Diagnosis of Gestational Diabetes Mellitus (GDM)
\\n\\n
More than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\\n\\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\\n\\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\\n\\nAdditionally, each book published by IntechOpen contains original content and research findings.
\\n\\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:{caption:"IntechOpen Maintains",originalUrl:"/media/original/113"}},components:[{type:"htmlEditorComponent",content:'
Simba Information has released its Open Access Book Publishing 2020 - 2024 report and has again identified IntechOpen as the world’s largest Open Access book publisher by title count.
\n\nSimba Information is a leading provider for market intelligence and forecasts in the media and publishing industry. The report, published every year, provides an overview and financial outlook for the global professional e-book publishing market.
\n\nIntechOpen, De Gruyter, and Frontiers are the largest OA book publishers by title count, with IntechOpen coming in at first place with 5,101 OA books published, a good 1,782 titles ahead of the nearest competitor.
\n\nSince the first Open Access Book Publishing report published in 2016, IntechOpen has held the top stop each year.
\n\n\n\nMore than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\n\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\n\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\n\nAdditionally, each book published by IntechOpen contains original content and research findings.
\n\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\n\n\n\n
\n'}],latestNews:[{slug:"intechopen-supports-asapbio-s-new-initiative-publish-your-reviews-20220729",title:"IntechOpen Supports ASAPbio’s New Initiative Publish Your Reviews"},{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"}]},book:{item:{type:"book",id:"46",leadTitle:null,fullTitle:"Biped Robots",title:"Biped Robots",subtitle:null,reviewType:"peer-reviewed",abstract:"Biped robots represent a very interesting research subject, with several particularities and scope topics, such as: mechanical design, gait simulation, patterns generation, kinematics, dynamics, equilibrium, stability, kinds of control, adaptability, biomechanics, cybernetics, and rehabilitation technologies. We have diverse problems related to these topics, making the study of biped robots a very complex subject, and many times the results of researches are not totally satisfactory. However, with scientific and technological advances, based on theoretical and experimental works, many researchers have collaborated in the evolution of the biped robots design, looking for to develop autonomous systems, as well as to help in rehabilitation technologies of human beings. Thus, this book intends to present some works related to the study of biped robots, developed by researchers worldwide.",isbn:null,printIsbn:"978-953-307-216-6",pdfIsbn:"978-953-51-5507-2",doi:"10.5772/578",price:139,priceEur:155,priceUsd:179,slug:"biped-robots",numberOfPages:334,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:null,bookSignature:"Armando Carlos Pina Filho",publishedDate:"February 4th 2011",coverURL:"https://cdn.intechopen.com/books/images_new/46.jpg",numberOfDownloads:40472,numberOfWosCitations:7,numberOfCrossrefCitations:7,numberOfCrossrefCitationsByBook:1,numberOfDimensionsCitations:12,numberOfDimensionsCitationsByBook:2,hasAltmetrics:0,numberOfTotalCitations:26,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 4th 2010",dateEndSecondStepPublish:"June 1st 2010",dateEndThirdStepPublish:"October 6th 2010",dateEndFourthStepPublish:"November 5th 2010",dateEndFifthStepPublish:"January 4th 2011",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"24367",title:"Prof.",name:"Armando Carlos",middleName:null,surname:"De Pina Filho",slug:"armando-carlos-de-pina-filho",fullName:"Armando Carlos De Pina Filho",profilePictureURL:"https://mts.intechopen.com/storage/users/24367/images/1559_n.jpg",biography:"Prof. Armando Carlos de Pina Filho, D.Sc. in Mechanical Engineering from COPPE/UFRJ, Brazil; is an Associate Professor of the Federal University of Rio de Janeiro - UFRJ. Leader of the research group ARMS (Automation, Robotics and Modeling of Systems), and member of the Brazilian Society of Engineering and Mechanical Sciences (ABCM). Member of the Editorial Advisory Board of The Open Cybernetics & Systemics Journal, and Editor of the book “Humanoid Robots - New Developments”, published by InTech in 2007, and \\Biped Robots\\, published by InTech in 2011. Apart from contributions to books related to the study of biped robots, Prof. Armando Pina Filho actively publishes research works in international scientific journals, and more than 90 of his works have been published in the proceedings of several congresses.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"3",institution:{name:"Federal University of Rio de Janeiro",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1298",title:"Mobile Robot",slug:"robot-control-mobile-robot"}],chapters:[{id:"13812",title:"Mobile Sensors for Robotics Research",doi:"10.5772/14679",slug:"mobile-sensors-for-robotics-research",totalDownloads:2455,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Tao Liu, Yoshio Inoue, Kyoko Shibata and Kouzou Shiojima",downloadPdfUrl:"/chapter/pdf-download/13812",previewPdfUrl:"/chapter/pdf-preview/13812",authors:[{id:"929",title:"Dr.",name:"Tao",surname:"Liu",slug:"tao-liu",fullName:"Tao Liu"},{id:"18505",title:"Prof.",name:"Yoshio",surname:"Inoue",slug:"yoshio-inoue",fullName:"Yoshio Inoue"},{id:"18506",title:"Dr.",name:"Kyoko",surname:"Shibata",slug:"kyoko-shibata",fullName:"Kyoko Shibata"}],corrections:null},{id:"13813",title:"Motion Control of Biped Lateral Stepping Based on Zero Moment Point Feedback for Adaptation to Slopes",doi:"10.5772/14430",slug:"motion-control-of-biped-lateral-stepping-based-on-zero-moment-point-feedback-for-adaptation-to-slope",totalDownloads:2684,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Satoshi Ito and Minoru Sasaki",downloadPdfUrl:"/chapter/pdf-download/13813",previewPdfUrl:"/chapter/pdf-preview/13813",authors:[{id:"17770",title:"Dr.",name:"Satoshi",surname:"Ito",slug:"satoshi-ito",fullName:"Satoshi Ito"},{id:"18744",title:"Prof.",name:"Minoru",surname:"Sasaki",slug:"minoru-sasaki",fullName:"Minoru Sasaki"}],corrections:null},{id:"13814",title:"Optimal Biped Design Using a Moving Torso: Theory and Experiments",doi:"10.5772/13791",slug:"optimal-biped-design-using-a-moving-torso-theory-and-experiments",totalDownloads:2534,totalCrossrefCites:2,totalDimensionsCites:3,hasAltmetrics:0,abstract:null,signatures:"Karthik Kappaganthu and C. Nataraj",downloadPdfUrl:"/chapter/pdf-download/13814",previewPdfUrl:"/chapter/pdf-preview/13814",authors:[{id:"15935",title:"Dr.",name:"Chandrasekhar",surname:"Nataraj",slug:"chandrasekhar-nataraj",fullName:"Chandrasekhar Nataraj"},{id:"15946",title:"PhD.",name:"Karthik",surname:"Kappaganthu",slug:"karthik-kappaganthu",fullName:"Karthik Kappaganthu"}],corrections:null},{id:"13815",title:"Effect of Circular Arc Feet on a Control Law for a Biped",doi:"10.5772/13833",slug:"effect-of-circular-arc-feet-on-a-control-law-for-a-biped",totalDownloads:2648,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Tetsuya Kinugasa, Christine Chevallereau, Yannick Aoustin and Koji Yoshida",downloadPdfUrl:"/chapter/pdf-download/13815",previewPdfUrl:"/chapter/pdf-preview/13815",authors:[{id:"2309",title:"Dr.",name:"Tetsuya",surname:"Kinugasa",slug:"tetsuya-kinugasa",fullName:"Tetsuya Kinugasa"},{id:"16052",title:"Prof.",name:"Christine",surname:"Chevallereau",slug:"christine-chevallereau",fullName:"Christine Chevallereau"},{id:"16053",title:"Prof.",name:"Yannick",surname:"Aoustin",slug:"yannick-aoustin",fullName:"Yannick Aoustin"},{id:"16054",title:"Prof.",name:"Koji",surname:"Yoshida",slug:"koji-yoshida",fullName:"Koji Yoshida"}],corrections:null},{id:"13816",title:"SVR Controller for a Biped Robot with a Human-like Gait Subjected to External Sagittal Forces",doi:"10.5772/14445",slug:"svr-controller-for-a-biped-robot-with-a-human-like-gait-subjected-to-external-sagittal-forces",totalDownloads:2533,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"João P. Ferreira, Manuel Crisóstomo, A. Paulo Coimbra and Bernardete Ribeiro",downloadPdfUrl:"/chapter/pdf-download/13816",previewPdfUrl:"/chapter/pdf-preview/13816",authors:[{id:"17816",title:"Dr.",name:"Joao P.",surname:"Ferreira",slug:"joao-p.-ferreira",fullName:"Joao P. Ferreira"},{id:"18553",title:"Dr.",name:"Manuel",surname:"Crisóstomo",slug:"manuel-crisostomo",fullName:"Manuel Crisóstomo"},{id:"18554",title:"Dr.",name:"Paulo",surname:"Coimbra",slug:"paulo-coimbra",fullName:"Paulo Coimbra"},{id:"18555",title:"PhD.",name:"Bernardete",surname:"Ribeiro",slug:"bernardete-ribeiro",fullName:"Bernardete Ribeiro"}],corrections:null},{id:"13817",title:"Semi-Passive Dynamic Walking Approach for Bipedal Humanoid Robot Based on Dynamic Simulation",doi:"10.5772/14093",slug:"semi-passive-dynamic-walking-approach-for-bipedal-humanoid-robot-based-on-dynamic-simulation",totalDownloads:3387,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Aiman Omer, Reza Ghorbani, Hun-ok Lim, and Atsuo Takanishi",downloadPdfUrl:"/chapter/pdf-download/13817",previewPdfUrl:"/chapter/pdf-preview/13817",authors:[{id:"1236",title:"Prof.",name:"Aiman",surname:"Omer",slug:"aiman-omer",fullName:"Aiman Omer"},{id:"17762",title:"Prof.",name:"Reza",surname:"Ghorbani",slug:"reza-ghorbani",fullName:"Reza Ghorbani"},{id:"17763",title:"Prof.",name:"Hun-ok",surname:"Lim",slug:"hun-ok-lim",fullName:"Hun-ok Lim"},{id:"17764",title:"Prof.",name:"Atsuo",surname:"Takanishi",slug:"atsuo-takanishi",fullName:"Atsuo Takanishi"}],corrections:null},{id:"13818",title:"Passive Dynamic Autonomous Control for the Multi-Locomotion Robot",doi:"10.5772/14647",slug:"passive-dynamic-autonomous-control-for-the-multi-locomotion-robot",totalDownloads:2455,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Tadayoshi Aoyama, Kosuke Sekiyama, Yasuhisa Hasegawa, and Toshio Fukuda",downloadPdfUrl:"/chapter/pdf-download/13818",previewPdfUrl:"/chapter/pdf-preview/13818",authors:[{id:"6006",title:"Dr.",name:"Tadayoshi",surname:"Aoyama",slug:"tadayoshi-aoyama",fullName:"Tadayoshi Aoyama"},{id:"19070",title:"Prof.",name:"Kosuke",surname:"Sekiyama",slug:"kosuke-sekiyama",fullName:"Kosuke Sekiyama"},{id:"19071",title:"Prof.",name:"Yasuhisa",surname:"Hasegawa",slug:"yasuhisa-hasegawa",fullName:"Yasuhisa Hasegawa"},{id:"19072",title:"Prof.",name:"Toshio",surname:"Fukuda",slug:"toshio-fukuda",fullName:"Toshio Fukuda"}],corrections:null},{id:"13819",title:"Section-Map Stability Criterion for Biped Robots",doi:"10.5772/14710",slug:"section-map-stability-criterion-for-biped-robots",totalDownloads:2270,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Chenglong Fu, Zhao Liu and Ken Chen",downloadPdfUrl:"/chapter/pdf-download/13819",previewPdfUrl:"/chapter/pdf-preview/13819",authors:[{id:"18573",title:"Dr.",name:"Chenglong",surname:"Fu",slug:"chenglong-fu",fullName:"Chenglong Fu"},{id:"18574",title:"Prof.",name:"Ken",surname:"Chen",slug:"ken-chen",fullName:"Ken Chen"},{id:"18585",title:"Dr.",name:"Zhao",surname:"Liu",slug:"zhao-liu",fullName:"Zhao Liu"}],corrections:null},{id:"13820",title:"Dynamical Analysis of a Biped Locomotion CPG Modelled by Means of Oscillators",doi:"10.5772/25271",slug:"dynamical-analysis-of-a-biped-locomotion-cpg-modelled-by-means-of-oscillators",totalDownloads:2583,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Armando Carlos de Pina Filho and Max Suell Dutra",downloadPdfUrl:"/chapter/pdf-download/13820",previewPdfUrl:"/chapter/pdf-preview/13820",authors:[{id:"24367",title:"Prof.",name:"Armando Carlos",surname:"De Pina Filho",slug:"armando-carlos-de-pina-filho",fullName:"Armando Carlos De Pina Filho"}],corrections:null},{id:"13821",title:"Some Results on the Study of the Kneed Gait Biped",doi:"10.5772/intechopen.84008",slug:"some-results-on-the-study-of-the-kneed-gait-biped",totalDownloads:1903,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Zhenze Liu, Yantao Tian and Changjiu Zhou",downloadPdfUrl:"/chapter/pdf-download/13821",previewPdfUrl:"/chapter/pdf-preview/13821",authors:[{id:"6476",title:"Prof.",name:"Yantao",surname:"Tian",slug:"yantao-tian",fullName:"Yantao Tian"},{id:"15571",title:"Prof.",name:"Zhenze",surname:"Liu",slug:"zhenze-liu",fullName:"Zhenze Liu"},{id:"15572",title:"professor",name:"zhou",surname:"changjiu",slug:"zhou-changjiu",fullName:"zhou changjiu"}],corrections:null},{id:"13822",title:"Dynamic Joint Passivization for Bipedal Locomotion",doi:"10.5772/14588",slug:"dynamic-joint-passivization-for-bipedal-locomotion",totalDownloads:2028,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Shohei Kato and Minoru Ishida",downloadPdfUrl:"/chapter/pdf-download/13822",previewPdfUrl:"/chapter/pdf-preview/13822",authors:[{id:"18260",title:"Prof.",name:"Shohei",surname:"Kato",slug:"shohei-kato",fullName:"Shohei Kato"},{id:"20282",title:"Prof.",name:"Minoru",surname:"Ishida",slug:"minoru-ishida",fullName:"Minoru Ishida"}],corrections:null},{id:"13823",title:"A Bio-Robotic Toe & Foot & Heel Models of a Biped Robot for More Natural Walking: Foot Mechanism & Gait Pattern",doi:"10.5772/14959",slug:"a-bio-robotic-toe-foot-heel-models-of-a-biped-robot-for-more-natural-walking-foot-mechanism-gait-pat",totalDownloads:3427,totalCrossrefCites:2,totalDimensionsCites:4,hasAltmetrics:0,abstract:null,signatures:"Jungwon Yoon, Gabsoon Kim, Nandha Handharu and Abdullah Özer",downloadPdfUrl:"/chapter/pdf-download/13823",previewPdfUrl:"/chapter/pdf-preview/13823",authors:[{id:"19323",title:"Prof.",name:"JungWon",surname:"Yoon",slug:"jungwon-yoon",fullName:"JungWon Yoon"},{id:"19324",title:"Prof.",name:"Gabsoon",surname:"Kim",slug:"gabsoon-kim",fullName:"Gabsoon Kim"}],corrections:null},{id:"13824",title:"Optimal Gait Generation in Biped Locomotion of Humanoid Robot to Improve Walking Speed",doi:"10.5772/13871",slug:"optimal-gait-generation-in-biped-locomotion-of-humanoid-robot-to-improve-walking-speed",totalDownloads:3587,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Hanafiah Yussof, Mitsuhiro Yamano, Yasuo Nasu and Masahiro Ohka",downloadPdfUrl:"/chapter/pdf-download/13824",previewPdfUrl:"/chapter/pdf-preview/13824",authors:[{id:"1497",title:"Dr.",name:"Hanafiah",surname:"Yussof",slug:"hanafiah-yussof",fullName:"Hanafiah Yussof"}],corrections:null},{id:"13825",title:"A Fast and Smooth Walking Pattern Generator for Biped Robots",doi:"10.5772/14875",slug:"a-fast-and-smooth-walking-pattern-generator-for-biped-robots",totalDownloads:2983,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Han-Pang Huang and Jiu-Lou Yan",downloadPdfUrl:"/chapter/pdf-download/13825",previewPdfUrl:"/chapter/pdf-preview/13825",authors:[{id:"18968",title:"Dr.",name:"Han-Pang",surname:"Huang",slug:"han-pang-huang",fullName:"Han-Pang Huang"},{id:"18975",title:"Dr.",name:"Jiu-Lou",surname:"Yan",slug:"jiu-lou-yan",fullName:"Jiu-Lou Yan"}],corrections:null},{id:"13826",title:"Walking Pattern Generation and Stabilization of Walking for Small Humanoid Robots",doi:"10.5772/19137",slug:"walking-pattern-generation-and-stabilization-of-walking-for-small-humanoid-robots",totalDownloads:2998,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Yogo Takada, Tomoki Tajiri, Kiyoshi Ogawa and Tomoyuki Wakisaka",downloadPdfUrl:"/chapter/pdf-download/13826",previewPdfUrl:"/chapter/pdf-preview/13826",authors:[{id:"33787",title:"Dr.",name:"Yogo",surname:"Takada",slug:"yogo-takada",fullName:"Yogo Takada"},{id:"33805",title:"Prof.",name:"Tomoki",surname:"Tajiri",slug:"tomoki-tajiri",fullName:"Tomoki Tajiri"},{id:"33806",title:"Prof.",name:"Kiyoshi",surname:"Ogawa",slug:"kiyoshi-ogawa",fullName:"Kiyoshi Ogawa"},{id:"33807",title:"Dr.",name:"Tomoyuki",surname:"Wakisaka",slug:"tomoyuki-wakisaka",fullName:"Tomoyuki Wakisaka"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"3373",title:"Humanoid Robots",subtitle:"New Developments",isOpenForSubmission:!1,hash:"486fa33207ca761a78fee46492830ee1",slug:"humanoid_robots_new_developments",bookSignature:"Armando Carlos de Pina Filho",coverURL:"https://cdn.intechopen.com/books/images_new/3373.jpg",editedByType:"Edited by",editors:[{id:"24367",title:"Prof.",name:"Armando Carlos",surname:"De Pina Filho",slug:"armando-carlos-de-pina-filho",fullName:"Armando Carlos De Pina Filho"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3653",title:"Methods and Techniques in Urban Engineering",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"methods-and-techniques-in-urban-engineering",bookSignature:"Armando Carlos de Pina Filho and Aloisio Carlos de Pina",coverURL:"https://cdn.intechopen.com/books/images_new/3653.jpg",editedByType:"Edited by",editors:[{id:"24367",title:"Prof.",name:"Armando Carlos",surname:"De Pina Filho",slug:"armando-carlos-de-pina-filho",fullName:"Armando Carlos De Pina Filho"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3592",title:"Robot Manipulators",subtitle:"Trends and Development",isOpenForSubmission:!1,hash:"2aa8e8b567caf6c1f701d72f87798fa8",slug:"robot-manipulators-trends-and-development",bookSignature:"Agustin Jimenez and Basil M Al Hadithi",coverURL:"https://cdn.intechopen.com/books/images_new/3592.jpg",editedByType:"Edited by",editors:[{id:"16314",title:"Prof.",name:"Agustin",surname:"Jimenez",slug:"agustin-jimenez",fullName:"Agustin Jimenez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3654",title:"Advanced Strategies for Robot Manipulators",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"advanced-strategies-for-robot-manipulators",bookSignature:"S. Ehsan Shafiei",coverURL:"https://cdn.intechopen.com/books/images_new/3654.jpg",editedByType:"Edited by",editors:[{id:"9940",title:"Mr.",name:"Seyed Ehsan",surname:"Shafiei",slug:"seyed-ehsan-shafiei",fullName:"Seyed Ehsan Shafiei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"79356",slug:"corrigendum-pregnancy-and-graves-disease",title:"Corrigendum: Pregnancy and Graves’ Disease",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/79786.pdf",downloadPdfUrl:"/chapter/pdf-download/79786",previewPdfUrl:"/chapter/pdf-preview/79786",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/79786",risUrl:"/chapter/ris/79786",chapter:{id:"75306",slug:"pregnancy-in-women-with-graves-disease-focus-on-fetal-surveillance",signatures:"Anca Maria Panaitescu",dateSubmitted:"December 16th 2020",dateReviewed:"January 27th 2021",datePrePublished:"February 18th 2021",datePublished:"December 1st 2021",book:{id:"10312",title:"Graves' Disease",subtitle:null,fullTitle:"Graves' Disease",slug:"graves-disease",publishedDate:"December 1st 2021",bookSignature:"Robert Gensure",coverURL:"https://cdn.intechopen.com/books/images_new/10312.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"16515",title:"Dr.",name:"Robert",middleName:null,surname:"Gensure",slug:"robert-gensure",fullName:"Robert Gensure"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"251062",title:"Ph.D.",name:"Anca",middleName:null,surname:"Panaitescu",fullName:"Anca Panaitescu",slug:"anca-panaitescu",email:"panaitescu.anca@yahoo.com",position:null,institution:null}]}},chapter:{id:"75306",slug:"pregnancy-in-women-with-graves-disease-focus-on-fetal-surveillance",signatures:"Anca Maria Panaitescu",dateSubmitted:"December 16th 2020",dateReviewed:"January 27th 2021",datePrePublished:"February 18th 2021",datePublished:"December 1st 2021",book:{id:"10312",title:"Graves' Disease",subtitle:null,fullTitle:"Graves' Disease",slug:"graves-disease",publishedDate:"December 1st 2021",bookSignature:"Robert Gensure",coverURL:"https://cdn.intechopen.com/books/images_new/10312.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"16515",title:"Dr.",name:"Robert",middleName:null,surname:"Gensure",slug:"robert-gensure",fullName:"Robert Gensure"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"251062",title:"Ph.D.",name:"Anca",middleName:null,surname:"Panaitescu",fullName:"Anca Panaitescu",slug:"anca-panaitescu",email:"panaitescu.anca@yahoo.com",position:null,institution:null}]},book:{id:"10312",title:"Graves' Disease",subtitle:null,fullTitle:"Graves' Disease",slug:"graves-disease",publishedDate:"December 1st 2021",bookSignature:"Robert Gensure",coverURL:"https://cdn.intechopen.com/books/images_new/10312.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"16515",title:"Dr.",name:"Robert",middleName:null,surname:"Gensure",slug:"robert-gensure",fullName:"Robert Gensure"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"12302",leadTitle:null,title:"Plant-based Diet",subtitle:null,reviewType:"peer-reviewed",abstract:"This book will be a self-contained collection of scholarly papers targeting an audience of practicing researchers, academics, PhD students and other scientists. The contents of the book will be written by multiple authors and edited by experts in the field.",isbn:null,printIsbn:null,pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"46b5da3b7eb8942941436fc7d9795c48",bookSignature:"",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/12302.jpg",keywords:null,numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 9th 2022",dateEndSecondStepPublish:"May 30th 2022",dateEndThirdStepPublish:"July 29th 2022",dateEndFourthStepPublish:"October 17th 2022",dateEndFifthStepPublish:"December 16th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"3 months",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:1,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"5",title:"Agricultural and Biological Sciences",slug:"agricultural-and-biological-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:null},relatedBooks:[{type:"book",id:"6418",title:"Hyperspectral Imaging in Agriculture, Food and Environment",subtitle:null,isOpenForSubmission:!1,hash:"9005c36534a5dc065577a011aea13d4d",slug:"hyperspectral-imaging-in-agriculture-food-and-environment",bookSignature:"Alejandro Isabel Luna Maldonado, Humberto Rodríguez Fuentes and Juan Antonio Vidales Contreras",coverURL:"https://cdn.intechopen.com/books/images_new/6418.jpg",editedByType:"Edited by",editors:[{id:"105774",title:"Prof.",name:"Alejandro Isabel",surname:"Luna Maldonado",slug:"alejandro-isabel-luna-maldonado",fullName:"Alejandro Isabel Luna Maldonado"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10359",title:"Landraces",subtitle:"Traditional Variety and Natural Breed",isOpenForSubmission:!1,hash:"0600836fb2c422f7b624363d1e854f68",slug:"landraces-traditional-variety-and-natural-breed",bookSignature:"Amr Elkelish",coverURL:"https://cdn.intechopen.com/books/images_new/10359.jpg",editedByType:"Edited by",editors:[{id:"231337",title:"Dr.",name:"Amr",surname:"Elkelish",slug:"amr-elkelish",fullName:"Amr Elkelish"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"44323",title:"Pro-Inflammatory Cytokines, Lipid Metabolism and Inflammation in Gestational Diabetes Mellitus as Cause of Insulin Resistance",doi:"10.5772/55634",slug:"pro-inflammatory-cytokines-lipid-metabolism-and-inflammation-in-gestational-diabetes-mellitus-as-cau",body:'
Gestational diabetes mellitus (GDM) is a glucose intolerance of varying severity with onset or first recognition, during pregnancy that complicates 2–4% of pregnancies (Ben-Haroush et al 2004, American Diabetes Association 2005, NICE Guidelines 2008). Both patients with GDM, and their offspring, have greater risk of developing type 2 diabetes later in life (Damn 1998). There is a close relationship between GDM and prediabetes state in addition to the risk of future deterioration in insulin resistance and ultimate development of overt type 2 diabetes mellitus (Kjos et al 1999). Diabetes in pregnancy is increasing and therefore it is important to raise awareness of the associated health risks to the mother, the growing fetus, and the future child. Perinatal mortality and morbidity is increased in diabetic pregnancies through increased stillbirths and congenital malformation rates (Canadian Diabetes association 2003, HAPO 2008, RCOG SAC 2011). These are mainly the result of early fetal exposure to maternal hyperglycaemia. In the mother, pregnancy may lead to worsening or development of diabetic complications such as retinopathy, nephropathy, and hypoglycaemia (Ali and Dornhorst 2011). Although glycaemic control is important in reducing microvascular complications due to diabetes in pregnancy, it has not reduced the rate of congenital anomalies, macrosomia and other adverse outcomes (Canadian Diabetes Association 2003). This may be as a result of our lack of understanding of the epidemiology and pathogenesis of GDM (Omu et al. 2010), especially the role of inflammation, cytokines and lipid metabolism.
The epidemiology, genetics and immunological basis of GDM
Elucidate the effect of lipid metabolism and lipid peroxidation, oxidative stress on antioxidant gene expression and other inflammatory cytokines.
Investigate the role of risk factors including obesity and adipokines like adiponectin, leptin and tumor necrosis factor alpha, acute phase proteins like C-reactive protein (C-RP), IL-6 and plasminogen activation inhibitor -1 (PAI-1) and proinflammatory Cytokines and the mechanisms involved in the pathogenesis.
Highlight the role of intervention strategy in the prevention of progression of GDM to type 2 Diabetes Mellitus and alteration of Maternal effects of GDM
Gestational diabetes has been recognised as a heterogenous disorder of glucose intolerance (Kjos et al 1999, Metzger et al 2010, and Omu et al 2011). Unfortunately, comparisons of frequencies of GDM among various populations is difficult because, there are differences in screening programmes and diagnostic criteria (Butte 2000, Ben-Haroush et al 2004, Buchanan et al 2007). There is an urgent need to develop and unify appropriate diabetic diagnostic and prevention strategies and address potentially modifiable risk factors such as obesity.
Historically, the diagnosis of gestational diabetes mellitus (GDM), like diabetes mellitus in general, has been by measuring the fasting plasma glucose level and performing an oral glucose tolerance test (OGGT) with the threshold as shown in Table 1. In 2010, the American Diabetic Association added haemoglobin A1c (Hb A1c) as a diagnostic tool for individual with type 2 diabetes mellitus with a threshold fixed at 6.5 % for diagnosis. It was however, not recommended for use in GDM.
\n\t\t\t | ||
100g glucose load | \n\t\t||
Fasting | \n\t\t\t95 | \n\t\t\t5.3 | \n\t\t
1 hour | \n\t\t\t180 | \n\t\t\t10.0 | \n\t\t
2 hour | \n\t\t\t155 | \n\t\t\t8.6 | \n\t\t
3 hour | \n\t\t\t140 | \n\t\t\t7.8 | \n\t\t
75 g glucose load | \n\t\t||
Fasting | \n\t\t\t95 | \n\t\t\t5.3 | \n\t\t
1 hour | \n\t\t\t180 | \n\t\t\t10.0 | \n\t\t
2 hour | \n\t\t\t155 | \n\t\t\t8.6 | \n\t\t
Diagnosis of Gestational Diabetes Mellitus (GDM)
For diagnosis of GDM, 2 values in each diagnostic group must be met or exceeded (ADA 2011).
According to the NICE guidelines No 63 (2008), screening for GDM using fasting plasma glucose, random blood glucose, glucose challenge test and urinalysis for glucose, should not be recommended. Instead a 2 hour 75 g OGTT should be done at 24-28 weeks of gestation.
Ethnicity, old age, family history, obesity and high fat diet and sedentary lifestyle, represent some important non-genetic identifiable predisposing factors for GDM, and in the absence of risk factors, there is low incidence of GDM. Ethnicity has been proven to be an independent risk factor for GDM (Dooley et al 1991, Weerakiet et al. 2004) which varies in prevalence in direct proportion to the prevalence of Type 2 diabetes in a given population or ethnic group. Women with an early diagnosis of GDM, in the first half of pregnancy, represent a high-risk subgroup, with an increased incidence of obstetric complications, recurrent GDM in subsequent pregnancies, and future development of Type 2 diabetes(Ben-Housah et al 2004, Buchanan et al 2007). There is a strong association between Gestational Diabetes Mellitus and women with diagnosed Polycystic Ovary Syndrome (PCOS) (Weerakiet et al 2004, Lo et al 2006). The prevalence of GDM is increasing worldwide because of the obesity epidemic and the increasing sedentary lifestyle and the attractive high caloric intake and need for insulin for glycaemic control (Bray et al 2003, Hedley et al 2004, Callagher et al 2008, Kulie et al. 2011, WHO 2011).
Gestational Diabetes Mellitus increases the risk of developing Type1 and Type 2 diabetes mellitus. Risk estimates for type 2 Diabetes is 17 to 68 percent within 5-16 years after pregnancy (O’Sullivan 1991, Hanna et al. 2002, Ben-Housah et. al 2004). The risk factors for postpartum diabetes include islet autoantibody positivity, insulin requirement during pregnancy, Obesity (Lauenborg et al 2004) and strong family history.
GDM is considered to result from interaction between genetic and environmental risk factors. Women with mutations in MODY (Maturity onset diabetes of the young) genes often present with GDM. Genetic predisposition to GDM has been suggested given the occurrence of the disease within family members. GDM is reported to be often present in women with mutation of MODY gene mutations (Lapolla et al 1996, Ferber et al. 1999, Watanabe et al 2007). Candidate susceptibility gene variants have been suggested to increase the risk of GDM. These genes include glucokinase (GCK), HLA antigens, insulin receptor (INSR), insulin-like growth factor-2 (IGF2), insulin gene (INS-VNTR), plasminogen activator inhibitor 1 (PAI-1), potassium inwardly rectifying channel subfamily J, member 11 (KCNJ11), hepatocyte nuclear factor-4a (HNF4A) (Love-Gregory and Permutt 2007). Identification of the possible underlying genetic factors and mechanisms of the pathogenesis may contribute to the individualization of both prevention and treatment of complications for the mother and fetus (Lambrinoudaki et al 2010). Furthermore, it may improve options to prevent GDM and the complications for the mother and child (Shaat and Groop 2007). During pregnancy, pancreatic cells should by necessity, expand and produce more insulin to adapt to the needs of the pregnancy and the growing baby. Hepatic Growth Factor (HGF) which interact with a surface receptor called c-Met. HGF/c-Met pathway signaling, plays a key role in increasing insulin secretion during pregnancy. The mechanisms in the maternal β-cells adaptation during pregnancy include maternal β-cell hyperplasia by lactogens and HGF/c-Met (Ernst et al 2011). Loss of HGF/c-Met Signaling in Pancreatic β-Cells leads to incomplete Maternal β-Cell Adaptation and Gestational Diabetes Mellitus (Demirci et al 2012).
Hyperlipidemia is a common comorbidity among patients with diabetes mellitus (Anger et al 2011, Koukkou et al 2011). A recent study has found an association between cholesterol intake and GDM (Gonzalez-Clemente et al. 2007 ). In the placenta, expressions of key proteins involved in de novo lipid synthesis are affected by changes in maternal metabolism (hypercholesterolemia and GDM) that may subsequently affect fetal development and result in asymmetric macrosomia. In addition, impaired placental function gives rise to significant increases in LDL, Apo-B-100 and triglyceride in maternal serum with increased levels of fatty acid synthase (FAS) and SREBP-2 expression and inflammatory cytokines (IL-1β and TNF-α) in placenta (Marseille-Trembley et al 2008). This may give rise to trend towards an increased risk of cardiovascular disease (Gonzalez-Clemente et al. 2007).
Free fatty acids (FFA) are the main circulating lipid fuel. FFA released from visceral depot appear to serve as a marker of systemic insulin resistance and associated increases in cardiovascular risk (Sivan et al 1999, Catalano et al 2002, Jensen 2006). This has been attributed to apoptosis of pancreatic beta cells through pathway involving caspase and ceramide as a mechanism underlying FFA induced impairment of beta –cell function (Turpin et al 2006). Hyperglycaemia and elevated FFA may act synergistically in causing damage to beta cells (El-Assaad et al 2003) and decreases ability of insulin to suppress free fatty acids with advancing gestation with GDM (Darmady and Postle 1982). In a recent report, Schaefer and Colleagues (2011) demonstrated higher free fatty acids in the cord blood of those neonates from mothers with gestational diabetes, indicating their enhanced placental transport and/or enhanced lipolysis as a result of decreased insulin responsiveness (Kautzky-Willer et al 2003).
The markers of lipid oxidation, especially malondialdehyde (MDA) increased with hyperglycaemia (Davi et al. 2005). Lipid peroxidation is a crucial process generated naturally in the body, mainly by the effect of several reactive oxygen species such as hydroxyl radical, hydrogen peroxide and superoxide. These reactive oxygen species readily attack the polyunsaturated fatty acids of the fatty acid membrane, initiating a self-propagating chain reaction (Hanachi et al. 2009). The destruction of membrane lipids and the end-products of such lipid peroxidation reactions cause cell damage. Enzymatic (catalase, superoxide dismutase) and nonenzymatic (vitamins A and E) natural antioxidant defense mechanisms exist; however, these mechanisms may be overcome, causing lipid peroxidation to take place. Lipid peroxidation has been implicated in disease states such as atherosclerosis, asthma, Parkinson\'s disease, kidney damage and preeclampsia (Mylonas and Kouretas 1999, Veskoukis et al 2012)
The development of diabetes in pregnancy induces a state of dyslipidemia, characterized by a high triglyceride concentration (Koukkon et al 1996,) and associated with disturbance of fetal development with modification of key features of placental function (Marseille-Tremblay 2008). GDM patients with macrosomic fetuses are associated with higher lipid and lipoprotein concentrations than in control patients (Mersouk et al. 2000).
8-Isoprostane is a product of lipid peroxidation that can be used as a measure of free radical exposure or injury. Periventricular-intraventricular hemorrhage, necrotizing enterocolitis, chronic lung disease and retinopathy of prematurity have been referred to as oxygen radical diseases (ORD) because they are thought to be related to excess oxidant stress relative to anti-oxidant defenses in premature infants (Weinberger et al 2006). Umbilical cord venous, but not arterial, 8-isoprostane levels are associated with mortality and the development of one or more of the ORD. In a study, serum triglyceride, total cholesterol, and LDL-c concentrations were higher in the SGA neonates than in AGA neonates, whereas high-density lipoprotein cholesterol concentrations were similar, suggesting a limited ability to clear intravenous lipids in SGA infants (Arends et al 2005). These findings are in agreement with many previous studies in adults and children that show that low birth weight was significantly associated with a less favorable lipid profile (Mortaz et al 2001). Hyperinsulinemia is known to enhance hepatic very-low-density lipoprotein synthesis, which may contribute to increased plasma triglycerides and LDL-c levels. Resistance to the action of insulin on lipoprotein lipase in peripheral tissues may also contribute to elevated triglyceride and LDL-c levels. (Barker et al 1993).
The discovery of leptin in the mid-1990s has focused attention on the role of proteins secreted by adipose tissue (Wang et al 2004). Leptin has profound effects on appetite and energy balance, and is also involved in the regulation of neuroendocrine and immune function. Sex steroid and glucocorticoid metabolism in adipose tissue have been implicated as a determinant of body fat distribution and cardiovascular risk. Other adipose products, include other adipokines such as adiponectin, proinflammatory cytokines such as TNF-alpha and IL-6, C-Reactive Protein, complement factors (Cipollini et al 1999, Coppack 2001) and components of the coagulation/fibrinolytic cascade like plasminogen activation inhibitor-1 (PAI-1), that may mediate the metabolic and cardiovascular complications associated with obesity and insulin resistance (Ahima and Flier 2000, Hutley and Prins 2005, Jensen 2006).).
Pregnancy represents a distinct immunologic state in the fetus that acts as an allograft to the mother, needing protection against potential rejection. There is some evidence that inflammation and activated innate immunity is associated with the pathogenesis of Type 2 Diabetes (Pickup 2004), but this needs comfirmation, especially in GDM.
The placental HLA-G proteins facilitate semiallogeneic pregnancy by inhibiting maternal immune responses to foreign (paternal) antigens via their actions on immune cells is now well established, and the postulate that the recombinant counterparts of these proteins may be used as powerful tools for accommodating the fetus and prevent immune rejection (Hunt et. al 2005). Humoral immune-reactivity does not change much during pregnancy, with the exception of lowered immunoglobulin G concentration at late phase, probably explained by placental transport. Regarding cellular immunity, the reduction, elevation, and lack of variation in the number of different lymphocytic populations, have been reported (Mahmoud et al 2005, 2006).
Multiple autoimmune disturbances may be manifested during pregnancy (Leiva et al 2008). Ferber and Associates (1999) have demonstrated that women with GDM who have islet autoantibodies at delivery or develop IDDM postpartum have HLA alleles typical of late-onset type 1 diabetes, and that both HLA typing and islet antibodies can therefore predict the development of postpartum IDDM. Freinkel et al. (1986) first proposed what may be defined as autoimmune GDM; that GDM entails genotypic and phenotypic diversity which may include patients with slowly evolving type 1 diabetes (Mauricio and Leiva 2001, Lapolla et al 2009). There is current consensus that autoimmune GDM is a heterogeneous condition that accounts for 10% of all Caucasian women diagnosed with GDM (Mauricio et al 1996). As a high-risk group for type 1 diabetes, women with previous autoimmune GDM may be candidates for potential immune intervention strategies (Mauricio et al 2001).
There is a significant increase in the absolute number of total and activated (CD3+HLA-DR+) T lymphocytes and a significant increase in the absolute number and percentage of suppressor/cytotoxic T lymphocytes (CD8) and NK lymphocytes (CD57) in GDM patients compared with normal pregnant controls (Mahmoud et al.2006). Concerning frequency for HLA A, B, C, DR antigens in the GDM population, only Cw7 was found to be significantly increased and A10 significantly decreased in comparison with controls (Lapolla et al 1996). When compared with healthy pregnant women, both GDM cohorts showed higher percentages CD4+CD25+ (P < 0.05), CD4+CD45RO+ (P < 0.05) and CD4+CD29+ (Mahmoud et al 2005).
There is a robust cytokine network in the placenta with diverse pathogenesis and effects on the development of the fetus.
Subpopulations of T helper lymphocytes (CD3+/CD4+) can be classified as either T helper 1 (Th1) or T helper 2 (Th2) cells depending on their cytokine profiles. Th2 cells selectively produce interleukins (IL)‐4, IL‐5, IL‐6, IL‐9, IL‐10 and IL‐13, and are involved in the development of humoral immunity against extracellular pathogens but inhibit several functions of phagocytic cells. In contrast to this, Th1 cells produce interferon‐γ (IFN‐γ), IL‐2 and tumour necrosis factor‐α (TNF‐α) and evoke cell‐mediated immunity and phagocyte‐dependent inflammation (Mosmann et al 1989, Mosmann and Moore 1991, Romagnani 2000). Cytokines are mainly produced by cells of the immune system, NK cells, and macrophages in response to an external stimulus such as stress, injury, and infection. Adipose tissue represents an additional source of cytokines, making possible a functional cooperation between the immune system and metabolism (Guerre-Miller 2004, Radaelli et al. 2005).
Research has recently focused on a group of substances produced mainly by adipose tissue called adipokines, this group includes, among others, adiponectin, leptin, Retinol-Binding Protein-4 (RBP-4), and resistin. These substances as well as other inflammatory mediators (CRP, IL-6, PAI-1, TNF-α) seem to play an important role in glucose tolerance and insulin sensitivity dysregulation in women with GDM (Thyfault et al 2005, Defalu 2009). There are two main pathways leading to GDM and T2DM: insulin resistance and chronic subclinical inflammation. Insulin resistance is caused by the inability of tissues to respond to insulin and the deficient secretion of insulin by pancreatic beta cells (Vrachnis et al 2012). Inflammatory processes have a robust contribution to the pathogenesis of dysglycemia condition and acute phase inflammatory response is a risk factor for T2DM and cardiovascular disease [Pickup et al. 2004 ]. Obesity has a role in the development of both T2DM and GDM through chronic subclinical inflammation, low-grade activation of the acute phase response, and dysregulation of adipokines (Yudkin et al 1999, Greenberg et al 2002). Increased levels of inflammatory agents during and after pregnancy have been reported in patients with GDM, while increased body fat has been strongly associated with inflammation and adipocyte necrosis, hypoxia, and release of chemokines which cause macrophages to infiltrate adipose tissue. Macrophages secrete cytokines which activate the subsequent secretion of inflammation mediating agents, specifically interleukin-6 (IL-6) and C-reactive protein (CRP) (Festa et al 2000). Other molecules such as Plasminogen Activator Inhibitor 1 (PAI-1) and sialic acid lead to dysregulations of metabolism, hyperglycemia, insulin resistance, and diabetes. These are a group of substances that are produced mainly in the adipose tissue. The group includes leptin, adiponectin, tumor necrosis factor alpha (TNF-α), retinol-binding protein-4 (RBP-4), resistin, visfatin, and apelin. These molecules are involved in a wide range of physiological processes including lipid metabolism, atherosclerosis, blood pressure regulation, insulin sensitivity, and angiogenesis, while they also influence immunity and inflammation. Their levels in pathologic states appear increased, with the exception of adiponectin which shows decreased levels (Vrachnis et al 2012).
Since the discovery of adiponectin in 1994 by Jeffrey M. Friedman (Zhang et al 1994), more than 20 members of the adiponectin family have been identified (Klein et al 2002, Housa et al 2006). Adiponectin is a 30-kDa protein that is synthesized almost exclusively by adipocytes. It exists in three major oligomeric forms: a low-molecular-weight trimer, a middle-molecular-weight hexamer and high-molecular-weight (HMW) 12- to 18-mer adiponectin. It is an insulin-sensitizing and stimulates glucose uptake in skeletal muscle and reduces hepatic glucose production through AMP-activated protein kinase[Zavalza et al 2008]. Circulating adiponectin levels are reduced in patients with GDM as compared to healthy pregnant controls. Adiponectin mRNA is downregulated in placental tissue, while circulating adiponectin concentrations are decreased postpartum in women with a history of GDM. It also possesses antiatherogenic and anti-inflammatory properties [Chandran et al 2003, Wiecek et al 2007]. The levels of adiponectin decrease as visceral fat increases [Cnop etal 2003, Weyer et al 2001, Hotta et al 2000, Shondorf et. al 2005] in such conditions as central obesity, insulin resistance, and diabetes mellitus. Reduced adiponectin levels have notably been associated with subclinical inflammation [Retnakaran et al 2003]. It has been shown that adiponectin levels begin to decrease early in the pathogenesis of diabetes, as adipose tissue increases in tandem with reduction in insulin sensitivity [Hotta et al 2001]. Hypoadiponectinemia has also been associated with beta cell dysfunction [Musso et al 2005, Retnakaran et al 2005)], while it has additionally been linked to future development of insulin resistance and type 2 diabetes mellitus, in the development of which adiponectin appears to have a causative role (Stefan et al 2002). As such, adiponectin may play a key role in mediating insulin resistance and beta cell dysfunction in the pathogenesis of diabetes (Retnakaran et al 2004, Retnakaran et al 2005). Retnakaran and Associates (2005) have demonstrated that adiponectin concentration is an independent correlate of pancreatic beta cell function in late pregnancy.
Leptin is a 16-kDa protein hormone that is known to play a key role in the regulation of energy intake and energy expenditure and in a number of physiological processes including regulation of endocrine function, inflammation, immune response, reproduction and angiogenesis. The main function of leptin in the human body is the regulation of energy expenditure and control of appetite. Indeed, lack of leptin in mice with a mutation in the gene encoding leptin, or absence of functional leptin receptor (
Placental leptin mRNA production is upregulated by tumour necrosis factor (TNF) α and interleukin (IL)-6. Most studies have found increased leptin concentrations in GDM. Moreover, hyperleptinaemia in early pregnancy appears to be predictive of an increased risk to develop GDM later in pregnancy independent of maternal adiposity (Hotamistigil et al 1993, Das 2002, Kirwan et al 2002,). The human placenta expresses virtually all known cytokines including tumor necrosis factor (TNF)-α, resistin, and leptin, which are also produced by the adipose cells (Qasim etal 2008, Rabe et al. 2008). The discovery that some of these adipokines as key players in the regulation of insulin action suggests possible novel interactions between the placenta and adipose tissue in understanding pregnancy-induced insulin resistance, which is evident in gestational diabetes mellitus (GDM) (Winzer et al 2004).
Gestational diabetes mellitus is characterized by an amplification of the low-grade inflammation already existing in normal pregnancy (Retnakaran et al 2010). This hypothesis is supported by increased circulating concentrations of inflammatory molecules like TNFα and IL-6 in GDM pregnancies. TNFα is one of the candidate molecules responsible for causing insulin resistance. Comparison of the placental gene expression profile between normal and diabetic pregnancies indicates that increased leptin synthesis in GDM is associated with a higher production of proinflammatory cytokines, e.g. IL-6 and TNFα causing a chronic inflammatory environment that enhances leptin production (Pickup et al 2000, Winkler et al 2002, Gao et al 2008). Thus, compared with normal pregnant women, placental leptin expression in patients with GDM is increased. Conversely, leptin itself increases production of TNFα and IL-6 by monocytes and stimulates the production of CC-chemokine ligands. Elevated leptin concentrations in turn amplify inflammation
In 1876 Ebstein asserted that sodium salicylate could make the symptoms of diabetes mellitus totally disappear. Similarly, in 1901 Williamson found that “sodium salicylate had a definite influence in greatly diminishing the sugar excretion”(Shoelson 2002, Shoelson et al 2006, Cefalu 2009). Increased levels of markers and mediators of inflammation and acute-phase reactants such as fibrinogen, C-reactive protein (CRP), IL-6, plasminogen activator inhibitor-1 (PAI-1), sialic acid, and white cell count correlate with incident T2D (Sternberg et al 1992, Bo et al 2005, Kim et al. 2008). Markers of inflammation and coagulation are reduced with intensive lifestyle intervention. This was confirmed in the diabetes prevention program (DPP Research Group 2005). Experimental evidence have also confirmed that adipose tissue–derived proinflammatory cytokines such as TNF-α could actually cause insulin resistance (Wolf et al 2003, Dandona et al 2004, Hu et al 2004, Heitritter et al 2005). Hotamisligil and colleagues (1993, 1994 ) and Karasik and Colleagues (1993 ) first showed that the proinflammatory cytokine TNF-α was able to induce insulin resistance. The concept of fat as a site for the production of cytokines and other bioactive substances quickly extended beyond TNF-α to include leptin, IL-6, resistin, monocyte chemoattractant protein-1 (MCP-1), PAI-1, angiotensinogen, visfatin, retinol-binding protein-4, serum amyloid A (SAA), and others (Dandona et al 2004). Adiponectin is similarly produced by fat, but expression decreases with increased adiposity. While leptin and adiponectin are true adipokines that appear to be produced exclusively by adipocytes, TNF-α, IL-6, MCP-1, visfatin, and PAI-1 are expressed as well at high levels in activated macrophages and/or other cells(Baer et al 1998). Sites of resistin production are more complex; they include macrophages in humans but both adipocytes and macrophages in rodents. TNF-α, IL-6, resistin, and other pro- or antiinflammatory cytokines appear to participate in the induction and maintenance of the subacute inflammatory state associated with obesity (Thyfault et al 2005). MCP-1 and other chemokines have essential roles in the recruitment of macrophages to adipose tissue. These cytokines and chemokines activate intracellular pathways that promote the development of insulin resistance and T2D (Wu et al 2002, de Victoria et al. 2009).
The JNK (also referred to as SAPK) and p38 MAPKs are members of the complex superfamily of MAP serine/threonine protein kinases. This superfamily also includes the ERKs (Lewis et al 1998). In contrast to ERKs (also referred to as MAPKs), which are typically activated by mitogens, JNK/SAPK and p38 MAPK are known as stress-activated kinases. This can be attributed to the fact that the activities of these enzymes are stimulated by a variety of exogenous and endogenous stress-inducing stimuli including hyperglycemia, ROS, oxidative stress, osmotic stress, proinflammatory cytokines, heat shock, and UV irradiation (Tibbles et al 1999). Many of the more typical proinflammatory stimuli simultaneously activate JNK and IKKβ pathways, including cytokines and TLRs (Seger and Krebs 1995). Concordantly, genetic or chemical inhibition of either JNK or IKKβ/NF-κB can improve insulin resistance. The several mechanisms have been postulated to explain how obesity activates JNK and NF-κB. These can be separated into receptor (Lowes et al 2002) and nonreceptor pathways (Tamura et al 2002). Proinflammatory cytokines such as TNF-α and IL-1β activate JNK and IKKβ/NF-κB through classical receptor-mediated mechanisms that have been well characterized (Shen et al 2001, Tournier et al 2001). JNK and IKKβ/NF-κB are also activated by pattern recognition receptors, defined as surface proteins that recognize foreign substances. These include the Toll-like receptors (TLRs) and the receptor for advanced glycation end products (RAGE). Many TLR ligands are microbial products, including LPS and lipopeptides (Tamura et al 2002).
JNK is a stress kinase that normally phosphorylates the c-Jun component of the AP-1 transcription factor, but to date there are no known links between this well-established transcriptional pathway and JNK-induced insulin resistance. JNK has been shown to promote insulin resistance through the phosphorylation of serine residues (Shen et al 2001, Tournier et al 2001). Insulin receptor signaling that normally occurs through a tyrosine kinase cascade is inhibited by counterregulatory serine/threonine phosphorylations.
Unlike JNK, IKKβ does not phosphorylate IRS-1 to cause insulin resistance but causes insulin resistance through transcriptional activation of NF-κB. Increased lipid deposition in adipocytes leads to the production of proinflammatory cytokines, including TNF-α, IL-6, IL-1β, and resistin, which further activate JNK and NF-κB pathways through a feed-forward mechanism (Hou et al 2008). In addition to the cytokines, there is upregulated expression of transcriptions factors, receptors, and other relevant proteins including chemokines that recruit monocytes and stimulate their differentiation into macrophages.
Cytokines and chemokines produced locally include MCP-1 and macrophage inflammatory protein-1α (MIP-1α), MIP-1β, MIP-2, and MIP-3α. T cell activation leads to expression of IFN-γ and lymphotoxin; macrophages, endothelial cells, and SMCs produce TNF-α; and together these stimulate the local production of IL-6 in the atheroma
In addition to proinflammatory cytokine and pattern recognition receptors, cellular stresses activate JNK and NF-κB, including ROS and ER stress. Elevated glucose cause oxidative stress through (1) increased production of mitochondrial reactive oxygen species (ROS), (2) Non-enzymatic glycation of proteins, (3) Glucose autoxidation (Elevated free fatty acids (FFA) and beta oxidation (Tibbles et al 1999, Evans et al 2002, Lewis et al 2002. Muoio et al. 2008). Systemic markers of oxidative stress increase with adiposity, consistent with a role for ROS in the development of obesity-induced insulin resistance, (Ozdemir et al 2005). One potential mechanism is through the activation of NADPH oxidase by lipid accumulation in the adipocyte, which increases ROS production. This mechanism was shown to increase the production of TNF-α, IL-6, and MCP-1, and decrease the production of adiponectin (Barbour et al 2007). Consistent with this, the antioxidant
The triad of cytokines, lipid metabolism and inflammation are hooked together by a biological thread of oxidative stress and pathogenetic end-point of insulin resistance. Oxidative stress inhibits expression of Pax 3, a gene that is essential for neural tube closure, and possibly congenital cardiac anomalies which have been associated with uncontrollable diabetes in pregnancy before and in early pregnancy (Chang et al 2003). The association between GDM and macrosomia is real, with a secondary effect of increased cesarean section and increased risk of postpartum genital infection and development of overt type 2 diabetes mellitus. The markers of inflammation, dyslipidemia, oxidative stress and endothelial dysfunction may provide additional information about a patient\'s risk of developing cardiovascular disease and hypertension. This may provide new attractive targets for drug development.
GDM offers an important opportunity for the development for testing and the implementation of clinical strategies in diabetic prevention (Volpe et al 2007). The main objective should be to improve insulin sensitivity and prevent diabetes mellitus.
Lifestyle modifications have been shown to be successful in decreasing the progression to T2DM in several populations, including American, Finnish and Asian, so it seems rational to consider similar interventions in women with a history of GDM (An Empowered Based Diabetic Prevention 2011). The ACOG (2003), RCOG Guidelines (2011), NICE Guidelines (2009) and the ADA (2005) all recommend that women at increased risk for T2DM should be counseled about the benefits of diet, exercise, and weight reduction and/or maintenance in an effort to prevent the development of T2DM as part of preconception care.
Breast-feeding is associated with reduced blood glucose levels and a reduced incidence of T2DM among both women with a history of GDM and women in the general population. Lactation has also been associated with postpartum weight loss, reduced long-term obesity risk, and a lower prevalence of the metabolic syndrome (O’Reilly et al 2003).
Mechanisms of Insulin Resistance and Gestational diabetes Fatty acid metabolites (long-chain acyl-CoA [LCCoA] and diacylglycerol [DAG]) trigger a serine/threonine kinase cascade andl protein kinase C, to induce serine/threonine phosphorylation. This inhibits IRS-1 binding and activation of PI 3-kinase and insulin signalling with resultant reduced insulin-stimulated glucose transport. Obesity-associated changes in secretion of adipokines and inflammatory IKKβ and NF-kβ and JNK pathways through ligands for TNF-α, IL-1, Toll and AGE receptors, intracellular stresses like Reactive oxygen species,Ceramide and PKC isoforms. These factors modulate insulin signalling, through activation of NF-kβ and cause insulin Resistance(
Insulin is the drug to use, especially in GDM. Drugs with anti-inflammatory and vascular effects have future potential of being used in interventions aimed at reducing the enormous cardiovascular burden associated with Type 2 diabetes (Ziegler 2005). Use of sodium salicylate (Aspirin) (Hostamistigil et al 1993, Karasik et al 1993) has the concerns with high dose and possible side-effect of peptic ulceration. The use of antioxidant E and C reduces embryopathy in animal model (Cederberg ) and in human with use of N-acetyl Cysteine has beneficial effects (Ozkilic et al 2006).
Recent advances in the understanding of carbohydrate metabolism during pregnancy, suggest that preventive measures should be aimed at improving insulin sensitivity in women with strong risk factors of developing GDM. The mechanisms involved in the pathogenesis of insulin resistance and Gestational Diabetes Mellitus are summarized in Figure 1. Further research is needed to elucidate the mechanisms and consequences of alterations in lipid metabolism during pregnancy (Marseille-Tremblay et al 2008). Inflammation-induced insulin resistance is certainly increasing in parallel with the epidemic of obesity. Strategies for reducing this trend should be part of the Public Health initiatives.
There is need for genetic studies especially from the Human Genome to identify those with candidate genes for diabetes and epigenetic factors that may affect gene expression and predisposition to inflammation. It should be possible to directly target inflammation with pharmacological interventions to treat and/or prevent insulin resistance and T2D and modulate risk for CVD and other metabolic conditions. In addition to anti-inflammatory drugs such as NF-κβ inhibitors and IL-1 receptor antagonists already known to improve inflammatory and glycemic parameters, should have utility to block the prolonged exposure to inflammatory danger signals may further enhance the metabolic and cardiovascular outcome of obese patients. Early recognition and management of women predisposed to develop T2DM is crucial in the development of primary health care strategies, modification of lifestyle, and dietary habits significantly to prevent or delay of insulin resistance and development of glucose intolerance.
In an attempt by the automobile industry to cut down on the consumption of fuel in the combustion engine of automobile vehicle, it is important to note that reduction in friction and wear plays an important role in reducing the energy consumed and ensuring energy efficiency. It has been reported by Holmberg et al. [1] that approximately 11.5% energy is required to overcome friction in a combustion engine of a passenger car as seen in Figure 1 [1]. To reduce the energy required to overcome friction in a combustion engine of a passenger car it is necessary to provide coatings that possess very low coefficient of friction and has high resistance against wear. DLC coatings have been known for their low coefficient of friction and excellence tribological properties in automobile engine parts application [1]. The hardness of DLC coatings range from 5 to 40 GPa, low friction coefficient value (<0.1) and high wear resistance (~3 x 10−14 m3/N.m) [2]. Although these properties may vary, depending on deposition technique such as Physical Vapor Deposition (PVD) and Chemical Vapor Deposition (CVD) which are the two (2) main classes of deposition techniques used [3]. PECVD provides durable DLC coatings, making them important for coating automobile engine parts to withstand harsh operational conditions [4].
Breakdown of passenger car energy consumption [
The major problem that may possibly arise during the application of DLC coatings on automobile engine parts at operating conditions is thermal instability. The operating temperature in usually 80 to 200°C, at this temperature the hardness reduces due to transformation of sp3 carbon to sp2 carbon, leading to a softer DLC which may easily delaminate and wear out [4, 5]. To improve the thermal stability doping (non-metal/metals) of DLC coatings has been used. Non-metals such as hydrogen, nitrogen, silicon, fluorine and sulfur, and metals such as tungsten, titanium, aluminum, chromium and molybdenum has been used to dope DLC films in an attempt to improve the DLC film [4, 5]. This has improved mechanical and tribological properties of DLC coatings by increasing the sp3 carbon bond. However, the internal residual stress in the DLC coatings becomes very high above 1 GPa, causing poor adhesion to metallic substrate. The internal residual stress is as a result of interfacial and structural mismatch between the DLC coating and doped element. In attempt to solve this problem annealing has been used to reduce the residual stress in the DLC and improve the thermal stability of DLC coatings up to 500°C [6].
Recently, the incorporation of nanoparticles into DLC has been used by first dispersing the nanoparticles into hexane or isopropanol, thereafter, introducing the dispersed nanoparticles into the reactor chamber through the nanoparticle inlet, this deposition method has been described by some authors in literature [7, 8, 9, 10, 11, 12, 13]. These nanoparticles which have been used includes Ag [7], TiO2 [8, 9, 10], WO3 [11, 12] and MoO3 [13]. In this chapter the use of diamond-like carbon coatings for automobile engine applications, due to their ultra-low friction coefficient and excellent wear resistance will be discussed. PECVD deposition technique for DLC coatings, mechanical and tribological properties at conditions similar to automobile engines would also be discussed. Discussion of the thermal stability of DLC coatings and the improvement of the DLC by non-metallic/metallic doping would be made. Lastly, the need to develop novel DLC coatings that can improve thermal stability by incorporating nanoparticles and future DLC coatings.
Diamond-like carbon coatings are amorphous carbon material that exhibit some of the typical properties of diamond and are characterized based on the content of sp3 bonded carbon and structure [14, 15]. DLCs are usually deposited using precursors of carbon such as ethane (C2H6), methane (CH4), acetylene (C2H2), iso-butane (C4H10), propane (C3H8), benzene (C6H6), and n-butane (C4H10) [16]. DLC coatings has the potential to be used on automobile part’s interface due to ultra-low friction. Yasuda et al. [17] has used DLC coatings on automobile part and their work showed reduction in friction for PECVD DLC coatings. According to Louda [18] the use of thin coatings in automotive parts brings about eco-friendly environments and economic savings.
Diamond-like carbon (DLC) coatings varies in mechanical, physical and tribological properties depending on their type. DLC coatings are used in automotive engines due to their ultra-low friction, increase durability, and chemically inert nature. The proportion of sp2 (graphetically) and sp3 (diamond-like) determines the properties they possess. Although, such properties can usually be influenced by adding non-metals (hydrogen, nitrogen, silicon, fluorine and sulfur) or metals (tungsten, titanium, aluminum, chromium and molybdenum) as shown in Figure 2 [4, 5].
Classification of DLC coatings [
Plasma enhanced chemical vapor deposition (PECVD) is the recently used technique to develop DLCs that are able to reach into the interior of the phase diagram [19] as represented in Figure 3. The ternary diagram majorly consists of differing ratios of sp2 and sp3 bonded carbon with differing levels of hydrogen. The ratio of these three components can be varied to provide a range of different properties. Sp2 bonding is typical graphite, having a carbon molecule with one double bond to a second carbon atom or to another atom and two single bonds to another atom, leading to planar configuration. While, sp3 bonded carbon atoms have three single bonds leading to a tetrahedral configuration. Coating names are often abbreviated to ta-C (tetrahedral amorphous carbon) for coatings with very high (almost exclusively) sp3 content, a-C (amorphous carbon) for coatings with high sp3 content, between 40 and 80%, and a-C:H (amorphous carbon—hydrogenated) for samples with a greater amount of hydrogen, often coupled with an increase in sp2 [19]. PECVD technique is based on glow discharge processes supplying hydrogen gases such as acetylene (C2H2), with a negatively biased substrate working at radio frequencies (13.56 MHZ) or mid frequencies (10 to 100 KHZ). It is important to note that DLC coatings can be deposited at low substrate temperatures (<200°C). High power of ion acceleration (100 KHZ - 13.56 MHZ), the low cost of equipment and growth of films are the advantages when using PECVD technique [20]. Radio frequency is the most common source of discharge for PECVD deposition [21]. However, some researchers found that using the PECVD technique with DC source pulsed, provides better results in terms of adherence, low friction coefficient, relatively reduced internal stress, high hardness and lower production cost when compared to RF-PECVD techniques [22].
Ternary phase diagram for various forms of diamond-like carbon [
PECVD deposition technique is based on the growth of DLC films using cold plasma, which is characterized by a lack of thermodynamic equilibrium, the ion temperature is lower than the electron temperature. Thus, the kinetic energy (as a result of the temperature) of electrons is much higher than that of ions. The plasma, has a degree ionization in which the gas consists mainly of neutral species excited. The deposition chamber in the PECVD reactor has two electrodes of different areas. The cathode (smallest area) is connected to a current source (Pulsed DC or radio frequency), and the potential difference is applied to it, or polarization voltage. The anode (biggest area) is made up of the walls of the chamber, or by a plate parallel to the cathode, and is grounded. A representation schematic can be seen in Figure 4. Before deposition begins, evacuation from the chamber is carried out, a gas is introduced and becomes the medium in the discharge which is initiated and sustained through the current source [22]. The electrons acquire and lose energy quickly in a sequence of collisions, until they acquire enough energy to ionize (decouple) the gas molecules and produce secondary electrons by impact reactions. As plasma stabilization takes place, electrons are lost in the walls and in electrodes, and the flow is maintained through reactions with secondary electrons and the impact of positive ions on the electrodes. During the stable phase of the plasma, the number of electrons generated and lost is in balance and its stability is directly related to pressure, which influences the free path medium. Plasma being generated by a process of collisions between electrons free accelerated by the electric field and the atoms/molecules of the atmosphere precursor, the basic deposition mechanism involves the creation of species reactive substances such as electrons, ions, molecules, neutral and ionized radicals, causing new ionizations. These reactive species, activated by the discharge, tend to interact with the surface, chemically adsorbing and forming film [22].
Schematic for pulsed-DC PECVD with nanoparticle inoculation chamber.
The PECVD technique from a pulsed DC source consists of a discharge in low pressure plasma using a pulsed switched source for the plasma generation [23, 24]. Through this technique, different films type (a-C: H and ta-C: H) can be obtained. The structure of the films obtained is composed of the sp2 hybridization clusters inter-connected by carbons with sp3 hybridization. Several mechanisms are involved in the deposition of films a-C: H, and the strong dependence on the properties of a-C: H films deposited by PECVD with the polarization voltage (bias-voltage) and the bombardment ions, indicate that the latter have a fundamental role in the deposition of films [25], which makes it necessary to description of the physical process of ionic sub-implantation.
Using DLC as coatings for automobile engine parts can assist to reduce friction and wear, which cannot be achieved by the use of lubricants alone, ensuring an improvement in engine performance and transmission components [26]. Lawes et al. [4] reported diamond-like carbon coatings to have assisted in reduction of fuel consumption (total annual global fuel consumption reduced from 631,109 to 400,109 l/a.) in automobile engines by reducing friction loss due to its self-lubricating properties, chemical stability and weight reduction. The excellent tribological properties (low friction, wear resistance, corrosion resistance, high hardness and chemical stability) of DLC, since their discovery in 1971 has made them widely used in the automotive industry. Different types of DLC films vary in mechanical, physical and tribological properties which is usually determined by their sp3 and sp2 contents in the DLC coating [27, 28]. The mechanical and tribological properties have been analyzed by nano-indentation, scratch, wear and friction testing of an instrumented cam-tappet testing rig to study the tribological properties of DLC coatings for engine applications [15, 16, 29]. Success has been recorded over recent years with the application of DLC coatings to a number of automotive engine components (piston, tappet, camshaft, piston rings, gudgeon pin, valve stem and head, and rocker arm) [4, 16]. DLC coatings applied to automobile parts possess thickness ranging between 1 and 4 μm [4]. DLC coatings in engines needs careful selection of required surface finishing, mechanical properties, and tribological behavior of the coatings with engine oils [4]. The coatings hardness and stiffness are needed to determine the wear resistance of coatings, while friction is controlled by hardness, topography of the surface and tribo-chemical interactions of the dopants with the DLC coatings [4].
High hardness, wear resistance and low friction coefficient are significant for tribological-mechanical properties of the DLC, for a wide range of applications in tribo-systems [30]. Different types of industries (aerospace, automobile, biomedical, mechanical and electronics) have used DLC films, with the intension of increasing the useful life of components and performance of mechanical systems. It can be used as a solid lubricant in environments in which liquid lubrications are not needed, such as in the space environment, food industries and clean environments, conditions of contact with high mechanical loading. Thus, the investigation of the correlation between specific tribological properties of the DLC and working conditions, such as contact pressure, sliding speed, rolling condition, lubrication condition, are very important, and can provide useful information that can aid in predicting tribological behavior of DLC coatings applied to certain machine elements [30].
Adherence is work necessary to separate atoms or molecules at the interface [30]. DLC films are usually faces difficulty with adhesion, due to the high internal compressive stress, accompanies with the growth of the films. This directly interferes with the adhesion between film and metallic substrate, causing detachment of the film [31]. The total tension of the films after the formation and deposition corresponds to a sum of stress effects thermal and intrinsic tension. The thermal stress arises from the difference between the coefficient of thermal expansion of both film and substrate materials, while the intrinsic stress is attributed to the cumulative effect of failures that appear internally in the film during the formation processes [32]. Several methods have been used to decrease internal tension and increase the adhesion of the DLC film on metallic substrates. One of these methods consists of insertion of doping elements such as Ti, Cr, W, N, B and Si, to avoid diffusion of carbon into the metallic substrate, the doping elements form carbides, reducing the total tension in the doped films of DLC [33]. The deposition of DLC films with silicon interlayers using the PECVD Pulsed DC technique has been found to improve adhesion with low coefficient of friction, and lower internal stress which is as a result of interfacial and structural mismatch between the coating and the substrate [21]. Several techniques are used in an attempt to measure film adhesion such as scratch tests or sclerometry (scratch test), scraping test, bending test, impact, cavitation and Rockwell impression [34]. Figure 5 displays a schematic representation of the scratch test, and the tracks obtained in a test with constant load and with progressive load. The test of sclerometry is a semi-quantitative method that consists of streaking the sample using an indenter, usually diamond. This test allows the determination of properties such as hardness, roughness and specific energy [35].
Schematic representation of the scratch test.
Wear is the progressive loss of material from a solid body due to mechanical action (contact and movement of a solid body against a solid, liquid or gaseous body) [36, 37]. In analyzing the wear resistance of DLC films, the hardness of the film or the surface is the first correlation to be made (wear coefficient is inversely proportional to hardness) [36, 37]. The hardness of the film is dependent on the structure and will be higher, with higher concentration of the sp3 bonds. The wear on DLC coatings is due to two mechanisms namely: friction wear, (related to surface roughness); and wear through transfer of layers through the formation of a tribo-film (transfer layer) induced by contact pressure, which is responsible for decreasing the friction coefficient [20]. The hardness and roughness of the substrate are also factors that affect the wear of the DLC. On low hardness substrates, high plastic deformations occur, so that the film becomes fragile, causing it to break. Schematic of wear configuration (a) pin on disk (b) ball on disk is shown in Figure 6.
Schematic of wear configuration (a) pin on disk (b) ball on disk.
DLC coatings are commonly known for their high internal stresses, which affects their tribological properties and thermal stability. Annealing is mostly used to reduce the internal stress in DLC coatings. Annealing up to 800°C for ta-C is possible and reduces internal stress to an insignificant value (Figure 7), while annealing a-C above 500°C reduces the thermal stability. During annealing a cluster of sp2 bonded carbon atoms will occur, which does not affect the sp3 content [38, 39]. This may change some of the physical properties, such as optical gap, electrical resistivity, and reduce the compressive stress [38]. At higher temperatures graphitization (sp3 to sp2 transformation) begins, leading to a softer coating which will easily delaminate. Different amorphous DLC films deposited by different deposition methods possess different sp3 fraction at different graphitization temperature [40].
Relative internal stress against annealing temperature for ta-C coatings [
It has been reported that ta-C hardness does not reduce until about 600°C under vacuum condition [41]. The thin film thickness (nm) remain stable under vacuum condition till 400°C having little graphitization [42]. An investigation of thin films (1.5 nm) revealed changes in the Raman peak position and ID/IG of samples annealed at 300°C for 60 minutes are not due to graphitization. Ta-C film annealed at 300°C has more sp2 clustering and no reduction in sp3 content [40]. The starting temperature of oxidation for a-C and ta-C films varied based on structure and the oxidation behavior is strongly affected by the sp3 content, for a-C and ta-C films [43]. DLC has been known in the past for their poor thermal stability above 500°C, where sp3 (diamond-like) structure begins to transform to sp2 (graphitic-like) structure, thereby making the coatings softer. At about the same temperature the loss of coating thickness is above 100 nm, this implies a reduction in coating thickness as the temperature increases. Normally, breakdown and structural collapse of DLC coatings occurs at high temperature above 500°C, which may be attributed to breaking of C▬H bonds. Leading to the C▬C networks becoming more graphite-like to facilitate the formation of volatile C▬O and metal oxide phases. Micro-wear of DLC film occurs as the annealing temperature increases above 200°C, as a result of mechanical stress and thermal degradation of DLC as reported by Lee et al. [44]. Whenever there is a transformation to sp2 the mechanical strength degrades significantly, which consequently leads to critical failure or engine parts malfunction.
Modified or doped DLC films according to VDI 2840 standard [45] are denoted as a-C:H:X where X represents non-metallic elements, while, a-C:H:Me where Me represents metallic elements. Until recently, the incorporation of various nanoparticles into DLC has been also used to improve the adhesion properties of DLC by producing nano-clusters that are carbides. In the mid-1970s and 1980s various researchers reported silicon containing a-C:H:Si films deposited using glow discharge decomposition of silane (SiH4) and hydrocarbon gases (acetylene and methane) and also using d.c. magnetron sputtering [5]. Generally, both a-C:H:X and a-C:H:Me improve mechanical and tribological properties of coatings due to reduction in the residual stress. Increasing the non-metallic or metallic contents in a-C:H, increases the temperature at which structural transformation will occur for films deposited using r.f. PECVD by increasing the sp3 bonded carbon stabilizing the carbon network, leading to a reduction in graphitization. Hardness and friction coefficients remained nearly constant even after annealing at 500°C in air, whereas, a-C:H coatings failed at 400°C [5].
Metal-doped DLC (Me-DLC) coatings usually exhibit higher thermal stability than non-doped DLC up to 500°C, which was revealed by X-ray diffraction, transmission electron microscopy, and Raman spectroscopy. Annealing temperature above 500°C, losing high amount of hydrogen from the Me-DLC coatings, causing breakdown and structural collapse of the coatings at high temperature [46]. Non-doped DLC coating has low resistance to wear in lubricating oils containing Molybdenum Dithiocarbamates (MoDTC), this is because of the decomposition and chemical reactivity leading to the formation of oxides and nano-crystallites [47]. Si-doped DLC coating produces anti-wear film, which is usually stronger when the lubricant contains additives. Raman spectroscopy was used to analyze the tribo-chemical activity of the DLC coatings lubricants with additives. DLC coatings has been used for gear teeth with a coating thickness (1 μm) and deposition temperature (200°C), needing no additional surface finishing [48, 49]. The appropriate method to determine thermal stability of DLC at high temperature is the use of tribological testing equipment such as an Optimol SRV® v4 device which will determine the wear rates and coefficient of friction at high temperature range. Raman spectroscopy, X-ray Photoelectron Spectroscopy (XPS), and nano-scratch experiments can further be used to investigate the mechanism that affect the thermal stability of DLC during their use in internal combustion engines. It is important to note that the Optimol SRV® v4 device can operate between 25 and 900°C.
DLC doped with non-metals (hydrogen, boron, nitrogen, phosphorus, fluorine and sulfur) or metals (copper, nickel, tungsten, titanium, molybdenum, silicon, chromium and niobium) [50] has brought improvement in the thermal stability of DLC coated engine parts. The use of silicon to doped DLC comprising amorphous nano-composites can enhance the thermal stability of DLC. However, a reduction in film thickness occurs at high annealing temperature. Metal-doped DLC creates a two-dimensional array of metallic nano-crystalline clusters and metallic carbides precipitates embedded in an amorphous carbon matrix and reduces surface tension. The use of metal doped DLC helps in stabilizing DLC at high temperatures by delaying graphitization when metallic carbides precipitates are formed [51]. Tungsten and Molybdenum are most commonly used DLC dopant for coating automobile engine parts for improving thermal stability.
Tungsten and molybdenum have been reported to have been used to doped DLC films in order to reduce friction and wear rate during high temperature [52, 53]. It is important to note the both tungsten and molybdenum will form carbide precipitates when doped with diamond-like carbon coatings [51, 53]. A study of the tribological behavior of DLC-W on Aluminum alloy has been carried out under lubricated condition showed low COF (0.11) and wear rate (0.51 × 10−5 mm3/Nm), which was due to the presence of tungsten disulphide (WS2) [54]. DLC-W has been observed to possess variation of resistance against strain sensitivity which was due to deformation of metallic nano-size clusters when a strain is applied enabling its application as a smart material [55]. WCx is the general chemical composition in which tungsten carbide can exist in DLC doped with tungsten [56]. DLC-W also plays an important role in multi-layer DLC composites by reduction of residual stress and improving adhesion to metallic substrate [57]. It has been noted that DLC-W exhibit tribo-chemical interaction when in contact with lubricants which improves wear resistance and ultra-low friction [16, 51]. The tribological behavior for both room temperature and high temperature (120 and 150) oC were compared for DLC-W [57, 58]. Evaristo et al. [58] observed the presence of tribo-layer on the contact body consisting mainly of W-C, C and W-O acting against the surface of the coatings. However, when dealing with lubricants WS2 is likely to be formed which serves as tribo-film.
Mo doping of DLC increases the sp2 carbon content leading to a decrease in the hardness and elastic modulus of DLC-Mo coatings compared with DLC coatings [59]. MoC nanoparticles embedded in the cross-linked amorphous carbon matrix was responsible for the reduction of loss in hardness and elastic modulus [59]. An increase in Mo content increases the surface roughness and decreases the residual stress of the DLC coatings [60]. 3.8% at Mo was reported as the optimum amount for improved mechanical properties [49, 61]. The tribological and mechanical properties of tungsten or molybdenum containing DLC coatings have high hardness, high elasticity and low surface energy, which causes a high hardness to elasticity ratio (H/E) and a low surface energy to hardness ratio (S/H) [52]. Consequently, leading to better adhesion properties, high wear resistance, low friction coefficient and low residual stress of the DLC-W and DLC-Mo [53, 62, 63]. Tribological properties of DLC coatings sometimes maybe affected by adhesion promoter (interlayer), substrate roughness, hydrogen incorporation and coating deposition parameters such as bias voltage (750v), etching, current (1.5A), precursor gas (C2H2/CH4/SiH4/Ar), pressure (2.3 mTorr), time (2 hours) and substrate temperature (200°C) [2]. Service condition such as temperature, sliding speed, load, relative humidity, counter surface and lubrication affects the tribology of DLC-coated parts. As the temperature in the combustion engine increases above 200°C the DLC coatings begin to undergo transformational changes from sp3 carbon bond to sp2 carbon bond, making the DLC coating softer to resist hardness and wear, therefore increasing the COF. Although there has been success in the application of DLC coatings for mass production of engine components [48].
Generally, the DLCs coatings thickness is very important to aid in resistance against wear, which further affects the coating life span. All coatings will eventually wear out due to their exposure to harsh working conditions. Erdemir [64] mentioned that the next generation of hard coatings that can generate their own tribo-films (catalytic coating) in a self-healing or continuous manner will be a big step. If engine blocks can be made from lighter materials the efficiency can be improved, coatings can play a major role in enabling such to work out. The ability to self-generate a DLC film
Metal ion can be incorporated into DLC coatings in a controlled manner for relevant laboratory experimental study and industrial use [65]. This also means that metallic nanoparticles can also be incorporated into DLC films, uniform dispersion of nanoparticles into the DLC film is of significant importance [7, 66]. Hexane and isopropanol solution have recently reported to be used to dissolve nanoparticles for DLC incorporation [8]. Using this technique, it is possible to achieve various types of DLCs incorporated with different nanoparticles for different applications ranging from biomedical, electronics, mechanical and automobile engine. TiO2 nanoparticles incorporated DLC has been reported to increase bacteria activity interaction on DLC surfaces. While, Ag nanoparticles incorporated DLC is known for the increase in wear resistance it provides for DLC [8]. Tungsten trioxide nanocrystalline-containing DLC (WO3/DLC) has been deposited using one-step electrodeposition technique at atmospheric pressure, which was fabricated for electrical and wetting properties application. The technique makes use of an electrolytic system, a negative electrode (silicon wafer substrate) and positive electrode (platinum plate). The distance between the two electrodes was about 8 mm. Analytical pure methanol (99.5%) was used as carbon source and the concentration of tungsten carbonyl which used as an incorporated reagent was 0.2 mg/ml. The films deposition was carried out under an applied voltage of 1200 V and ambient temperature of 55 ± 2°C for 8 h [11]. Recently, tungsten trioxide (WO3) and molybdenum trioxide (MoO3) nanoparticles (DLC nanocomposite coatings) has been incorporated into DLC by first uniformly dispersing these nanoparticles into isopropanol solution and incorporated into DLC coatings deposited on a tappet valve (metallic substrate) deposition parameters for DLC-MoO3 and DLC-WO3 coatings is shown in Table 1 [12, 13]. This tungsten trioxide (WO3) and molybdenum trioxide (MoO3) nanoparticles incorporated DLC coatings (DLC-WO3/DLC-MoO3) has showed improved adhesion and tribological properties having a COF of 0.075 and 0.070 for DLC-WO3/DLC-MoO3 respectively [12, 13]. These coatings with its excellence adhesion and tribological properties is a novel fabricated diamond-like carbon coatings incorporated with nanoparticles using PECVD for automobile applications. The schematic is represented in Figure 8 below.
Precursor | Pressure (Torr) | Time (min) | Flow rates (sccm) | Bias (-V) |
---|---|---|---|---|
Ar | 2.3 x 10−3 | 30 | 8 | 600 |
Ar + SiH4 | 4.1 x 10−3 | 20 | 3.5 | 700 |
Ar + C2H2 | 3.3 x 10−3 | 5 | 10 | 700 |
Ar + C2H2 + MoO3/WO3 nanoparticles | 3.6 x 10−3 | 55 | 10 | 700 |
Processing parameters for deposition of DLC-MoO3 and DLC-WO3.
Schematic of DLC incorporated nanoparticles (DLC nanocomposite coatings).
Nanoparticles (WO3 or MoO3) with a higher specific surface would adsorb great amount of cation ions. Under the effect of high electric field, the migration of the cation ions toward to the cathodic substrate with the abundance of electron occurred, resulting in the growth of nc-WO3 or nc-MoO3 doped nanocomposite film. Figure 9 shows the scratch track of DLC-MoO3 and DLC-WO3 coatings.
SEM images of scratch track (a)-(a1) DLC-MoO3 (b)-(b1) DLC-WO3.
mCH3+ + n(WO3/MoO3) + me− → nc- (WO3/MoO3) doped DLC nanocomposite film.
The coating with the ability of self-healing itself could be the solution for extending the life of engine components and subsystems. Researchers at the Argonne National Laboratory have developed a self-renewing hard and slick coating for metal parts that has the potential to revolutionize friction and wear protection [64]. The nanocomposite coating uses metal alloys including copper, nickel, palladium and platinum, which are catalytically active at the temperatures at which coatings are used in engines [64]. Structurally, the tribo-film formed during the use of the coatings is similar to diamond-like carbon, which already provides lower friction than industry-standard tribo-film. The DLC coatings interaction with oil molecules makes the DLC film to adhere to metallic substrate. However, in this new technology, when the tribo-film is worn away the catalyst is re-exposed to the lubricant, kick-starting catalysis and developing new layers of tribo-film. Ali Erdemir [64] mention that it might enable additives engine lubricants to provide not only the fluid film, but also the solid boundary film lubrication in a self-healing manner.
In this chapter the need for DLC coatings for automobile engine applications has been discussed, the importance of using PECVD technique to deposit DLC coatings has been discussed, together with their mechanical and tribological properties. The thermal stability of DLC coatings was also discussed and with improvement with non-metallic/metallic doping of DLC coatings. Discussion on the recent incorporation of Ag, TiO2, WO3 and MoO3 nanoparticles into DLC. The novel fabrication of diamond-like carbon coatings incorporated nanoparticles (WO3/MoO3) using PECVD for automobile applications has shown an improvement in the adhesion properties of the DLC coatings, which will in turn improve the wear resistance of the DLC-WO3/DLC-MoO3 coatings.
The authors are thankful to the Petroleum Technology Development Fund (PTDF), Nigeria and Conselho Nacional de Desenvolvi-mento Científico e Tecnologico - Brasil (CNPq) process 141991/2019-4 and 315861/2018-5. In addition, the authors are grateful to Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campus, Brazil for the DLC film deposition.
If you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links.
",metaTitle:"List of Institutions by Country",metaDescription:"If you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links. However, if your research is financed through any of the below-mentioned funders, please consult their Open Access policies or grant ‘terms and conditions’ to explore ways to cover your publication costs (also accessible by clicking on the link in their title).",metaKeywords:null,canonicalURL:"open-access-funding-institutions-list",contentRaw:'[{"type":"htmlEditorComponent","content":"Book Chapters and Monographs
\\n\\nBook Chapters
\\n\\nMonographs Only
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\nMonographs Only
\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nCSIC affiliated authors can also take advantage of a central Open Access fund (amounting to 10,000 EUR) to cover up to 50% of the rest of the OAPF until it expires. Effective for chapters accepted from January 1, 2020.
\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\n\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nThe Claremont Colleges are pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 15% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nThe University of Massachusetts, Amherst is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nThe University of Surrey is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nMonographs Only
\\n\\n\\n\\nImportant: You must be a member or grantee of the above listed institutions in order to apply for their Open Access publication funds.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Book Chapters and Monographs
\n\n\n\nBook Chapters
\n\nMonographs Only
\n\n\n\nBook Chapters and Monographs
\n\nMonographs Only
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\n\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nCSIC affiliated authors can also take advantage of a central Open Access fund (amounting to 10,000 EUR) to cover up to 50% of the rest of the OAPF until it expires. Effective for chapters accepted from January 1, 2020.
\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\n\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\nThe Claremont Colleges are pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 15% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nThe University of Massachusetts, Amherst is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nThe University of Surrey is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nMonographs Only
\n\n\n\nImportant: You must be a member or grantee of the above listed institutions in order to apply for their Open Access publication funds.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13404},{group:"region",caption:"Middle and South America",value:2,count:11681},{group:"region",caption:"Africa",value:3,count:4213},{group:"region",caption:"Asia",value:4,count:22423},{group:"region",caption:"Australia and Oceania",value:5,count:2020},{group:"region",caption:"Europe",value:6,count:33699}],offset:12,limit:12,total:135704},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"20"},books:[{type:"book",id:"11857",title:"Updates on Excitons",subtitle:null,isOpenForSubmission:!0,hash:"8a2fd9bbbbae283bf115881d9d5cc47a",slug:null,bookSignature:"Dr. Ashim Kumar Dutta",coverURL:"https://cdn.intechopen.com/books/images_new/11857.jpg",editedByType:null,editors:[{id:"277477",title:"Dr.",name:"Ashim",surname:"Dutta",slug:"ashim-dutta",fullName:"Ashim Dutta"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11858",title:"Terahertz Radiation",subtitle:null,isOpenForSubmission:!0,hash:"f08ee0bf20cd8b5fa772b4752081f2fe",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11858.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11861",title:"Redefining Standard Model Particle Physics",subtitle:null,isOpenForSubmission:!0,hash:"085d4f6e00016fdad598675f825d6775",slug:null,bookSignature:"Prof. Brian Albert Robson",coverURL:"https://cdn.intechopen.com/books/images_new/11861.jpg",editedByType:null,editors:[{id:"102886",title:"Prof.",name:"Brian Albert",surname:"Robson",slug:"brian-albert-robson",fullName:"Brian Albert Robson"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12013",title:"Plasma Science - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"0261ac62d10563bf93735982748e3a2e",slug:null,bookSignature:"Dr. Sukhmander Singh",coverURL:"https://cdn.intechopen.com/books/images_new/12013.jpg",editedByType:null,editors:[{id:"282807",title:"Dr.",name:"Sukhmander",surname:"Singh",slug:"sukhmander-singh",fullName:"Sukhmander Singh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12014",title:"Aerodynamics of Sports",subtitle:null,isOpenForSubmission:!0,hash:"a15f5d35a75d3dfee7d27e19238306b0",slug:null,bookSignature:"Dr. Rakhab Mehta",coverURL:"https://cdn.intechopen.com/books/images_new/12014.jpg",editedByType:null,editors:[{id:"56358",title:"Dr.",name:"Rakhab",surname:"Mehta",slug:"rakhab-mehta",fullName:"Rakhab Mehta"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12270",title:"Laser Ablation",subtitle:null,isOpenForSubmission:!0,hash:"998af2dd3ea1e28f4db7451a65010272",slug:null,bookSignature:"Dr. Masoud Harooni",coverURL:"https://cdn.intechopen.com/books/images_new/12270.jpg",editedByType:null,editors:[{id:"184282",title:"Dr.",name:"Masoud",surname:"Harooni",slug:"masoud-harooni",fullName:"Masoud Harooni"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:22},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:6},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:15},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:8},{group:"topic",caption:"Engineering",value:11,count:37},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:8},{group:"topic",caption:"Materials Science",value:14,count:15},{group:"topic",caption:"Mathematics",value:15,count:8},{group:"topic",caption:"Medicine",value:16,count:61},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:5},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:6},popularBooks:{featuredBooks:[{type:"book",id:"10827",title:"Oral Health Care",subtitle:"An Important Issue of the Modern Society",isOpenForSubmission:!1,hash:"9a0ceb9ced4598aea3f3723f6dc4ea04",slug:"oral-health-care-an-important-issue-of-the-modern-society",bookSignature:"Lavinia Cosmina Ardelean and Laura Cristina Rusu",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",editors:[{id:"180569",title:"Dr.",name:"Lavinia",middleName:null,surname:"Ardelean",slug:"lavinia-ardelean",fullName:"Lavinia Ardelean"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10780",title:"Current Trends in Orthodontics",subtitle:null,isOpenForSubmission:!1,hash:"badce0e23eb5176fd653b049d5295c0a",slug:"current-trends-in-orthodontics",bookSignature:"Farid Bourzgui",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",editors:[{id:"52177",title:"Prof.",name:"Farid",middleName:null,surname:"Bourzgui",slug:"farid-bourzgui",fullName:"Farid Bourzgui"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8452",title:"Organizational Conflict",subtitle:"New Insights",isOpenForSubmission:!1,hash:"96bdaaba38a7850a7e7379aa5a505748",slug:"organizational-conflict-new-insights",bookSignature:"Josiane Fahed-Sreih",coverURL:"https://cdn.intechopen.com/books/images_new/8452.jpg",editors:[{id:"103784",title:"Dr.",name:"Josiane",middleName:null,surname:"Fahed-Sreih",slug:"josiane-fahed-sreih",fullName:"Josiane Fahed-Sreih"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10206",title:"Terahertz Technology",subtitle:null,isOpenForSubmission:!1,hash:"2cdb79bf6297623f1d6202ef11f099c4",slug:"terahertz-technology",bookSignature:"Borwen You and Ja-Yu Lu",coverURL:"https://cdn.intechopen.com/books/images_new/10206.jpg",editors:[{id:"191131",title:"Dr.",name:"Borwen",middleName:null,surname:"You",slug:"borwen-you",fullName:"Borwen You"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11331",title:"Secondary Metabolites",subtitle:"Trends and Reviews",isOpenForSubmission:!1,hash:"7d6274f42d5441e537c5fa744bc84523",slug:"secondary-metabolites-trends-and-reviews",bookSignature:"Ramasamy Vijayakumar and Suresh Selvapuram Sudalaimuthu Raja",coverURL:"https://cdn.intechopen.com/books/images_new/11331.jpg",editors:[{id:"176044",title:"Dr.",name:"Ramasamy",middleName:null,surname:"Vijayakumar",slug:"ramasamy-vijayakumar",fullName:"Ramasamy Vijayakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10793",title:"Molecular Mechanisms in Cancer",subtitle:null,isOpenForSubmission:!1,hash:"3ed2817275edb3de6f5683602314706e",slug:"molecular-mechanisms-in-cancer",bookSignature:"Metin Budak and Rajamanickam Rajkumar",coverURL:"https://cdn.intechopen.com/books/images_new/10793.jpg",editors:[{id:"226275",title:"Ph.D.",name:"Metin",middleName:null,surname:"Budak",slug:"metin-budak",fullName:"Metin Budak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10957",title:"Liquid Crystals",subtitle:null,isOpenForSubmission:!1,hash:"7a2d81fa4893fcf74e7b3823a3e4f385",slug:"liquid-crystals",bookSignature:"Pankaj Kumar Choudhury and Abdel-Baset M.A. Ibrahim",coverURL:"https://cdn.intechopen.com/books/images_new/10957.jpg",editors:[{id:"205744",title:"Dr.",name:"Pankaj",middleName:null,surname:"Kumar Choudhury",slug:"pankaj-kumar-choudhury",fullName:"Pankaj Kumar Choudhury"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10652",title:"Information Extraction and Object Tracking in Digital Video",subtitle:null,isOpenForSubmission:!1,hash:"d13718b2d986d058d55cf91e69bf21c0",slug:"information-extraction-and-object-tracking-in-digital-video",bookSignature:"Antonio José Ribeiro Neves and Francisco Javier Gallegos-Funes",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",editors:[{id:"1177",title:"Prof.",name:"António",middleName:"J. R.",surname:"José Ribeiro Neves",slug:"antonio-jose-ribeiro-neves",fullName:"António José Ribeiro Neves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10820",title:"Data Clustering",subtitle:null,isOpenForSubmission:!1,hash:"086d299ffd05aacd2311c3ca4ebf0d3a",slug:"data-clustering",bookSignature:"Niansheng Tang",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",editors:[{id:"221831",title:"Prof.",name:"Niansheng",middleName:null,surname:"Tang",slug:"niansheng-tang",fullName:"Niansheng Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10728",title:"Blood Groups",subtitle:"More than Inheritance of Antigenic Substances",isOpenForSubmission:!1,hash:"b5e79b54a382651f3130c9ee5ab862b4",slug:"blood-groups-more-than-inheritance-of-antigenic-substances",bookSignature:"Kaneez Fatima Shad",coverURL:"https://cdn.intechopen.com/books/images_new/10728.jpg",editors:[{id:"31988",title:"Prof.",name:"Kaneez",middleName:null,surname:"Fatima Shad",slug:"kaneez-fatima-shad",fullName:"Kaneez Fatima Shad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4802},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10827",title:"Oral Health Care",subtitle:"An Important Issue of the Modern Society",isOpenForSubmission:!1,hash:"9a0ceb9ced4598aea3f3723f6dc4ea04",slug:"oral-health-care-an-important-issue-of-the-modern-society",bookSignature:"Lavinia Cosmina Ardelean and Laura Cristina Rusu",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",publishedDate:"August 17th 2022",numberOfDownloads:2310,editors:[{id:"180569",title:"Dr.",name:"Lavinia",middleName:null,surname:"Ardelean",slug:"lavinia-ardelean",fullName:"Lavinia Ardelean"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"August 17th 2022",numberOfDownloads:2095,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10780",title:"Current Trends in Orthodontics",subtitle:null,isOpenForSubmission:!1,hash:"badce0e23eb5176fd653b049d5295c0a",slug:"current-trends-in-orthodontics",bookSignature:"Farid Bourzgui",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",publishedDate:"August 17th 2022",numberOfDownloads:2079,editors:[{id:"52177",title:"Prof.",name:"Farid",middleName:null,surname:"Bourzgui",slug:"farid-bourzgui",fullName:"Farid Bourzgui"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8452",title:"Organizational Conflict",subtitle:"New Insights",isOpenForSubmission:!1,hash:"96bdaaba38a7850a7e7379aa5a505748",slug:"organizational-conflict-new-insights",bookSignature:"Josiane Fahed-Sreih",coverURL:"https://cdn.intechopen.com/books/images_new/8452.jpg",publishedDate:"August 17th 2022",numberOfDownloads:1987,editors:[{id:"103784",title:"Dr.",name:"Josiane",middleName:null,surname:"Fahed-Sreih",slug:"josiane-fahed-sreih",fullName:"Josiane Fahed-Sreih"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10206",title:"Terahertz Technology",subtitle:null,isOpenForSubmission:!1,hash:"2cdb79bf6297623f1d6202ef11f099c4",slug:"terahertz-technology",bookSignature:"Borwen You and Ja-Yu Lu",coverURL:"https://cdn.intechopen.com/books/images_new/10206.jpg",publishedDate:"August 17th 2022",numberOfDownloads:1528,editors:[{id:"191131",title:"Dr.",name:"Borwen",middleName:null,surname:"You",slug:"borwen-you",fullName:"Borwen You"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11331",title:"Secondary Metabolites",subtitle:"Trends and Reviews",isOpenForSubmission:!1,hash:"7d6274f42d5441e537c5fa744bc84523",slug:"secondary-metabolites-trends-and-reviews",bookSignature:"Ramasamy Vijayakumar and Suresh Selvapuram Sudalaimuthu Raja",coverURL:"https://cdn.intechopen.com/books/images_new/11331.jpg",publishedDate:"August 17th 2022",numberOfDownloads:932,editors:[{id:"176044",title:"Dr.",name:"Ramasamy",middleName:null,surname:"Vijayakumar",slug:"ramasamy-vijayakumar",fullName:"Ramasamy Vijayakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10793",title:"Molecular Mechanisms in Cancer",subtitle:null,isOpenForSubmission:!1,hash:"3ed2817275edb3de6f5683602314706e",slug:"molecular-mechanisms-in-cancer",bookSignature:"Metin Budak and Rajamanickam Rajkumar",coverURL:"https://cdn.intechopen.com/books/images_new/10793.jpg",publishedDate:"August 17th 2022",numberOfDownloads:700,editors:[{id:"226275",title:"Ph.D.",name:"Metin",middleName:null,surname:"Budak",slug:"metin-budak",fullName:"Metin Budak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10957",title:"Liquid Crystals",subtitle:null,isOpenForSubmission:!1,hash:"7a2d81fa4893fcf74e7b3823a3e4f385",slug:"liquid-crystals",bookSignature:"Pankaj Kumar Choudhury and Abdel-Baset M.A. Ibrahim",coverURL:"https://cdn.intechopen.com/books/images_new/10957.jpg",publishedDate:"August 17th 2022",numberOfDownloads:676,editors:[{id:"205744",title:"Dr.",name:"Pankaj",middleName:null,surname:"Kumar Choudhury",slug:"pankaj-kumar-choudhury",fullName:"Pankaj Kumar Choudhury"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7215,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10652",title:"Information Extraction and Object Tracking in Digital Video",subtitle:null,isOpenForSubmission:!1,hash:"d13718b2d986d058d55cf91e69bf21c0",slug:"information-extraction-and-object-tracking-in-digital-video",bookSignature:"Antonio José Ribeiro Neves and Francisco Javier Gallegos-Funes",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",publishedDate:"August 17th 2022",numberOfDownloads:602,editors:[{id:"1177",title:"Prof.",name:"António",middleName:"J. R.",surname:"José Ribeiro Neves",slug:"antonio-jose-ribeiro-neves",fullName:"António José Ribeiro Neves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8452",title:"Organizational Conflict",subtitle:"New Insights",isOpenForSubmission:!1,hash:"96bdaaba38a7850a7e7379aa5a505748",slug:"organizational-conflict-new-insights",bookSignature:"Josiane Fahed-Sreih",coverURL:"https://cdn.intechopen.com/books/images_new/8452.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"103784",title:"Dr.",name:"Josiane",middleName:null,surname:"Fahed-Sreih",slug:"josiane-fahed-sreih",fullName:"Josiane Fahed-Sreih"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10778",title:"Model-Based Control Engineering",subtitle:"Recent Design and Implementations for Varied Applications",isOpenForSubmission:!1,hash:"e39a567d9b6d2a45d0a1d927362c9005",slug:"model-based-control-engineering-recent-design-and-implementations-for-varied-applications",bookSignature:"Umar Zakir Abdul Hamid and Ahmad `Athif Mohd Faudzi",coverURL:"https://cdn.intechopen.com/books/images_new/10778.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"268173",title:"Dr.",name:"Umar Zakir Abdul",middleName:null,surname:"Hamid",slug:"umar-zakir-abdul-hamid",fullName:"Umar Zakir Abdul Hamid"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10780",title:"Current Trends in Orthodontics",subtitle:null,isOpenForSubmission:!1,hash:"badce0e23eb5176fd653b049d5295c0a",slug:"current-trends-in-orthodontics",bookSignature:"Farid Bourzgui",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"52177",title:"Prof.",name:"Farid",middleName:null,surname:"Bourzgui",slug:"farid-bourzgui",fullName:"Farid Bourzgui"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10793",title:"Molecular Mechanisms in Cancer",subtitle:null,isOpenForSubmission:!1,hash:"3ed2817275edb3de6f5683602314706e",slug:"molecular-mechanisms-in-cancer",bookSignature:"Metin Budak and Rajamanickam Rajkumar",coverURL:"https://cdn.intechopen.com/books/images_new/10793.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"226275",title:"Ph.D.",name:"Metin",middleName:null,surname:"Budak",slug:"metin-budak",fullName:"Metin Budak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11308",title:"Selected Topics on Infant Feeding",subtitle:null,isOpenForSubmission:!1,hash:"213c3e403327a2919eca1dc5e82a0ec3",slug:"selected-topics-on-infant-feeding",bookSignature:"Isam Jaber AL-Zwaini and Haider Hadi AL-Musawi",coverURL:"https://cdn.intechopen.com/books/images_new/11308.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"30993",title:"Prof.",name:"Isam Jaber",middleName:null,surname:"Al-Zwaini",slug:"isam-jaber-al-zwaini",fullName:"Isam Jaber Al-Zwaini"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11331",title:"Secondary Metabolites",subtitle:"Trends and Reviews",isOpenForSubmission:!1,hash:"7d6274f42d5441e537c5fa744bc84523",slug:"secondary-metabolites-trends-and-reviews",bookSignature:"Ramasamy Vijayakumar and Suresh Selvapuram Sudalaimuthu Raja",coverURL:"https://cdn.intechopen.com/books/images_new/11331.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"176044",title:"Dr.",name:"Ramasamy",middleName:null,surname:"Vijayakumar",slug:"ramasamy-vijayakumar",fullName:"Ramasamy Vijayakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10820",title:"Data Clustering",subtitle:null,isOpenForSubmission:!1,hash:"086d299ffd05aacd2311c3ca4ebf0d3a",slug:"data-clustering",bookSignature:"Niansheng Tang",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"221831",title:"Prof.",name:"Niansheng",middleName:null,surname:"Tang",slug:"niansheng-tang",fullName:"Niansheng Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10827",title:"Oral Health Care",subtitle:"An Important Issue of the Modern Society",isOpenForSubmission:!1,hash:"9a0ceb9ced4598aea3f3723f6dc4ea04",slug:"oral-health-care-an-important-issue-of-the-modern-society",bookSignature:"Lavinia Cosmina Ardelean and Laura Cristina Rusu",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"180569",title:"Dr.",name:"Lavinia",middleName:null,surname:"Ardelean",slug:"lavinia-ardelean",fullName:"Lavinia Ardelean"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11139",title:"Geochemistry and Mineral Resources",subtitle:null,isOpenForSubmission:!1,hash:"928cebbdce21d9b3f081267b24f12dfb",slug:"geochemistry-and-mineral-resources",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11139.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"985",title:"Cardiogeriatrics",slug:"cardiogeriatrics",parent:{id:"170",title:"Cardiology and Cardiovascular Medicine",slug:"cardiology-and-cardiovascular-medicine"},numberOfBooks:34,numberOfSeries:0,numberOfAuthorsAndEditors:1290,numberOfWosCitations:645,numberOfCrossrefCitations:345,numberOfDimensionsCitations:894,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"985",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"5888",title:"Recent Trends in Cardiovascular Risks",subtitle:null,isOpenForSubmission:!1,hash:"3031fb52ab84b78e9ef7ec51815c5fa5",slug:"recent-trends-in-cardiovascular-risks",bookSignature:"Arun Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/5888.jpg",editedByType:"Edited by",editors:[{id:"84989",title:"Dr.",name:"Arun",middleName:null,surname:"Kumar",slug:"arun-kumar",fullName:"Arun Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5425",title:"Cardiomyopathies",subtitle:"Types and Treatments",isOpenForSubmission:!1,hash:"28ee6943b6ea8cfb4dcb919a521ff051",slug:"cardiomyopathies-types-and-treatments",bookSignature:"Kaan Kirali",coverURL:"https://cdn.intechopen.com/books/images_new/5425.jpg",editedByType:"Edited by",editors:[{id:"155565",title:"Prof.",name:"Kaan",middleName:null,surname:"Kırali",slug:"kaan-kirali",fullName:"Kaan Kırali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5682",title:"Physiologic and Pathologic Angiogenesis",subtitle:"Signaling Mechanisms and Targeted Therapy",isOpenForSubmission:!1,hash:"847efcb8c059798ea2a963d9578de2f5",slug:"physiologic-and-pathologic-angiogenesis-signaling-mechanisms-and-targeted-therapy",bookSignature:"Dan Simionescu and Agneta Simionescu",coverURL:"https://cdn.intechopen.com/books/images_new/5682.jpg",editedByType:"Edited by",editors:[{id:"66196",title:"Dr.",name:"Dan",middleName:"T.",surname:"Simionescu",slug:"dan-simionescu",fullName:"Dan Simionescu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4725",title:"Ischemic Stroke",subtitle:"Updates",isOpenForSubmission:!1,hash:"4d1b23f0c8fc95629c4c085585de46f4",slug:"ischemic-stroke-updates",bookSignature:"Bernhard Schaller",coverURL:"https://cdn.intechopen.com/books/images_new/4725.jpg",editedByType:"Edited by",editors:[{id:"135982",title:"Dr.",name:"Bernhard",middleName:null,surname:"Schaller",slug:"bernhard-schaller",fullName:"Bernhard Schaller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4477",title:"Hypercholesterolemia",subtitle:null,isOpenForSubmission:!1,hash:"dae17abe1c80b18efb287a9a1d2bb64e",slug:"hypercholesterolemia",bookSignature:"Sekar Ashok Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/4477.jpg",editedByType:"Edited by",editors:[{id:"170928",title:"Dr.",name:"Sekar",middleName:null,surname:"Ashok Kumar",slug:"sekar-ashok-kumar",fullName:"Sekar Ashok Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3448",title:"Cardiomyopathies",subtitle:null,isOpenForSubmission:!1,hash:"14e523d26bcbfdfa95c3e0e11c806cb3",slug:"cardiomyopathies",bookSignature:"José Milei and Giuseppe Ambrosio",coverURL:"https://cdn.intechopen.com/books/images_new/3448.jpg",editedByType:"Edited by",editors:[{id:"43176",title:"Prof.",name:"Jose",middleName:null,surname:"Milei",slug:"jose-milei",fullName:"Jose Milei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3275",title:"What Should We Know About Prevented, Diagnostic, and Interventional Therapy in Coronary Artery Disease",subtitle:null,isOpenForSubmission:!1,hash:"ab186b2368340ce572bdb6c8f1967dfb",slug:"what-should-we-know-about-prevented-diagnostic-and-interventional-therapy-in-coronary-artery-disease",bookSignature:"Branislav G. Baskot",coverURL:"https://cdn.intechopen.com/books/images_new/3275.jpg",editedByType:"Edited by",editors:[{id:"33401",title:"Prof.",name:"Baskot",middleName:null,surname:"Branislav",slug:"baskot-branislav",fullName:"Baskot Branislav"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3379",title:"Atrial Fibrillation",subtitle:"Mechanisms and Treatment",isOpenForSubmission:!1,hash:"33eb2e87586ea89705b55f1cfaeeb735",slug:"atrial-fibrillation-mechanisms-and-treatment",bookSignature:"Tong Liu",coverURL:"https://cdn.intechopen.com/books/images_new/3379.jpg",editedByType:"Edited by",editors:[{id:"157258",title:"Associate Prof.",name:"Tong",middleName:null,surname:"Liu",slug:"tong-liu",fullName:"Tong Liu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3435",title:"Ischemic Heart Disease",subtitle:null,isOpenForSubmission:!1,hash:"882248c482dce0e13a0cafa2a738032a",slug:"ischemic-heart-disease",bookSignature:"David C. Gaze",coverURL:"https://cdn.intechopen.com/books/images_new/3435.jpg",editedByType:"Edited by",editors:[{id:"71983",title:"Dr.",name:"David C.",middleName:null,surname:"Gaze",slug:"david-c.-gaze",fullName:"David C. Gaze"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3439",title:"Research Directions in Tumor Angiogenesis",subtitle:null,isOpenForSubmission:!1,hash:"fe5692f82fb9709aca8d230560dc38d5",slug:"research-directions-in-tumor-angiogenesis",bookSignature:"Jianyuan Chai",coverURL:"https://cdn.intechopen.com/books/images_new/3439.jpg",editedByType:"Edited by",editors:[{id:"28281",title:"Dr.",name:"Jianyuan",middleName:null,surname:"Chai",slug:"jianyuan-chai",fullName:"Jianyuan Chai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2818",title:"Aneurysm",subtitle:null,isOpenForSubmission:!1,hash:"70d1e8d9391850d228c30e307c25f534",slug:"aneurysm",bookSignature:"Yasuo Murai",coverURL:"https://cdn.intechopen.com/books/images_new/2818.jpg",editedByType:"Edited by",editors:[{id:"147938",title:"Dr.",name:"Yasuo",middleName:null,surname:"Murai",slug:"yasuo-murai",fullName:"Yasuo Murai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1840",title:"The Cardiovascular System",subtitle:"Physiology, Diagnostics and Clinical Implications",isOpenForSubmission:!1,hash:"a6a573b1908e6bcab874e3f8bda10705",slug:"the-cardiovascular-system-physiology-diagnostics-and-clinical-implications",bookSignature:"David C. Gaze",coverURL:"https://cdn.intechopen.com/books/images_new/1840.jpg",editedByType:"Edited by",editors:[{id:"71983",title:"Dr.",name:"David C.",middleName:null,surname:"Gaze",slug:"david-c.-gaze",fullName:"David C. Gaze"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:34,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"47808",doi:"10.5772/59375",title:"Role of Oxidized LDL in Atherosclerosis",slug:"role-of-oxidized-ldl-in-atherosclerosis",totalDownloads:5076,totalCrossrefCites:18,totalDimensionsCites:29,abstract:null,book:{id:"4477",slug:"hypercholesterolemia",title:"Hypercholesterolemia",fullTitle:"Hypercholesterolemia"},signatures:"E. Leiva, S. Wehinger, L. Guzmán and R. Orrego",authors:[{id:"153453",title:"MSc.",name:"Elba",middleName:null,surname:"Leiva",slug:"elba-leiva",fullName:"Elba Leiva"}]},{id:"53316",doi:"10.5772/66405",title:"TGF-β Activation and Signaling in Angiogenesis",slug:"tgf-activation-and-signaling-in-angiogenesis",totalDownloads:2483,totalCrossrefCites:13,totalDimensionsCites:26,abstract:"The transforming growth factor-β (TGF-β) signaling pathway regulates various cellular processes during tissue and organ development and homeostasis. Deregulation of the expression and/or functions of TGF-β ligands, receptors or their intracellular signaling components leads to multiple diseases including vascular pathologies, autoimmune disorders, fibrosis and cancer. In vascular development, physiology and disease TGF-β signaling can have angiogenic and angiostatic properties, depending on expression levels and the tissue context. The objective of this chapter is to analyze the mechanisms that contribute to the activation and signaling of TGF-β in developmental, physiological and pathological angiogenesis, with a particular emphasis on the importance of TGF-β signaling in the mammalian central nervous system (CNS).",book:{id:"5682",slug:"physiologic-and-pathologic-angiogenesis-signaling-mechanisms-and-targeted-therapy",title:"Physiologic and Pathologic Angiogenesis",fullTitle:"Physiologic and Pathologic Angiogenesis - Signaling Mechanisms and Targeted Therapy"},signatures:"Paola A. Guerrero and Joseph H. McCarty",authors:[{id:"193482",title:"Dr.",name:"Paola",middleName:null,surname:"Guerrero",slug:"paola-guerrero",fullName:"Paola Guerrero"},{id:"195670",title:"Dr.",name:"Joseph",middleName:null,surname:"McCarty",slug:"joseph-mccarty",fullName:"Joseph McCarty"}]},{id:"52698",doi:"10.5772/65915",title:"Diabetic Cardiomyopathy: Focus on Oxidative Stress, Mitochondrial Dysfunction and Inflammation",slug:"diabetic-cardiomyopathy-focus-on-oxidative-stress-mitochondrial-dysfunction-and-inflammation",totalDownloads:1884,totalCrossrefCites:5,totalDimensionsCites:15,abstract:"Diabetic cardiomyopathy (DCM) is an independent clinical entity defined as structural and functional changes in the myocardium because of metabolic and cellular abnormalities induced by diabetes, resulting in cardiac failure. Hyperglycemia has been seen as a major cause of DCM due to activation of different mechanisms leading to oxidative stress. Several body of evidence show that distinct pathways of oxygen and nitrogen reactive species formation contribute to myocardial impairment. Abnormal mitochondrial morphology and energetics, evoked by abnormal Ca2+ handling, metabolic changes and oxidative stress, are observed in DCM, suggesting a pivotal role of mitochondrial dynamics in disease pathogenesis. In addition, insulin resistance compromises myocardial glucose uptake due to cellular depletion of glucose transporter proteins, together with increased myocardial uptake of free fatty acids and augmented triglyceride levels, which cause cardiomyocyte lipotoxicity. Finally, the state of chronic low-grade inflammation, a feature of obese type 2 diabetes, seems to also play a major role in DCM progression, whose mechanisms have been progressively disclosed. In this book chapter, we review the cellular mechanism contributing to DCM development, focusing on oxidative stress, mitochondrial dysfunction and inflammation of cardiomyocytes, as well as on possible therapeutic strategies.",book:{id:"5425",slug:"cardiomyopathies-types-and-treatments",title:"Cardiomyopathies",fullTitle:"Cardiomyopathies - Types and Treatments"},signatures:"Sara Nunes, Anabela Pinto Rolo, Carlos Manuel Palmeira and Flávio\nReis",authors:[{id:"107926",title:"Prof.",name:"Flávio",middleName:null,surname:"Reis",slug:"flavio-reis",fullName:"Flávio Reis"},{id:"194774",title:"Dr.",name:"Sara",middleName:null,surname:"Nunes",slug:"sara-nunes",fullName:"Sara Nunes"},{id:"194775",title:"Prof.",name:"Anabela",middleName:null,surname:"Rolo",slug:"anabela-rolo",fullName:"Anabela Rolo"},{id:"194776",title:"Prof.",name:"Carlos",middleName:null,surname:"Palmeira",slug:"carlos-palmeira",fullName:"Carlos Palmeira"}]},{id:"29906",doi:"10.5772/32331",title:"Coronary Artery Aneurysms: An Update",slug:"coronary-artery-aneurysms-an-update",totalDownloads:6223,totalCrossrefCites:0,totalDimensionsCites:15,abstract:null,book:{id:"965",slug:"novel-strategies-in-ischemic-heart-disease",title:"Novel Strategies in Ischemic Heart Disease",fullTitle:"Novel Strategies in Ischemic Heart Disease"},signatures:"Karina M. Mata, Cleverson R. Fernandes, Elaine M. Floriano, Antonio P. Martins, Marcos A. Rossi and Simone G. Ramos",authors:[{id:"74619",title:"Associate Prof.",name:"Simone",middleName:"Gusmão",surname:"Ramos",slug:"simone-ramos",fullName:"Simone Ramos"},{id:"98442",title:"Dr.",name:"Antonio",middleName:"Padua",surname:"Martins",slug:"antonio-martins",fullName:"Antonio Martins"},{id:"98449",title:"Prof.",name:"Marcos",middleName:null,surname:"Rossi",slug:"marcos-rossi",fullName:"Marcos Rossi"},{id:"127905",title:"Mrs.",name:"Elaine M.",middleName:null,surname:"Floriano",slug:"elaine-m.-floriano",fullName:"Elaine M. Floriano"},{id:"127906",title:"Dr.",name:"Karina M.",middleName:null,surname:"Mata",slug:"karina-m.-mata",fullName:"Karina M. Mata"},{id:"127907",title:"Dr.",name:"Cleverson R.",middleName:null,surname:"Fernandes",slug:"cleverson-r.-fernandes",fullName:"Cleverson R. Fernandes"}]},{id:"35924",doi:"10.5772/34374",title:"Cardiovascular Disease Risk Factors",slug:"cardiovascular-risk-factors",totalDownloads:2832,totalCrossrefCites:5,totalDimensionsCites:15,abstract:null,book:{id:"1840",slug:"the-cardiovascular-system-physiology-diagnostics-and-clinical-implications",title:"The Cardiovascular System",fullTitle:"The Cardiovascular System - Physiology, Diagnostics and Clinical Implications"},signatures:"Reza Amani and Nasrin Sharifi",authors:[{id:"50580",title:"Dr.",name:"Nasrin",middleName:null,surname:"Sharifi",slug:"nasrin-sharifi",fullName:"Nasrin Sharifi"},{id:"99866",title:"Dr.",name:"Reza",middleName:null,surname:"Amani",slug:"reza-amani",fullName:"Reza Amani"}]}],mostDownloadedChaptersLast30Days:[{id:"35928",title:"Cardiovascular Risk Factors: Implications in Diabetes, Other Disease States and Herbal Drugs",slug:"cardiovascular-risk-factors-implications-in-diabetes-other-disease-states-and-herbal-drugs",totalDownloads:3023,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"1840",slug:"the-cardiovascular-system-physiology-diagnostics-and-clinical-implications",title:"The Cardiovascular System",fullTitle:"The Cardiovascular System - Physiology, Diagnostics and Clinical Implications"},signatures:"Steve Ogbonnia",authors:[{id:"84542",title:"Dr.",name:"Steve",middleName:null,surname:"Ogbonnia",slug:"steve-ogbonnia",fullName:"Steve Ogbonnia"}]},{id:"53797",title:"Pathophysiology in Heart Failure",slug:"pathophysiology-in-heart-failure",totalDownloads:3600,totalCrossrefCites:4,totalDimensionsCites:8,abstract:"Heart failure syndrome is defined as the inability of the heart to deliver adequate blood to the body to meet end-organ metabolic needs and oxygenation at rest or during mild exercise. Myocardial dysfunction can be defined as systolic and/or diastolic, acute or chronic, compensated or uncompensated, or uni- or biventricular. Several counterregulatory mechanisms are activated depending on the duration of the heart failure. Neurohormonal reflexes such as sympathetic adrenergic system, renin-angiotensin cascade, and renal and peripheral alterations attempt to restore both cardiac output and end-tissue perfusion. An adequate stroke volume cannot be ejected from the left ventricle, which shifts the whole pressure-volume relationship to the right (systolic failure). Adequate filling cannot be realized due to diastolic stiffness, which shifts the diastolic pressure-volume curve upward without affecting the systolic pressure-volume curve (diastolic failure). Left ventricular heart failure is the dominant picture of heart failure syndrome, but the right heart can develop isolated failure as well. Biventricular failure is mostly an end-stage clinical situation of the heart failure syndrome. More recently, the rise in the incidence of right ventricular failure can be seen after the implantation of a left ventricular assist device. This chapter clarifies and presents pathophysiologic alterations in heart failure syndrome.",book:{id:"5425",slug:"cardiomyopathies-types-and-treatments",title:"Cardiomyopathies",fullTitle:"Cardiomyopathies - Types and Treatments"},signatures:"Kaan Kırali, Tanıl Özer and Mustafa Mert Özgür",authors:[{id:"155565",title:"Prof.",name:"Kaan",middleName:null,surname:"Kırali",slug:"kaan-kirali",fullName:"Kaan Kırali"},{id:"201164",title:"Dr.",name:"Tanıl",middleName:null,surname:"Özer",slug:"tanil-ozer",fullName:"Tanıl Özer"},{id:"201165",title:"Dr.",name:"Mustafa Mert",middleName:null,surname:"Özgür",slug:"mustafa-mert-ozgur",fullName:"Mustafa Mert Özgür"}]},{id:"35915",title:"Hemodynamics",slug:"hemodynamics",totalDownloads:4197,totalCrossrefCites:1,totalDimensionsCites:2,abstract:null,book:{id:"1840",slug:"the-cardiovascular-system-physiology-diagnostics-and-clinical-implications",title:"The Cardiovascular System",fullTitle:"The Cardiovascular System - Physiology, Diagnostics and Clinical Implications"},signatures:"Ali Nasimi",authors:[{id:"107284",title:"Dr.",name:"Ali",middleName:null,surname:"Nasimi",slug:"ali-nasimi",fullName:"Ali Nasimi"}]},{id:"23198",title:"Procedural Techniques of Coronary Angiography",slug:"procedural-techniques-of-coronary-angiography",totalDownloads:35388,totalCrossrefCites:1,totalDimensionsCites:3,abstract:null,book:{id:"266",slug:"advances-in-the-diagnosis-of-coronary-atherosclerosis",title:"Advances in the Diagnosis of Coronary Atherosclerosis",fullTitle:"Advances in the Diagnosis of Coronary Atherosclerosis"},signatures:"Jasmin Čaluk",authors:[{id:"31993",title:"Dr.",name:"Jasmin",middleName:null,surname:"Caluk",slug:"jasmin-caluk",fullName:"Jasmin Caluk"}]},{id:"30097",title:"Bradycardia Secondary to Cervical Spinal Cord Injury",slug:"bradycardia-secondary-to-cervical-spinal-cord-injury",totalDownloads:19361,totalCrossrefCites:2,totalDimensionsCites:3,abstract:null,book:{id:"947",slug:"cardiac-arrhythmias-new-considerations",title:"Cardiac Arrhythmias",fullTitle:"Cardiac Arrhythmias - New Considerations"},signatures:"Farid Sadaka and Christopher Veremakis",authors:[{id:"101031",title:"Dr.",name:"Farid",middleName:null,surname:"Sadaka",slug:"farid-sadaka",fullName:"Farid Sadaka"},{id:"102527",title:"Dr.",name:"Christopher",middleName:null,surname:"Veremakis",slug:"christopher-veremakis",fullName:"Christopher Veremakis"}]}],onlineFirstChaptersFilter:{topicId:"985",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:11,numberOfPublishedChapters:91,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:333,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:11,numberOfPublishedChapters:144,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:126,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:23,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:13,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"August 17th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:33,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",isOpenForSubmission:!0,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Rosa María Martínez-Espinosa is a Full Professor of Biochemistry and Molecular Biology at the University of Alicante, Spain, and has been the vice president of International Relations and Development Cooperation at this university since 2010. She created the research group in applied biochemistry in 2017 (https://web.ua.es/en/appbiochem/), and from 1999 to the present has made more than 200 contributions to Spanish and international conferences. Furthermore, she has around seventy-five scientific publications in indexed journals, eighty book chapters, and one patent to her credit. Her research work focuses on microbial metabolism (particularly on extremophile microorganisms), purification and characterization of enzymes with potential industrial and biotechnological applications, protocol optimization for genetically manipulating microorganisms, gene regulation characterization, carotenoid (pigment) production, and design and development of contaminated water and soil bioremediation processes by means of microorganisms. This research has received competitive public grants from the European Commission, the Spanish Ministry of Economy and Competitiveness, the Valencia Region Government, and the University of Alicante.",institutionString:"University of Alicante",institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",isOpenForSubmission:!0,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",isOpenForSubmission:!0,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",isOpenForSubmission:!0,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:45,paginationItems:[{id:"83122",title:"New Perspectives on the Application of Chito-Oligosaccharides Derived from Chitin and Chitosan: A Review",doi:"10.5772/intechopen.106501",signatures:"Paul Edgardo Regalado-Infante, Norma Gabriela Rojas-Avelizapa, Rosalía Núñez-Pastrana, Daniel Tapia-Maruri, Andrea Margarita Rivas-Castillo, Régulo Carlos Llarena-Hernández and Luz Irene Rojas-Avelizapa",slug:"new-perspectives-on-the-application-of-chito-oligosaccharides-derived-from-chitin-and-chitosan-a-rev",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chitin-Chitosan - Isolation, Properties, and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11670.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"83015",title:"Acute Changes in Lipoprotein-Associated Oxidative Stress",doi:"10.5772/intechopen.106489",signatures:"Ngoc-Anh Le",slug:"acute-changes-in-lipoprotein-associated-oxidative-stress",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Anh",surname:"Le"}],book:{title:"Importance of Oxidative Stress and Antioxidant System in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11671.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"83041",title:"Responses of Endoplasmic Reticulum to Plant Stress",doi:"10.5772/intechopen.106590",signatures:"Vishwa Jyoti Baruah, Bhaswati Sarmah, Manny Saluja and Elizabeth H. Mahood",slug:"responses-of-endoplasmic-reticulum-to-plant-stress",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82914",title:"Glance on the Critical Role of IL-23 Receptor Gene Variations in Inflammation-Induced Carcinogenesis",doi:"10.5772/intechopen.105049",signatures:"Mohammed El-Gedamy",slug:"glance-on-the-critical-role-of-il-23-receptor-gene-variations-in-inflammation-induced-carcinogenesis",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}}]},overviewPagePublishedBooks:{paginationCount:33,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science\nand Technology from the Department of Chemistry, National\nUniversity of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013.\nShe relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the\nNational Institute of Fundamental Studies from April 2013 to\nOctober 2016. She was a senior lecturer on a temporary basis at the Department of\nFood Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is\ncurrently Deputy Principal of the Australian College of Business and Technology –\nKandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI)",institutionString:"Australian College of Business & Technology",institution:{name:"Kobe College",institutionURL:null,country:{name:"Japan"}}}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{paginationCount:2,paginationItems:[{id:"11673",title:"Stem Cell Research",coverURL:"https://cdn.intechopen.com/books/images_new/11673.jpg",hash:"13092df328080c762dd9157be18ca38c",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 13th 2022",isOpenForSubmission:!0,editors:[{id:"203598",title:"Ph.D.",name:"Diana",surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12215",title:"Cell Death and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/12215.jpg",hash:"dfd456a29478fccf4ebd3294137eb1e3",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 29th 2022",isOpenForSubmission:!0,editors:[{id:"59529",title:"Dr.",name:"Ke",surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:21,paginationItems:[{id:"83115",title:"Fungi and Oomycetes–Allies in Eliminating Environmental Pathogens",doi:"10.5772/intechopen.106498",signatures:"Iasmina Luca",slug:"fungi-and-oomycetes-allies-in-eliminating-environmental-pathogens",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Welfare - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11579.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82991",title:"Diseases of the Canine Prostate Gland",doi:"10.5772/intechopen.105835",signatures:"Sabine Schäfer-Somi",slug:"diseases-of-the-canine-prostate-gland",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82956",title:"Potential Substitutes of Antibiotics for Swine and Poultry Production",doi:"10.5772/intechopen.106081",signatures:"Ho Trung Thong, Le Nu Anh Thu and Ho Viet Duc",slug:"potential-substitutes-of-antibiotics-for-swine-and-poultry-production",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Antibiotics and Probiotics in Animal Food - Impact and Regulation",coverURL:"https://cdn.intechopen.com/books/images_new/11578.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"82905",title:"A Review of Application Strategies and Efficacy of Probiotics in Pet Food",doi:"10.5772/intechopen.105829",signatures:"Heather Acuff and Charles G. Aldrich",slug:"a-review-of-application-strategies-and-efficacy-of-probiotics-in-pet-food",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Antibiotics and Probiotics in Animal Food - Impact and Regulation",coverURL:"https://cdn.intechopen.com/books/images_new/11578.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"82773",title:"Canine Transmissible Venereal Tumor: An Infectious Neoplasia in Dogs",doi:"10.5772/intechopen.106150",signatures:"Chanokchon Setthawongsin, Somporn Techangamsuwan and Anudep Rungsipipat",slug:"canine-transmissible-venereal-tumor-an-infectious-neoplasia-in-dogs",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82797",title:"Anatomical Guide to the Paranasal Sinuses of Domestic Animals",doi:"10.5772/intechopen.106157",signatures:"Mohamed A.M. Alsafy, Samir A.A. El-Gendy and Catrin Sian Rutland",slug:"anatomical-guide-to-the-paranasal-sinuses-of-domestic-animals",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82457",title:"Canine Hearing Management",doi:"10.5772/intechopen.105515",signatures:"Peter M. Skip Scheifele, Devan Marshall, Stephen Lee, Paul Reid, Thomas McCreery and David Byrne",slug:"canine-hearing-management",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82285",title:"Parvovirus Vectors: The Future of Gene Therapy",doi:"10.5772/intechopen.105085",signatures:"Megha Gupta",slug:"parvovirus-vectors-the-future-of-gene-therapy",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82170",title:"Equine Stress: Neuroendocrine Physiology and Pathophysiology",doi:"10.5772/intechopen.105045",signatures:"Milomir Kovac, Tatiana Vladimirovna Ippolitova, Sergey Pozyabin, Ruslan Aliev, Viktoria Lobanova, Nevena Drakul and Catrin S. Rutland",slug:"equine-stress-neuroendocrine-physiology-and-pathophysiology",totalDownloads:34,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:34,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}}]},subseriesFiltersForOFChapters:[{caption:"Animal Nutrition",value:20,count:3,group:"subseries"},{caption:"Animal Science",value:19,count:18,group:"subseries"}],publishedBooks:{paginationCount:11,paginationItems:[{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",slug:"animal-reproduction",publishedDate:"May 25th 2022",editedByType:"Edited by",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",hash:"2d66af42fb17d0a6556bb9ef28e273c7",volumeInSeries:11,fullTitle:"Animal Reproduction",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt",profilePictureURL:"https://mts.intechopen.com/storage/users/90846/images/system/90846.jpg",institutionString:"İskenderun Technical University",institution:{name:"İskenderun Technical University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",slug:"animal-feed-science-and-nutrition-production-health-and-environment",publishedDate:"May 18th 2022",editedByType:"Edited by",bookSignature:"Amlan Kumar Patra",hash:"79944fc8fbbaa329aed6fde388154832",volumeInSeries:10,fullTitle:"Animal Feed Science and Nutrition - Production, Health and Environment",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra",profilePictureURL:"https://mts.intechopen.com/storage/users/310962/images/system/310962.jpg",institutionString:null,institution:{name:"West Bengal University of Animal and Fishery Sciences",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8737",title:"Rabies Virus at the Beginning of 21st Century",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",slug:"rabies-virus-at-the-beginning-of-21st-century",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Sergey Tkachev",hash:"49cce3f548da548c718c865feb343509",volumeInSeries:9,fullTitle:"Rabies Virus at the Beginning of 21st Century",editors:[{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev",profilePictureURL:"https://mts.intechopen.com/storage/users/61139/images/system/61139.png",institutionString:"Russian Academy of Sciences",institution:{name:"Russian Academy of Sciences",institutionURL:null,country:{name:"Russia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10496",title:"Advanced Studies in the 21st Century Animal Nutrition",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10496.jpg",slug:"advanced-studies-in-the-21st-century-animal-nutrition",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"László Babinszky, Juliana Oliveira and Edson Mauro Santos",hash:"8ffe43a82ac48b309abc3632bbf3efd0",volumeInSeries:8,fullTitle:"Advanced Studies in the 21st Century Animal Nutrition",editors:[{id:"53998",title:"Prof.",name:"László",middleName:null,surname:"Babinszky",slug:"laszlo-babinszky",fullName:"László Babinszky",profilePictureURL:"https://mts.intechopen.com/storage/users/53998/images/system/53998.png",institutionString:"University of Debrecen",institution:{name:"University of Debrecen",institutionURL:null,country:{name:"Hungary"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10497",title:"Canine Genetics, Health and Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10497.jpg",slug:"canine-genetics-health-and-medicine",publishedDate:"June 2nd 2021",editedByType:"Edited by",bookSignature:"Catrin Rutland",hash:"b91512e31ce34032e560362e6cbccc1c",volumeInSeries:7,fullTitle:"Canine Genetics, Health and Medicine",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",editedByType:"Edited by",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",hash:"13aaddf5fdbbc78387e77a7da2388bf6",volumeInSeries:6,fullTitle:"Animal Reproduction in Veterinary Medicine",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral",profilePictureURL:"https://mts.intechopen.com/storage/users/25600/images/system/25600.jpg",institutionString:"Independent Researcher",institution:{name:"Harran University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9081",title:"Equine Science",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9081.jpg",slug:"equine-science",publishedDate:"September 23rd 2020",editedByType:"Edited by",bookSignature:"Catrin Rutland and Albert Rizvanov",hash:"ac415ef2f5450fa80fdb9cf6cf32cd2d",volumeInSeries:5,fullTitle:"Equine Science",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón Poggi",slug:"juan-carlos-gardon-poggi",fullName:"Juan Carlos Gardón Poggi",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",institutionString:null,institution:{name:"Valencia Catholic University Saint Vincent Martyr",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Naceur M'Hamdi",hash:"2aa2a9a0ec13040bbf0455e34625504e",volumeInSeries:3,fullTitle:"Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi",profilePictureURL:"https://mts.intechopen.com/storage/users/73376/images/system/73376.jpg",institutionString:null,institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",slug:"veterinary-anatomy-and-physiology",publishedDate:"March 13th 2019",editedByType:"Edited by",bookSignature:"Catrin Sian Rutland and Valentina Kubale",hash:"75cdacb570e0e6d15a5f6e69640d87c9",volumeInSeries:2,fullTitle:"Veterinary Anatomy and Physiology",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Animal Nutrition",value:20,count:2},{group:"subseries",caption:"Animal Reproductive Biology and Technology",value:28,count:4},{group:"subseries",caption:"Animal Science",value:19,count:5}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:3},{group:"publicationYear",caption:"2021",value:2021,count:3},{group:"publicationYear",caption:"2020",value:2020,count:3},{group:"publicationYear",caption:"2019",value:2019,count:1},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:755,paginationItems:[{id:"310674",title:"Dr.",name:"Pravin",middleName:null,surname:"Kendrekar",slug:"pravin-kendrekar",fullName:"Pravin Kendrekar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/310674/images/system/310674.jpg",biography:"Dr. Pravin Kendrekar, MSc, MBA, Ph.D., is currently a visiting scientist at the Lipid Nanostructure Laboratory, University of Central Lancashire, England. He previously worked as a post-doctoral fellow at the Ben-Gurion University of Negev, Israel; University of the Free State, South Africa; and Central University of Technology Bloemfontein, South Africa. He obtained his Ph.D. in Organic Chemistry from Nagaoka University of Technology, Japan. He has published more than seventy-four journal articles and attended several national and international conferences as speaker and chair. Dr. Kendrekar has received many international awards. He has several funded projects, namely, anti-malaria drug development, MRSA, and SARS-CoV-2 activity of curcumin and its formulations. He has filed four patents in collaboration with the University of Central Lancashire and Mayo Clinic Infectious Diseases. His present research includes organic synthesis, drug discovery and development, biochemistry, nanoscience, and nanotechnology.",institutionString:"Visiting Scientist at Lipid Nanostructures Laboratory, Centre for Smart Materials, School of Natural Sciences, University of Central Lancashire",institution:null},{id:"428125",title:"Dr.",name:"Vinayak",middleName:null,surname:"Adimule",slug:"vinayak-adimule",fullName:"Vinayak Adimule",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/428125/images/system/428125.jpg",biography:"Dr. Vinayak Adimule, MSc, Ph.D., is a professor and dean of R&D, Angadi Institute of Technology and Management, India. He has 15 years of research experience as a senior research scientist and associate research scientist in R&D organizations. He has published more than fifty research articles as well as several book chapters. He has two Indian patents and two international patents to his credit. Dr. Adimule has attended, chaired, and presented papers at national and international conferences. He is a guest editor for Topics in Catalysis and other journals. He is also an editorial board member, life member, and associate member for many international societies and research institutions. His research interests include nanoelectronics, material chemistry, artificial intelligence, sensors and actuators, bio-nanomaterials, and medicinal chemistry.",institutionString:"Angadi Institute of Technology and Management",institution:null},{id:"284317",title:"Prof.",name:"Kantharaju",middleName:null,surname:"Kamanna",slug:"kantharaju-kamanna",fullName:"Kantharaju Kamanna",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/284317/images/21050_n.jpg",biography:"Prof. K. Kantharaju has received Bachelor of science (PCM), master of science (Organic Chemistry) and Doctor of Philosophy in Chemistry from Bangalore University. He worked as a Executive Research & Development @ Cadila Pharmaceuticals Ltd, Ahmedabad. He received DBT-postdoc fellow @ Molecular Biophysics Unit, Indian Institute of Science, Bangalore under the supervision of Prof. P. Balaram, later he moved to NIH-postdoc researcher at Drexel University College of Medicine, Philadelphia, USA, after his return from postdoc joined NITK-Surthakal as a Adhoc faculty at department of chemistry. Since from August 2013 working as a Associate Professor, and in 2016 promoted to Profeesor in the School of Basic Sciences: Department of Chemistry and having 20 years of teaching and research experiences.",institutionString:null,institution:{name:"Rani Channamma University, Belagavi",country:{name:"India"}}},{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",biography:"Prof. Dr. Yusuf Tutar conducts his research at the Hamidiye Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Division of Biochemistry, University of Health Sciences, Turkey. He is also a faculty member in the Molecular Oncology Program. He obtained his MSc and Ph.D. at Oregon State University and Texas Tech University, respectively. He pursued his postdoctoral studies at Rutgers University Medical School and the National Institutes of Health (NIH/NIDDK), USA. His research focuses on biochemistry, biophysics, genetics, molecular biology, and molecular medicine with specialization in the fields of drug design, protein structure-function, protein folding, prions, microRNA, pseudogenes, molecular cancer, epigenetics, metabolites, proteomics, genomics, protein expression, and characterization by spectroscopic and calorimetric methods.",institutionString:"University of Health Sciences",institution:null},{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",biography:"Hiroyuki Kagechika received his bachelor’s degree and Ph.D. in Pharmaceutical Sciences from the University of Tokyo, Japan, where he served as an associate professor until 2004. He is currently a professor at the Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU). From 2010 to 2012, he was the dean of the Graduate School of Biomedical Science. Since 2012, he has served as the vice dean of the Graduate School of Medical and Dental Sciences. He has been the director of the IBB since 2020. Dr. Kagechika’s major research interests are the medicinal chemistry of retinoids, vitamins D/K, and nuclear receptors. He has developed various compounds including a drug for acute promyelocytic leukemia.",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",country:{name:"Japan"}}},{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",biography:"Martins Emeje obtained a BPharm with distinction from Ahmadu Bello University, Nigeria, and an MPharm and Ph.D. from the University of Nigeria (UNN), where he received the best Ph.D. award and was enlisted as UNN’s “Face of Research.” He established the first nanomedicine center in Nigeria and was the pioneer head of the intellectual property and technology transfer as well as the technology innovation and support center. Prof. Emeje’s several international fellowships include the prestigious Raman fellowship. He has published more than 150 articles and patents. He is also the head of R&D at NIPRD and holds a visiting professor position at Nnamdi Azikiwe University, Nigeria. He has a postgraduate certificate in Project Management from Walden University, Minnesota, as well as a professional teaching certificate and a World Bank certification in Public Procurement. Prof. Emeje was a national chairman of academic pharmacists in Nigeria and the 2021 winner of the May & Baker Nigeria Plc–sponsored prize for professional service in research and innovation.",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",country:{name:"Nigeria"}}},{id:"436430",title:"Associate Prof.",name:"Mesut",middleName:null,surname:"Işık",slug:"mesut-isik",fullName:"Mesut Işık",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/436430/images/19686_n.jpg",biography:null,institutionString:null,institution:{name:"Bilecik University",country:{name:"Turkey"}}},{id:"268659",title:"Ms.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/268659/images/8143_n.jpg",biography:"Dr. Zhan received his undergraduate and graduate training in the fields of preventive medicine and epidemiology and statistics at the West China University of Medical Sciences in China during 1989 to 1999. He received his post-doctoral training in oncology and cancer proteomics for two years at the Cancer Research Institute of Human Medical University in China. In 2001, he went to the University of Tennessee Health Science Center (UTHSC) in USA, where he was a post-doctoral researcher and focused on mass spectrometry and cancer proteomics. Then, he was appointed as an Assistant Professor of Neurology, UTHSC in 2005. He moved to the Cleveland Clinic in USA as a Project Scientist/Staff in 2006 where he focused on the studies of eye disease proteomics and biomarkers. He returned to UTHSC as an Assistant Professor of Neurology in the end of 2007, engaging in proteomics and biomarker studies of lung diseases and brain tumors, and initiating the studies of predictive, preventive, and personalized medicine (PPPM) in cancer. In 2010, he was promoted to Associate Professor of Neurology, UTHSC. Currently, he is a Professor at Xiangya Hospital of Central South University in China, Fellow of Royal Society of Medicine (FRSM), the European EPMA National Representative in China, Regular Member of American Association for the Advancement of Science (AAAS), European Cooperation of Science and Technology (e-COST) grant evaluator, Associate Editors of BMC Genomics, BMC Medical Genomics, EPMA Journal, and Frontiers in Endocrinology, Executive Editor-in-Chief of Med One. He has\npublished 116 peer-reviewed research articles, 16 book chapters, 2 books, and 2 US patents. His current main research interest focuses on the studies of cancer proteomics and biomarkers, and the use of modern omics techniques and systems biology for PPPM in cancer, and on the development and use of 2DE-LC/MS for the large-scale study of human proteoforms.",institutionString:null,institution:{name:"Xiangya Hospital Central South University",country:{name:"China"}}},{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",biography:"Dr. Rizwan Ahmad is a University Professor and Coordinator, Quality and Development, College of Medicine, Imam Abdulrahman bin Faisal University, Saudi Arabia. Previously, he was Associate Professor of Human Function, Oman Medical College, Oman, and SBS University, Dehradun. Dr. Ahmad completed his education at Aligarh Muslim University, Aligarh. He has published several articles in peer-reviewed journals, chapters, and edited books. His area of specialization is free radical biochemistry and autoimmune diseases.",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",country:{name:"Saudi Arabia"}}},{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",biography:"Farid A. Badria, Ph.D., is the recipient of several awards, including The World Academy of Sciences (TWAS) Prize for Public Understanding of Science; the World Intellectual Property Organization (WIPO) Gold Medal for best invention; Outstanding Arab Scholar, Kuwait; and the Khwarizmi International Award, Iran. He has 250 publications, 12 books, 20 patents, and several marketed pharmaceutical products to his credit. He continues to lead research projects on developing new therapies for liver, skin disorders, and cancer. Dr. Badria was listed among the world’s top 2% of scientists in medicinal and biomolecular chemistry in 2019 and 2020. He is a member of the Arab Development Fund, Kuwait; International Cell Research Organization–United Nations Educational, Scientific and Cultural Organization (ICRO–UNESCO), Chile; and UNESCO Biotechnology France",institutionString:"Mansoura University",institution:{name:"Mansoura University",country:{name:"Egypt"}}},{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",biography:"Dr. Singh received a BPharm (2003) and MPharm (2005) from Panjab University, Chandigarh, India, and a Ph.D. (2013) from Punjab Technical University (PTU), Jalandhar, India. He has more than sixteen years of teaching experience and has supervised numerous postgraduate and Ph.D. students. He has to his credit more than seventy papers in SCI- and SCOPUS-indexed journals, fifty-five conference proceedings, four books, six Best Paper Awards, and five projects from different government agencies. He is currently an editorial board member of eight international journals and a reviewer for more than fifty scientific journals. He received Top Reviewer and Excellent Peer Reviewer Awards from Publons in 2016 and 2017, respectively. He is also on the panel of The International Reviewer for reviewing research proposals for grants from the Royal Society. He also serves as a Publons Academy mentor and Bentham brand ambassador.",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",country:{name:"India"}}},{id:"142388",title:"Dr.",name:"Thiago",middleName:"Gomes",surname:"Gomes Heck",slug:"thiago-gomes-heck",fullName:"Thiago Gomes Heck",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/142388/images/7259_n.jpg",biography:null,institutionString:null,institution:{name:"Universidade Regional do Noroeste do Estado do Rio Grande do Sul",country:{name:"Brazil"}}},{id:"336273",title:"Assistant Prof.",name:"Janja",middleName:null,surname:"Zupan",slug:"janja-zupan",fullName:"Janja Zupan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/336273/images/14853_n.jpeg",biography:"Janja Zupan graduated in 2005 at the Department of Clinical Biochemistry (superviser prof. dr. Janja Marc) in the field of genetics of osteoporosis. Since November 2009 she is working as a Teaching Assistant at the Faculty of Pharmacy, Department of Clinical Biochemistry. In 2011 she completed part of her research and PhD work at Institute of Genetics and Molecular Medicine, University of Edinburgh. She finished her PhD entitled The influence of the proinflammatory cytokines on the RANK/RANKL/OPG in bone tissue of osteoporotic and osteoarthritic patients in 2012. From 2014-2016 she worked at the Institute of Biomedical Sciences, University of Aberdeen as a postdoctoral research fellow on UK Arthritis research project where she gained knowledge in mesenchymal stem cells and regenerative medicine. She returned back to University of Ljubljana, Faculty of Pharmacy in 2016. She is currently leading project entitled Mesenchymal stem cells-the keepers of tissue endogenous regenerative capacity facing up to aging of the musculoskeletal system funded by Slovenian Research Agency.",institutionString:null,institution:{name:"University of Ljubljana",country:{name:"Slovenia"}}},{id:"357453",title:"Dr.",name:"Radheshyam",middleName:null,surname:"Maurya",slug:"radheshyam-maurya",fullName:"Radheshyam Maurya",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/357453/images/16535_n.jpg",biography:null,institutionString:null,institution:{name:"University of Hyderabad",country:{name:"India"}}},{id:"418340",title:"Dr.",name:"Jyotirmoi",middleName:null,surname:"Aich",slug:"jyotirmoi-aich",fullName:"Jyotirmoi Aich",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038Ugi5QAC/Profile_Picture_2022-04-15T07:48:28.png",biography:"Biotechnologist with 15 years of research including 6 years of teaching experience. Demonstrated record of scientific achievements through consistent publication record (H index = 13, with 874 citations) in high impact journals such as Nature Communications, Oncotarget, Annals of Oncology, PNAS, and AJRCCM, etc. Strong research professional with a post-doctorate from ACTREC where I gained experimental oncology experience in clinical settings and a doctorate from IGIB where I gained expertise in asthma pathophysiology. A well-trained biotechnologist with diverse experience on the bench across different research themes ranging from asthma to cancer and other infectious diseases. An individual with a strong commitment and innovative mindset. Have the ability to work on diverse projects such as regenerative and molecular medicine with an overall mindset of improving healthcare.",institutionString:"DY Patil Deemed to Be University",institution:null},{id:"349288",title:"Prof.",name:"Soumya",middleName:null,surname:"Basu",slug:"soumya-basu",fullName:"Soumya Basu",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035QxIDQA0/Profile_Picture_2022-04-15T07:47:01.jpg",biography:"Soumya Basu, Ph.D., is currently working as an Associate Professor at Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India. With 16+ years of trans-disciplinary research experience in Drug Design, development, and pre-clinical validation; 20+ research article publications in journals of repute, 9+ years of teaching experience, trained with cross-disciplinary education, Dr. Basu is a life-long learner and always thrives for new challenges.\r\nHer research area is the design and synthesis of small molecule partial agonists of PPAR-γ in lung cancer. She is also using artificial intelligence and deep learning methods to understand the exosomal miRNA’s role in cancer metastasis. Dr. Basu is the recipient of many awards including the Early Career Research Award from the Department of Science and Technology, Govt. of India. She is a reviewer of many journals like Molecular Biology Reports, Frontiers in Oncology, RSC Advances, PLOS ONE, Journal of Biomolecular Structure & Dynamics, Journal of Molecular Graphics and Modelling, etc. She has edited and authored/co-authored 21 journal papers, 3 book chapters, and 15 abstracts. She is a Board of Studies member at her university. She is a life member of 'The Cytometry Society”-in India and 'All India Cell Biology Society”- in India.",institutionString:"Dr. D.Y. Patil Vidyapeeth, Pune",institution:{name:"Dr. D.Y. Patil Vidyapeeth, Pune",country:{name:"India"}}},{id:"354817",title:"Dr.",name:"Anubhab",middleName:null,surname:"Mukherjee",slug:"anubhab-mukherjee",fullName:"Anubhab Mukherjee",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0033Y0000365PbRQAU/ProfilePicture%202022-04-15%2005%3A11%3A18.480",biography:"A former member of Laboratory of Nanomedicine, Brigham and Women’s Hospital, Harvard University, Boston, USA, Dr. Anubhab Mukherjee is an ardent votary of science who strives to make an impact in the lives of those afflicted with cancer and other chronic/acute ailments. He completed his Ph.D. from CSIR-Indian Institute of Chemical Technology, Hyderabad, India, having been skilled with RNAi, liposomal drug delivery, preclinical cell and animal studies. He pursued post-doctoral research at College of Pharmacy, Health Science Center, Texas A & M University and was involved in another postdoctoral research at Department of Translational Neurosciences and Neurotherapeutics, John Wayne Cancer Institute, Santa Monica, California. In 2015, he worked in Harvard-MIT Health Sciences & Technology as a visiting scientist. He has substantial experience in nanotechnology-based formulation development and successfully served various Indian organizations to develop pharmaceuticals and nutraceutical products. He is an inventor in many US patents and an author in many peer-reviewed articles, book chapters and books published in various media of international repute. Dr. Mukherjee is currently serving as Principal Scientist, R&D at Esperer Onco Nutrition (EON) Pvt. Ltd. and heads the Hyderabad R&D center of the organization.",institutionString:"Esperer Onco Nutrition Pvt Ltd.",institution:null},{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/319365/images/system/319365.png",biography:"Manash K. Paul is a scientist and Principal Investigator at the University of California Los Angeles. He has contributed significantly to the fields of stem cell biology, regenerative medicine, and lung cancer. His research focuses on various signaling processes involved in maintaining stem cell homeostasis during the injury-repair process, deciphering the lung stem cell niche, pulmonary disease modeling, immuno-oncology, and drug discovery. He is currently investigating the role of extracellular vesicles in premalignant lung cell migration and detecting the metastatic phenotype of lung cancer via artificial intelligence-based analyses of exosomal Raman signatures. Dr. Paul also works on spatial multiplex immunofluorescence-based tissue mapping to understand the immune repertoire in lung cancer. Dr. Paul has published in more than sixty-five peer-reviewed international journals and is highly cited. He is the recipient of many awards, including the UCLA Vice Chancellor’s award and the 2022 AAISCR-R Vijayalaxmi Award for Innovative Cancer Research. He is a senior member of the Institute of Electrical and Electronics Engineers (IEEE) and an editorial board member for several international journals.",institutionString:"University of California Los Angeles",institution:{name:"University of California Los Angeles",country:{name:"United States of America"}}},{id:"311457",title:"Dr.",name:"Júlia",middleName:null,surname:"Scherer Santos",slug:"julia-scherer-santos",fullName:"Júlia Scherer Santos",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/311457/images/system/311457.jpg",biography:"Dr. Júlia Scherer Santos works in the areas of cosmetology, nanotechnology, pharmaceutical technology, beauty, and aesthetics. Dr. Santos also has experience as a professor of graduate courses. Graduated in Pharmacy, specialization in Cosmetology and Cosmeceuticals applied to aesthetics, specialization in Aesthetic and Cosmetic Health, and a doctorate in Pharmaceutical Nanotechnology. Teaching experience in Pharmacy and Aesthetics and Cosmetics courses. She works mainly on the following subjects: nanotechnology, cosmetology, pharmaceutical technology, aesthetics.",institutionString:"Universidade Federal de Juiz de Fora",institution:{name:"Universidade Federal de Juiz de Fora",country:{name:"Brazil"}}},{id:"219081",title:"Dr.",name:"Abdulsamed",middleName:null,surname:"Kükürt",slug:"abdulsamed-kukurt",fullName:"Abdulsamed Kükürt",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/219081/images/system/219081.png",biography:"Dr. Kükürt graduated from Uludağ University in Turkey. He started his academic career as a Research Assistant in the Department of Biochemistry at Kafkas University. In 2019, he completed his Ph.D. program in the Department of Biochemistry at the Institute of Health Sciences. He is currently working at the Department of Biochemistry, Kafkas University. He has 27 published research articles in academic journals, 11 book chapters, and 37 papers. He took part in 10 academic projects. He served as a reviewer for many articles. He still serves as a member of the review board in many academic journals. He is currently working on the protective activity of phenolic compounds in disorders associated with oxidative stress and inflammation.",institutionString:null,institution:{name:"Kafkas University",country:{name:"Turkey"}}},{id:"178366",title:"Dr.",name:"Volkan",middleName:null,surname:"Gelen",slug:"volkan-gelen",fullName:"Volkan Gelen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/178366/images/system/178366.jpg",biography:"Volkan Gelen is a Physiology specialist who received his veterinary degree from Kafkas University in 2011. Between 2011-2015, he worked as an assistant at Atatürk University, Faculty of Veterinary Medicine, Department of Physiology. In 2016, he joined Kafkas University, Faculty of Veterinary Medicine, Department of Physiology as an assistant professor. Dr. Gelen has been engaged in various academic activities at Kafkas University since 2016. There he completed 5 projects and has 3 ongoing projects. He has 60 articles published in scientific journals and 20 poster presentations in scientific congresses. His research interests include physiology, endocrine system, cancer, diabetes, cardiovascular system diseases, and isolated organ bath system studies.",institutionString:"Kafkas University",institution:{name:"Kafkas University",country:{name:"Turkey"}}},{id:"418963",title:"Dr.",name:"Augustine Ododo",middleName:"Augustine",surname:"Osagie",slug:"augustine-ododo-osagie",fullName:"Augustine Ododo Osagie",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/418963/images/16900_n.jpg",biography:"Born into the family of Osagie, a prince of the Benin Kingdom. I am currently an academic in the Department of Medical Biochemistry, University of Benin. Part of the duties are to teach undergraduate students and conduct academic research.",institutionString:null,institution:{name:"University of Benin",country:{name:"Nigeria"}}},{id:"192992",title:"Prof.",name:"Shagufta",middleName:null,surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/192992/images/system/192992.png",biography:"Prof. Shagufta Perveen is a Distinguish Professor in the Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia. Dr. Perveen has acted as the principal investigator of major research projects funded by the research unit of King Saud University. She has more than ninety original research papers in peer-reviewed journals of international repute to her credit. She is a fellow member of the Royal Society of Chemistry UK and the American Chemical Society of the United States.",institutionString:"King Saud University",institution:{name:"King Saud University",country:{name:"Saudi Arabia"}}},{id:"49848",title:"Dr.",name:"Wen-Long",middleName:null,surname:"Hu",slug:"wen-long-hu",fullName:"Wen-Long Hu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49848/images/system/49848.jpg",biography:"Wen-Long Hu is Chief of the Division of Acupuncture, Department of Chinese Medicine at Kaohsiung Chang Gung Memorial Hospital, as well as an adjunct associate professor at Fooyin University and Kaohsiung Medical University. Wen-Long is President of Taiwan Traditional Chinese Medicine Medical Association. He has 28 years of experience in clinical practice in laser acupuncture therapy and 34 years in acupuncture. He is an invited speaker for lectures and workshops in laser acupuncture at many symposiums held by medical associations. He owns the patent for herbal preparation and producing, and for the supercritical fluid-treated needle. Dr. Hu has published three books, 12 book chapters, and more than 30 papers in reputed journals, besides serving as an editorial board member of repute.",institutionString:"Kaohsiung Chang Gung Memorial Hospital",institution:{name:"Kaohsiung Chang Gung Memorial Hospital",country:{name:"Taiwan"}}},{id:"298472",title:"Prof.",name:"Andrey V.",middleName:null,surname:"Grechko",slug:"andrey-v.-grechko",fullName:"Andrey V. Grechko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/298472/images/system/298472.png",biography:"Andrey Vyacheslavovich Grechko, Ph.D., Professor, is a Corresponding Member of the Russian Academy of Sciences. He graduated from the Semashko Moscow Medical Institute (Semashko National Research Institute of Public Health) with a degree in Medicine (1998), the Clinical Department of Dermatovenerology (2000), and received a second higher education in Psychology (2009). Professor A.V. Grechko held the position of Сhief Physician of the Central Clinical Hospital in Moscow. He worked as a professor at the faculty and was engaged in scientific research at the Medical University. Starting in 2013, he has been the initiator of the creation of the Federal Scientific and Clinical Center for Intensive Care and Rehabilitology, Moscow, Russian Federation, where he also serves as Director since 2015. He has many years of experience in research and teaching in various fields of medicine, is an author/co-author of more than 200 scientific publications, 13 patents, 15 medical books/chapters, including Chapter in Book «Metabolomics», IntechOpen, 2020 «Metabolomic Discovery of Microbiota Dysfunction as the Cause of Pathology».",institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null},{id:"199461",title:"Prof.",name:"Natalia V.",middleName:null,surname:"Beloborodova",slug:"natalia-v.-beloborodova",fullName:"Natalia V. Beloborodova",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/199461/images/system/199461.jpg",biography:'Natalia Vladimirovna Beloborodova was educated at the Pirogov Russian National Research Medical University, with a degree in pediatrics in 1980, a Ph.D. in 1987, and a specialization in Clinical Microbiology from First Moscow State Medical University in 2004. She has been a Professor since 1996. Currently, she is the Head of the Laboratory of Metabolism, a division of the Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russian Federation. N.V. Beloborodova has many years of clinical experience in the field of intensive care and surgery. She studies infectious complications and sepsis. She initiated a series of interdisciplinary clinical and experimental studies based on the concept of integrating human metabolism and its microbiota. Her scientific achievements are widely known: she is the recipient of the Marie E. Coates Award \\"Best lecturer-scientist\\" Gustafsson Fund, Karolinska Institutes, Stockholm, Sweden, and the International Sepsis Forum Award, Pasteur Institute, Paris, France (2014), etc. Professor N.V. Beloborodova wrote 210 papers, five books, 10 chapters and has edited four books.',institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null},{id:"354260",title:"Ph.D.",name:"Tércio Elyan",middleName:"Azevedo",surname:"Azevedo Martins",slug:"tercio-elyan-azevedo-martins",fullName:"Tércio Elyan Azevedo Martins",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/354260/images/16241_n.jpg",biography:"Graduated in Pharmacy from the Federal University of Ceará with the modality in Industrial Pharmacy, Specialist in Production and Control of Medicines from the University of São Paulo (USP), Master in Pharmaceuticals and Medicines from the University of São Paulo (USP) and Doctor of Science in the program of Pharmaceuticals and Medicines by the University of São Paulo. Professor at Universidade Paulista (UNIP) in the areas of chemistry, cosmetology and trichology. Assistant Coordinator of the Higher Course in Aesthetic and Cosmetic Technology at Universidade Paulista Campus Chácara Santo Antônio. Experience in the Pharmacy area, with emphasis on Pharmacotechnics, Pharmaceutical Technology, Research and Development of Cosmetics, acting mainly on topics such as cosmetology, antioxidant activity, aesthetics, photoprotection, cyclodextrin and thermal analysis.",institutionString:null,institution:{name:"University of Sao Paulo",country:{name:"Brazil"}}},{id:"334285",title:"Ph.D. Student",name:"Sameer",middleName:"Kumar",surname:"Jagirdar",slug:"sameer-jagirdar",fullName:"Sameer Jagirdar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334285/images/14691_n.jpg",biography:"I\\'m a graduate student at the center for biosystems science and engineering at the Indian Institute of Science, Bangalore, India. I am interested in studying host-pathogen interactions at the biomaterial interface.",institutionString:null,institution:{name:"Indian Institute of Science Bangalore",country:{name:"India"}}},{id:"329248",title:"Dr.",name:"Md. Faheem",middleName:null,surname:"Haider",slug:"md.-faheem-haider",fullName:"Md. Faheem Haider",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329248/images/system/329248.jpg",biography:"Dr. Md. Faheem Haider completed his BPharm in 2012 at Integral University, Lucknow, India. In 2014, he completed his MPharm with specialization in Pharmaceutics at Babasaheb Bhimrao Ambedkar University, Lucknow, India. He received his Ph.D. degree from Jamia Hamdard University, New Delhi, India, in 2018. He was selected for the GPAT six times and his best All India Rank was 34. Currently, he is an assistant professor at Integral University. Previously he was an assistant professor at IIMT University, Meerut, India. He has experience teaching DPharm, Pharm.D, BPharm, and MPharm students. He has more than five publications in reputed journals to his credit. Dr. Faheem’s research area is the development and characterization of nanoformulation for the delivery of drugs to various organs.",institutionString:"Integral University",institution:{name:"Integral University",country:{name:"India"}}},{id:"329795",title:"Dr.",name:"Mohd Aftab",middleName:"Aftab",surname:"Siddiqui",slug:"mohd-aftab-siddiqui",fullName:"Mohd Aftab Siddiqui",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329795/images/system/329795.png",biography:"Dr. Mohd Aftab Siddiqui is an assistant professor in the Faculty of Pharmacy, Integral University, Lucknow, India, where he obtained a Ph.D. in Pharmacology in 2020. He also obtained a BPharm and MPharm from the same university in 2013 and 2015, respectively. His area of research is the pharmacological screening of herbal drugs/natural products in liver cancer and cardiac diseases. He is a member of many professional bodies and has guided many MPharm and PharmD research projects. Dr. Siddiqui has many national and international publications and one German patent to his credit.",institutionString:"Integral University",institution:null}]}},subseries:{item:{id:"19",type:"subseries",title:"Animal Science",keywords:"Animal Science, Animal Biology, Wildlife Species, Domesticated Animals",scope:"The Animal Science topic welcomes research on captive and wildlife species, including domesticated animals. The research resented can consist of primary studies on various animal biology fields such as genetics, nutrition, behavior, welfare, and animal production, to name a few. Reviews on specialized areas of animal science are also welcome.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/19.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11415,editor:{id:"259298",title:"Dr.",name:"Edward",middleName:null,surname:"Narayan",slug:"edward-narayan",fullName:"Edward Narayan",profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",biography:"Dr. Edward Narayan graduated with Ph.D. degree in Biology from the University of the South Pacific and pioneered non-invasive reproductive and stress endocrinology tools for amphibians - the novel development and validation of non-invasive enzyme immunoassays for the evaluation of reproductive hormonal cycle and stress hormone responses to environmental stressors. \nDr. Narayan leads the Stress Lab (Comparative Physiology and Endocrinology) at the University of Queensland. A dynamic career research platform which is based on the thematic areas of comparative vertebrate physiology, stress endocrinology, reproductive endocrinology, animal health and welfare, and conservation biology. \nEdward has supervised 40 research students and published over 60 peer reviewed research.",institutionString:null,institution:{name:"University of Queensland",institutionURL:null,country:{name:"Australia"}}},editorTwo:null,editorThree:null,series:{id:"13",title:"Veterinary Medicine and Science",doi:"10.5772/intechopen.73681",issn:"2632-0517"},editorialBoard:[{id:"258334",title:"Dr.",name:"Carlos Eduardo",middleName:null,surname:"Fonseca-Alves",slug:"carlos-eduardo-fonseca-alves",fullName:"Carlos Eduardo Fonseca-Alves",profilePictureURL:"https://mts.intechopen.com/storage/users/258334/images/system/258334.jpg",institutionString:null,institution:{name:"Universidade Paulista",institutionURL:null,country:{name:"Brazil"}}},{id:"191123",title:"Dr.",name:"Juan José",middleName:null,surname:"Valdez-Alarcón",slug:"juan-jose-valdez-alarcon",fullName:"Juan José Valdez-Alarcón",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBfcQAG/Profile_Picture_1631354558068",institutionString:"Universidad Michoacana de San Nicolás de Hidalgo",institution:{name:"Universidad Michoacana de San Nicolás de Hidalgo",institutionURL:null,country:{name:"Mexico"}}},{id:"161556",title:"Dr.",name:"Maria Dos Anjos",middleName:null,surname:"Pires",slug:"maria-dos-anjos-pires",fullName:"Maria Dos Anjos Pires",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS8q2QAC/Profile_Picture_1633432838418",institutionString:null,institution:{name:"University of Trás-os-Montes and Alto Douro",institutionURL:null,country:{name:"Portugal"}}},{id:"209839",title:"Dr.",name:"Marina",middleName:null,surname:"Spinu",slug:"marina-spinu",fullName:"Marina Spinu",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRLXpQAO/Profile_Picture_1630044895475",institutionString:null,institution:{name:"University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca",institutionURL:null,country:{name:"Romania"}}},{id:"92185",title:"Dr.",name:"Sara",middleName:null,surname:"Savic",slug:"sara-savic",fullName:"Sara Savic",profilePictureURL:"https://mts.intechopen.com/storage/users/92185/images/system/92185.jfif",institutionString:'Scientific Veterinary Institute "Novi Sad"',institution:{name:'Scientific Veterinary Institute "Novi Sad"',institutionURL:null,country:{name:"Serbia"}}}]},onlineFirstChapters:{paginationCount:8,paginationItems:[{id:"83117",title:"Endothelial Secretome",doi:"10.5772/intechopen.106550",signatures:"Luiza Rusu",slug:"endothelial-secretome",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Luiza",surname:"Rusu"}],book:{title:"Periodontology - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11566.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"83087",title:"Role of Cellular Responses in Periodontal Tissue Destruction",doi:"10.5772/intechopen.106645",signatures:"Nam Cong-Nhat Huynh",slug:"role-of-cellular-responses-in-periodontal-tissue-destruction",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Periodontology - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11566.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"82654",title:"Atraumatic Restorative Treatment: More than a Minimally Invasive Approach?",doi:"10.5772/intechopen.105623",signatures:"Manal A. Ablal",slug:"atraumatic-restorative-treatment-more-than-a-minimally-invasive-approach",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"82735",title:"The Influence of Salivary pH on the Prevalence of Dental Caries",doi:"10.5772/intechopen.106154",signatures:"Laura-Cristina Rusu, Alexandra Roi, Ciprian-Ioan Roi, Codruta Victoria Tigmeanu and Lavinia Cosmina Ardelean",slug:"the-influence-of-salivary-ph-on-the-prevalence-of-dental-caries",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"82357",title:"Caries Management Aided by Fluorescence-Based Devices",doi:"10.5772/intechopen.105567",signatures:"Atena Galuscan, Daniela Jumanca and Aurora Doris Fratila",slug:"caries-management-aided-by-fluorescence-based-devices",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"81894",title:"Diet and Nutrition and Their Relationship with Early Childhood Dental Caries",doi:"10.5772/intechopen.105123",signatures:"Luanna Gonçalves Ferreira, Giuliana de Campos Chaves Lamarque and Francisco Wanderley Garcia Paula-Silva",slug:"diet-and-nutrition-and-their-relationship-with-early-childhood-dental-caries",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"78064",title:"The Salivary Secretome",doi:"10.5772/intechopen.98278",signatures:"Luís Perpétuo, Rita Ferreira, Sofia Guedes, Francisco Amado and Rui Vitorino",slug:"the-salivary-secretome",totalDownloads:108,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Periodontology - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11566.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"65334",title:"Introductory Chapter: Some Important Aspects of Root Canal Treatment",doi:"10.5772/intechopen.83653",signatures:"Ana Luiza de Carvalho Felippini",slug:"introductory-chapter-some-important-aspects-of-root-canal-treatment",totalDownloads:852,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Ana Luiza",surname:"De Carvalho Felippini"}],book:{title:"Root Canal",coverURL:"https://cdn.intechopen.com/books/images_new/7133.jpg",subseries:{id:"1",title:"Oral Health"}}}]},publishedBooks:{paginationCount:4,paginationItems:[{type:"book",id:"10794",title:"Potassium in Human Health",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",slug:"potassium-in-human-health",publishedDate:"July 20th 2022",editedByType:"Edited by",bookSignature:"Jie Tang",hash:"0fbab5c7b5baa903a6426e7bbd9f99ab",volumeInSeries:12,fullTitle:"Potassium in Human Health",editors:[{id:"181267",title:"Dr.",name:"Jie",middleName:null,surname:"Tang",slug:"jie-tang",fullName:"Jie Tang",profilePictureURL:"https://mts.intechopen.com/storage/users/181267/images/system/181267.png",institutionString:"Brown University",institution:{name:"Brown University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10835",title:"Autonomic Nervous System",subtitle:"Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",slug:"autonomic-nervous-system-special-interest-topics",publishedDate:"July 20th 2022",editedByType:"Edited by",bookSignature:"Theodoros Aslanidis and Christos Nouris",hash:"48ac242dc6c5073b2590a509c44628e2",volumeInSeries:14,fullTitle:"Autonomic Nervous System - Special Interest Topics",editors:[{id:"200252",title:"Dr.",name:"Theodoros",middleName:null,surname:"Aslanidis",slug:"theodoros-aslanidis",fullName:"Theodoros Aslanidis",profilePictureURL:"https://mts.intechopen.com/storage/users/200252/images/system/200252.png",institutionString:"Saint Paul General Hospital of Thessaloniki",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8430",title:"Neurodevelopment and Neurodevelopmental Disorder",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8430.jpg",slug:"neurodevelopment-and-neurodevelopmental-disorder",publishedDate:"November 27th 2019",editedByType:"Edited by",bookSignature:"Michael Fitzgerald",hash:"696c96d038de473216e48b199613c111",volumeInSeries:6,fullTitle:"Neurodevelopment and Neurodevelopmental Disorder",editors:[{id:"205005",title:"Dr.",name:"Michael",middleName:null,surname:"Fitzgerald",slug:"michael-fitzgerald",fullName:"Michael Fitzgerald",profilePictureURL:"https://mts.intechopen.com/storage/users/205005/images/system/205005.jpg",institutionString:"Independant Researcher",institution:{name:"Trinity College Dublin",institutionURL:null,country:{name:"Ireland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8797",title:"Adipose Tissue",subtitle:"An Update",coverURL:"https://cdn.intechopen.com/books/images_new/8797.jpg",slug:"adipose-tissue-an-update",publishedDate:"November 6th 2019",editedByType:"Edited by",bookSignature:"Leszek Szablewski",hash:"34880b7b450ef96fa5063c867c028b02",volumeInSeries:4,fullTitle:"Adipose Tissue - An Update",editors:[{id:"49739",title:"Dr.",name:"Leszek",middleName:null,surname:"Szablewski",slug:"leszek-szablewski",fullName:"Leszek Szablewski",profilePictureURL:"https://mts.intechopen.com/storage/users/49739/images/system/49739.jpg",institutionString:"Medical University of Warsaw",institution:{name:"Medical University of Warsaw",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:11,numberOfPublishedChapters:91,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:333,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:11,numberOfPublishedChapters:144,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:126,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:23,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:13,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"3",title:"Bacterial Infectious Diseases",scope:"