Different tissue repair models including human ALDHbr cells (Balber, 2011).
\\n\\n
\\n"}]',published:!0,mainMedia:{caption:"Milestone",originalUrl:"/media/original/124"}},components:[{type:"htmlEditorComponent",content:'
Barely three months into the new year and we are happy to announce a monumental milestone reached - 150 million downloads.
\n\nThis achievement solidifies IntechOpen’s place as a pioneer in Open Access publishing and the home to some of the most relevant scientific research available through Open Access.
\n\nWe are so proud to have worked with so many bright minds throughout the years who have helped us spread knowledge through the power of Open Access and we look forward to continuing to support some of the greatest thinkers of our day.
\n\nThank you for making IntechOpen your place of learning, sharing, and discovery, and here’s to 150 million more!
\n\n\n\n\n'}],latestNews:[{slug:"intechopen-supports-asapbio-s-new-initiative-publish-your-reviews-20220729",title:"IntechOpen Supports ASAPbio’s New Initiative Publish Your Reviews"},{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"}]},book:{item:{type:"book",id:"9401",leadTitle:null,fullTitle:"Application of Expert Systems - Theoretical and Practical Aspects",title:"Application of Expert Systems",subtitle:"Theoretical and Practical Aspects",reviewType:"peer-reviewed",abstract:"What are expert systems and what are their purposes? What are the impacts resulting from their implementations? This book aims to answer these questions and more. Written by experts in the field, chapters It explores different concepts of expert systems such as computational intelligence, signal processing, real time systems, systems optimization, electric power systems, fault diagnosis, asset management, and smart cityescities. This book will appeal to wide range of readers, including those interested in acquiring basic knowledge and those who are motivated to learn more about the technical elements and technological applications of expert systems.",isbn:"978-1-83881-007-8",printIsbn:"978-1-83881-006-1",pdfIsbn:"978-1-83881-008-5",doi:"10.5772/intechopen.85202",price:119,priceEur:129,priceUsd:155,slug:"application-of-expert-systems-theoretical-and-practical-aspects",numberOfPages:130,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"081802ad77d0fdab3e8085762d9a15d2",bookSignature:"Ivan Nunes da Silva and Rogério Andrade Flauzino",publishedDate:"September 9th 2020",coverURL:"https://cdn.intechopen.com/books/images_new/9401.jpg",numberOfDownloads:5046,numberOfWosCitations:2,numberOfCrossrefCitations:2,numberOfCrossrefCitationsByBook:1,numberOfDimensionsCitations:6,numberOfDimensionsCitationsByBook:1,hasAltmetrics:1,numberOfTotalCitations:10,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"June 4th 2019",dateEndSecondStepPublish:"November 5th 2019",dateEndThirdStepPublish:"January 4th 2020",dateEndFourthStepPublish:"March 24th 2020",dateEndFifthStepPublish:"May 23rd 2020",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"14215",title:"Dr.",name:"Ivan",middleName:null,surname:"Nunes da Silva",slug:"ivan-nunes-da-silva",fullName:"Ivan Nunes da Silva",profilePictureURL:"https://mts.intechopen.com/storage/users/14215/images/system/14215.jfif",biography:"Ivan Nunes da Silva was born in São José do Rio Preto, Brazil, in\n1967. He graduated in computer science and electrical engineering from the Federal University of Uberlândia, Brazil, in\n1991 and 1992, respectively. He received both an MSc and PhD\nin Electrical Engineering from University of Campinas (UNICAMP), Brazil, in 1995 and 1997, respectively. Currently, he is\nFull Professor at the University of São Paulo (USP). His research\ninterests are within the fields of power system and computational intelligence. He\nis also associate editor of the International Journal on Power System Optimization and\neditor-in-chief of the Journal of Control, Automation and Electrical Systems. He has\npublished more than 400 papers in congress proceedings and international journals\nand authored several book chapters.",institutionString:"University of Sao Paulo",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"University of Sao Paulo",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"178727",title:"Associate Prof.",name:"Rogério Andrade",middleName:null,surname:"Flauzino",slug:"rogerio-andrade-flauzino",fullName:"Rogério Andrade Flauzino",profilePictureURL:"https://mts.intechopen.com/storage/users/178727/images/system/178727.jfif",biography:"Rogério Andrade Flauzino was born in Franca, Brazil, in 1978. He graduated in electrical engineering and also received his MSc degree in electrical engineering from the São Paulo State University (UNESP), Brazil, in 2001 and 2004, respectively. He received his PhD degree in electrical engineering from the University of São Paulo (USP), Brazil, in 2007. Currently, he is an associate professor at the University of São Paulo. His research interests include artificial neural networks, computational intelligence, fuzzy inference systems, and power systems.",institutionString:"University of Sao Paulo",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Sao Paulo",institutionURL:null,country:{name:"Brazil"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"519",title:"Intelligent System",slug:"computer-and-information-science-artificial-intelligence-intelligent-system"}],chapters:[{id:"70210",title:"A Case Study of Wavelets and SVM Application in Coffee Agriculture: Detecting Cicadas Based on Their Acoustic and Image Patterns",doi:"10.5772/intechopen.90156",slug:"a-case-study-of-wavelets-and-svm-application-in-coffee-agriculture-detecting-cicadas-based-on-their-",totalDownloads:497,totalCrossrefCites:1,totalDimensionsCites:3,hasAltmetrics:0,abstract:"One of the main problems in agriculture is crop pest management, which causes financial damage to farmers. This management is traditionally performed with pesticides; however, with a large area of application, it would be more economically viable and more environmentally recommended to know precisely the regions where there is concrete infestation. In coffee farms, cicada makes a distinctive sound when it hatches after years of underground nymph-shaped living. One possibility of contributing to its management would be the development of a device capable of capturing the sound of the adult cicada in order to detect its presence and to quantify crop insects. This device would be spread across the coffee plots to capture sounds within the widest possible area coverage. With monitoring and quantification data, the manager would have more input for decision-making and could adopt the most appropriate management technique based on concrete information on population density separated by crop region. Thus, this chapter presents an algorithm based on wavelets and support vector machines (SVMs), to detect acoustic patterns in plantations, advising on the presence of cicadas.",signatures:"João Paulo Lemos Escola, Rodrigo Capobianco Guido, Alexandre Moraes Cardoso, Douglas Henrique Bottura Maccagnan, João Marcelo Ribeiro and José Ricardo Ferreira Cardoso",downloadPdfUrl:"/chapter/pdf-download/70210",previewPdfUrl:"/chapter/pdf-preview/70210",authors:[null],corrections:null},{id:"72309",title:"Artificial Intelligence Models to Predict the Influence of Linear and Cyclic Polyethers on the Electric Percolation of Microemulsions",doi:"10.5772/intechopen.92646",slug:"artificial-intelligence-models-to-predict-the-influence-of-linear-and-cyclic-polyethers-on-the-elect",totalDownloads:652,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:1,abstract:"This book chapter presents three predictive models, based on artificial neural networks, to determine the percolation temperature of different AOT microemulsions in the presence of different additives (crown ethers, glymes, and polyethylene glycols), which were developed in our laboratory by different authors. An artificial neural network model has been developed for each additive. The models developed, multilayer perceptron, were implemented with different input variables (chosen among the variables that define the packing or its chemical properties) and different intermediate layers. The best model for crown ethers has a topology of 10-8-1, for glymes the selected topology is 5-5-1, and for polyethylene glycol, the best topology was 5-8-8-5-1. The selected models are capable of predicting the electrical percolation temperature with good adjustments in terms of the root mean square error (RMSE), presenting values below 1°C for glymes and polyethylene glycols. According to these results, it can be concluded that the models presented good predictive capacity for percolation temperature. Nevertheless, the adjustments obtained for the crown ethers model indicate that it would be convenient to study new input variables, increase the number of cases, and even use other training algorithms and methods.",signatures:"Manuel Alonso-Ferrer, Gonzalo Astray Dopazo and Juan Carlos Mejuto",downloadPdfUrl:"/chapter/pdf-download/72309",previewPdfUrl:"/chapter/pdf-preview/72309",authors:[null],corrections:null},{id:"70665",title:"Increasing the Efficiency of Rule-Based Expert Systems Applied on Heterogeneous Data Sources",doi:"10.5772/intechopen.90743",slug:"increasing-the-efficiency-of-rule-based-expert-systems-applied-on-heterogeneous-data-sources",totalDownloads:540,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Nowadays, the proliferation of heterogeneous data sources provided by different research and innovation projects and initiatives is proliferating more and more and presents huge opportunities. These developments create an increase in the number of different data sources, which could be involved in the process of decision-making for a specific purpose, but this huge heterogeneity makes this task difficult. Traditionally, the expert systems try to integrate all information into a main database, but, sometimes, this information is not easily available, or its integration with other databases is very problematic. In this case, it is essential to establish procedures that make a metadata distributed integration for them. This process provides a “mapping” of available information, but it is only at logic level. Thus, on a physical level, the data is still distributed into several resources. In this sense, this chapter proposes a distributed rule engine extension (DREE) based on edge computing that makes an integration of metadata provided by different heterogeneous data sources, applying then a mathematical decomposition over the antecedent of rules. The use of the proposed rule engine increases the efficiency and the capability of rule-based expert systems, providing the possibility of applying these rules over distributed and heterogeneous data sources, increasing the size of data sets that could be involved in the decision-making process.",signatures:"Juan Ignacio Guerrero Alonso, Enrique Personal, Antonio Parejo, S. García, Antonio Martín and Carlos León",downloadPdfUrl:"/chapter/pdf-download/70665",previewPdfUrl:"/chapter/pdf-preview/70665",authors:[null],corrections:null},{id:"72170",title:"A Conceptual Framework for Modeling Smart Parking",doi:"10.5772/intechopen.92559",slug:"a-conceptual-framework-for-modeling-smart-parking",totalDownloads:892,totalCrossrefCites:0,totalDimensionsCites:2,hasAltmetrics:1,abstract:"Vehicles are highly used in the city. If the drivers of vehicles have an appointment in the city, they are looking for parking. Thus, they need to know where to find one in real time. In this paper, we present a smart model that is based on a combination of multi-agent system and genetic algorithm (MAS-GA). The smart model can help the drivers find the optimal parking when the drivers make a request for parking according to their position on the road and the waiting and parking time. This smart model is based on four parameters: the availability of parking, cost of parking, the distance between the actual position of the vehicle and the destination parking, and traffic congestion. We can also add the time to arrive a destination parking. Thus, the proposed smart model helps to maximize the utilization of space resources of a city as parking and reduce the waiting and parking time.",signatures:"Brahim Lejdel",downloadPdfUrl:"/chapter/pdf-download/72170",previewPdfUrl:"/chapter/pdf-preview/72170",authors:[null],corrections:null},{id:"70222",title:"Alert Diagnostic System: SDA",doi:"10.5772/intechopen.89566",slug:"alert-diagnostic-system-sda",totalDownloads:641,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Currently, there is a trend in reduction of the number of industrial plant operators. The challenges are mainly during emergency situations: how to support operator time management without increasing operational risks? SDA focuses on this area and aims to increase operator situational awareness (ability to perceive, understand and predict the future behavior of a process) through new technological paradigms, such as Expert System and Ecological Human Machine Interface (HMI) in order to provide operational support, maintenance and optimization of refining, exploration and system of production of oil and gas plants. In SDA, the most critical alerts are shown by priority, along with decision trees, trend charts and variable comparison charts. SDA aims to assist control room operators in solving a critical problem in the oil industry, that is the loss of safety function, associated with alarms, during alarm flood. The SDA results of the SDA are presented through its implementation in Sulfur Recovery Units—URE, in the state of Rio de Janeiro, in Brazil.",signatures:"Andressa dos Santos Nicolau, Marcelo Carvalho dos Santos, Victor Henrique Cabral Pinheiro, Filipe Santana Moreira do Desterro, Roberto Schirru, Mario Cesar Mello Massa de Campos and Alexandre Wanderley",downloadPdfUrl:"/chapter/pdf-download/70222",previewPdfUrl:"/chapter/pdf-preview/70222",authors:[null],corrections:null},{id:"71706",title:"Intelligent System for the Estimation of Gases Dissolved in Insulating Mineral Oil from Physicochemical Tests",doi:"10.5772/intechopen.91807",slug:"intelligent-system-for-the-estimation-of-gases-dissolved-in-insulating-mineral-oil-from-physicochemi",totalDownloads:586,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"The objective of this work was to make the modeling through artificial neural networks of the gas concentrations dissolved in insulating mineral oil from the results of physicochemical tests. In this case, a mapping between the data of physicochemical tests and gas chromatography was obtained by means of artificial neural networks. The proposed approach proved to be efficient to identify the amount of gases, taking the following attributes as input: color degree, density, dielectric rigidity, interfacial tension, power factor of the insulating oil, neutralization index, and water level. In addition, artificial neural networks provide not only a new methodology to support decisions but also satisfactory results comparatively to actual analyses when referring to the estimation of gases.",signatures:"Ivan Nunes da Silva, Rogério Andrade Flauzino, Danilo Hernane Spatti, Renato Pagotto Bossolan and Bruno Augusto Trevisam",downloadPdfUrl:"/chapter/pdf-download/71706",previewPdfUrl:"/chapter/pdf-preview/71706",authors:[{id:"14215",title:"Dr.",name:"Ivan",surname:"Nunes da Silva",slug:"ivan-nunes-da-silva",fullName:"Ivan Nunes da Silva"}],corrections:null},{id:"69705",title:"Efficient Asset Management Practices for Power Systems Using Expert Systems",doi:"10.5772/intechopen.89766",slug:"efficient-asset-management-practices-for-power-systems-using-expert-systems",totalDownloads:639,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Electric power companies have high financial costs due to poor asset management practices. Therefore, it is crucial to use decision-making processes to decrease the global costs of an active asset and to extend its lifetime to a maximum. Asset management programs, which are frequently used to tackle optimization problems, aim to guide the use of the physical assets of a business, mainly by optimizing their lifetime. Efficient asset management practices establish operation and maintenance for each equipment, from the time the equipment is acquired until the appropriate time for its replacement. So, based on these assumptions, we propose a method to assist asset management decision-making in the electric power companies, which is embodied by computer software.",signatures:"Danilo Spatti, Luisa H.B. Liboni, Marcel Araújo, Renato Bossolan and Bruno Vitti",downloadPdfUrl:"/chapter/pdf-download/69705",previewPdfUrl:"/chapter/pdf-preview/69705",authors:[null],corrections:null},{id:"69648",title:"Computational Intelligence to Estimate Fault Rates in Power Transformers",doi:"10.5772/intechopen.89768",slug:"computational-intelligence-to-estimate-fault-rates-in-power-transformers",totalDownloads:600,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Asset management in power transmission systems is one of the significant practices carried out by power companies. With the aging of the devices, the development of optimized tools, capable of considering failure rates, regulatory scenarios, and operational parameters, is increasingly mandatory. The purpose of this work is to present a statistics-based tool for optimized asset management. For such an objective, we have developed a computational method based on database processing and statistical studies that can support decision-making on preventive maintenance in the equipment of the electric sector. The final system interface is Business Intelligence-based.",signatures:"Danilo Spatti, Luisa H.B. Liboni, Marcel Araújo, Renato Bossolan and Bruno Vitti",downloadPdfUrl:"/chapter/pdf-download/69648",previewPdfUrl:"/chapter/pdf-preview/69648",authors:[null],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"3794",title:"Swarm Intelligence",subtitle:"Focus on Ant and Particle Swarm Optimization",isOpenForSubmission:!1,hash:"5332a71035a274ecbf1c308df633a8ed",slug:"swarm_intelligence_focus_on_ant_and_particle_swarm_optimization",bookSignature:"Felix T.S. Chan and Manoj Kumar Tiwari",coverURL:"https://cdn.intechopen.com/books/images_new/3794.jpg",editedByType:"Edited by",editors:[{id:"252210",title:"Dr.",name:"Felix",surname:"Chan",slug:"felix-chan",fullName:"Felix Chan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"173",title:"Expert Systems for Human, Materials and Automation",subtitle:null,isOpenForSubmission:!1,hash:"d00cfbf1f4ec20211e33264642361190",slug:"expert-systems-for-human-materials-and-automation",bookSignature:"Petrică Vizureanu",coverURL:"https://cdn.intechopen.com/books/images_new/173.jpg",editedByType:"Edited by",editors:[{id:"12354",title:"Prof.",name:"Petrică",surname:"Vizureanu",slug:"petrica-vizureanu",fullName:"Petrică Vizureanu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3779",title:"Autonomous Agents",subtitle:null,isOpenForSubmission:!1,hash:"2de8f35c0784b403c61442c900cf2e93",slug:"autonomous-agents",bookSignature:"Vedran Kordic",coverURL:"https://cdn.intechopen.com/books/images_new/3779.jpg",editedByType:"Edited by",editors:[{id:"396",title:"Dr.",name:"Vedran",surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6391",title:"Intelligent System",subtitle:null,isOpenForSubmission:!1,hash:"e66e8d52ef62125a9f741ce0610d6899",slug:"intelligent-system",bookSignature:"Chatchawal Wongchoosuk",coverURL:"https://cdn.intechopen.com/books/images_new/6391.jpg",editedByType:"Edited by",editors:[{id:"34521",title:"Associate Prof.",name:"Chatchawal",surname:"Wongchoosuk",slug:"chatchawal-wongchoosuk",fullName:"Chatchawal Wongchoosuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"79356",slug:"corrigendum-to-clinical-approach-in-the-diagnosis-of-acute-appendicitis",title:"Corrigendum to: Clinical Approach in the Diagnosis of Acute Appendicitis",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/67321.pdf",downloadPdfUrl:"/chapter/pdf-download/67321",previewPdfUrl:"/chapter/pdf-preview/67321",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/67321",risUrl:"/chapter/ris/67321",chapter:{id:"61365",slug:"clinical-approach-in-the-diagnosis-of-acute-appendicitis",signatures:"Alfredo Alvarado",dateSubmitted:"September 14th 2017",dateReviewed:"February 16th 2018",datePrePublished:null,datePublished:"June 27th 2018",book:{id:"6471",title:"Current Issues in the Diagnostics and Treatment of Acute Appendicitis",subtitle:null,fullTitle:"Current Issues in the Diagnostics and Treatment of Acute Appendicitis",slug:"current-issues-in-the-diagnostics-and-treatment-of-acute-appendicitis",publishedDate:"June 27th 2018",bookSignature:"Dmitry Victorovich Garbuzenko",coverURL:"https://cdn.intechopen.com/books/images_new/6471.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"108808",title:"Prof.",name:"Dmitry",middleName:"Victorovich",surname:"Garbuzenko",slug:"dmitry-garbuzenko",fullName:"Dmitry Garbuzenko"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"221775",title:"M.D.",name:"Alfredo",middleName:null,surname:"Alvarado",fullName:"Alfredo Alvarado",slug:"alfredo-alvarado",email:"alfredoalvara@hotmail.com",position:null,institution:{name:"National University of Colombia",institutionURL:null,country:{name:"Colombia"}}}]}},chapter:{id:"61365",slug:"clinical-approach-in-the-diagnosis-of-acute-appendicitis",signatures:"Alfredo Alvarado",dateSubmitted:"September 14th 2017",dateReviewed:"February 16th 2018",datePrePublished:null,datePublished:"June 27th 2018",book:{id:"6471",title:"Current Issues in the Diagnostics and Treatment of Acute Appendicitis",subtitle:null,fullTitle:"Current Issues in the Diagnostics and Treatment of Acute Appendicitis",slug:"current-issues-in-the-diagnostics-and-treatment-of-acute-appendicitis",publishedDate:"June 27th 2018",bookSignature:"Dmitry Victorovich Garbuzenko",coverURL:"https://cdn.intechopen.com/books/images_new/6471.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"108808",title:"Prof.",name:"Dmitry",middleName:"Victorovich",surname:"Garbuzenko",slug:"dmitry-garbuzenko",fullName:"Dmitry Garbuzenko"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"221775",title:"M.D.",name:"Alfredo",middleName:null,surname:"Alvarado",fullName:"Alfredo Alvarado",slug:"alfredo-alvarado",email:"alfredoalvara@hotmail.com",position:null,institution:{name:"National University of Colombia",institutionURL:null,country:{name:"Colombia"}}}]},book:{id:"6471",title:"Current Issues in the Diagnostics and Treatment of Acute Appendicitis",subtitle:null,fullTitle:"Current Issues in the Diagnostics and Treatment of Acute Appendicitis",slug:"current-issues-in-the-diagnostics-and-treatment-of-acute-appendicitis",publishedDate:"June 27th 2018",bookSignature:"Dmitry Victorovich Garbuzenko",coverURL:"https://cdn.intechopen.com/books/images_new/6471.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"108808",title:"Prof.",name:"Dmitry",middleName:"Victorovich",surname:"Garbuzenko",slug:"dmitry-garbuzenko",fullName:"Dmitry Garbuzenko"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11154",leadTitle:null,title:"Piezoelectric Actuators",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tWith the development and progress of science and technology, many fields put forward higher demand for the manufacturing industry. Piezoelectric actuators and transducers have been widely studied which can achieve millisecond response speed, nanoscale accuracy, power-off self-locking, no electromagnetic interference, and no magnetic field generated. Owing to the above merits compared with traditional electromagnetic actuators, piezoelectric actuators and transducers have been used in aerospace engineering, biomedical engineering, artificial intelligence, micro-nano processing, 3D print, etc. With the joint efforts of researchers, many novel type precision piezoelectric actuators and transducers have been developed to realize linear motion, rotary motion, and multi-degree-of-freedom motion; and some solutions to improve the output performance, including velocity, load capacity, and accuracy, have been provided to broaden the industrial application.
\r\n\r\n\tThe purpose of this work is to comprehensively summarize the latest progress of precision piezoelectric actuators and transducers, such as ultrasonic motors, piezoelectric stick-slip actuators, piezoelectric direct-drive actuators, piezoelectric pumps, and piezoelectric valves. The corresponding working principles, excitation signals, design theoretical framework, novel structure, and control methods will be introduced in detail. This work will provide a reference and guidance for the subsequent development of piezoelectric actuators and transducers.
",isbn:"978-1-80355-916-2",printIsbn:"978-1-80355-915-5",pdfIsbn:"978-1-80355-917-9",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,isSalesforceBook:!1,isNomenclature:!1,hash:"c007d1361043db41f89ebd5da17d9d5c",bookSignature:"Prof. Tinghai Cheng and Dr. Jianping Li",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11154.jpg",keywords:"Ultrasonic Actuators, Traveling Wave, Piezoelectric Actuators, Stick-Slip, Bionic, Precise Positioning, Micro-Nano Manufacturing, Direct-Drive, Piezoelectric Pumps, Configuration, Piezoelectric Micro-Jet, Structure Configuration",numberOfDownloads:388,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:1,numberOfTotalCitations:1,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"November 10th 2021",dateEndSecondStepPublish:"December 8th 2021",dateEndThirdStepPublish:"February 6th 2022",dateEndFourthStepPublish:"April 27th 2022",dateEndFifthStepPublish:"June 26th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"8 months",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:"As the first inventor, Dr. Cheng has granted 36 invention patents and registered 11 software copyrights. He was a visiting scholar in the School of Materials Science and Engineering at Georgia Institute of Technology under the supervision of Prof. Zhong Lin (Z. L.) Wang. He has to date published 51 academic articles, including 45 in scientific citation index (SCI) journals with other citations of 339, 23 in top journals.",coeditorOneBiosketch:"Dr. Li has authorized 1 international patent (US), authorized 14 Chinese patents, and participated in the formulation of 2 industry standards. He worked with Chiba University, Japan, as a JSPS Researcher, supported by the Japan Society for the Promotion of Science (JSPS). His current research interests include piezoelectric actuator-based nano-positioning systems and the application of electrical impedance spectroscopy in biomedical science.",coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"334396",title:"Prof.",name:"Tinghai",middleName:null,surname:"Cheng",slug:"tinghai-cheng",fullName:"Tinghai Cheng",profilePictureURL:"https://mts.intechopen.com/storage/users/334396/images/system/334396.jpg",biography:"Dr. Tinghai Cheng received a B.S., M.S., and Ph.D. from Harbin Institute of Technology, China, in 2006, 2008, and 2013, respectively. He was a visiting scholar in the School of Materials Science and Engineering, Georgia Institute of Technology, USA, under the supervision of Prof. Zhong Lin Wang from 2017 to 2018. Currently, he is a professor at the Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, and Changchun University of Technology. As the first or corresponding author/co-author, Dr. Cheng has to date published seventy-three SCI academic articles. He also has thirty-six patents and eleven software copyrights to his credit.",institutionString:"Chinese Academy of Sciences",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Chinese Academy of Sciences",institutionURL:null,country:{name:"China"}}}],coeditorOne:{id:"336051",title:"Dr.",name:"Jianping",middleName:null,surname:"Li",slug:"jianping-li",fullName:"Jianping Li",profilePictureURL:"https://mts.intechopen.com/storage/users/336051/images/system/336051.png",biography:"Dr. Jianping Li received a B.S. and Ph.D. from the School of Mechanical Science and Engineering, Jilin University, Changchun, China, in 2011 and 2016, respectively. He worked with Chiba University, Japan, as a JSPS Researcher, supported by the Japan Society for the Promotion of Science (JSPS). Since 2018, he has been working with the Institute of Precision Machinery and Smart Structure, College of Engineering, Zhejiang Normal University, China. To date, he has published more than seventy academic papers. He also has one international and fourteen Chinese patents to his credit, and he has participated in the formulation of two industry standards.",institutionString:"Zhejiang Normal University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Zhejiang Normal University",institutionURL:null,country:{name:"China"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"740",title:"Electronic Devices and Materials",slug:"electronic-devices-and-materials"}],chapters:[{id:"81282",title:"Topology Optimization Methods for Flexure Hinge Type Piezoelectric Actuators",slug:"topology-optimization-methods-for-flexure-hinge-type-piezoelectric-actuators",totalDownloads:44,totalCrossrefCites:0,authors:[null]},{id:"77473",title:"Piezoelectric Nonlinearity and Hysteresis Arising from Dynamics of Electrically Conducting Domain Walls",slug:"piezoelectric-nonlinearity-and-hysteresis-arising-from-dynamics-of-electrically-conducting-domain-wa",totalDownloads:187,totalCrossrefCites:0,authors:[{id:"105876",title:"Dr.",name:"Tadej",surname:"Rojac",slug:"tadej-rojac",fullName:"Tadej Rojac"}]},{id:"81039",title:"Influence of Piezoelectric Actuator Properties on Design of Micropump Driving Modules",slug:"influence-of-piezoelectric-actuator-properties-on-design-of-micropump-driving-modules",totalDownloads:24,totalCrossrefCites:0,authors:[{id:"18182",title:"Dr.",name:"Matej",surname:"Možek",slug:"matej-mozek",fullName:"Matej Možek"},{id:"22398",title:"Dr.",name:"Danilo",surname:"Vrtačnik",slug:"danilo-vrtacnik",fullName:"Danilo Vrtačnik"},{id:"22399",title:"Dr.",name:"Drago",surname:"Resnik",slug:"drago-resnik",fullName:"Drago Resnik"},{id:"22400",title:"Dr.",name:"Borut",surname:"Pečar",slug:"borut-pecar",fullName:"Borut Pečar"}]},{id:"80862",title:"Bionic Type Piezoelectric Actuators",slug:"bionic-type-piezoelectric-actuators",totalDownloads:37,totalCrossrefCites:0,authors:[null]},{id:"81482",title:"A Review of Modeling and Control of Piezoelectric Stick-Slip Actuators",slug:"a-review-of-modeling-and-control-of-piezoelectric-stick-slip-actuators",totalDownloads:38,totalCrossrefCites:0,authors:[null]},{id:"81174",title:"Active Vibration Suppression Based on Piezoelectric Actuator",slug:"active-vibration-suppression-based-on-piezoelectric-actuator",totalDownloads:32,totalCrossrefCites:0,authors:[null]},{id:"80911",title:"Design, Analysis and Testing of Piezoelectric Tool Actuator for Elliptical Vibration Cutting",slug:"design-analysis-and-testing-of-piezoelectric-tool-actuator-for-elliptical-vibration-cutting",totalDownloads:27,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"441704",firstName:"Ana",lastName:"Javor",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/441704/images/20009_n.jpg",email:"ana.j@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors, and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"10198",title:"Response Surface Methodology in Engineering Science",subtitle:null,isOpenForSubmission:!1,hash:"1942bec30d40572f519327ca7a6d7aae",slug:"response-surface-methodology-in-engineering-science",bookSignature:"Palanikumar Kayaroganam",coverURL:"https://cdn.intechopen.com/books/images_new/10198.jpg",editedByType:"Edited by",editors:[{id:"321730",title:"Prof.",name:"Palanikumar",surname:"Kayaroganam",slug:"palanikumar-kayaroganam",fullName:"Palanikumar Kayaroganam"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"40929",title:"Aldehyde Dehydrogenase: Cancer and Stem Cells",doi:"10.5772/48591",slug:"aldehyde-dehydrogenase-cancer-and-stem-cells",body:'Aldehyde dehydrogenases (ALDH) belong to the oxidoreductase family, which catalyze the conversion of aldehydes to their corresponding acids. As a group of NAD(P)+-dependent enzymes, aldehyde dehydrogenases (ALDHs) are involved in oxidation of a large number of aldehydes into their weak carboxylic acids(Moreb, et al., 2012). ALDH is found in every subcellular region such as cytosol, endoplasmic reticulum, mitochondria, and the nucleus, with some even found in more than one location (Marchitti, et al., 2008).
ALDH is also found in stem cells. During early life and growth, stem cells (SCs) have a spectacular potential to develop into several cell types in the body. In many tissues, SCs behave as a kind of internal repair system, dividing essentially without limit to replenish other cells (Fuchs & Segre, 2000).Stem cells are distinguished from other cell types by two important characteristics: (1) Their unspecialized properties and renewal potencies; and (2) differentiation into other cell types under certain physiologic or experimental conditions(Discher
There are several isoforms of ALDH (ALDH1A1, ALDH1A2, ALDH1A3 and ALDH8A1) that play a role in RA formation by oxidation of all-trans-retinal and 9-cis-retinal in RA cell signaling, which has been related to the “stemness” characteristics of SCs(Marcato, et al., 2011). ALDH1 is better as a marker of breast cancer SCs than CD44+/CD24-(Tanei, et al., 2009). While cellular markers including CD133 have been used to identify tumor SCs, especially for glioblastomas (GBMs) ALDH1 was desrcribed as a marker for the identification of non-neoplastic SCs and tumor stem cells(TSCs)(Corti, et al., 2006, Ginestier, et al., 2007, Huang, et al., 2009).
After CD133- GBMs are characterized to behave as brain TSCs(Beier, et al., 2007). ALDH1 has also been described as a stem cell marker in various solid neoplasms including lung cancer(Jiang, et al., 2009), breast carcinoma(Ginestier, et al., 2007), colorectal cancer(Huang, et al., 2009), and GBM. ALDH1B1 and ALDH1A1 are differentially expressed in normal human tissues. ALDH1B1 is expressed at higher levels than ALDH1A1 in human epithelial cancers. ALDH1B1 was abundantly expressed in adenocarcinomas originating from the tissue and particularly in colonic adenocarcinoma(Chen, et al., 2011).
ALDHbr cells can be detected with ALDEFLUOR reagent by using flow cytometry or fluorescent microscopy. Aldefluor assay is based on the conversion of fluorescent non-toxic substrate for ALDH substrate to the fluorescent reaction product. Non-toxic substrate for ALDH can freely diffuse into intact, viable cells. The BODIPY aminoacetaldehyde is converted to the fluorescent product BODIPY aminoacetate by ALDH activity. These cell populations, which are known as ALDH bright (ALDHbr) cells are isolated from adult tissues by flow sorting. ALDHbr cells were also found in various cancer tissues including breast, liver, colon, pancreas, prostate, lung, ovarian and acute myelogenous leukemia and are related to cancer chemo resistance(Siclari & Qin, 2010).
ALDHbr population may play an important role in regenerative medicine. The regenerative potential of ALDHbr cells obtained from different tissues was investigated in various disease models such as ischemic tissue damage, hind limb model, brain damage (spinal motor atrophy, etc.) and pancreatitis.
Thus, as mentioned above, ALDH is an important enzyme for cancer and stem cells. This chapter aims to represent the important role of aldehyde dehydrogenases in stem cells, cancer stem cells, therapy and regenerative medicine.
Aldehydes are formed in various physiological processes such as catabolism of transmitters like GABA, serotonin, adrenaline, noradrenaline and dopamine, as well as catabolism of amino acids. In addition, there are more than 200 different aldehydes that are produced through lipid, and aldehydic intermediates through carbohydrate metabolism. Along with these endogenous aldehydes, there are also exogenously present aldehydes in a variety of industrial processes, including the production of polyester plastics (formaldehyde, acetaldehyde, acrolein, etc.), polyurethane, smog, cigarette smoke or motor vehicle exhaust. With their malodorous properties, some dietary and aromatic aldehydes are accepted as additives in food and cosmetics (e.g., citral, cinnamaldehyde, benzaldehyde, and retinal), though many others are cytotoxic (Chen, et al., 2010). Aldehydes could interact with thiol compounds of some proteins, leading to structural and functional alterations of these molecules(Weiner, et al., 2008). In order to protect the human body from the deleterious effects of aldehydes in general, and myocardium and the brain in particular, a fast aldehyde detoxification mechanism is essential. Aldehydes are significantly reactive and possess high diffusion capacities in cells, thus they can easily form complexes with DNA, proteins and lipids, of which they can alter the function and cause their inactivation. As a result of DNA damage induced by these complexes, many aldehydes are classified as mutagenic or carcinogenic, including acetaldehyde, which is derived from ethanol consumption. Over–consumption of ethanol has been related to liver disease and several gastrointestinal and upper aerodigestive cancers. Numerous other cytotoxic and reactive aldehydes have been shown to be linked with other types of diseases (Hofseth & Wargovich, 2007, Perluigi, et al., 2009, Chen, et al., 2010).
Aldehyde dehydrogenases [EC 1.2.1.3;
The human genome contains 19 ALDH functional genes and 3 pseudogenes(Black, et al., 2009). At least 5 ALDH isozymes function in the mitochondria,and all the ALDH genes are encoded in the nucleus (Chen, et al., 2010).
All of the ALDH gene superfamily plays an important role in the enzymic detoxification of endogenous and exogenous aldehydes. They are also involved in the formation of molecules that are important in cellular processes like RA, betaine and gamma aminobutyric acidformation. Furthermore, ALDHs also have several non-enzymic functions such as binding to some hormones and other small molecules and decreasing the effects of ultraviolet irradiation in the cornea(Pappa, et al., 2003, Wymore, et al., 2004). The most important role of ALDHs is detoxification of aldehydes, which caused cytotoxicity, mutagenicity, genotoxicity, and carcinogenesis in healthy cells. Mutations in ALDH genes cause severe diseases including Sjögren-Larsson syndrome, pyridoxine-dependent seizures, and type II hyperprolinemia, and also plays a role in cancer and Alzheimer\'s disease (Black, et al., 2009).
Functions of some of these ALDHs in endobiotic and xenobiotic metabolisms have been highly reviewed before and the distinctive metabolic pathways\' influences have been depicted. Because of their chemical reactivity, many distinct aldehydes are pervasive in nature and are toxic at low levels. Hence, levels of metabolic-intermediate aldehydes should be cautiously regulated. The presence of several distinct ALDH families in most studied organisms seem to have wide fundamental tissue distribution. A wide range of allelic variants within the ALDH gene family have been identified, leading to heterogeneity in pharmacogenetic characteristics between individuals, resulting distinctive phenotypes including intolerance to alcohol and increased risk of ethanol-induced cancers in most cases (ALDH2 and ALDH1A1), Sjogren-Larson Syndrome (ALDH3A1), type II hyperprolinemia (ALDH4A1), 4-hydroxybutyric aciduria, mental retardation and seizures (ALDH5A1), developmental delay (ALDH6A1), hyperammonemia (ALDH18A1), Pyridoxine-dependent epilepsy (ALDH7A1), and late-onset Alzheimer’s disease (ALDH2).
ALDH dysfunction could also be caused by drugs and environmental substances, substrate inhibition, as well as oxidative and metabolic stress. ALDH activity in drug resistance to oxazaphosphorines is one of the most vigorously studied pathways. The role of ALDH1A1 in drug resistance has been studied first in hematopoietic progenitors and more recently in lung cancer(Marchitti, et al., 2008).
During early life and growth, SCs have a spectacular potential to develop into several cell types in the body. In many tissues, SCs behave as a kind of internal repair system, dividing essentially without limit to replenish other cells(Weissman, 2000). Stem cells are distinguished from other cell types by two important characteristics: First, they are unspecialized cells and, sometimes after long periods of inactivity, they can renew themselves through cell division;second, under certain physiologic or experimental conditions, they are naturally sensitive to their environment, responding to chemical, physical, and mechanical features of their matrices or substrates(Discher
Until recently, scientists primarily worked with two kinds of SCs from animals and humans: embryonic SCs and non-embryonic "somatic" or "adult" SCs (Feng, et al., 2009).
In 1981, scientists discovered ways to derive embryonic SCs from mouse embryos. In 1998, a detailed study of the biology of mouse SCs led to the discovery of a method to derive SCsfrom human embryos and grow the cells in the laboratory, and these cells are called human embryonic SCs.
In 2006, genetically "reprogrammed" stem-cell-like cells were identified by using specialized adult cells. This new type of stem cell is called induced pluripotent SCs (iPSCs)(Krishna, et al., 2011).
Cancer is a class of diseases characterized by unregulated cell growth(Deisboeck, et al., 2011). Cancer initiation depends on genetic mutations in series that affects cellular programming. Many cancer researches have focused on the identification and characterization of these genetic and molecular properties of cancer cells(Balmain, et al., 2003). Tumors are also heterogeneous cellular entities whose growth is dependent upon dynamic interactions among the cancer cells themselves, and between cells and the constantly changing microenvironment (Bissell & Radisky, 2001). That kind of interaction is depent on signaling through cell adhesion molecules and different cell responses to growth factors and other external signals. All of these interactive processes act together to control cell phenotypic behaviors such as proliferation, apoptosis, and migration. There are over 100 different types of cancer, and each is classified by the type of cell that is initially affected (Lakshmi Prasanna & Sathish Kumar, 2011).
According to recent statistics, cancer accounts for about 23% of the total deaths in the USA and is the second most common cause of death after heart disease (Jemal
Cancer is caused by many internal and external factors. Inherited mutations, hormones, and immune conditions are internal factors while tobacco, diet, radiation, and infectious organisms are environmental/acquired factors (Kalluri & Weinberg, 2009, Nagy
One potential human CSC marker is the membrane antigen CD133 (Prominin) identified in subpopulations of cells in brain, colon and lung tumors (Singh, et al., 2004, Ricci-Vitiani, et al., 2007, Eramo, et al., 2008). CD133+ tumor cells are also a marker identifying lung CSCs (Wang, et al., 2008, Salnikov, et al., 2010).
The expression and activity of ALDHs is determined as another potential CSC marker (Ginestier, et al., 2007). ALDH1 is a marker of normal and malignant human mammary SCs and a predictor of poor clinical outcome(Huang, et al., 2009). Aldehyde dehydrogenase enzymes participate in cellular detoxification, differentiation and drug resistance through the oxidation of cellular aldehydes (Moreb, et al., 1996).
The functional activity of ALDH has been widely used to identify and isolate CSCs found in the bone marrow(Ran, et al., 2009), breast(Ginestier, et al., 2007), lung (Ucar, et al., 2009), ovary (Deng, et al., 2010), colon(Huang, et al., 2009), prostate(van den Hoogen
The derivation of SCs from adult tissues, their relative ease of isolation and enormous expansion potential in culture make them attractive therapeutic candidates (Prockop, et al., 2010). These cells are identified by their expression of a particular panel of surface molecules, with the presence of CD73, CD90, CD105, and the absence of CD14, CD34, CD45, and HLA-DR. They show no proliferative response from alloreactive lymphocytes because of the negligible levels of extracellular MHC class I and II determinants. SCs also have important immunomodulatory functions in all the cells involved in both the innate and adaptive immune responses (Nauta & Fibbe, 2007).
In theory, ALDH isozymes including ALDH1A, ALDH1A2, ALDH1A3, and ALDH3A1, which are involved in drug resistance and RA formation, are vital in protecting SCs against toxic endogenous and exogenous aldehydes and for SCs\' ability to differentiate, respectively. It is unknown what ALDH isozymes are responsible for the ALDH activity that are used to identify stem cell progenitors. In the overlap gene profile of different stem cell populations, ALDH7A1, known as antiquitin, and ALDH2 were identified, consequently, and are worthy of further investigation. There is more about ALDH to be explored as a cause of its full physiological function has remained elusive. ALDH7A1 is a green pea 26g protein, which has function in regulation of turgor pressure, and has ≥50% amino acid identity with the 3 pseudogenes in the ALDH family. It also has 69% equity with ALDH2, but nevertheless has considerably lower affinity for acetaldehyde than ALDH2. However, ALDH2, which is a mitochondrial enzyme, has been widely studied mostly for its affilitation with ethanol metabolism. Yet, there might be an extent of confusion as to how ALDH2 is associated in gene profiling studies. According to the nomenclature, this enzyme indeed is ALDH1A, related to a series of events linked to the development of dopaminergic neurons through its ability to produce RA. It was reported that ALDH2 or AHD2 expression changes during differentiation of NIH-3T3 cells into adipocytes. These studies continue to focus on ALDH1A1’s role in SCs and stem cell differentiation. For hematopoietic stem cell progenitors, ALDH1A1 has been a thoroughly established marker for many years. Reseach on the role of RA in granulocyte differentiation of hematopoietic SCsdiscovered that ALDH1A1 and ALDH1B1catalyze cellular RA synthesis and are expressed in CD34+ hematopoietic progenitors(Russo, et al., 2002, Luo, et al., 2007).They also showed that ALDH1A2 or 1A3 do not show those characteristics. For the differentiation to mature granulocytes, these 2 enzymes\' expressions are necessary, however their expressions are lost once the differentiation is complete. The
The cancer stem cell theory is supported by current evidence in tumor biology, which may also provide a biological reason for the age-related survival difference. The theory demonstrates that CSCs, a small subset of tumor cells with stem cell-like properties such as epithelial-to-mesenchymal progression, are capable of differentiation and self-renewal, after which leads to formation of a heterogeneous tumor cell population. Including aldehyde dehydrogenase-1 (ALDH1) activity, CD44+/CD24-, CD133, and ITGA6, a wide range of putative breast cancer stem cell markers have been proposed. ALDH1 expression has especially demonstrated an assurance of a clinically relevant prognostic marker. In addition, the subset of CSCs is shown to be relatively insusceptible to chemo and radiotherapy by various studies. For this reason, the subpopulation of CSCs can present a statement and a therapeutic target for poor-prognostic, treatment-resistant and recurrent breast cancer. Through its role in oxidizing retinol to RA, which is a modulator of cell proliferation, ALDH1 might have a role in early differentiation of SCs and stem cell proliferation (Mieog, et al., 2012).
It is possible to isolate leukemia SCs depending on the elevated ALDH activity by using the aldefluor assay. In patient samples, the researchers encountered a population of ALDH+ acute myeloid leukemia (AML) cells(Rollins-Raval, et al., 2012). In most cases, the ALDH+ AML cells coexpressed CD34+ (formerly determinedleukemia stem cell marker), and were introduced considerably better than the ALDH- AML cells in immunocompromised mice. In the same year, ALDH+ cells from breast cancers, which had the tumorigenic and self-renewal features of CSCs, were shown to be possibly isolated. This innovative study displayed the potential applicability of quantifying ALDH activity in solid tumors. ALDH activity would be used successfully as a CSC marker for abundant cancers including liver, colon, lung, bone, prostate, pancreatic, head and neck, thyroid, bladder, brain, cervical and melanoma in the proceeding years. With one exception of a current study for melanoma, 35 demonstrate growing evidence recommending ALDH’s activity to be a universal CSC marker. Nonetheless, as amounted by the aldefluor assay in various tissues and cancers, the cause of ALDH activity may differ. Essentially, determination of specific ALDH isoforms carried out commonly in certain cancers might haveprognostic suitability. Besides their valuable function in detoxification of aldehydes, ALDHs carry out other functions such as serving as binding proteins for various molecules (e.g., androgens and cholestorol), potentially act as antioxidants by NAD(P)H production, ultraviolet light absorption and/or hydroxyl radical scavenging and ester hydrolysis.
Lastly, several isoforms (ALDH1A1, ALDH1A2, ALDH1A3 and ALDH8A1), take place via RA formation by oxidation of all-trans-retinal and 9-cis-retinal in RA cell signaling, which has been related to the “stemness” characteristics of CSCs. Consequently, its supported by widening evidence that ALDH may be more than just a CSC marker and have an accomplishable role in CSC biology(Marcato, et al., 2011).
ALDH proteins can be found in every subcellular region such as cytosol, endoplasmic reticulum, mitochondria, and the nucleus, with some even found in more than one location. ALDH isozymes found in organelles besides cytosol carry signal or leader sequences that make their translocation to specific subcellular regions possible. After translocation or import, while nuclear and microsomal signals remain intact, mitochondrial sequences might be removed (causing mature proteins to be shorter). Most of the ALDHs have a large tissue distribution and show distinct substrate specificity (Marchitti, et al., 2008).
These data suggest that for the therapeutic amplification of HSCs, ALDH1A1 inhibition could potentially be used(Marchitti, et al., 2008, Moore, et al., 2009).
ALDH1A2 is a cytosolic homotetramer expressed in several embryonic and adult tissues such as brain, kidney, intestine, testis, liver, retina, lung. As ALDH1A1, ALDH1A2 also catalyzes the reaction in which both all-
Taking action in several developmental processes, ALDH1A2 might be a key regulator of RA synthesis in developing tissues. Due to defects in early heart morphogenesis,
ALDH1A3 is a cytosolic homodimer that participates in RA synthesis, oxidizes both all-
It’s been shown that ALDH1A3 takes part in the development of the eye, nucleus accumbens and olfactory bulbs, the forebrain, hair follicles and the cerebral cortex.
ALDH1A3 deficiency has been shown to play a critical role in cancer by a number of studies. For instance, in human breast cancer MCF-7 cells, ALDH1A3 expression is downregulated, whereas in cultured human colon cancer cells,
ALDH2 is a tetrameric enzyme expressed profusely in lungs and liver; it is also present in organs that obligate high mitochondrial capacity for oxidative ATP generation including heart and brain. Apart from that, ALDH2 is also important in the aldehydic substrate oxidation such as 4-HNE, acrolein, and short-chain, aromatic or polycyclic carbons. To add to its dehydrogenase activity, depending on the substrates, ALDH2 can function as an esterase and reductase. More recent attention has also been focused on ALDH2 in regards to its function in the biotransformation of nitroglycerin, reducing it to 1,2-glyceryl dinitrate for the production of nitric oxide, which is a critical vasodilator (Chen, et al., 2010).
ALDH7A1 is a homotetramer that\'s expressed in a large number of tissues; in rat heart, liver and kidney, increased levels of ALDH7A1 are noted, whereas in black seabream fish (sbALDH7A1), ALDH7A1 is significantly formed in the liver and the kidney, excluding the heart. In human fetal tissues, ALDH7A1 has been encountered at elevated levels in the cochlea, eye, ovary, heart and kidney. In contrast, balanced levels are detected in the liver, spleen, muscle, lung and brain.
Human ALDH7A1’s primary role happens in the pipecolic acid pathway of lysine catabolism, in which it catalyzes the oxidation reaction of alpha-aminoadipic semialdehyde (AASA) (
Remarkably, ADH7A1 expression in the cochlea of the ear, the region dependent on the healthy upkeep of internal hydrostatic pressure, clarifies that mammalian ALDH7A1 might have an accomplishable function in osmotic regulation and in hearing disorders. However, no connection has been revealed yet, including patients with the inner-ear disorder Ménière\'s disease, which effects hearing and balance.
ALDH7A1 is notably and differentially expressed within the first and second meiotic stages of porcine oocyte development. Screening of the promoter region
Adenocarcinoma is an epithelium cancer that is generated from glandular tissue. Epithelial tissue includes, but is not limited to, the surface layer of skin, glands and a variety of other tissues that line the cavities and organs of the body. Epithelium can be derived from the three germ layers ectoderm, mesoderm and endoderm during embryologic period. Adenocarcinoma classification depends on not only being a part of the gland, but also depends on having the same secretory characteristics. But, this form of carcinoma can occur in some higher mammals, including humans (Fauquier, et al., 2003).
Adenocarcinomas can arise in many tissues of the body due to the ubiquitous nature of glands within the body. While each gland may not be secreting the same substance, as long as there is an exocrine function to the cell, it is considered glandular and its malignant form is therefore named adenocarcinoma. Endocrine gland tumors, such as a VIPoma, an insulinoma, a pheochromocytoma, etc. are typically not referred to as adenocarcinomas, but rather, are often called neuroendocrine tumors. If the glandular tissue is abnormal, but benign, it is called an adenoma. Benign adenomas typically do not invade other tissues and rarely metastasize, whereas malignant adenocarcinomas do both. Colon, urogenital (cervical (Tewari
It is reported that ALDH expression marks pancreatic cancer stem cells. Also, they have mentioned that the enhanced clonogenic growth and migratory properties of ALDH-positive pancreatic cancer cells suggest a key role in the development of metastatic disease that negatively affects the overall survival of patients with pancreatic adenocarcinoma (Rasheed, et al., 2010).
From high-grade, absence of hormone receptor expression to positive HER2 status and the basal-like molecular subtype, the expression of ALDH1 is in direct relation with undesired tumor characteristics in breast cancer (Mieog, et al., 2012).
Breast cancer cells with stem-cell-like properties are suggested to be responsible for metastatic spread. Aldehyde dehydrogenase 1 (ALDH1) and cluster of differentiation 44 (CD44) in addition to RhoC GTPase are among the stem cell markers that are expressed by these cells (Chaterjee & van Golen, 2011).
Breast CSCs were initially isolated, established on cell surface marker with CD24/lowCD44 expression. More currently, ‘‘functional’’ markers depending on stem cell properties are investigated for their plausible applications in the breast CSCs isolation. By this method, applying the aldefluor assay (Stemcell Technologies), originally designed to isolate viable HSCs and is an enzyme-based assay that recognizes ALDH activity, Ginestier et al. isolated breast CSCs. The assay is thought to precisely recognize ALDH isoform ALDH1A1 activity degree. Besides its application as a prognostic and CSC marker, ALDH activity that is primarily carried out by ALDH1A3 might be functional in breast cancer progression.
Expression of genes and tumor sphere formation in self-renewal and differentiation could be changed by adding chemical RA signaling inducers or inhibitors in breast cancer cell lines(Marcato, et al., 2011).
ALDH1 could work as a marker of breast CSCs better than CD44+/CD24-. Though we could not maintain a conclusion that ALDH1 expression was significantly related with any conventional clinicopathologic attributes, nevertheless, there is a compelling relation between ALDH1-positive breast tumors and resistance to neoadjuvant chemotherapy, because of the pCR rates being obtained, which are lower in ALDH1-positive tumors (9.5%) than ALDH1-negative tumors (32.2%). Moreover, after neoadjuvant chemotherapy, a considerable increase in the proportion of ALDH1-positive tumor cells was observed. These results are an indication of ALDH1-positive tumor cells playing an important role in resistance to chemotherapy. Because of tumor cells being more tumorigenic than CD44+/CD24-, tumor cells of breast CSCs are thought to be richer in ALDH1-positive tumor cells than in CD44+/CD24- tumor cells. As a matter of course, we have shown that ALDH1-positive, in contrast with CD44+/CD24-, is closely associated with colony formation in the collagen gel as well. The subset of ALDH1-positive and CD44+/CD24- tumor cells has been reported to contain the largest proportion of breast cancer stem cells (BCSCs); consequently, it is speculated to have the strongest resistantance to chemotherapy. However, in our current study, pCR rates in the ALDH1-positive and CD44+/CD24- high subset (20%, 2 of 10), are not the lowest among all the subsets consisting of the ALDH1-positive and CD44+/CD24- low subset (0%, 0 of 11), the ALDH1-negative and CD44+/CD24- high subset (34.1%, 15 of 44), and the ALDH1-negative and CD44+/CD24- low subset (30.2%, 13 of 43). Adding CD44/CD24 status to ALDH1 status does not seem to positively improve the prediction of response to chemotherapy. Together, these results direct us to assume that, at least for the prediction of resistance to chemotherapy, ALDH1-positive tumor cells serve as a better marker for BCSCs than CD44+/CD24- tumor cells. Because such tumors contain a higher proportion of CSCs, we suppose that ALDH1- positive tumors are resistant to chemotherapy. However, because ALDH1 has been shown to play an important role in the resistance to chemotherapy in hematopoietic cells, ALDH1-positive tumor cells might be involved in resistance to chemotherapy, regardless of whether they are CSCs or not. In addition to deeper illumination of ALDH1’s function in chemotherapy resistance in breast cancers, obtaining a significantly specific marker for BCSCs is necessary to enlighten an authentic role of BCSCs’ chemotherapy resistance.
ALDH1-positive, in contrast to CD44+/CD24-, was tremendously related to sequential paclitaxel- and epirubicin-based chemotherapy resistance, and the expression of ALDH1 increased after neoadjuvant chemotherapy, which stands for an indication of BCSCs, determined by ALDH1, indeed having played a significant role in chemotherapy resistance. This means that ALDH1-positive appears to be a better marker than CD44+/CD24- in identifying BCSCs, at least for the prediction of resistance to chemotherapy(Tanei, et al., 2009).
Each year, approximately 171,000 new cases of lung cancer are diagnosed, and 160,000 individuals do not survive from the disease in the United States. This high incidence and mortality makes lung cancer one of the most common cancers and the leading cause of cancer death in men. Lung cancer is still the leading cause of death from malignant diseases worldwide in spite of the advances in surgical treatment and multimodality treatments(Hibi, et al., 1998).
Cancer stem cells have attributed resistance of a smaller fraction of cells in the tumor bulk against chemotherapeutics. The isolation of CSCs is important for these reasons and have been isolated using a variety of stem cell markers and phenotypes. CD133 has recently been reported to identify tumor-initiating cells in non-small cell lung cancer (NSCLC). ABCG2 is also a stem cell marker of a variety of tissues and transporter responsible for the multidrug-resistance phenotype. However, it was demonstrated that many cells in NSCLC and SCLC cell lines show tumorigenic potential, regardless of ABCG2 and CD133 expression. Recently, ALDH activity has been used for isolation of these kinds of cells. Normal SCs were shown to contain higher levels of ALDH activity than their more differentiated progeny. ALDH-positive cells of tumors have higher proliferation rates, migration and adhesion ability, and metastatic potential than ALDH-negative cells. This may occur because that RA product of ALDHs is thought to participate in cellular differentiation and stem cell self-protection (Serrano, et al., 2011).
Epithelial ovarian cancer is the sixth most common cancer in women worldwide and it is still the most lethal gynecologic malignancy (Iorio, et al., 2007). Application of new technologies for detection of ovarian cancer could have an important effect on public health, but to achieve this goal, specific and sensitive molecular markers are essential (Petricoin
Pancreatic adenocarcinoma is a highly lethal disease, which is usually diagnosed in an advanced state, and for which there is little or no effective therapies (Li, et al., 2007). Therefore, finding markers to detect a malignant cell transformation at an early stage is very important. Researches demonstrated that the pancreas possesses ALDH activity, and ALDH is also present in the pancreatic cancer cells. Different from other cancer tissues (such as ovarian and lung cancer), the activity of ALDH does not differ in pancreatic carcinoma tissue compared to normal pancreatic tissue. Additionally, serum levels of ALDH were not significantly elevated in patients with pancreatic cancer in comparison to healthy controls (Jelski, et al., 2011).
The latest estimates of global cancer incidence show that prostate cancer has become the third most common cancer in men, with half a million new cases each year, constituting almost 10% of all cancers in men (Quinn & Babb, 2002). Identifying the origin of cells in prostate cancer and its distant metastases may be important for the improvement of more effective treatment strategies and preventive therapies. Measurement of ALDH activity provides great contribution to functional identification and characterization of normal SCs and their malignant counterparts. ALDH activity is important for drug resistance, cell proliferation, differentiation, and response to oxidative stress of prostate cancer like other important cancers.
ALDH enzyme activity is used for the isolation of “stem-like” cells based on a developmentally conserved stem/progenitor cell function. In a study, high ALDH activity was used to isolate human prostate cancer cells with significantly enhanced clonogenic and migratory properties both
Although high expression of ALDH7A1 is shown in prostate cancer cell lines, primary cultures, and in primary prostate cancer tissue and matched bone metastases, ALDH3A2 and ALDH18A1 are not observed high ALDH activity in human prostate cancer(van den Hoogen
Glioblastoma (GBM) is the most common primary brain tumor in adults with an approximately 15-month survival(Stupp, et al., 2005). Although there are several studies to improve the postoperative therapeutic applications within the last few years, there is not enough succes for this highly aggressive tumor. After resection, radiation, and chemotherapy regimens, relapses occur regularly. Thus, it is thought that this can be a clue to the presence of tumor stem cells (TSCs). This cellular subfraction within GBM causes continuous tumor growth and resistance to drugs and radiation (Rasper, et al., 2010). TSCs are believed to nestle in the tumor, keeping it alive and growing, providing pluripotency, self-renewal, and resistance to chemo and radiation therapy(Reya, et al., 2001). The first malignancies from which cells could be isolated and showed the potential to self-renew and to drive tumor formation and growth were leukemias(Bonnet & Dick, 1997). After that, a stem cell subfraction was described in brain tumors(Singh, et al., 2003). This was the first study that identified and showed a population with stem cell properties in pediatric solid brain tumors. Those cells were identified by their ability to proliferate under serum-free cell culture conditions and by the expression of CD133 and nestin. CD133 has long remained the most important TSC marker in malignant glioma. On the other hand, ALDH1 is a cytoplasmatic stem cell marker in a variety of malignant tumors and catalyzes the oxidation of intracellular aldehydes including the transformation of retinol to RA. As mentioned above, RA is a modulator of cell proliferation and differentiation that possibly contributes to the maintenance of an undifferentiated stem cell phenotype. Jones et al. presented a method to isolate human cells via flow cytometry depending on the amount of cytosolic ALDH(Jones
Therefore, identification and isolation of these cells seem crucial for a better understanding of tumor behavior, origin, and therapy. Recently, ALDH1 has been described as a marker for the identification of non-neoplastic SCs and TSCs(Ginestier, et al., 2007).
So far, cellular markers including CD133 have been used to identify TSCs in GBMs, but recently, CD133-negative GBMs are characterized to behave as brain TSCs (Beier, et al., 2007).
Therefore, ALDH1 has also been described as a stem cell marker in various solid neoplasms including lung cancer(Jiang, et al., 2009), breast carcinoma(Ginestier, et al., 2007), and colorectal cancer(Huang, et al., 2009) and GBM(Rasper, et al., 2010).
Most colon cancers are adenocarcinomas that release mucus and other cellular secretions. In the United States in 2012, estimated new cases and deaths from colon and rectal cancer are reported as: 103,170 colon cancers and 51,690 deaths(Levin
ALDHbr (ALDH-bright) cells can be detected with ALDEFLUOR reagent by using flow cytometry or fluorescent microscopy. These ALDHbr cell populations are isolated from adult tissues by flow sorting.
ALDH activity was shown in human and mouse bone marrow hematopoietic progenitor cells (HPCs) by Jones et al. for the first time (Jones
Stem and progenitor cells are identified as cells with low side scatter and high expression of ALDH. DEAB allows to distinguish between ALDH-bright cells and cells with low ALDH activity. Generally, 105-106 cells are suspended in Aldefluor assay buffer containing BODIPY aminoacetaldehyde with/without DEAB. Aldefluor was excited at 488 nm and fluorescence emission was detected at 530/30 (van den Hoogen
Intracellular ALDH enzymes are responsible for oxidizing aldehydes to carboxylic acids in the cell. ALDHbr cells from different tissues express high ALDH activity and have progenitor cell activity (Gentry, et al., 2007). Firstly, HSC were defined as
ALDHbr cells were found in various cancer tissues including breast, liver, colon, and acute myelogenous leukemia and related with cancer chemo resistance. Human and murine HSCs and neural stem and progenitor cells have increased ALDH activity compared to non-stem-cells (Siclari & Qin, 2010).
Therefore, recently the importance of ALDH activity in normal and malignant stem cell functions, and the potential diagnostic and therapeutic implications gain importance (Moreb, 2008).
The Aldefluor® Assay. Firstly, ALDH positive cell will uptake BODIPY-aminoacetaldehyde by passive diffusion and then convert BODIPY-aminoacetaldehyde into BODIPY-aminoacetate. Then BAAis retained inside cells, causing the subset of ALDHhi cells to become highly fluorescent (
Until today, studies showed that BM ALDHbr populations may be useful in several cell therapy applications (Gentry, et al., 2007). According to this information, ALDHbr population may play an important role in regenerative medicine owing to RAs ALDH product(Balber, 2011). Retinoic acids could influence tissue repair by binding to transcription factors and regulating developmental programs, especially ALDH1A1 and ALDH3A1 of enzyme isoforms that produce RAs from oxidize retinaldehyde(Moreb, 2008).Therefore, ALDH1a1 and ALDH1A3 may influence cell activity and proliferation by controlling intracellular retinoid concentrations and play important roles in stem cell biology (Balber, 2011).
The studies about value of ALDHbr cells in regenerative medicine were conducted by different researchers. The regenerative potential of ALDHbr cells obtained from different tissues were investigated in various disease models such as ischemic tissue damage hind limb model, brain damage and pancreatitis (Balber, 2011).
In the beginning of studies, ALDHbr cells were obtained from bone marrow and umbilical cord blood and normal peripheral blood (Sondergaard
Manipulation of the graft to selectively concentrate or expand hematopoietic and/or neural stem cells prior to transplant may be a potential strategy in the future. UCBT using ALDH bright cells from the CB units have shown faster and higher engraftment in preliminary study and is being explored further (Prasad & Kurtzberg, 2010).One of these studies showed that human cord blood progenitors with high ALDH activity improve vascular density in a model of acute myocardial infarction. In this study, ALDHbr cells were homed to the infracted anterior surface of the heart, while ALDH-low cells were in the spleen after intravenously administration.
Another study with animal model of hindlimb ischemia demonstrated that the isolated ALDHbr cells effectively restored blood flow to ischemic areas by mediation of local formation of new blood vessels with largeer diameter and increasing capillary density even if there was no improvement in cardiac functions(Keller, 2009).
The reason for the restoration of tissue perfusion by ALDHbr cells were attempted to be explained with angiogenic properties of these cell groups. Angiogenic factors secreted by transplanted ALDHbr cells stimulate formation of new blood vessels at sites of ischemic injury(human cord blood progenitors with high ALDH activity improve vascular density in a model of acute myocardial infarction). Paracrine mechanisms of ALDHbr cells can protect endothelial cells from ischemic damage and respond to ischemic tissue damage(Balber, 2011, White, et al., 2011).
Another exciting finding is that ALDHbr cells improve formation of new vessels and increase capillary density, while ALDHbr cells together with ALDH-low cells did not restore tissue perfusion at all. It is suggested that ALDH-low cells can inhibit the homing and/or angiogenic activity of ALDHbr cells. This situation showed the importance of isolating ALDHbr cells from bone marrow tissue for therapeutic uses (Balber, 2011). As a result, ALDHbr cells may be promising for patients with ischemic heart failure and critical limb ischemia(Keller, 2009).
Neural Tissue | Rat embryonic neural tube Fetal mouse brain Subventricular and subcortical zones of adult mouse brain | Ability to form neurospheres and retained multipotency Transplantation significantly ameliorated disease progression and extended life, but did not rescue the animals. |
Skeletal Muscle | Biopsies or primary explants of human skeletal muscle | Strong myogenic potential on IM transplantation |
Mammary Epithelium | Mammary epithelium | Myoepithelial, luminal epithelial and mixed colonies, and ducts, when transplanted into mammary fat pads. |
Pancreatic Cells | Central acinar/terminal duct cells from peripheral acinar duct units of adult mice | Contributed to both exocrine and endocrine lineages in the developing pancreas |
Prostate Epithelium | - | Express basal epithelial and characteristic prostate progenitor cell markers |
Corneal Limbic Cells | Cadaveric human limbic tissue | Protects the cornea from oxidative damage |
Different tissue repair models including human ALDHbr cells (Balber, 2011).
Since ALDH enzyme has been proven to possess a vital role in somatic cells and their deficiency cause various diseases, research has focused on the presence and functions of the enzyme in SCs. It was demonstrated that ALDH is an important marker for identification of SCs and has several functions in these cells just as they possess in somatic cells.
Exploring some of the isoforms of ALDH for use as a marker of CSCs improved the importance of ALDH. Thus, there are several methods to detect ALDHs and their levels (Marcato, et al., 2011).After the discovery of ALDH activity in human and mouse bone marrow hematopoietic progenitor cells (HPCs) by Jones et al. (Jones
Recently, ALDHbr cells were found in cancer tissues including breast, liver, colon, and acute myelogenous leukemia. It was demonstrated that proliferation rates, migration and adhesion ability, and metastatic potential of ALDHbr CSCs were more than ALDH low cells and ALDHbr cells related with cancer chemo resistance. ALDHbr cells became one of new therapeutic target against cancer and anti-cancer studies based on targeting ALDHbr cells have started recently(Serrano, et al., 2011). It is expected that the anti-cancer studies with this perspective may intensively continue.
On the other hand, studies showed that BM ALDHbr populations may be useful in several cell therapy applications (Gentry, et al., 2007). It is suggested that ALDHbr population may play an important role in regenerative medicine owing to Ras, which are one of the ALDH products. Paracrine effects of products of ALDH activity may influence tissue repair by binding to transcription factors and regulating developmental programs(Balber, 2011).
Therefore, regenerative potential of ALDHbr SCs were investigated in various disease models such as ischemic tissue damage hind limb model, brain damage and pancreatitis(Balber, 2011).
Studies on ALDHbr cells provide restoration of tissue perfusion and stimulation of formation of new blood vessels in ischemic tissue damage (Keller, 2009). These promising findings showed that ALDHbr cells may gain importance in different areas; however, there are still many things to investigate about potential properties of ALDHbr cells for use in regenerative medicine. Thus, ALDH have many roles such as a marker of many disease and cell lines for detection of them also can using for therapy and have potential for use in regenerative medicine.
However, there are few studies about ALDH as a marker of SCs and potential usage in regenerative medicine. Therefore, we suggested that studies should focus on this and this review aims to consider the roles of ALDH in SCs and their potential use in regenerative medicine. We believe that constructing a review including current studies related to this subject will guide future studies.
At the brain level, physiological aging is a natural process that can be associated with the cellular and functional impairment that precedes a decline in cognitive abilities. It is widely accepted that aging is the main contributing risk factor for the onset of dementia, such as Alzheimer’s disease (AD), Parkinson’s disease and Huntington’s disease that trigger pathological aging [1]. Studies suggest that brain aging has considerable interindividual variability [2]. Elucidating the possible genetic and/or environmental factors that can determine these differences seems to be a key point to understand why individuals may or may not trigger cognitive impairment and/or dementia. In 2015, the estimated number of people with dementia was 50 million, and the figure is projected to reach 82 million in 2030 [3]. The total cost of dementia worldwide was estimated at US$ 818 billion, which is equivalent to 1 .1% of world gross domestic product (GDP) [4], evolving into a relevant problem in global public health. A genetic analysis based on a cohort study suggested that about 75% has cognitive ability variations from childhood to old age due to environmental factors [5]. Nowadays, diets high in saturated fats, refined sugars and a sedentary lifestyle are determining factors in the development of a metabolic syndrome (MetS) such as obesity, hyperglycemia, dyslipidemia, type 2 diabetes and hypertension [6]. These factors induce an impact on various systems, including the central nervous system, thus increasing the risk of cognitive impairment and/or disorders associated with dementia [7].
Evidence shows the association between MetS and dementia, where subjects with MetS are 11.48 times more likely to develop AD compared to those without a metabolic syndrome [8]. A study carried out in China on a cohort with mild cognitive impairment found that the presence of three or more components of a metabolic syndrome increased fourfold the risk of Alzheimer’s and two times only with the presence of diabetes [9]. Similarly, several studies on patient cohorts have shown that other MetS components such as abdominal obesity, hypercholesterolemia and hypertension were risk predictors of cognitive impairment and AD [10].
An explanation about the connection between a metabolic syndrome and dementias can be found in some studies. For example, type 2 diabetes can trigger Alzheimer’s through hyperglycemia, which induces glutamate excitotoxicity in neurons; Furthermore, insulin resistance can contribute to β-amyloid accumulation, tau phosphorylation, oxidative stress, the formation of advanced glycation end products (AGEs) and apoptosis [11].
As life expectancy increases, the population is exposed to risk factors for longer periods of time, which may further increase the likelihood of developing dementia. In this regard, there is an increasing demand for strategies aimed at reversing the consequences of aging and its risk factors over cognitive impairment and/or dementia.
Glucose becomes the main energy demand for the brain during development. However, as time goes by, the risk of suffering from an altered energy metabolism due to the exclusive dependence on this substrate increases the pathophysiological context in the brain [12]. On the other hand, the existence of alternative energy substrates such as lactate [13] or ketone bodies [14, 15] may be beneficial for brain metabolism, thus reversing the consequences of cognitive impairment [16, 17, 18]. Lifestyles that include nutrition-based bioenergetic challenges such as caloric restriction, fasting, and ketogenic diet favor β-oxidation to produce ketone bodies that enhance synaptic plasticity, which correlates with the recovery of cognitive processes such as learning and memory [19, 20].
This chapter will study the changes in brain metabolism induced by substrates such as glucose, lactate, and ketone bodies in the context of physiological and pathological aging. Further discussion will focus on how nutritional interventions operate as metabolic modulators and neuroprotectors during physiological and pathological aging. The main interest of this section is to position the brain energy metabolism as an “energy switch” that determines the switch between physiological aging and pathological aging.
The human brain represents ~2% of total body mass and is the largest source of energy consumption, accounting for more than 20% of total oxygen metabolism [21], where neurons are estimated to consume between 75% and 80% of the energy produced in the brain [22]. This energy is primarily used at the synapse and a large proportion is spent on restoring neuronal membrane potentials after depolarization [23]. Therefore, normal brain function requires metabolic regulation from a single synapse level to a regional level. Neurons can use the following substrates as energy fuel: glucose, lactate, acetoacetate (AcAc) and β-hydroxybutyrate (βHB).
Glucose uptake by the brain primarily starts at the blood-brain barrier (BBB). The BBB is made up of endothelial cells interconnected by tight junctions that inhibit the entry of water-soluble molecules. Passive diffusion is limited to gases and small nonpolar lipids. The rest of the nutrients need glucose transporters and monocarboxylate transporters [24, 25].
In neurons, glucose enters the cell via glucose transporter 3 (GLUT3), which is phosphorylated by hexokinase (HK) to glucose-6-phosphate (G6P) [26], which is then routed into the glycolytic pathway and the pentose phosphate pathway (PPP) [27]. The product of glycolysis is pyruvate that enters the mitochondria were metabolized through the tricarboxylic acid (TCA) cycle and oxidative phosphorylation in the electron transport chain (ETC), generating between 30 and 36 molecules of adenosine 5′-triphosphate (ATP). Pyruvate can also be generated from lactate dehydrogenase 1 (LDH1)-dependent conversion of lactate. In PPP, G6P is converted into 6-phosphogluconate (6PG) which is converted into ribulose-5-phosphate (R5P), with the production of reduced nicotinamide adenine dinucleotide phosphate (NADPH). NADPH is used to regenerate oxidized antioxidants such as glutathione (GSH) and thioredoxin. Neurons are unable to store glucose as glycogen due to constitutive degradation of glycogen synthase (GS) through glycogen synthase kinase 3 (GSK3) phosphorylation and ubiquitin-dependent proteasomal digestion mediated by the malin-laforin complex [28].
There is an astrocyte neuronal coupling where in astrocytes, glucose enters through glucose transporter 1 (GLUT1) and is preferentially stored as glycogen and metabolized through glycolysis. The generated pyruvate is converted into lactate by the expression of lactate dehydrogenase 5 (LDH5) and the inhibition of pyruvate dehydrogenase (PDH)-dependent pyruvate dehydrogenase kinase 4 (PDK4). The presence of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (Pfkfb3) allows astrocytes to generate fructose-2,6-bisphosphate (F2, 6P) which acts as an allosteric modulator of Phosphofructokinase (PKF1) thereby enhancing glycolysis [29].
Many factors likely contribute to age-dependent brain hypometabolism. Studies, for example, show that there is higher BBB permeability in seniors, which may induce a lower intake of nutrients to the neuron and a larger accumulation of proteins such as fibrinogen, immunoglobulins, albumin, thrombin, blood hemoglobin and immune cell infiltration that may produce inflammation [30, 31]. On the other hand, studies on humans and animals show a reduced expression of glucose transporters in the brain with aging [32], as well as changes in the expression of key enzymes involved in glycolysis and oxidative phosphorylation [33].
Approximately 40% of healthy people over the age of 65 experience impairment in different cognitive domains such as working memory, spatial memory, episodic memory, and processing speed [34, 35], which is consistent with a gradual decrease in energy demand as aging progresses [36].
Functional neuroimaging studies have shown that glucose hypometabolism and mitochondrial dysfunction are early indicators of age-related functional changes during normal brain aging. Positron emission tomography (PET) analyzes with 2- [18F] fluoro-2-deoxy-D-glucose (FDG) in human subjects between the ages of 50-80 have revealed age-related decreases in glucose utilization in cortical and hippocampal regions [37]. This 14-year longitudinal study demonstrated that glucose hypometabolism can be observed decades before cognitive impairment becomes even more apparent. On the other hand, NAD levels are determinant of mitochondrial function and ATP production [38]. Studies on normal seniors show increased levels of NADH, with reduced levels of NAD and total NAD [39].
Thus, problems metabolizing glucose and impaired mitochondrial function may be a prelude to cognitive impairment and/or symptoms of dementia. Mouse model studies with reduced GLUT1 levels show an age-dependent decrease in brain capillary density, reduced cerebral blood flow and glucose uptake, and increased BBB leakage [40]. These metabolic and vascular impairments precede dendritic spine loss in hippocampal neurons and its associated behavioral alterations.
Moreover, women with AD have higher levels of amyloid plaques, neurofibrillary tangles, and higher cognitive impairment (at the same stages of the disease) than men. Recent studies show that these effects may be due to an impairment of mitochondrial complex I and an accumulation of glucose-6-phosphate (hexokinase inhibitor and rate-limiting metabolite of the PPP pathway) in AD. Furthermore, studies in mitochondria of astrocytes in the cortex and hippocampus show increased complex II-dependent respiration and increased cytochrome oxidase activity and expression of both nuclear and mitochondrial electron transport chain (ETC) subunits to compensate for metabolic disturbances in AD [41]. These data altogether show an increased female susceptibility to neuronal mitochondrial dysfunction and suggest a compensation to neuronal glucose hypometabolism through the donation of reducing equivalents via succinyl-CoA, thereby feeding succinate dehydrogenase (CII) for brain energy production inducing a neuroprotective mechanism.
Consistent with a deficit in glucose metabolism, G6P accumulation has been reported to affect the enzymatic activity of hexokinase (rate-limiting step of glucose metabolism) [42]. Furthermore, G6P is the rate-limiting substrate of the PPP which is critical for NADPH generation and subsequent detoxification of oxygen free radicals [43], thus connecting glucose hypometabolism and oxidative stress commonly observed in AD.
A recent positron emission tomography (PET) study found that the spatial distribution of aerobic glycolysis correlated with Aβ deposition in individuals with AD. This result suggests a possible link between regional aerobic glycolysis and the subsequent development of AD pathology [44, 45]. In APP/PS1 mice, glucose uptake becomes increased in the cortex and hippocampus compared to control mice. Particularly, an increase in glucose uptake is near plaques rather than in Aβ-free brain tissues, suggesting that glucose uptake may compensate for Aβ deposition [46]. Furthermore, it is presumed that weakened glucose metabolism might be a more accurate marker of neuronal atrophy than Aβ accumulation itself, since it precedes the onset of clinical symptoms in AD. In clinical studies, AD patients show early and progressive reductions in glucose metabolism in cortical and hippocampal regions. In contrast, increased glucose transport to neurons can rescue the neuronal toxicity of Aβ [47]. There actually is brain glucose deficit and hypometabolism in AD patients, which may further worsen energy insufficiency and accelerate Aβ-induced neurodegeneration.
Risk factors such as MetS in adulthood are a risk indicator for impaired brain metabolism which trigger the same metabolic effects as in pre-asymptomatic patients risking Alzheimer’s. Analysis of 1H magnetic resonance spectroscopy scanning in the occipital lobe of 9 healthy participants; 10 obese nondiabetic participants; and 6 poorly controlled, insulin- and metformin-treated type 2 diabetes mellitus (T2DM) it was measured the change in intracerebral glucose levels during a 2-hour hyperglycemic clamp (glucose ~220 mg/dl). The change in intracerebral glucose was significantly different across groups. Individuals with obesity and those with T2DM had significantly reduced increments in brain glucose concentrations compared with controls (healthy 1.46 ± 0.1 mmol/l vs. obese 1.06 ± 0.06 mmol/l vs. T2DM 0.71 ± 0.1 mmol/l). Individuals with poorly controlled T2DM showed a further blunting of brain glucose levels compared with obese individuals 1.46 ± 0.1 mmol/l vs. obese 1.06 ± 0.06 mmol/l vs. T2DM 0.71 ± 0.1 mmol/l). Individuals with poorly controlled T2DM showed a further blunting of brain glucose levels compared with obese individuals [48].
Lactate trafficking among astrocytes and neurons is mainly mediated by monocarboxylate transporter 2 (MCT2), which provides lactate uptake in neurons [49], and monocarboxylate transporter 4 (MCT4), which provides lactate release from astrocytes [49]. Both transporters serve vital functions necessary for memory formation and synaptic transmission in the hippocampus [50]. In an AD model, MCT2 and lactate levels were found to be reduced in the cerebral cortex and the hippocampus [51]. Hence, the alteration of these transporters could reduce lactate uptake into the neuron, further compromising energy metabolism and inducing cognitive impairment.
Glycogen is primarily stored in astrocytes, since its accumulation in neurons can induce apoptosis, thereby increasing the probability of suffering from dementia [52, 53]. Therefore, under physiological conditions, neurons inhibit their storage across the laforin-malin complex. Laforin is an enzyme that promotes glycogen storage but, in combination with malin, it stimulates proteasomal degradation of glycogen synthase. In the hippocampus of aged animals, Laforin becomes increased five-fold compared to adult mice and could induce increased glycogen synthesis in aged animals, which would be detrimental to neurons [54, 55].
In order to meet the energy demand of the brain, the system can generate more efficient compensatory mechanisms for quick energy production by either reducing the number of transporters in neurons or increasing the number of transporters in astrocytes.
In a study using proteomics, immunofluorescence, and qPCR in aged animals, glycogen phosphorylase (PYG), glycogen-degrading enzyme, was found to have increased its activity in hippocampal neurons, leading to a decrease in memory consolidation [56]. On the other hand, a decreased glycolytic capacity of astrocytes, along with a decrease in the number of suitable transporters for lactate secretion (MCT1) would balance the increased neuronal production of this compound, and the astrocytes would use the lactate produced by neurons to fuel. This could be a protective mechanism against neurodegeneration in the aged hippocampus.
Lactate is produced in neurons through neuronal lactate dehydrogenase (LDH) activity [57]. Native LDH consists of 4 LDHA or LDHB subunits assembled in all possible combinations, forming a variety of tetrameric LDH isoenzymes [57]. LDHA isoenzymes particularly favor anaerobic glycolysis, which may catalyze pyruvate to lactate, while LDHB isoenzymes mostly catalyze the conversion of lactate to pyruvate [58]. Studies shows that neuronal LDHA and LDHB are reduced, and that reduced levels of neuronal LDHB are more evident than neuronal LDHA in APP/PS1 mice. Meanwhile, the neuronal LDHA/LDHB ratio is increased in APP/PS1 mice compared to control mice.
On basis of these data, reduced expression of MCT2 and MCT4 is suggested to possibly prevent lactate transport from astrocytes to neurons. Consequently, neurons become lactate deficient. Also, reduced brain lactate levels further aggravate energy deficiency in neurons. Neurons can increase neuronal LDHA/LDHB ratio to favor lactate production and partially alleviate their lack of energy substrate. Nevertheless, this compensatory enzyme modification is still insufficient to compensate for energy deficiency in neurons.
Studies in human brain cortex show that lactate could replace glucose to support respiration under basal conditions and during electrical stimulation [59]. Neurons in vitro prefer lactate over glucose when both substrates are provided [60]. In vivo studies demonstrate the existence of a metabolic coupling between astrocytes and neurons where a lactate gradient from astrocytes to neurons occurs [61]. Pharmacological inhibition of MCT2 irreversibly impairs long-term memory in mice [62]. Long-term memory impairment can be reversed by intrahippocampal administration of lactate—not glucose—in MCT4-deficient mice [63]. Additionally, heterozygous MCT1 knockout mice have impaired inhibitory avoidance memory [64]. All these results strongly suggest that neuronal lactate uptake is important for the recovery of long-term memories. The overall contribution of lactate to brain metabolism differs according to its availability. Studies in conscious humans have shown that, under resting conditions, lactate uptake by the brain provides about 8% of its energy needs. This percentage increases to 20% under high plasma lactate level conditions, such as during intense exercise [65]. Furthermore, under different exercise intensities, brain lactate metabolism is higher in trained subjects compared to controls. This suggests the possibility of adaptive mechanisms that allow the brain to respond to changes in substrate availability.
In a study, plasma samples were analyzed for fasting lactate to compare lean subjects, non-diabetic subjects with severe obesity, and metabolically impaired subjects. Fasting plasma lactate was elevated in obese subjects with the metabolic syndrome compared to healthy lean individuals. These data suggest that elevated lactate may be caused by an impairment in aerobic metabolism and may offer a focus assessing the severity of the metabolic syndrome [66].
Ketone bodies such as β-hydroxybutyrate (BHB) and acetoacetate (AcAc) are recognized as essential energy substrates for the brain during development, delivering up to 30–70% of its energy requirements [67]. In the adult brain, ketone utilization is markedly reduced when being fed, but may increase under conditions of limited glucose availability, such as during fasting, starvation, low-carbohydrate/high-fat intake, and intense or prolonged exercise sessions. Under such conditions, the liver generates ketone bodies from the oxidation of fatty acids and ketogenic amino acids. Astrocytes can metabolize and deliver ketone bodies to neurons from fatty acid β-oxidation [68], however the rates of fatty acid transport are very low compared to those in the liver. In adults, the activity of ketone- metabolizing enzymes is high enough to easily allow a complete switch from glucose to ketones to meet the energy needs of the brain [69]. Because ketones are never produced in saturated concentrations, the brain’s rate of utilization is strictly regulated by their concentration in blood. In fact, brain glucose utilization during ketosis has been proven to decrease by approximately 10% per millimole of plasma ketones [70].
Whenever glucose availability declines due to fasting, starvation, exercise, caloric restriction or the ketogenic diet (KD), glycogen reserves in the liver become depleted and lipolysis of triacylglycerols or diacylglycerols in adipocytes generates free fatty acids (FFAs). The liver uses these fatty acids and ketogenic amino acids such as isoleucine, tryptophan, tyrosine, leucine, lysine, phenylalanine, and threonine. FFAs are metabolized by β-oxidation to AcetylCoA, which is used to generate ketone bodies such as AcAc, BHB and acetone (AC). AC is rapidly eliminated through urine and lungs, while BHB and AcAc cross the BBB into the neuron via monocarboxylic acid transporters (MCTs). In the anabolic pathway that takes place in the cytosol, acetoacetate is converted into acetoacetyl-CoA (AcAc-CoA) by the enzyme acetoacetyl-CoA synthase (AACS). AcAc-CoA can be synthesized into acetyl-CoA to generate sterol precursors, 3- hydroxy-3-methylglutaryl-CoA (HMG-CoA) by 3-hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS 1). Acetyl-CoA produced from AcAc-CoA by cytosolic β- ketothiolase (cBKD) or from citrate by ATP-citrate lyase (ACLY), can be converted into malonyl-CoA for fatty acid synthesis. The amino acid can be synthesized using TCA cycle intermediates. Ketone oxidation occurs in mitochondria where AcAc captured or generated directly from 3 HB by 3-β-hydroxybutyrate dehydrogenase (BDH) is converted into acetyl-CoA via succinyl-CoA-3-oxoacid CoA transferase (SCOT) and mitochondrial β-ketothiolase (mBKD). Complete oxidation of AcAc produces 23 ATP molecules, while 3 HB generates 26 ATP molecules. Additionally, astrocytes have an important local reserve of βHB for neurons [71].
Studies show that these metabolic challenges (fasting, exercise, caloric restriction, or ketogenic diet) should be intermittent as they increase insulin sensitivity and increase glucose reuptake and utilization by neurons. The incorporation of glucose stimulates the release of the hormone glucagon-like peptide 1 (GLP1), which crosses the BBB and has a direct action on neurons, hence improving cognitive function [72].
Whereas brain glucose metabolism declines with normal aging and more severely in AD, the ability to metabolize ketone bodies becomes another form of energy substrate for the brain and remains normal in older people and AD patients [73, 74]. Several clinical studies in aging with cognitive impairment or AD show how metabolic interventions can improve cognitive processing and possibly mitigate the effects of AD disease.
A cohort study in 70.1 (± 6.2) years patients and educational level 15.3 (± 2.8) years with cognitively impaired were given an additional 50% calories while another group consumed just 20 g of carbohydrates per day to maintain ketosis for 6 weeks. The group that held a lower caloric consumption had a higher intake of fat and protein (a typical KD). This group increased learning and memory, and their urine ketones increased by 5.4 mg/dl [75]. Researchers found that ketone concentrations had a significant correlation with memory performance.
A longitudinal study ran 2 caloric restriction diets to overweight and obese people for 1 year. A low-fat diet (46% carbohydrates and 30% total fat; <8% saturated fat) and a low-carbohydrate diet consisting of 20–40 g carbohydrates (4% energy) and a higher amount of fat (61% energy, 20% saturated). In addition to a reduction in weight, plasma glucose and serum insulin, working memory was significantly improved by KD intervention [76].
Several studies have suggested that ketogenic dietary interventions may slow functional cognitive impairment and the development of dementia; however, the benefit of KD-induced ketosis may be limited to those without the apolipoprotein E4 (ApoE4) variant [77]; a variant known to be associated with AD [78]. Nevertheless, a case study of a heterozygous ApoE4 71-year-old woman with metabolic syndrome and mild AD with progressive cognitive impairment showed significant improvement in memory measured by the Montreal Cognitive Assessment (MoCA) after 10 weeks of KD. The intervention was aimed at maintaining plasma ketones between 0.5 and 2.0 mg/dl while also doing physical and mental exercises [79]. Similarly, an obese heterozygous ApoE4 68-year-old man with mild AD and type 2 diabetes mellitus showed improvement on the MoCA scale, which represented an AD regression after 10 weeks of KD. In the latter case, a hybrid KD approach with time-restricted intermittent fasting (IF) was applied 3 days a week [80]. In both cases, improvements in various metabolic parameters such as glucose, glycosylated hemoglobin, insulin and lipid profile were documented [79, 80]. Even though multiple elements might have contributed to the cognitive improvements observed, these case studies have provided groundbreaking evidence of the potential to delay or reverse mild cognitive impairment from progressing to AD through ketogenic dietary interventions, even in ApoE4+ cases.
In view of pathological aging such as Alzheimer’s, mitochondria isolated from animal models and Alzheimer’s patients show reduced enzymatic activity of the cytochrome C oxidase complex (ETC IV) [81] at the cellular level, as well as decreased oxidative respiration and progressive accumulation of Aβ in the mitochondria of neurons [82]. Both metabolic dysfunction and mitochondrial Aβ accumulation appear to occur early in disease progression before the onset of amyloid plaque formation [83]. This suggests that early metabolic dysfunction is a key process in Alzheimer’s progression and a potential target for therapeutic intervention.
An interesting nutritional strategy would be to improve the quality of fatty acids with medium chain fatty acids (LCFA) that are directly absorbed into the portal vein instead of the lymphatic system. Caprylic acid (C8) and capric acid (C10), medium chain fatty acids (MCFAs), are most ketogenic, which can be found in coconut oil and palm kernel oil [84]. Nevertheless, the concentration of these lipids is relatively low in coconut oil interventions, as they only raise levels of ketones slightly ~0.6 mM [84, 85].
Another alternative to the ketogenic diet is the ingestion of exogenous ketone esters and salts, which significantly increase ketone levels to >1 mM after ingestion, where ketone ester is the most potent in increasing circulating ketones even while consuming regular meals [86, 87]. Ketone salts often consist of a mixture of BHB D and L isoforms, although the metabolic contribution of L isoform is poorly understood. All three approaches (ketogenic diet, MCFA and exogenous ketone bodies) have been used in studies of neurodegenerative diseases, where MCFA becomes the most employed one. It is worth mentioning that MCFAs may have neuroprotective effects that are unrelated to ketonemia, as MCFAs can cross the blood-brain barrier (BBB) and work as substrates for energy metabolism [88]. Studies also establish that MCFA, capric acid, may have the ability to improve mitochondrial function and reduce neuronal hyperactivity, which is often observed in AD [88].
A study on 39 subjects 63-year-old with mild cognitive impairment were supplemented twice daily for 6 months with 15 g of MCFA. Participants showed an improvement in different cognitive domains, including episodic memory and executive function compared to 44 subjects with a non-ketogenic placebo. A marked increase in plasma ketones was observed only in those assigned MCFA, and this increase was directly and significantly correlated with cognitive improvements.
Another study on subjects with cognitive impairment were given 56 g of MCFA oil or a placebo (canola oil) for 6 months. Study subjects assigned to placebo reflected no changes in BHB levels or cognitive functions. Nevertheless, subjects who were administered MCFA oil as well as, one subject lacking the ApoE4 gene, showed an increase in BHB levels compared to baseline, which decreased over the following weeks. This was different from the other subject who had the ApoE gene, as he maintained this BHB increase throughout the study period. As for cognition, both subjects showed improvements in this sense, as measured by the Alzheimer’s Disease Assessment Cognitive Subscale (ADAS-Cog); however, the ApoE4- negative subject showed a greater improvement.
A study on people with very mild, mild, and moderate AD showed cognitive improvement in the Mini-Mental State Examination Scale (MMSE) and ADAS-Cog after 3 months of being supplemented with an MCFA. However, this improvement in cognitive function did not persist after the dietary intervention ended. These findings suggest that efficacy depends on administration time. In another study on AD subjects, they were given 20 g of MCFA for 3 months, which led to improvements in working memory, short-term memory, and processing speed.
Brain hypometabolism of glucose and lactate to be altered long before the onset of Alzheimer’s disease. Moreover, risk factors such as MetS in adulthood are a risk indicator for impaired brain metabolism which trigger the same metabolic effects as in pre-asymptomatic patients risking Alzheimer’s. Therefore, providing more ketones to the aging brain can help it overcome progressive deficit in glucose absorption and metabolism, which delays brain energy depletion and decreases the risk of cognitive impairment and/or Alzheimer’s disease.
Future challenges lie in elucidating the cellular and molecular mechanisms of nutritional therapies based on intermittent ketosis that account for the increase in synaptic plasticity, cognitive function, and resistance to neurodegeneration.
Understanding these mechanisms will contribute to the awareness of the pathophysiology of dementias and a more effective approach to their treatments.
This project was supported by ANID Grant Number SA77210016.
The author declares no conflicts of interest.
",metaTitle:"Open Access Statement",metaDescription:"Book chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0)",metaKeywords:null,canonicalURL:"/page/open-access-statement/",contentRaw:'[{"type":"htmlEditorComponent","content":"
License
\\n\\nBook Chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen maintains a very flexible Copyright Policy that ensures that there is no copyright transfer to the publisher. Therefore, Authors retain exclusive copyright to their work. All Monographs are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) and journal articles are distributed under a Creative Commons 4.0 International Licence.
\\n\\n\\n\\nFormats
\\n\\nBased on your preferences and the stage of your scientific projects, you have multiple options for publishing your scientific research with IntechOpen:
\\n\\nPeer Review Policies
\\n\\nAll scientific Works are subject to Peer Review prior to publishing.
\\n\\n\\n\\nCosts
\\n\\nThe Open Access publishing model followed by IntechOpen eliminates subscription charges and pay-per-view fees, thus enabling readers to access research at no cost to themselves. In order to sustain these operations, and keep our publications freely accessible, we levy an Open Access Publishing Fee on all manuscripts accepted for publication to help cover the costs of editorial work and the production of books.
\\n\\n\\n\\nDigital Archiving Policy
\\n\\nIntechOpen is dedicated to ensuring the long-term preservation and availability of the scholarly research it publishes.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'License
\n\nBook Chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen maintains a very flexible Copyright Policy that ensures that there is no copyright transfer to the publisher. Therefore, Authors retain exclusive copyright to their work. All Monographs are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) and journal articles are distributed under a Creative Commons 4.0 International Licence.
\n\n\n\nFormats
\n\nBased on your preferences and the stage of your scientific projects, you have multiple options for publishing your scientific research with IntechOpen:
\n\nPeer Review Policies
\n\nAll scientific Works are subject to Peer Review prior to publishing.
\n\n\n\nCosts
\n\nThe Open Access publishing model followed by IntechOpen eliminates subscription charges and pay-per-view fees, thus enabling readers to access research at no cost to themselves. In order to sustain these operations, and keep our publications freely accessible, we levy an Open Access Publishing Fee on all manuscripts accepted for publication to help cover the costs of editorial work and the production of books.
\n\n\n\nDigital Archiving Policy
\n\nIntechOpen is dedicated to ensuring the long-term preservation and availability of the scholarly research it publishes.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13389},{group:"region",caption:"Middle and South America",value:2,count:11662},{group:"region",caption:"Africa",value:3,count:4168},{group:"region",caption:"Asia",value:4,count:22333},{group:"region",caption:"Australia and Oceania",value:5,count:2019},{group:"region",caption:"Europe",value:6,count:33644}],offset:12,limit:12,total:135278},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"dateEndThirdStepPublish",src:"EDCMP",topicId:"15"},books:[{type:"book",id:"12022",title:"Statistical Sampling",subtitle:null,isOpenForSubmission:!0,hash:"d95646776d1cb0b10161dc68c9c07781",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12022.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12271",title:"Symmetry Concepts",subtitle:null,isOpenForSubmission:!0,hash:"a8b4d6bde031e722c7f14ff75f508b5a",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12271.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12376",title:"Asymptotics",subtitle:null,isOpenForSubmission:!0,hash:"7e4dba0cf5d111f1f4caf59cf61c1baa",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12376.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12377",title:"Tensors",subtitle:null,isOpenForSubmission:!0,hash:"5d5113b28752a574fcdbfdfbf21ed498",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12377.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12401",title:"Topology",subtitle:null,isOpenForSubmission:!0,hash:"136285c51a3b3fd2de08c1b2bf2d675e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12401.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:29},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:3},{group:"topic",caption:"Business, Management and Economics",value:7,count:3},{group:"topic",caption:"Chemistry",value:8,count:12},{group:"topic",caption:"Computer and Information Science",value:9,count:7},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:11},{group:"topic",caption:"Engineering",value:11,count:18},{group:"topic",caption:"Environmental Sciences",value:12,count:4},{group:"topic",caption:"Immunology and Microbiology",value:13,count:8},{group:"topic",caption:"Materials Science",value:14,count:7},{group:"topic",caption:"Mathematics",value:15,count:5},{group:"topic",caption:"Medicine",value:16,count:79},{group:"topic",caption:"Neuroscience",value:18,count:6},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:5},{group:"topic",caption:"Physics",value:20,count:1},{group:"topic",caption:"Psychology",value:21,count:6},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:21}],offset:12,limit:12,total:5},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3737",title:"MATLAB",subtitle:"Modelling, Programming and Simulations",isOpenForSubmission:!1,hash:null,slug:"matlab-modelling-programming-and-simulations",bookSignature:"Emilson Pereira Leite",coverURL:"https://cdn.intechopen.com/books/images_new/3737.jpg",editors:[{id:"12051",title:"Prof.",name:"Emilson",middleName:null,surname:"Pereira Leite",slug:"emilson-pereira-leite",fullName:"Emilson Pereira Leite"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"1770",title:"Gel Electrophoresis",subtitle:"Principles and Basics",isOpenForSubmission:!1,hash:"279701f6c802cf02deef45103e0611ff",slug:"gel-electrophoresis-principles-and-basics",bookSignature:"Sameh Magdeldin",coverURL:"https://cdn.intechopen.com/books/images_new/1770.jpg",editors:[{id:"123648",title:"Dr.",name:"Sameh",middleName:null,surname:"Magdeldin",slug:"sameh-magdeldin",fullName:"Sameh Magdeldin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4797},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7175,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1981,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2308,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1473,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318571,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271836,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",publishedDate:"July 1st 2013",numberOfDownloads:243450,editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1582,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2082,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",publishedDate:"October 17th 2012",numberOfDownloads:256294,editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11328",title:"Botulinum Toxin",subtitle:"Recent Topics and Applications",isOpenForSubmission:!1,hash:"7dd05a316001cef143e209eda51387a7",slug:"botulinum-toxin-recent-topics-and-applications",bookSignature:"Suna Sabuncuoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11328.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"270856",title:"Associate Prof.",name:"Suna",middleName:null,surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11085",title:"Polycystic Ovary Syndrome",subtitle:"Functional Investigation and Clinical Application",isOpenForSubmission:!1,hash:"3066dd3ff29e1fac072fd60b08d4d3e7",slug:"polycystic-ovary-syndrome-functional-investigation-and-clinical-application",bookSignature:"Zhengchao Wang",coverURL:"https://cdn.intechopen.com/books/images_new/11085.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"204883",title:"Dr.",name:"Zhengchao",middleName:null,surname:"Wang",slug:"zhengchao-wang",fullName:"Zhengchao Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10833",title:"Tumor Angiogenesis and Modulators",subtitle:null,isOpenForSubmission:!1,hash:"f29b575c46128b2da061ef7f9bd1070b",slug:"tumor-angiogenesis-and-modulators",bookSignature:"Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/10833.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"59529",title:"Dr.",name:"Ke",middleName:null,surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11356",title:"Molecular Cloning",subtitle:null,isOpenForSubmission:!1,hash:"671c629dd86e97f0fb467b9e70e92296",slug:"molecular-cloning",bookSignature:"Sadık Dincer, Hatice Aysun Mercimek Takcı and Melis Sumengen Ozdenef",coverURL:"https://cdn.intechopen.com/books/images_new/11356.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"188141",title:"Prof.",name:"Sadik",middleName:null,surname:"Dincer",slug:"sadik-dincer",fullName:"Sadik Dincer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Advanced Topics of Topology",subtitle:null,isOpenForSubmission:!1,hash:"bf964c52f9e653fac20a7fcab58070e5",slug:"advanced-topics-of-topology",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"92918",title:"Dr.",name:"Francisco",middleName:null,surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11195",title:"Recent Advances in Biometrics",subtitle:null,isOpenForSubmission:!1,hash:"2d32e33e0f499cb5241734bb75dd2a83",slug:"recent-advances-in-biometrics",bookSignature:"Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/11195.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"324",title:"Food Chemistry",slug:"agricultural-and-biological-sciences-bromatology-food-chemistry",parent:{id:"33",title:"Bromatology",slug:"agricultural-and-biological-sciences-bromatology"},numberOfBooks:13,numberOfSeries:0,numberOfAuthorsAndEditors:631,numberOfWosCitations:1295,numberOfCrossrefCitations:679,numberOfDimensionsCitations:1848,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"324",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9699",title:"Grain and Seed Proteins Functionality",subtitle:null,isOpenForSubmission:!1,hash:"9268519d1e294c5edf8e964a122e4c91",slug:"grain-and-seed-proteins-functionality",bookSignature:"Jose Carlos Jimenez-Lopez",coverURL:"https://cdn.intechopen.com/books/images_new/9699.jpg",editedByType:"Edited by",editors:[{id:"33993",title:"Dr.",name:"Jose Carlos",middleName:null,surname:"Jimenez-Lopez",slug:"jose-carlos-jimenez-lopez",fullName:"Jose Carlos Jimenez-Lopez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9668",title:"Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging",subtitle:null,isOpenForSubmission:!1,hash:"c5484276a314628acf21ec1bdc3a86b9",slug:"chemistry-and-biochemistry-of-winemaking-wine-stabilization-and-aging",bookSignature:"Fernanda Cosme, Fernando M. Nunes and Luís Filipe-Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/9668.jpg",editedByType:"Edited by",editors:[{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8170",title:"Chemical Properties of Starch",subtitle:null,isOpenForSubmission:!1,hash:"0aedfdb374631bb3a33870c4ed16559a",slug:"chemical-properties-of-starch",bookSignature:"Martins Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/8170.jpg",editedByType:"Edited by",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5701",title:"Superfood and Functional Food",subtitle:"The Development of Superfoods and Their Roles as Medicine",isOpenForSubmission:!1,hash:"0c3c4e9924a0f6c2fe2df43d5dfc50fb",slug:"superfood-and-functional-food-the-development-of-superfoods-and-their-roles-as-medicine",bookSignature:"Naofumi Shiomi and Viduranga Waisundara",coverURL:"https://cdn.intechopen.com/books/images_new/5701.jpg",editedByType:"Edited by",editors:[{id:"163777",title:"Dr.",name:"Naofumi",middleName:null,surname:"Shiomi",slug:"naofumi-shiomi",fullName:"Naofumi Shiomi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5412",title:"Biological Activities and Application of Marine Polysaccharides",subtitle:null,isOpenForSubmission:!1,hash:"c0859ef7d4b56525b985dfec6bc26192",slug:"biological-activities-and-application-of-marine-polysaccharides",bookSignature:"Emad A. Shalaby",coverURL:"https://cdn.intechopen.com/books/images_new/5412.jpg",editedByType:"Edited by",editors:[{id:"76214",title:"Dr.",name:"Emad",middleName:null,surname:"Shalaby",slug:"emad-shalaby",fullName:"Emad Shalaby"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2082",title:"Food Industrial Processes",subtitle:"Methods and Equipment",isOpenForSubmission:!1,hash:"b0aef25c18dea1ab87af9c3e72c952e0",slug:"food-industrial-processes-methods-and-equipment",bookSignature:"Benjamin Valdez",coverURL:"https://cdn.intechopen.com/books/images_new/2082.jpg",editedByType:"Edited by",editors:[{id:"65522",title:"Dr.",name:"Benjamin",middleName:null,surname:"Valdez",slug:"benjamin-valdez",fullName:"Benjamin Valdez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1014",title:"Food Additive",subtitle:null,isOpenForSubmission:!1,hash:"d5d05e31d794c4697626a5616a9fe077",slug:"food-additive",bookSignature:"Yehia El-Samragy",coverURL:"https://cdn.intechopen.com/books/images_new/1014.jpg",editedByType:"Edited by",editors:[{id:"81644",title:"Prof.",name:"Yehia",middleName:null,surname:"El-Samragy",slug:"yehia-el-samragy",fullName:"Yehia El-Samragy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1409",title:"Food Production",subtitle:"Approaches, Challenges and Tasks",isOpenForSubmission:!1,hash:"7933eb5ca47ad08829f5308ab50a9a0c",slug:"food-production-approaches-challenges-and-tasks",bookSignature:"Anna Aladjadjiyan",coverURL:"https://cdn.intechopen.com/books/images_new/1409.jpg",editedByType:"Edited by",editors:[{id:"89899",title:"Prof.",name:"Anna",middleName:null,surname:"Aladjadjiyan",slug:"anna-aladjadjiyan",fullName:"Anna Aladjadjiyan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"206",title:"Soybean",subtitle:"Genetics and Novel Techniques for Yield Enhancement",isOpenForSubmission:!1,hash:"c737836e985157c5166ba52e6603fde3",slug:"soybean-genetics-and-novel-techniques-for-yield-enhancement",bookSignature:"Dora Krezhova",coverURL:"https://cdn.intechopen.com/books/images_new/206.jpg",editedByType:"Edited by",editors:[{id:"30154",title:"Prof.",name:"Dora",middleName:null,surname:"Krezhova",slug:"dora-krezhova",fullName:"Dora Krezhova"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"495",title:"Soybean",subtitle:"Physiology and Biochemistry",isOpenForSubmission:!1,hash:"09e5f0af30214d460498f8d770e985cf",slug:"soybean-physiology-and-biochemistry",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/495.jpg",editedByType:"Edited by",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"494",title:"Recent Trends for Enhancing the Diversity and Quality of Soybean Products",subtitle:null,isOpenForSubmission:!1,hash:"d98a5e7fc53d0296f2a13ae1e2679d1c",slug:"recent-trends-for-enhancing-the-diversity-and-quality-of-soybean-products",bookSignature:"Dora Krezhova",coverURL:"https://cdn.intechopen.com/books/images_new/494.jpg",editedByType:"Edited by",editors:[{id:"30154",title:"Prof.",name:"Dora",middleName:null,surname:"Krezhova",slug:"dora-krezhova",fullName:"Dora Krezhova"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"90",title:"Soybean",subtitle:"Applications and Technology",isOpenForSubmission:!1,hash:"4c510cd6fdf24c413e8f778df9047e2d",slug:"soybean-applications-and-technology",bookSignature:"Tzi-Bun Ng",coverURL:"https://cdn.intechopen.com/books/images_new/90.jpg",editedByType:"Edited by",editors:[{id:"21099",title:"Prof.",name:"Tzi-Bun",middleName:null,surname:"Ng",slug:"tzi-bun-ng",fullName:"Tzi-Bun Ng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:13,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"29151",doi:"10.5772/32358",title:"Hydrocolloids in Food Industry",slug:"hydrocolloids-in-food-industry",totalDownloads:30641,totalCrossrefCites:31,totalDimensionsCites:115,abstract:null,book:{id:"2082",slug:"food-industrial-processes-methods-and-equipment",title:"Food Industrial Processes",fullTitle:"Food Industrial Processes - Methods and Equipment"},signatures:"Jafar Milani and Gisoo Maleki",authors:[{id:"91158",title:"Associate Prof.",name:"Jafar",middleName:"Mohammadzadeh",surname:"Milani",slug:"jafar-milani",fullName:"Jafar Milani"},{id:"124058",title:"Ph.D. Student",name:"Gisoo",middleName:null,surname:"Maleki",slug:"gisoo-maleki",fullName:"Gisoo Maleki"}]},{id:"53601",doi:"10.5772/66840",title:"Chitosan in Agriculture: A New Challenge for Managing Plant Disease",slug:"chitosan-in-agriculture-a-new-challenge-for-managing-plant-disease",totalDownloads:5739,totalCrossrefCites:33,totalDimensionsCites:72,abstract:"In recent years, environmental-friendly measures have been developed for managing crop diseases as alternative to chemical pesticides, including the use of natural compounds such as chitosan. In this chapter, the common uses of this natural product in agriculture and its potential uses in plant disease control are reviewed. The last advanced researches as seed coating, plant resistance elicitation and soil amendment applications are also described. Chitosan is a deacetylated derivative of chitin that is naturally present in the fungal cell wall and in crustacean shells from which it can be easily extracted. Chitosan has been reported to possess antifungal and antibacterial activity and it showed to be effective against seedborne pathogens when applied as seed treatment. It can form physical barriers (film) around the seed surface, and it can vehicular other antimicrobial compounds that could be added to the seed treatments. Chitosan behaves as a resistance elicitor inducing both local and systemic plant defence responses even when applied to the seeds. The chitosan used as soil amendment was shown to give many benefits to different plant species by reducing the pathogen attack and infection. Concluding, the chitosan is an active molecule that finds many possibilities for application in agriculture, including plant disease control.",book:{id:"5412",slug:"biological-activities-and-application-of-marine-polysaccharides",title:"Biological Activities and Application of Marine Polysaccharides",fullTitle:"Biological Activities and Application of Marine Polysaccharides"},signatures:"Laura Orzali, Beatrice Corsi, Cinzia Forni and Luca Riccioni",authors:[{id:"189361",title:"Ph.D.",name:"Laura",middleName:null,surname:"Orzali",slug:"laura-orzali",fullName:"Laura Orzali"},{id:"189612",title:"Dr.",name:"Luca",middleName:null,surname:"Riccioni",slug:"luca-riccioni",fullName:"Luca Riccioni"},{id:"189614",title:"Dr.",name:"Beatrice",middleName:null,surname:"Corsi",slug:"beatrice-corsi",fullName:"Beatrice Corsi"},{id:"189615",title:"Prof.",name:"Cinzia",middleName:null,surname:"Forni",slug:"cinzia-forni",fullName:"Cinzia Forni"}]},{id:"29164",doi:"10.5772/31925",title:"Maillard Reaction Products in Processed Food: Pros and Cons",slug:"maillard-reaction-products-in-processed-food-pros-and-cons",totalDownloads:25902,totalCrossrefCites:21,totalDimensionsCites:65,abstract:null,book:{id:"2082",slug:"food-industrial-processes-methods-and-equipment",title:"Food Industrial Processes",fullTitle:"Food Industrial Processes - Methods and Equipment"},signatures:"Deborah Markowicz Bastos, Érica Monaro, Érica Siguemoto and Mariana Séfora",authors:[{id:"89343",title:"Dr.",name:"Deborah",middleName:null,surname:"Markowicz Bastos",slug:"deborah-markowicz-bastos",fullName:"Deborah Markowicz Bastos"},{id:"89966",title:"Dr.",name:"Erica",middleName:"Ferreira",surname:"Monaro",slug:"erica-monaro",fullName:"Erica Monaro"},{id:"89968",title:"BSc.",name:"Erica",middleName:null,surname:"Siguemoto",slug:"erica-siguemoto",fullName:"Erica Siguemoto"},{id:"89969",title:"M.Sc.",name:"Mariana",middleName:null,surname:"Sefora Sousa",slug:"mariana-sefora-sousa",fullName:"Mariana Sefora Sousa"}]},{id:"52359",doi:"10.5772/65289",title:"Applications of Chitosan in Wastewater Treatment",slug:"applications-of-chitosan-in-wastewater-treatment",totalDownloads:5405,totalCrossrefCites:27,totalDimensionsCites:55,abstract:"In the last time, the use of natural additives that are biocompatible, are biodegradable, have low toxicity and are from renewable resources attracted attention of many researchers due to their high ability to retain different pollutants from wastewaters. In this context, there are many research studies that highlight the biosorbent ability of chitosan and their composites for the pollutants from wastewaters such as heavy metal ions, organochloride pesticides, suspended solids, turbidity, organic oxidised substances, fatty and oil impurities or textile wastewater dyes. Furthermore, the increase of adsorption ability of chitosan by chemical modifications leading to the formation of chitosan derivatives, grafting chitosan and chitosan composites gained much attention, being extensively studied and widely reported in the literature. In this chapter the research studies regarding the chitosan application in wastewater treatments as well as the preliminary results on its chemical modification to obtain and utilisation of zeolite-chitosan composites in adsorption of organic pollutants from industrial wastewaters are presented.",book:{id:"5412",slug:"biological-activities-and-application-of-marine-polysaccharides",title:"Biological Activities and Application of Marine Polysaccharides",fullTitle:"Biological Activities and Application of Marine Polysaccharides"},signatures:"Petronela Nechita",authors:[{id:"188572",title:"Associate Prof.",name:"Nechita",middleName:null,surname:"Petronela",slug:"nechita-petronela",fullName:"Nechita Petronela"}]},{id:"68437",doi:"10.5772/intechopen.87777",title:"Chemical Properties of Starch and Its Application in the Food Industry",slug:"chemical-properties-of-starch-and-its-application-in-the-food-industry",totalDownloads:4824,totalCrossrefCites:19,totalDimensionsCites:50,abstract:"Starch is an important food product and a versatile biomaterial used world-wide for different purposes in many industrial sectors including foods, health, textile, chemical and engineering sector. Starch versatility in industrial applications is largely defined by its physicochemical properties and functionality. Starch in its native form has limited functionality and application. But advancements in biotechnology and chemical technological have led to wide-range modification of starch for different purposes. The objective of this chapter is to examine the different chemical reactions of starch and expose the food applications of the modification products. Several literatures on starch and reaction chemistry including online journals and books were analyzed, harmonized and rationalized. The reactions and mechanisms presented are explained based on the principles of reaction chemistry. Chemical modification of starch is based on the chemical reactivity of the constituent glucose monomers which are polyhydroxyl and can undergo several reactions. Starch can undergo reactions such as hydrolysis, esterification, etherification and oxidation. These reactions give modified starches which can be used in baked foods, confectionaries, soups and salad dressings. This chapter discusses the different chemical reactions of starch, the associated changes in functionality, as well as the applications of chemically modified starches in the food industry.",book:{id:"8170",slug:"chemical-properties-of-starch",title:"Chemical Properties of Starch",fullTitle:"Chemical Properties of Starch"},signatures:"Henry Omoregie Egharevba",authors:[{id:"300976",title:"Associate Prof.",name:"Henry",middleName:"Omoregie",surname:"O. Egharevba",slug:"henry-o.-egharevba",fullName:"Henry O. Egharevba"}]}],mostDownloadedChaptersLast30Days:[{id:"68437",title:"Chemical Properties of Starch and Its Application in the Food Industry",slug:"chemical-properties-of-starch-and-its-application-in-the-food-industry",totalDownloads:4817,totalCrossrefCites:19,totalDimensionsCites:50,abstract:"Starch is an important food product and a versatile biomaterial used world-wide for different purposes in many industrial sectors including foods, health, textile, chemical and engineering sector. Starch versatility in industrial applications is largely defined by its physicochemical properties and functionality. Starch in its native form has limited functionality and application. But advancements in biotechnology and chemical technological have led to wide-range modification of starch for different purposes. The objective of this chapter is to examine the different chemical reactions of starch and expose the food applications of the modification products. Several literatures on starch and reaction chemistry including online journals and books were analyzed, harmonized and rationalized. The reactions and mechanisms presented are explained based on the principles of reaction chemistry. Chemical modification of starch is based on the chemical reactivity of the constituent glucose monomers which are polyhydroxyl and can undergo several reactions. Starch can undergo reactions such as hydrolysis, esterification, etherification and oxidation. These reactions give modified starches which can be used in baked foods, confectionaries, soups and salad dressings. This chapter discusses the different chemical reactions of starch, the associated changes in functionality, as well as the applications of chemically modified starches in the food industry.",book:{id:"8170",slug:"chemical-properties-of-starch",title:"Chemical Properties of Starch",fullTitle:"Chemical Properties of Starch"},signatures:"Henry Omoregie Egharevba",authors:[{id:"300976",title:"Associate Prof.",name:"Henry",middleName:"Omoregie",surname:"O. Egharevba",slug:"henry-o.-egharevba",fullName:"Henry O. Egharevba"}]},{id:"68720",title:"Physical and Chemical Modifications in Starch Structure and Reactivity",slug:"physical-and-chemical-modifications-in-starch-structure-and-reactivity",totalDownloads:2313,totalCrossrefCites:13,totalDimensionsCites:23,abstract:"Starch is a naturally occurring glucose homo-polysaccharide of nutritional, pharmaceutical, and industrial importance. The complex polymeric structure and poor solubility of native starch in water limits their importance at pharmaceutical and industrial level. The structure, reactivity, and functionality of the native starch can be modified by physical, chemical, enzymatic, and biotechnological methods. Various physical modifications techniques, including the thermal, radio-thermal, freezing and thawing, annealing, high-pressure, ultrasonic, and pulsed electric field treatment, and chemical modifications, including oxidation, etherification, esterification, cationization, cross-linking, and graft polymerization, have been found to change the surface properties, polarity and linearity of the molecular chains, the degree of substitution, the polymeric, granular, and crystalline structure, amylose to amylopectin ratio, solubility, viscosity, pasting, gelatinization, swelling, water absorption, and emulsifying properties of starch. The structural changes have resulted in the improvement of thermal and freeze-thaw stability, viscosity, solubility, water binding capacity, swelling power, gelling ability, and enzymatic digestibility of starch. The exposure of reactive functional groups after physical or chemical modification modifies the reactivity of starch toward water, oil, acids, enzymes, and other chemical species. These modification techniques have led to some revolutionary changes in reactivity, functionality, and application of starch in various fields.",book:{id:"8170",slug:"chemical-properties-of-starch",title:"Chemical Properties of Starch",fullTitle:"Chemical Properties of Starch"},signatures:"Haq Nawaz, Rashem Waheed, Mubashir Nawaz and Dure Shahwar",authors:[{id:"230900",title:"Mr.",name:"Haq",middleName:null,surname:"Nawaz",slug:"haq-nawaz",fullName:"Haq Nawaz"},{id:"301871",title:"Ms.",name:"Rashem",middleName:null,surname:"Waheed",slug:"rashem-waheed",fullName:"Rashem Waheed"},{id:"301872",title:"Mr.",name:"Mubashir",middleName:null,surname:"Nawaz",slug:"mubashir-nawaz",fullName:"Mubashir Nawaz"},{id:"309769",title:"Ms.",name:"Dure",middleName:null,surname:"Shahwar",slug:"dure-shahwar",fullName:"Dure Shahwar"}]},{id:"52359",title:"Applications of Chitosan in Wastewater Treatment",slug:"applications-of-chitosan-in-wastewater-treatment",totalDownloads:5404,totalCrossrefCites:27,totalDimensionsCites:55,abstract:"In the last time, the use of natural additives that are biocompatible, are biodegradable, have low toxicity and are from renewable resources attracted attention of many researchers due to their high ability to retain different pollutants from wastewaters. In this context, there are many research studies that highlight the biosorbent ability of chitosan and their composites for the pollutants from wastewaters such as heavy metal ions, organochloride pesticides, suspended solids, turbidity, organic oxidised substances, fatty and oil impurities or textile wastewater dyes. Furthermore, the increase of adsorption ability of chitosan by chemical modifications leading to the formation of chitosan derivatives, grafting chitosan and chitosan composites gained much attention, being extensively studied and widely reported in the literature. In this chapter the research studies regarding the chitosan application in wastewater treatments as well as the preliminary results on its chemical modification to obtain and utilisation of zeolite-chitosan composites in adsorption of organic pollutants from industrial wastewaters are presented.",book:{id:"5412",slug:"biological-activities-and-application-of-marine-polysaccharides",title:"Biological Activities and Application of Marine Polysaccharides",fullTitle:"Biological Activities and Application of Marine Polysaccharides"},signatures:"Petronela Nechita",authors:[{id:"188572",title:"Associate Prof.",name:"Nechita",middleName:null,surname:"Petronela",slug:"nechita-petronela",fullName:"Nechita Petronela"}]},{id:"28916",title:"Earth Food Spirulina (Arthrospira): Production and Quality Standarts",slug:"earth-food-spirulina-arthrospira-production-and-quality-standarts",totalDownloads:10314,totalCrossrefCites:19,totalDimensionsCites:43,abstract:null,book:{id:"1014",slug:"food-additive",title:"Food Additive",fullTitle:"Food Additive"},signatures:"Edis Koru",authors:[{id:"88972",title:"Dr.",name:"Edis",middleName:null,surname:"Koru",slug:"edis-koru",fullName:"Edis Koru"}]},{id:"53601",title:"Chitosan in Agriculture: A New Challenge for Managing Plant Disease",slug:"chitosan-in-agriculture-a-new-challenge-for-managing-plant-disease",totalDownloads:5737,totalCrossrefCites:33,totalDimensionsCites:72,abstract:"In recent years, environmental-friendly measures have been developed for managing crop diseases as alternative to chemical pesticides, including the use of natural compounds such as chitosan. In this chapter, the common uses of this natural product in agriculture and its potential uses in plant disease control are reviewed. The last advanced researches as seed coating, plant resistance elicitation and soil amendment applications are also described. Chitosan is a deacetylated derivative of chitin that is naturally present in the fungal cell wall and in crustacean shells from which it can be easily extracted. Chitosan has been reported to possess antifungal and antibacterial activity and it showed to be effective against seedborne pathogens when applied as seed treatment. It can form physical barriers (film) around the seed surface, and it can vehicular other antimicrobial compounds that could be added to the seed treatments. Chitosan behaves as a resistance elicitor inducing both local and systemic plant defence responses even when applied to the seeds. The chitosan used as soil amendment was shown to give many benefits to different plant species by reducing the pathogen attack and infection. Concluding, the chitosan is an active molecule that finds many possibilities for application in agriculture, including plant disease control.",book:{id:"5412",slug:"biological-activities-and-application-of-marine-polysaccharides",title:"Biological Activities and Application of Marine Polysaccharides",fullTitle:"Biological Activities and Application of Marine Polysaccharides"},signatures:"Laura Orzali, Beatrice Corsi, Cinzia Forni and Luca Riccioni",authors:[{id:"189361",title:"Ph.D.",name:"Laura",middleName:null,surname:"Orzali",slug:"laura-orzali",fullName:"Laura Orzali"},{id:"189612",title:"Dr.",name:"Luca",middleName:null,surname:"Riccioni",slug:"luca-riccioni",fullName:"Luca Riccioni"},{id:"189614",title:"Dr.",name:"Beatrice",middleName:null,surname:"Corsi",slug:"beatrice-corsi",fullName:"Beatrice Corsi"},{id:"189615",title:"Prof.",name:"Cinzia",middleName:null,surname:"Forni",slug:"cinzia-forni",fullName:"Cinzia Forni"}]}],onlineFirstChaptersFilter:{topicId:"324",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:141,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:124,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:22,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"August 2nd, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:33,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",isOpenForSubmission:!0,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",isOpenForSubmission:!0,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",isOpenForSubmission:!0,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",isOpenForSubmission:!0,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:42,paginationItems:[{id:"82914",title:"Glance on the Critical Role of IL-23 Receptor Gene Variations in Inflammation-Induced Carcinogenesis",doi:"10.5772/intechopen.105049",signatures:"Mohammed El-Gedamy",slug:"glance-on-the-critical-role-of-il-23-receptor-gene-variations-in-inflammation-induced-carcinogenesis",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}},{id:"82875",title:"Lipidomics as a Tool in the Diagnosis and Clinical Therapy",doi:"10.5772/intechopen.105857",signatures:"María Elizbeth Alvarez Sánchez, Erick Nolasco Ontiveros, Rodrigo Arreola, Adriana Montserrat Espinosa González, Ana María García Bores, Roberto Eduardo López Urrutia, Ignacio Peñalosa Castro, María del Socorro Sánchez Correa and Edgar Antonio Estrella Parra",slug:"lipidomics-as-a-tool-in-the-diagnosis-and-clinical-therapy",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82440",title:"Lipid Metabolism and Associated Molecular Signaling Events in Autoimmune Disease",doi:"10.5772/intechopen.105746",signatures:"Mohan Vanditha, Sonu Das and Mathew John",slug:"lipid-metabolism-and-associated-molecular-signaling-events-in-autoimmune-disease",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82483",title:"Oxidative Stress in Cardiovascular Diseases",doi:"10.5772/intechopen.105891",signatures:"Laura Mourino-Alvarez, Tamara Sastre-Oliva, Nerea Corbacho-Alonso and Maria G. Barderas",slug:"oxidative-stress-in-cardiovascular-diseases",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Importance of Oxidative Stress and Antioxidant System in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11671.jpg",subseries:{id:"15",title:"Chemical Biology"}}}]},overviewPagePublishedBooks:{paginationCount:33,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science\nand Technology from the Department of Chemistry, National\nUniversity of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013.\nShe relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the\nNational Institute of Fundamental Studies from April 2013 to\nOctober 2016. She was a senior lecturer on a temporary basis at the Department of\nFood Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is\ncurrently Deputy Principal of the Australian College of Business and Technology –\nKandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI)",institutionString:"Australian College of Business & Technology",institution:{name:"Kobe College",institutionURL:null,country:{name:"Japan"}}}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{paginationCount:2,paginationItems:[{id:"12141",title:"Leadership - Advancing Great Leadership Practices and Good Leaders",coverURL:"https://cdn.intechopen.com/books/images_new/12141.jpg",hash:"85f77453916f1d80d80d88ee4fd2f2d1",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 1st 2022",isOpenForSubmission:!0,editors:[{id:"420133",title:"Dr.",name:"Joseph",surname:"Crawford",slug:"joseph-crawford",fullName:"Joseph Crawford"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12139",title:"Global Market and Trade",coverURL:"https://cdn.intechopen.com/books/images_new/12139.jpg",hash:"fa34af07c3a9657fa670404202f8cba5",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 21st 2022",isOpenForSubmission:!0,editors:[{id:"243649",title:"Dr.Ing.",name:"Ireneusz",surname:"Miciuła",slug:"ireneusz-miciula",fullName:"Ireneusz Miciuła"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:9,paginationItems:[{id:"82936",title:"Soil Degradation Processes Linked to Long-Term Forest-Type Damage",doi:"10.5772/intechopen.106390",signatures:"Pavel Samec, Aleš Kučera and Gabriela Tomášová",slug:"soil-degradation-processes-linked-to-long-term-forest-type-damage",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Forest Degradation Under Global Change",coverURL:"https://cdn.intechopen.com/books/images_new/11457.jpg",subseries:{id:"94",title:"Climate Change and Environmental Sustainability"}}},{id:"82777",title:"Sustainability and Social Investment: Community Microhydropower Systems in the Dominican Republic",doi:"10.5772/intechopen.105995",signatures:"Michela Izzo, Alberto Sánchez and Rafael Fonseca",slug:"sustainability-and-social-investment-community-microhydropower-systems-in-the-dominican-republic",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"82387",title:"Kept Promises? The Evolution of the EU Financial Contribution to Climate Change",doi:"10.5772/intechopen.105541",signatures:"Cecilia Camporeale, Roberto Del Ciello and Mario Jorizzo",slug:"kept-promises-the-evolution-of-the-eu-financial-contribution-to-climate-change",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Mario",surname:"Jorizzo"},{name:"Cecilia",surname:"Camporeale"},{name:"ROBERTO",surname:"DEL CIELLO"}],book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"82524",title:"Italy’s Small Exporting Companies: Globalization and Sustainability Issues",doi:"10.5772/intechopen.105542",signatures:"Roberta Pace and Francesca Mandanici",slug:"italy-s-small-exporting-companies-globalization-and-sustainability-issues",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"82427",title:"Our Globalization Era among Success, Obstacles and Doubts",doi:"10.5772/intechopen.105545",signatures:"Arnaldo Canziani, Annalisa Baldissera and Ahmad Kahwaji",slug:"our-globalization-era-among-success-obstacles-and-doubts",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"82248",title:"Sustainability and Excellence: Pillars for Business Survival",doi:"10.5772/intechopen.105420",signatures:"Irina Severin, Maria Cristina Dijmarescu and Mihai Caramihai",slug:"sustainability-and-excellence-pillars-for-business-survival",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"82124",title:"Assessment of Diversity, Growth Characteristics and Aboveground Biomass of Tree Species in Selected Urban Green Areas of Osogbo, Osun State",doi:"10.5772/intechopen.104982",signatures:"Omolara Aremu, Olusola O. Adetoro and Olusegun Awotoye",slug:"assessment-of-diversity-growth-characteristics-and-aboveground-biomass-of-tree-species-in-selected-u",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Forest Degradation Under Global Change",coverURL:"https://cdn.intechopen.com/books/images_new/11457.jpg",subseries:{id:"94",title:"Climate Change and Environmental Sustainability"}}},{id:"81920",title:"Rethinking an Approach for Sustainable Globalization",doi:"10.5772/intechopen.105141",signatures:"Parakram Pyakurel",slug:"rethinking-an-approach-for-sustainable-globalization",totalDownloads:29,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"81428",title:"Observatory of Sustainable Development in Postgraduate Study Programs in Baja California",doi:"10.5772/intechopen.104641",signatures:"Rodolfo Martinez-Gutierrez, Maria Marcela Solis-Quinteros, Maria Esther Ibarra-Estrada and Angel Ernesto Jimenez-Bernardino",slug:"observatory-of-sustainable-development-in-postgraduate-study-programs-in-baja-california",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}}]},subseriesFiltersForOFChapters:[{caption:"Climate Change and Environmental Sustainability",value:94,count:2,group:"subseries"},{caption:"Sustainable Economy and Fair Society",value:91,count:7,group:"subseries"}],publishedBooks:{paginationCount:11,paginationItems:[{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",slug:"animal-reproduction",publishedDate:"May 25th 2022",editedByType:"Edited by",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",hash:"2d66af42fb17d0a6556bb9ef28e273c7",volumeInSeries:11,fullTitle:"Animal Reproduction",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt",profilePictureURL:"https://mts.intechopen.com/storage/users/90846/images/system/90846.jpg",institutionString:"İskenderun Technical University",institution:{name:"İskenderun Technical University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",slug:"animal-feed-science-and-nutrition-production-health-and-environment",publishedDate:"May 18th 2022",editedByType:"Edited by",bookSignature:"Amlan Kumar Patra",hash:"79944fc8fbbaa329aed6fde388154832",volumeInSeries:10,fullTitle:"Animal Feed Science and Nutrition - Production, Health and Environment",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra",profilePictureURL:"https://mts.intechopen.com/storage/users/310962/images/system/310962.jpg",institutionString:null,institution:{name:"West Bengal University of Animal and Fishery Sciences",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8737",title:"Rabies Virus at the Beginning of 21st Century",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",slug:"rabies-virus-at-the-beginning-of-21st-century",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Sergey Tkachev",hash:"49cce3f548da548c718c865feb343509",volumeInSeries:9,fullTitle:"Rabies Virus at the Beginning of 21st Century",editors:[{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev",profilePictureURL:"https://mts.intechopen.com/storage/users/61139/images/system/61139.png",institutionString:"Russian Academy of Sciences",institution:{name:"Russian Academy of Sciences",institutionURL:null,country:{name:"Russia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10496",title:"Advanced Studies in the 21st Century Animal Nutrition",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10496.jpg",slug:"advanced-studies-in-the-21st-century-animal-nutrition",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"László Babinszky, Juliana Oliveira and Edson Mauro Santos",hash:"8ffe43a82ac48b309abc3632bbf3efd0",volumeInSeries:8,fullTitle:"Advanced Studies in the 21st Century Animal Nutrition",editors:[{id:"53998",title:"Prof.",name:"László",middleName:null,surname:"Babinszky",slug:"laszlo-babinszky",fullName:"László Babinszky",profilePictureURL:"https://mts.intechopen.com/storage/users/53998/images/system/53998.png",institutionString:"University of Debrecen",institution:{name:"University of Debrecen",institutionURL:null,country:{name:"Hungary"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10497",title:"Canine Genetics, Health and Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10497.jpg",slug:"canine-genetics-health-and-medicine",publishedDate:"June 2nd 2021",editedByType:"Edited by",bookSignature:"Catrin Rutland",hash:"b91512e31ce34032e560362e6cbccc1c",volumeInSeries:7,fullTitle:"Canine Genetics, Health and Medicine",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",editedByType:"Edited by",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",hash:"13aaddf5fdbbc78387e77a7da2388bf6",volumeInSeries:6,fullTitle:"Animal Reproduction in Veterinary Medicine",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral",profilePictureURL:"https://mts.intechopen.com/storage/users/25600/images/system/25600.jpg",institutionString:"Independent Researcher",institution:{name:"Harran University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9081",title:"Equine Science",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9081.jpg",slug:"equine-science",publishedDate:"September 23rd 2020",editedByType:"Edited by",bookSignature:"Catrin Rutland and Albert Rizvanov",hash:"ac415ef2f5450fa80fdb9cf6cf32cd2d",volumeInSeries:5,fullTitle:"Equine Science",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón Poggi",slug:"juan-carlos-gardon-poggi",fullName:"Juan Carlos Gardón Poggi",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",institutionString:null,institution:{name:"Valencia Catholic University Saint Vincent Martyr",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Naceur M'Hamdi",hash:"2aa2a9a0ec13040bbf0455e34625504e",volumeInSeries:3,fullTitle:"Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi",profilePictureURL:"https://mts.intechopen.com/storage/users/73376/images/system/73376.jpg",institutionString:null,institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",slug:"veterinary-anatomy-and-physiology",publishedDate:"March 13th 2019",editedByType:"Edited by",bookSignature:"Catrin Sian Rutland and Valentina Kubale",hash:"75cdacb570e0e6d15a5f6e69640d87c9",volumeInSeries:2,fullTitle:"Veterinary Anatomy and Physiology",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Animal Nutrition",value:20,count:2},{group:"subseries",caption:"Animal Reproductive Biology and Technology",value:28,count:4},{group:"subseries",caption:"Animal Science",value:19,count:5}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:3},{group:"publicationYear",caption:"2021",value:2021,count:3},{group:"publicationYear",caption:"2020",value:2020,count:3},{group:"publicationYear",caption:"2019",value:2019,count:1},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:25,paginationItems:[{id:"429683",title:"Dr.",name:"Bilal",middleName:null,surname:"Khalid",slug:"bilal-khalid",fullName:"Bilal Khalid",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/429683/images/system/429683.png",biography:"Dr. Bilal Khalid received a Ph.D. in Industrial Business Administration from KMITL Business School, Bangkok, in 2021, and a master’s in International Business Management from Stamford International University, Bangkok, in 2017. Dr. Khalid\\'s research interests include leadership and negotiations, digital transformations, gamification, eLearning, blockchain, Big Data, and management of information technology. Dr. Bilal Khalid also serves as an academic editor at Education Research International and a reviewer for international journals.",institutionString:"KMITL Business School",institution:{name:"King Mongkut's Institute of Technology Ladkrabang",country:{name:"Thailand"}}},{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",biography:"Dr. Muhammad Mohiuddin is an Associate Professor of International Business at Laval University, Canada. He has taught at Thompson Rivers University, Canada; University of Paris-Est, France; Osnabruck University of Applied Science, Germany; and Shanghai Institute of Technology and Tianjin University of Technology, China. He has published research in Research Policy, Applied Economics, Review of Economic Philosophy, Strategic Change, International Journal of Logistics, Sustainability, Journal of Environmental Management, Journal of Global Information Management, Journal of Cleaner Production, M@N@GEMENT, and more. He is a member of CEDIMES Institut (France), Academy of International Business (AIB), Strategic Management Society (SMS), Academy of Management (AOM), Administrative Science Association of Canada (ASAC), and Canadian council of small business and entrepreneurship (CCSBE). He is currently the director of the Research Group on Contemporary Asia (GERAC) at Laval University. He is also co-managing editor of Transnational Corporations Review and a guest editor for Electronic Commerce Research and Journal of Internet Technology.",institutionString:"Université Laval",institution:{name:"Université Laval",country:{name:"Canada"}}},{id:"189147",title:"Dr.",name:"Hailan",middleName:null,surname:"Salamun",slug:"hailan-salamun",fullName:"Hailan Salamun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/189147/images/19274_n.jpeg",biography:"Hailan Salamun, (Dr.) was born in Selangor, Malaysia and graduated from Tunku Ampuan Jamaah Religious High School at Shah Alam. Obtained a degree from the International Islamic University (UIA), Gombak in the field of Islamic Revealed Knowledge and Heritage. Next, I furthered my studies to the professional level to obtain a Diploma in Education at UIA. After serving for several years in school, I furthered my studies to the Master of Dakwah and Leadership at Universiti Kebangsaan Malaysia (UKM), Bangi. I graduated with a Doctor of Philosophy in Principalship Leadership from the University of Malaya (UM) in 2010. I am currently a senior lecturer in the Department of Nationalism and Civilization, Center for Basic and Continuing Education, Universiti Malaysia Terengganu. Prior to that, I had served in several educational institutions such as schools, the Institute of Teacher Education (IPG), and also the University of Malaya. I am also actively involved in paper presentation, writing and publishing. My research interests are focused on leadership, education, society and Islamic civilization. This area of research requires a detailed understanding of Islamic studies and research studies in leadership. Another research interest that I have explored recently is the politics of the Malay community and also the leadership of the mosque.",institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"442081",title:"Dr.",name:"Audrey",middleName:null,surname:"Addy",slug:"audrey-addy",fullName:"Audrey Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Kwame Nkrumah University of Science and Technology",country:{name:"Ghana"}}},{id:"442083",title:"Dr.",name:"James",middleName:null,surname:"Addy",slug:"james-addy",fullName:"James Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Ghana Health Service",country:{name:"Ghana"}}},{id:"437993",title:"Mr.",name:"Job",middleName:null,surname:"Jackson",slug:"job-jackson",fullName:"Job Jackson",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Management College of Southern Africa",country:{name:"South Africa"}}},{id:"437991",title:"Prof.",name:"Muhammad",middleName:null,surname:"Hoque",slug:"muhammad-hoque",fullName:"Muhammad Hoque",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Management College of Southern Africa",country:{name:"South Africa"}}},{id:"428495",title:"Prof.",name:"Asyraf",middleName:null,surname:"Ab Rahman",slug:"asyraf-ab-rahman",fullName:"Asyraf Ab Rahman",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"421024",title:"Prof.",name:"Harold Andrew",middleName:null,surname:"Patrick",slug:"harold-andrew-patrick",fullName:"Harold Andrew Patrick",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Jain University",country:{name:"India"}}},{id:"429650",title:"Dr.",name:"Jacqueline",middleName:null,surname:"Kareem",slug:"jacqueline-kareem",fullName:"Jacqueline Kareem",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Christ University",country:{name:"India"}}},{id:"421041",title:"Dr.",name:"Sunil",middleName:null,surname:"Kumar Ramdas",slug:"sunil-kumar-ramdas",fullName:"Sunil Kumar Ramdas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Jain University",country:{name:"India"}}},{id:"421833",title:"Mr.",name:"Eugene",middleName:null,surname:"Owusu-Acheampong",slug:"eugene-owusu-acheampong",fullName:"Eugene Owusu-Acheampong",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"421826",title:"Dr.",name:"Inusah",middleName:null,surname:"Salifu",slug:"inusah-salifu",fullName:"Inusah Salifu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"420823",title:"Prof.",name:"Gardênia da Silva",middleName:null,surname:"Abbad",slug:"gardenia-da-silva-abbad",fullName:"Gardênia da Silva Abbad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Brasília",country:{name:"Brazil"}}},{id:"437613",title:"MSc.",name:"Juliana",middleName:null,surname:"Legentil",slug:"juliana-legentil",fullName:"Juliana Legentil",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Brasília",country:{name:"Brazil"}}},{id:"239876",title:"Ph.D.",name:"Luciana",middleName:null,surname:"Mourão",slug:"luciana-mourao",fullName:"Luciana Mourão",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Salgado de Oliveira",country:{name:"Brazil"}}},{id:"421735",title:"Dr.",name:"elizabeth",middleName:null,surname:"addy",slug:"elizabeth-addy",fullName:"elizabeth addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421006",title:"Dr.",name:"Anna",middleName:null,surname:"Uster",slug:"anna-uster",fullName:"Anna Uster",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470243",title:"Dr.",name:"Md Samim",middleName:null,surname:"Al Azad",slug:"md-samim-al-azad",fullName:"Md Samim Al Azad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470244",title:"Dr.",name:"Slimane",middleName:null,surname:"Ed-dafali",slug:"slimane-ed-dafali",fullName:"Slimane Ed-dafali",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421011",title:"Dr.",name:"Afatakpa",middleName:null,surname:"Fortune",slug:"afatakpa-fortune",fullName:"Afatakpa Fortune",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"446057",title:"Mr.",name:"Okedare",middleName:null,surname:"David Olubukunmi",slug:"okedare-david-olubukunmi",fullName:"Okedare David Olubukunmi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421778",title:"Dr.",name:"Fatimah",middleName:"Saeed",surname:"AlAhmari",slug:"fatimah-alahmari",fullName:"Fatimah AlAhmari",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421065",title:"Ms.",name:"Euzália",middleName:null,surname:"do Rosário Botelho Tomé",slug:"euzalia-do-rosario-botelho-tome",fullName:"Euzália do Rosário Botelho Tomé",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421053",title:"Associate Prof.",name:"Ken",middleName:null,surname:"Kalala Ndalamba",slug:"ken-kalala-ndalamba",fullName:"Ken Kalala Ndalamba",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]}},subseries:{item:{id:"3",type:"subseries",title:"Bacterial Infectious Diseases",keywords:"Antibiotics, Biofilm, Antibiotic Resistance, Host-microbiota Relationship, Treatment, Diagnostic Tools",scope:"