently change their rest masses by much larger amounts than the simple E/c2 contribution due to the changing internal energy, owing to its “amplification” by the interaction with local gravitational field due to distant matter that Einstein identified, following Mach, as the cause of inertia. These rest mass fluctuations are “Mach effects”. Laid out in a series of research papers over the years, and in 2012 this culminated in Making Starships and Stargates: the Science of Interstellar Propulsion and Absurdly Benign Wormholes [1]. Here I update the first five chapters of that work.
2. Inertia, gravity, propulsion and Mach effects
Before Einstein, it was assumed that significant gravitational effects are only produced by astrophysical scale objects. Planets. Stars. And larger mass concentrations. Gravity was not viewed as part of the solution of the propulsion problem. It was/is the propulsion problem. Aside from using the gravitational interaction with astrophysical objects as slingshot “gravity assist” encounters, this belief is still held essentially universally. Einstein’s elaboration of the principle of relativity changed this. He called his theory of gravity “general relativity” (GR), not his theory of gravity. Why? Because GR is a theory of gravity and inertia, which are coupled by the principle of relativity expressed at the most elementary level by his Equivalence Principle (EP). The EP consists of the observation that you must look out the window of a rocket ship to determine whether you are accelerating (smoothly) at one gee in deep outer space, or at rest on a launch pad on Earth. Before the EP, the principle of relativity was restricted to inertial systems. First invented by Galileo, and then codified by Newton in his laws of motion, it says that if you are moving according to the first law, you must go to a window to determine whether you are moving with respect to other objects in different inertial frames of reference. Inertia in Newtonian mechanics is a (magical) property of material objects conferred on them by their existence in absolute space. And when such objects are given (proper) accelerations by the application of external forces, absolute space springs to life to produce the force that opposes the acceleration, acting through the object on the accelerating agent. This conception of inertia is still widely believed, notwithstanding Einstein’s efforts to change it.
Einstein, with his theory of Special Relativity (SR), started the changes in the concept of inertia that are still with us today. The first was a paper in 1905 where he asked if the energy content of a body contributed to its inertial mass? [2]. The answer, of course, is the most famous equation in human history: E = mc2. The vacuum speed of light, c, is the important factor in this equation. In SR, c, is a constant with the same numerical value for all observers everywhere/when, a speed that cannot be exceeded by any observer. The fact that c is a constant means that space and time are not physically distinct and independent as they are in Newtonian mechanics. The interdependence of space and time is captured in the Lorentz transformations that take one from one inertial frame of reference to another moving with respect to the first with some non-zero velocity. His next step, taken two years later, was the Equivalence Principle (EP). About the time that Einstein was discovering the EP, his former instructor, Hermann Minkowski, was reconstructing the absolute space and time of Newton into the modern conception of relativistic spacetime. Still absolute though, as inertia therein is still a magical property of space that confers inertial mass on its material contents and springs to life to provide the force that opposes proper accelerations of the massive contents. This conception of spacetime has long carried Minkowski’s name. In a sense, it is the culmination of Newtonian physics – the last Newtonian word on space and time where gravity is treated as just another of the forces of nature akin to electricity and magnetism.
The conception of spacetime that Einstein was adumbrating in his speculation on the equivalence of inertia and gravity was motivated by Mach’s observation that local inertial frames do not rotate with respect to the “fixed stars” [cosmologically distant matter]. Mach had suggested that distant matter acts through a long-range interaction with local matter. This was fundamentally different conceptually from Minkowski’s spacetime. Einstein put down his speculations on inertia and gravity in an invited paper for an annual review of medicine in 1912: Is There a Gravitational Effect Which is Analogous to Electrodynamic Induction? [3]. In particular, he was interested in the interaction of a test mass located at the center of a spherical shell of matter when they were relatively accelerated – a situation considered by a number of relativists since the early 20th century, though recently in the context of “frame dragging”. Inductive of effects of the sort Einstein was interested in are not present in scalar theories of gravity like Newton’s; they only appear in vector and tensor theories like electrodynamics and GR. So, Einstein was reduced to fudging with his relationship between energy and mass to get the result he wanted. Namely, that the gravitational potential energy of the test particle contributes to its mass. And if the mass shell were sufficiently massive, producing a Newtonian potential inside the shell equal to the square of the vacuum speed of light, the entire mass of the test particle could be accounted for. Noting Mach in this connection, he opined, “The degree to which this conception is justified will become known when we will be fortunate enough to have come into possession of a serviceable dynamics of gravitation.”
Einstein went on to consider the gravitational force produced by relative acceleration of his test particle and mass shell, finding that the gravitational potential energy of their interaction produces a force that tends to drag the test particle with the motion of the shell proportional to the gravitational potential energy divided by c2. He did not note that were the potential roughly equal to c2, the test particle would move rigidly with the accelerating shell. And were the particle held stationary by an external force, the accelerating shell would produce the inertial reaction force felt by the agent holding the test particle in place.
The serviceable dynamics of gravitation that Einstein sought turned out to be GR, the correct field equations being found by him in November of 1915. Prediction of the anomalous advance of Mercury’s perihelion, together with Eddington’s confirmation of Einstein’s prediction of deflection of light passing close to the Sun in the 1919 solar eclipse catapulted Einstein and his theory to international popular acclaim. Shortly after the initial publication of GR, Einstein mooted his ideas about “Mach’s principle”, the assertion that inertia was due to the gravitational action of mostly matter at cosmological distances. This led to an exchange with Willem deSitter – who showed that Einstein’s field equations were consistent with several solutions thereof that were obviously inconsistent with Mach’s principle – that convinced Einstein to abandon the principle. It is now widely thought that this meant that Einstein had abandoned the idea that inertia was gravitational in origin. This is not correct. While he had abandoned the most extreme version of the principle, which requires an “action-at-a-distance” field theory, Tullio Levi-Civita had reminded him that inertia is an integral part of GR, and like gravity, satisfies the EP. Einstein retreated from full-blown Mach’s principle to what he called “the relativity of inertia”. Still a Machian conception of inertia.
Einstein advanced his ideas first in an address at Leiden in 1920 where he analogized his evolving view of spacetime to the “aether” of the turn of the century theory of electrodynamics. And then he extended his view in remarks in a series of lectures at Princeton in 1921 [4]. There he calculated the action of some nearby, “spectator” matter on a test particle of unit mass (at the origin of coordinates) in the weak field limit of GR. He found for the equations of motion of the test particle (his Eqs. 118):
ddll+σ¯v=∇σ¯+∂A∂l+∇×A×v,E1
σ¯=κ/8π∫σ/rdVo,E2
A=κ/2π∫σdx/dlr−1dVo.E3
The second and third of these equations are the expressions for the scalar (σ¯) and vector (A) potentials of the gravitational action of the spectator masses with density σ on the test particle. l is coordinate time and v is coordinate velocity of the test particle. The first equation is just Newton’s second law. After writing down these equations, Einstein noted approvingly that,
The equations of motion, (118), show now, in fact, that
The inert mass [of the test particle of unit mass] is proportional to 1 + σ, and therefore increases when ponderable masses approach the test body.
There is an inductive action of accelerated masses, of the same sign, upon the test body. This is the term dA/dl.
Although these effects are inaccessible to experiment, because κ [Newton’s constant of universal gravitation] is so small, nevertheless they certainly exist according to the general theory of relativity. We must see in them strong support for Mach’s ideas as to the relativity of all inertial interactions. If we think these ideas consistently through to the end we must expect the whole gμν-field, to be determined by the matter of the universe, and not mainly by the boundary conditions at infinity.
The way J.A. Wheeler would later, repeatedly put this was, “mass there rules inertia here”. (He used this remark as the frontispiece for his book with his former student Ignacio Ciufolini, Gravitation and Inertia in 1995 [5]).
The above quote was not Einstein’s last explicit word on gravity, inertia, and spacetime. In 1924, he again addressed these topics in a paper, “Concerning the Aether” [6]. In it he quickly asserted that by “aether” he did not mean the material aether of turn of the century electromagnetism. Rather, he meant a real, substantial, but not material entity that is spacetime, and that spacetime is the gravitational field of material sources. No material sources, no spacetime. This was his way of getting rid of the Minkowski and other metrics that de Sitter had shown to be anti-Machian. As he put it toward the end of his article:
The general theory of relativity rectified a mischief of classical dynamics. According to the latter, inertia and gravity appear as quite different, mutually independent phenomena, even though they both depend on the same quantity, mass. The theory of relativity resolved this problem by establishing the behavior of the electrically neutral point-mass by the law of the geodetic line, according to which inertial and gravitational effects are no longer considered as separate. In doing so, it attached characteristics to the aether [spacetime] which vary from point to point, determining the metric and the dynamical behavior [sic.] of material points, and determined, in their turn, by physical factors, namely the distribution of mass/energy.
That the aether of general relativity differs from those of classical mechanics and special relativity in that it is not “absolute” but determined, in its locally variable characteristics, by ponderable matter. This determination is a complete one if the universe is finite and closed.
Arguably, Einstein is the most profound physical thinker yet produced by our species. His physical intuition garnered him the only rank zero classification in Lev Landau’s ranking of physicists where Galileo, Newton, Faraday and Maxwell were only first rank. One may reasonably ask, if Einstein was convinced that GR, correctly interpreted, encompassed the gravitational induction of inertia, why today is it widely believed in the community of relativists and beyond that inertia is not gravitationally induced? That inertia is no better understood than it was in the absolute systems of Newton and Minkowski? Carl Brans. And his “spectator matter” argument.
Brans did his doctoral work at Princeton in the late 1950s. His doctoral supervisor was the noted experimentalist, Robert Dicke. After passing his qualifying exam, Dicke tasked Brans with investigating the question of as the origin of inertia in GR as Dennis Sciama had made “Mach’s principle” a central question in GR several years earlier. When Brans read Einstein’s remarks on Machian inertia in Einstein’s 1921 comments mentioned above, he noted a problem. As Brans later wrote in 1977 [7]:
Over the years, many and varied expressions of Mach’s principle have been proposed, making it one of the most elusive concepts in physics. However, it seems clear that Einstein intended to show that locally measured inertial-mass values are gravitationally coupled to the mass distribution in the universe in his theory. For convenience I repeat the first order geodesic equations given by Einstein to support his argument:
[Brans inserted here Einstein’s equations displayed above.]
… Einstein’s claim is that “The inertial mass is proportional to l+σ¯, and therefore increases when ponderable masses approach the test body.
Brans pointed out that having the masses of local objects, the test particle in this case, depend on their gravitational potential energies acquired by interaction with spectator matter must be wrong. Were it true, then the electric charge to mass ratios of elementary particles for example would depend on the presence of nearby matter. Were this true, gravity could be discriminated from accelerations without having to check for the presence of spectator matter by going to the window in a small lab and looking out – a violation of the Equivalence Principle. From this, Brans inferred that
… global, i.e., nontidal, gravitational fields are completely invisible in such local standard measurements of inertial mass, contrary to Einstein’s claim… Einstein ought to have normalized his local space-time measurements to inertial frames, in which the metric has been transformed approximately to the standard Minkowski values, and for which distant-matter contributions are not present [Emphasis added.]
This is the “coordinate condition” required by Brans’ work: that the coordinates be compatible with the assumed approximate Minkowski metric applicable in small regions of spacetime. Since the absence of gravity is presupposed for Minkowski spacetime, this amounts to the assumption that the Newtonian potential due to exterior matter in such small regions of spacetime is effectively everywhere/when equal to zero. That is, the locally measured value of the total Newtonian gravitational potential is universally zero. This certainly makes the localization of gravitational potential energy impossible in GR, a now widely accepted fact. And where there is effectively no gravity, there can be no gravitational induction of inertia. Accordingly, it would seem that the spectator matter argument makes Machian gravitationally induced inertia incompatible with general relativity.
One might think that assuming the locally measured invariance of the Newtonian gravitational potential, since it allegedly requires that it effectively be zero, deprives the potential of its physical meaning, for if it is everywhere/when measured to be the same, how can it have the variations in spacetime – gradients and time derivatives – that characterize local gravitational phenomena? Physically speaking, the answer to this question is informed by the consideration of the vacuum behavior of light. In SR, the vacuum speed of light is constant. It is measured everywhere/when to have exactly the same value by all observers. As such, it never has non-vanishing derivatives of any sort. In GR, this changes. The vacuum speed of light remains a locally measured invariant. But the vacuum speed of light measured by observers who are not local does not have the locally measured invariant value. The vacuum speed of light in the vicinity of a black hole with its strong gravity field, as measured by a distant observer where the local gravity is weak, is slower than the distant observers measurement of the value at his/her location. This is not the consequence of some material-like medium being present in the vicinity of the black hole. It is the consequence of time running more slowly in strong local gravity fields when measured by distant observers far from strong local sources of gravity. This fact about the vacuum speed of light in GR used to be called the coordinate speed of light. Since it is not an invariant, global or local, its derivatives do not vanish.
Brans’ argument led to the adoption of the coordinate condition mentioned above where gravity is effectively absent in sufficiently small regions of spacetime. But the argument actually does not require the adoption of this coordinate condition. If, however, the Newtonian gravitational potential is to have any value other than effectively zero, then it must be a locally measured invariant so that charge to mass ratios of elementary particles do not depend on local gravitational conditions to avoid violations of the EP as Brans showed. But to accommodate real local gravitational phenomena, we must assume that, like the vacuum speed of light, the Newtonian potential has varying coordinate values that are not invariant.
Since the gravitational induction of inertia depends on the presence and motions of “matter” (everything that gravitates) chiefly at cosmological distances, the obvious question is: is the needed stuff out there doing what it must do to produce inertial effects? Einstein was clever enough to know that the knowledge of cosmology in the 1920s and beyond was insufficient to make such a determination backed up with observational evidence. Friedmann and Lemaitre made initial explorations of cosmology in the ‘20s, discovering that sensible solutions of Einstein’s equations dictated expanding universes for simple models with homogeneity and isotropy of sources of the field. Their work was elaborated by Robertson and Walker shortly thereafter, leading to so-called FLRW cosmology. Modern cosmology is far better informed by observations and concomitantly more detailed and complicated – though no one has a clue as to what “dark energy” is, it certainly exists. For our purposes, however, the features of cosmology needed to address the gravitational induction of inertia are already present in FLRW cosmology, for recent observations do not call into question the assumptions of homogeneity and isotropy. And a simple argument made by Dennis Sciama in 1953 [8] makes possible knowledge of the motions of cosmological sources important to inertia induction.
Sciama developed his early ideas on the origin of inertia in terms of a vector theory of gravity modeled on Maxwell’s equations for electrodynamics. Like Einstein in 1921, he obtained a term in his gravelectric force equation that involves the time derivative of the vector potential of the gravitational field. The vector potential, A, depends on the integration over the matter currents in the observable universe, that is, ρv, where ρ is the matter density in an integration volume element and v its velocity relative to the point where A is evaluated. Sciama noted that all of the various motions that stuff out there in the universe engage in, on average over sufficiently large distances go to zero. So, to calculate A, all we need do is imagine that, say, a test particle is moving with velocity v with respect to some cosmic rest frame. The principle of relativity allows us to view the test particle as at rest with the universe moving rigidly past it with velocity -v. All of the “peculiar” motions of the stuff out there is irrelevant as they average to zero. This means that the velocity can be removed from the integration over the matter currents, leaving an integration over the matter density. That integration returns the total Newtonian gravitational potential, customarily written as ϕ. As Einstein observed in 1912, up to a factor of order unity, if this potential is equal to the square of the vacuum speed of light, then the entire inertia of the test particle can be attributed to its gravitational interaction with the rest of the universe. And inertial reaction forces are gravitational forces – arising from the dA/dt term in Einstein’s equation of motion above since dA/dt = (ϕ/c2) dv/dt = a provided that ϕ/c2 = 1 always and everywhere.
Is ϕ actually equal to c2? At least up to a factor of order unity, the answer to this question is yes. For example, Sultana and Kasanas did a calculation assuming all of the features of modern general relativistic cosmology several years ago and got the “right” answer [9]. But there is an even more compelling reason to accept that Mach and Einstein were right about gravitationally induced inertia. As a matter of observation, spacetime is spatially flat. In terms of the FLRW cosmological models with their homogeneity and isotropy, cosmic scale spatial flatness is just a curiosity attached to arguably the simplest FLRW model characterized by the exact balance of gravitational potential energy and “kinetic” energy, that is, non-gravitational energy characterized by E = mc2 where m is the inertial mass of the matter in the cosmology. The general FLRW metric can be written introducing a “curvature index” k with values plus or minus 1 and zero. Plus 1 gives the metric for positive curvature spacetime where kinetic energy exceeds potential energy and is “closed”. Minus 1 gives the metric where the roles of the energies are reversed and is “open”. Closed universes expand and contract whereas open ones expand forever. For k = 0 the energies are exactly the same and spacetime is spatially flat. It expands forever, but with decelerating speed, just stopping at cosmic temporal infinity. In this spacetime we have for material particles:
mgϕ=mic2E4
where the subscripts g and i identify gravitational and inertial masses of the material particle. This is true everywhere/when in the cosmos. Another peculiar property of the k = 0 solution is that the condition of spatial flatness does not change as cosmic expansion takes place. So, if we apply the EP to cancel the masses in Eq. (4), we find that ϕ = c2 obtains universally. The remarkable properties of the spatially flat, k = 0 FLRW cosmology were first formally identified as a problem by Dicke in lectures in 1969, and then in an article written with James Peebles in 1979. He called this the “flatness paradox” because spacetime in even casual observations is obviously spatially flat, but the k = 0 cosmology is “unstable”. Small fluctuations in the matter density should drive spacetime quickly into either k = plus or minus 1 behavior – which is not the steady decelerating expansion asymptotically to infinite extent of the k = 0 solution. Why, Dicke asked, is our aged cosmos spatially flat? Alan Guth was in the audience of the 1969 lectures and eventually proposed “inflation” to solve the flatness and other problems.
By 1979 intense discussion of Mach’s principle and the gravitational induction of inertia had almost entirely abated. Hoyle and Narlikar had published an action at a distance version of GR. It did not attract much interest. John Wheeler continued to say “mass there rules inertia here”. His later book Gravitation and Inertia with I. Ciufolini [5] makes plain that he was an advocate of a limited version of Einstein’s “relativity of inertia”, that is, the gravitational induction of the inertial properties of spacetime, but not the gravitational induction of the inertial properties of matter per se. But Brans’ spectator matter argument had banished Einstein’s version of the gravitational induction of inertia. Was Einstein simply wrong about the gravitational induction of inertia? No. The k = 0 FLRW cosmology does more that allow one to assert that ϕ = c2 when the inertial and gravitational masses are canceled in our test particle equation above as they are the same according to the EP. And the fact that this cosmology evolves preserving this condition – notwithstanding Dicke’s paradox – means that FLRW k = 0 cosmology automatically makes ϕ a locally measured invariant like c ensuring that the coefficient of the acceleration in the dA/dt term in the equation of motion is always 1. This is not true in k ≠ 0 cosmologies where the potential and kinetic energies are not equal. So, the answer to Dicke’s flatness paradox is not inflation. Inflation may explain how flatness comes about. But it is that k = 0 cosmology obtains because it is required by Newton’s third law, the equality and opposition of applied and inertial reaction forces that singles out k = 0 as the correct cosmology. In other cosmologies ϕ is not equal to c2 and action does not equal reaction. This makes Brans’ spectator matter argument – which locks in the necessity of ϕ being a locally measured invariant equal to c2 – one of the most consequential developments in general relativity of the past century.
Why bother about what the correct origin of inertia is? After all, if ϕ is a locally measured invariant it is everywhere the same and it seems that it can have no effects beyond pushing back when we try to accelerate massive objects. We live in an enormous gravitational field that we can only detect when we try to change our states of inertial motion. That is, when proper accelerations of material objects are involved. So, to couple to the gigantic gravitational field in which we live, we must accelerate stuff. The question then is, does accelerating stuff do anything other than excite an inertial reaction force? To answer that question we need the gravitational field equation for the inertial force. Since we are looking for relatively large, lowest order effects, we do not need the full formalism of GR. The Newtonian approximation is good enough. But it must be modified to Lorentz invariant form to be realistic. As it happens, George Luchak wrote out the relativistic Newtonian approximation field equations in 1951 when doing an investigation of Patrick Blackett’s conjecture on the origin of stellar magnetic fields being the mass currents arising from stellar rotation [10]. The field equation he found was:
∇•F+1c∂q∂t=−4πρE5
With
∇q+1c∂F∂t=0E6
and
∇×F=0.E7
q is the rate at which the field does work on its local source density. Since the field is irrotational [∇ x F = 0], F can be written as the gradient of a scalar potential ϕ. q is ∂Eo/∂t where Eo is the proper source energy density, so the second term in Eq. (5) is just the second time derivative of the proper energy density. The time-dependent term in this equation is where rest mass fluctuations are to be sought. The proper energy density Eo is just the proper matter density ρo times c2. But the gravitational induction of inertia lets us write c2 as ϕ, so Eo = ρoϕ. Using this relationship and several pages of algebra (see chapter 3 of [1]) yields:
The left-hand side of this equation is the d’Alembertian of the potential ϕ, a wave equation for ϕ with sources on the right-hand side. Since the time-dependent terms on the right-hand side of Eq. (8) originate on the field side of the equation, they do not carry the coefficient 4πG. To be treated as massive sources (and multiplied by 4πG like ρo in the first term on the right-hand side of Eq. (8)) they must be multiplied by the factor (1/4πG). The time-dependent source terms thus become:
δmo=14πGϕρoc4∂2Eo∂t2−ϕρoc42∂Eo∂t2−1c4∂ϕ∂t2E9
The first of the terms on the right-hand side of this equation is the largest in most circumstances – and the term on which MEGA impulse engines depend. The second term can be triggered by the first term in special circumstances, but is almost always negligible (see chapter 9 of [1]). The third term is inconsequential.
3. MEGA impulse engines
To excite these rest-mass fluctuations all we need do is make the internal energy density of a massive object change while it is undergoing a proper acceleration. An energy density fluctuation of the sort required is easily produced by charging/discharging a capacitor. The required proper acceleration of the capacitor can be produced with an electro-mechanical actuator – in particular, a device comprised of lead-zirconium-titanate, PZT, elements that expand/contract when a voltage is applied to them. The actuator must be affixed to a “reaction” mass in order for its motions to communicate accelerations to the capacitor undergoing internal energy changes to produce the MEGA mass fluctuations wanted. Since PZT actuator components are also capacitors, the actuators can play the role of both actuator and capacitor simultaneously. One then only needs a stack of PZT disks affixed to a reaction mass to generate mass fluctuations. To make this device into a MEGA impulse engine all we need do is provide for a second mechanical acceleration at the frequency of the mass fluctuations that acts so that this acceleration of the PZT stack is in one direction when the stack is less massive and the opposite direction when it is more massive. This, in effect, makes the PZT stack the propellant of the engine, and the mass fluctuation that arises from the coupling to the cosmic gravitational potential allows one to indefinitely recycle the propellant, Not exactly propellantless propulsion. But you do not have to keep throwing new PZT stacks overboard to produce propulsion. A device of this sort is displayed in Figure 1.
Figure 1.
A stack of 8 PZT crystals 19 mm in diameter by 2 mm thick is clamped between a brass reaction mass and an aluminum cap with 6 4–40 cap screws. A thermistor is embedded in the cap to monitor the temperature of the device and two thin crystals are embedded in the stack near the cap.
The first laboratory test devices of these engines were made in 1999. To make mounting of the devices on a torsion balance possible, a bracket was attached to the back of the reaction mass, as shown in Figure 2. A simple L shaped piece of aluminum, initially this bracket was bolted directly onto the reaction mass. The devices hardly worked at all. When a thin rubber pad was placed between the bracket and reaction mass (the black tabs seen in Figure 2) the devices sprang to life. It did not take long to figure out that the pad was not damping the vibration of the device. Rather, it was decoupling the device from the mounting bracket at the high (tens of KHz) frequencies of operation, allowing it to vibrate more vigorously as the vibrational energy was not being as strongly sinked into the mounting bracket and beyond. An important change was made in the devices made from 2011 on from the first devices made in 1999. Instead of using Edo Corp material EC-65, Steiner-Martins material SM-111 was substituted. The motivation for this change was the dissipation factor for the SM-111 material is about an order of magnitude smaller than that for EC-65, leading to a much-reduced heating rate in the SM-111 material. An unintended consequence of this material change was that instead of driving the devices with a voltage waveform with both first and second harmonics to get the desired mechanical response, the new devices can be driven with a single frequency sine wave (with a special step-up/isolation transformer) and the SM-111 material generates the higher harmonics needed to produce thrust when operated near an electro-mechanical resonance of the device.
Figure 2.
A device of the type shown in Figure 1 with an aluminum “L” braket attached for suspension on a torsion balance. Note the black rubber tabs peeking out at the interface of the bracket and the reaction mass.
A quantitative discussion of thrusts generated in these devices when excited with a suitable sine wave voltage is given in [1], pages 174 to 178. In general terms, δmo is:
δmo≈14πGϕρoc4∂2Eo∂t2=ϕ4πGρoc4∂P∂tE10
where P us the instantaneous power, that is, in an ideal capacitor, the product of the instantaneous voltage and current across the capacitor. This is the product of two sinusoids of the same frequency and returns a sinusoid of the double frequency, that is, at the second harmonic frequency. If the capacitor is ideal, there is no energy dissipated as the voltage signal is applied and δmo has no DC offset – and δmo time-averages to zero. To extract a steady thrust from this mass fluctuation we must provide for a force and mechanical excursion of the capacitor at the second harmonic frequency of the excitation voltage frequency. The second harmonic excursion produces an acceleration with the same frequency, and this acceleration multiplied times δmo gives the force produced in the capacitor. This is a product of two sinusoids of the same frequency resulting in an AC component with a frequency of 4 times the base frequency plus a DC component that depends on the relative phase of δmo and the second harmonic acceleration. The DC part of this product is the Mach effect force that can be used for propulsion.
Devices of the sort shown in Figure 2 were used in work on the Mach effect project until Hal Fearn wrote successful applications first for a Phase 1 (2017) and then Phase 2 (2018) NASA Innovative Advanced Concepts (NIAC) grants from NIAC to support this work. (See [11] for the final report of the Phase 2 grant.) During the Phase 1 and early part of the Phase 2 grants, work focused on a voltage scaling test and issues of vibration and calibration. Typical thrust signals were in the tenths of a micronewton to a micronewton or so, detected with a sensitive torsion balance built with the help of Thomas Mahood a decade earlier shown in Figure 3. The device being tested is located in a Faraday cage mounted on a special vibration isolation yoke attached to the near end of the balance beam. One of the aims of the funded work on these grants was to increase the magnitude of the thrusts produced by the tested devices. Other issues just mentioned diverted attention from the increased thrust goal until late 2019 and early 2020. When attention was focused on thrust improvement, the decision was taken to make incremental improvements to the existing devices, rather than go to a radically different design. The obvious design feature to address was the rubber pads that had made the devices work at all. A plan of varying several other design features that might be optimized was also initiated. Shortly after this plan was initiated, COVID-19 struck. Weekly Zoom meetings of the team continued, but at CSUF lab access was restricted to HF, and JFW was restricted to building apparatus to be tested by HF in the lab.
Figure 3.
The torsion balance used in this work for small thrusts on its 500 pound granite vibration isolation table. The vacuum chamber is clear plastic, making careful examination of the operating conditions with a Polytech laser vibrometer easy.
If one understands the role of the rubber pads to be the high frequency decoupling of the device from its support structure, rather than damping the high frequency vibrations, several modifications are straight forward. First, instead of just using a pad between the reaction mass and L bracket, since the pad acts as a spring, pads should be put on both sides of the L bracket. Second, materials other than rubber are surely better candidates. For example, nylon, phenolic, PEEK and Vespel. And these materials can be fabricated with carbon fibers to increase their strength and improve their thermal conductivity. Third, the thickness of the material can be adjusted. An example of one of the devices used in this test campaign is shown in Figure 4. The washers on the mounting screws are PEEK in this case. There were, of course, variations in the performance of the various materials and configurations. But all the dielectric washer systems suffered from heating problems that were not resolved even with carbon fiber filling. The thermal problem led to the exploration of metal washers, Belleville washers in particular. Commercial Belleville washers with dimensions similar to the washers in Figure 4 and the correct stiffness were not available. Washers available in this size had to be glued together to get the correct properties. They solved the thermal problems with the dielectric washers.
Figure 4.
A standard device with double thickness PEEK washes on the mounting screws.
In late spring, Paul March and Michelle Broyles began investigating alternate ways of using Belleville washers. They envisioned clamping the reaction mass with a flange at the interface with the PZT stack with big, clunky Belleville washers. This was not the way to go. The flange would not be exactly at a node of all of the vibrations in the device, and clamping it with heavy Belleville washers would doubtless at least screw up the pattern of higher harmonic vibrations on which thrust production depends. But a small flange at least near a node of the principal vibration as a mounting point was an appealing idea as the L bracket mounting design was clearly less than optimal. But instead of clamping with clunky Belleville washers, three equally spaced holes were drilled in the flange and lined with Teflon. A support structure with three steel dowels to pass through the holes in the flange was built. When tested, it worked.
This mounting system had a precursor. Several months earlier the L bracket had been replaced by a “sledge” as the part of the L that attached to the Faraday cage. A sledge that was free to move on a small mounting plate bolted to the cage provided with steel dowels on which the sledge rode. That too had worked. But its importance had not been fully appreciated at the time. The flange and dowel mounting scheme made the device itself into a sledge. A number of technical details had to be addressed. The chief detail, however, was that Teflon sleeved holes in the flange were far from frictionless; and frictionless-ness was clearly the ideal if unfettered motion of the device was the goal. With an essentially frictionless mounting system we could approach the ideal of an in space propulsion test. Josė Rodal remarked that what we needed were miniature linear ball bushings instead of Teflon sleeves. But they were likely prohibitively expensive. All of the team members on the call had experience with linear ball bushings and immediately apprehended the significance of Josė’s observation. Paul and Chip Akins were on it instantly. Before Josė concluded his remarks about linear ball bushings, they had independently tracked down a source of suitable bushings. They were not prohibitively expensive. The next most important detail was how to extract a very low frequency to stationary force from a device vibrating on dowels with frictionless bearings? Chip and Michelle had the answer: very soft springs that would not transmit the high frequency vibrations to the support frame and would not mess up higher harmonics in the device by applying undue pressure on the “ears” of the flange carrying the bushings. Michelle and Paul eventually tracked down suitable springs.
Tests were done to find the best detailed design for the reaction mass and parts of the supporting frame. The reaction mass design eventually adopted has a flange 3.5 mm thick so that the 5 mm long bushings protrude to center the springs on the dowels that position the device on the dowels. The reaction mass diameter and length were chosen to be 22 mm, making the center of mass of the device lie in the plane of the flange. The PZT stack and aluminum preload cap are those of the L bracket design. A bare assembled device is shown in Figure 5. The complete assembly has a mass of 150 gm. It is shown mounted in its supporting aluminum frame in Figure 6. The thermistor, strain gauge and power leads are all stress relieved by attachment to the frame. Two of the six springs that position the device on the 2 mm diameter dowels are visible at the top of the picture.
Figure 5.
A bare device of the sledge design. The cap is 4.5 mm thick and 28.6 mm in diameter. High strength steel 4–40 cap screws provide the stack preload. Electrical conections are positioned to minimize drag on the motion of the parts.
Figure 6.
The device in its supporting frame.
In principle, if the linear ball bushings are functioning correctly, no pseudo force arising from a slip–stick mechanism in the device per se can be transmitted to the support structure owing to the conservation of momentum and the frictionless-ness of the bearings. So, one does not really need the torsion balance with its vibration isolation yoke that ensures slip–stick effects are not transmitted to the bearings of the balance where they might register a false positive “force”. Since our vacuum chamber is made of clear plastic, investigating vibration in the parts of the balance with a Polytech laser vibrometer is straight-forward. So, to be doubly certain that real forces are generated in these devices, at first Hal Fearn adapted mounting hardware to place the new style devices on the torsion balance, notwithstanding that the balance acts as a low pass filter for forces with any time dependence. This is shown in Figure 7. In addition to recording the voltage and current applied to the device, the mechanical activity with the embedded strain gauge, and the temperature with the thermistor in the cap, movies of the device were recorded with a Logitech Brio webcam as the forces produced visible motion of the device on the dowels.
Figure 7.
A sledge mounted device on hardware on the torsion balance in the clear plastic vacuum chamber.
After a few weeks, the Philtech position sensor used with the torsion balance to record its position (and thus force producing any deflection from rest) was removed from the vacuum chamber and repurposed to measuring the position of the sledge mount device on the rods supporting it as shown in Figure 8.
Figure 8.
The device mounted on a cantilever (with bubble level to adjust the levelof the cantilever). The Philtech optical probe is clamped to a micrometer stage for positioning and calibration. It records the distace from the probe to the free end of the reaction mass a millimeter or so away.
The four data signals – voltage, current, strain gauge, and temperature – were captured (along with the movie of the device) by three Picoscope oscilloscopes and displayed on a monitor. One Picoscope was dedicated to the production of a strip chart recoding of the voltage (blue trace) and position (red trace with scale factor 250 microns per volt) and temperature (green trace calculated to a degrees Celsiu8s scale) displayed in the upper left part of the monitor screen. The Picoscope data file of this display was saved for each run on completion of the run. The second Picoscope was dedicated to the real time capture of the voltage (blue, 100 volts per volt), current (black, one amp per volt), and strain gauge (red, not absolutely calibrated) waveforms during a run. The total power (i X V, green, 20 watts full scale) was computed and displayed in real time. This display is in the lower right of the monitor screen. The third Picoscope, a very fast 2 channel device, was dedicated to the real time display of the FFT power spectra of the voltage (blue) and strain gauge (red) signals located in the lower left part of the monitor screen. The webcam movie was displayed in the upper right of the screen. A picture of the monitor display for a completed run is shown in Figure 9. Since our power amplifier was not equipped to track and lock on to signal behavior at or very near resonance, and the thrust resonances for these devices are temperature dependent and – by design – very high Q, frequency sweeps were used to detect the thrust events expected. A typical run would consist of a 20 KHz sweep in 20 seconds (so the frequencies of events could be read off from the time of their occurrence) followed by a 5 second sweep back to the start frequency followed by another 20 second sweep. Figure 10 shows the monitor screen at the peak amplitudes of the waveforms at resonance transit for the run displayed in Figure 9. Note the presence of higher harmonics in the waveforms and power spectra, especially the second harmonic component in the current waveform. If the second harmonic is absent or out of phase, there is no thrust. Just before and after the resonance event, the signals look like those in Figure 11. The second and higher harmonics are gone. But the strain gauge waveform shows that strong first harmonic vibration is still present. That vibration ensures that the device moves frictionlessly on the support dowels. The thrust impulse is sufficiently large to initiate the displacement recorded in the strip chart display (red trace) in Figure 9. The positioning springs on the dowels convey the thrust to the support frame while arresting the motion of the device and returning it to its rest position. Evidently, these devices work as expected.
Figure 9.
The monitor display for a completed run. From the position data the velocity and acceleration of the device on the dowels can be computed.
Figure 10.
The monitor screen at transit of the first thrust resonance in the run displayed in Figure 9. Note the higher harmonics in the waveforms and power spectra, especially the second harmonic in the current waveform.
Figure 11.
The monitor screen immediately after the thrust resonance.
4. Conclusion
Many people over the now many years this project has been underway have contributed to its progress in a variety of ways. In my grad student days, those most helpful were Malvin Ruderman, Wolfgang Yourgrau, Allen Breck, Alwyn van der Merwe, James Barcus and Laurence Horwitz. At CSU Fullerton I have enjoyed the tolerance and support of the History and Physics Departments’ faculties, especially Ronald Crowley, Dorothy Woolum, Allan Sweedler, Keith Wanser, Mark Shapiro, and Stephen Goode in the Mathematics Department. A number of the formal publications related to this topic (see the technical references in ref. [1] here) were published in Foundations of Physics, in part because lists of a half-dozen suggested referees were solicited. I invariably recommended people familiar with both gravity and Wheeler-Feynman action at a distance theory, world class physicists all. And accompanied the lists with the suggestion that the manuscripts be sent to all of my suggested referees. Their comments proved helpful. John Cramer’s mention of this work in his Analog Alternate View column in the mid-‘90s brought this project to the attention of a wider audience. Thomas Mahood through his Master’s program and beyond helped in many ways to advance the project. About this time Jim Peoples, Graham O’Neill, Paul March and Sonny White, all then at Lockheed-Martin took interest in the project. As did Frank Meade and Kirk Goodall, and Gary Hudson of the Space Studies Institute (which still supports this work). Others include Nembo Buldrini, Greg Meholic, Marc Millis, Martin Tajmar, Tony Robertson, Paul Murad, John Cole, George Hathaway, and Dennis Bushnell. Peter Milonni and Olivier Costa dé Beauregard made helpful suggestions. Jack Sarfatti, Paul Zielinsky and Nick Herbert contributed by sharpening the arguments related to Einstein’s views on the gravitational induction of inertia, as has Lance Williams. Anthony Longman was in no small way responsible for bringing the project to the positive attention of the management of NIAC, Jay Falker, Jason Derleth and Ron Turner. David Mathes, and then Gary Hudson wrote the first and then second unsuccessful NIAC grant proposals. A few years later Heidi (now Hal) Fearn wrote the successful Phase 1 and 2 proposals. Since joining the project in 2012, Hal has been chiefly responsible for advancing the project in many ways. New and improved instrumentation. Data acquisition and analysis. Writing of reports and papers. Giving presentations of on-going work. Organizing workshops and seeing to the publication of their proceedings. Other than Hal, the members of the NIAC grant teams included Marshall Eubanks and José Rodal for Phase 1. In Phase 2 they were joined by Chip Akins, John Brandenburg, Michelle Broyles, Max Comess, David Jenkins, Dan Kennefick, Paul March, and Jon Woodland. The NIAC grants made several advances – notably, thrust increase of two to three orders of magnitude – that otherwise would not have happened possible. To make sure the thrust increase is real, the SSI has engaged George Hathaway to do a replication now in progress. And NIAC has engaged Mike McDonald at NRL to do a replication next year. So, soon we will know if this propulsion scheme really works. Several physicians, Ann Mohrbacher, Ching Fei Chang, Jerold Shinbane, and others at the University of Southern California, have kept me alive these past 15 years.
Acknowledgments
This work was supported in part by a Phase 2 NASA National Innovative Advanced Concepts (NIAC) grant, “Mach effects for in space propulsion: Interstellar mission,” grant NNX17AJ78G.
\n',keywords:"origin of inertia, general relativity, gravitational induction of inertia, Mach effect mass fluctuations, Mach effect gravity assist (MEGA) impulse engines",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/74791.pdf",chapterXML:"https://mts.intechopen.com/source/xml/74791.xml",downloadPdfUrl:"/chapter/pdf-download/74791",previewPdfUrl:"/chapter/pdf-preview/74791",totalDownloads:398,totalViews:0,totalCrossrefCites:1,dateSubmitted:"December 15th 2020",dateReviewed:"December 22nd 2020",datePrePublished:"January 13th 2021",datePublished:"December 15th 2021",dateFinished:"January 13th 2021",readingETA:"0",abstract:"“Breakthrough” advanced propulsion can only take place with a correct understanding of the role of inertia in general relativity. Einstein was convinced that inertia and gravitation were the obverse and reverse of the coin. The most general statement of the principle of relativity, captured in his Equivalence Principle and the gravitational induction of inertia. His ideas and how they have fared are reprised. A rest mass fluctuation that is expected when inertia is gravitationally induced is then mentioned that can be used for propulsion. Recent work supported by National Innovative Advanced Concepts Phase 1 and 2 NASA grants to determine whether thrusters based on gravitationally induced inertia can actually be made to work is presented. A recent design innovation has dramatically increased the thrust produced by these Mach Effect Gravity Assist (MEGA) impulse engines.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/74791",risUrl:"/chapter/ris/74791",signatures:"James F. Woodward",book:{id:"10007",type:"book",title:"Propulsion",subtitle:"New Perspectives and Applications",fullTitle:"Propulsion - New Perspectives and Applications",slug:"propulsion-new-perspectives-and-applications",publishedDate:"December 15th 2021",bookSignature:"Kazuo Matsuuchi and Hiroaki Hasegawa",coverURL:"https://cdn.intechopen.com/books/images_new/10007.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-83968-835-5",printIsbn:"978-1-83968-834-8",pdfIsbn:"978-1-83968-836-2",isAvailableForWebshopOrdering:!0,editors:[{id:"42387",title:"Prof.",name:"Kazuo",middleName:null,surname:"Matsuuchi",slug:"kazuo-matsuuchi",fullName:"Kazuo Matsuuchi"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"335130",title:"Emeritus Prof.",name:"James F.",middleName:null,surname:"Woodward",fullName:"James F. Woodward",slug:"james-f.-woodward",email:"jwoodward@fullerton.edu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null}],sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Inertia, gravity, propulsion and Mach effects",level:"1"},{id:"sec_3",title:"3. MEGA impulse engines",level:"1"},{id:"sec_4",title:"4. Conclusion",level:"1"},{id:"sec_5",title:"Acknowledgments",level:"1"}],chapterReferences:[{id:"B1",body:'Woodward JF. Making Starships and Stargates: the Science of Interstellar Transport and Absurdly Benign Wormholes. New York: Springer; 2013'},{id:"B2",body:'Einstein A. Does the inertia of a body depend on its energy content? Annalen der Physik. 1905;323(13):639-641'},{id:"B3",body:'Einstein A. Is There a Gravitational Effect Which Is Analogous to Electrodynamic Induction? Vierteljahrsschrift für gerichliche Medizin und öffentliches Sanitätswesen. 1912;44:37-40'},{id:"B4",body:'Einstein, A., (1921) in: The Meaning of Relativity, Princeton Univ. Press, Princeton (1955), 5th ed'},{id:"B5",body:'Ciufolini I, Wheeler JA. Gravitation and Inertia, Princeton Univ. Princeton: Press; 1995'},{id:"B6",body:'Einstein, A., “Concerning the Aether,” Verhandlungen der Schweizerischen Naturforschenden Gesellschaft105:2, 85-93 (1924)'},{id:"B7",body:'Brans CH. Absence of Inertial Induction in General Relativity. Phys. Rev. Lett. 1977;39:856-856'},{id:"B8",body:'Sciama, D., “On the Origin of Inertia,” M.N.R.A.S., 34, 34-42 (1953)'},{id:"B9",body:'Sultana J, Kasanas D. The Problem of Inertia in Friedmann Universes. Int. J. Modern Phys. D. 2011;20(7):1205-1214'},{id:"B10",body:'Luchak G. A fundamental theory of the magnetism of rotating bodies. Can. J. Phys. 1951;29:470-479'},{id:"B11",body:'NIAC Phase 2 final report. Available at: https://www.nasa.gov/sites/default/files/atoms/files/niac_2018_phii_woodward_macheffects_2_tagged.pdf'}],footnotes:[],contributors:[{corresp:"yes",contributorFullName:"James F. Woodward",address:"jwoodward@fullerton.edu",affiliation:'
Space Studies Institute and Department of Physics, California State University Fullerton, USA
'}],corrections:null},book:{id:"10007",type:"book",title:"Propulsion",subtitle:"New Perspectives and Applications",fullTitle:"Propulsion - New Perspectives and Applications",slug:"propulsion-new-perspectives-and-applications",publishedDate:"December 15th 2021",bookSignature:"Kazuo Matsuuchi and Hiroaki Hasegawa",coverURL:"https://cdn.intechopen.com/books/images_new/10007.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-83968-835-5",printIsbn:"978-1-83968-834-8",pdfIsbn:"978-1-83968-836-2",isAvailableForWebshopOrdering:!0,editors:[{id:"42387",title:"Prof.",name:"Kazuo",middleName:null,surname:"Matsuuchi",slug:"kazuo-matsuuchi",fullName:"Kazuo Matsuuchi"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},profile:{item:{id:"171143",title:"Dr.",name:"Hamed",middleName:null,surname:"Farhadi",email:"farhadi@seas.harvard.edu",fullName:"Hamed Farhadi",slug:"hamed-farhadi",position:null,biography:"Hamed Farhadi is a researcher at Ericsson Research, Stockholm, Sweden. He received his PhD degree from KTH Royal Institute of Technology, Stockholm, Sweden in 2014. He was a Postdoctoral Research Fellow at Harvard University, Cambridge, MA, USA in 2016, and a postdoctoral researcher at Chalmers University of Technology, Gothenburg, Sweden in 2015. His research interests mainly lie in statistical signal processing and machine learning for a broad range of applications including wireless healthcare systems, micro-robotic surgery, clinical data analysis, and wireless information networks. He has been the recipient of several academic awards including ICASSP 2014 best student paper award. Dr. Farhadi was the co-chair of IEEE International Symposium on Medical Information and Communication Technology (ISMICT) in 2015.",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/171143/images/5594_n.jpg",totalCites:0,totalChapterViews:"0",outsideEditionCount:0,totalAuthoredChapters:"1",totalEditedBooks:"2",personalWebsiteURL:null,twitterURL:null,linkedinURL:null,institution:{name:"Royal Institute of Technology",institutionURL:null,country:{name:"Sweden"}}},booksEdited:[{id:"6655",type:"book",slug:"medical-internet-of-things-m-iot-enabling-technologies-and-emerging-applications",title:"Medical Internet of Things (m-IoT)",subtitle:"Enabling Technologies and Emerging Applications",coverURL:"https://cdn.intechopen.com/books/images_new/6655.jpg",abstract:"The recent developments in biomedical sensors, wireless communication systems, and information networks are transforming the conventional healthcare systems. The transformed healthcare systems are enabling distributed healthcare services to patients who may not be co-located with the healthcare providers, providing early diagnoses, and reducing the cost in the healthcare section. The developments in medical internet of things (m-IoT) would enable a range of applications, including remote health monitoring through medical-grade wearables to provide homecare for elderlies; virtual doctor-patient interaction to have any time and place access to medical professionals; wireless endoscopic examination; and remotely operated robotic surgery to extend the access to highly skilled surgeons. Wireless body area networks (WBAN) are key enablers of these transformations. These networks connect sensors and actuators to external processing units, which could be placed on the surface of the patient's body or implanted inside the body to connect specific sensors and/or actuators inside, on, and around the body to the data collection points. The success of these networks highly relies on the advent of low-power, low-delay, reliable, and low-cost wireless connectivity solutions. This book covers recent developments in wireless healthcare systems to provide an insight to the technological solutions (e.g. for body area channel propagation models, communication techniques, and energy harvesting/transfer) for wireless body area networks, and emerging applications of medical internet of things and wireless healthcare systems.",editors:[{id:"171143",title:"Dr.",name:"Hamed",surname:"Farhadi",slug:"hamed-farhadi",fullName:"Hamed Farhadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",title:"Edited Volume"}},{id:"6346",type:"book",slug:"machine-learning-advanced-techniques-and-emerging-applications",title:"Machine Learning",subtitle:"Advanced Techniques and Emerging Applications",coverURL:"https://cdn.intechopen.com/books/images_new/6346.jpg",abstract:"The volume of data that is generated, stored, and communicated across different industrial sections, business units, and scientific research communities has been rapidly expanding. The recent developments in cellular telecommunications and distributed/parallel computation technology have enabled real-time collection and processing of the generated data across different sections. On the one hand, the internet of things (IoT) enabled by cellular telecommunication industry connects various types of sensors that can collect heterogeneous data. On the other hand, the recent advances in computational capabilities such as parallel processing in graphical processing units (GPUs) and distributed processing over cloud computing clusters enabled the processing of a vast amount of data. There has been a vital need to discover important patterns and infer trends from a large volume of data (so-called Big Data) to empower data-driven decision-making processes. Tools and techniques have been developed in machine learning to draw insightful conclusions from available data in a structured and automated fashion. Machine learning algorithms are based on concepts and tools developed in several fields including statistics, artificial intelligence, information theory, cognitive science, and control theory. The recent advances in machine learning have had a broad range of applications in different scientific disciplines. This book covers recent advances of machine learning techniques in a broad range of applications in smart cities, automated industry, and emerging businesses.",editors:[{id:"171143",title:"Dr.",name:"Hamed",surname:"Farhadi",slug:"hamed-farhadi",fullName:"Hamed Farhadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",title:"Edited Volume"}}],chaptersAuthored:[{id:"47860",title:"Interference Alignment — Practical Challenges and Test-bed Implementation",slug:"interference-alignment-practical-challenges-and-test-bed-implementation",abstract:null,signatures:"Nima N. Moghadam, Hamed Farhadi, Per Zetterberg, Majid Nasiri\nKhormuji and Mikael Skoglund",authors:[{id:"45040",title:"Mr.",name:"Mikael",surname:"Skoglund",fullName:"Mikael Skoglund",slug:"mikael-skoglund",email:"skoglund@ee.kth.se"},{id:"171143",title:"Dr.",name:"Hamed",surname:"Farhadi",fullName:"Hamed Farhadi",slug:"hamed-farhadi",email:"farhadi@seas.harvard.edu"},{id:"171262",title:"Mr.",name:"Nima",surname:"Najari Moghadam",fullName:"Nima Najari Moghadam",slug:"nima-najari-moghadam",email:"nimanm@ee.kth.se"},{id:"171263",title:"Dr.",name:"Per",surname:"Zetterberg",fullName:"Per Zetterberg",slug:"per-zetterberg",email:"perz@ee.kth.se"},{id:"195040",title:"Dr.",name:"Majid",surname:"Nasiri Khormuji",fullName:"Majid Nasiri Khormuji",slug:"majid-nasiri-khormuji",email:"majid.nk@huawei.com"}],book:{id:"4473",title:"Contemporary Issues in Wireless Communications",slug:"contemporary-issues-in-wireless-communications",productType:{id:"1",title:"Edited Volume"}}}],collaborators:[{id:"30839",title:"Prof.",name:"Adão",surname:"Silva",slug:"adao-silva",fullName:"Adão Silva",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:"Adão Silva received the Licenciatura (five years course), M.Sc. and Ph.D. degrees in Electronics and Telecommunications from the University of Aveiro, in 1999, 2002 and 2007 respectively. He is currently assistant Professor in the Department of Electronics and Telecommunications of the University of Aveiro, and a researcher at the Instituto de Telecomunicações - Pólo de Aveiro. His main interests lie in signal processing techniques for wireless communications. Within this research line he has done work for mobile communications, and has published over 30 technical papers in international journals and conferences. He has been participating in several national and European projects, namely the ASILUM, MATRICE, 4MORE, CODIV, and FUTON. His current research activities involve pre-equalization, space-time-frequency algorithms, cooperative networks and MIMO-OFDM systems.",institutionString:null,institution:null},{id:"38908",title:"Prof.",name:"Atilio",surname:"Gameiro",slug:"atilio-gameiro",fullName:"Atilio Gameiro",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"45040",title:"Mr.",name:"Mikael",surname:"Skoglund",slug:"mikael-skoglund",fullName:"Mikael Skoglund",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100466",title:"Dr.",name:"Abdulsalam",surname:"Alkholidi",slug:"abdulsalam-alkholidi",fullName:"Abdulsalam Alkholidi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100507",title:"Prof.",name:"Vyacheslav",surname:"Tuzlukov",slug:"vyacheslav-tuzlukov",fullName:"Vyacheslav Tuzlukov",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Kyungpook National University",institutionURL:null,country:{name:"Korea, South"}}},{id:"131091",title:"MSc.",name:"Khalil",surname:"Altowij",slug:"khalil-altowij",fullName:"Khalil Altowij",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"171008",title:"Dr.",name:"Unai",surname:"Hernandez-Jayo",slug:"unai-hernandez-jayo",fullName:"Unai Hernandez-Jayo",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Deusto",institutionURL:null,country:{name:"Spain"}}},{id:"171056",title:"Dr.",name:"Sotirios",surname:"Goudos",slug:"sotirios-goudos",fullName:"Sotirios Goudos",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9IuQAK/Profile_Picture_1622623673666",biography:'Sotirios K. Goudos is an Associate Professor at the Department of Physics of Aristotle University of Thessaloniki, Thessaloniki, Greece. He received the B.Sc. degree in Physics in 1991 and the M.Sc. of Postgraduate Studies in Electronics in 1994 both from the Aristotle University of Thessaloniki. In 2001, he received the Ph.D. degree in Physics from the Aristotle University of Thessaloniki and in 2005 the M.Sc. in Information Systems from the University of Macedonia, Greece. In 2011, he obtained a Diploma degree in Electrical and Computer Engineering from the Aristotle University of Thessaloniki. His research interests include antenna and microwave structures design, evolutionary algorithms, wireless communications, machine learning, and semantic web technologies. He has participated as Guest Editor or Lead Guest editors in more than 20 special issues in international journals. He has co-organized 4 special sessions in international conferences.\nProf. Goudos is the director of the ELEDIA@AUTH lab member of the ELEDIA Research Center Network and the founding Editor-in-Chief of the Telecom open access journal (MDPI publishing). He is currently serving as Associate Editor for IEEE ACCESS and IEEE open journal of the communication society. He is also member of the Editorial Board of the International Journal of Antennas and Propagation (IJAP), the EURASIP Journal on Wireless Communications and Networking and the International Journal on Advances on Intelligent Systems. He is also member of the topic board of the Electronics open access journal. Prof. Goudos is currently serving as Chapter/AG coordinator for IEEE Greece Section. \nHe was honoured as an IEEE Access Outstanding Associate Editor for 2019 and 2020.\nHe has also served as a member of the Technical Program Committees in several IEEE and non-IEEE conferences. Prof. Goudos is a member of the IEEE (Senior member), the IEICE, the Greek Physics Society, the Technical Chamber of Greece, and the Greek Computer Society. He is the author of the book "Emerging Evolutionary Algorithms for Antennas and Wireless Communications", Institution of Engineering and Technology, 2021. Prof. Goudos has participated in more than 16 national and European funded projects and has been Principal Investigator at 2 national funded research projects.',institutionString:null,institution:{name:"Aristotle University of Thessaloniki",institutionURL:null,country:{name:"Greece"}}},{id:"171164",title:"Dr.",name:"Eduardo",surname:"Castañeda",slug:"eduardo-castaneda",fullName:"Eduardo Castañeda",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:"Eduardo Castañeda is an engineer in Telecommunications. He received the Bachelor Degree in Telecommunications Engineering from the National University of Mexico (UNAM), in 2008. He received the Ph.D. degree in Electrical Engineering from University of Aveiro, Portugal in 2015. He is currently a researcher at Instituto de Telecomunicações (IT), Aveiro, Portugal. During his professional career he has been involved in several Portuguese and FP7 European Projects (e.g. FUTON, ADIN, and COPWIN) where he worked on wireless networks optimization. He has expertise in telecommunications and software development. He is pursuing a professional career in IT, Telecom, and Business Technology. His current research activities involve HetNets, scheduling algorithms for MU-MIMO, cooperative networks, and distributed resource allocation techniques.",institutionString:null,institution:null},{id:"171262",title:"Mr.",name:"Nima",surname:"Najari Moghadam",slug:"nima-najari-moghadam",fullName:"Nima Najari Moghadam",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]},generic:{page:{slug:"advantages-of-publishing",title:"Advantages of Publishing with IntechOpen",intro:"
"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality. Throughout the world, we are seeing progress in attracting, retaining, and promoting women in STEMM. IntechOpen are certainly supporting this work globally by empowering all scientists and ensuring that women are encouraged and enabled to publish and take leading roles within the scientific community."Dr. Catrin Rutland, University of Nottingham, UK
",metaTitle:"Advantages of Publishing with IntechOpen",metaDescription:"We have more than a decade of experience in Open Access publishing. \n\n ",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"
We have more than a decade of experience in Open Access publishing. The advantages of publishing with IntechOpen include:
\\n\\n
Our platform – IntechOpen is the world’s leading publisher of OA books, built by scientists, for scientists.
\\n\\n
Our reputation – Everything we publish goes through a two-stage peer review process. We’re proud to count Nobel laureates among our esteemed authors. We meet European Commission standards for funding, and the research we’ve published has been funded by the Bill and Melinda Gates Foundation and the Wellcome Trust, among others. IntechOpen is a member of all relevant trade associations (including the STM Association and the Association of Learned and Professional Society Publishers) and has a selection of books indexed in Web of Science's Book Citation Index.
\\n\\n
Our expertise – We’ve published more than 4,500 books by more than 118,000 authors and editors.
\\n\\n
Our reach – Our books have more than 130 million downloads and more than 184,650 Web of Science citations. We increase citations via indexing in all the major databases, including the Book Citation Index at Web of Science and Google Scholar.
\\n\\n
Our services – The support we offer our authors and editors is second to none. Each book in our program receives the following:
\\n\\n
\\n\\t
A Creative Commons license, so authors always keep their copyright;
\\n\\t
A dedicated Author Service Manager to guide the publication process from submission to publication;
\\n\\t
Professional copyediting and language editing;
\\n\\t
Monitoring with CrossCheck plagiarism identification software;
\\n\\t
Professional typesetting in fulltext, interactive XML;
\\n\\t
An open access e-book, plus beautifully produced hardcover and affordable paperback print-on-demand editions;
\\n\\t
Professional cover design;
\\n\\t
Access to our online Manuscript Tracking System;
\\n\\t
A dedicated landing page;
\\n\\t
Real-time user statistics for each book and chapter;
\\n\\t
Automated citation and reference options for each chapter;
\\n\\t
DOI for every book and every individual chapter;
\\n\\t
ISBN and ISSN registration;
\\n\\t
Long-term archiving in CLOCKSS;
\\n\\t
Distribution to libraries;
\\n\\t
Indexing in Web of Science Book Citation Index, OAPEN, PubMed Bookshelf;
\\n\\t
SEO optimization;
\\n\\t
Inclusion in and metadata distribution to repositories such as Google Scholar, EBSCO, WorldCat, OpenAIRE, CNKI;
\\n
\\n\\n
Our end-to-end publishing service frees our authors and editors to focus on what matters: research. We empower them to shape their fields and connect with the global scientific community.
\\n\\n
"In developing countries until now, advancement in science has been very limited, because insufficient economic resources are dedicated to science and education. These limitations are more marked when the scientists are women. In order to develop science in the poorest countries and decrease the gender gap that exists in scientific fields, Open Access networks like IntechOpen are essential. Free access to scientific research could contribute to ameliorating difficult life conditions and breaking down barriers." Marquidia Pacheco, National Institute for Nuclear Research (ININ), Mexico
We have more than a decade of experience in Open Access publishing. The advantages of publishing with IntechOpen include:
\n\n
Our platform – IntechOpen is the world’s leading publisher of OA books, built by scientists, for scientists.
\n\n
Our reputation – Everything we publish goes through a two-stage peer review process. We’re proud to count Nobel laureates among our esteemed authors. We meet European Commission standards for funding, and the research we’ve published has been funded by the Bill and Melinda Gates Foundation and the Wellcome Trust, among others. IntechOpen is a member of all relevant trade associations (including the STM Association and the Association of Learned and Professional Society Publishers) and has a selection of books indexed in Web of Science's Book Citation Index.
\n\n
Our expertise – We’ve published more than 4,500 books by more than 118,000 authors and editors.
\n\n
Our reach – Our books have more than 130 million downloads and more than 184,650 Web of Science citations. We increase citations via indexing in all the major databases, including the Book Citation Index at Web of Science and Google Scholar.
\n\n
Our services – The support we offer our authors and editors is second to none. Each book in our program receives the following:
\n\n
\n\t
A Creative Commons license, so authors always keep their copyright;
\n\t
A dedicated Author Service Manager to guide the publication process from submission to publication;
\n\t
Professional copyediting and language editing;
\n\t
Monitoring with CrossCheck plagiarism identification software;
\n\t
Professional typesetting in fulltext, interactive XML;
\n\t
An open access e-book, plus beautifully produced hardcover and affordable paperback print-on-demand editions;
\n\t
Professional cover design;
\n\t
Access to our online Manuscript Tracking System;
\n\t
A dedicated landing page;
\n\t
Real-time user statistics for each book and chapter;
\n\t
Automated citation and reference options for each chapter;
\n\t
DOI for every book and every individual chapter;
\n\t
ISBN and ISSN registration;
\n\t
Long-term archiving in CLOCKSS;
\n\t
Distribution to libraries;
\n\t
Indexing in Web of Science Book Citation Index, OAPEN, PubMed Bookshelf;
\n\t
SEO optimization;
\n\t
Inclusion in and metadata distribution to repositories such as Google Scholar, EBSCO, WorldCat, OpenAIRE, CNKI;
\n
\n\n
Our end-to-end publishing service frees our authors and editors to focus on what matters: research. We empower them to shape their fields and connect with the global scientific community.
\n\n
"In developing countries until now, advancement in science has been very limited, because insufficient economic resources are dedicated to science and education. These limitations are more marked when the scientists are women. In order to develop science in the poorest countries and decrease the gender gap that exists in scientific fields, Open Access networks like IntechOpen are essential. Free access to scientific research could contribute to ameliorating difficult life conditions and breaking down barriers." Marquidia Pacheco, National Institute for Nuclear Research (ININ), Mexico
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"58592",title:"Dr.",name:"Arun",middleName:null,surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/58592/images/1664_n.jpg",biography:"Arun K. Shanker is serving as a Principal Scientist (Plant Physiology) with the Indian Council of Agricultural Research (ICAR) at the Central Research Institute for Dryland Agriculture in Hyderabad, India. He is working with the ICAR as a full time researcher since 1993 and has since earned his Advanced degree in Crop Physiology while in service. He has been awarded the prestigious Member of the Royal Society of Chemistry (MRSC), by the Royal Society of Chemistry, London in 2015. Presently he is working on systems biology approach to study the mechanism of abiotic stress tolerance in crops. His main focus now is to unravel the mechanism of drought and heat stress response in plants to tackle climate change related threats in agriculture.",institutionString:null,institution:{name:"Indian Council of Agricultural Research",country:{name:"India"}}},{id:"4782",title:"Prof.",name:"Bishnu",middleName:"P",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/4782/images/system/4782.jpg",biography:"Bishnu P. Pal is Professor of Physics at Mahindra École\nCentrale Hyderabad India since July 1st 2014 after retirement\nas Professor of Physics from IIT Delhi; Ph.D.’1975 from IIT\nDelhi; Fellow of OSA and SPIE; Senior Member IEEE;\nHonorary Foreign Member Royal Norwegian Society for\nScience and Arts; Member OSA Board of Directors (2009-\n11); Distinguished Lecturer IEEE Photonics Society (2005-\n07).",institutionString:null,institution:{name:"Indian Institute of Technology Delhi",country:{name:"India"}}},{id:"69653",title:"Dr.",name:"Chusak",middleName:null,surname:"Limsakul",slug:"chusak-limsakul",fullName:"Chusak Limsakul",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Prince of Songkla University",country:{name:"Thailand"}}},{id:"23804",title:"Dr.",name:"Hamzah",middleName:null,surname:"Arof",slug:"hamzah-arof",fullName:"Hamzah Arof",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/23804/images/5492_n.jpg",biography:"Hamzah Arof received his BSc from Michigan State University, and PhD from the University of Wales. Both degrees were in electrical engineering. His current research interests include signal processing and photonics. Currently he is affiliated with the Department of Electrical Engineering, University of Malaya, Malaysia.",institutionString:null,institution:{name:"University of Malaya",country:{name:"Malaysia"}}},{id:"41989",title:"Prof.",name:"He",middleName:null,surname:"Tian",slug:"he-tian",fullName:"He Tian",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"East China University of Science and Technology",country:{name:"China"}}},{id:"33351",title:null,name:"Hendra",middleName:null,surname:"Hermawan",slug:"hendra-hermawan",fullName:"Hendra Hermawan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/33351/images/168_n.jpg",biography:null,institutionString:null,institution:{name:"Institut Teknologi Bandung",country:{name:"Indonesia"}}},{id:"11981",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Ishiguro",slug:"hiroshi-ishiguro",fullName:"Hiroshi Ishiguro",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRglaQAC/Profile_Picture_1626411846553",biography:"Hiroshi Ishiguro is an award-winning roboticist and innovator. As the Director of the Intelligent Robotics Laboratory, which is part of the Department of Systems Innovation in the Graduate School of Engineering Science at Osaka University, Japan, Ishiguro concentrates on making robots that are similar as possible to humans to understand the human species. A notable project of his laboratory is the Actroid, a humanoid robot with a lifelike appearance and observable behavior such as facial movements. (Sources: http://www.geminoid.jp/en/index.html, https://en.wikipedia.org/wiki/Hiroshi_Ishiguro)",institutionString:null,institution:{name:"Osaka University",country:{name:"Japan"}}},{id:"45747",title:"Dr.",name:"Hsin-I",middleName:null,surname:"Chang",slug:"hsin-i-chang",fullName:"Hsin-I Chang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Chiayi University",country:{name:"Taiwan"}}},{id:"61581",title:"Dr.",name:"Joy Rizki Pangestu",middleName:null,surname:"Djuansjah",slug:"joy-rizki-pangestu-djuansjah",fullName:"Joy Rizki Pangestu Djuansjah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/61581/images/237_n.jpg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"94249",title:"Prof.",name:"Junji",middleName:null,surname:"Kido",slug:"junji-kido",fullName:"Junji Kido",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Yamagata University",country:{name:"Japan"}}},{id:"12009",title:"Dr.",name:"Ki Young",middleName:null,surname:"Kim",slug:"ki-young-kim",fullName:"Ki Young Kim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12009/images/system/12009.jpg",biography:"Http://m80.knu.ac.kr/~doors",institutionString:null,institution:{name:"National Cheng Kung University",country:{name:"Taiwan"}}},{id:"132595",title:"Prof.",name:"Long",middleName:null,surname:"Wang",slug:"long-wang",fullName:"Long Wang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Peking University",country:{name:"China"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6630},{group:"region",caption:"Middle and South America",value:2,count:5913},{group:"region",caption:"Africa",value:3,count:2404},{group:"region",caption:"Asia",value:4,count:12563},{group:"region",caption:"Australia and Oceania",value:5,count:1009},{group:"region",caption:"Europe",value:6,count:17575}],offset:12,limit:12,total:12563},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"dateEndThirdStepPublish",src:"EDCMP",topicId:"18"},books:[{type:"book",id:"12165",title:"Mild Cognitive Impairment",subtitle:null,isOpenForSubmission:!0,hash:"53705d28ee50f077d865170f6dbb769c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12165.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12166",title:"New Topics on Electroencephalography",subtitle:null,isOpenForSubmission:!0,hash:"e6eae5162ca3ec5be1a1f2b85f007b2d",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12166.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12167",title:"Neuroprotection",subtitle:null,isOpenForSubmission:!0,hash:"5b16c09a6266c3be63796aefa6828df2",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12167.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12168",title:"Neuroglial Research",subtitle:null,isOpenForSubmission:!0,hash:"ce5fb5312ae2e8239b9ba2710fe3c0fe",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12168.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12169",title:"Olfactory and Gustatory Systems",subtitle:null,isOpenForSubmission:!0,hash:"d5a1c1b017ee33f8028a4de153f5762c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12169.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12170",title:"Hydrocephalus",subtitle:null,isOpenForSubmission:!0,hash:"2a0f7f54e5e93c674dd19336fa859f50",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12170.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12300",title:"Dopamine Receptors",subtitle:null,isOpenForSubmission:!0,hash:"257af6b69ae2215cdd6327cc5a5f6135",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12300.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:36},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:10},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:16},{group:"topic",caption:"Computer and Information Science",value:9,count:15},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:14},{group:"topic",caption:"Engineering",value:11,count:31},{group:"topic",caption:"Environmental Sciences",value:12,count:7},{group:"topic",caption:"Immunology and Microbiology",value:13,count:7},{group:"topic",caption:"Materials Science",value:14,count:10},{group:"topic",caption:"Mathematics",value:15,count:6},{group:"topic",caption:"Medicine",value:16,count:96},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:7},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:7},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:31},{group:"topic",caption:"Technology",value:24,count:1}],offset:12,limit:12,total:7},popularBooks:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4387},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3385,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1875,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3842,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3008,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1109,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1010,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3918,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",publishedDate:"May 11th 2022",numberOfDownloads:1654,editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7686,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3444,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10522",title:"Coding Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"6357e1dd7d38adeb519ca7a10dc9e5a0",slug:"coding-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Sudhakar Radhakrishnan and Sudev Naduvath",coverURL:"https://cdn.intechopen.com/books/images_new/10522.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10821",title:"Automation and Control",subtitle:"Theories and Applications",isOpenForSubmission:!1,hash:"18463c2291ba306c4dcbabd988227eea",slug:"automation-and-control-theories-and-applications",bookSignature:"Elmer P. Dadios",coverURL:"https://cdn.intechopen.com/books/images_new/10821.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"111683",title:"Prof.",name:"Elmer P.",middleName:"P.",surname:"Dadios",slug:"elmer-p.-dadios",fullName:"Elmer P. Dadios"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11348",title:"Mutagenesis and Mitochondrial-Associated Pathologies",subtitle:null,isOpenForSubmission:!1,hash:"001972b3c5b49367314b13025a449232",slug:"mutagenesis-and-mitochondrial-associated-pathologies",bookSignature:"Michael Fasullo and Angel Catala",coverURL:"https://cdn.intechopen.com/books/images_new/11348.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"258231",title:"Dr.",name:"Michael",middleName:"Thomas",surname:"Fasullo",slug:"michael-fasullo",fullName:"Michael Fasullo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11123",title:"Epoxy-Based Composites",subtitle:null,isOpenForSubmission:!1,hash:"c1c5447cf3b9d6c7688276ac30e80de6",slug:"epoxy-based-composites",bookSignature:"Samson Jerold Samuel Chelladurai, Ramesh Arthanari and M.R.Meera",coverURL:"https://cdn.intechopen.com/books/images_new/11123.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"247421",title:"Dr.",name:"Samson Jerold Samuel",middleName:null,surname:"Chelladurai",slug:"samson-jerold-samuel-chelladurai",fullName:"Samson Jerold Samuel Chelladurai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10632",title:"Theory and Practice of Tunnel Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ba17749f9d0b6a62d584a3c320a1f49",slug:"theory-and-practice-of-tunnel-engineering",bookSignature:"Hasan Tosun",coverURL:"https://cdn.intechopen.com/books/images_new/10632.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"79083",title:"Prof.",name:"Hasan",middleName:null,surname:"Tosun",slug:"hasan-tosun",fullName:"Hasan Tosun"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10906",title:"Fungal Reproduction and Growth",subtitle:null,isOpenForSubmission:!1,hash:"f84de0280d54f3b52e3e4585cff24ac1",slug:"fungal-reproduction-and-growth",bookSignature:"Sadia Sultan and Gurmeet Kaur Surindar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/10906.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"176737",title:"Dr.",name:"Sadia",middleName:null,surname:"Sultan",slug:"sadia-sultan",fullName:"Sadia Sultan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10914",title:"Effective Elimination of Structural Racism",subtitle:null,isOpenForSubmission:!1,hash:"f6a2562646c0fd664aca8335bc3b3e69",slug:"effective-elimination-of-structural-racism",bookSignature:"Erick Guerrero",coverURL:"https://cdn.intechopen.com/books/images_new/10914.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"294761",title:"Dr.",name:"Erick",middleName:null,surname:"Guerrero",slug:"erick-guerrero",fullName:"Erick Guerrero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,isOpenForSubmission:!1,hash:"2d66af42fb17d0a6556bb9ef28e273c7",slug:"animal-reproduction",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10940",title:"Plant Hormones",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"5aae8a345f8047ed528914ff3491f643",slug:"plant-hormones-recent-advances-new-perspectives-and-applications",bookSignature:"Christophe Hano",coverURL:"https://cdn.intechopen.com/books/images_new/10940.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"313856",title:"Dr.",name:"Christophe",middleName:"F.E.",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10207",title:"Sexual Abuse",subtitle:"An Interdisciplinary Approach",isOpenForSubmission:!1,hash:"e1ec1d5a7093490df314d7887e0b3809",slug:"sexual-abuse-an-interdisciplinary-approach",bookSignature:"Ersi Kalfoğlu and Sotirios Kalfoglou",coverURL:"https://cdn.intechopen.com/books/images_new/10207.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"68678",title:"Dr.",name:"Ersi",middleName:null,surname:"Kalfoglou",slug:"ersi-kalfoglou",fullName:"Ersi Kalfoglou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"391",title:"Molecular Genetics",slug:"conservation-genetics-molecular-genetics",parent:{id:"48",title:"Conservation Genetics",slug:"conservation-genetics"},numberOfBooks:1,numberOfSeries:0,numberOfAuthorsAndEditors:40,numberOfWosCitations:55,numberOfCrossrefCitations:24,numberOfDimensionsCitations:60,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"391",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"1610",title:"Analysis of Genetic Variation in Animals",subtitle:null,isOpenForSubmission:!1,hash:"2dbc70699ec1ca38dc2175c6aeebe710",slug:"analysis-of-genetic-variation-in-animals",bookSignature:"Mahmut Caliskan",coverURL:"https://cdn.intechopen.com/books/images_new/1610.jpg",editedByType:"Edited by",editors:[{id:"51528",title:"Prof.",name:"Mahmut",middleName:null,surname:"Çalışkan",slug:"mahmut-caliskan",fullName:"Mahmut Çalışkan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"29259",doi:"10.5772/35024",title:"Genetic Diversity and Genetic Heterogeneity of Bigfin Reef Squid “Sepioteuthis lessoniana” Species Complex in Northwestern Pacific Ocean",slug:"genetic-diversity-and-genetic-heterogeneity-of-bigfin-reef-squid-sepioteuthis-lessoniana-species-com",totalDownloads:2374,totalCrossrefCites:4,totalDimensionsCites:11,abstract:null,book:{id:"1610",slug:"analysis-of-genetic-variation-in-animals",title:"Analysis of Genetic Variation in Animals",fullTitle:"Analysis of Genetic Variation in Animals"},signatures:"Hideyuki Imai and Misuzu Aoki",authors:[{id:"102652",title:"Dr.",name:"Hideyuki",middleName:null,surname:"Imai",slug:"hideyuki-imai",fullName:"Hideyuki Imai"}]},{id:"29252",doi:"10.5772/34554",title:"Genetic Characterization of Albanian Sheep Breeds by Microsatellite Markers",slug:"genetic-characterization-of-albanian-sheep-breeds-by-microsatellite-markers",totalDownloads:3924,totalCrossrefCites:6,totalDimensionsCites:11,abstract:null,book:{id:"1610",slug:"analysis-of-genetic-variation-in-animals",title:"Analysis of Genetic Variation in Animals",fullTitle:"Analysis of Genetic Variation in Animals"},signatures:"Anila Hoda and Paolo Ajmone Marsan",authors:[{id:"100682",title:"Prof.",name:"Anila",middleName:null,surname:"Hoda",slug:"anila-hoda",fullName:"Anila Hoda"},{id:"130583",title:"Prof.",name:"Paolo",middleName:null,surname:"Ajmone Marsan",slug:"paolo-ajmone-marsan",fullName:"Paolo Ajmone Marsan"}]},{id:"29265",doi:"10.5772/35455",title:"Shark DNA Forensics: Applications and Impacts on Genetic Diversity",slug:"shark-dna-forensics-applications-and-impacts-on-genetic-diversity",totalDownloads:4063,totalCrossrefCites:1,totalDimensionsCites:9,abstract:null,book:{id:"1610",slug:"analysis-of-genetic-variation-in-animals",title:"Analysis of Genetic Variation in Animals",fullTitle:"Analysis of Genetic Variation in Animals"},signatures:"Luis Fernando Rodrigues-Filho, Danillo Pinhal, Davidson Sodré and Marcelo Vallinoto",authors:[{id:"104502",title:"Prof.",name:"Marcelo",middleName:null,surname:"Vallinoto",slug:"marcelo-vallinoto",fullName:"Marcelo Vallinoto"},{id:"104511",title:"Dr.",name:"Danillo",middleName:null,surname:"Pinhal",slug:"danillo-pinhal",fullName:"Danillo Pinhal"},{id:"104512",title:"Dr.",name:"Luis Fernando",middleName:null,surname:"Rodrigues-Filho",slug:"luis-fernando-rodrigues-filho",fullName:"Luis Fernando Rodrigues-Filho"},{id:"104514",title:"MSc.",name:"Davidson Clayton",middleName:null,surname:"Azevedo Sodré",slug:"davidson-clayton-azevedo-sodre",fullName:"Davidson Clayton Azevedo Sodré"}]},{id:"29267",doi:"10.5772/34089",title:"Aquatic Introductions and Genetic Founder Effects: How do Parasites Compare to Hosts?",slug:"security-limitations-of-spectral-amplitude-coding-based-on-modified-quadratic-congruence-code-system",totalDownloads:2434,totalCrossrefCites:2,totalDimensionsCites:5,abstract:null,book:{id:"1610",slug:"analysis-of-genetic-variation-in-animals",title:"Analysis of Genetic Variation in Animals",fullTitle:"Analysis of Genetic Variation in Animals"},signatures:"April M. H. Blakeslee and Amy E. Fowler",authors:[{id:"98632",title:"Dr.",name:"April",middleName:null,surname:"Blakeslee",slug:"april-blakeslee",fullName:"April Blakeslee"},{id:"103338",title:"Dr.",name:"Amy",middleName:null,surname:"Fowler",slug:"amy-fowler",fullName:"Amy Fowler"}]},{id:"29258",doi:"10.5772/34427",title:"Genetic Diversity and Evolution of Marine Animals Isolated in Marine Lakes",slug:"genetic-diversity-and-evolution-of-marine-animals-isolated-in-marine-lakes",totalDownloads:2903,totalCrossrefCites:3,totalDimensionsCites:4,abstract:null,book:{id:"1610",slug:"analysis-of-genetic-variation-in-animals",title:"Analysis of Genetic Variation in Animals",fullTitle:"Analysis of Genetic Variation in Animals"},signatures:"Naoto Hanzawa, Ryo O. Gotoh, Hidekatsu Sekimoto, Tadasuke V. Goto, Satoru N. Chiba, Kaoru Kuriiwa and Hidetoshi B. Tamate",authors:[{id:"100088",title:"Prof.",name:"Naoto",middleName:null,surname:"Hanzawa",slug:"naoto-hanzawa",fullName:"Naoto Hanzawa"},{id:"104133",title:"PhD.",name:"Ryo",middleName:"O",surname:"Gotoh",slug:"ryo-gotoh",fullName:"Ryo Gotoh"},{id:"104134",title:"Dr.",name:"Tadasuke V.",middleName:null,surname:"Goto",slug:"tadasuke-v.-goto",fullName:"Tadasuke V. Goto"},{id:"104137",title:"MSc.",name:"Hidekatsu",middleName:null,surname:"Sekimoto",slug:"hidekatsu-sekimoto",fullName:"Hidekatsu Sekimoto"},{id:"104139",title:"Prof.",name:"Hidetoshi B.",middleName:null,surname:"Tamate",slug:"hidetoshi-b.-tamate",fullName:"Hidetoshi B. Tamate"},{id:"130516",title:"Dr.",name:"Satoru",middleName:"N",surname:"Chiba",slug:"satoru-chiba",fullName:"Satoru Chiba"},{id:"130517",title:"Dr.",name:"Kaoru",middleName:null,surname:"Kuriiwa",slug:"kaoru-kuriiwa",fullName:"Kaoru Kuriiwa"}]}],mostDownloadedChaptersLast30Days:[{id:"29265",title:"Shark DNA Forensics: Applications and Impacts on Genetic Diversity",slug:"shark-dna-forensics-applications-and-impacts-on-genetic-diversity",totalDownloads:4063,totalCrossrefCites:1,totalDimensionsCites:9,abstract:null,book:{id:"1610",slug:"analysis-of-genetic-variation-in-animals",title:"Analysis of Genetic Variation in Animals",fullTitle:"Analysis of Genetic Variation in Animals"},signatures:"Luis Fernando Rodrigues-Filho, Danillo Pinhal, Davidson Sodré and Marcelo Vallinoto",authors:[{id:"104502",title:"Prof.",name:"Marcelo",middleName:null,surname:"Vallinoto",slug:"marcelo-vallinoto",fullName:"Marcelo Vallinoto"},{id:"104511",title:"Dr.",name:"Danillo",middleName:null,surname:"Pinhal",slug:"danillo-pinhal",fullName:"Danillo Pinhal"},{id:"104512",title:"Dr.",name:"Luis Fernando",middleName:null,surname:"Rodrigues-Filho",slug:"luis-fernando-rodrigues-filho",fullName:"Luis Fernando Rodrigues-Filho"},{id:"104514",title:"MSc.",name:"Davidson Clayton",middleName:null,surname:"Azevedo Sodré",slug:"davidson-clayton-azevedo-sodre",fullName:"Davidson Clayton Azevedo Sodré"}]},{id:"29266",title:"Molecular Biodiversity Inventory of the Ichthyofauna of the Czech Republic",slug:"molecular-biodiversity-inventory-of-the-ichthyofauna-of-the-czech-republic",totalDownloads:2063,totalCrossrefCites:1,totalDimensionsCites:3,abstract:null,book:{id:"1610",slug:"analysis-of-genetic-variation-in-animals",title:"Analysis of Genetic Variation in Animals",fullTitle:"Analysis of Genetic Variation in Animals"},signatures:"Jan Mendel, Eva Marešová, Ivo Papoušek, Karel Halačka, Lukáš Vetešník, Radek Šanda, Milena Koníčková and Soňa Urbánková",authors:[{id:"100205",title:"MSc.",name:"Eva",middleName:null,surname:"Maresova",slug:"eva-maresova",fullName:"Eva Maresova"}]},{id:"29263",title:"Loss of Genetic Diversity in Wild Populations",slug:"loss-of-genetic-diversity-in-wild-populations",totalDownloads:5489,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"1610",slug:"analysis-of-genetic-variation-in-animals",title:"Analysis of Genetic Variation in Animals",fullTitle:"Analysis of Genetic Variation in Animals"},signatures:"Shawn Larson",authors:[{id:"96539",title:"Dr.",name:"Shawn",middleName:null,surname:"Larson",slug:"shawn-larson",fullName:"Shawn Larson"}]},{id:"29258",title:"Genetic Diversity and Evolution of Marine Animals Isolated in Marine Lakes",slug:"genetic-diversity-and-evolution-of-marine-animals-isolated-in-marine-lakes",totalDownloads:2905,totalCrossrefCites:3,totalDimensionsCites:4,abstract:null,book:{id:"1610",slug:"analysis-of-genetic-variation-in-animals",title:"Analysis of Genetic Variation in Animals",fullTitle:"Analysis of Genetic Variation in Animals"},signatures:"Naoto Hanzawa, Ryo O. Gotoh, Hidekatsu Sekimoto, Tadasuke V. Goto, Satoru N. Chiba, Kaoru Kuriiwa and Hidetoshi B. Tamate",authors:[{id:"100088",title:"Prof.",name:"Naoto",middleName:null,surname:"Hanzawa",slug:"naoto-hanzawa",fullName:"Naoto Hanzawa"},{id:"104133",title:"PhD.",name:"Ryo",middleName:"O",surname:"Gotoh",slug:"ryo-gotoh",fullName:"Ryo Gotoh"},{id:"104134",title:"Dr.",name:"Tadasuke V.",middleName:null,surname:"Goto",slug:"tadasuke-v.-goto",fullName:"Tadasuke V. Goto"},{id:"104137",title:"MSc.",name:"Hidekatsu",middleName:null,surname:"Sekimoto",slug:"hidekatsu-sekimoto",fullName:"Hidekatsu Sekimoto"},{id:"104139",title:"Prof.",name:"Hidetoshi B.",middleName:null,surname:"Tamate",slug:"hidetoshi-b.-tamate",fullName:"Hidetoshi B. Tamate"},{id:"130516",title:"Dr.",name:"Satoru",middleName:"N",surname:"Chiba",slug:"satoru-chiba",fullName:"Satoru Chiba"},{id:"130517",title:"Dr.",name:"Kaoru",middleName:null,surname:"Kuriiwa",slug:"kaoru-kuriiwa",fullName:"Kaoru Kuriiwa"}]},{id:"29268",title:"Estimating the Worth of Traits of Indigenous Breeds of Cattle in Ethiopia",slug:"estimating-the-worth-of-traits-of-indigenous-breeds-of-cattle-in-ethiopia",totalDownloads:3462,totalCrossrefCites:0,totalDimensionsCites:2,abstract:null,book:{id:"1610",slug:"analysis-of-genetic-variation-in-animals",title:"Analysis of Genetic Variation in Animals",fullTitle:"Analysis of Genetic Variation in Animals"},signatures:"Girma T. Kassie, Awudu Abdulai and Clemens Wollny",authors:[{id:"93081",title:"Dr.",name:"Girma",middleName:null,surname:"Kassie",slug:"girma-kassie",fullName:"Girma Kassie"},{id:"99469",title:"Prof.",name:"Awudu",middleName:null,surname:"Abdulai",slug:"awudu-abdulai",fullName:"Awudu Abdulai"},{id:"99470",title:"Prof.",name:"Clemens",middleName:null,surname:"Wollny",slug:"clemens-wollny",fullName:"Clemens Wollny"}]}],onlineFirstChaptersFilter:{topicId:"391",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:99,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:290,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:12,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"25",title:"Environmental Sciences",doi:"10.5772/intechopen.100362",issn:"2754-6713",scope:"
\r\n\tScientists have long researched to understand the environment and man’s place in it. The search for this knowledge grows in importance as rapid increases in population and economic development intensify humans’ stresses on ecosystems. Fortunately, rapid increases in multiple scientific areas are advancing our understanding of environmental sciences. Breakthroughs in computing, molecular biology, ecology, and sustainability science are enhancing our ability to utilize environmental sciences to address real-world problems. \r\n\tThe four topics of this book series - Pollution; Environmental Resilience and Management; Ecosystems and Biodiversity; and Water Science - will address important areas of advancement in the environmental sciences. They will represent an excellent initial grouping of published works on these critical topics.
",coverUrl:"https://cdn.intechopen.com/series/covers/25.jpg",latestPublicationDate:"May 28th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:1,editor:{id:"197485",title:"Dr.",name:"J. Kevin",middleName:null,surname:"Summers",slug:"j.-kevin-summers",fullName:"J. Kevin Summers",profilePictureURL:"https://mts.intechopen.com/storage/users/197485/images/system/197485.jpg",biography:"J. Kevin Summers is a Senior Research Ecologist at the Environmental Protection Agency’s (EPA) Gulf Ecosystem Measurement and Modeling Division. He is currently working with colleagues in the Sustainable and Healthy Communities Program to develop an index of community resilience to natural hazards, an index of human well-being that can be linked to changes in the ecosystem, social and economic services, and a community sustainability tool for communities with populations under 40,000. He leads research efforts for indicator and indices development. Dr. Summers is a systems ecologist and began his career at the EPA in 1989 and has worked in various programs and capacities. This includes leading the National Coastal Assessment in collaboration with the Office of Water which culminated in the award-winning National Coastal Condition Report series (four volumes between 2001 and 2012), and which integrates water quality, sediment quality, habitat, and biological data to assess the ecosystem condition of the United States estuaries. He was acting National Program Director for Ecology for the EPA between 2004 and 2006. He has authored approximately 150 peer-reviewed journal articles, book chapters, and reports and has received many awards for technical accomplishments from the EPA and from outside of the agency. Dr. Summers holds a BA in Zoology and Psychology, an MA in Ecology, and Ph.D. in Systems Ecology/Biology.",institutionString:null,institution:{name:"Environmental Protection Agency",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"38",title:"Pollution",coverUrl:"https://cdn.intechopen.com/series_topics/covers/38.jpg",isOpenForSubmission:!0,editor:{id:"110740",title:"Dr.",name:"Ismail M.M.",middleName:null,surname:"Rahman",slug:"ismail-m.m.-rahman",fullName:"Ismail M.M. Rahman",profilePictureURL:"https://mts.intechopen.com/storage/users/110740/images/2319_n.jpg",biography:"Ismail Md. Mofizur Rahman (Ismail M. M. Rahman) assumed his current responsibilities as an Associate Professor at the Institute of Environmental Radioactivity, Fukushima University, Japan, in Oct 2015. He also has an honorary appointment to serve as a Collaborative Professor at Kanazawa University, Japan, from Mar 2015 to the present. \nFormerly, Dr. Rahman was a faculty member of the University of Chittagong, Bangladesh, affiliated with the Department of Chemistry (Oct 2002 to Mar 2012) and the Department of Applied Chemistry and Chemical Engineering (Mar 2012 to Sep 2015). Dr. Rahman was also adjunctly attached with Kanazawa University, Japan (Visiting Research Professor, Dec 2014 to Mar 2015; JSPS Postdoctoral Research Fellow, Apr 2012 to Mar 2014), and Tokyo Institute of Technology, Japan (TokyoTech-UNESCO Research Fellow, Oct 2004–Sep 2005). \nHe received his Ph.D. degree in Environmental Analytical Chemistry from Kanazawa University, Japan (2011). He also achieved a Diploma in Environment from the Tokyo Institute of Technology, Japan (2005). Besides, he has an M.Sc. degree in Applied Chemistry and a B.Sc. degree in Chemistry, all from the University of Chittagong, Bangladesh. \nDr. Rahman’s research interest includes the study of the fate and behavior of environmental pollutants in the biosphere; design of low energy and low burden environmental improvement (remediation) technology; implementation of sustainable waste management practices for treatment, handling, reuse, and ultimate residual disposition of solid wastes; nature and type of interactions in organic liquid mixtures for process engineering design applications.",institutionString:null,institution:{name:"Fukushima University",institutionURL:null,country:{name:"Japan"}}},editorTwo:{id:"201020",title:"Dr.",name:"Zinnat Ara",middleName:null,surname:"Begum",slug:"zinnat-ara-begum",fullName:"Zinnat Ara Begum",profilePictureURL:"https://mts.intechopen.com/storage/users/201020/images/system/201020.jpeg",biography:"Zinnat A. Begum received her Ph.D. in Environmental Analytical Chemistry from Kanazawa University in 2012. She achieved her Master of Science (M.Sc.) degree with a major in Applied Chemistry and a Bachelor of Science (B.Sc.) in Chemistry, all from the University of Chittagong, Bangladesh. Her work affiliations include Fukushima University, Japan (Visiting Research Fellow, Institute of Environmental Radioactivity: Mar 2016 to present), Southern University Bangladesh (Assistant Professor, Department of Civil Engineering: Jan 2015 to present), and Kanazawa University, Japan (Postdoctoral Fellow, Institute of Science and Engineering: Oct 2012 to Mar 2014; Research fellow, Venture Business Laboratory, Advanced Science and Social Co-Creation Promotion Organization: Apr 2018 to Mar 2021). The research focus of Dr. Zinnat includes the effect of the relative stability of metal-chelator complexes in the environmental remediation process designs and the development of eco-friendly soil washing techniques using biodegradable chelators.",institutionString:null,institution:{name:"Fukushima University",institutionURL:null,country:{name:"Japan"}}},editorThree:null},{id:"39",title:"Environmental Resilience and Management",coverUrl:"https://cdn.intechopen.com/series_topics/covers/39.jpg",isOpenForSubmission:!0,editor:{id:"137040",title:"Prof.",name:"Jose",middleName:null,surname:"Navarro-Pedreño",slug:"jose-navarro-pedreno",fullName:"Jose Navarro-Pedreño",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRAXrQAO/Profile_Picture_2022-03-09T15:50:19.jpg",biography:"Full professor at University Miguel Hernández of Elche, Spain, previously working at the University of Alicante, Autonomous University of Madrid and Polytechnic University of Valencia. Graduate in Sciences (Chemist), graduate in Geography and History (Geography), master in Water Management, Treatment, master in Fertilizers and Environment and master in Environmental Management; Ph.D. in Environmental Sciences. His research is focused on soil-water and waste-environment relations, mainly on soil-water and soil-waste interactions under different management and waste reuse. His work is reflected in more than 230 communications presented in national and international conferences and congresses, 29 invited lectures from universities, associations and government agencies. Prof. Navarro-Pedreño is also a director of the Ph.D. Program Environment and Sustainability (2012-present) and a member of several societies among which are the Spanish Society of Soil Science, International Union of Soil Sciences, European Society for Soil Conservation, DessertNet and the Spanish Royal Society of Chemistry.",institutionString:"Miguel Hernández University of Elche, Spain",institution:null},editorTwo:null,editorThree:null},{id:"40",title:"Ecosystems and Biodiversity",coverUrl:"https://cdn.intechopen.com/series_topics/covers/40.jpg",isOpenForSubmission:!0,editor:{id:"209149",title:"Prof.",name:"Salustiano",middleName:null,surname:"Mato",slug:"salustiano-mato",fullName:"Salustiano Mato",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRLREQA4/Profile_Picture_2022-03-31T10:23:50.png",biography:"Salustiano Mato de la Iglesia (Santiago de Compostela, 1960) is a doctor in biology from the University of Santiago and a Professor of zoology at the Department of Ecology and Animal Biology at the University of Vigo. He has developed his research activity in the fields of fauna and soil ecology, and in the treatment of organic waste, having been the founder and principal investigator of the Environmental Biotechnology Group of the University of Vigo.\r\nHis research activity in the field of Environmental Biotechnology has been focused on the development of novel organic waste treatment systems through composting. The result of this line of work are three invention patents and various scientific and technical publications in prestigious international journals.",institutionString:null,institution:{name:"University of Vigo",institutionURL:null,country:{name:"Spain"}}},editorTwo:{id:"60498",title:"Prof.",name:"Josefina",middleName:null,surname:"Garrido",slug:"josefina-garrido",fullName:"Josefina Garrido",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRj1VQAS/Profile_Picture_2022-03-31T10:06:51.jpg",biography:"Josefina Garrido González (Paradela de Abeleda, Ourense 1959), is a doctor in biology from the University of León and a Professor of Zoology at the Department of Ecology and Animal Biology at the University of Vigo. She has focused her research activity on the taxonomy, fauna and ecology of aquatic beetles, in addition to other lines of research such as the conservation of biodiversity in freshwater ecosystems; conservation of protected areas (Red Natura 2000) and assessment of the effectiveness of wetlands as priority areas for the conservation of aquatic invertebrates; studies of water quality in freshwater ecosystems through biological indicators and physicochemical parameters; surveillance and research of vector arthropods and invasive alien species.",institutionString:null,institution:{name:"University of Vigo",institutionURL:null,country:{name:"Spain"}}},editorThree:{id:"464288",title:"Dr.",name:"Francisco",middleName:null,surname:"Ramil",slug:"francisco-ramil",fullName:"Francisco Ramil",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003RI7lHQAT/Profile_Picture_2022-03-31T10:15:35.png",biography:"Fran Ramil Blanco (Porto de Espasante, A Coruña, 1960), is a doctor in biology from the University of Santiago de Compostela and a Professor of Zoology at the Department of Ecology and Animal Biology at the University of Vigo. His research activity is linked to the taxonomy, fauna and ecology of marine benthic invertebrates and especially the Cnidarian group. Since 2004, he has been part of the EcoAfrik project, aimed at the study, protection and conservation of biodiversity and benthic habitats in West Africa. He also participated in the study of vulnerable marine ecosystems associated with seamounts in the South Atlantic and is involved in training young African researchers in the field of marine research.",institutionString:null,institution:{name:"University of Vigo",institutionURL:null,country:{name:"Spain"}}}},{id:"41",title:"Water Science",coverUrl:"https://cdn.intechopen.com/series_topics/covers/41.jpg",isOpenForSubmission:!0,editor:{id:"349630",title:"Dr.",name:"Yizi",middleName:null,surname:"Shang",slug:"yizi-shang",fullName:"Yizi Shang",profilePictureURL:"https://mts.intechopen.com/storage/users/349630/images/system/349630.jpg",biography:"Prof. Dr. Yizi Shang is a pioneering researcher in hydrology and water resources who has devoted his research career to promoting the conservation and protection of water resources for sustainable development. He is presently associate editor of Water International (official journal of the International Water Resources Association). He was also invited to serve as an associate editor for special issues of the Journal of the American Water Resources Association. He has served as an editorial member for international journals such as Hydrology, Journal of Ecology & Natural Resources, and Hydro Science & Marine Engineering, among others. He has chaired or acted as a technical committee member for twenty-five international forums (conferences). Dr. Shang graduated from Tsinghua University, China, in 2010 with a Ph.D. in Engineering. Prior to that, he worked as a research fellow at Harvard University from 2008 to 2009. Dr. Shang serves as a senior research engineer at the China Institute of Water Resources and Hydropower Research (IWHR) and was awarded as a distinguished researcher at National Taiwan University in 2017.",institutionString:"China Institute of Water Resources and Hydropower Research",institution:{name:"China Institute of Water Resources and Hydropower Research",institutionURL:null,country:{name:"China"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:1,paginationItems:[{id:"81999",title:"Climate Change, Rural Livelihoods, and Human Well-Being: Experiences from Kenya",doi:"10.5772/intechopen.104965",signatures:"André J. Pelser and Rujeko Samanthia Chimukuche",slug:"climate-change-rural-livelihoods-and-human-well-being-experiences-from-kenya",totalDownloads:0,totalCrossrefCites:null,totalDimensionsCites:null,authors:null,book:{title:"Vegetation Dynamics, Changing Ecosystems and Human Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11663.jpg",subseries:{id:"40",title:"Ecosystems and Biodiversity"}}}]},overviewPagePublishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10843",title:"Persistent Organic Pollutants (POPs)",subtitle:"Monitoring, Impact and Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10843.jpg",slug:"persistent-organic-pollutants-pops-monitoring-impact-and-treatment",publishedDate:"April 13th 2022",editedByType:"Edited by",bookSignature:"Mohamed Nageeb Rashed",hash:"f5b1589f0a990b6114fef2dadc735dd9",volumeInSeries:1,fullTitle:"Persistent Organic Pollutants (POPs) - Monitoring, Impact and Treatment",editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",biography:"Prof. Mohamed Nageeb Rashed is Professor of Analytical and Environmental Chemistry and former vice-dean for environmental affairs, Faculty of Science, Aswan University, Egypt. He received his Ph.D. in Environmental Analytical Chemistry from Assiut University, Egypt, in 1989. His research interest is in analytical and environmental chemistry with special emphasis on: (1) monitoring and assessing biological trace elements and toxic metals in human blood, urine, water, crops, vegetables, and medicinal plants; (2) relationships between environmental heavy metals and human diseases; (3) uses of biological indicators for monitoring water pollution; (4) environmental chemistry of lakes, rivers, and well water; (5) water and wastewater treatment by adsorption and photocatalysis techniques; (6) soil and water pollution monitoring, control, and treatment; and (7) advanced oxidation treatment. Prof. Rashed has supervised several MSc and Ph.D. theses in the field of analytical and environmental chemistry. He served as an examiner for several Ph.D. theses in analytical chemistry in India, Kazakhstan, and Botswana. He has published about ninety scientific papers in peer-reviewed international journals and several papers in national and international conferences. He participated as an invited speaker at thirty international conferences. Prof. Rashed is the editor-in-chief and an editorial board member for several international journals in the fields of chemistry and environment. He is a member of several national and international societies. He received the Egyptian State Award for Environmental Research in 2001 and the Aswan University Merit Award for Basic Science in 2020. Prof. Rashed was recognized in Stanford University’s list of the World’s Top 2% Scientists in 2020 and 2021.",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}}]}]},openForSubmissionBooks:{paginationCount:4,paginationItems:[{id:"11445",title:"Multi-Agent Technologies and Machine Learning",coverURL:"https://cdn.intechopen.com/books/images_new/11445.jpg",hash:"d980826615baa6e33456e2a79064c5e8",secondStepPassed:!0,currentStepOfPublishingProcess:4,submissionDeadline:"March 29th 2022",isOpenForSubmission:!0,editors:[{id:"265237",title:"Prof.",name:"Igor",surname:"Sheremet",slug:"igor-sheremet",fullName:"Igor Sheremet"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11446",title:"Industry 4.0 - Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11446.jpg",hash:"be984f45b90c1003798661ef885d8a34",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 12th 2022",isOpenForSubmission:!0,editors:[{id:"303193",title:"Dr.",name:"Meisam",surname:"Gordan",slug:"meisam-gordan",fullName:"Meisam Gordan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11448",title:"Artificial Neural Networks - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11448.jpg",hash:"e57ff97a39cfc6fe68a1ac62b503dbe9",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 3rd 2022",isOpenForSubmission:!0,editors:[{id:"22866",title:"Dr.",name:"Chi Leung Patrick",surname:"Hui",slug:"chi-leung-patrick-hui",fullName:"Chi Leung Patrick Hui"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11447",title:"Swarm Intelligence - Recent Advances and Current Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11447.jpg",hash:"f68e3c3430a74fc7a7eb97f6ea2bb42e",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 14th 2022",isOpenForSubmission:!0,editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:43,paginationItems:[{id:"81796",title:"Apoptosis-Related Diseases and Peroxisomes",doi:"10.5772/intechopen.105052",signatures:"Meimei Wang, Yakun Liu, Ni Chen, Juan Wang and Ye Zhao",slug:"apoptosis-related-diseases-and-peroxisomes",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81723",title:"Peroxisomal Modulation as Therapeutic Alternative for Tackling Multiple Cancers",doi:"10.5772/intechopen.104873",signatures:"Shazia Usmani, Shadma Wahab, Abdul Hafeez, Shabana Khatoon and Syed Misbahul Hasan",slug:"peroxisomal-modulation-as-therapeutic-alternative-for-tackling-multiple-cancers",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81638",title:"Aging and Neuropsychiatric Disease: A General Overview of Prevalence and Trends",doi:"10.5772/intechopen.103102",signatures:"Jelena Milić",slug:"aging-and-neuropsychiatric-disease-a-general-overview-of-prevalence-and-trends",totalDownloads:18,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81566",title:"New and Emerging Technologies for Integrative Ambulatory Autonomic Assessment and Intervention as a Catalyst in the Synergy of Remote Geocoded Biosensing, Algorithmic Networked Cloud Computing, Deep Learning, and Regenerative/Biomic Medicine: Further Real",doi:"10.5772/intechopen.104092",signatures:"Robert L. Drury",slug:"new-and-emerging-technologies-for-integrative-ambulatory-autonomic-assessment-and-intervention-as-a-",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"81576",title:"Carotenoids in Thermal Adaptation of Plants and Animals",doi:"10.5772/intechopen.104537",signatures:"Ivan M. Petyaev",slug:"carotenoids-in-thermal-adaptation-of-plants-and-animals",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Ivan",surname:"Petyaev"}],book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"81358",title:"New Insights on Carotenoid Production by Gordonia alkanivorans Strain 1B",doi:"10.5772/intechopen.103919",signatures:"Tiago P. Silva, Susana M. Paixão, Ana S. Fernandes, José C. Roseiro and Luís Alves",slug:"new-insights-on-carotenoid-production-by-gordonia-alkanivorans-strain-1b",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"81298",title:"Roles of Extracellular Vesicles in Cancer Metastasis",doi:"10.5772/intechopen.103798",signatures:"Eman Helmy Thabet",slug:"roles-of-extracellular-vesicles-in-cancer-metastasis",totalDownloads:23,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Extracellular Vesicles - Role in Diseases, Pathogenesis and Therapy",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81290",title:"Musculoskeletal Abnormalities Caused by Cystic Fibrosis",doi:"10.5772/intechopen.104591",signatures:"Mark Lambrechts",slug:"musculoskeletal-abnormalities-caused-by-cystic-fibrosis",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Advances in Skeletal Muscle Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11675.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81286",title:"Potassium Derangements: A Pathophysiological Review, Diagnostic Approach, and Clinical Management",doi:"10.5772/intechopen.103016",signatures:"Sairah Sharif and Jie Tang",slug:"potassium-derangements-a-pathophysiological-review-diagnostic-approach-and-clinical-management",totalDownloads:26,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"81246",title:"Role of Carotenoids in Cardiovascular Disease",doi:"10.5772/intechopen.102750",signatures:"Arslan Ahmad, Sakhawat Riaz, Muhammad Shahzaib Nadeem, Umber Mubeen and Khadija Maham",slug:"role-of-carotenoids-in-cardiovascular-disease",totalDownloads:27,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}}]},subseriesFiltersForOFChapters:[{caption:"Plant Physiology",value:13,count:5,group:"subseries"},{caption:"Human Physiology",value:12,count:13,group:"subseries"},{caption:"Cell Physiology",value:11,count:25,group:"subseries"}],publishedBooks:{paginationCount:13,paginationItems:[{type:"book",id:"7102",title:"Pneumonia",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7102.jpg",slug:"pneumonia",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Nima Rezaei",hash:"9fd70142814192dcec58a176749f1b60",volumeInSeries:13,fullTitle:"Pneumonia",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",institutionURL:null,country:{name:"Iran"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9615",title:"Chikungunya Virus",subtitle:"A Growing Global Public Health Threat",coverURL:"https://cdn.intechopen.com/books/images_new/9615.jpg",slug:"chikungunya-virus-a-growing-global-public-health-threat",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Jean Engohang-Ndong",hash:"c960d94a63867dd12a8ab15176a3ff06",volumeInSeries:12,fullTitle:"Chikungunya Virus - A Growing Global Public Health Threat",editors:[{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",institutionString:"Kent State University",institution:{name:"Kent State University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9619",title:"Epstein-Barr Virus",subtitle:"New Trends",coverURL:"https://cdn.intechopen.com/books/images_new/9619.jpg",slug:"epstein-barr-virus-new-trends",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Emmanuel Drouet",hash:"a2128c53becb6064589570cbe8d976f8",volumeInSeries:11,fullTitle:"Epstein-Barr Virus - New Trends",editors:[{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",institutionString:null,institution:{name:"Grenoble Alpes University",institutionURL:null,country:{name:"France"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9525",title:"Insights Into Drug Resistance in Staphylococcus aureus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9525.jpg",slug:"insights-into-drug-resistance-in-staphylococcus-aureus",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Amjad Aqib",hash:"98bb6c1ddb067da67185c272f81c0a27",volumeInSeries:10,fullTitle:"Insights Into Drug Resistance in Staphylococcus aureus",editors:[{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9614",title:"Advances in Candida albicans",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9614.jpg",slug:"advances-in-candida-albicans",publishedDate:"November 17th 2021",editedByType:"Edited by",bookSignature:"Xinhui Wang",hash:"31d6882518ca749b12715266eed0a018",volumeInSeries:9,fullTitle:"Advances in Candida albicans",editors:[{id:"296531",title:"Dr.",name:"Xinhui",middleName:null,surname:"Wang",slug:"xinhui-wang",fullName:"Xinhui Wang",profilePictureURL:"https://mts.intechopen.com/storage/users/296531/images/system/296531.jpg",institutionString:"Qinghai Normal University",institution:{name:"University of Luxembourg",institutionURL:null,country:{name:"Luxembourg"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9528",title:"Current Topics and Emerging Issues in Malaria Elimination",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9528.jpg",slug:"current-topics-and-emerging-issues-in-malaria-elimination",publishedDate:"July 21st 2021",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"7f178329cc42e691efe226b32f14e2ea",volumeInSeries:8,fullTitle:"Current Topics and Emerging Issues in Malaria Elimination",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9613",title:"Dengue Fever in a One Health Perspective",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9613.jpg",slug:"dengue-fever-in-a-one-health-perspective",publishedDate:"October 28th 2020",editedByType:"Edited by",bookSignature:"Márcia Aparecida Sperança",hash:"77ecce8195c11092230b4156df6d83ff",volumeInSeries:7,fullTitle:"Dengue Fever in a One Health Perspective",editors:[{id:"176579",title:"Ph.D.",name:"Márcia Aparecida",middleName:null,surname:"Sperança",slug:"marcia-aparecida-speranca",fullName:"Márcia Aparecida Sperança",profilePictureURL:"https://mts.intechopen.com/storage/users/176579/images/system/176579.jpg",institutionString:"Federal University of ABC",institution:{name:"Universidade Federal do ABC",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7981",title:"Overview on Echinococcosis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7981.jpg",slug:"overview-on-echinococcosis",publishedDate:"April 22nd 2020",editedByType:"Edited by",bookSignature:"Fethi Derbel and Meriem Braiki",hash:"24dee9209f3fd6b7cd28f042da0076f0",volumeInSeries:6,fullTitle:"Overview on Echinococcosis",editors:[{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",institutionString:"Clinique les Oliviers",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7887",title:"Hepatitis B and C",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7887.jpg",slug:"hepatitis-b-and-c",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Luis Rodrigo",hash:"8dd6dab483cf505d83caddaeaf497f2c",volumeInSeries:5,fullTitle:"Hepatitis B and C",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo",profilePictureURL:"https://mts.intechopen.com/storage/users/73208/images/system/73208.jpg",institutionString:"University of Oviedo",institution:{name:"University of Oviedo",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7839",title:"Malaria",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",slug:"malaria",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Fyson H. Kasenga",hash:"91cde4582ead884cb0f355a19b67cd56",volumeInSeries:4,fullTitle:"Malaria",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga",profilePictureURL:"https://mts.intechopen.com/storage/users/86725/images/system/86725.jpg",institutionString:"Malawi Adventist University",institution:{name:"Malawi Adventist University",institutionURL:null,country:{name:"Malawi"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",slug:"current-topics-in-neglected-tropical-diseases",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"61c627da05b2ace83056d11357bdf361",volumeInSeries:3,fullTitle:"Current Topics in Neglected Tropical Diseases",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Bacterial Infectious Diseases",value:3,count:2},{group:"subseries",caption:"Parasitic Infectious Diseases",value:5,count:4},{group:"subseries",caption:"Viral Infectious Diseases",value:6,count:7}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:2},{group:"publicationYear",caption:"2021",value:2021,count:4},{group:"publicationYear",caption:"2020",value:2020,count:3},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:249,paginationItems:[{id:"274452",title:"Dr.",name:"Yousif",middleName:"Mohamed",surname:"Abdallah",slug:"yousif-abdallah",fullName:"Yousif Abdallah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274452/images/8324_n.jpg",biography:"I certainly enjoyed my experience in Radiotherapy and Nuclear Medicine, particularly it has been in different institutions and hospitals with different Medical Cultures and allocated resources. Radiotherapy and Nuclear Medicine Technology has always been my aspiration and my life. As years passed I accumulated a tremendous amount of skills and knowledge in Radiotherapy and Nuclear Medicine, Conventional Radiology, Radiation Protection, Bioinformatics Technology, PACS, Image processing, clinically and lecturing that will enable me to provide a valuable service to the community as a Researcher and Consultant in this field. My method of translating this into day to day in clinical practice is non-exhaustible and my habit of exchanging knowledge and expertise with others in those fields is the code and secret of success.",institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",biography:"Bartłomiej Płaczek, MSc (2002), Ph.D. (2005), Habilitation (2016), is a professor at the University of Silesia, Institute of Computer Science, Poland, and an expert from the National Centre for Research and Development. His research interests include sensor networks, smart sensors, intelligent systems, and image processing with applications in healthcare and medicine. He is the author or co-author of more than seventy papers in peer-reviewed journals and conferences as well as the co-author of several books. He serves as a reviewer for many scientific journals, international conferences, and research foundations. Since 2010, Dr. Placzek has been a reviewer of grants and projects (including EU projects) in the field of information technologies.",institutionString:"University of Silesia",institution:{name:"University of Silesia",country:{name:"Poland"}}},{id:"35000",title:"Prof.",name:"Ulrich H.P",middleName:"H.P.",surname:"Fischer",slug:"ulrich-h.p-fischer",fullName:"Ulrich H.P Fischer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/35000/images/3052_n.jpg",biography:"Academic and Professional Background\nUlrich H. P. has Diploma and PhD degrees in Physics from the Free University Berlin, Germany. He has been working on research positions in the Heinrich-Hertz-Institute in Germany. Several international research projects has been performed with European partners from France, Netherlands, Norway and the UK. He is currently Professor of Communications Systems at the Harz University of Applied Sciences, Germany.\n\nPublications and Publishing\nHe has edited one book, a special interest book about ‘Optoelectronic Packaging’ (VDE, Berlin, Germany), and has published over 100 papers and is owner of several international patents for WDM over POF key elements.\n\nKey Research and Consulting Interests\nUlrich’s research activity has always been related to Spectroscopy and Optical Communications Technology. Specific current interests include the validation of complex instruments, and the application of VR technology to the development and testing of measurement systems. He has been reviewer for several publications of the Optical Society of America\\'s including Photonics Technology Letters and Applied Optics.\n\nPersonal Interests\nThese include motor cycling in a very relaxed manner and performing martial arts.",institutionString:null,institution:{name:"Charité",country:{name:"Germany"}}},{id:"341622",title:"Ph.D.",name:"Eduardo",middleName:null,surname:"Rojas Alvarez",slug:"eduardo-rojas-alvarez",fullName:"Eduardo Rojas Alvarez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/341622/images/15892_n.jpg",biography:null,institutionString:null,institution:{name:"University of Cuenca",country:{name:"Ecuador"}}},{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",biography:"Muhammad Sarfraz is a professor in the Department of Information Science, Kuwait University, Kuwait. His research interests include optimization, computer graphics, computer vision, image processing, machine learning, pattern recognition, soft computing, data science, and intelligent systems. Prof. Sarfraz has been a keynote/invited speaker at various platforms around the globe. He has advised/supervised more than 110 students for their MSc and Ph.D. theses. He has published more than 400 publications as books, journal articles, and conference papers. He has authored and/or edited around seventy books. Prof. Sarfraz is a member of various professional societies. He is a chair and member of international advisory committees and organizing committees of numerous international conferences. He is also an editor and editor in chief for various international journals.",institutionString:"Kuwait University",institution:{name:"Kuwait University",country:{name:"Kuwait"}}},{id:"32650",title:"Prof.",name:"Lukas",middleName:"Willem",surname:"Snyman",slug:"lukas-snyman",fullName:"Lukas Snyman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/32650/images/4136_n.jpg",biography:"Lukas Willem Snyman received his basic education at primary and high schools in South Africa, Eastern Cape. He enrolled at today's Nelson Metropolitan University and graduated from this university with a BSc in Physics and Mathematics, B.Sc Honors in Physics, MSc in Semiconductor Physics, and a Ph.D. in Semiconductor Physics in 1987. After his studies, he chose an academic career and devoted his energy to the teaching of physics to first, second, and third-year students. After positions as a lecturer at the University of Port Elizabeth, he accepted a position as Associate Professor at the University of Pretoria, South Africa.\r\n\r\nIn 1992, he motivates the concept of 'television and computer-based education” as means to reach large student numbers with only the best of teaching expertise and publishes an article on the concept in the SA Journal of Higher Education of 1993 (and later in 2003). The University of Pretoria subsequently approved a series of test projects on the concept with outreach to Mamelodi and Eerste Rust in 1993. In 1994, the University established a 'Unit for Telematic Education ' as a support section for multiple faculties at the University of Pretoria. In subsequent years, the concept of 'telematic education” subsequently becomes well established in academic circles in South Africa, grew in popularity, and is adopted by many universities and colleges throughout South Africa as a medium of enhancing education and training, as a method to reaching out to far out communities, and as a means to enhance study from the home environment.\r\n\r\nProfessor Snyman in subsequent years pursued research in semiconductor physics, semiconductor devices, microelectronics, and optoelectronics.\r\n\r\nIn 2000 he joined the TUT as a full professor. Here served for a period as head of the Department of Electronic Engineering. Here he makes contributions to solar energy development, microwave and optoelectronic device development, silicon photonics, as well as contributions to new mobile telecommunication systems and network planning in SA.\r\n\r\nCurrently, he teaches electronics and telecommunications at the TUT to audiences ranging from first-year students to Ph.D. level.\r\n\r\nFor his research in the field of 'Silicon Photonics” since 1990, he has published (as author and co-author) about thirty internationally reviewed articles in scientific journals, contributed to more than forty international conferences, about 25 South African provisional patents (as inventor and co-inventor), 8 PCT international patent applications until now. Of these, two USA patents applications, two European Patents, two Korean patents, and ten SA patents have been granted. A further 4 USA patents, 5 European patents, 3 Korean patents, 3 Chinese patents, and 3 Japanese patents are currently under consideration.\r\n\r\nRecently he has also published an extensive scholarly chapter in an internet open access book on 'Integrating Microphotonic Systems and MOEMS into standard Silicon CMOS Integrated circuitry”.\r\n\r\nFurthermore, Professor Snyman recently steered a new initiative at the TUT by introducing a 'Laboratory for Innovative Electronic Systems ' at the Department of Electrical Engineering. The model of this laboratory or center is to primarily combine outputs as achieved by high-level research with lower-level system development and entrepreneurship in a technical university environment. Students are allocated to projects at different levels with PhDs and Master students allocated to the generation of new knowledge and new technologies, while students at the diploma and Baccalaureus level are allocated to electronic systems development with a direct and a near application for application in industry or the commercial and public sectors in South Africa.\r\n\r\nProfessor Snyman received the WIRSAM Award of 1983 and the WIRSAM Award in 1985 in South Africa for best research papers by a young scientist at two international conferences on electron microscopy in South Africa. He subsequently received the SA Microelectronics Award for the best dissertation emanating from studies executed at a South African university in the field of Physics and Microelectronics in South Africa in 1987. In October of 2011, Professor Snyman received the prestigious Institutional Award for 'Innovator of the Year” for 2010 at the Tshwane University of Technology, South Africa. This award was based on the number of patents recognized and granted by local and international institutions as well as for his contributions concerning innovation at the TUT.",institutionString:null,institution:{name:"University of South Africa",country:{name:"South Africa"}}},{id:"317279",title:"Mr.",name:"Ali",middleName:"Usama",surname:"Syed",slug:"ali-syed",fullName:"Ali Syed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/317279/images/16024_n.png",biography:"A creative, talented, and innovative young professional who is dedicated, well organized, and capable research fellow with two years of experience in graduate-level research, published in engineering journals and book, with related expertise in Bio-robotics, equally passionate about the aesthetics of the mechanical and electronic system, obtained expertise in the use of MS Office, MATLAB, SolidWorks, LabVIEW, Proteus, Fusion 360, having a grasp on python, C++ and assembly language, possess proven ability in acquiring research grants, previous appointments with social and educational societies with experience in administration, current affiliations with IEEE and Web of Science, a confident presenter at conferences and teacher in classrooms, able to explain complex information to audiences of all levels.",institutionString:null,institution:{name:"Air University",country:{name:"Pakistan"}}},{id:"75526",title:"Ph.D.",name:"Zihni Onur",middleName:null,surname:"Uygun",slug:"zihni-onur-uygun",fullName:"Zihni Onur Uygun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/75526/images/12_n.jpg",biography:"My undergraduate education and my Master of Science educations at Ege University and at Çanakkale Onsekiz Mart University have given me a firm foundation in Biochemistry, Analytical Chemistry, Biosensors, Bioelectronics, Physical Chemistry and Medicine. After obtaining my degree as a MSc in analytical chemistry, I started working as a research assistant in Ege University Medical Faculty in 2014. In parallel, I enrolled to the MSc program at the Department of Medical Biochemistry at Ege University to gain deeper knowledge on medical and biochemical sciences as well as clinical chemistry in 2014. In my PhD I deeply researched on biosensors and bioelectronics and finished in 2020. Now I have eleven SCI-Expanded Index published papers, 6 international book chapters, referee assignments for different SCIE journals, one international patent pending, several international awards, projects and bursaries. In parallel to my research assistant position at Ege University Medical Faculty, Department of Medical Biochemistry, in April 2016, I also founded a Start-Up Company (Denosens Biotechnology LTD) by the support of The Scientific and Technological Research Council of Turkey. Currently, I am also working as a CEO in Denosens Biotechnology. The main purposes of the company, which carries out R&D as a research center, are to develop new generation biosensors and sensors for both point-of-care diagnostics; such as glucose, lactate, cholesterol and cancer biomarker detections. My specific experimental and instrumental skills are Biochemistry, Biosensor, Analytical Chemistry, Electrochemistry, Mobile phone based point-of-care diagnostic device, POCTs and Patient interface designs, HPLC, Tandem Mass Spectrometry, Spectrophotometry, ELISA.",institutionString:null,institution:{name:"Ege University",country:{name:"Turkey"}}},{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",biography:"Jaya T. Varkey, PhD, graduated with a degree in Chemistry from Cochin University of Science and Technology, Kerala, India. She obtained a PhD in Chemistry from the School of Chemical Sciences, Mahatma Gandhi University, Kerala, India, and completed a post-doctoral fellowship at the University of Minnesota, USA. She is a research guide at Mahatma Gandhi University and Associate Professor in Chemistry, St. Teresa’s College, Kochi, Kerala, India.\nDr. Varkey received a National Young Scientist award from the Indian Science Congress (1995), a UGC Research award (2016–2018), an Indian National Science Academy (INSA) Visiting Scientist award (2018–2019), and a Best Innovative Faculty award from the All India Association for Christian Higher Education (AIACHE) (2019). She Hashas received the Sr. Mary Cecil prize for best research paper three times. She was also awarded a start-up to develop a tea bag water filter. \nDr. Varkey has published two international books and twenty-seven international journal publications. She is an editorial board member for five international journals.",institutionString:"St. Teresa’s College",institution:null},{id:"250668",title:"Dr.",name:"Ali",middleName:null,surname:"Nabipour Chakoli",slug:"ali-nabipour-chakoli",fullName:"Ali Nabipour Chakoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/250668/images/system/250668.jpg",biography:"Academic Qualification:\r\n•\tPhD in Materials Physics and Chemistry, From: Sep. 2006, to: Sep. 2010, School of Materials Science and Engineering, Harbin Institute of Technology, Thesis: Structure and Shape Memory Effect of Functionalized MWCNTs/poly (L-lactide-co-ε-caprolactone) Nanocomposites. Supervisor: Prof. Wei Cai,\r\n•\tM.Sc in Applied Physics, From: 1996, to: 1998, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Determination of Boron in Micro alloy Steels with solid state nuclear track detectors by neutron induced auto radiography, Supervisors: Dr. M. Hosseini Ashrafi and Dr. A. Hosseini.\r\n•\tB.Sc. in Applied Physics, From: 1991, to: 1996, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Design of shielding for Am-Be neutron sources for In Vivo neutron activation analysis, Supervisor: Dr. M. Hosseini Ashrafi.\r\n\r\nResearch Experiences:\r\n1.\tNanomaterials, Carbon Nanotubes, Graphene: Synthesis, Functionalization and Characterization,\r\n2.\tMWCNTs/Polymer Composites: Fabrication and Characterization, \r\n3.\tShape Memory Polymers, Biodegradable Polymers, ORC, Collagen,\r\n4.\tMaterials Analysis and Characterizations: TEM, SEM, XPS, FT-IR, Raman, DSC, DMA, TGA, XRD, GPC, Fluoroscopy, \r\n5.\tInteraction of Radiation with Mater, Nuclear Safety and Security, NDT(RT),\r\n6.\tRadiation Detectors, Calibration (SSDL),\r\n7.\tCompleted IAEA e-learning Courses:\r\nNuclear Security (15 Modules),\r\nNuclear Safety:\r\nTSA 2: Regulatory Protection in Occupational Exposure,\r\nTips & Tricks: Radiation Protection in Radiography,\r\nSafety and Quality in Radiotherapy,\r\nCourse on Sealed Radioactive Sources,\r\nCourse on Fundamentals of Environmental Remediation,\r\nCourse on Planning for Environmental Remediation,\r\nKnowledge Management Orientation Course,\r\nFood Irradiation - Technology, Applications and Good Practices,\r\nEmployment:\r\nFrom 2010 to now: Academic staff, Nuclear Science and Technology Research Institute, Kargar Shomali, Tehran, Iran, P.O. Box: 14395-836.\r\nFrom 1997 to 2006: Expert of Materials Analysis and Characterization. Research Center of Agriculture and Medicine. Rajaeeshahr, Karaj, Iran, P. O. Box: 31585-498.",institutionString:"Atomic Energy Organization of Iran",institution:{name:"Atomic Energy Organization of Iran",country:{name:"Iran"}}},{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",biography:"Monika Elżbieta Machoy, MD, graduated with distinction from the Faculty of Medicine and Dentistry at the Pomeranian Medical University in 2009, defended her PhD thesis with summa cum laude in 2016 and is currently employed as a researcher at the Department of Orthodontics of the Pomeranian Medical University. She expanded her professional knowledge during a one-year scholarship program at the Ernst Moritz Arndt University in Greifswald, Germany and during a three-year internship at the Technical University in Dresden, Germany. She has been a speaker at numerous orthodontic conferences, among others, American Association of Orthodontics, European Orthodontic Symposium and numerous conferences of the Polish Orthodontic Society. She conducts research focusing on the effect of orthodontic treatment on dental and periodontal tissues and the causes of pain in orthodontic patients.",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",country:{name:"Poland"}}},{id:"252743",title:"Prof.",name:"Aswini",middleName:"Kumar",surname:"Kar",slug:"aswini-kar",fullName:"Aswini Kar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252743/images/10381_n.jpg",biography:"uploaded in cv",institutionString:null,institution:{name:"KIIT University",country:{name:"India"}}},{id:"204256",title:"Dr.",name:"Anil",middleName:"Kumar",surname:"Kumar Sahu",slug:"anil-kumar-sahu",fullName:"Anil Kumar Sahu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204256/images/14201_n.jpg",biography:"I have nearly 11 years of research and teaching experience. I have done my master degree from University Institute of Pharmacy, Pt. Ravi Shankar Shukla University, Raipur, Chhattisgarh India. I have published 16 review and research articles in international and national journals and published 4 chapters in IntechOpen, the world’s leading publisher of Open access books. I have presented many papers at national and international conferences. I have received research award from Indian Drug Manufacturers Association in year 2015. My research interest extends from novel lymphatic drug delivery systems, oral delivery system for herbal bioactive to formulation optimization.",institutionString:null,institution:{name:"Chhattisgarh Swami Vivekanand Technical University",country:{name:"India"}}},{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null},{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",country:{name:"Canada"}}},{id:"254463",title:"Prof.",name:"Haisheng",middleName:null,surname:"Yang",slug:"haisheng-yang",fullName:"Haisheng Yang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/254463/images/system/254463.jpeg",biography:"Haisheng Yang, Ph.D., Professor and Director of the Department of Biomedical Engineering, College of Life Science and Bioengineering, Beijing University of Technology. He received his Ph.D. degree in Mechanics/Biomechanics from Harbin Institute of Technology (jointly with University of California, Berkeley). Afterwards, he worked as a Postdoctoral Research Associate in the Purdue Musculoskeletal Biology and Mechanics Lab at the Department of Basic Medical Sciences, Purdue University, USA. He also conducted research in the Research Centre of Shriners Hospitals for Children-Canada at McGill University, Canada. Dr. Yang has over 10 years research experience in orthopaedic biomechanics and mechanobiology of bone adaptation and regeneration. He earned an award from Beijing Overseas Talents Aggregation program in 2017 and serves as Beijing Distinguished Professor.",institutionString:"Beijing University of Technology",institution:null},{id:"255757",title:"Dr.",name:"Igor",middleName:"Victorovich",surname:"Lakhno",slug:"igor-lakhno",fullName:"Igor Lakhno",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255757/images/system/255757.jpg",biography:"Lakhno Igor Victorovich was born in 1971 in Kharkiv (Ukraine). \nMD – 1994, Kharkiv National Medical Univesity.\nOb&Gyn; – 1997, master courses in Kharkiv Medical Academy of Postgraduate Education.\nPhD – 1999, Kharkiv National Medical Univesity.\nDSc – 2019, PL Shupik National Academy of Postgraduate Education \nLakhno Igor has been graduated from an international training courses on reproductive medicine and family planning held in Debrecen University (Hungary) in 1997. Since 1998 Lakhno Igor has worked as an associate professor of the department of obstetrics and gynecology of VN Karazin National University and an associate professor of the perinatology, obstetrics and gynecology department of Kharkiv Medical Academy of Postgraduate Education. Since June 2019 he’s a professor of the department of obstetrics and gynecology of VN Karazin National University and a professor of the perinatology, obstetrics and gynecology department of Kharkiv Medical Academy of Postgraduate Education . He’s an author of about 200 printed works and there are 17 of them in Scopus or Web of Science databases. Lakhno Igor is a rewiever of Journal of Obstetrics and Gynaecology (Taylor and Francis), Informatics in Medicine Unlocked (Elsevier), The Journal of Obstetrics and Gynecology Research (Wiley), Endocrine, Metabolic & Immune Disorders-Drug Targets (Bentham Open), The Open Biomedical Engineering Journal (Bentham Open), etc. He’s defended a dissertation for DSc degree \\'Pre-eclampsia: prediction, prevention and treatment”. Lakhno Igor has participated as a speaker in several international conferences and congresses (International Conference on Biological Oscillations April 10th-14th 2016, Lancaster, UK, The 9th conference of the European Study Group on Cardiovascular Oscillations). His main scientific interests: obstetrics, women’s health, fetal medicine, cardiovascular medicine.",institutionString:"V.N. Karazin Kharkiv National University",institution:{name:"Kharkiv Medical Academy of Postgraduate Education",country:{name:"Ukraine"}}},{id:"89721",title:"Dr.",name:"Mehmet",middleName:"Cuneyt",surname:"Ozmen",slug:"mehmet-ozmen",fullName:"Mehmet Ozmen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/89721/images/7289_n.jpg",biography:null,institutionString:null,institution:{name:"Gazi University",country:{name:"Turkey"}}},{id:"243698",title:"M.D.",name:"Xiaogang",middleName:null,surname:"Wang",slug:"xiaogang-wang",fullName:"Xiaogang Wang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243698/images/system/243698.png",biography:"Dr. Xiaogang Wang, a faculty member of Shanxi Eye Hospital specializing in the treatment of cataract and retinal disease and a tutor for postgraduate students of Shanxi Medical University, worked in the COOL Lab as an international visiting scholar under the supervision of Dr. David Huang and Yali Jia from October 2012 through November 2013. Dr. Wang earned an MD from Shanxi Medical University and a Ph.D. from Shanghai Jiao Tong University. Dr. Wang was awarded two research project grants focused on multimodal optical coherence tomography imaging and deep learning in cataract and retinal disease, from the National Natural Science Foundation of China. He has published around 30 peer-reviewed journal papers and four book chapters and co-edited one book.",institutionString:"Shanxi Eye Hospital",institution:{name:"Shanxi Eye Hospital",country:{name:"China"}}},{id:"242893",title:"Ph.D. Student",name:"Joaquim",middleName:null,surname:"De Moura",slug:"joaquim-de-moura",fullName:"Joaquim De Moura",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/242893/images/7133_n.jpg",biography:"Joaquim de Moura received his degree in Computer Engineering in 2014 from the University of A Coruña (Spain). In 2016, he received his M.Sc degree in Computer Engineering from the same university. He is currently pursuing his Ph.D degree in Computer Science in a collaborative project between ophthalmology centers in Galicia and the University of A Coruña. His research interests include computer vision, machine learning algorithms and analysis and medical imaging processing of various kinds.",institutionString:null,institution:{name:"University of A Coruña",country:{name:"Spain"}}},{id:"267434",title:"Dr.",name:"Rohit",middleName:null,surname:"Raja",slug:"rohit-raja",fullName:"Rohit Raja",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRZkkQAG/Profile_Picture_2022-05-09T12:55:18.jpg",biography:null,institutionString:null,institution:null},{id:"294334",title:"B.Sc.",name:"Marc",middleName:null,surname:"Bruggeman",slug:"marc-bruggeman",fullName:"Marc Bruggeman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/294334/images/8242_n.jpg",biography:"Chemical engineer graduate, with a passion for material science and specific interest in polymers - their near infinite applications intrigue me. \n\nI plan to continue my scientific career in the field of polymeric biomaterials as I am fascinated by intelligent, bioactive and biomimetic materials for use in both consumer and medical applications.",institutionString:null,institution:null},{id:"244950",title:"Dr.",name:"Salvatore",middleName:null,surname:"Di Lauro",slug:"salvatore-di-lauro",fullName:"Salvatore Di Lauro",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0030O00002bSF1HQAW/ProfilePicture%202021-12-20%2014%3A54%3A14.482",biography:"Name:\n\tSALVATORE DI LAURO\nAddress:\n\tHospital Clínico Universitario Valladolid\nAvda Ramón y Cajal 3\n47005, Valladolid\nSpain\nPhone number: \nFax\nE-mail:\n\t+34 983420000 ext 292\n+34 983420084\nsadilauro@live.it\nDate and place of Birth:\nID Number\nMedical Licence \nLanguages\t09-05-1985. Villaricca (Italy)\n\nY1281863H\n474707061\nItalian (native language)\nSpanish (read, written, spoken)\nEnglish (read, written, spoken)\nPortuguese (read, spoken)\nFrench (read)\n\t\t\nCurrent position (title and company)\tDate (Year)\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. Private practise.\t2017-today\n\n2019-today\n\t\n\t\nEducation (High school, university and postgraduate training > 3 months)\tDate (Year)\nDegree in Medicine and Surgery. University of Neaples 'Federico II”\nResident in Opthalmology. Hospital Clinico Universitario Valladolid\nMaster in Vitreo-Retina. IOBA. University of Valladolid\nFellow of the European Board of Ophthalmology. Paris\nMaster in Research in Ophthalmology. University of Valladolid\t2003-2009\n2012-2016\n2016-2017\n2016\n2012-2013\n\t\nEmployments (company and positions)\tDate (Year)\nResident in Ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl.\nFellow in Vitreo-Retina. IOBA. University of Valladolid\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. \n\t2012-2016\n2016-2017\n2017-today\n\n2019-Today\n\n\n\t\nClinical Research Experience (tasks and role)\tDate (Year)\nAssociated investigator\n\n' FIS PI20/00740: DESARROLLO DE UNA CALCULADORA DE RIESGO DE\nAPARICION DE RETINOPATIA DIABETICA BASADA EN TECNICAS DE IMAGEN MULTIMODAL EN PACIENTES DIABETICOS TIPO 1. Grant by: Ministerio de Ciencia e Innovacion \n\n' (BIO/VA23/14) Estudio clínico multicéntrico y prospectivo para validar dos\nbiomarcadores ubicados en los genes p53 y MDM2 en la predicción de los resultados funcionales de la cirugía del desprendimiento de retina regmatógeno. Grant by: Gerencia Regional de Salud de la Junta de Castilla y León.\n' Estudio multicéntrico, aleatorizado, con enmascaramiento doble, en 2 grupos\nparalelos y de 52 semanas de duración para comparar la eficacia, seguridad e inmunogenicidad de SOK583A1 respecto a Eylea® en pacientes con degeneración macular neovascular asociada a la edad' (CSOK583A12301; N.EUDRA: 2019-004838-41; FASE III). Grant by Hexal AG\n\n' Estudio de fase III, aleatorizado, doble ciego, con grupos paralelos, multicéntrico para comparar la eficacia y la seguridad de QL1205 frente a Lucentis® en pacientes con degeneración macular neovascular asociada a la edad. (EUDRACT: 2018-004486-13). Grant by Qilu Pharmaceutical Co\n\n' Estudio NEUTON: Ensayo clinico en fase IV para evaluar la eficacia de aflibercept en pacientes Naive con Edema MacUlar secundario a Oclusion de Vena CenTral de la Retina (OVCR) en regimen de tratamientO iNdividualizado Treat and Extend (TAE)”, (2014-000975-21). Grant by Fundacion Retinaplus\n\n' Evaluación de la seguridad y bioactividad de anillos de tensión capsular en conejo. Proyecto Procusens. Grant by AJL, S.A.\n\n'Estudio epidemiológico, prospectivo, multicéntrico y abierto\\npara valorar la frecuencia de la conjuntivitis adenovírica diagnosticada mediante el test AdenoPlus®\\nTest en pacientes enfermos de conjuntivitis aguda”\\n. National, multicenter study. Grant by: NICOX.\n\nEuropean multicentric trial: 'Evaluation of clinical outcomes following the use of Systane Hydration in patients with dry eye”. Study Phase 4. Grant by: Alcon Labs'\n\nVLPs Injection and Activation in a Rabbit Model of Uveal Melanoma. Grant by Aura Bioscience\n\nUpdating and characterization of a rabbit model of uveal melanoma. Grant by Aura Bioscience\n\nEnsayo clínico en fase IV para evaluar las variantes genéticas de la vía del VEGF como biomarcadores de eficacia del tratamiento con aflibercept en pacientes con degeneración macular asociada a la edad (DMAE) neovascular. Estudio BIOIMAGE. IMO-AFLI-2013-01\n\nEstudio In-Eye:Ensayo clínico en fase IV, abierto, aleatorizado, de 2 brazos,\nmulticçentrico y de 12 meses de duración, para evaluar la eficacia y seguridad de un régimen de PRN flexible individualizado de 'esperar y extender' versus un régimen PRN según criterios de estabilización mediante evaluaciones mensuales de inyecciones intravítreas de ranibizumab 0,5 mg en pacientes naive con neovascularización coriodea secunaria a la degeneración macular relacionada con la edad. CP: CRFB002AES03T\n\nTREND: Estudio Fase IIIb multicéntrico, randomizado, de 12 meses de\nseguimiento con evaluador de la agudeza visual enmascarado, para evaluar la eficacia y la seguridad de ranibizumab 0.5mg en un régimen de tratar y extender comparado con un régimen mensual, en pacientes con degeneración macular neovascular asociada a la edad. CP: CRFB002A2411 Código Eudra CT:\n2013-002626-23\n\n\n\nPublications\t\n\n2021\n\n\n\n\n2015\n\n\n\n\n2021\n\n\n\n\n\n2021\n\n\n\n\n2015\n\n\n\n\n2015\n\n\n2014\n\n\n\n\n2015-16\n\n\n\n2015\n\n\n2014\n\n\n2014\n\n\n\n\n2014\n\n\n\n\n\n\n\n2014\n\nJose Carlos Pastor; Jimena Rojas; Salvador Pastor-Idoate; Salvatore Di Lauro; Lucia Gonzalez-Buendia; Santiago Delgado-Tirado. Proliferative vitreoretinopathy: A new concept of disease pathogenesis and practical\nconsequences. Progress in Retinal and Eye Research. 51, pp. 125 - 155. 03/2016. DOI: 10.1016/j.preteyeres.2015.07.005\n\n\nLabrador-Velandia S; Alonso-Alonso ML; Di Lauro S; García-Gutierrez MT; Srivastava GK; Pastor JC; Fernandez-Bueno I. Mesenchymal stem cells provide paracrine neuroprotective resources that delay degeneration of co-cultured organotypic neuroretinal cultures.Experimental Eye Research. 185, 17/05/2019. DOI: 10.1016/j.exer.2019.05.011\n\nSalvatore Di Lauro; Maria Teresa Garcia Gutierrez; Ivan Fernandez Bueno. Quantification of pigment epithelium-derived factor (PEDF) in an ex vivo coculture of retinal pigment epithelium cells and neuroretina.\nJournal of Allbiosolution. 2019. ISSN 2605-3535\n\nSonia Labrador Velandia; Salvatore Di Lauro; Alonso-Alonso ML; Tabera Bartolomé S; Srivastava GK; Pastor JC; Fernandez-Bueno I. Biocompatibility of intravitreal injection of human mesenchymal stem cells in immunocompetent rabbits. Graefe's archive for clinical and experimental ophthalmology. 256 - 1, pp. 125 - 134. 01/2018. DOI: 10.1007/s00417-017-3842-3\n\n\nSalvatore Di Lauro, David Rodriguez-Crespo, Manuel J Gayoso, Maria T Garcia-Gutierrez, J Carlos Pastor, Girish K Srivastava, Ivan Fernandez-Bueno. A novel coculture model of porcine central neuroretina explants and retinal pigment epithelium cells. Molecular Vision. 2016 - 22, pp. 243 - 253. 01/2016.\n\nSalvatore Di Lauro. Classifications for Proliferative Vitreoretinopathy ({PVR}): An Analysis of Their Use in Publications over the Last 15 Years. Journal of Ophthalmology. 2016, pp. 1 - 6. 01/2016. DOI: 10.1155/2016/7807596\n\nSalvatore Di Lauro; Rosa Maria Coco; Rosa Maria Sanabria; Enrique Rodriguez de la Rua; Jose Carlos Pastor. Loss of Visual Acuity after Successful Surgery for Macula-On Rhegmatogenous Retinal Detachment in a Prospective Multicentre Study. Journal of Ophthalmology. 2015:821864, 2015. DOI: 10.1155/2015/821864\n\nIvan Fernandez-Bueno; Salvatore Di Lauro; Ivan Alvarez; Jose Carlos Lopez; Maria Teresa Garcia-Gutierrez; Itziar Fernandez; Eva Larra; Jose Carlos Pastor. Safety and Biocompatibility of a New High-Density Polyethylene-Based\nSpherical Integrated Porous Orbital Implant: An Experimental Study in Rabbits. Journal of Ophthalmology. 2015:904096, 2015. DOI: 10.1155/2015/904096\n\nPastor JC; Pastor-Idoate S; Rodríguez-Hernandez I; Rojas J; Fernandez I; Gonzalez-Buendia L; Di Lauro S; Gonzalez-Sarmiento R. Genetics of PVR and RD. Ophthalmologica. 232 - Suppl 1, pp. 28 - 29. 2014\n\nRodriguez-Crespo D; Di Lauro S; Singh AK; Garcia-Gutierrez MT; Garrosa M; Pastor JC; Fernandez-Bueno I; Srivastava GK. Triple-layered mixed co-culture model of RPE cells with neuroretina for evaluating the neuroprotective effects of adipose-MSCs. Cell Tissue Res. 358 - 3, pp. 705 - 716. 2014.\nDOI: 10.1007/s00441-014-1987-5\n\nCarlo De Werra; Salvatore Condurro; Salvatore Tramontano; Mario Perone; Ivana Donzelli; Salvatore Di Lauro; Massimo Di Giuseppe; Rosa Di Micco; Annalisa Pascariello; Antonio Pastore; Giorgio Diamantis; Giuseppe Galloro. Hydatid disease of the liver: thirty years of surgical experience.Chirurgia italiana. 59 - 5, pp. 611 - 636.\n(Italia): 2007. ISSN 0009-4773\n\nChapters in books\n\t\n' Salvador Pastor Idoate; Salvatore Di Lauro; Jose Carlos Pastor Jimeno. PVR: Pathogenesis, Histopathology and Classification. Proliferative Vitreoretinopathy with Small Gauge Vitrectomy. Springer, 2018. ISBN 978-3-319-78445-8\nDOI: 10.1007/978-3-319-78446-5_2. \n\n' Salvatore Di Lauro; Maria Isabel Lopez Galvez. Quistes vítreos en una mujer joven. Problemas diagnósticos en patología retinocoroidea. Sociedad Española de Retina-Vitreo. 2018.\n\n' Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor Jimeno. iOCT in PVR management. OCT Applications in Opthalmology. pp. 1 - 8. INTECH, 2018. DOI: 10.5772/intechopen.78774.\n\n' Rosa Coco Martin; Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor. amponadores, manipuladores y tinciones en la cirugía del traumatismo ocular.Trauma Ocular. Ponencia de la SEO 2018..\n\n' LOPEZ GALVEZ; DI LAURO; CRESPO. OCT angiografia y complicaciones retinianas de la diabetes. PONENCIA SEO 2021, CAPITULO 20. (España): 2021.\n\n' Múltiples desprendimientos neurosensoriales bilaterales en paciente joven. Enfermedades Degenerativas De Retina Y Coroides. SERV 04/2016. \n' González-Buendía L; Di Lauro S; Pastor-Idoate S; Pastor Jimeno JC. Vitreorretinopatía proliferante (VRP) e inflamación: LA INFLAMACIÓN in «INMUNOMODULADORES Y ANTIINFLAMATORIOS: MÁS ALLÁ DE LOS CORTICOIDES. RELACION DE PONENCIAS DE LA SOCIEDAD ESPAÑOLA DE OFTALMOLOGIA. 10/2014.",institutionString:null,institution:null},{id:"265335",title:"Mr.",name:"Stefan",middleName:"Radnev",surname:"Stefanov",slug:"stefan-stefanov",fullName:"Stefan Stefanov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/265335/images/7562_n.jpg",biography:null,institutionString:null,institution:null},{id:"318905",title:"Prof.",name:"Elvis",middleName:"Kwason",surname:"Tiburu",slug:"elvis-tiburu",fullName:"Elvis Tiburu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"336193",title:"Dr.",name:"Abdullah",middleName:null,surname:"Alamoudi",slug:"abdullah-alamoudi",fullName:"Abdullah Alamoudi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"318657",title:"MSc.",name:"Isabell",middleName:null,surname:"Steuding",slug:"isabell-steuding",fullName:"Isabell Steuding",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"318656",title:"BSc.",name:"Peter",middleName:null,surname:"Kußmann",slug:"peter-kussmann",fullName:"Peter Kußmann",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"338222",title:"Mrs.",name:"María José",middleName:null,surname:"Lucía Mudas",slug:"maria-jose-lucia-mudas",fullName:"María José Lucía Mudas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Carlos III University of Madrid",country:{name:"Spain"}}},{id:"147824",title:"Mr.",name:"Pablo",middleName:null,surname:"Revuelta Sanz",slug:"pablo-revuelta-sanz",fullName:"Pablo Revuelta Sanz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Carlos III University of Madrid",country:{name:"Spain"}}}]}},subseries:{item:{id:"15",type:"subseries",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11411,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,series:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983"},editorialBoard:[{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",slug:"azhar-rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},onlineFirstChapters:{paginationCount:2,paginationItems:[{id:"81972",title:"The Submicroscopic Plasmodium falciparum Malaria in Sub-Saharan Africa; Current Understanding of the Host Immune System and New Perspectives",doi:"10.5772/intechopen.105086",signatures:"Kwame Kumi Asare",slug:"the-submicroscopic-plasmodium-falciparum-malaria-in-sub-saharan-africa-current-understanding-of-the-",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Malaria - Recent Advances, and New Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11576.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"81813",title:"Schistosomiasis: Discovery of New Molecules for Disease Treatment and Vaccine Development",doi:"10.5772/intechopen.104738",signatures:"Andressa Barban do Patrocinio",slug:"schistosomiasis-discovery-of-new-molecules-for-disease-treatment-and-vaccine-development",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"New Horizons for Schistosomiasis Research",coverURL:"https://cdn.intechopen.com/books/images_new/10829.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}}]},publishedBooks:{paginationCount:2,paginationItems:[{type:"book",id:"9883",title:"Biosensors",subtitle:"Current and Novel Strategies for Biosensing",coverURL:"https://cdn.intechopen.com/books/images_new/9883.jpg",slug:"biosensors-current-and-novel-strategies-for-biosensing",publishedDate:"May 5th 2021",editedByType:"Edited by",bookSignature:"Luis Jesús Villarreal-Gómez and Ana Leticia Iglesias",hash:"028f3e5dbf9c32590183ac4b4f0a2825",volumeInSeries:11,fullTitle:"Biosensors - Current and Novel Strategies for Biosensing",editors:[{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:99,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:290,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:12,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"22",title:"Applied Intelligence",scope:"This field is the key in the current industrial revolution (Industry 4.0), where the new models and developments are based on the knowledge generation on applied intelligence. The motor of the society is the industry and the research of this topic has to be empowered in order to increase and improve the quality of our lives.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",keywords:"Machine Learning, Intelligence Algorithms, Data Science, Artificial Intelligence, Applications on Applied Intelligence"},{id:"23",title:"Computational Neuroscience",scope:"Computational neuroscience focuses on biologically realistic abstractions and models validated and solved through computational simulations to understand principles for the development, structure, physiology, and ability of the nervous system. This topic is dedicated to biologically plausible descriptions and computational models - at various abstraction levels - of neurons and neural systems. This includes, but is not limited to: single-neuron modeling, sensory processing, motor control, memory, and synaptic plasticity, attention, identification, categorization, discrimination, learning, development, axonal patterning, guidance, neural architecture, behaviors, and dynamics of networks, cognition and the neuroscientific basis of consciousness. Particularly interesting are models of various types of more compound functions and abilities, various and more general fundamental principles (e.g., regarding architecture, organization, learning, development, etc.) found at various spatial and temporal levels.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",keywords:"Single-Neuron Modeling, Sensory Processing, Motor Control, Memory and Synaptic Pasticity, Attention, Identification, Categorization, Discrimination, Learning, Development, Axonal Patterning and Guidance, Neural Architecture, Behaviours and Dynamics of Networks, Cognition and the Neuroscientific Basis of Consciousness"},{id:"24",title:"Computer Vision",scope:"The scope of this topic is to disseminate the recent advances in the rapidly growing field of computer vision from both the theoretical and practical points of view. Novel computational algorithms for image analysis, scene understanding, biometrics, deep learning and their software or hardware implementations for natural and medical images, robotics, VR/AR, applications are some research directions relevant to this topic.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",keywords:"Image Analysis, Scene Understanding, Biometrics, Deep Learning, Software Implementation, Hardware Implementation, Natural Images, Medical Images, Robotics, VR/AR"},{id:"25",title:"Evolutionary Computation",scope:"Evolutionary computing is a paradigm that has grown dramatically in recent years. This group of bio-inspired metaheuristics solves multiple optimization problems by applying the metaphor of natural selection. It so far has solved problems such as resource allocation, routing, schedule planning, and engineering design. Moreover, in the field of machine learning, evolutionary computation has carved out a significant niche both in the generation of learning models and in the automatic design and optimization of hyperparameters in deep learning models. This collection aims to include quality volumes on various topics related to evolutionary algorithms and, alternatively, other metaheuristics of interest inspired by nature. For example, some of the issues of interest could be the following: Advances in evolutionary computation (Genetic algorithms, Genetic programming, Bio-inspired metaheuristics, Hybrid metaheuristics, Parallel ECs); Applications of evolutionary algorithms (Machine learning and Data Mining with EAs, Search-Based Software Engineering, Scheduling, and Planning Applications, Smart Transport Applications, Applications to Games, Image Analysis, Signal Processing and Pattern Recognition, Applications to Sustainability).",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",keywords:"Genetic Algorithms, Genetic Programming, Evolutionary Programming, Evolution Strategies, Hybrid Algorithms, Bioinspired Metaheuristics, Ant Colony Optimization, Evolutionary Learning, Hyperparameter Optimization"},{id:"26",title:"Machine Learning and Data Mining",scope:"The scope of machine learning and data mining is immense and is growing every day. It has become a massive part of our daily lives, making predictions based on experience, making this a fascinating area that solves problems that otherwise would not be possible or easy to solve. This topic aims to encompass algorithms that learn from experience (supervised and unsupervised), improve their performance over time and enable machines to make data-driven decisions. It is not limited to any particular applications, but contributions are encouraged from all disciplines.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",keywords:"Intelligent Systems, Machine Learning, Data Science, Data Mining, Artificial Intelligence"},{id:"27",title:"Multi-Agent Systems",scope:"Multi-agent systems are recognised as a state of the art field in Artificial Intelligence studies, which is popular due to the usefulness in facilitation capabilities to handle real-world problem-solving in a distributed fashion. The area covers many techniques that offer solutions to emerging problems in robotics and enterprise-level software systems. Collaborative intelligence is highly and effectively achieved with multi-agent systems. Areas of application include swarms of robots, flocks of UAVs, collaborative software management. Given the level of technological enhancements, the popularity of machine learning in use has opened a new chapter in multi-agent studies alongside the practical challenges and long-lasting collaboration issues in the field. It has increased the urgency and the need for further studies in this field. We welcome chapters presenting research on the many applications of multi-agent studies including, but not limited to, the following key areas: machine learning for multi-agent systems; modeling swarms robots and flocks of UAVs with multi-agent systems; decision science and multi-agent systems; software engineering for and with multi-agent systems; tools and technologies of multi-agent systems.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",keywords:"Collaborative Intelligence, Learning, Distributed Control System, Swarm Robotics, Decision Science, Software Engineering"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"25",title:"Environmental Sciences",doi:"10.5772/intechopen.100362",issn:"2754-6713",scope:"
\r\n\tScientists have long researched to understand the environment and man’s place in it. The search for this knowledge grows in importance as rapid increases in population and economic development intensify humans’ stresses on ecosystems. Fortunately, rapid increases in multiple scientific areas are advancing our understanding of environmental sciences. Breakthroughs in computing, molecular biology, ecology, and sustainability science are enhancing our ability to utilize environmental sciences to address real-world problems. \r\n\tThe four topics of this book series - Pollution; Environmental Resilience and Management; Ecosystems and Biodiversity; and Water Science - will address important areas of advancement in the environmental sciences. They will represent an excellent initial grouping of published works on these critical topics.
",coverUrl:"https://cdn.intechopen.com/series/covers/25.jpg",latestPublicationDate:"April 13th, 2022",hasOnlineFirst:!1,numberOfOpenTopics:4,numberOfPublishedChapters:9,numberOfPublishedBooks:1,editor:{id:"197485",title:"Dr.",name:"J. Kevin",middleName:null,surname:"Summers",fullName:"J. Kevin Summers",profilePictureURL:"https://mts.intechopen.com/storage/users/197485/images/system/197485.jpg",biography:"J. Kevin Summers is a Senior Research Ecologist at the Environmental Protection Agency’s (EPA) Gulf Ecosystem Measurement and Modeling Division. He is currently working with colleagues in the Sustainable and Healthy Communities Program to develop an index of community resilience to natural hazards, an index of human well-being that can be linked to changes in the ecosystem, social and economic services, and a community sustainability tool for communities with populations under 40,000. He leads research efforts for indicator and indices development. Dr. Summers is a systems ecologist and began his career at the EPA in 1989 and has worked in various programs and capacities. This includes leading the National Coastal Assessment in collaboration with the Office of Water which culminated in the award-winning National Coastal Condition Report series (four volumes between 2001 and 2012), and which integrates water quality, sediment quality, habitat, and biological data to assess the ecosystem condition of the United States estuaries. He was acting National Program Director for Ecology for the EPA between 2004 and 2006. He has authored approximately 150 peer-reviewed journal articles, book chapters, and reports and has received many awards for technical accomplishments from the EPA and from outside of the agency. Dr. Summers holds a BA in Zoology and Psychology, an MA in Ecology, and Ph.D. in Systems Ecology/Biology.",institutionString:null,institution:{name:"Environmental Protection Agency",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"38",title:"Pollution",keywords:"Human activity, Pollutants, Reduced risks, Population growth, Waste disposal, Remediation, Clean environment",scope:"
\r\n\tPollution is caused by a wide variety of human activities and occurs in diverse forms, for example biological, chemical, et cetera. In recent years, significant efforts have been made to ensure that the environment is clean, that rigorous rules are implemented, and old laws are updated to reduce the risks towards humans and ecosystems. However, rapid industrialization and the need for more cultivable sources or habitable lands, for an increasing population, as well as fewer alternatives for waste disposal, make the pollution control tasks more challenging. Therefore, this topic will focus on assessing and managing environmental pollution. It will cover various subjects, including risk assessment due to the pollution of ecosystems, transport and fate of pollutants, restoration or remediation of polluted matrices, and efforts towards sustainable solutions to minimize environmental pollution.
",annualVolume:11966,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/38.jpg",editor:{id:"110740",title:"Dr.",name:"Ismail M.M.",middleName:null,surname:"Rahman",fullName:"Ismail M.M. Rahman",profilePictureURL:"https://mts.intechopen.com/storage/users/110740/images/2319_n.jpg",institutionString:null,institution:{name:"Fukushima University",institutionURL:null,country:{name:"Japan"}}},editorTwo:{id:"201020",title:"Dr.",name:"Zinnat Ara",middleName:null,surname:"Begum",fullName:"Zinnat Ara Begum",profilePictureURL:"https://mts.intechopen.com/storage/users/201020/images/system/201020.jpeg",institutionString:null,institution:{name:"Fukushima University",institutionURL:null,country:{name:"Japan"}}},editorThree:null,editorialBoard:[{id:"252368",title:"Dr.",name:"Meng-Chuan",middleName:null,surname:"Ong",fullName:"Meng-Chuan Ong",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRVotQAG/Profile_Picture_2022-05-20T12:04:28.jpg",institutionString:null,institution:{name:"Universiti Malaysia Terengganu",institutionURL:null,country:{name:"Malaysia"}}},{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}},{id:"187907",title:"Dr.",name:"Olga",middleName:null,surname:"Anne",fullName:"Olga Anne",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBE5QAO/Profile_Picture_2022-04-07T09:42:13.png",institutionString:null,institution:{name:"Klaipeda State University of Applied Sciences",institutionURL:null,country:{name:"Lithuania"}}}]},{id:"39",title:"Environmental Resilience and Management",keywords:"Anthropic effects, Overexploitation, Biodiversity loss, Degradation, Inadequate Management, SDGs adequate practices",scope:"
\r\n\tThe environment is subject to severe anthropic effects. Among them are those associated with pollution, resource extraction and overexploitation, loss of biodiversity, soil degradation, disorderly land occupation and planning, and many others. These anthropic effects could potentially be caused by any inadequate management of the environment. However, ecosystems have a resilience that makes them react to disturbances which mitigate the negative effects. It is critical to understand how ecosystems, natural and anthropized, including urban environments, respond to actions that have a negative influence and how they are managed. It is also important to establish when the limits marked by the resilience and the breaking point are achieved and when no return is possible. The main focus for the chapters is to cover the subjects such as understanding how the environment resilience works, the mechanisms involved, and how to manage them in order to improve our interactions with the environment and promote the use of adequate management practices such as those outlined in the United Nations’ Sustainable Development Goals.
",annualVolume:11967,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/39.jpg",editor:{id:"137040",title:"Prof.",name:"Jose",middleName:null,surname:"Navarro-Pedreño",fullName:"Jose Navarro-Pedreño",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRAXrQAO/Profile_Picture_2022-03-09T15:50:19.jpg",institutionString:"Miguel Hernández University of Elche, Spain",institution:null},editorTwo:null,editorThree:null,editorialBoard:[{id:"177015",title:"Prof.",name:"Elke Jurandy",middleName:null,surname:"Bran Nogueira Cardoso",fullName:"Elke Jurandy Bran Nogueira Cardoso",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRGxzQAG/Profile_Picture_2022-03-25T08:32:33.jpg",institutionString:"Universidade de São Paulo, Brazil",institution:null},{id:"211260",title:"Dr.",name:"Sandra",middleName:null,surname:"Ricart",fullName:"Sandra Ricart",profilePictureURL:"https://mts.intechopen.com/storage/users/211260/images/system/211260.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}}]},{id:"40",title:"Ecosystems and Biodiversity",keywords:"Ecosystems, Biodiversity, Fauna, Taxonomy, Invasive species, Destruction of habitats, Overexploitation of natural resources, Pollution, Global warming, Conservation of natural spaces, Bioremediation",scope:"
\r\n\tIn general, the harsher the environmental conditions in an ecosystem, the lower the biodiversity. Changes in the environment caused by human activity accelerate the impoverishment of biodiversity.
\r\n
\r\n\tBiodiversity refers to “the variability of living organisms from any source, including terrestrial, marine and other aquatic ecosystems and the ecological complexes of which they are part; it includes diversity within each species, between species, and that of ecosystems”.
\r\n
\r\n\tBiodiversity provides food security and constitutes a gene pool for biotechnology, especially in the field of agriculture and medicine, and promotes the development of ecotourism.
\r\n
\r\n\tCurrently, biologists admit that we are witnessing the first phases of the seventh mass extinction caused by human intervention. It is estimated that the current rate of extinction is between a hundred and a thousand times faster than it was when man first appeared. The disappearance of species is caused not only by an accelerated rate of extinction, but also by a decrease in the rate of emergence of new species as human activities degrade the natural environment. The conservation of biological diversity is "a common concern of humanity" and an integral part of the development process. Its objectives are “the conservation of biological diversity, the sustainable use of its components, and the fair and equitable sharing of the benefits resulting from the use of genetic resources”.
\r\n
\r\n\tThe following are the main causes of biodiversity loss:
\r\n
\r\n\t• The destruction of natural habitats to expand urban and agricultural areas and to obtain timber, minerals and other natural resources.
\r\n
\r\n\t• The introduction of alien species into a habitat, whether intentionally or unintentionally which has an impact on the fauna and flora of the area, and as a result, they are reduced or become extinct.
\r\n
\r\n\t• Pollution from industrial and agricultural products, which devastate the fauna and flora, especially those in fresh water.
\r\n
\r\n\t• Global warming, which is seen as a threat to biological diversity, and will become increasingly important in the future.
",annualVolume:11968,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/40.jpg",editor:{id:"209149",title:"Prof.",name:"Salustiano",middleName:null,surname:"Mato",fullName:"Salustiano Mato",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRLREQA4/Profile_Picture_2022-03-31T10:23:50.png",institutionString:null,institution:{name:"University of Vigo",institutionURL:null,country:{name:"Spain"}}},editorTwo:{id:"60498",title:"Prof.",name:"Josefina",middleName:null,surname:"Garrido",fullName:"Josefina Garrido",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRj1VQAS/Profile_Picture_2022-03-31T10:06:51.jpg",institutionString:null,institution:{name:"University of Vigo",institutionURL:null,country:{name:"Spain"}}},editorThree:{id:"464288",title:"Dr.",name:"Francisco",middleName:null,surname:"Ramil",fullName:"Francisco Ramil",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003RI7lHQAT/Profile_Picture_2022-03-31T10:15:35.png",institutionString:null,institution:{name:"University of Vigo",institutionURL:null,country:{name:"Spain"}}},editorialBoard:[{id:"220987",title:"Dr.",name:"António",middleName:"Onofre",surname:"Soares",fullName:"António Soares",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRNtzQAG/Profile_Picture_1644499672340",institutionString:null,institution:{name:"University of the Azores",institutionURL:null,country:{name:"Portugal"}}}]},{id:"41",title:"Water Science",keywords:"Water, Water resources, Freshwater, Hydrological processes, Utilization, Protection",scope:"
\r\n\tWater is not only a crucial substance needed for biological life on Earth, but it is also a basic requirement for the existence and development of the human society. Owing to the importance of water to life on Earth, early researchers conducted numerous studies and analyses on the liquid form of water from the perspectives of chemistry, physics, earth science, and biology, and concluded that Earth is a "water polo". Water covers approximately 71% of Earth's surface. However, 97.2% of this water is seawater, 21.5% is icebergs and glaciers, and only 0.65% is freshwater that can be used directly by humans. As a result, the amount of water reserves available for human consumption is limited. The development, utilization, and protection of freshwater resources has become the focus of water science research for the continued improvement of human livelihoods and society.
\r\n
\r\n\tWater exists as solid, liquid, and gas within Earth’s atmosphere, lithosphere, and biosphere. Liquid water is used for a variety of purposes besides drinking, including power generation, ecology, landscaping, and shipping. Because water is involved in various environmental hydrological processes as well as numerous aspects of the economy and human society, the study of various phenomena in the hydrosphere, the laws governing their occurrence and development, the relationship between the hydrosphere and other spheres of Earth, and the relationship between water and social development, are all part of water science. Knowledge systems for water science are improving continuously. Water science has become a specialized field concerned with the identification of its physical, chemical, and biological properties. In addition, it reveals the laws of water distribution, movement, and circulation, and proposes methods and tools for water development, utilization, planning, management, and protection. Currently, the field of water science covers research related to topics such as hydrology, water resources and water environment. It also includes research on water related issues such as safety, engineering, economy, law, culture, information, and education.
",annualVolume:11969,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/41.jpg",editor:{id:"349630",title:"Dr.",name:"Yizi",middleName:null,surname:"Shang",fullName:"Yizi Shang",profilePictureURL:"https://mts.intechopen.com/storage/users/349630/images/system/349630.jpg",institutionString:"China Institute of Water Resources and Hydropower Research",institution:{name:"China Institute of Water Resources and Hydropower Research",institutionURL:null,country:{name:"China"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"216491",title:"Dr.",name:"Charalampos",middleName:null,surname:"Skoulikaris",fullName:"Charalampos Skoulikaris",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRMsbQAG/Profile_Picture_2022-04-21T09:31:55.jpg",institutionString:null,institution:{name:"Aristotle University of Thessaloniki",institutionURL:null,country:{name:"Greece"}}},{id:"300124",title:"Prof.",name:"Thomas",middleName:null,surname:"Shahady",fullName:"Thomas Shahady",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002kuIgmQAE/Profile_Picture_2022-03-18T07:32:10.jpg",institutionString:null,institution:{name:"Lynchburg College",institutionURL:null,country:{name:"United States of America"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/44721",hash:"",query:{},params:{id:"44721"},fullPath:"/chapters/44721",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()