Stages of development of bioglass and glass-ceramics [4, 5, 15].
\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\\n"}]',published:!0,mainMedia:{caption:"Highly Cited",originalUrl:"/media/original/117"}},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"5785",leadTitle:null,fullTitle:"Teaching and Learning in Nursing",title:"Teaching and Learning in Nursing",subtitle:null,reviewType:"peer-reviewed",abstract:"A significant body of knowledge is the basis for a holistic, caring and scientific evidence-based nursing education in practice for professional development. Quality teaching leads to good learning and both aspects are two of the main issues of quality assurance in nursing education today. To begin with, not all nursing students have the same levels of motivation or learning abilities. It is with cognisance of providing quality care for patients that the role of the nurse educator has to be to enhance nursing students' learning using scientific evidence based teaching. Research around teaching and learning processes is an important part of the delivery of quality education, which in turn impacts on students' learning results and experiences, thereby, ensuring holistic biopsychosocial care to patients. The main aim of teaching and learning in nursing, at all levels, is to enhance the nurses' contribution to assist the individuals, families and communities in promoting and preserving health, well-being and to efficiently respond to illnesses. We hope that this book can be used as a resource to increase the body of knowledge in teaching and learning in nursing, thereby enhancing the role and contribution of health care professionals to clinical practice.",isbn:"978-953-51-3154-0",printIsbn:"978-953-51-3153-3",pdfIsbn:"978-953-51-4839-5",doi:"10.5772/65314",price:119,priceEur:129,priceUsd:155,slug:"teaching-and-learning-in-nursing",numberOfPages:122,isOpenForSubmission:!1,isInWos:1,isInBkci:!1,hash:"9bf55bd1257e7753f3719a64ef05d91e",bookSignature:"Majda Pajnkihar, Dominika Vrbnjak and Gregor Stiglic",publishedDate:"May 17th 2017",coverURL:"https://cdn.intechopen.com/books/images_new/5785.jpg",numberOfDownloads:13946,numberOfWosCitations:8,numberOfCrossrefCitations:10,numberOfCrossrefCitationsByBook:1,numberOfDimensionsCitations:15,numberOfDimensionsCitationsByBook:1,hasAltmetrics:1,numberOfTotalCitations:33,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 1st 2016",dateEndSecondStepPublish:"September 15th 2016",dateEndThirdStepPublish:"November 15th 2016",dateEndFourthStepPublish:"January 15th 2017",dateEndFifthStepPublish:"March 1st 2017",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"195122",title:"Dr.",name:"Gregor",middleName:null,surname:"Stiglic",slug:"gregor-stiglic",fullName:"Gregor Stiglic",profilePictureURL:"https://mts.intechopen.com/storage/users/195122/images/5556_n.jpg",biography:"Gregor Stiglic is a Vice Dean for Research, Associate Professor and Head of Research Institute at the University of Maribor, Faculty of Health Sciences (UM FHS). He worked as a Visiting Researcher at Data Analysis and Biomedical Analytics (DABI) Center at Temple University and as a Visiting Assistant Professor at Shah Lab, Stanford School of Medicine, Stanford University. His research interests encompass application of data analytics and knowledge discovery techniques in healthcare. His work was published in multiple conference publications, peer reviewed journals and books. Dr Stiglic gave talks on his research work at renowned research institutions such as IBM T.J. Watson Research Center, Stanford University, University of Manchester, University of Edinburgh and University of Tokyo. He served as an organizer at many workshops and conferences in the field of health data science.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"195120",title:"Dr.",name:"Majda",middleName:null,surname:"Pajnkihar",slug:"majda-pajnkihar",fullName:"Majda Pajnkihar",profilePictureURL:"https://mts.intechopen.com/storage/users/195120/images/5555_n.jpg",biography:"Majda Pajnkihar is a Dean, Associate Professor and Head of the Institute of Nursing Care at the University of Maribor, Faculty of Health Sciences (UM FHS). She obtained her PhD from University of Manchester in 2003 and became the first nurse with a PhD in Slovenia. She worked on numerous national and international projects in nursing and health care. She is a visiting professor at University of Osijek, Josipa Jurja Strossmayera, Medical Faculty, Department of Nursing, Osijek and was a visiting professor at University of Ulster, Belfast. Professor Pajnkihar is currently a Chair and was one of the founding members of the international UDINE-C group, connecting different nursing schools across Europe, USA and Russia. She is also an Honorary Professor at I.M. Sechenov First Moscow State Medical University and a member of Sigma Theta Tau International, Honor Society of Nursing. She received several prestigious awards for her work at the UM and a Golden badge of Nurses and Midwives Association of Slovenia.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorTwo:{id:"195121",title:"Ms.",name:"Dominika",middleName:null,surname:"Vrbnjak",slug:"dominika-vrbnjak",fullName:"Dominika Vrbnjak",profilePictureURL:"https://mts.intechopen.com/storage/users/195121/images/4746_n.jpg",biography:"Dominika Vrbnjak is a teaching assistant at the University of Maribor, Faculty of Health Sciences. She obtained a Master degree in Nursing from University of Maribor, Faculty of Health Sciences. Currently, she is a doctoral student of Biomedical Technology at Faculty of Medicine in Maribor. During her postgraduate study, she was also a visiting PhD student of Waterford Institute of Technology in Ireland. She participates in scientific and research projects and disseminates her work in scientific papers and professional peer reviewed journals. Her research work was published in the International Journal of Nursing Studies, Journal of Nursing Management and Scandinavian Journal of Caring Sciences among others. During her undergraduate study, she received a Rector’s award at the University of Maribor for the best undergraduate student in a generation. She previously worked for four years as a registered nurse at General Hospital Ptuj, where she developed communication and organizational skills while leading and coordinating the nursing care.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Maribor",institutionURL:null,country:{name:"Slovenia"}}},coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1132",title:"Health Care",slug:"medicine-public-health-health-care"}],chapters:[{id:"54279",title:"Attitudes of Nursing Students Towards Learning Communication Skills",doi:"10.5772/67622",slug:"attitudes-of-nursing-students-towards-learning-communication-skills",totalDownloads:2049,totalCrossrefCites:3,totalDimensionsCites:3,hasAltmetrics:0,abstract:"Introduction: Attitudes of nursing students towards learning nurse-patient communication skills have for long been a concern of lecturers, planners and policy-makers. The objectives of our study were to explore the attitudes of nursing students towards learning communication skills.",signatures:"Klavdija Čuček Trifkovič, Mateja Lorber, Margaret Denny, Suzanne\nDenieffe and Vida Gönc",downloadPdfUrl:"/chapter/pdf-download/54279",previewPdfUrl:"/chapter/pdf-preview/54279",authors:[{id:"195203",title:"Dr.",name:"Klavdija",surname:"Čuček Trifkovič",slug:"klavdija-cucek-trifkovic",fullName:"Klavdija Čuček Trifkovič"},{id:"195205",title:"MSc.",name:"Vida",surname:"Gönc",slug:"vida-gonc",fullName:"Vida Gönc"},{id:"195207",title:"Dr.",name:"Lorber",surname:"Mateja",slug:"lorber-mateja",fullName:"Lorber Mateja"},{id:"200253",title:"Dr.",name:"Margaret",surname:"Denny",slug:"margaret-denny",fullName:"Margaret Denny"},{id:"204100",title:"Dr.",name:"Suzanne",surname:"Denieffe",slug:"suzanne-denieffe",fullName:"Suzanne Denieffe"}],corrections:null},{id:"54835",title:"Experience of Problem‐Based Learning for Raising Quality of Nursing Study",doi:"10.5772/67427",slug:"experience-of-problem-based-learning-for-raising-quality-of-nursing-study",totalDownloads:1333,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Introduction: Problem‐based learning is a teaching method that encourages critical thinking, group interaction, and application of the theory into practice. Transition to active forms of learning, with integrating problem‐solving strategies, will help to raise the quality of education. The aim of the study is to determine students’ evaluation of problem‐based learning in the study of nursing.",signatures:"Vida Gönc, Mateja Lorber and Jasmina Nerat",downloadPdfUrl:"/chapter/pdf-download/54835",previewPdfUrl:"/chapter/pdf-preview/54835",authors:[{id:"195205",title:"MSc.",name:"Vida",surname:"Gönc",slug:"vida-gonc",fullName:"Vida Gönc"},{id:"195207",title:"Dr.",name:"Lorber",surname:"Mateja",slug:"lorber-mateja",fullName:"Lorber Mateja"},{id:"195594",title:"BSc.",name:"Jasmina",surname:"Nerat",slug:"jasmina-nerat",fullName:"Jasmina Nerat"}],corrections:null},{id:"54889",title:"Using Content Validity for the Development of Objective Structured Clinical Examination Checklists in a Slovenian Undergraduate Nursing Program",doi:"10.5772/intechopen.68454",slug:"using-content-validity-for-the-development-of-objective-structured-clinical-examination-checklists-i",totalDownloads:1139,totalCrossrefCites:0,totalDimensionsCites:2,hasAltmetrics:0,abstract:"Introduction: The objective structured clinical examination (OSCE) has been adopted by many universities for the assessment of healthcare competencies and as a formative teaching tool in both undergraduate and postgraduate nursing education programs. This pilot study evaluates the validity of OSCE checklists to be used in first‐year undergraduate nurse practice education.",signatures:"Nino Fijačko, Zvonka Fekonja, Margaret Denny, Brian Sharvin,\nMajda Pajnkihar and Gregor Štiglic",downloadPdfUrl:"/chapter/pdf-download/54889",previewPdfUrl:"/chapter/pdf-preview/54889",authors:[{id:"195122",title:"Dr.",name:"Gregor",surname:"Stiglic",slug:"gregor-stiglic",fullName:"Gregor Stiglic"},{id:"195120",title:"Dr.",name:"Majda",surname:"Pajnkihar",slug:"majda-pajnkihar",fullName:"Majda Pajnkihar"},{id:"195588",title:"MSc.",name:"Zvonka",surname:"Fekonja",slug:"zvonka-fekonja",fullName:"Zvonka Fekonja"},{id:"195789",title:"Ph.D. Student",name:"Nino",surname:"Fijačko",slug:"nino-fijacko",fullName:"Nino Fijačko"},{id:"195973",title:"Dr.",name:"Brian",surname:"Sharvin",slug:"brian-sharvin",fullName:"Brian Sharvin"},{id:"195974",title:"Dr.",name:"Marget",surname:"Denny",slug:"marget-denny",fullName:"Marget Denny"}],corrections:null},{id:"55072",title:"Comparing Students’ Self-Assessment with Teachers’ Assessment of Clinical Skills Using an Objective Structured Clinical Examination (OSCE)",doi:"10.5772/67956",slug:"comparing-students-self-assessment-with-teachers-assessment-of-clinical-skills-using-an-objective-st",totalDownloads:1404,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Evaluation of clinical skills is a demanding and complex process and is dependent on many complex factors, such as teaching and learning approaches, simulated learning, and psychometrically validated assessment tools. Therefore, it is imperative that adequate strategies and methods are employed to evaluate the success of a nursing care activity. One such strategy in the field of nursing care is the application of objective structured clinical examination (OSCE) of a nursing activity. The purpose of this article is to highlight the importance of evaluating nursing activities in a simulated clinical environment with OSCE to determine synchronicity of the teacher and student assessment. A cross-sectional study was carried out, in which we compared the evaluation of nursing activity by the teacher and the 51 students. Summative content analysis was used to analyze open-ended questions about possible improvement of performed nursing activity. The data showed a large discrepancy (81.9%) in evaluating nursing activity between the teacher and the student. The synchronicity between the teacher and student assessment modality occurred only in 18%. Students were mostly less successful in their assessment of competence with knowledge about carrying out interventions (36.5%), preparing for interventions (24.3%), and infection control (14.4%). Clinical skills acquisition remains an essential element of a student nurse’s development, as competence in nursing skills is essential to patient safety. Simulation is viewed as an increasingly popular approach to the teaching and assessing of clinical skills. The process of evaluating nursing activity demands the usage of objective instruments that require objectivity, fairness, impartiality, and comprehension. The use of OSCE is one such method of promoting reliable and valid assessments in nursing skills.",signatures:"Zvonka Fekonja, Jasmina Nerat, Vida Gönc, Milena Pišlar, Margaret\nDenny and Klavdija Čuček Trifkovič",downloadPdfUrl:"/chapter/pdf-download/55072",previewPdfUrl:"/chapter/pdf-preview/55072",authors:[{id:"195203",title:"Dr.",name:"Klavdija",surname:"Čuček Trifkovič",slug:"klavdija-cucek-trifkovic",fullName:"Klavdija Čuček Trifkovič"},{id:"195205",title:"MSc.",name:"Vida",surname:"Gönc",slug:"vida-gonc",fullName:"Vida Gönc"},{id:"200253",title:"Dr.",name:"Margaret",surname:"Denny",slug:"margaret-denny",fullName:"Margaret Denny"},{id:"195594",title:"BSc.",name:"Jasmina",surname:"Nerat",slug:"jasmina-nerat",fullName:"Jasmina Nerat"},{id:"195588",title:"MSc.",name:"Zvonka",surname:"Fekonja",slug:"zvonka-fekonja",fullName:"Zvonka Fekonja"},{id:"195595",title:"BSc.",name:"Milena",surname:"Pišlar",slug:"milena-pislar",fullName:"Milena Pišlar"}],corrections:null},{id:"54200",title:"Assessment of Clinical Nursing Competencies: Literature Review",doi:"10.5772/67362",slug:"assessment-of-clinical-nursing-competencies-literature-review",totalDownloads:3627,totalCrossrefCites:3,totalDimensionsCites:5,hasAltmetrics:0,abstract:"Introduction: In Slovene nursing higher education, there is a lack of empirical evidence to support the choice of tolls for assessment of clinical skills and competencies. This literature review aims to critically discuss identified methods of clinical nursing skills assessment and competencies currently used in nursing higher education in other countries.",signatures:"Nataša Mlinar Reljić, Mateja Lorber, Dominika Vrbnjak, Brian\nSharvin and Maja Strauss",downloadPdfUrl:"/chapter/pdf-download/54200",previewPdfUrl:"/chapter/pdf-preview/54200",authors:[{id:"195121",title:"Ms.",name:"Dominika",surname:"Vrbnjak",slug:"dominika-vrbnjak",fullName:"Dominika Vrbnjak"},{id:"195207",title:"Dr.",name:"Lorber",surname:"Mateja",slug:"lorber-mateja",fullName:"Lorber Mateja"},{id:"195973",title:"Dr.",name:"Brian",surname:"Sharvin",slug:"brian-sharvin",fullName:"Brian Sharvin"},{id:"195315",title:"BSc.",name:"Maja",surname:"Strauss",slug:"maja-strauss",fullName:"Maja Strauss"},{id:"195804",title:"Ms.",name:"Nataša",surname:"Mlinar Reljić",slug:"natasa-mlinar-reljic",fullName:"Nataša Mlinar Reljić"}],corrections:null},{id:"54542",title:"Impact of Education, Working Conditions, and Interpersonal Relationships on Caregivers’ Job Satisfaction",doi:"10.5772/67957",slug:"impact-of-education-working-conditions-and-interpersonal-relationships-on-caregivers-job-satisfactio",totalDownloads:1514,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Aim: To explore relationships between caregivers’ education, healthcare working conditions, interpersonal relationships, and caregivers’ general job satisfaction.",signatures:"Majda Pajnkihar, Klavdija Čuček Trifkovič, Barbara Donik, Sabina\nFijan, Vida Gönc, Barbara Kegl, Mateja Lorber, Maja Strauss,\nJadranka Stričević, Sonja Šostar Turk, Gregor Štiglic, Natalya\nNikolaevna Kamynina, Irina V. Ostrovskaya and Dominika Vrbnjak",downloadPdfUrl:"/chapter/pdf-download/54542",previewPdfUrl:"/chapter/pdf-preview/54542",authors:[{id:"195120",title:"Dr.",name:"Majda",surname:"Pajnkihar",slug:"majda-pajnkihar",fullName:"Majda Pajnkihar"},{id:"195121",title:"Ms.",name:"Dominika",surname:"Vrbnjak",slug:"dominika-vrbnjak",fullName:"Dominika Vrbnjak"},{id:"195203",title:"Dr.",name:"Klavdija",surname:"Čuček Trifkovič",slug:"klavdija-cucek-trifkovic",fullName:"Klavdija Čuček Trifkovič"},{id:"195205",title:"MSc.",name:"Vida",surname:"Gönc",slug:"vida-gonc",fullName:"Vida Gönc"},{id:"195207",title:"Dr.",name:"Lorber",surname:"Mateja",slug:"lorber-mateja",fullName:"Lorber Mateja"},{id:"195315",title:"BSc.",name:"Maja",surname:"Strauss",slug:"maja-strauss",fullName:"Maja Strauss"},{id:"179312",title:"Prof.",name:"Sabina",surname:"Fijan",slug:"sabina-fijan",fullName:"Sabina Fijan"},{id:"195204",title:"MSc.",name:"Barbara",surname:"Donik",slug:"barbara-donik",fullName:"Barbara Donik"},{id:"195206",title:"MSc.",name:"Kegl",surname:"Barbara",slug:"kegl-barbara",fullName:"Kegl Barbara"},{id:"195313",title:"Dr.",name:"Natalya",surname:"Kamynina",slug:"natalya-kamynina",fullName:"Natalya Kamynina"},{id:"195314",title:"Dr.",name:"Irina",surname:"Ostrovskaya",slug:"irina-ostrovskaya",fullName:"Irina Ostrovskaya"},{id:"195316",title:"Dr.",name:"Jadranka",surname:"Stričević",slug:"jadranka-stricevic",fullName:"Jadranka Stričević"}],corrections:null},{id:"54536",title:"Transferring Psychological Therapy Education into Practice in the United Kingdom: A Complex Systems Analysis",doi:"10.5772/67958",slug:"transferring-psychological-therapy-education-into-practice-in-the-united-kingdom-a-complex-systems-a",totalDownloads:1362,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:1,abstract:"This chapter provides an overview of an aspect of a large research study conducted on the subject of learning transfer from an education institution to a mental health service in the English National Health Service (NHS). From a population of 64 trained staff, nurses and other workers, managers and supervisors were interviewed to gain a detailed understanding of how they sought to maintain and develop the new skills and knowledge they had acquired from an education programme delivered from an approved university provider. A total of 45 interviews were conducted using 1:1 or focus group approaches as part of a larger longitudinal study using a mixed methods design. This chapter provides an overview of the qualitative element of the study. Results indicated that whilst aspects of new learning and skill were maintained, many services were subject to pressure to change from the external political, economic and social environment that influenced the delivery of services such as that provided by the one within this study. This complex interaction between the ‘external’ and ‘internal’ healthcare environment is an issue that all educators should acknowledge when developing new and innovative education programmes for nurses and other professionals.",signatures:"Ian McGonagle and Christine Jackson",downloadPdfUrl:"/chapter/pdf-download/54536",previewPdfUrl:"/chapter/pdf-preview/54536",authors:[{id:"198289",title:"Dr.",name:"Ian",surname:"McGonagle",slug:"ian-mcgonagle",fullName:"Ian McGonagle"},{id:"201811",title:"Dr.",name:"Christine",surname:"Jackson",slug:"christine-jackson",fullName:"Christine Jackson"}],corrections:null},{id:"55082",title:"Current Characteristics of the Hungarian Nurses’ Workforce",doi:"10.5772/intechopen.68383",slug:"current-characteristics-of-the-hungarian-nurses-workforce",totalDownloads:1518,totalCrossrefCites:3,totalDimensionsCites:3,hasAltmetrics:0,abstract:"Recently WHO called attention to the growing labour shortage of healthcare staff, which can reach 12.9 million by 2035. Almost all European countries struggle with a shortage of nurses. The educational structure of nurses has also changed significantly. The aim of this overview is to review the relevant scientific literature and analyse records ofrhe Hungarian nursing registry in order to predict the nursing workforce tendencies. Relevant English and Hungarian international and national scientific literature (PubMed, Science Direct, Hungarian Medical Bibliography) were identified and illustrated with reliable data (2009–2015) from the national healthcare human resource registry and from Central Statistical Office. A qualitative appraisal was undertaken to select the proper articles by our research team. For processing data, descriptive statistics was used. Although migration of healthcare personnel in Hungary is present, however the official statistics does not mirror a dramatic exodus. The level of nursing education is based on vocational training and on higher education in Hungary. The number of novice nurses is diminishing year-by-year and those nurses who are not working in the Hungarian healthcare sector are eminent. Providing new roles for nurses, e.g., Advanced Practice Registered Nurse, can be one of the solutions for the shortage.",signatures:"Jozsef Betlehem, Emese Pek, Balint Banfai and Andras Olah",downloadPdfUrl:"/chapter/pdf-download/55082",previewPdfUrl:"/chapter/pdf-preview/55082",authors:[{id:"199171",title:"Dr.",name:"József",surname:"Betlehem",slug:"jozsef-betlehem",fullName:"József Betlehem"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"1673",title:"Evidence Based Medicine",subtitle:"Closer to Patients or Scientists?",isOpenForSubmission:!1,hash:"d767dfe22c65317eab3fd9ff465cb877",slug:"evidence-based-medicine-closer-to-patients-or-scientists-",bookSignature:"Nikolaos M. Sitaras",coverURL:"https://cdn.intechopen.com/books/images_new/1673.jpg",editedByType:"Edited by",editors:[{id:"108463",title:"Prof.",name:"Nikolaos",surname:"Sitaras",slug:"nikolaos-sitaras",fullName:"Nikolaos Sitaras"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5466",title:"Patient Centered Medicine",subtitle:null,isOpenForSubmission:!1,hash:"bade2265c3b5a9f7b5dffb5f512ed244",slug:"patient-centered-medicine",bookSignature:"Omur Sayligil",coverURL:"https://cdn.intechopen.com/books/images_new/5466.jpg",editedByType:"Edited by",editors:[{id:"179771",title:"Prof.",name:"Omur",surname:"Sayligil",slug:"omur-sayligil",fullName:"Omur Sayligil"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6254",title:"Fractal Analysis",subtitle:"Applications in Health Sciences and Social Sciences",isOpenForSubmission:!1,hash:"770eb45a87f613d3df9b51efc7079ed3",slug:"fractal-analysis-applications-in-health-sciences-and-social-sciences",bookSignature:"Fernando Brambila",coverURL:"https://cdn.intechopen.com/books/images_new/6254.jpg",editedByType:"Edited by",editors:[{id:"60921",title:"Dr.",name:"Fernando",surname:"Brambila",slug:"fernando-brambila",fullName:"Fernando Brambila"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5929",title:"Clinical Trials in Vulnerable Populations",subtitle:null,isOpenForSubmission:!1,hash:"2214220e9dc00491251c8fdc23d3847a",slug:"clinical-trials-in-vulnerable-populations",bookSignature:"Milica Prostran",coverURL:"https://cdn.intechopen.com/books/images_new/5929.jpg",editedByType:"Edited by",editors:[{id:"43919",title:"Prof.",name:"Milica",surname:"Prostran",slug:"milica-prostran",fullName:"Milica Prostran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7846",title:"Universal Health Coverage",subtitle:null,isOpenForSubmission:!1,hash:"03f74e6a4e925b7368b87e813bc29e1f",slug:"universal-health-coverage",bookSignature:"Aida Isabel Tavares",coverURL:"https://cdn.intechopen.com/books/images_new/7846.jpg",editedByType:"Edited by",editors:[{id:"196819",title:"Prof.",name:"Aida Isabel",surname:"Tavares",slug:"aida-isabel-tavares",fullName:"Aida Isabel Tavares"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6654",title:"Weight Loss",subtitle:null,isOpenForSubmission:!1,hash:"a7b1748cdbd8e86c1cac93238b57242e",slug:"weight-loss",bookSignature:"Ignacio Jáuregui Lobera",coverURL:"https://cdn.intechopen.com/books/images_new/6654.jpg",editedByType:"Edited by",editors:[{id:"55769",title:"Prof.",name:"Ignacio",surname:"Jáuregui-Lobera",slug:"ignacio-jauregui-lobera",fullName:"Ignacio Jáuregui-Lobera"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7909",title:"Palliative Care",subtitle:null,isOpenForSubmission:!1,hash:"da90fe956f441df4a9455d9abd02d28b",slug:"palliative-care",bookSignature:"Mukadder Mollaoğlu",coverURL:"https://cdn.intechopen.com/books/images_new/7909.jpg",editedByType:"Edited by",editors:[{id:"43900",title:"Prof.",name:"Mukadder",surname:"Mollaoğlu",slug:"mukadder-mollaoglu",fullName:"Mukadder Mollaoğlu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7447",title:"Vignettes in Patient Safety",subtitle:"Volume 4",isOpenForSubmission:!1,hash:"88d9ec0c55c5e7e973a35eafa413ded2",slug:"vignettes-in-patient-safety-volume-4",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/7447.jpg",editedByType:"Edited by",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10707",title:"Primary Health Care",subtitle:null,isOpenForSubmission:!1,hash:"c4e637d9f2cbc9ba038719e9c6894f34",slug:"primary-health-care",bookSignature:"Ayşe Emel Önal",coverURL:"https://cdn.intechopen.com/books/images_new/10707.jpg",editedByType:"Edited by",editors:[{id:"25840",title:"Prof.",name:"Ayse Emel",surname:"Onal",slug:"ayse-emel-onal",fullName:"Ayse Emel Onal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9810",title:"Rural Health",subtitle:null,isOpenForSubmission:!1,hash:"0d76f29adf436c7bf1412bed141472c8",slug:"rural-health",bookSignature:"Umar Bacha",coverURL:"https://cdn.intechopen.com/books/images_new/9810.jpg",editedByType:"Edited by",editors:[{id:"244265",title:"Dr.",name:"Umar",surname:"Bacha",slug:"umar-bacha",fullName:"Umar Bacha"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"81168",slug:"corrigendum-to-effects-of-therapeutic-and-toxic-agents-on-erythrocytes-of-different-species-of-anima",title:"Corrigendum to: Effects of Therapeutic and Toxic Agents on Erythrocytes of Different Species of Animals",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/81168.pdf\r\n",downloadPdfUrl:"/chapter/pdf-download/81168",previewPdfUrl:"/chapter/pdf-preview/81168",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/81168",risUrl:"/chapter/ris/81168",chapter:{id:"67156",slug:"effects-of-therapeutic-and-toxic-agents-on-erythrocytes-of-different-species-of-animals",signatures:"Saganuwan Alhaji Saganuwan",dateSubmitted:"February 18th 2019",dateReviewed:"March 15th 2019",datePrePublished:"July 8th 2019",datePublished:"October 23rd 2019",book:{id:"7181",title:"Erythrocyte",subtitle:null,fullTitle:"Erythrocyte",slug:"erythrocyte",publishedDate:"October 23rd 2019",bookSignature:"Anil Tombak",coverURL:"https://cdn.intechopen.com/books/images_new/7181.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"202814",title:"Associate Prof.",name:"Anil",middleName:null,surname:"Tombak",slug:"anil-tombak",fullName:"Anil Tombak"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"266889",title:"Associate Prof.",name:"Saganuwan",middleName:null,surname:"Alhaji Saganuwan",fullName:"Saganuwan Alhaji Saganuwan",slug:"saganuwan-alhaji-saganuwan",email:"pharn_saga2006@yahoo.com",position:null,institution:null}]}},chapter:{id:"67156",slug:"effects-of-therapeutic-and-toxic-agents-on-erythrocytes-of-different-species-of-animals",signatures:"Saganuwan Alhaji Saganuwan",dateSubmitted:"February 18th 2019",dateReviewed:"March 15th 2019",datePrePublished:"July 8th 2019",datePublished:"October 23rd 2019",book:{id:"7181",title:"Erythrocyte",subtitle:null,fullTitle:"Erythrocyte",slug:"erythrocyte",publishedDate:"October 23rd 2019",bookSignature:"Anil Tombak",coverURL:"https://cdn.intechopen.com/books/images_new/7181.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"202814",title:"Associate Prof.",name:"Anil",middleName:null,surname:"Tombak",slug:"anil-tombak",fullName:"Anil Tombak"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"266889",title:"Associate Prof.",name:"Saganuwan",middleName:null,surname:"Alhaji Saganuwan",fullName:"Saganuwan Alhaji Saganuwan",slug:"saganuwan-alhaji-saganuwan",email:"pharn_saga2006@yahoo.com",position:null,institution:null}]},book:{id:"7181",title:"Erythrocyte",subtitle:null,fullTitle:"Erythrocyte",slug:"erythrocyte",publishedDate:"October 23rd 2019",bookSignature:"Anil Tombak",coverURL:"https://cdn.intechopen.com/books/images_new/7181.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"202814",title:"Associate Prof.",name:"Anil",middleName:null,surname:"Tombak",slug:"anil-tombak",fullName:"Anil Tombak"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"6348",leadTitle:null,title:"Advanced Electronic Circuits",subtitle:"Principles, Architectures and Applications on Emerging Technologies",reviewType:"peer-reviewed",abstract:"This research book volume offers an important learning opportunity with insights into a variety of emerging electronic circuit aspects, such as new materials, energy harvesting architectures, and compressive sensing technique. Advanced circuit technologies are extremely powerful and developed rapidly. They change industry. They change lives. And we know they can change the world. The exhibition on these new and exciting topics will benefit readers in related fields.",isbn:"978-1-78923-207-3",printIsbn:"978-1-78923-206-6",pdfIsbn:"978-1-83881-420-5",doi:"10.5772/intechopen.69787",price:119,priceEur:129,priceUsd:155,slug:"advanced-electronic-circuits-principles-architectures-and-applications-on-emerging-technologies",numberOfPages:194,isOpenForSubmission:!1,isSalesforceBook:!1,isNomenclature:!1,hash:"c5a1bb3da69158c572f9983972ae97d0",bookSignature:"Mingbo Niu",publishedDate:"June 13th 2018",coverURL:"https://cdn.intechopen.com/books/images_new/6348.jpg",keywords:null,numberOfDownloads:12878,numberOfWosCitations:8,numberOfCrossrefCitations:11,numberOfDimensionsCitations:15,numberOfTotalCitations:34,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 22nd 2017",dateEndSecondStepPublish:"June 12th 2017",dateEndThirdStepPublish:"September 8th 2017",dateEndFourthStepPublish:"December 7th 2017",dateEndFifthStepPublish:"February 5th 2018",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"5 years",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:5,editedByType:"Edited by",kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"141595",title:"Dr.",name:"Mingbo",middleName:null,surname:"Niu",slug:"mingbo-niu",fullName:"Mingbo Niu",profilePictureURL:"https://mts.intechopen.com/storage/users/141595/images/system/141595.jpg",biography:"Mingbo Niu received a B. Eng. degree in Electronic Engineering from Northwestern Polytechnical University in China, and an M. Sc. (Eng.) degree (first-class) major in Communication and Information Systems from the same university. Prior to his Ph.D., he worked at a National Key Laboratory on Information and Signal Processing. He received his Ph.D. degree in Electrical and Computer Engineering from the University of British Columbia, Canada in 2013. From 2008 to 2012, he was a Research Assistant at Optical Wireless Communications Laboratory and Integrated Optics Laboratory where he contributed to the development of ultra-high speed optical data transmission links. Dr. Niu held a postdoctoral fellowship at Queen’s University from 2013 to 2015. He also worked for Defence Research and Development Canada (DRDC) at Calian Tech. Ltd where he contributed to statistical evaluation models of MIMO compressive sensing projects. He is now a Professor of Electrical Engineering at Okanagan College, Canada. Dr. Niu has co-authored more than 20 IEEE and OSA papers and supervised a number of students’ projects. Currently, he serves as a Lead Guest Editor for the journal Wireless Communications and Mobile Computing (IF: 1.899) and an Editor for InTech book projects on \\Advanced Analog/Digital Circuits\\. Dr. Niu was the recipient of numerous scholarships during his undergraduate and graduate studies, which included a Chinese Government Award, two University of British Columbia University Graduate Fellowships (UGFs), and a HuaWei Tech. Ltd Special Fellowship. His current research and teaching interests include digital communications, microcontrollers, MIMO, DSP, energy harvesting, electronic circuit theory, and ICs for data communication networks. Dr. Niu is a licensed Professional Engineer in British Columbia.",institutionString:"Chang'an University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Chang'an University",institutionURL:null,country:{name:"China"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"739",title:"Electronic Circuits",slug:"electrical-and-electronic-engineering-electronic-circuits"}],chapters:[{id:"58662",title:"Self-Oscillatory DC-DC Converter Circuits for Energy Harvesting in Extreme Environments",slug:"self-oscillatory-dc-dc-converter-circuits-for-energy-harvesting-in-extreme-environments",totalDownloads:1182,totalCrossrefCites:0,authors:[{id:"175070",title:"Dr.",name:"Ming-Hung",surname:"Weng",slug:"ming-hung-weng",fullName:"Ming-Hung Weng"},{id:"215269",title:"Prof.",name:"Nick",surname:"Wright",slug:"nick-wright",fullName:"Nick Wright"},{id:"215271",title:"Dr.",name:"Alton",surname:"Horsfall",slug:"alton-horsfall",fullName:"Alton Horsfall"},{id:"222660",title:"Dr.",name:"Daniel",surname:"Brennan",slug:"daniel-brennan",fullName:"Daniel Brennan"}]},{id:"58795",title:"New Energy Harvesting Systems Based on New Materials",slug:"new-energy-harvesting-systems-based-on-new-materials",totalDownloads:1095,totalCrossrefCites:0,authors:[{id:"187612",title:"Dr.",name:"Lucian",surname:"Pîslaru-Dănescu",slug:"lucian-pislaru-danescu",fullName:"Lucian Pîslaru-Dănescu"},{id:"196151",title:"Dr.",name:"Laurentiu Constantin",surname:"Lipan",slug:"laurentiu-constantin-lipan",fullName:"Laurentiu Constantin Lipan"}]},{id:"58619",title:"Nanoarchitecture of Quantum-Dot Cellular Automata (QCA) Using Small Area for Digital Circuits",slug:"nanoarchitecture-of-quantum-dot-cellular-automata-qca-using-small-area-for-digital-circuits",totalDownloads:1615,totalCrossrefCites:6,authors:[{id:"218855",title:"Dr.",name:"Radhouane",surname:"Laajimi",slug:"radhouane-laajimi",fullName:"Radhouane Laajimi"}]},{id:"58442",title:"Millimeter-Wave Multi-Port Front-End Receivers: Design Considerations and Implementation",slug:"millimeter-wave-multi-port-front-end-receivers-design-considerations-and-implementation",totalDownloads:1504,totalCrossrefCites:2,authors:[{id:"34160",title:"Prof.",name:"Serioja O.",surname:"Tatu",slug:"serioja-o.-tatu",fullName:"Serioja O. Tatu"},{id:"212045",title:"Ph.D.",name:"Chaouki",surname:"Hannachi",slug:"chaouki-hannachi",fullName:"Chaouki Hannachi"}]},{id:"59972",title:"Applications of Compressive Sampling Technique to Radar and Localization",slug:"applications-of-compressive-sampling-technique-to-radar-and-localization",totalDownloads:1067,totalCrossrefCites:1,authors:[{id:"214787",title:"Dr.",name:"Francois",surname:"Chan",slug:"francois-chan",fullName:"Francois Chan"},{id:"214788",title:"Dr.",name:"Soheil",surname:"Salari",slug:"soheil-salari",fullName:"Soheil Salari"},{id:"214789",title:"Dr.",name:"Yiu-Tong",surname:"Chan",slug:"yiu-tong-chan",fullName:"Yiu-Tong Chan"}]},{id:"60655",title:"High-Speed Electronic Memories and Memory Subsystems",slug:"high-speed-electronic-memories-and-memory-subsystems",totalDownloads:860,totalCrossrefCites:0,authors:[{id:"218477",title:"Mr.",name:"Prateek",surname:"Asthana",slug:"prateek-asthana",fullName:"Prateek Asthana"},{id:"221356",title:"Mr.",name:"Loveneet",surname:"Mishra",slug:"loveneet-mishra",fullName:"Loveneet Mishra"}]},{id:"58744",title:"High Voltage Energy Harvesters",slug:"high-voltage-energy-harvesters",totalDownloads:4633,totalCrossrefCites:1,authors:[{id:"189098",title:"Dr.",name:"Xi Sung",surname:"Loo",slug:"xi-sung-loo",fullName:"Xi Sung Loo"},{id:"189214",title:"Prof.",name:"Kiat Seng",surname:"Yeo",slug:"kiat-seng-yeo",fullName:"Kiat Seng Yeo"},{id:"215816",title:"Prof.",name:"Joel",surname:"Yang",slug:"joel-yang",fullName:"Joel Yang"},{id:"215817",title:"Dr.",name:"Chee Huei",surname:"Lee",slug:"chee-huei-lee",fullName:"Chee Huei Lee"},{id:"215818",title:"Prof.",name:"Moe Z.",surname:"Win",slug:"moe-z.-win",fullName:"Moe Z. Win"},{id:"221473",title:"Prof.",name:"Rong",surname:"Zhao",slug:"rong-zhao",fullName:"Rong Zhao"}]},{id:"60585",title:"Experimental Studies of the Electrical Nonlinear Bimodal Transmission Line",slug:"experimental-studies-of-the-electrical-nonlinear-bimodal-transmission-line",totalDownloads:923,totalCrossrefCites:1,authors:[{id:"107261",title:"Dr.",name:"Diene",surname:"Ndiaye",slug:"diene-ndiaye",fullName:"Diene Ndiaye"},{id:"214425",title:"Dr.",name:"Abdou Karim",surname:"Farota",slug:"abdou-karim-farota",fullName:"Abdou Karim Farota"},{id:"214426",title:"Prof.",name:"Bouya",surname:"Diop",slug:"bouya-diop",fullName:"Bouya Diop"},{id:"214427",title:"Prof.",name:"Mouhamadou Mansour",surname:"Faye",slug:"mouhamadou-mansour-faye",fullName:"Mouhamadou Mansour Faye"},{id:"214429",title:"Prof.",name:"Mary Teuw",surname:"Niane",slug:"mary-teuw-niane",fullName:"Mary Teuw Niane"}]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"225753",firstName:"Marina",lastName:"Dusevic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/225753/images/7224_n.png",email:"marina.d@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"3563",title:"Advanced Microwave Circuits and Systems",subtitle:null,isOpenForSubmission:!1,hash:"2d0a7e4bb67e54ab0bbe098ebb9537d4",slug:"advanced-microwave-circuits-and-systems",bookSignature:"Vitaliy Zhurbenko",coverURL:"https://cdn.intechopen.com/books/images_new/3563.jpg",editedByType:"Edited by",editors:[{id:"3721",title:"Prof.",name:"Vitaliy",surname:"Zhurbenko",slug:"vitaliy-zhurbenko",fullName:"Vitaliy Zhurbenko"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3576",title:"Solid State Circuits Technologies",subtitle:null,isOpenForSubmission:!1,hash:"a14e0865ac126e0234df9b53a5943ebf",slug:"solid-state-circuits-technologies",bookSignature:"Jacobus W. Swart",coverURL:"https://cdn.intechopen.com/books/images_new/3576.jpg",editedByType:"Edited by",editors:[{id:"5235",title:"Professor",name:"Jacobus",surname:"Swart",slug:"jacobus-swart",fullName:"Jacobus Swart"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3647",title:"Advances in Solid State Circuit Technologies",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"advances-in-solid-state-circuit-technologies",bookSignature:"Paul K Chu",coverURL:"https://cdn.intechopen.com/books/images_new/3647.jpg",editedByType:"Edited by",editors:[{id:"4759",title:"Prof.",name:"Paul",surname:"Chu",slug:"paul-chu",fullName:"Paul Chu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3106",title:"Photodiodes",subtitle:"From Fundamentals to Applications",isOpenForSubmission:!1,hash:"a10cd693ef0a38fe4f92eac11410db46",slug:"photodiodes-from-fundamentals-to-applications",bookSignature:"Ilgu Yun",coverURL:"https://cdn.intechopen.com/books/images_new/3106.jpg",editedByType:"Edited by",editors:[{id:"150727",title:"Prof.",name:"Ilgu",surname:"Yun",slug:"ilgu-yun",fullName:"Ilgu Yun"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"491",title:"Photodiodes",subtitle:"World Activities in 2011",isOpenForSubmission:!1,hash:"6a3cd5b56e3b5d6c986ced6a2b9e38eb",slug:"photodiodes-world-activities-in-2011",bookSignature:"Jeong-Woo Park",coverURL:"https://cdn.intechopen.com/books/images_new/491.jpg",editedByType:"Edited by",editors:[{id:"4928",title:"Prof.",name:"Jeong Woo",surname:"Park",slug:"jeong-woo-park",fullName:"Jeong Woo Park"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3630",title:"VLSI",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"vlsi",bookSignature:"Zhongfeng Wang",coverURL:"https://cdn.intechopen.com/books/images_new/3630.jpg",editedByType:"Edited by",editors:[{id:"2569",title:"Dr.",name:"Zhongfeng",surname:"Wang",slug:"zhongfeng-wang",fullName:"Zhongfeng Wang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"879",title:"Advances in Piezoelectric Transducers",subtitle:null,isOpenForSubmission:!1,hash:"d868d46b3db64dcefa833403fec32346",slug:"advances-in-piezoelectric-transducers",bookSignature:"Farzad Ebrahimi",coverURL:"https://cdn.intechopen.com/books/images_new/879.jpg",editedByType:"Edited by",editors:[{id:"71997",title:"Dr.",name:"Farzad",surname:"Ebrahimi",slug:"farzad-ebrahimi",fullName:"Farzad Ebrahimi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5864",title:"Different Types of Field-Effect Transistors",subtitle:"Theory and Applications",isOpenForSubmission:!1,hash:"586a8228e9e9228e77a6a141d8d170bf",slug:"different-types-of-field-effect-transistors-theory-and-applications",bookSignature:"Momcilo M. Pejovic and Milic M. Pejovic",coverURL:"https://cdn.intechopen.com/books/images_new/5864.jpg",editedByType:"Edited by",editors:[{id:"147994",title:"Dr.",name:"Momčilo",surname:"Pejović",slug:"momcilo-pejovic",fullName:"Momčilo Pejović"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5709",title:"Optoelectronics",subtitle:"Advanced Device Structures",isOpenForSubmission:!1,hash:"8b81ee1079b92050f9664d3ee61dfa39",slug:"optoelectronics-advanced-device-structures",bookSignature:"Sergei L. Pyshkin and John Ballato",coverURL:"https://cdn.intechopen.com/books/images_new/5709.jpg",editedByType:"Edited by",editors:[{id:"43016",title:"Prof.",name:"Sergei",surname:"Pyshkin",slug:"sergei-pyshkin",fullName:"Sergei Pyshkin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6521",title:"MEMS Sensors",subtitle:"Design and Application",isOpenForSubmission:!1,hash:"0da20f1660250a3391770069a4655cc5",slug:"mems-sensors-design-and-application",bookSignature:"Siva Yellampalli",coverURL:"https://cdn.intechopen.com/books/images_new/6521.jpg",editedByType:"Edited by",editors:[{id:"62863",title:"Dr.",name:"Siva",surname:"Yellampalli",slug:"siva-yellampalli",fullName:"Siva Yellampalli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"42458",title:"Replicating Retroviral Vectors for Gene Therapy of Solid Tumors",doi:"10.5772/54861",slug:"replicating-retroviral-vectors-for-gene-therapy-of-solid-tumors",body:'Despite recent progress in the treatment of solid tumours by conventional therapeutic options including surgery, chemotherapy, and radiotherapy, development of more efficient strategies is urgently needed due to delimited efficacy and occurrence of severe side effects in current treatment regimens. Cancer gene therapy can be defined as the introduction of genetic material into the patient´s body for the purpose of reducing tumour burden, increasing life expectancy, and improving the quality of life of the treated individual. It is most commonly intended to either initiate tumour self-destruction, down-regulate angiogenesis and/or metastasis, enhance anti-tumour activity of the immune system, suppress function of an activated oncogene, or restore expression and/or function of tumour suppressor genes [1-4].
Viral vectors are the most widely used tools for the delivery of therapeutic genetic material into host cells in a clinical setting. More than 65 % of gene therapy clinical trials worldwide are making use of viral vectors (http://www.wiley.com). With almost 370 trials (~20 % of all gene therapy clinical trials), gamma-retroviruses and in particular the murine leukaemia virus (MLV)-based vectors are the second most used gene transfer system employed in recent years. These vectors are able to transduce most cell types, as long as they are actively dividing. However, most of these retroviral vectors are designed to be replication-deficient, resulting in poor transduction efficiencies in vivo. This might be one, if not the reason for the poor therapeutic success observed so far in clinical trials for cancer [5–7]. Thus, nowadays, replication-deficient retroviral vectors are mainly used in ex vivo gene transfer for the treatment of inherited monogenic disorders [8–10], rather than for in vivo tumour therapy.
However, to increase in vivo transduction efficiency and the poor therapeutic outcome observed using replication-deficient retroviral (RDR) vectors, replication-competent retroviral (RCR) vectors were created which allow vector production in the infected tumour cell and thus, as a consequence, efficient delivery of the therapeutic gene eventually to almost all target cells (for review see [11-13]). Several research groups were involved in the design and construction of such MLV-based RCR vectors and were able to show that these vectors are well suited for efficient transduction of tumour cells and thus represent an efficacious treatment option for tumour therapy.
In the following sections we will provide an overview on MLV-derived RCR vectors and their therapeutic principle. Emphasis will be put on the different vector designs available and their influence on vector spread kinetics, vector genome stability, and transgene expression levels. Furthermore, strategies to target the vector by either selective infection of distinct cell types or selective expression and replication of the vector genome and expression of the delivered transgene in distinct cell types will be presented. Data from in vivo studies employing a set of different therapeutic genes and targeting different tumour types in various animal models will be reviewed and the therapeutic efficacy in these indications discussed. Finally issues regarding the safety of these vectors such as data from biodistribution and toxicological studies as well as potential risks associated with such a therapy are addressed in the following.
The murine leukaemia virus belongs to the genus of gamma-retroviruses which are small, enveloped viruses carrying two copies of a single-stranded RNA genome within an icosaedric core. The unique feature of retroviruses is their replication cycle, as their RNA genome is reverse transcribed into DNA, which then integrates into the host DNA before being transcribed to give rise to new virus genomes and viral proteins. MLV is a so-called simple retrovirus carrying only 3 genes in its genome, encoding the viral Gag, Pol and Env polyproteins. The group-specific antigen Gag is processed by the viral protease (PR) to the matrix (MA), capsid (CA) and nucleocapsid (NC) proteins which all form the viral core. The surface (SU) and transmembrane (TM) proteins are processed from the Env protein and are embedded in the host-cell derived lipid-bilayer. The pol gene encodes the viral PR, the reverse transcriptase (RT) and the integrase (IN), which are delivered in the virus particle to the cell to be transduced. After release of the virus core in the cytoplasm of an infected cell, reverse transcription of the single-stranded RNA into double-stranded DNA takes place and the pre-integration complex (PIC) consisting of virus DNA and viral and cellular proteins assembles [14]. As the MLV PIC, in contrast to lentiviruses such as HIV, is not able to cross the nuclear membrane, productive infection only occurs when the nuclear membrane is disrupted, as in dividing cells. Integration of the viral DNA into the host genome occurs randomly, however an integration preference of MLV-based vectors into the 5´-proximity of transcriptionally active genes was observed [15].
During reverse transcription identical long terminal repeats (LTRs) consisting of the so-called U3, R, and U5 region and flanking the viral genes are created which carry the viral promoter in the U3 region and the poly(A) site downstream of the R region. Expression from this promoter leads to two RNA species, a genomic one also encoding the viral proteins Gag and Pol, and the subgenomic env coding message. The Gag and Pol proteins assemble together with the genomic RNA which is recognized by Gag via a packaging signal present immediately downstream of the 5´-LTR. Newly synthesized virus particles exit the cell via budding through Env protein-rich regions of the host cell membrane without lysis of the cell.
Thus, due to its non-lytic nature retroviruses per se cannot be used as so-called oncolytic viruses, which are able to kill tumour cells by their productive infection only, but require additional gene sequences to exert a tumour destroying effect. Such therapeutic replication-competent MLV vectors can only be generated by adding therapeutic sequences in addition to the viral genes, which are all essential for virus replication, making the design of such vectors challenging and their genomic stability critical due to genomic overlength.
Early attempts to produce replication-competent retroviral vectors have been already made in the late 80´s of the last century, when various groups inserted a transgene expression cassette into the 3´-LTR of replicating MLV to generate a research tool for analyses in whole-animal models [16-18]. During infection and reverse transcription of the proviral mRNA message, the transgene expression cassette was duplicated and, now present in the 5´- and 3´-LTR, independently expressed from the respective heterologous promoter. An RCR containing a mutant form of the dihydrofolate reductase (DHFR) gene was shown to stably transmit methotrexate resistance to infected fibroblasts upon multiple rounds of virus replication in vitro in the absence of drug selection and was produced at high titres by fibroblast cells [16].
Later, the group of Finn Skou Pedersen adopted this concept and inserted the transgene within the U3 region of the 3´-LTR of the Akv strain of MLV, mediating expression of the eGFP-transgene via an internal ribosomal entry site (IRES) of the encephalomyocarditis virus (EMCV) (Figure 1, (B)) [19]. This design again resulted in doubling of the IRES-transgene cassette in the infected cell, albeit, only the eGFP gene located in the 3´-LTR, but not the transgene present in the 5´-LTR, was expressed from the regulatory elements in the MLV 5´-LTR. Intraperitoneal injection of this vector at a concentration of 10e4 colony forming units into 3-4 days old mice led to more than 50 % eGFP-expressing spleen cells 4 days after injection. The level of eGFP-positive cells remained constant till day 7, but dramatically dropped from day 12 onwards, most likely to genetic instability of the vector and reversion to wild-type (wt) virus lacking the marker gene [20].
Due to the highly compact nature of the MLV genome, however, the positions into which heterologous sequences can be inserted without impacting on viral replication are limited. Thus, up to now only few vector designs in which the transgene is located at different positions and/or its expression is facilitated by different mechanism have been created and are currently under in-depth evaluation.
Kasahara and colleagues favoured insertion of the transgene right downstream of the envelope reading frame, as well linked via an ECMV IRES element (Figure 1, (C)) [21,22]. These RCR vectors are based on the Moloney strain of MLV and are equipped with the amphotropic MLV envelope gene, both of which are features allowing infection of human and other mammalian cells. The effect of insert size and sequence on the genetic stability and spread efficacy of the vector revealed a strong negative correlation between insert size and deletion of the introduced sequence. Insertion of 1.6 kb in length led to greatly attenuated replication kinetics relative to wild-type virus and loss of the insert within a single infection cycle, whereas inserts up to 1.3 kb were well tolerated with slightly attenuated replication kinetics. In addition, the genomic integrity was maintained over multiple serial infection cycles [21,22].
To further unravel the effects of viral strain and transgene position in the vector, as well as the impact the target cell type might have on spread kinetics and on the genetic stability of the virus vector in particular, we have independently compared the different parameters in serial rounds of infection in different cultured cell types as well as in vivo in tumour bearing animals [23]. To this end, various cell lines have been inoculated with RCR vectors based on the Akv and Moloney strain of MLV and carrying an IRES-EGFP transgene cassette either in the U3 region of the 3´-LTR or immediately downstream of the env gene, and passaged and monitored over time. Supernatant of the infected cells was also used to infected fresh cells for a further round of infection to allow exponential spread of virus vector until a maximum of EGFP-expressing cells was reached. Supernatant of the freshly infected cells was then used for a next round of infection to finally end up with more than 20 rounds of infection, and virus propagation for up to 100 days. The obtained data revealed a clear advantage of the Moloney-MLV strain over the Akv-MLV strain in respect to spread kinetics, transgene expression and vector stability and demonstrated that location of the transgene immediately downstream of the env gene is preferred in respect to genomic stability of the vector. These observations have been confirmed in spread and stability analyses after virus injection in tumour xenografts of mice [23]. Unexpectedly, our results also indicated that the host cell can influence the ability of MLV-based RCR vectors to stably propagate the expression of heterologous genes, since all vectors, regardless of design, lost the ability to express eGFP in NIH-3T3 cells much more rapidly than in HEK-293 cells [23]. Differences in vector genome stability between infected cell lines seem to be dependent neither on species nor on different replication kinetics of the vector in the respective cell lines. It rather might be due to differences in other virus and/or host-cell features including fidelity of the virus reverse transcriptase linked with the p53 status of the infected cells, expression of the anti-viral mechanisms such as APOBEC and TRIM family members, availability and balance of intracellular dNTP pools, and in general, due to an overall genetic instability of certain cell types and cell lines [24].
Employing this design in which the heterologous sequences are located in the 3´-untranslated region immediately downstream of the env reading frame, expression of the transgene could also be facilitated by introducing, instead of the IRES, a splice acceptor site upstream of the transgene, which would result in a transgene specific mRNA message (Figure 1 (D)) [25]. Propagation of such vectors in cell culture however, revealed a much slower vector spread as compared to the IRES-carrying vector, which led to almost 100% infected cells after 3 days after infection [25].
RCR vectors based on Mo-MLV carrying a therapeutic gene in the 3´-untranslated region resemble currently the most advanced RCR vector design for tumour therapy and are already employed in the first clinical trial for the treatment of cancer.
A different approach in the design of RCR vectors has been pursued by the group of Christian Buchholz from the Paul-Ehrlich-Institut, as they inserted heterologous sequences including a 3´-terminally located furin cleavage site in frame into the envelope gene of the virus between the signal peptide and surface protein domain coding region (Figure 1, (E)) [26,27]. During production of the Env protein in virus vector transduced cells, the heterologous amino acid sequence will be cleaved off while the Env protein is processed through the secretory pathway and eventually will be secreted from the infected cell. Proof-of-concept for this vector design was shown with the immune stimulatory cytokine GM-CSF and the laminin-specific or T-cell specific single-chain antibody variable region fragment (scFv) [27]. The resulting viruses infected a variety of human cell lines and infectious virus particles were detected in supernatants of infected cells. Moreover, these cells were able to efficiently process the encoded Env-fusion proteins and to release reasonable amounts of protein molecules of GM-CSF, laminin-specific or T-cell specific scFvs into the cell culture media. Furthermore, the replicating viruses were genetically stable for at least 12 serial cycles of propagation. Thus, these vectors are ideally suited for production of therapeutic factors which need to be secreted, but less suitable in case the protein produced is intended to be active in the infected cell.
An additional site for integration of foreign sequences into the vector genome without impairing virus life cycle is the proline-rich region tract within the Env protein (Figure 1, (F)). Insertion of the eGFP marker gene into this site in a Mo-MLV-based RCR vector resulted in spread through almost 100% of cultured NIH-3T3 cells within one week after initial transfection with virus sequences [28,29]. PCR analysis of integrated virus vector DNA from chronically infected cells indicated no genetic recombination in the modified env gene region. An additional insertion of a Pol III promoter-shRNA expression cassette in antisense orientation into the 3´-untranslated region of the virus vector resulted in only slightly reduced spread kinetics as compared to the parental vector and in delivery and functional expression of the shRNA in most of the cells [30]. Again PCR analysis did not reveal any recombination events over 4 infection cycles.
MLV-based RCR vectors can be accounted for being intrinsically tumour-selective due to the specific nature of MLV to replicate in dividing cells only. Nevertheless, it would be desirable to further improve the vector safety profile. This can be achieved by introducing transcriptional control elements that restrict RCR gene expression and subsequent virus vector replication to tumour cells - so-called transcriptional targeting; or by modulating the interaction of the RCR vector with host cells at the very early step of the infection process, known as physical targeting, via adaptation of the virus envelope glycoprotein to selectively bind to surface molecules exclusively or predominantly present on cancer cells. Alternatively, initial targeting could also be enabled by the use of delivery vehicles to facilitate transport or homing of the RCR vectors to the tumour site.
To allow transcriptional targeting of MLV-based RCR vectors, the most reasonable approach is the exchange of the ubiquitously active viral promoter located in the U3 region of the viral LTR by a tissue- or tumour-specific promoter delimiting its activity and thus virus vector replication to a specific cell type. Due to the particularities of retroviral reverse transcription, modifications of this promoter must be introduced into the U3 region of the 3’-LTR. This allows, after initial vector production and infection, duplication of the regulatory elements into the 5´-LTR (Figure 2). This strategy has been successfully employed previously in conventional replication-defective retroviral vectors to direct transgene expression to a particular cell type [31–33]. In RCR vectors however, not only expression of the transgene sequences is mediated by these regulatory elements, but also expression of viral genes which are needed to ensure efficient RCR vector replication in infected target cells and which have to be produced in an ample but well balanced manner. Moreover, as the LTR contains regulatory elements important for reverse transcription, RNA processing, and virus genome integration, modifications in this area may interfere with or may disrupt these elements and may thus negatively affect virus replication kinetics. This altogether renders the transcriptional targeting approach for RCR vectors rather complex.
In early studies, the murine liver-specific transthyretin promoter/enhancer was inserted into the LTR U3 region, lacking the endogenous enhancer, of a replication-competent MLV [34]. When compared to wt-MLV however, the recombinant virus did not reveal an improved rate of infectivity of hepatocytes in vitro or a restricted tissue tropism in vivo [34].
Transcriptional targeting of MLV-based RCR vectors harbouring modifications in the U3 region by insertion of a heterologous promoter was demonstrated initially by Kasahara and colleagues [35]. In these vectors, hybrid LTRs were constructed by replacement of the MLV 3´-LTR U3 region from the very 5’ end to either the CAAT box, the TATA box, or the transcriptional start site (TSS) by a heterologous promoter complementing the deleted boxes, respectively. Using a highly prostate-specific rat probasin (PB) proximal promoter and a synthetic variant of this promoter containing several copies of the androgen responsive region (ARR2PB), respectively, virus gene expression and virus production was shown to be restricted to prostate cancer cells in vitro [35]. Replication of vectors in which the heterologous promoter was fused directly to the MLV TSS was greatly impaired relative to that of vectors in which the viral CAAT and TATA box, or the viral TATA box only, was retained. The configuration in which the MLV TATA box was preserved, but all upstream elements had been replaced by heterologous regulatory sequences was found to be ideal in respect to transgene expression, vector spread and specificity [35]. The use of the stronger ARR2PB promoter resulted in a greatly improved efficacy of vector replication [35]. Moreover, results from biodistribution studies in immunocompetent and immunodeficient mice indicated that this targeting strategy prevents the productive spread of RCR vectors to spleen and bone marrow of systemically infected mice [12].
Using a different set of promoter/enhancer elements, Metzl et al. were able to demonstrate that MLV-based RCR vectors can also be targeted to liver cancer cells and to tumour cells harbouring a deregulated ß-catenin signalling pathway [36]. Vectors equipped with a chimeric promoter consisting of the hepatitis B virus enhancer II fused to the human α1-antitrypsin promoter (EIIPa1AT promoter) revealed a substantial spread in the liver cancer cell lines HepG2, AKH12, AKH13, but replicated only scarcely in the colon carcinoma cell lines SW480 and DLD-1, the cervical cancer cell line HeLa and the human embryonic kidney cell line HEK-293 [36]. Similarly, vectors equipped with the synthetic beta-catenin/T-cell factor dependent CTP4 promoter replicated in the ß-catenin deregulated cancer cell lines HepG2, SW480, and DLD-1, but not in the cell lines AKH12, AKH13, HeLa, and HEK-293, which revealed a normal ß-catenin signalling pathway. When the heterologous promoters were used to replace almost the entire U3 region, including the MLV TATA box and TSS (TATA-replacement (TR) design), vector replication was inefficient as virus particle production from infected cells was clearly reduced by factor 100 as compared to a vector harbouring the wt-MLV 3´-LTR. On the contrary, fusion of the heterologous promoter lacking the TATA box to the MLV TATA box (TATA-fusion (TF) design) generated vectors which replicated with almost wt-MLV kinetics throughout permissive cells despite the fact that virion production from infected cells was reduced by 10-fold as compared to the prototype vector ACE-GFP. As expected, these TF-vectors exhibited low or negligible spread in non-permissive cells. The genomic stability of the TF-vectors, however, was shown to be comparable to those containing wt-MLV LTRs [36].
Both studies indicated that the precise manner in which the heterologous promoters are inserted into the U3 region of the 3´-LTR is of paramount importance. Only vectors retaining the MLV TATA box in its natural position exhibited both regulated gene expression and rapid replication kinetics [35,36].
For decades it was generally accepted, that with MLV, and as a consequence, with MLV-based vectors, infection can only take place in dividing cells. Therefore, such vectors can be
Retroviruses are unique among viral vectors in their capacity to incorporate a wide range of envelope proteins from other retroviruses and even from completely unrelated virus types. Insertion of heterologous envelope proteins into the outer shell of viral particles, so called pseudotyping, to exert an infection targeting approach has already been demonstrated in RDR vectors for a variety of envelope molecules [38–40]. The MLV-based RCR vectors used in cancer gene therapy applications to date are mostly based on the Moloney strain of MLV, which naturally expresses the ecotropic MLV envelope and thus are able to only infect rodent cells. To allow infection of human cells, the vectors are pseudotyped with the amphotropic envelope gene from the 4070A strain of MLV, which can infect most mammalian cell types via the ubiquitously-expressed Pit-2 receptor [41]. Logg and colleagues also replaced the native env sequence with that of the gibbon ape leukaemia virus (GALV) retaining a short portion of the signal peptide coding sequence of the MLV Env to avoid alteration of the MLV polymerase reading frame which is overlapping with the 5´-end of the envelope reading frame [42]. This env gene replacement greatly attenuated viral replication, most probably by a large clearance in splicing of the viral RNA. However, employing an in vitro evolution strategy, extended passaging of cells exposed to the chimeric virus resulted in selection of virus mutants with rapid replication kinetics. Different variants arose from different sets of infection experiments. None of the revertants exhibited mutations in the GALV env gene itself, but rather in other areas of the virus to retain the ratio of spliced to unspliced viral messages which had been pertubated by the substitution of the env gene [42].
An alternative strategy for changing the tropism of MLV-based RCR vectors is via direct engineering of the specific targeting ligand sequence within the env gene. Again, several strategies have been demonstrated for RDR vectors, including the incorporation of ligands or single chain antibodies into the env gene to allow targeting to an alternative receptor [43-45]. However, these approaches were of limited success in respect to transciptional targeting, as, although retargeting of the vector was achieved, infection efficiency was greatly reduced, since the conformational change in the envelope protein necessary for proper virus-cell fusion failed to happen subsequently to the binding of the modified envelope to the alternate receptor [46].
In another approach to allow the physical targeting of RCR vectors, two tandem repeats of the immunoglobulin G-binding Z-domains of Staphylococcus protein A were inserted into the proline-rich region of amphotropic or ecotropic MLV envelope proteins present in MLV-based RCR vector particles, respectively [47]. This approach should allow virus particles to be conjugated to an antibody of choice, which can then be used for the selective binding of virus to cells (over)-expressing the chosen antibody target. Modified envelopes were efficiently expressed and incorporated into virions, while infectivity was markedly reduced by this pseudotyping [47].
For RCR vectors the most efficient physical targeting system up to now is based on protease-activatable envelope proteins [48]. Rather than attempting to redirect infection to target cells by incorporation of specific binding domains into the envelope protein, here, the virus remains non-infectious until the Env proteins become activated by cleavage by a secreted or membrane-bound cellular protease recognizing the protease target site present in the engineered Env molecule. A directed evolution-based approach was employed for the selection of retroviruses activatable by matrix metalloproteinases (MMPs) which are specifically expressed by tumour cells [26,49,50]. RCR vectors generated to express either the epidermal growth factor (EGF) or the CD40 ligand, linked via MMP cleavage sites as fusion to the N-terminal of the MLV 4070A envelope protein, were sequestered by the EGF receptor or the CD40 receptor, which are ubiquitously-expressed on potential host cells. By that the envelope protein was prevented from interacting with its natural Pit-2 receptor resulting in poor infection efficiencies and thus de-targeting of the RCR vectors from non-tumour cells [49,50]. Infection efficiency however, is restored in cells which express high levels of MMPs, such as many tumour cell types, due to Env-ligand cleavage and interaction of the Env protein with its natural receptor [50]. In a comparative study Duerner and colleagues analysed the spread of targeted and non-targeted MLV RCR variants in
Recently, a fully functional chimeric vector system that uses a helper-dependent adenovirus 5 (Ad) vector as a first stage carrier to express and deliver a fully functional RCR vector has been described [51]. The RCR vectors are produced
As a future option, delivery of RCR vectors to tumours could also be facilitated by the use of tumour-homing cells as vector carriers. Mesenchymal stromal cells, for example, which have been shown to be able to home to malignant areas, have been loaded with replicating adenoviral vectors to deliver them to the tumour tissue to execute their oncolytic potential [54], an approach which might be also applicable to RCR vectors.
Despite the fact that the first experiments employing MLV-based RCR vectors have been commenced more than 20 years ago, the utilization of these vectors for cancer gene therapy is still at an early stage. The vectors are not oncolytic
Suicide genes, also called prodrug-converting genes, encode proteins which are not toxic
Initial data demonstrating therapeutic efficacy of an RCR vector mediated suicide therapy approach have been shown using the yeast cytosine deaminase (yCD) gene in a mouse model of human glioma [56]. In cells infected with the yCD expressing RCR vector ACE-CD, the non-toxic prodrug 5-fluorocytosine (5-FC) was converted into the toxic component 5-fluorouracil (5-FU), leading to cell death not only in infected cells but also in surrounding non-infected dividing cells due to intercellular diffusion of 5-FU. Stereotactic intratumoral injection of only 1x10e4 infectious ACE-CD particles into pre-established intracranial U-87MG human glioma xenografts in nude mice followed by daily intraperitoneal (
To investigate the effect of the immune system on the effectiveness of the RCR vector-mediated glioma therapy, the rat glioma cell line RG2 was used to establish syngeneic intracranial tumours in Fischer 344 rats [58]. Three days after tumour implantation, 1x10e6 infectious ACE-CD virus particles were stereotactically injected into the growing tumours. Ten days after virus injection, 5-FC at 500 mg/kg body weight was administered
Recently, we have critically analysed a panel of 15 different human and rodent glioma and glioblastoma cell lines in respect to spread of RCR vectors derived from vector ACE-CD to their sensitivity towards the 5-FC/5-FU suicide system, and to their orthotopic growth characteristics in mice to identify suitable preclinical animal models as test bed for the development and evaluation of RCR vector mediated treatment of glioblastoma [59]. Rapid virus spread was observed in eight out of nine human cell lines tested in vitro. As expected, only CD-expressing cells became sensitive to 5-FC. All LD50 values were within the range of concentrations obtained in human body fluids after conventional 5-FC administration. In addition, a significant bystander effect was observed in all human glioma cell lines tested, supporting the potential of this suicide gene therapy for the treatment of brain tumours [59].
This therapeutic concept has also been experimentally employed to subcutaneous and orthotopic liver metastasis of colorectal cancer in an immunocompetent rodent model [60,61]. To this end, murine CT26 cells pre-transduced with vector ACE-CD were mixed with non-transduced CT26 cells at a ratio of 1:200 prior to implantation into BALB/c mice. Twelve days later, daily 5-FC treatment at 500 mg/kg, given
For proof-of-concept in a further indication, Kikuchi and colleagues evaluated the transduction and therapeutic efficacy of intravesically administered RCR vectors in orthotopic bladder tumours in mice [62]. Tumours were established by implantation of either MBT-2 murine bladder cancer cells into immunocompetent syngeneic C3H/HeJ mice or of KU-19-19 human bladder cancer cells into nude mice. RCR vector particles carrying the eGFP transgene were delivered intravesically
Recently, Kawasaki et al. investigated RCR vector mediated gene therapy for the treatment of human malignant mesothelioma [63]. Cells of this tumour type were found to be highly permissive for RCR infection [63]. After a single intratumoral injection of 1x10e4 ACE-CD virus vector particles into pre-established subcutaneous MSTO-211H human mesothelioma tumour xenografts in nude mice, followed by daily 5-FC administration at 500 mg/kg body weight given
Beside the CD/5-FC suicide gene/prodrug combination, which is the most prominent and extensively studied system in context of RCR vectors, other therapeutic genes have been introduced in this vector system and have been analysed. The bacterial purine nucleoside phosphorylase (PNP) gene, for example, converts the prodrugs fludarabine phosphate (F-araAMP) or 6-methylpurine 2´-deoxyriboside (MeP-dR) into its toxic metabolites and represents a reasonable alternative to the CD/5-FC suicide system. Kikuchi et al. demonstrated the therapeutic efficacy of vector ACE-PNP, an MLV-based RCR vector expressing the
In in vitro experiments using human U-87MG glioma cells, Tai and colleagues were able to show that transduction of even only 1 % of cells with the ACE-PNP vector and subsequent systemic prodrug administration is sufficient to achieve significant cell killing over time [67]. Thereby, the rapidity of cell killing is highly dependent on the initial level of transduction. Treatment of pre-established
In summary, the published data of non-preclinical studies using suicide gene-expressing MLV-based RCR vectors have demonstrated that such vectors are therapeutically efficacious in solid tumours and/or metastases of a range of different tumour types (glioma, colorectal and bladder cancer, mesothelioma) in both immunodeficient and immunocompetent mouse and rat models, and using different therapeutic genes (yCD and PNP). On grounds of these non-clinical data the therapeutic concept of replicating retroviral vectors was moved towards clinical application. To this end, based on the design of the extensively evaluated vector ACE-CD, a lead clinical candidate (vocimagene amiretrorepvec, Tocagen Inc., San Diego, CA) has been constructed carrying a human codon-optimised thermostable yeast CD gene [68]. Comparison with the prototype vector ACE-CD harbouring the wildtype yeast CD gene revealed a three-fold increased CD-specific conversion of 5-FC to 5-FU in infected cells and a markedly higher genetic stability of the clinical vector candidate Toca 511 [68]. To further support the production of toxic metabolites in infected cells, the modified CD gene was further linked as fusion to the gene encoding the yeast uracil phosphoribosyl transferase (UPRT) or, alternatively, to the human orotate phosphoribosyltransferase (OPRT) gene. It has been reported that expression of the UPRT gene in the CD-expressing cells leads to increased sensitivity to 5-FC, as the UPRT converts 5-FU directly to 5-FUMP, from which the active metabolites 5-FdUMP and 5-FUTP are formed [69,70]. The human OPRT protein, as part of a multifunctional UMP synthase, is a human analogue of the UPRT, converting 5-FU directly to 5-FUMP with direct impact on the cellular sensitivity towards 5-FU, since downregulation of this endogenous enzyme was found in tumour cells resistant to 5-FU [71,72]. Moreover, exogenous expression of the OPRT gene led to increased 5-FU sensitivity in cancer cell lines in vitro [73]. Despite better individual in vitro cell killing with vectors carrying these fusion genes, it remains unclear, whether this would be beneficial for therapy, as the highly efficient 5-FC salvage to phosphorylated nucleotides may diminish 5-FU diffusion and thereby the effects exerted by the bystander mechanism. Furthermore, initial killing of most of the infected cells might hinder vector spread during the 5-FC-rest period, leading to a reduced antitumor activity in vivo [68,74]. In addition, serial passaging of these infectious viruses on human U-87MG glioma cells revealed a decreased genomic stability of vectors containing fusion constructs as compared to Toca 511, probably due to the size and nature of the inserted transgene(s) sequences (~500 bp in Toca 511
The therapeutic potential of Toca 511 was evaluated in two different intracranial brain tumour models in immune competent mice (CT26-BALB/c and Tu-2449-B6C3F1) [75]. Treatment of CT26 brain metastases with three different virus doses (1x10e6, 1x10e5, 1x10e4 transforming units (TU)/g brain weight) plus 5-FC administration initiated nine days after intratumoral virus injection at 500 mg/kg given
Currently, Toca 511 is being investigated in clinical trials in the United States in subjects with recurrent high-grade glioma either as a direct intratumoral vector injection (Phase I/II Study; NCT01156584; http://www.clinicaltrials.gov) or vector injection at the time of tumour removal (Phase I Study; NCT01470794 http://www.clinicaltrials.gov).
Beside direct killing of tumour cells mediated by suicide gene products, different other therapeutic approaches, e.g. based on the secretion of therapeutic molecules such as cytokines or single chain antibodies (scFv) directed against specific tumour antigens could be facilitated by RCR vectors.
To allow secretion of therapeutic molecules from infected cells, a replicating retroviral vector was constructed by inserting specific transgene sequences to the first codon of the MLV env gene via a furin cleavage site sequence [26]. The respective fusion protein will be cleaved by furin proteases in the Golgi and the scFv will be secreted upon release of the new virus particles from infected cells (for details see above). The resulting vectors were capable of efficiently transducing susceptible cells, were genetically stable for more than 12 passages and were able to efficiently mediate intracellular production and secretion of the GM-CSF cytokine and the functional laminin-specific or T-cell-specific scFv antibody, respectively [27].
Sun and colleagues demonstrated the potential of the human chemokine interferon-gamma-inducible protein 10 (IP10) gene, delivered and expressed from a MLV-based RCR vectors, to inhibit tumour growth
In cancer gene therapy applications, RNAi-expressing RCR vectors can be used to inhibit tumour growth, invasion and metastasis. The length of the RNA duplex required for efficient RNAi is not longer than 21-23 bp. Therefore, the insertion of RNAi expression cassettes into RCR vectors should be well tolerated in respect to genetic stability and spread kinetics of the vector. The expression of duplex RNA is usually achieved using an expression cassette consisting of the RNA Pol III promoter transcribing a sequence designed to form a short hairpin RNA structure (shRNA). MLV-based RCR vectors were constructed encompassing a transcription cassette consisting of an H1-RNA Pol III promoter inserted in antisense orientation into the 3’ UTR of the vector backbone to drive expression of an shRNA sequence targeted against the epidermal growth factor receptor (EGFR) gene or the STAT3 gene [30]. To allow monitoring of infection efficiency, these vectors also contain the eGFP gene fused into the virus envelope gene. Insertion of both expression cassettes did not interfere significantly with virus fitness, and the receptor specificity of the Env protein was not impaired by the introduced eGFP sequences [28]. The modified vectors replicated rapidly and were genetically stable over several infection cycles. In addition, silencing of EGFR and STAT3 target gene expression in cells infected to levels of 80 – 95 % was shown to be highly efficient [30].
An improved, second generation MLV-based RNAi transfer vector suitable for in vivo application was recently described [79]. This RCR vector encodes miRNA modified shRNA sequences specifically targeting the eGFP and luciferase reporter genes under control of the small nuclear U6 promoter inserted in antisense orientation into the 3’ UTR of the vector. In HT1080 cells stably expressing eGFP or luciferase, marker gene expression was suppressed by more than 80 %, even when only 0.1 % of the cells were initially infected with the RCR vectors [79]. In vivo systemic tail vein administration of 2.9x10e7 of shLuc expressing vector particles in animals with pre-established subcutaneous HT1080-Luc tumours led to more than 80 % reduction in luciferase activity compared to uninfected tumours at day 25 post infection [79]. To investigate the effects of downregulation of tumour-promoting proteins, PLK1- and MMP14-specific shRNA expression cassettes were inserted into the vector. Upon infection of target cells, PLK1 and MMP14 mRNA and protein levels were reduced [79]. MLV-shPLK-infected cells were trapped in the G2-phase of the cell cycle at day 3 post infection, followed by induction of apoptosis at day 5 post infection. MLV-shMMP14 infected cells showed reduced MMP2 activity consistent with a reduced invasion capacity by ~75 % as compared to non-infected cells [79]. Tumour growth of MLV-shMMP14 infected HT1080-Rec-1 cells in immunodeficient mice was significantly and substantially reduced in comparison to controls. Similarly, direct intratumoral application of 1x10e6 of shPLK1 expressing vector particles in animals with pre-established subcutaneous HT1080 xenografts led to a significantly reduced tumour growth in comparison to the controls [79].
Up to now, a variety of different therapeutic approaches have been utilized in context of RCR vectors. High levels of vector spread, infection efficiency, and therapeutic gene expression have been detected leading to an efficacious therapeutic option for the treatment of cancer. From data on the eradication of tumour mass in animal models existing so far, a clear benefit of the RCR mediated tumour therapy is indicated. However, the use of replicating retroviral vectors also bears a number of risks which have to be identified and analysed.
In particular, 3 major concerns directly related to the use of RCR vectors have to be taken into consideration: (i) the risk of insertional mutagenesis due to integration of the vector genome into the host cell DNA, a step that can trigger the transformation of normal cells into tumour cells, (ii) the spread of viral vectors throughout the body of the patient causing viraemia, and (iii) the infection of dividing non-tumour cells and their loss due to therapeutic intervention leading to severe side effects.
The risk of insertional oncogenesis is an issue associated with the use of retroviral vectors in general, irrespective if they are replication-deficient or replication-competent. With RCR vectors this concern might be more substantial as due to the replicating nature more cells might be affected and multiple infections of the single cell might occur. On the other hand, in tumour therapy it is intended to kill the infected cells. Hence, due to this, insertional oncogenesis should not be an issue unless infected cells are resistant to treatment or got infected with an RCR vector which is reverted to wild-type due to genetic instability and thus is not able to exert its therapeutic potential.
The use of replication-competent retroviral vectors might also bear the risk of uncontrolled spread of vectors throughout the human body, resulting in infection of dividing cells other than the tumour cells itself. Non-dividing cells should not be infected as MLV-based vectors are thought to transduce dividing cells only, and, as most cells in the adult human body are non-dividing, virus spread should be limited. Moreover, some cell types, such as dividing human primary T-lymphocytes have only a low capacity to produce MLV-based RCR and, in addition, the produced virions are largely non-infectious [80]. Nevertheless, in case of unintended virus spread and high risk of viraemia, an early systemic intervention with antiretroviral drug(s) could be implemented to limit viral load [81]. Recent findings, on the other hand, suggest that the host range of MLV-based RCR vectors might include also post-mitotic and other growth-arrested cells in mammals [37]. Therefore, the issue of RCR-vector dissemination outside of the tumor mass is of particular concern in clinical studies employing RCR vectors and thus should be addressed in respective biodistribution studies.
For RCR biodistribution studies, sensitivity of the analysis is of utmost importance. Techniques based on conventional PCR, real-time PCR, flow-cytometry and immunohistochemical detection were employed so far to analyse the infection range of RCR vectors in animal models. In an early report, Logg and colleagues analysed the presence of the eGFP transgene in the DNA extracted from tumour tissue as well as from a variety of extratumoral tissues including spleen, lung, kidney, liver, and heart obtained from
By detection of CD gene-specific sequences by PCR at a detection limit of 400 copies per 100,000 cell genomes (600 ng of gDNA, transduction level 0.4 %), Tai and co-workers were able to determine proviral sequences in the transduced glioma tissue, but observed no extratumoral spread to and in any of the tissue examined (lung, liver, oesophagus and stomach, intestine, spleen, kidney, skin, bone marrow, contralateral normal brain) in an orthotopic glioma model in nude mice intratumorally injected with 1.2x10e4 virus particles [57]. However, all of these studies had been based on the detection of the non-viral transgene (e.g. GFP, CD, PNP, etc.). Hence, putative spread of vectors which have lost the transgene or parts of it will not be considered in these analyses.
In an immunocompetent intracranial RG2-glioma model performed in Fischer 344 rats, tumours were injected with 1x10e6 of CD expressing RCR vector particles followed by 5-FC or PBS treatment initiated 10 days later [58]. Organs from moribund animals were collected and quantitative real-time PCR targeting the MLV env gene was performed [58]. There was no evidence of presence of the env gene from the RCR vector in systemic tissues carrying highly mitotic cells such as lung, liver, kidney, spleen, bone marrow, skin, oesophagus, intestine, and testis [58]. Using this highly sensitive technique which enables detection of 20-35 copies in 50,000 cellular genomes, Hiraoka et al. analysed RCR vector biodistribution in a mouse hepatic metastasis model using BALB/c mice and the syngeneic colon carcinoma cell line CT26 [60,61]. After locoregional delivery of 2x10e4 of RCR vector particles either expressing the eGFP or CD transgene,
Biodistribution of RCR vectors after intravenous injection into immune deficient as well as immune competent mice was analysed by Solly and colleagues [25]. Two weeks after RCR vector injection, a 4070Aenv-based quantitative real-time PCR revealed presence of proviral genomes in bone marrow and spleen of nude mice. On the contrary, no proviral genomes could be detected in any tissue from immunocompetent animals, which emphasizes the potency of anti-MLV specific immune responses [25]. In vivo biodistribution of wt-MLV and MMP-activatable RCR vectors and their ability to reach tumour tissue after systemic administration was analysed in CB17-SCID mice using an optimized PCR method detecting up to 50 copies of proviral DNA in 300 ng of genomic DNA [48]. After intravenous injection of RCR vectors corresponding to 60 U of RT activity into tumour-free mice, tissues were analysed at different time points after virus injection. A strong signal in spleen and weak signals in liver and bone marrow were obtained after administration of wt-MLV vector one day after infection. After two weeks, wt-MLV sequences were found in lung, spleen, liver, heart, bone marrow, and muscle, but not in brain. The increase in PCR signal intensity over time suggests continuous virus replication. This was further supported by the presence of infectious virus in the blood of these animals. On the contrary, no positive signals were detected in mice infected with the MMP-activatable RCR vectors [48]. A similar experiment was performed with U-87MG and HT-1080
Recently, Ostertag et al. reported biodistribution of the clinical vector Toca 511 after intratumoral administration in an immunocompetent mouse model of brain cancer using aquantitative real-time PCR technique to detect integrated provirus sequences with high sensitivity (10-25 copies per µg of gDNA) [75]. Two animal models based on different mouse strains had been Involved; BALB/c mice permissive for virus infection, and poorly permissive C57BL/6 mice. In these animal models 10e5 and 10e6 RCR vector particles have been injected intracranially into the tumor mass. Quantitative DNA analyses were performed on samples from mice which survived for 90 days and 180 days for the CT26-BALB/c model and the Tu-2449-B6C3F1 model, respectively. In the CT26-BALB/c model, vector spread to other tissues, particularly to lymphoid organs (thymus, spleen, lymph node, blood) was detectable [75]. Up to 5x10e5 proviral copies/µg gDNA were detected in thymus, up to 1.5x10e5 proviral copies/µg gDNA in samples from salivary gland, oesophagus, lung, heart, spleen, lymph node, and blood, and less than 5x10e3 proviral copies/µg gDNA in samples from skin, ovary, intestine, liver, kidney, spinal cord, bone marrow, cerebellum and brain [75]. In the Tu-2449-B6C3F1 model vector spread was observed at low levels only. Less than 5x10e3 proviral copies/µg gDNA were detected and interestingly the oesophagus was the organ in which the proviral copy number was highest. The difference in viral distribution observed in both model systems could be explained by the presence of different APOBEC3 alleles in these mouse strains. BALB/c mice have been shown to carry an allele that does not restrict MLV, whereas B6C3F1 mice carry an active allele [82]. Both mouse strains produced antibodies against Toca 511 [75].
The issue of biodistribution of the vector to non-target sites, as well as the expression of the therapeutic gene in off-target cells could be addressed best by infection targeting of the vector or expression targeting of the therapeutic gene to cells of the tumour. This approach has already been applied using tumour- and tissue-specific regulatory sequences to drive virus replication and transgene expression, and by modifying the viral envelope protein to allow transduction in a tissue/tumour specific manner.
Very recently, RCR vectors have been employed as a novel gene transfer vehicle for the treatment of cancer. Due to their dense genome organisation and the need for presence of all virus genes to allow vector replication, an only limited capacity for the introduction of foreign sequences is available, rendering the design of such vectors rather challenging. Nevertheless, different vector designs in respect to transgene location and mode of transgene expression have been elaborated. Their analysis in in vitro and in vivo studies revealed that the vectors are genetically stable over several replication cycles and result in an efficient delivery of the therapeutic gene into solid tumours in various animal models. On the other hand, different risks are associated with the use of RCR vectors, such as the risk of insertional tumorigenesis of non-target cells or the risk of inadvertent vector spread resulting in severe side effects. Such risks need to be carefully examined in appropriate non-clinical studies. In case they can be adequately addressed and dispelled, RCR vectors will be a promising option for efficient tumour therapy in humans.
Research in the field of materials science and engineering has expanded greatly in recent decades, especially in the field of biocompatible materials. This is because, on the one hand, medicine is constantly looking for solutions to remedy many health problems, and on the other hand, certain classes of materials have already proven useful in alleviating or even curing certain human suffering [1, 2].
The development of biocompatible materials research is an evolving process driven by the increase in the number of accidents and many health problems, but also by the desire to increase the average life expectancy in humans. As research in the field of biomaterials science advances at the laboratory level, the incidence of serious diseases is increasing in the global human community. The World population is getting larger and the percent of elder persons is increasing and influencing the increase of chronic illness, like cancer or cardiovascular diseases. Next to this on large scale other infectious diseases are getting more common like: HIV/AIDS, tuberculosis or gastrointestinal issues. On this reason the focus of the research in the field of medical materials and instruments should prepare for the request on the market [3].
While traditional biomaterials were based on polymers, ceramics and metals, now the latest generation of biomaterials incorporates biomolecules, therapeutic drugs and even living cells. At present, biomaterials are a special category of materials, indispensable for raising the quality of human life and extending its duration [4].
Biomaterials are generally intended to be implanted in a living organism to restore the shape and function of a part of a tissue destroyed by disease or trauma.
The introduction of a biomaterial into the human body determines an implant versus tissue interaction, which can generate conflicting reactions. They can be toxic, mechanical, and electrochemical biological. It can even lead to serious damage to the bone or adjacent tissue, or assembly used. Due to these phenomena, depending on the quality of the biomaterial, the place of implantation and other causes, corrosion occurs on the surface of the implant, with loss of quality his.
Depending on the medical application for which it is suitable, a biomaterial must have one or more of the properties presented in Figure 1. These factors are very important and have a close correlation between them: to be biologically compatible with the host tissue (for example, it does not have to causes rejection, inflammation and immune responses); Easily achieve direct bio-chemical attachment to the host tissue; The biodegradation time must be adjusted to suit the time of natural bone formation; Degradation mode: Surface or depth erosion; Ability to support the growth of germinal capillaries, tissues perivascular mesenchymal and osteoprogenitor cells from host in the three-dimensional structure of the graft that acts as a support; Needed to maximize space for grip and growth cellular, revascularization, proper nutrition and oxygen supply; For support in the process of cell growth and in the transport of nutrients and oxygen [5].
The main characteristics of biomaterials.
A material suitable for use in medicine must have, where appropriate, certain characteristics special and offer a number of advantages: mechanical integrity of the tissues acting as a support for growth living tissue; control of the biological response, by promoting dynamic interactions with tissues surrounding; behaving as a space for the survival of host cells, facilitating the transport of nutrients and metabolites, by maximizing the biological and / or pharmaceutical response; good biocompatibility / biodegradability, with adequate degradation kinetics; new tissue formation, thus minimizing both tissue and response toxicity systemic; feasibility in production [6, 7].
Of all the factors, biocompatibility is the most important feature to be taken into account consideration in the clinical applications of a biomaterial and which is related to behavior biomaterials in various contexts. Biocompatibility is correlated with the appearance of a response weak immune system in contact with a particular biomaterial [8, 9].
The most complex unit is the human body, having many levels of tissues, organs and systems. If we speak about tissues these can be soft or hard, after that being classified in ones in contact with blood or not, in contact with the biomaterials or not [10].
On biomaterials the classification can vary, according to the composing materials and their use; the origin – natural or synthetic, simple or mixed composite and so on. Regarding the composition these can be metallic, ceramic, polymeric, composite and of natural origin.
According to every biomaterial, the advantages and disadvantages can influence their use, being induced by the characteristics of biomaterials and by the functional requirements of implants.
Bioglass (BGs) is a chemical compound that is part of a compositional family known to have the best bioactivity properties. This are osteoconductive and osteoinductive as well biocompatible and highly bioactive, as demonstrated by the connection with living tissues in a short time to just a few hours [11].
This new class of biomaterials, based on an amorphous mixture of oxides (SiO2-Na2O-K2O-CaOMgO-P2O5), was patented in 1968 by Larry Hench by preparing the well-known Bioglass 45S5.
Depending on the percentage of SiO2 mainly, these biomaterials can be bioinert, bioactive or bioresorbable. Hench and Clark were the first researchers to observe the bioactivity of this material in vitro and in vivo and demonstrated its osteointegrative potential [12].
At the same time, the antimicrobial and anti-inflammatory properties and the possibility to easily control the crystallinity by applying heat treatments corresponding to the glassy phase present in the bioglass structure were noted. All these are additional arguments for this class of biomaterials to be a first objective in research in the field [13].
L.L. Hench developed the concept of using a material based on silicon dioxide, calcium oxide and phosphorus pentoxide, in a proportion similar to that of natural bone, to make implants, which have the property of developing a bond with the bone. In Figure 2 is presented the Hench Diagram. The level of biocompatibility of a material can be correlated with the time in which it was performed bone binding for more than 50% of implant surface (t0.5bb) [15].
Hench diagram [
The bioactivity index is defined by the following formula:
Because some studies show that the GBs are fragile and exhibit poor mechanical properties, this limiting the involvement in load-bearing applications, another way to represent a feasible solution, is to incorporate the bioactive glasses into gelatine matrices and to fabricate composites [16, 17].
Although 40 years have passed since the patenting of this material, until now it has been intensively used only in the form of large diameter particles (~ 100 μm), grouped in blocks with different geometries, with applications in regenerative orthopedic surgery (bone fillers).
Enamel-glazing and flame / plasma spray are used as commercial methods to obtain bioglass thin films at the commercial level, and in recent years’ intensive research has been carried out in many biomaterials research laboratories to find alternative methods to the traditional ones, which lead to thick coatings with low mechanical strength.
Although their superficial properties are interesting, their development is limited due to: high fragility and reduced mechanical resistance to static fatigue. However, they are used to make middle ear bones, alveolar reconstructions, dental implants, films for total coverage of prostheses (alumina or titanium alloy), for modern cancer treatments.
For all these applications, the bioglasess have seen a spectacular development, as shown in Table 1.
Year | Stage/Achievement/Application |
---|---|
1969 | Highlighting the binding (binding) of the bone with the help of bioglass and bioglass-ceramics |
1973 | Specification of the interaction mechanism at the bone-bioglass interface |
1973 | Binding of bone to active biovitroceram |
1976 | Measurement of the profiles of compositions in the bioglass-bone connection area |
1976 | Successful introduction of bioglass into the dental implant |
1980 | Comparative histology of variable bioactivity implants |
1981 | Ultrastructure analysis of biovitroceram and bone |
1981 | Toxicology and biocompatibility tests of biostycles and evidence of soft tissue binding |
1981 | Clinical use of vitroceram (Ceravital) in the middle ear prosthesis |
1982 | Comparison between the glass implant and other inert implants instead of the middle ear bone |
1982 | High mechanical strength vitroceram (apatite and wollastonite) for vertebral prostheses |
1983 | Mechanically machinable vitroceram based on apatite and fluoroflogopite |
1984 | The FDA approves the sale of bioglasses and prostheses for the middle ear |
1986 | Clinical trial of bioglasses for alveolar ridges |
1993 | PerioGlas approved by FDA (45S5 Bioglass® for bone and dental repair) |
1998 | Peripheral nerve repair |
1999 | Radioactive glasses approved by FDA (TheraSphere®) for cancer treatment |
2000 | Wound healing |
2002 | Medpor®-PlusTM approved by FDA (polyethylene/45S5 Bioglass® composite porous orbital implants). |
2003 | Antibacterial (Zn-containing) bone/dental cements |
2004 | Lung tissue engineering |
2004 | Use of mesoporous bioactive glass (MBG) as a drug delivery system |
2005 | Skeletal muscle and ligament repair |
2005 | Treatment of gastrointestinal ulcers |
2010 | Cardiac tissue engineering |
2011 | Commercialization of a cotton-candy borate bioactive glass for wound healing in veterinarian medicine. FDA approval was pending. |
2012 | Embolization of uterine fibroids |
2012 | Spinal cord repair |
2018 | Use of radioactive glasses (TheraSphere®) in patients with metastatic colorectal carcinoma of the liver |
Due to the high fragility and low mechanical strength of bioglasses as well as the toxicity of metal ions that can occur from metal alloys used in internal prostheses, the study of metal orthopedic prostheses coated with thin bioglasses films was studied.
Their use is motivated, among other things, by the porosity characteristics of the bioglasses, which allow a very intimate propagation of the tissues, thus ensuring a perfect connection with the implant. Thus, these structures have the advantage of combining the bioactive properties of the coating material with the mechanical strength of the support (Figure 3).
Multilayer structure [
Bioglasses are superficially active, they have the property of binding mechanically or biochemically to bone tissue or collagen fibers in contact with soft, living tissue.
It has been shown that the connection between the bioglass and the bone is achieved by the formation of a superficially active interface based on hydroxyapatite, which further determines the reconstruction action of the tissue cells; such a mechanism is stimulated by a slightly basic pH, caused by ion exchanges between the bioglass and the tissue.
Materials with limited reactivity, such as dense hydroxyapatite, have a weaker effect than biosticles in the healing process of bone tissue.
All classes of the biomaterials are used throughout the human body, for this purpose, physical, chemical and biological properties of materials are exploited, often new or improved properties, and the resulting structures can interact faster at the biomolecular level, both on the surface and inside the cell.
Most of the commercial biomaterials (glass, ceramics, glass-ceramics and composites) are known that bind to bones, being called bioactive ceramics. Also other strictly specialized compositions of bioactive glasses bind to soft tissues. A common feature of bioactive glasses and ceramics is the change of the material surface after time-dependent implantation. On the surface it is formed a biologically active layer of hydroxycarbonate apatite (HCA), which provides the tissue-binding structure [4].
Many studies have shown bone-related bioactive implants with sufficient adhesion to the interface to withstand mechanical fracture. A failure never occurs at the interface, but either in the implant or in the bone.
Bone binding was initially demonstrated for some compositional domains of bioactive glasses, containing SiO2, Na2O, CaO and P2O5, in the proportions specified in Table 2.
Component | 45S5 Bioglass® | 45S54F Bioglass® | 45B15S5 Bioglass® | 52S4.6 Bioglass® | 55S4.3 Bioglass® | KGC Ceravital® | KGS Ceravital® | KGy213 Ceravital® | A/W Glass–ceramic | MB Glass–ceramic | S45P7 |
---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | 45 | 45 | 30 | 52 | 55 | 46.2 | 46 | 38 | 34.2 | 19–52 | 45 |
P2O2 | 6 | 6 | 6 | 6 | 6 | 16.3 | 4–24 | 7 | |||
CaO | 24.5 | 14.7 | 24.5 | 21 | 19.5 | 20.2 | 33 | 31 | 44.9 | 9–3 | 22 |
Ca(PO3)2 | 25.5 | 16 | 13.5 | ||||||||
CaF2 | 9.8 | 0.5 | |||||||||
MgO | 2.9 | 4.6 | 5–15 | ||||||||
MgF2 | |||||||||||
Na2O | 24.5 | 24.5 | 24.5 | 21 | 19.5 | 4.8 | 5 | 4 | 3–5 | 24 | |
K2O | 0.4 | 3–5 | |||||||||
Al2O3 | 7 | 12–33 | |||||||||
B2O3 | 15 | 2 | |||||||||
Ta2O5/ TiO2 | 6.5 | ||||||||||
Structure | Glass and glass–ceramic | Glass | Glass | Glass–ceramic | Glass–ceramic | Glass–ceramic | Glass–ceramic | Glass–ceramic | Glass–ceramic | Glass–ceramic | Glass–ceramic |
Composition of bioactive glass and glass ceramics (% weight) [18].
During the years many types and variations of the composition were approved by FDA and named Bioglass.
When introducing a material into the living organism, a series of very complex interactions can appear, being able to identify four specific phenomena that are unitary in the so-called “concept of biocompatibility”, namely:
initial processes that take place at the biomaterial interface ÷ living tissue and that are closely related to the physico - chemical processes that take place in the first minutes of the contact between the biomaterial and the living tissue;
the effect induced by presence of biomaterial as a foreign body in the living tissue surrounding the implant, which can be measured at any time, from a few minutes to years;
the effect that living tissue has on the biomaterial through the changes observed in the biomaterial, effect described in the form of corrosion or degradation;
consequences of the reaction at the interface that are systematically seen on the surface of the body or in certain specific areas, medically recognized as the development of specific allergies, the initiation of tumors or the appearance of infectious processes [5].
Chemical interactions that occur at the surface are:
Rapid exchange of Na + and Ca2 + ions with H + and HO- ions in solution, leading to hydrolysis of silica groups, with the formation of silanol groups;
The cation exchange increases the concentration of hydroxyl ions in the solution, which leads to the attack of the silica network;
Condensation and repolymerization of a SiO2-rich layer on the glass surface, depleted in alkaline and alkaline-earth cations;
Migration of Ca2 + and PO43− cations to the surface through the SiO2-rich layer, forming above it an amorphous CaO-P2O5-rich film, which grows by incorporating calcium and phosphates from the solution;
Crystallization of the amorphous film rich in CaO-P2O5 by incorporation from the solution of OH- and CO32− anions, with the formation of a mixed layer containing carbonated hydroxyapatite (HCA).
The biomaterial versus tissue interface, which is established by implantation, is almost inevitably a blood ÷ material interface and the initial events are dominated by the absorption of blood proteins on the implant surface. At this contact it was established that a series of biological processes: Adsorption and desorption of biological growth factors, in the HCA layer, which determines the activation of stem cell differentiation; The action of macrophages, which phagocytose local residues, allowing cells to grow; Attachment to the bioactive surface of stem cells; Differentiation of stem cells with the formation of bone growth cells, called osteoblasts; Osteoblasts generates extracellular matrix with bone formation; Crystallization of the phosphate inorganic matrix by embedding bone cells in a living composite structure (Figure 4) [19].
Bioactive glass surface reaction [
The chemical and topological properties of the implant surface strongly influence the properties of the biolayer and this influence must be understood and controlled in order to optimize the biocompatibility of the material used. Relevant in the study of biocompatibility is the fact that proteins and cells have nano- and micrometer sizes, which requires extremely delicate approaches. Of equal importance are the properties of cells, for example, their ability to communicate via the extracellular matrix with signal molecules (molecules used in the process of living cell synthesis). During tissue healing, numerous bioactive signaling molecules control tissue formation, and some proteins have demonstrated the ability to stimulate healing near the implant. All these mechanisms contribute to the response of the tissues to the implant and can determine whether the body accepts the implant or not, whether it is biocompatible.
Japanese researchers have tested the effect of surface area on bone proliferation. Three types of biomaterials were compared: bioactive glass, dense hydroxyapatite and glass ceramics. Each material was implanted in a 6 mm diameter hole, which was drilled into the bone of an adult rabbit’s leg. Bioactive glass has been found to produce bone tissue and is subsequently resorbed much faster than the other two materials, both of which have a lower surface reactivity than glass.
The rate of bone growth around an implanted material depends in part on the rate of dissolution of the silica network and therefore it is very good to determine as accurately as possible the system in which the oxide composition of the bioglass.
Alkaline content plays an important role in the stability of bioglass. From this point of view, two categories are distinguished: bioglass with rich alkaline content and bioglass with poor alkaline content. The latter are characterized by a high degree of decomposition over time, during bone reconstruction. This type of bioglass has been used in maxillofacial applications and in the chaining of the inner ear bones.
Most determinations were made with glasses based on 6 oxides: SiO2-Na2O-K2OCaO-MgO-P2O5, as it was found that the bone binds to materials with a wide range of compositions in this system. Soft tissue binding occurs for a much smaller range of compositions.
There are three basic compositional requirements for silico-chalco-sodium glasses to bind to hard tissue. These are: less than 60% SiO2 (mol), high content of Na2O and CaO, high CaO / P2O5 ratio. The level of bioactivity is strongly dependent on the relative concentrations of ions.
The most successful bioactive glass is the one that contains P2O5 between 6 and 15%.
In the diagram of the SiO2-CaO-Na2O ternary system (6% P2O5), some materials form a bond with the bone in 30 days. Other glasses bind to the soft tissue, some of the glasses are almost chemically inert and others are resorbable and dissolve in 10 to 30 days.
Bioglasses from another part of diagrams, from a technological point of view, are not forming glass and have not been tested as implant materials. Until now, it has been considered that in order to be bioactive, glasses and glass-ceramics must contain both CaO and P2O5, which are the component oxides of hydroxyapatite.
Ohura and collaborators have shown that glasses in the CaO-SiO2 system without P2O5, as well as those containing very small amounts of P2O5, form a layer of hydroxyapatite on their surface when immersed in simulated body fluid (SBF). In contrast, under the same conditions, the glasses in the SiO2-free CaO-P2O5 system do not form the hydroxyapatite layer. It follows that bioactive compositions can be obtained in the CaO-SiO2 system rather than in the CaO-P2O5 system.
Bioactive glasses usually have weak strength and resilience properties, which is why they are reinforced with metal fibers made of stainless steel, titanium and Co-Cr alloys. As a result of the reinforcement with metal fibers, the volume of defects and the residual tensions decrease, and the microcracks produced are below the critical length and have rounded extremities.
The most methods used for bioglass nanoparticles obtain are: quenching method, sol–gel, flame synthesis, microwave irradiation and microemulsion. Two main process that can synthesize the biomaterial are the melt quenching method and sol–gel.
The melt queching method can synthesize bioglass in a short time, by heating the initial precursors to high temperatures and following special rules. The preparation process proposed by Hench by melting is based on the following steps:
Melting of the mixture of high purity raw materials, in Pt-10% Rh crucibles, covered, in order to prevent the volatilization of the components.
The melt is loosened for at least 2 hours, without removing the lid.
The glass is poured into graphite molds. If the sample diameter is larger than 1 cm then the mold is preheated to 300°C.
The glass is annealed at different temperatures depending on the composition, for 4 hours (see Table 3)
The glass is cooled slowly in the oven for 16 hours.
Type | 45S5 | 45B15S5 | KLP1 | KZS3020 | 45S5N | 45S5-L | 45S5-F |
---|---|---|---|---|---|---|---|
Heat treatment temperatures for Hench glasses.
The role of annealing is to create the conditions for the formation of microcrystals, thus obtaining a bioactive glass–ceramic.
The melt quenching method synthesis was also carried out by Shams et al. in 2018. Bioglass nanoparticles were prepared from analytical grade SiO2, Na2CO3, CaCO3, and P2O5 precursors. As an example from the literature [21]: the precursors were mixed in 53.0 SiO2:23.0 Na2CO3:20.0 CaCO3:4.0 P2O5 molar ratios followed by milling in an agate mortar [22]. The blend was mixed in a jar for several hours and then pressed into discs with 10 mm in diameter using a hydraulic press apparatus. Than the samples were placed in an alumina crucible and heat treated in the furnace [21].
In Figure 5 we can see the thermal program: melting at 1400°C for 3 hours - resulting molten material, then quenched in distilled water to produce glass frit. The glass frit was than dried in an oven at 80°C for 5 hours. The dried glass frit was milled in a Retch PM400 milling machine using zirconia cups for 6 h to obtain the bioglass powder [21]. FESEM micrograph of bioglass nanoparticles, includes spherical particles with a wide size distribution from 100 to 800 nm [21].
The furnace temperature programming. Image adopted from [
Although the melt technique is a fast method, the resulting glass usually has a low specific surface area value. According to previous research, the specific surface area value is a key factor affecting bioglass bioactivity. Increasing the specific surface area can increase the surface reaction between the artificial material and the physiological environment, thereby increasing the formation of the HA layer.
One of the most common method - the sol–gel process is well known for obtaining synthetic materials, like silicate and oxide systems and respectively thin films, coatings, nanoparticles, and fibers. The sol–gel reactions takes place at low temperatures and involves the synthesis of a solution (sol), usually consisting of metal–organic and/or metal salt precursors followed by gelling by chemical reactions, or aggregation, and finally thermal treatment for drying, removal of organic substances, and sometimes crystallization and cooling. Some ions (magnesium, zirconium, zinc, silver, titanium, boron) can be also added to the bioactive glass in order to enhance glass functionality and bioactivity. However, bioactive glass is difficult to synthesize on a nanoscale with the addition of ions [22].
The sol–gel method can synthesize bioglass at lower temperatures, has a porous structure, and a high specific surface area value which can increase the bioactivity of synthetic materials.
The raw materials used in the sol–gel method are alkoxide precursors or soluble inorganic salts derived from the oxide components of the glasses.
If a glass is prepared in the SiO2-CaO-P2O5 ternary system, the precursors used may be:
TEOS - tetraethylorthosilicate (C8H20O4Si)
Calcium nitrate (Ca (NO3)2 ∙ 4H2O)
PET - triethylphosphate (C6H15O4P)
The following factors are considered: the raw materials are added dropwise, under continuous stirring; the pH is adjusted with nitric acid to 2–3 thus taking place an acid catalysis; the soil thus obtained is left to gel for a few hours in an oven at 60° C.
The advantages of the sol–gel method are:
Low obtaining temperature;
High purity;
Improved homogeneity;
Variation of the composition in order to maintain bioactivity;
Modification of structural characteristics, by controlling hydrolysis and condensation reactions;
Powders of nanometric dimensions;
Nanostratified porous materials.
Kumar et al. [23] synthesizing bioglass nanoparticles (SiO2 (60%)-CaO (30%) -P2O5 (10%)) through the sol–gel method. The synthesis of bioglass nanoparticles was carried out by mixing TEOS (4.054 g) with ethanol using a magnetic stirrer for one hour at room temperature. In separate containers, calcium nitrate tetrahydrate (2.372 g) and phosphate pentoxide (0.267 g) were dissolved in distilled water and stirred each with a magnetic stirrer for 30 minutes at room temperature as well. After one hour, the solution containing calcium was added dropwise to the solution containing TEOS, as well as the solution containing the phosphate. After that, ammonia solution was added to the mixture to maintain pH 11. The mixture was then put in an incubator for 48 hours to obtain the gel. The obtained gel was placed in an oven at 100°C to dry [23]. The result of TEM analysis shows that the shape of the bioglass nanoparticles is irregular at the nano and micro scales due to the presence of agglomeration, the particle size varies from 200 to 500 nm, average surface area of the bioglass nanoparticles measured using BET with N2 was 10.4 m2/g. The larger the particle size, the smaller the surface area.
Another study made by Durgalakshmi et al., by mixing tertraethyl orthosilicate (TEOS) and HNO3 as an acid medium, then added alcohol to help the hydrolysis process. Gel formation occurred after 30 minutes of mixing. At 20 minute intervals, other reagents are added to the mixture such as phosphoric acid, calcium nitrate, and sodium hydroxide. The solution was mixed for 4 hours to obtain a homogeneous gel. After the hydrolysis process is complete, the sol is stored at 70°C for 24 hours, and then the dry white powder is taken at 600°C for 2 hours [24]. Scanning electron microscope analysis shows that the particles do not have a well-defined shape, having less than 100 nm in length [24]. The large particles of over 200 nm could be formed due to particle agglomeration during sintering [25].
From ancient times there has been an interest in repairing and replacing parts of the human body that present problems and this has been done using various materials more or less suitable depending on the information available at that time [26].
Due to the evolution of science and equipment today, the medical world is in a period of transition from the healing of existing organs to their replacement with synthetic materials obtained in high-performance laboratories [27].
Bone replacement is in the 2nd place as a tissue replacement procedure, in the first place being the blood transfusion. Yearly are done more than 2 million bone reconstructions in orthopedics, neurosurgery and dentistry.
A wide variety of biomaterials are used in restorative medicine. The choice of material for a practical application in medicine remains a key factor in the design and development of medical implants and devices. Currently, more than 50 biomaterials (BIOGLASS 45S5®, CERABONE A-W®, TheraSphere®, Corglaes®, NovaBone®, NovaMin® etc.) of synthetic or natural origin are used in medicine, covering a wide variety of applications. The tables below (Tables 4 and 5) show some of the applications of bioactive glass and glass ceramics due to their well-defined bioactive properties [28].
Composition | Form | Application | Function |
---|---|---|---|
Bioglass 45S5 | Solid body | Reconstruction of the alveolar margin | Filling the space and tying the tissue |
Solid body | Middle ear prosthesis | Reconstruction of the ear canal by replacing part of the bone chain | |
Powder | Reconstruction of defects caused by periodontitis | Replacing lost bone and preventing gum retraction | |
Powder | Fixation of hip implants | Replacement of lost bone due to a defective fixed implant |
Applications for BIOGLASS 45S5.
Composition | Form | Application | Function |
---|---|---|---|
Cerabone A-W glass–ceramic | Solid body | Iliacal ridge prosthesis | Replacement of extracted bone for autograft |
Vertebral prosthesis | Replacement of a vertebra lost during surgical removal of a tumor | ||
Deposition | Fixing hip prostheses | Provides bioactive binding of the implant |
Applications for CERABONE A-W.
Figure 6 illustrate some examples of commercially glasses, available on the market. All research leads to a great potential of BGs in medicine but it is not fully exploited yet and the next years a rapid growth is expected.
Examples of commercially produced glasses, available on the market [
It is hard to say which is the most feasible bioglass. So the focus of the research is now on optimisation of the materials with deposition techniques, influenced by the parameters of the coatings and the composition of the bioglass, in order to obtain a multi-functional coatings, that will give long-term qualitative implants without side effects and ensuring regeneration.
Figure 7 shows the challenges and future trends for bioactive glasses (BGs)in medicine promoted by researchers which will lead to better implants. The properties of a biomaterial are decisive in ensuring the biocompatibility of an implant:
from a chemical (compositional) point of view, a biomaterial must not contain elements that generate adverse and / or inflammatory reactions upon implantation. An important aspect is also related to the possible formation on the implant surface, in in vivo conditions, of new structures and compositions, dependent on the interactions that are manifested between the biomaterial and the environmental conditions specific to the implantation area. Their nature and physico - chemical characteristics can affects the long-term reliability of the implant.
from a structural point of view, a biomaterial must have a density and a porosity corresponding to the structural function that the implant is to fulfill in the organism in which the implantation is made. Of particular importance is the microscopic nature of the implant surface.
mechanical properties - a biomaterial, depending on the function that the implant must perform in the living organism, must have adequate mechanical strength, hardness and reliability.
in the case of ocular, dermatological and dental applications, biomaterials must also have appropriate optical properties.
another important aspect is related to the machinability of the biomaterial, this influencing the engineering of the implant itself.
Challenges and future trends for bioactive glasses (BGs)in medicine [
Reliable Coatings with BGs on the mettalic implants are the oldest challenge but still researched. Thanks to their excellent mechanical properties and corrosion resistance, some metals are used as passive substitutes for the replacement of hard tissues (total hip and knee implants), as well as fracture implants (plates and rods), column fixing devices, and implantology. Dental. Other metal alloys have more active roles in implantology, such as vascular stents, catheter guidewires, orthodontic wires, and cochlear implants.
However, the biocompatibility of metal implants creates considerable concerns due to the fact that they can corrode in an in vivo environment [6]. Weakening of the implant by disintegrating its actual material, respectively the harmful effects of the resulting chemical compounds on neighboring tissues and organs are among the consequences of corrosion.
Pure metals are less commonly used, their alloys being used more often due to the fact that they improve some of their properties, such as corrosion resistance and hardness. Three groups of materials dominate the group of metallic biomaterials: 316 L stainless steels, cobalt and pure titanium alloys or titanium alloys.
Every material and class of materials works differently after the implantation, like some metals encapsulate fibrous tissue. The great advantage of the coatings on bioglass is that is not releasing toxic ions in the human body due to the potential to improve the implant stability by bonding it to the host bone and protect the implant from corrosion resistance.
The technologies involved for the surface modification of metallic implants with bioglass are: thermal spraying, sol–gel, chemical and electrochemical treatment. Unfortunately, not all technologies are suitable, some of them show many disadvantages like poor bonding strength between implants and coatings, the induction of phase transformation, modifications in the properties of coating or metallic implant, or both, and presence of impurities. Table 6 present a synthesis of different glass coatings obtained through various methods [57].
Coating material | Substrate | Technique | Coatings’ characteristics | Ref. |
---|---|---|---|---|
Biovetro® | Ti6Al4V | Atmospheric plasma spraying (APS) | Surface with wide superficial area of microcavities with round grains | [35] |
45S5 | Pure Titanium | APS | Bonding strength of BG + bond coat average 27.18 ± 2.24 MPa, and of BG average 8.56 ± 0.57 MPa. | [36] |
P1, P2 | AISI 316 L | APS | Microhardness of the coating 4.7–5.2 GPa; thickness of M1 389.8 ± 5.4 μm, M2 91.2 ± 8.2 μm, M3 262.6 ± 5.4 μm, and M4 80.8 ± 6.5 μm; adhesion strength of M1 2.7 ± 0.5 MPa, M2 3.7 ± 0.2 MPa, M3 3 ± 0.007 MPa, M4 4.4 ± 0.1 MPa | [37] |
P0, P2 | AISI 316 L & Ti6Al4V | Flame spraying (FS) | Microstructure consists of melted particles, pores and both vertical and parallel cracks. Thickness 126–275 μm; fracture toughness 5–7 MPa/m1/2; Vickers hardness 4–5 HV | [38] |
45S5 | AISI 304 | Solution precursor plasma spraying (SPPS) | Uniform coating average thickness 35 μm | [39] |
Bio-K | Titanium | High velocity suspension flame spraying HVSFS | Coatings are entirely glassy. Tensile adhesion strength without bond coat: BioK-1 7 N/mm2, BioK-2 3.8 N/mm2, BioK-3 5 N/mm2, BioK-4 9.8 N/mm2 BioK-5 8 N/mm2. With bond coat BioK-1 4 N/mm2, BioK-2 5 N/mm2, BioK-3 3 N/mm2, BioK-4 9.8 N/mm2 BioK-516 N/mm2 | [40] |
BG-Ca/Mix | Grade 2 Titanium | HVSFS and suspension plasma spraying (SPS) | HVSFS coating very dense and thin. Hardness 396–516 HV; elastic modulus 61–95 GPa. Thickness 20–50 μm. SPS coatings thickness 50 μm | [41] |
BG_Ca/HA | 316 L Stainless Stell | SPS | Coatings compact and with continuous thickness with limited presence of pore | [42] |
BG_Ca glass | Ti6Al4V | SPS | Coatings continuous and homogeneous thickness 31–40 μm; hardness 34–98 HV; elastic modulus 16–23 GPa and critical load 18–21 N | [43] |
45S5, Bio K | Alumina | Enameling technique | Bio K completely amorphous, 45S5 some crystalline phases; both compact coatings. Vickers hardness 157 ± 39 HV, 146 ± 28 HV 45S5 | [44] |
RKKP, AP40 | Zirconia | Enameling technique | Coatings with good mechanical properties and improved biocompatibility. ALP activity 1d 3.91 ± 1.15 μm AP40, 4.69 ± 2.10 μm RKKP. 9.98 ± 0.80 μm AP40 and 9.94 ± 2.90 μm RKKP at 5 and 10 days | [45] |
BG_Ca, BG_Ca/Mix BG_Ca_K | Ti6Al4V | Enameling technique | Uniform and well distributed coatings. Thickness BG_Ca 108 μm, BG_Ca/Mix 113 μm, BG_Ca_K 121 μm; Vickers hardness BG_Ca 232.1 ± 76.8 HV, BG_Ca/Mix 329.0 ± 81.0 HV, BG_Ca_K 317.9 ± 48.8 HV | [46] |
LY-B0, LY-B1, LY-B2, LY-B3, LY-B4, LY-B5 | Ti6Al4V | Enameling technique | Thickness 90–100 μm; critical strain energy release 6.56–14.61 J/m2 | [47] |
6P61, 6P55 | Ti6Al4V | Enameling technique | Some small pores. Thickness 86.0 ± 11.5 μm | [48] |
Bioglass©, 6P44-a, 6P44-b, 6P44-c, 6P53-a, 6P53-b, 6P55, 6P57, 6P61, 6P68 | Titanium, Ti6Al4V, Vitallium ©, Co-Cr alloy | Sol–gel method | Coatings without cracks or delamination. Hardness 5.3–6.3 GPa; density 2.5–2.7 g/cm3 | [49] |
57.44CaO-35.42SiO2- 7.15P2O5 (mol.%) | CrCoMo alloy, Ti6Al4V, AISI 316 L | Sol–gel method | Glassy matrix with some defects and cracks. Thickness 1.5–3 _μm | [50] |
45S5 BCG | AZ31 magnesium alloy | Sol–gel method | Integrated coatings with some asperities. Thickness 1.1 μm | [51] |
Ag-BG | Titanium | Sol–gel method | Homogeneous and without macro and micro cracks | [52] |
45S5 | Ti6Al4V | Electrophoretic deposition (EPD) | Coatings with good adhesion without cracks. Rough surface in which the initial powder particles are still visible. Thickness 50–250 μm | [53] |
Bioglass® | NiTi Alloy | EPD | Homogeneous microstructure without cracks or pores with uniform topography. Thickness 5–15 μm | [54] |
45S5 | Ti6Al4V | Pulsed laser deposition (PLD) | Coatings uniform without microcracks and pores. Thickness 1 μm; surface roughness 6 nm | [55] |
T1, T2, T3, T4, T5, T6 | Titanium | Radio-frequency magnetron sputtering (RF-MS) | Amorphous coatings with some crystalline phases. Thickness 1.8–2.4 μm | [56] |
Summary of bioactive glass coatings on different metallic substrate.
Another perspective and future tendince of biomaterials is nanomedicine. Nanomedicine can be defined as an application of nanotechnology in the field of health in order to maintain and / or improve the health of the population using knowledge about the human body at the molecular level, as well as tools / nanoscale structures [22].
For this purpose, physical, chemical and biological properties of nanoscale materials are exploited, often new or improved properties, and the resulting nanostructures (nanoparticles or nanodevices), having the same size as biological entities, can interact more rapidly at the biomolecular level. on the surface as well as inside the cell [22].
So, in the near future, nanomedicine will seek to provide the tools and devices for research and practice, useful in the medical clinic, which could revolutionize the current way of thinking (prevention and diagnosis) and action (applied therapies) in the medical field.
By using nanoengineering, artificial tissues can be obtained and used to replace affected organs (kidneys, liver) or to regenerate nerves or produce implants that restore lost senses, such as sight or hearing. A major contribution is expected to nanomedicine could be brought about in areas such as: the definition and classification of diseases, their diagnosis and treatment, and the improvement of the structure and functioning of the human body [22].
In recent years, nanotechnology has found countless applications in the medical field, in the fields of: pharmaceutical (in targeted drug therapy), regenerative medicine (making nano-robots and devices used in cell regeneration), disease prevention, diagnosis (including by methods high-performance imaging) and nano-technology-based therapy.
The future of the field stays in the nanotechnology, being the most effective on cell and tissue level, mainly on the integration and regeneration, but also the identification of effective ways to trigger and control the regenerative process. The “nanobiomimetic” strategy depends on the following elements: intelligent biomaterials, bioactive signaling molecules and cells. Biomaterials are designed to react positively to changes in the proximity environment, stimulating specific regenerative events at the molecular level, directing cell proliferation and then differentiation, as well as the production and organization of the extracellular matrix.
A huge impact will also have the ability to implant cells, intelligent bioactive materials, which trigger the process of self-healing through the patient’s own stem cells [22].
The field of nanotechnologies has established itself in recent years as one of the most topical fields, with a sustained pace of development and application and a revolutionary impact on industry and society. The global emergence of government investment programs in the field of nanotechnology is clear evidence of global interest in this field.
The potential evolutions of the research - development in the field of nanotechnologies, in the following years, are the following:
half of the new materials that will appear will be obtained with the help of nanotechnologies, in sectors such as: electronics, chemical industry, heavy industry, pharmaceutical industry and aeronautical industry;
the development of nanobiosystems science and engineering will allow a better understanding of living systems, the development of new solutions in health care and better biocompatible materials, the understanding of processes inside the cell or nervous system;
application and integration of nanotechnology in fields of activity such as biology, electronics, medicine, etc., fields that include artificial organs, prolonging life, creating
new systems by using biological principles, the laws of physics and the properties of different materials;
tracking biocompatibility when creating new products;
learning and education, based on nanoscale [22].
In the future, the rapid development of nanomedicine could also be stimulated by better multidisciplinary collaboration between sectors of activity, such as industry, scientific research in general and medical research in particular.
In conclusion, bioglass is a chemical compound that belongs to a compositional family known to have the best bioactivity properties, as demonstrated by the connection with living tissues in a short time to only a few hours.
It is also known that the generation of artificial bone tissue would be very useful in cases of massive fractures. Based on bioactive glass, three-dimensional bioactive matrices have also been developed for tissue regeneration using the deposition of human osteoblasts on the 3D matrix for tissue creation in vitro.
The results obtained so far qualify the bioglasses for widespread use in medical interventions and the ongoing research currently underway increases the hope of success of the intervention and also increases confidence in this material.
“The authors declare no conflict of interest.”
These Terms and Conditions outline the rules and regulations pertaining to the use of IntechOpen’s website www.intechopen.com and all the subdomains owned by IntechOpen located at 5 Princes Gate Court, London, SW7 2QJ, United Kingdom.
',metaTitle:"Terms and Conditions",metaDescription:"These terms and conditions outline the rules and regulations for the use of IntechOpen Website at https://intechopen.com and all its subdomains owned by Intech Limited located at 7th floor, 10 Lower Thames Street, London, EC3R 6AF, UK.",metaKeywords:null,canonicalURL:"/page/terms-and-conditions",contentRaw:'[{"type":"htmlEditorComponent","content":"By accessing the website at www.intechopen.com you are agreeing to be bound by these Terms of Service, all applicable laws and regulations, and agree that you are responsible for compliance with any applicable local laws. Use and/or access to this site is based on full agreement and compliance of these Terms. All materials contained on this website are protected by applicable copyright and trademark laws.
\\n\\nThe following terminology applies to these Terms and Conditions, Privacy Statement, Disclaimer Notice, and any or all Agreements:
\\n\\n“Client”, “Customer”, “You” and “Your” refers to you, the person accessing this website and accepting the Company’s Terms and Conditions;
\\n\\n“The Company”, “Ourselves”, “We”, “Our” and “Us”, refers to our Company, IntechOpen;
\\n\\n“Party”, “Parties”, or “Us”, refers to both the Client and ourselves, or either the Client or ourselves.
\\n\\nAll Terms refer to the offer, acceptance, and consideration of payment necessary to provide assistance to the Client in the most appropriate manner, whether by formal meetings of a fixed duration, or by any other agreed means, for the express purpose of meeting the Client’s needs in respect of provision of the Company’s stated services/products, and in accordance with, and subject to, the prevailing laws of the United Kingdom.
\\n\\nAny use of the above terminology, or other words in the singular, plural, capitalization and/or he/she or they, are taken as interchangeable.
\\n\\nUnless otherwise stated, IntechOpen and/or its licensors own the intellectual property rights for all materials on www.intechopen.com. All intellectual property rights are reserved. You may view, download, share, link and print pages from www.intechopen.com for your own personal use, subject to the restrictions set out in these Terms and Conditions.
\\n\\nWe employ the use of cookies. By using the IntechOpen website you consent to the use of cookies in accordance with IntechOpen’s Privacy Policy. Most modern day interactive websites use cookies to enable the retrieval of user details for each visit. On our site, cookies are predominantly used to enable functionality and ease of use for those visiting the site.
\\n\\nIn no circumstances shall IntechOpen or its suppliers be liable for any damages (including, without limitation, damages for loss of data or profit, or due to business interruption) arising out of the use, or inability to use, the materials on IntechOpen's websites, even if IntechOpen or an IntechOpen authorized representative has been notified orally or in writing of the possibility of such damage. Some jurisdictions do not allow limitations on implied warranties, or limitations of liability for consequential or incidental damages; consequently, these limitations may not apply to you.
\\n\\nIntechopen.com website content and services are provided on an "AS IS" and an "AS AVAILABLE" basis. Material appearing on www.intechopen.com could include minor technical, typographical, or photographic errors. IntechOpen may make changes to any material contained on its website at any time without notice.
\\n\\nIntechOpen has no formal affiliation to any external sites that link to www.intechopen.com, unless otherwise specifically stated. As such, it is not responsible for content that appears on any such sites. The inclusion of any link to IntechOpen does not imply endorsement by IntechOpen. Use of any such linked website is done solely at the user's own discretion.
\\n\\nWe reserve the right of ownership over our entire website www.intechopen.com, and all contents. By using our services, you agree to remove all links to our website immediately upon request. We also reserve the right to amend these Terms and Conditions and our linking policy at any time. By continuing to link to our website, you agree to be bound to, and abide by, these linking Terms and Conditions.
\\n\\nIf you find any link on our website, or any linked website, objectionable for any reason, please Contact Us. We will consider all requests to remove links but will have no obligation to do so.
\\n\\nWithout prior approval and express written permission, you may not create frames around our web pages or use other techniques that alter in any way the visual presentation or appearance of our website.
\\n\\nIntechOpen may revise its Terms of Service for its website at any time without notice. By using this website, you are agreeing to be bound by the current version of all Terms at the time of use.
\\n\\nThese Terms and Conditions are governed by and construed in accordance with the laws of the United Kingdom and you irrevocably submit to the exclusive jurisdiction of the courts in London, United Kingdom.
\\n\\nCroatian version of Terms and Conditions available here
\\n"}]'},components:[{type:"htmlEditorComponent",content:'By accessing the website at www.intechopen.com you are agreeing to be bound by these Terms of Service, all applicable laws and regulations, and agree that you are responsible for compliance with any applicable local laws. Use and/or access to this site is based on full agreement and compliance of these Terms. All materials contained on this website are protected by applicable copyright and trademark laws.
\n\nThe following terminology applies to these Terms and Conditions, Privacy Statement, Disclaimer Notice, and any or all Agreements:
\n\n“Client”, “Customer”, “You” and “Your” refers to you, the person accessing this website and accepting the Company’s Terms and Conditions;
\n\n“The Company”, “Ourselves”, “We”, “Our” and “Us”, refers to our Company, IntechOpen;
\n\n“Party”, “Parties”, or “Us”, refers to both the Client and ourselves, or either the Client or ourselves.
\n\nAll Terms refer to the offer, acceptance, and consideration of payment necessary to provide assistance to the Client in the most appropriate manner, whether by formal meetings of a fixed duration, or by any other agreed means, for the express purpose of meeting the Client’s needs in respect of provision of the Company’s stated services/products, and in accordance with, and subject to, the prevailing laws of the United Kingdom.
\n\nAny use of the above terminology, or other words in the singular, plural, capitalization and/or he/she or they, are taken as interchangeable.
\n\nUnless otherwise stated, IntechOpen and/or its licensors own the intellectual property rights for all materials on www.intechopen.com. All intellectual property rights are reserved. You may view, download, share, link and print pages from www.intechopen.com for your own personal use, subject to the restrictions set out in these Terms and Conditions.
\n\nWe employ the use of cookies. By using the IntechOpen website you consent to the use of cookies in accordance with IntechOpen’s Privacy Policy. Most modern day interactive websites use cookies to enable the retrieval of user details for each visit. On our site, cookies are predominantly used to enable functionality and ease of use for those visiting the site.
\n\nIn no circumstances shall IntechOpen or its suppliers be liable for any damages (including, without limitation, damages for loss of data or profit, or due to business interruption) arising out of the use, or inability to use, the materials on IntechOpen's websites, even if IntechOpen or an IntechOpen authorized representative has been notified orally or in writing of the possibility of such damage. Some jurisdictions do not allow limitations on implied warranties, or limitations of liability for consequential or incidental damages; consequently, these limitations may not apply to you.
\n\nIntechopen.com website content and services are provided on an "AS IS" and an "AS AVAILABLE" basis. Material appearing on www.intechopen.com could include minor technical, typographical, or photographic errors. IntechOpen may make changes to any material contained on its website at any time without notice.
\n\nIntechOpen has no formal affiliation to any external sites that link to www.intechopen.com, unless otherwise specifically stated. As such, it is not responsible for content that appears on any such sites. The inclusion of any link to IntechOpen does not imply endorsement by IntechOpen. Use of any such linked website is done solely at the user's own discretion.
\n\nWe reserve the right of ownership over our entire website www.intechopen.com, and all contents. By using our services, you agree to remove all links to our website immediately upon request. We also reserve the right to amend these Terms and Conditions and our linking policy at any time. By continuing to link to our website, you agree to be bound to, and abide by, these linking Terms and Conditions.
\n\nIf you find any link on our website, or any linked website, objectionable for any reason, please Contact Us. We will consider all requests to remove links but will have no obligation to do so.
\n\nWithout prior approval and express written permission, you may not create frames around our web pages or use other techniques that alter in any way the visual presentation or appearance of our website.
\n\nIntechOpen may revise its Terms of Service for its website at any time without notice. By using this website, you are agreeing to be bound by the current version of all Terms at the time of use.
\n\nThese Terms and Conditions are governed by and construed in accordance with the laws of the United Kingdom and you irrevocably submit to the exclusive jurisdiction of the courts in London, United Kingdom.
\n\nCroatian version of Terms and Conditions available here
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6630},{group:"region",caption:"Middle and South America",value:2,count:5911},{group:"region",caption:"Africa",value:3,count:2404},{group:"region",caption:"Asia",value:4,count:12562},{group:"region",caption:"Australia and Oceania",value:5,count:1009},{group:"region",caption:"Europe",value:6,count:17573}],offset:12,limit:12,total:132971},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"dateEndThirdStepPublish",src:"EDCMP",topicId:"13"},books:[{type:"book",id:"11632",title:"Updated Research on Bacteriophages",subtitle:null,isOpenForSubmission:!0,hash:"d34dfa0d5d10511184f97ddaeef9936b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11632.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11797",title:"Clostridium",subtitle:null,isOpenForSubmission:!0,hash:"4cb066b44bb8d4a8b93a627de26e3ebf",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11797.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12160",title:"DNA Viruses",subtitle:null,isOpenForSubmission:!0,hash:"5a948eb875a3a62c3abf115c4b5ace84",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12160.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12163",title:"Escherichia coli",subtitle:null,isOpenForSubmission:!0,hash:"23a6ce1ea4992eca56018c9e85bad165",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12163.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12164",title:"Advances in Probiotics",subtitle:null,isOpenForSubmission:!0,hash:"cc0a28c4126b8d6fd1a5ebead8a0421f",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12164.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12294",title:"Updates on Adenoviruses",subtitle:null,isOpenForSubmission:!0,hash:"9346d0ed80380776aab0a8ac9e503414",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12294.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12291",title:"Acidophiles",subtitle:null,isOpenForSubmission:!0,hash:"830753134a4180a8e6cf05774aefb9fb",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12291.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12292",title:"New Findings on Human Papillomavirus",subtitle:null,isOpenForSubmission:!0,hash:"d2e7304c38c5e293e509ae9bd1ce8b33",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12292.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:37},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:17},{group:"topic",caption:"Computer and Information Science",value:9,count:16},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:31},{group:"topic",caption:"Environmental Sciences",value:12,count:7},{group:"topic",caption:"Immunology and Microbiology",value:13,count:8},{group:"topic",caption:"Materials Science",value:14,count:11},{group:"topic",caption:"Mathematics",value:15,count:6},{group:"topic",caption:"Medicine",value:16,count:98},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:7},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:11},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:7},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:31},{group:"topic",caption:"Technology",value:24,count:1}],offset:12,limit:12,total:8},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3385,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1875,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3842,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3008,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1109,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1010,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3918,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",publishedDate:"May 11th 2022",numberOfDownloads:1654,editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7686,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3444,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10522",title:"Coding Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"6357e1dd7d38adeb519ca7a10dc9e5a0",slug:"coding-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Sudhakar Radhakrishnan and Sudev Naduvath",coverURL:"https://cdn.intechopen.com/books/images_new/10522.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10821",title:"Automation and Control",subtitle:"Theories and Applications",isOpenForSubmission:!1,hash:"18463c2291ba306c4dcbabd988227eea",slug:"automation-and-control-theories-and-applications",bookSignature:"Elmer P. Dadios",coverURL:"https://cdn.intechopen.com/books/images_new/10821.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"111683",title:"Prof.",name:"Elmer P.",middleName:"P.",surname:"Dadios",slug:"elmer-p.-dadios",fullName:"Elmer P. Dadios"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11348",title:"Mutagenesis and Mitochondrial-Associated Pathologies",subtitle:null,isOpenForSubmission:!1,hash:"001972b3c5b49367314b13025a449232",slug:"mutagenesis-and-mitochondrial-associated-pathologies",bookSignature:"Michael Fasullo and Angel Catala",coverURL:"https://cdn.intechopen.com/books/images_new/11348.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"258231",title:"Dr.",name:"Michael",middleName:"Thomas",surname:"Fasullo",slug:"michael-fasullo",fullName:"Michael Fasullo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11123",title:"Epoxy-Based Composites",subtitle:null,isOpenForSubmission:!1,hash:"c1c5447cf3b9d6c7688276ac30e80de6",slug:"epoxy-based-composites",bookSignature:"Samson Jerold Samuel Chelladurai, Ramesh Arthanari and M.R.Meera",coverURL:"https://cdn.intechopen.com/books/images_new/11123.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"247421",title:"Dr.",name:"Samson Jerold Samuel",middleName:null,surname:"Chelladurai",slug:"samson-jerold-samuel-chelladurai",fullName:"Samson Jerold Samuel Chelladurai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10632",title:"Theory and Practice of Tunnel Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ba17749f9d0b6a62d584a3c320a1f49",slug:"theory-and-practice-of-tunnel-engineering",bookSignature:"Hasan Tosun",coverURL:"https://cdn.intechopen.com/books/images_new/10632.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"79083",title:"Prof.",name:"Hasan",middleName:null,surname:"Tosun",slug:"hasan-tosun",fullName:"Hasan Tosun"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10906",title:"Fungal Reproduction and Growth",subtitle:null,isOpenForSubmission:!1,hash:"f84de0280d54f3b52e3e4585cff24ac1",slug:"fungal-reproduction-and-growth",bookSignature:"Sadia Sultan and Gurmeet Kaur Surindar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/10906.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"176737",title:"Dr.",name:"Sadia",middleName:null,surname:"Sultan",slug:"sadia-sultan",fullName:"Sadia Sultan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10914",title:"Effective Elimination of Structural Racism",subtitle:null,isOpenForSubmission:!1,hash:"f6a2562646c0fd664aca8335bc3b3e69",slug:"effective-elimination-of-structural-racism",bookSignature:"Erick Guerrero",coverURL:"https://cdn.intechopen.com/books/images_new/10914.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"294761",title:"Dr.",name:"Erick",middleName:null,surname:"Guerrero",slug:"erick-guerrero",fullName:"Erick Guerrero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,isOpenForSubmission:!1,hash:"2d66af42fb17d0a6556bb9ef28e273c7",slug:"animal-reproduction",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10940",title:"Plant Hormones",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"5aae8a345f8047ed528914ff3491f643",slug:"plant-hormones-recent-advances-new-perspectives-and-applications",bookSignature:"Christophe Hano",coverURL:"https://cdn.intechopen.com/books/images_new/10940.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"313856",title:"Dr.",name:"Christophe",middleName:"F.E.",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10207",title:"Sexual Abuse",subtitle:"An Interdisciplinary Approach",isOpenForSubmission:!1,hash:"e1ec1d5a7093490df314d7887e0b3809",slug:"sexual-abuse-an-interdisciplinary-approach",bookSignature:"Ersi Kalfoğlu and Sotirios Kalfoglou",coverURL:"https://cdn.intechopen.com/books/images_new/10207.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"68678",title:"Dr.",name:"Ersi",middleName:null,surname:"Kalfoglou",slug:"ersi-kalfoglou",fullName:"Ersi Kalfoglou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1119",title:"Exercise Physiology",slug:"exercise-physiology",parent:{id:"197",title:"Physical Medicine and Rehabilitation",slug:"physical-medicine-and-rehabilitation"},numberOfBooks:5,numberOfSeries:0,numberOfAuthorsAndEditors:61,numberOfWosCitations:67,numberOfCrossrefCitations:45,numberOfDimensionsCitations:113,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"1119",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde",middleName:"Dorthea Grindvik",surname:"Nielsen",slug:"hilde-nielsen",fullName:"Hilde Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7949",title:"Cardiorespiratory Fitness",subtitle:null,isOpenForSubmission:!1,hash:"fd6d8d7ee62bc8d443de2c5150c00535",slug:"cardiorespiratory-fitness",bookSignature:"Hasan Sözen",coverURL:"https://cdn.intechopen.com/books/images_new/7949.jpg",editedByType:"Edited by",editors:[{id:"161402",title:"Dr.",name:"Hasan",middleName:null,surname:"Sözen",slug:"hasan-sozen",fullName:"Hasan Sözen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6343",title:"Sport and Exercise Science",subtitle:null,isOpenForSubmission:!1,hash:"f02738ce8019136d4586b616f5670e9b",slug:"sport-and-exercise-science",bookSignature:"Matjaz Merc",coverURL:"https://cdn.intechopen.com/books/images_new/6343.jpg",editedByType:"Edited by",editors:[{id:"210233",title:"Dr.",name:"Matjaz",middleName:null,surname:"Merc",slug:"matjaz-merc",fullName:"Matjaz Merc"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3431",title:"Muscle Injuries in Sport Medicine",subtitle:null,isOpenForSubmission:!1,hash:"c234e7ea0b15db8dd5fa3d62698a6c64",slug:"muscle-injuries-in-sport-medicine",bookSignature:"Gian Nicola Bisciotti and Cristiano Eirale",coverURL:"https://cdn.intechopen.com/books/images_new/3431.jpg",editedByType:"Edited by",editors:[{id:"78940",title:"Dr.",name:"Gian Nicola",middleName:null,surname:"Bisciotti",slug:"gian-nicola-bisciotti",fullName:"Gian Nicola Bisciotti"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3398",title:"Current Issues in Sports and Exercise Medicine",subtitle:null,isOpenForSubmission:!1,hash:"fe3b3863298192755e00422f9fc2c8df",slug:"current-issues-in-sports-and-exercise-medicine",bookSignature:"Michael Hamlin, Nick Draper and Yaso Kathiravel",coverURL:"https://cdn.intechopen.com/books/images_new/3398.jpg",editedByType:"Edited by",editors:[{id:"162377",title:"Prof.",name:"Michael",middleName:"J",surname:"Hamlin",slug:"michael-hamlin",fullName:"Michael Hamlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:5,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"44692",doi:"10.5772/55461",title:"Iron Supplementation and Physical Performance",slug:"iron-supplementation-and-physical-performance",totalDownloads:3284,totalCrossrefCites:1,totalDimensionsCites:35,abstract:null,book:{id:"3398",slug:"current-issues-in-sports-and-exercise-medicine",title:"Current Issues in Sports and Exercise Medicine",fullTitle:"Current Issues in Sports and Exercise Medicine"},signatures:"Chariklia K. Deli, Ioannis G. Fatouros, Yiannis Koutedakis and\nAthanasios Z. Jamurtas",authors:[{id:"74567",title:"Dr.",name:"Athanasios",middleName:null,surname:"Jamurtas",slug:"athanasios-jamurtas",fullName:"Athanasios Jamurtas"},{id:"136569",title:"Dr.",name:"Ioannis",middleName:null,surname:"Fatouros",slug:"ioannis-fatouros",fullName:"Ioannis Fatouros"},{id:"161217",title:"M.Sc.",name:"Chariklia",middleName:"K",surname:"Deli",slug:"chariklia-deli",fullName:"Chariklia Deli"},{id:"167822",title:"Prof.",name:"Yiannis",middleName:null,surname:"Koutedakis",slug:"yiannis-koutedakis",fullName:"Yiannis Koutedakis"}]},{id:"44614",doi:"10.5772/54234",title:"The Physiology of Sports Injuries and Repair Processes",slug:"the-physiology-of-sports-injuries-and-repair-processes",totalDownloads:7096,totalCrossrefCites:21,totalDimensionsCites:31,abstract:null,book:{id:"3398",slug:"current-issues-in-sports-and-exercise-medicine",title:"Current Issues in Sports and Exercise Medicine",fullTitle:"Current Issues in Sports and Exercise Medicine"},signatures:"Kelc Robi, Naranda Jakob, Kuhta Matevz and Vogrin Matjaz",authors:[{id:"159013",title:"Dr.",name:"Robi",middleName:null,surname:"Kelc",slug:"robi-kelc",fullName:"Robi Kelc"}]},{id:"44616",doi:"10.5772/54681",title:"Exercise and Immunity",slug:"exercise-and-immunity",totalDownloads:4085,totalCrossrefCites:5,totalDimensionsCites:9,abstract:null,book:{id:"3398",slug:"current-issues-in-sports-and-exercise-medicine",title:"Current Issues in Sports and Exercise Medicine",fullTitle:"Current Issues in Sports and Exercise Medicine"},signatures:"Hilde Grindvik Nielsen",authors:[{id:"158692",title:"Ph.D.",name:"Hilde",middleName:"Dorthea Grindvik",surname:"Nielsen",slug:"hilde-nielsen",fullName:"Hilde Nielsen"}]},{id:"44626",doi:"10.5772/56508",title:"Patellofemoral Instability: Diagnosis and Management",slug:"patellofemoral-instability-diagnosis-and-management",totalDownloads:4346,totalCrossrefCites:2,totalDimensionsCites:7,abstract:null,book:{id:"3398",slug:"current-issues-in-sports-and-exercise-medicine",title:"Current Issues in Sports and Exercise Medicine",fullTitle:"Current Issues in Sports and Exercise Medicine"},signatures:"Alexander Golant, Tony Quach and Jeffrey Rosen",authors:[{id:"157699",title:"Dr.",name:"Alexander",middleName:null,surname:"Golant",slug:"alexander-golant",fullName:"Alexander Golant"}]},{id:"45590",doi:"10.5772/56903",title:"The Treatment of Muscle Hematomas",slug:"the-treatment-of-muscle-hematomas",totalDownloads:17575,totalCrossrefCites:3,totalDimensionsCites:6,abstract:null,book:{id:"3431",slug:"muscle-injuries-in-sport-medicine",title:"Muscle Injuries in Sport Medicine",fullTitle:"Muscle Injuries in Sport Medicine"},signatures:"Maria Conforti",authors:[{id:"165286",title:"Dr.",name:"Maria",middleName:null,surname:"Conforti",slug:"maria-conforti",fullName:"Maria Conforti"}]}],mostDownloadedChaptersLast30Days:[{id:"45590",title:"The Treatment of Muscle Hematomas",slug:"the-treatment-of-muscle-hematomas",totalDownloads:17581,totalCrossrefCites:3,totalDimensionsCites:6,abstract:null,book:{id:"3431",slug:"muscle-injuries-in-sport-medicine",title:"Muscle Injuries in Sport Medicine",fullTitle:"Muscle Injuries in Sport Medicine"},signatures:"Maria Conforti",authors:[{id:"165286",title:"Dr.",name:"Maria",middleName:null,surname:"Conforti",slug:"maria-conforti",fullName:"Maria Conforti"}]},{id:"44616",title:"Exercise and Immunity",slug:"exercise-and-immunity",totalDownloads:4085,totalCrossrefCites:5,totalDimensionsCites:9,abstract:null,book:{id:"3398",slug:"current-issues-in-sports-and-exercise-medicine",title:"Current Issues in Sports and Exercise Medicine",fullTitle:"Current Issues in Sports and Exercise Medicine"},signatures:"Hilde Grindvik Nielsen",authors:[{id:"158692",title:"Ph.D.",name:"Hilde",middleName:"Dorthea Grindvik",surname:"Nielsen",slug:"hilde-nielsen",fullName:"Hilde Nielsen"}]},{id:"58562",title:"Biokinetics: A South African Health Profession Evolving from Physical Education and Sport",slug:"biokinetics-a-south-african-health-profession-evolving-from-physical-education-and-sport",totalDownloads:1742,totalCrossrefCites:3,totalDimensionsCites:4,abstract:"This chapter describes the South African profession of Biokinetics, which operates within the pathogenic and fortogenic health paradigms. Biokinetics is an exercise therapy profession that exclusively prescribes individulaised exercise and physical activity for rehabilitation and promotion of health and quality of life. Biokinetics differs from physiotherapy primarily due its management of injuries, illnesses and disabilities within the final-phase of rehabilitation. A brief history of the profession and its scope of profession and its alignment within the South African National Health statutory and professional bodies will be presented. The two pedagogic models adopted for the teaching and training of Biokinetics will also be discussed. Interprofessional collaborative partnerships within the medical-rehabilitation fraternity, sport, health and fitness industries and educational employment opportunities will be reviewed. Finally, the idea of internationalisation of the profession of Biokinetics to similar exercise therapy professions such as Clinical Exercise Physiology and Athletic Training will be presented.",book:{id:"6343",slug:"sport-and-exercise-science",title:"Sport and Exercise Science",fullTitle:"Sport and Exercise Science"},signatures:"Terry Jeremy Ellapen, Gert Lukas Strydom, Mariette Swanepoel,\nHenriette Hammill and Yvonne Paul",authors:[{id:"127909",title:"Prof.",name:"Gert Lukas",middleName:null,surname:"Strydom",slug:"gert-lukas-strydom",fullName:"Gert Lukas Strydom"},{id:"226652",title:"Dr.",name:"Terry J.",middleName:null,surname:"Ellapen",slug:"terry-j.-ellapen",fullName:"Terry J. Ellapen"},{id:"233593",title:"Dr.",name:"Mariette",middleName:null,surname:"Swanepoel",slug:"mariette-swanepoel",fullName:"Mariette Swanepoel"},{id:"233594",title:"Dr.",name:"Henriette Valerie",middleName:null,surname:"Hammill",slug:"henriette-valerie-hammill",fullName:"Henriette Valerie Hammill"},{id:"233596",title:"Prof.",name:"Yvonne",middleName:null,surname:"Paul",slug:"yvonne-paul",fullName:"Yvonne Paul"}]},{id:"44614",title:"The Physiology of Sports Injuries and Repair Processes",slug:"the-physiology-of-sports-injuries-and-repair-processes",totalDownloads:7098,totalCrossrefCites:21,totalDimensionsCites:31,abstract:null,book:{id:"3398",slug:"current-issues-in-sports-and-exercise-medicine",title:"Current Issues in Sports and Exercise Medicine",fullTitle:"Current Issues in Sports and Exercise Medicine"},signatures:"Kelc Robi, Naranda Jakob, Kuhta Matevz and Vogrin Matjaz",authors:[{id:"159013",title:"Dr.",name:"Robi",middleName:null,surname:"Kelc",slug:"robi-kelc",fullName:"Robi Kelc"}]},{id:"67638",title:"Cardiorespiratory Fitness and Intellectual Disability",slug:"cardiorespiratory-fitness-and-intellectual-disability",totalDownloads:676,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"This study discusses the heart rate (HR) in people with intellectual disability (ID) comparing the resting HR and HR after 2 minutes of exercise of athletes participating in Special Olympics (SO) in table tennis (TT) and cross-country (XC) skiing (XC skiing, 50 m, 1 km, and 3 km). The results showed a similar increase between the resting HR and HR after 2 minutes of exercise for TT players and XC skiers competing in 3 km race. Changes in HR in XC skiers competing in 50 m and 1 km races between the rest and exercise were noticeably higher indicating their lower fitness. Future studies focused on the relationship of HR variables, and training quality will provide a more detailed knowledge of the cardiorespiratory fitness and ID relationship.",book:{id:"7949",slug:"cardiorespiratory-fitness",title:"Cardiorespiratory Fitness",fullTitle:"Cardiorespiratory Fitness"},signatures:"Vojtěch Grün, Marta Gimunová and Hana Válková",authors:null}],onlineFirstChaptersFilter:{topicId:"1119",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:99,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:288,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403",scope:"Artificial Intelligence (AI) is a rapidly developing multidisciplinary research area that aims to solve increasingly complex problems. In today's highly integrated world, AI promises to become a robust and powerful means for obtaining solutions to previously unsolvable problems. This Series is intended for researchers and students alike interested in this fascinating field and its many applications.",coverUrl:"https://cdn.intechopen.com/series/covers/14.jpg",latestPublicationDate:"May 18th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:9,editor:{id:"218714",title:"Prof.",name:"Andries",middleName:null,surname:"Engelbrecht",slug:"andries-engelbrecht",fullName:"Andries Engelbrecht",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRNR8QAO/Profile_Picture_1622640468300",biography:"Andries Engelbrecht received the Masters and PhD degrees in Computer Science from the University of Stellenbosch, South Africa, in 1994 and 1999 respectively. He is currently appointed as the Voigt Chair in Data Science in the Department of Industrial Engineering, with a joint appointment as Professor in the Computer Science Division, Stellenbosch University. Prior to his appointment at Stellenbosch University, he has been at the University of Pretoria, Department of Computer Science (1998-2018), where he was appointed as South Africa Research Chair in Artifical Intelligence (2007-2018), the head of the Department of Computer Science (2008-2017), and Director of the Institute for Big Data and Data Science (2017-2018). In addition to a number of research articles, he has written two books, Computational Intelligence: An Introduction and Fundamentals of Computational Swarm Intelligence.",institutionString:null,institution:{name:"Stellenbosch University",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:6,paginationItems:[{id:"22",title:"Applied Intelligence",coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",isOpenForSubmission:!0,editor:{id:"27170",title:"Prof.",name:"Carlos",middleName:"M.",surname:"Travieso-Gonzalez",slug:"carlos-travieso-gonzalez",fullName:"Carlos Travieso-Gonzalez",profilePictureURL:"https://mts.intechopen.com/storage/users/27170/images/system/27170.jpeg",biography:"Carlos M. Travieso-González received his MSc degree in Telecommunication Engineering at Polytechnic University of Catalonia (UPC), Spain in 1997, and his Ph.D. degree in 2002 at the University of Las Palmas de Gran Canaria (ULPGC-Spain). He is a full professor of signal processing and pattern recognition and is head of the Signals and Communications Department at ULPGC, teaching from 2001 on subjects on signal processing and learning theory. His research lines are biometrics, biomedical signals and images, data mining, classification system, signal and image processing, machine learning, and environmental intelligence. He has researched in 52 international and Spanish research projects, some of them as head researcher. He is co-author of 4 books, co-editor of 27 proceedings books, guest editor for 8 JCR-ISI international journals, and up to 24 book chapters. He has over 450 papers published in international journals and conferences (81 of them indexed on JCR – ISI - Web of Science). He has published seven patents in the Spanish Patent and Trademark Office. He has been a supervisor on 8 Ph.D. theses (11 more are under supervision), and 130 master theses. He is the founder of The IEEE IWOBI conference series and the president of its Steering Committee, as well as the founder of both the InnoEducaTIC and APPIS conference series. He is an evaluator of project proposals for the European Union (H2020), Medical Research Council (MRC, UK), Spanish Government (ANECA, Spain), Research National Agency (ANR, France), DAAD (Germany), Argentinian Government, and the Colombian Institutions. He has been a reviewer in different indexed international journals (<70) and conferences (<250) since 2001. He has been a member of the IASTED Technical Committee on Image Processing from 2007 and a member of the IASTED Technical Committee on Artificial Intelligence and Expert Systems from 2011. \n\nHe has held the general chair position for the following: ACM-APPIS (2020, 2021), IEEE-IWOBI (2019, 2020 and 2020), A PPIS (2018, 2019), IEEE-IWOBI (2014, 2015, 2017, 2018), InnoEducaTIC (2014, 2017), IEEE-INES (2013), NoLISP (2011), JRBP (2012), and IEEE-ICCST (2005)\n\nHe is an associate editor of the Computational Intelligence and Neuroscience Journal (Hindawi – Q2 JCR-ISI). He was vice dean from 2004 to 2010 in the Higher Technical School of Telecommunication Engineers at ULPGC and the vice dean of Graduate and Postgraduate Studies from March 2013 to November 2017. He won the “Catedra Telefonica” Awards in Modality of Knowledge Transfer, 2017, 2018, and 2019 editions, and awards in Modality of COVID Research in 2020.\n\nPublic References:\nResearcher ID http://www.researcherid.com/rid/N-5967-2014\nORCID https://orcid.org/0000-0002-4621-2768 \nScopus Author ID https://www.scopus.com/authid/detail.uri?authorId=6602376272\nScholar Google https://scholar.google.es/citations?user=G1ks9nIAAAAJ&hl=en \nResearchGate https://www.researchgate.net/profile/Carlos_Travieso",institutionString:null,institution:{name:"University of Las Palmas de Gran Canaria",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"23",title:"Computational Neuroscience",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",isOpenForSubmission:!0,editor:{id:"14004",title:"Dr.",name:"Magnus",middleName:null,surname:"Johnsson",slug:"magnus-johnsson",fullName:"Magnus Johnsson",profilePictureURL:"https://mts.intechopen.com/storage/users/14004/images/system/14004.png",biography:"Dr Magnus Johnsson is a cross-disciplinary scientist, lecturer, scientific editor and AI/machine learning consultant from Sweden. \n\nHe is currently at Malmö University in Sweden, but also held positions at Lund University in Sweden and at Moscow Engineering Physics Institute. \nHe holds editorial positions at several international scientific journals and has served as a scientific editor for books and special journal issues. \nHis research interests are wide and include, but are not limited to, autonomous systems, computer modeling, artificial neural networks, artificial intelligence, cognitive neuroscience, cognitive robotics, cognitive architectures, cognitive aids and the philosophy of mind. \n\nDr. Johnsson has experience from working in the industry and he has a keen interest in the application of neural networks and artificial intelligence to fields like industry, finance, and medicine. \n\nWeb page: www.magnusjohnsson.se",institutionString:null,institution:{name:"Malmö University",institutionURL:null,country:{name:"Sweden"}}},editorTwo:null,editorThree:null},{id:"24",title:"Computer Vision",coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",isOpenForSubmission:!0,editor:{id:"294154",title:"Prof.",name:"George",middleName:null,surname:"Papakostas",slug:"george-papakostas",fullName:"George Papakostas",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002hYaGbQAK/Profile_Picture_1624519712088",biography:"George A. Papakostas has received a diploma in Electrical and Computer Engineering in 1999 and the M.Sc. and Ph.D. degrees in Electrical and Computer Engineering in 2002 and 2007, respectively, from the Democritus University of Thrace (DUTH), Greece. Dr. Papakostas serves as a Tenured Full Professor at the Department of Computer Science, International Hellenic University, Greece. Dr. Papakostas has 10 years of experience in large-scale systems design as a senior software engineer and technical manager, and 20 years of research experience in the field of Artificial Intelligence. Currently, he is the Head of the “Visual Computing” division of HUman-MAchines INteraction Laboratory (HUMAIN-Lab) and the Director of the MPhil program “Advanced Technologies in Informatics and Computers” hosted by the Department of Computer Science, International Hellenic University. He has (co)authored more than 150 publications in indexed journals, international conferences and book chapters, 1 book (in Greek), 3 edited books, and 5 journal special issues. His publications have more than 2100 citations with h-index 27 (GoogleScholar). His research interests include computer/machine vision, machine learning, pattern recognition, computational intelligence. \nDr. Papakostas served as a reviewer in numerous journals, as a program\ncommittee member in international conferences and he is a member of the IAENG, MIR Labs, EUCogIII, INSTICC and the Technical Chamber of Greece (TEE).",institutionString:null,institution:{name:"International Hellenic University",institutionURL:null,country:{name:"Greece"}}},editorTwo:null,editorThree:null},{id:"25",title:"Evolutionary Computation",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",isOpenForSubmission:!0,editor:{id:"136112",title:"Dr.",name:"Sebastian",middleName:null,surname:"Ventura Soto",slug:"sebastian-ventura-soto",fullName:"Sebastian Ventura Soto",profilePictureURL:"https://mts.intechopen.com/storage/users/136112/images/system/136112.png",biography:"Sebastian Ventura is a Spanish researcher, a full professor with the Department of Computer Science and Numerical Analysis, University of Córdoba. Dr Ventura also holds the positions of Affiliated Professor at Virginia Commonwealth University (Richmond, USA) and Distinguished Adjunct Professor at King Abdulaziz University (Jeddah, Saudi Arabia). Additionally, he is deputy director of the Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI) and heads the Knowledge Discovery and Intelligent Systems Research Laboratory. He has published more than ten books and over 300 articles in journals and scientific conferences. Currently, his work has received over 18,000 citations according to Google Scholar, including more than 2200 citations in 2020. In the last five years, he has published more than 60 papers in international journals indexed in the JCR (around 70% of them belonging to first quartile journals) and he has edited some Springer books “Supervised Descriptive Pattern Mining” (2018), “Multiple Instance Learning - Foundations and Algorithms” (2016), and “Pattern Mining with Evolutionary Algorithms” (2016). He has also been involved in more than 20 research projects supported by the Spanish and Andalusian governments and the European Union. He currently belongs to the editorial board of PeerJ Computer Science, Information Fusion and Engineering Applications of Artificial Intelligence journals, being also associate editor of Applied Computational Intelligence and Soft Computing and IEEE Transactions on Cybernetics. Finally, he is editor-in-chief of Progress in Artificial Intelligence. He is a Senior Member of the IEEE Computer, the IEEE Computational Intelligence, and the IEEE Systems, Man, and Cybernetics Societies, and the Association of Computing Machinery (ACM). Finally, his main research interests include data science, computational intelligence, and their applications.",institutionString:null,institution:{name:"University of Córdoba",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"26",title:"Machine Learning and Data Mining",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",isOpenForSubmission:!0,editor:{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null},{id:"27",title:"Multi-Agent Systems",coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",isOpenForSubmission:!0,editor:{id:"148497",title:"Dr.",name:"Mehmet",middleName:"Emin",surname:"Aydin",slug:"mehmet-aydin",fullName:"Mehmet Aydin",profilePictureURL:"https://mts.intechopen.com/storage/users/148497/images/system/148497.jpg",biography:"Dr. Mehmet Emin Aydin is a Senior Lecturer with the Department of Computer Science and Creative Technology, the University of the West of England, Bristol, UK. His research interests include swarm intelligence, parallel and distributed metaheuristics, machine learning, intelligent agents and multi-agent systems, resource planning, scheduling and optimization, combinatorial optimization. Dr. Aydin is currently a Fellow of Higher Education Academy, UK, a member of EPSRC College, a senior member of IEEE and a senior member of ACM. In addition to being a member of advisory committees of many international conferences, he is an Editorial Board Member of various peer-reviewed international journals. He has served as guest editor for a number of special issues of peer-reviewed international journals.",institutionString:null,institution:{name:"University of the West of England",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:17,paginationItems:[{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79345",title:"Application of Jump Diffusion Models in Insurance Claim Estimation",doi:"10.5772/intechopen.99853",signatures:"Leonard Mushunje, Chiedza Elvina Mashiri, Edina Chandiwana and Maxwell Mashasha",slug:"application-of-jump-diffusion-models-in-insurance-claim-estimation-1",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81557",title:"Object Tracking Using Adapted Optical Flow",doi:"10.5772/intechopen.102863",signatures:"Ronaldo Ferreira, Joaquim José de Castro Ferreira and António José Ribeiro Neves",slug:"object-tracking-using-adapted-optical-flow",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"81558",title:"Thresholding Image Techniques for Plant Segmentation",doi:"10.5772/intechopen.104587",signatures:"Miguel Ángel Castillo-Martínez, Francisco Javier Gallegos-Funes, Blanca E. Carvajal-Gámez, Guillermo Urriolagoitia-Sosa and Alberto J. Rosales-Silva",slug:"thresholding-image-techniques-for-plant-segmentation",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}}]},overviewPagePublishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:null}]},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",institutionURL:null,country:{name:"Romania"}}}]},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]}]},openForSubmissionBooks:{},onlineFirstChapters:{paginationCount:18,paginationItems:[{id:"81778",title:"Influence of Mechanical Properties of Biomaterials on the Reconstruction of Biomedical Parts via Additive Manufacturing Techniques: An Overview",doi:"10.5772/intechopen.104465",signatures:"Babatunde Olamide Omiyale, Akeem Abiodun Rasheed, Robinson Omoboyode Akinnusi and Temitope Olumide Olugbade",slug:"influence-of-mechanical-properties-of-biomaterials-on-the-reconstruction-of-biomedical-parts-via-add",totalDownloads:0,totalCrossrefCites:null,totalDimensionsCites:null,authors:null,book:{title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11405.jpg",subseries:{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering"}}},{id:"81751",title:"NanoBioSensors: From Electrochemical Sensors Improvement to Theranostic Applications",doi:"10.5772/intechopen.102552",signatures:"Anielle C.A. Silva, Eliete A. Alvin, Lais S. de Jesus, Caio C.L. de França, Marílya P.G. da Silva, Samaysa L. Lins, Diógenes Meneses, Marcela R. Lemes, Rhanoica O. Guerra, Marcos V. da Silva, Carlo J.F. de Oliveira, Virmondes Rodrigues Junior, Renata M. Etchebehere, Fabiane C. de Abreu, Bruno G. Lucca, Sanívia A.L. Pereira, Rodrigo C. Rosa and Noelio O. Dantas",slug:"nanobiosensors-from-electrochemical-sensors-improvement-to-theranostic-applications",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81766",title:"Evolution of Organoids in Oncology",doi:"10.5772/intechopen.104251",signatures:"Allen Thayakumar Basanthakumar, Janitha Chandrasekhar Darlybai and Jyothsna Ganesh",slug:"evolution-of-organoids-in-oncology",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81678",title:"Developmental Studies on Practical Enzymatic Phosphate Ion Biosensors and Microbial BOD Biosensors, and New Insights into the Future Perspectives of These Biosensor Fields",doi:"10.5772/intechopen.104377",signatures:"Hideaki Nakamura",slug:"developmental-studies-on-practical-enzymatic-phosphate-ion-biosensors-and-microbial-bod-biosensors-a",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hideaki",surname:"Nakamura"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81547",title:"Organoids and Commercialization",doi:"10.5772/intechopen.104706",signatures:"Anubhab Mukherjee, Aprajita Sinha, Maheshree Maibam, Bharti Bisht and Manash K. Paul",slug:"organoids-and-commercialization",totalDownloads:33,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81412",title:"Mathematical Morphology and the Heart Signals",doi:"10.5772/intechopen.104113",signatures:"Taouli Sidi Ahmed",slug:"mathematical-morphology-and-the-heart-signals",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81360",title:"Deep Learning Algorithms for Efficient Analysis of ECG Signals to Detect Heart Disorders",doi:"10.5772/intechopen.103075",signatures:"Sumagna Dey, Rohan Pal and Saptarshi Biswas",slug:"deep-learning-algorithms-for-efficient-analysis-of-ecg-signals-to-detect-heart-disorders",totalDownloads:31,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81294",title:"Applications of Neural Organoids in Neurodevelopment and Regenerative Medicine",doi:"10.5772/intechopen.104044",signatures:"Jing Gong, Jiahui Kang, Minghui Li, Xiao Liu, Jun Yang and Haiwei Xu",slug:"applications-of-neural-organoids-in-neurodevelopment-and-regenerative-medicine",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81318",title:"Retinal Organoids over the Decade",doi:"10.5772/intechopen.104258",signatures:"Jing Yuan and Zi-Bing Jin",slug:"retinal-organoids-over-the-decade",totalDownloads:41,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81068",title:"Characteristic Profiles of Heart Rate Variability in Depression and Anxiety",doi:"10.5772/intechopen.104205",signatures:"Toshikazu Shinba",slug:"characteristic-profiles-of-heart-rate-variability-in-depression-and-anxiety",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}}]},subseriesFiltersForOFChapters:[{caption:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",value:9,count:1,group:"subseries"},{caption:"Bioinformatics and Medical Informatics",value:7,count:13,group:"subseries"}],publishedBooks:{},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{paginationCount:302,paginationItems:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/198499/images/system/198499.jpeg",biography:"Dr. Daniel Glossman-Mitnik is currently a Titular Researcher at the Centro de Investigación en Materiales Avanzados (CIMAV), Chihuahua, Mexico, as well as a National Researcher of Level III at the Consejo Nacional de Ciencia y Tecnología, Mexico. His research interest focuses on computational chemistry and molecular modeling of diverse systems of pharmacological, food, and alternative energy interests by resorting to DFT and Conceptual DFT. He has authored a coauthored more than 255 peer-reviewed papers, 32 book chapters, and 2 edited books. He has delivered speeches at many international and domestic conferences. He serves as a reviewer for more than eighty international journals, books, and research proposals as well as an editor for special issues of renowned scientific journals.",institutionString:"Centro de Investigación en Materiales Avanzados",institution:{name:"Centro de Investigación en Materiales Avanzados",country:{name:"Mexico"}}},{id:"76477",title:"Prof.",name:"Mirza",middleName:null,surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/76477/images/system/76477.png",biography:"Dr. Mirza Hasanuzzaman is a Professor of Agronomy at Sher-e-Bangla Agricultural University, Bangladesh. He received his Ph.D. in Plant Stress Physiology and Antioxidant Metabolism from Ehime University, Japan, with a scholarship from the Japanese Government (MEXT). Later, he completed his postdoctoral research at the Center of Molecular Biosciences, University of the Ryukyus, Japan, as a recipient of the Japan Society for the Promotion of Science (JSPS) postdoctoral fellowship. He was also the recipient of the Australian Government Endeavour Research Fellowship for postdoctoral research as an adjunct senior researcher at the University of Tasmania, Australia. Dr. Hasanuzzaman’s current work is focused on the physiological and molecular mechanisms of environmental stress tolerance. Dr. Hasanuzzaman has published more than 150 articles in peer-reviewed journals. He has edited ten books and written more than forty book chapters on important aspects of plant physiology, plant stress tolerance, and crop production. According to Scopus, Dr. Hasanuzzaman’s publications have received more than 10,500 citations with an h-index of 53. He has been named a Highly Cited Researcher by Clarivate. He is an editor and reviewer for more than fifty peer-reviewed international journals and was a recipient of the “Publons Peer Review Award” in 2017, 2018, and 2019. He has been honored by different authorities for his outstanding performance in various fields like research and education, and he has received the World Academy of Science Young Scientist Award (2014) and the University Grants Commission (UGC) Award 2018. He is a fellow of the Bangladesh Academy of Sciences (BAS) and the Royal Society of Biology.",institutionString:"Sher-e-Bangla Agricultural University",institution:{name:"Sher-e-Bangla Agricultural University",country:{name:"Bangladesh"}}},{id:"187859",title:"Prof.",name:"Kusal",middleName:"K.",surname:"Das",slug:"kusal-das",fullName:"Kusal Das",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBDeQAO/Profile_Picture_1623411145568",biography:"Kusal K. Das is a Distinguished Chair Professor of Physiology, Shri B. M. Patil Medical College and Director, Centre for Advanced Medical Research (CAMR), BLDE (Deemed to be University), Vijayapur, Karnataka, India. Dr. Das did his M.S. and Ph.D. in Human Physiology from the University of Calcutta, Kolkata. His area of research is focused on understanding of molecular mechanisms of heavy metal activated low oxygen sensing pathways in vascular pathophysiology. He has invented a new method of estimation of serum vitamin E. His expertise in critical experimental protocols on vascular functions in experimental animals was well documented by his quality of publications. He was a Visiting Professor of Medicine at University of Leeds, United Kingdom (2014-2016) and Tulane University, New Orleans, USA (2017). For his immense contribution in medical research Ministry of Science and Technology, Government of India conferred him 'G.P. Chatterjee Memorial Research Prize-2019” and he is also the recipient of 'Dr.Raja Ramanna State Scientist Award 2015” by Government of Karnataka. He is a Fellow of the Royal Society of Biology (FRSB), London and Honorary Fellow of Karnataka Science and Technology Academy, Department of Science and Technology, Government of Karnataka.",institutionString:"BLDE (Deemed to be University), India",institution:null},{id:"243660",title:"Dr.",name:"Mallanagouda Shivanagouda",middleName:null,surname:"Biradar",slug:"mallanagouda-shivanagouda-biradar",fullName:"Mallanagouda Shivanagouda Biradar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243660/images/system/243660.jpeg",biography:"M. S. Biradar is Vice Chancellor and Professor of Medicine of\nBLDE (Deemed to be University), Vijayapura, Karnataka, India.\nHe obtained his MD with a gold medal in General Medicine and\nhas devoted himself to medical teaching, research, and administrations. He has also immensely contributed to medical research\non vascular medicine, which is reflected by his numerous publications including books and book chapters. Professor Biradar was\nalso Visiting Professor at Tulane University School of Medicine, New Orleans, USA.",institutionString:"BLDE (Deemed to be University)",institution:{name:"BLDE University",country:{name:"India"}}},{id:"289796",title:"Dr.",name:"Swastika",middleName:null,surname:"Das",slug:"swastika-das",fullName:"Swastika Das",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/289796/images/system/289796.jpeg",biography:"Swastika N. Das is Professor of Chemistry at the V. P. Dr. P. G.\nHalakatti College of Engineering and Technology, BLDE (Deemed\nto be University), Vijayapura, Karnataka, India. She obtained an\nMSc, MPhil, and PhD in Chemistry from Sambalpur University,\nOdisha, India. Her areas of research interest are medicinal chemistry, chemical kinetics, and free radical chemistry. She is a member\nof the investigators who invented a new modified method of estimation of serum vitamin E. She has authored numerous publications including book\nchapters and is a mentor of doctoral curriculum at her university.",institutionString:"BLDEA’s V.P.Dr.P.G.Halakatti College of Engineering & Technology",institution:{name:"BLDE University",country:{name:"India"}}},{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/248459/images/system/248459.png",biography:"Akikazu Takada was born in Japan, 1935. After graduation from\nKeio University School of Medicine and finishing his post-graduate studies, he worked at Roswell Park Memorial Institute NY,\nUSA. He then took a professorship at Hamamatsu University\nSchool of Medicine. In thrombosis studies, he found the SK\npotentiator that enhances plasminogen activation by streptokinase. He is very much interested in simultaneous measurements\nof fatty acids, amino acids, and tryptophan degradation products. By using fatty\nacid analyses, he indicated that plasma levels of trans-fatty acids of old men were\nfar higher in the US than Japanese men. . He also showed that eicosapentaenoic acid\n(EPA) and docosahexaenoic acid (DHA) levels are higher, and arachidonic acid\nlevels are lower in Japanese than US people. By using simultaneous LC/MS analyses\nof plasma levels of tryptophan metabolites, he recently found that plasma levels of\nserotonin, kynurenine, or 5-HIAA were higher in patients of mono- and bipolar\ndepression, which are significantly different from observations reported before. In\nview of recent reports that plasma tryptophan metabolites are mainly produced by\nmicrobiota. He is now working on the relationships between microbiota and depression or autism.",institutionString:"Hamamatsu University School of Medicine",institution:{name:"Hamamatsu University School of Medicine",country:{name:"Japan"}}},{id:"137240",title:"Prof.",name:"Mohammed",middleName:null,surname:"Khalid",slug:"mohammed-khalid",fullName:"Mohammed Khalid",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/137240/images/system/137240.png",biography:"Mohammed Khalid received his B.S. degree in chemistry in 2000 and Ph.D. degree in physical chemistry in 2007 from the University of Khartoum, Sudan. He moved to School of Chemistry, Faculty of Science, University of Sydney, Australia in 2009 and joined Dr. Ron Clarke as a postdoctoral fellow where he worked on the interaction of ATP with the phosphoenzyme of the Na+/K+-ATPase and dual mechanisms of allosteric acceleration of the Na+/K+-ATPase by ATP; then he went back to Department of Chemistry, University of Khartoum as an assistant professor, and in 2014 he was promoted as an associate professor. In 2011, he joined the staff of Department of Chemistry at Taif University, Saudi Arabia, where he is currently an assistant professor. His research interests include the following: P-Type ATPase enzyme kinetics and mechanisms, kinetics and mechanisms of redox reactions, autocatalytic reactions, computational enzyme kinetics, allosteric acceleration of P-type ATPases by ATP, exploring of allosteric sites of ATPases, and interaction of ATP with ATPases located in cell membranes.",institutionString:"Taif University",institution:{name:"Taif University",country:{name:"Saudi Arabia"}}},{id:"63810",title:"Prof.",name:"Jorge",middleName:null,surname:"Morales-Montor",slug:"jorge-morales-montor",fullName:"Jorge Morales-Montor",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/63810/images/system/63810.png",biography:"Dr. Jorge Morales-Montor was recognized with the Lola and Igo Flisser PUIS Award for best graduate thesis at the national level in the field of parasitology. He received a fellowship from the Fogarty Foundation to perform postdoctoral research stay at the University of Georgia. He has 153 journal articles to his credit. He has also edited several books and published more than fifty-five book chapters. He is a member of the Mexican Academy of Sciences, Latin American Academy of Sciences, and the National Academy of Medicine. He has received more than thirty-five awards and has supervised numerous bachelor’s, master’s, and Ph.D. students. Dr. Morales-Montor is the past president of the Mexican Society of Parasitology.",institutionString:"National Autonomous University of Mexico",institution:{name:"National Autonomous University of Mexico",country:{name:"Mexico"}}},{id:"217215",title:"Dr.",name:"Palash",middleName:null,surname:"Mandal",slug:"palash-mandal",fullName:"Palash Mandal",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/217215/images/system/217215.jpeg",biography:null,institutionString:"Charusat University",institution:null},{id:"49739",title:"Dr.",name:"Leszek",middleName:null,surname:"Szablewski",slug:"leszek-szablewski",fullName:"Leszek Szablewski",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49739/images/system/49739.jpg",biography:"Leszek Szablewski is a professor of medical sciences. He received his M.S. in the Faculty of Biology from the University of Warsaw and his PhD degree from the Institute of Experimental Biology Polish Academy of Sciences. He habilitated in the Medical University of Warsaw, and he obtained his degree of Professor from the President of Poland. Professor Szablewski is the Head of Chair and Department of General Biology and Parasitology, Medical University of Warsaw. Professor Szablewski has published over 80 peer-reviewed papers in journals such as Journal of Alzheimer’s Disease, Biochim. Biophys. Acta Reviews of Cancer, Biol. Chem., J. Biomed. Sci., and Diabetes/Metabol. Res. Rev, Endocrine. He is the author of two books and four book chapters. He has edited four books, written 15 scripts for students, is the ad hoc reviewer of over 30 peer-reviewed journals, and editorial member of peer-reviewed journals. Prof. Szablewski’s research focuses on cell physiology, genetics, and pathophysiology. He works on the damage caused by lack of glucose homeostasis and changes in the expression and/or function of glucose transporters due to various diseases. He has given lectures, seminars, and exercises for students at the Medical University.",institutionString:"Medical University of Warsaw",institution:{name:"Medical University of Warsaw",country:{name:"Poland"}}},{id:"173123",title:"Dr.",name:"Maitham",middleName:null,surname:"Khajah",slug:"maitham-khajah",fullName:"Maitham Khajah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/173123/images/system/173123.jpeg",biography:"Dr. Maitham A. Khajah received his degree in Pharmacy from Faculty of Pharmacy, Kuwait University, in 2003 and obtained his PhD degree in December 2009 from the University of Calgary, Canada (Gastrointestinal Science and Immunology). Since January 2010 he has been assistant professor in Kuwait University, Faculty of Pharmacy, Department of Pharmacology and Therapeutics. His research interest are molecular targets for the treatment of inflammatory bowel disease (IBD) and the mechanisms responsible for immune cell chemotaxis. He cosupervised many students for the MSc Molecular Biology Program, College of Graduate Studies, Kuwait University. Ever since joining Kuwait University in 2010, he got various grants as PI and Co-I. He was awarded the Best Young Researcher Award by Kuwait University, Research Sector, for the Year 2013–2014. He was a member in the organizing committee for three conferences organized by Kuwait University, Faculty of Pharmacy, as cochair and a member in the scientific committee (the 3rd, 4th, and 5th Kuwait International Pharmacy Conference).",institutionString:"Kuwait University",institution:{name:"Kuwait University",country:{name:"Kuwait"}}},{id:"195136",title:"Dr.",name:"Aya",middleName:null,surname:"Adel",slug:"aya-adel",fullName:"Aya Adel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/195136/images/system/195136.jpg",biography:"Dr. Adel works as an Assistant Lecturer in the unit of Phoniatrics, Department of Otolaryngology, Ain Shams University in Cairo, Egypt. Dr. Adel is especially interested in joint attention and its impairment in autism spectrum disorder",institutionString:"Ain Shams University",institution:{name:"Ain Shams University",country:{name:"Egypt"}}},{id:"94911",title:"Dr.",name:"Boulenouar",middleName:null,surname:"Mesraoua",slug:"boulenouar-mesraoua",fullName:"Boulenouar Mesraoua",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94911/images/system/94911.png",biography:"Dr Boulenouar Mesraoua is the Associate Professor of Clinical Neurology at Weill Cornell Medical College-Qatar and a Consultant Neurologist at Hamad Medical Corporation at the Neuroscience Department; He graduated as a Medical Doctor from the University of Oran, Algeria; he then moved to Belgium, the City of Liege, for a Residency in Internal Medicine and Neurology at Liege University; after getting the Belgian Board of Neurology (with high marks), he went to the National Hospital for Nervous Diseases, Queen Square, London, United Kingdom for a fellowship in Clinical Neurophysiology, under Pr Willison ; Dr Mesraoua had also further training in Epilepsy and Continuous EEG Monitoring for two years (from 2001-2003) in the Neurophysiology department of Zurich University, Switzerland, under late Pr Hans Gregor Wieser ,an internationally known epileptologist expert. \n\nDr B. Mesraoua is the Director of the Neurology Fellowship Program at the Neurology Section and an active member of the newly created Comprehensive Epilepsy Program at Hamad General Hospital, Doha, Qatar; he is also Assistant Director of the Residency Program at the Qatar Medical School. \nDr B. Mesraoua's main interests are Epilepsy, Multiple Sclerosis, and Clinical Neurology; He is the Chairman and the Organizer of the well known Qatar Epilepsy Symposium, he is running yearly for the past 14 years and which is considered a landmark in the Gulf region; He has also started last year , together with other epileptologists from Qatar, the region and elsewhere, a yearly International Epilepsy School Course, which was attended by many neurologists from the Area.\n\nInternationally, Dr Mesraoua is an active and elected member of the Commission on Eastern Mediterranean Region (EMR ) , a regional branch of the International League Against Epilepsy (ILAE), where he represents the Middle East and North Africa(MENA ) and where he holds the position of chief of the Epilepsy Epidemiology Section; Dr Mesraoua is a member of the American Academy of Neurology, the Europeen Academy of Neurology and the American Epilepsy Society.\n\nDr Mesraoua's main objectives are to encourage frequent gathering of the epileptologists/neurologists from the MENA region and the rest of the world, promote Epilepsy Teaching in the MENA Region, and encourage multicenter studies involving neurologists and epileptologists in the MENA region, particularly epilepsy epidemiological studies. \n\nDr. Mesraoua is the recipient of two research Grants, as the Lead Principal Investigator (750.000 USD and 250.000 USD) from the Qatar National Research Fund (QNRF) and the Hamad Hospital Internal Research Grant (IRGC), on the following topics : “Continuous EEG Monitoring in the ICU “ and on “Alpha-lactoalbumin , proof of concept in the treatment of epilepsy” .Dr Mesraoua is a reviewer for the journal \"seizures\" (Europeen Epilepsy Journal ) as well as dove journals ; Dr Mesraoua is the author and co-author of many peer reviewed publications and four book chapters in the field of Epilepsy and Clinical Neurology",institutionString:"Weill Cornell Medical College in Qatar",institution:{name:"Weill Cornell Medical College in Qatar",country:{name:"Qatar"}}},{id:"282429",title:"Prof.",name:"Covanis",middleName:null,surname:"Athanasios",slug:"covanis-athanasios",fullName:"Covanis Athanasios",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/282429/images/system/282429.jpg",biography:null,institutionString:"Neurology-Neurophysiology Department of the Children Hospital Agia Sophia",institution:null},{id:"190980",title:"Prof.",name:"Marwa",middleName:null,surname:"Mahmoud Saleh",slug:"marwa-mahmoud-saleh",fullName:"Marwa Mahmoud Saleh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/190980/images/system/190980.jpg",biography:"Professor Marwa Mahmoud Saleh is a doctor of medicine and currently works in the unit of Phoniatrics, Department of Otolaryngology, Ain Shams University in Cairo, Egypt. She got her doctoral degree in 1991 and her doctoral thesis was accomplished in the University of Iowa, United States. Her publications covered a multitude of topics as videokymography, cochlear implants, stuttering, and dysphagia. She has lectured Egyptian phonology for many years. Her recent research interest is joint attention in autism.",institutionString:"Ain Shams University",institution:{name:"Ain Shams University",country:{name:"Egypt"}}},{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259190/images/system/259190.png",biography:"Dr. Naqvi is a radioanalytical chemist and is working as an associate professor of analytical chemistry in the Department of Chemistry, Government College University, Faisalabad, Pakistan. Advance separation techniques, nuclear analytical techniques and radiopharmaceutical analysis are the main courses that he is teaching to graduate and post-graduate students. In the research area, he is focusing on the development of organic- and biomolecule-based radiopharmaceuticals for diagnosis and therapy of infectious and cancerous diseases. Under the supervision of Dr. Naqvi, three students have completed their Ph.D. degrees and 41 students have completed their MS degrees. He has completed three research projects and is currently working on 2 projects entitled “Radiolabeling of fluoroquinolone derivatives for the diagnosis of deep-seated bacterial infections” and “Radiolabeled minigastrin peptides for diagnosis and therapy of NETs”. He has published about 100 research articles in international reputed journals and 7 book chapters. Pakistan Institute of Nuclear Science & Technology (PINSTECH) Islamabad, Punjab Institute of Nuclear Medicine (PINM), Faisalabad and Institute of Nuclear Medicine and Radiology (INOR) Abbottabad are the main collaborating institutes.",institutionString:"Government College University",institution:{name:"Government College University, Faisalabad",country:{name:"Pakistan"}}},{id:"58390",title:"Dr.",name:"Gyula",middleName:null,surname:"Mozsik",slug:"gyula-mozsik",fullName:"Gyula Mozsik",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/58390/images/system/58390.png",biography:"Gyula Mózsik MD, Ph.D., ScD (med), is an emeritus professor of Medicine at the First Department of Medicine, Univesity of Pécs, Hungary. He was head of this department from 1993 to 2003. His specializations are medicine, gastroenterology, clinical pharmacology, clinical nutrition, and dietetics. His research fields are biochemical pharmacological examinations in the human gastrointestinal (GI) mucosa, mechanisms of retinoids, drugs, capsaicin-sensitive afferent nerves, and innovative pharmacological, pharmaceutical, and nutritional (dietary) research in humans. He has published about 360 peer-reviewed papers, 197 book chapters, 692 abstracts, 19 monographs, and has edited 37 books. He has given about 1120 regular and review lectures. He has organized thirty-eight national and international congresses and symposia. He is the founder of the International Conference on Ulcer Research (ICUR); International Union of Pharmacology, Gastrointestinal Section (IUPHAR-GI); Brain-Gut Society symposiums, and gastrointestinal cytoprotective symposiums. He received the Andre Robert Award from IUPHAR-GI in 2014. Fifteen of his students have been appointed as full professors in Egypt, Cuba, and Hungary.",institutionString:"University of Pécs",institution:{name:"University of Pecs",country:{name:"Hungary"}}},{id:"277367",title:"M.Sc.",name:"Daniel",middleName:"Martin",surname:"Márquez López",slug:"daniel-marquez-lopez",fullName:"Daniel Márquez López",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/277367/images/7909_n.jpg",biography:"Msc Daniel Martin Márquez López has a bachelor degree in Industrial Chemical Engineering, a Master of science degree in the same área and he is a PhD candidate for the Instituto Politécnico Nacional. His Works are realted to the Green chemistry field, biolubricants, biodiesel, transesterification reactions for biodiesel production and the manipulation of oils for therapeutic purposes.",institutionString:null,institution:{name:"Instituto Politécnico Nacional",country:{name:"Mexico"}}},{id:"196544",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/196544/images/system/196544.jpg",biography:"Angel Catalá studied chemistry at Universidad Nacional de La Plata, Argentina, where he received a Ph.D. in Chemistry (Biological Branch) in 1965. From 1964 to 1974, he worked as an Assistant in Biochemistry at the School of Medicine at the same university. From 1974 to 1976, he was a fellow of the National Institutes of Health (NIH) at the University of Connecticut, Health Center, USA. From 1985 to 2004, he served as a Full Professor of Biochemistry at the Universidad Nacional de La Plata. He is a member of the National Research Council (CONICET), Argentina, and the Argentine Society for Biochemistry and Molecular Biology (SAIB). His laboratory has been interested for many years in the lipid peroxidation of biological membranes from various tissues and different species. Dr. Catalá has directed twelve doctoral theses, published more than 100 papers in peer-reviewed journals, several chapters in books, and edited twelve books. He received awards at the 40th International Conference Biochemistry of Lipids 1999 in Dijon, France. He is the winner of the Bimbo Pan-American Nutrition, Food Science and Technology Award 2006 and 2012, South America, Human Nutrition, Professional Category. In 2006, he won the Bernardo Houssay award in pharmacology, in recognition of his meritorious works of research. Dr. Catalá belongs to the editorial board of several journals including Journal of Lipids; International Review of Biophysical Chemistry; Frontiers in Membrane Physiology and Biophysics; World Journal of Experimental Medicine and Biochemistry Research International; World Journal of Biological Chemistry, Diabetes, and the Pancreas; International Journal of Chronic Diseases & Therapy; and International Journal of Nutrition. He is the co-editor of The Open Biology Journal and associate editor for Oxidative Medicine and Cellular Longevity.",institutionString:"Universidad Nacional de La Plata",institution:{name:"National University of La Plata",country:{name:"Argentina"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",slug:"francisco-javier-martin-romero",fullName:"Francisco Javier Martin-Romero",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",biography:"Francisco Javier Martín-Romero (Javier) is a Professor of Biochemistry and Molecular Biology at the University of Extremadura, Spain. He is also a group leader at the Biomarkers Institute of Molecular Pathology. Javier received his Ph.D. in 1998 in Biochemistry and Biophysics. At the National Cancer Institute (National Institute of Health, Bethesda, MD) he worked as a research associate on the molecular biology of selenium and its role in health and disease. After postdoctoral collaborations with Carlos Gutierrez-Merino (University of Extremadura, Spain) and Dario Alessi (University of Dundee, UK), he established his own laboratory in 2008. The interest of Javier's lab is the study of cell signaling with a special focus on Ca2+ signaling, and how Ca2+ transport modulates the cytoskeleton, migration, differentiation, cell death, etc. He is especially interested in the study of Ca2+ channels, and the role of STIM1 in the initiation of pathological events.",institutionString:null,institution:{name:"University of Extremadura",country:{name:"Spain"}}},{id:"217323",title:"Prof.",name:"Guang-Jer",middleName:null,surname:"Wu",slug:"guang-jer-wu",fullName:"Guang-Jer Wu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/217323/images/8027_n.jpg",biography:null,institutionString:null,institution:null},{id:"148546",title:"Dr.",name:"Norma Francenia",middleName:null,surname:"Santos-Sánchez",slug:"norma-francenia-santos-sanchez",fullName:"Norma Francenia Santos-Sánchez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/148546/images/4640_n.jpg",biography:null,institutionString:null,institution:null},{id:"272889",title:"Dr.",name:"Narendra",middleName:null,surname:"Maddu",slug:"narendra-maddu",fullName:"Narendra Maddu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/272889/images/10758_n.jpg",biography:null,institutionString:null,institution:null},{id:"242491",title:"Prof.",name:"Angelica",middleName:null,surname:"Rueda",slug:"angelica-rueda",fullName:"Angelica Rueda",position:"Investigador Cinvestav 3B",profilePictureURL:"https://mts.intechopen.com/storage/users/242491/images/6765_n.jpg",biography:null,institutionString:null,institution:null},{id:"88631",title:"Dr.",name:"Ivan",middleName:null,surname:"Petyaev",slug:"ivan-petyaev",fullName:"Ivan Petyaev",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Lycotec (United Kingdom)",country:{name:"United Kingdom"}}},{id:"423869",title:"Ms.",name:"Smita",middleName:null,surname:"Rai",slug:"smita-rai",fullName:"Smita Rai",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Integral University",country:{name:"India"}}},{id:"424024",title:"Prof.",name:"Swati",middleName:null,surname:"Sharma",slug:"swati-sharma",fullName:"Swati Sharma",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Integral University",country:{name:"India"}}},{id:"439112",title:"MSc.",name:"Touseef",middleName:null,surname:"Fatima",slug:"touseef-fatima",fullName:"Touseef Fatima",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Integral University",country:{name:"India"}}},{id:"424836",title:"Dr.",name:"Orsolya",middleName:null,surname:"Borsai",slug:"orsolya-borsai",fullName:"Orsolya Borsai",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca",country:{name:"Romania"}}},{id:"422262",title:"Ph.D.",name:"Paola Andrea",middleName:null,surname:"Palmeros-Suárez",slug:"paola-andrea-palmeros-suarez",fullName:"Paola Andrea Palmeros-Suárez",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Guadalajara",country:{name:"Mexico"}}}]}},subseries:{item:{id:"5",type:"subseries",title:"Parasitic Infectious Diseases",keywords:"Blood Borne Parasites, Intestinal Parasites, Protozoa, Helminths, Arthropods, Water Born Parasites, Epidemiology, Molecular Biology, Systematics, Genomics, Proteomics, Ecology",scope:"Parasitic diseases have evolved alongside their human hosts. In many cases, these diseases have adapted so well that they have developed efficient resilience methods in the human host and can live in the host for years. Others, particularly some blood parasites, can cause very acute diseases and are responsible for millions of deaths yearly. Many parasitic diseases are classified as neglected tropical diseases because they have received minimal funding over recent years and, in many cases, are under-reported despite the critical role they play in morbidity and mortality among human and animal hosts. The current topic, Parasitic Infectious Diseases, in the Infectious Diseases Series aims to publish studies on the systematics, epidemiology, molecular biology, genomics, pathogenesis, genetics, and clinical significance of parasitic diseases from blood borne to intestinal parasites as well as zoonotic parasites. We hope to cover all aspects of parasitic diseases to provide current and relevant research data on these very important diseases. In the current atmosphere of the Coronavirus pandemic, communities around the world, particularly those in different underdeveloped areas, are faced with the growing challenges of the high burden of parasitic diseases. At the same time, they are faced with the Covid-19 pandemic leading to what some authors have called potential syndemics that might worsen the outcome of such infections. Therefore, it is important to conduct studies that examine parasitic infections in the context of the coronavirus pandemic for the benefit of all communities to help foster more informed decisions for the betterment of human and animal health.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11401,editor:{id:"67907",title:"Dr.",name:"Amidou",middleName:null,surname:"Samie",slug:"amidou-samie",fullName:"Amidou Samie",profilePictureURL:"https://mts.intechopen.com/storage/users/67907/images/system/67907.jpg",biography:"Dr. Amidou Samie is an Associate Professor of Microbiology at the University of Venda, in South Africa, where he graduated for his PhD in May 2008. He joined the Department of Microbiology the same year and has been giving lectures on topics covering parasitology, immunology, molecular biology and industrial microbiology. He is currently a rated researcher by the National Research Foundation of South Africa at category C2. He has published widely in the field of infectious diseases and has overseen several MSc’s and PhDs. His research activities mostly cover topics on infectious diseases from epidemiology to control. His particular interest lies in the study of intestinal protozoan parasites and opportunistic infections among HIV patients as well as the potential impact of childhood diarrhoea on growth and child development. He also conducts research on water-borne diseases and water quality and is involved in the evaluation of point-of-use water treatment technologies using silver and copper nanoparticles in collaboration with the University of Virginia, USA. He also studies the use of medicinal plants for the control of infectious diseases as well as antimicrobial drug resistance.",institutionString:null,institution:{name:"University of Venda",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null,series:{id:"6",title:"Infectious Diseases",doi:"10.5772/intechopen.71852",issn:"2631-6188"},editorialBoard:[{id:"188881",title:"Dr.",name:"Fernando José",middleName:null,surname:"Andrade-Narváez",slug:"fernando-jose-andrade-narvaez",fullName:"Fernando José Andrade-Narváez",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRIV7QAO/Profile_Picture_1628834308121",institutionString:null,institution:{name:"Autonomous University of Yucatán",institutionURL:null,country:{name:"Mexico"}}},{id:"269120",title:"Dr.",name:"Rajeev",middleName:"K.",surname:"Tyagi",slug:"rajeev-tyagi",fullName:"Rajeev Tyagi",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRaBqQAK/Profile_Picture_1644331884726",institutionString:"CSIR - Institute of Microbial Technology, India",institution:null},{id:"336849",title:"Prof.",name:"Ricardo",middleName:null,surname:"Izurieta",slug:"ricardo-izurieta",fullName:"Ricardo Izurieta",profilePictureURL:"https://mts.intechopen.com/storage/users/293169/images/system/293169.png",institutionString:null,institution:{name:"University of South Florida",institutionURL:null,country:{name:"United States of America"}}}]},onlineFirstChapters:{paginationCount:1,paginationItems:[{id:"81644",title:"Perspective Chapter: Ethics of Using Placebo Controlled Trials for Covid-19 Vaccine Development in Vulnerable Populations",doi:"10.5772/intechopen.104776",signatures:"Lesley Burgess, Jurie Jordaan and Matthew Wilson",slug:"perspective-chapter-ethics-of-using-placebo-controlled-trials-for-covid-19-vaccine-development-in-vu",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}}]},publishedBooks:{},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/42458",hash:"",query:{},params:{id:"42458"},fullPath:"/chapters/42458",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()