Parameters of the impact device: primary and secondary electrostatic transducers
1. Introduction
Energy harvesting from mechanical vibrations is one among several alternatives currently considered as power sources for wireless devices. The main motivation is the prospect of eliminating maintenance or increasing maintenance intervals by providing a means for recharging batteries or replacing batteries altogether. Energy harvesting can also be an enabling technology for applications where operating conditions, e.g. temperature, inhibit use of batteries. The prospect of reducing system size can also be a factor of interest. Vibration energy harvesting is therefore a topic of great interest in the scientific community [1-6], especially regarding miniaturized devices. For macro scale devices, commercial products have already emerged [7].
A vibration energy harvester is usually a spring-mass-damper system with a transducer that is continuously driven by the relative motion of the mass with respect to a device frame. The transducers are typically one of the three main types: electromagnetic, piezoelectric or electrostatic [1-2, 8-14]. For small scale systems, vibration energy harvesters face at least two fundamental obstacles. Reduced size necessarily means reduced mass, meaning reduced output power in an inertially driven device. Furthermore, the smaller harvesters have smaller space available for proof mass motion which again limits the distance over which work can be done.
In practical generators, mechanical end-stops are intentionally designed in order to confine the displacement of the inertial mass to the finite die dimension and to avoid spring fracture or degradation of material properties. When the acceleration amplitude is sufficient for proof-mass impacts on end-stops to occur, non-linear effects such as the jump phenomenon in the displacement vs. frequency response appear. Even though this behavior can be exploited to extend device bandwidth, operating a conventional harvester in this regime has the considerable disadvantage that the output power saturates at high excitation levels and therefore the effectiveness of the device decreases. This saturation is quite generic and has been reported for a variety of devices [15-20].
This chapter is concerned with the extent to which the internal impacts on these end-stops can be exploited by making transducing end-stops. Several prototypes utilizing impact principles in macroscale piezoelectric devices have been presented [21-28]. Here we consider microscale electrostatic energy harvesters with two types of transducers, main transducer and secondary end-stop transducers. At sufficiently strong excitations, the impact of the proof-mass onto the end-stops actuates the secondary transducer and thereby harvests the excess kinetic energy of the proof mass. Therefore, the device provides power through two states as excitation strength increases, a first stage with only primary transducer output, and a second stage with output from all transducers.
For a velocity damped generator, the end-stop limit is reached when
Section 2 of this chapter details the motivation and working principle for the impact-based electrostatic device. The MEMS-implementation of the concept, made in the Tronics MPW foundry process [31], is described in detail in Section 3, modelled in Section 4 and characterized in Section 5.
2. Device principles
A schematic model of a traditional harvester is shown in Figure 1. With such a design, the typical behavior in frequency sweeps is a clipping of the resonance peak and the occurrence of a jump phenomenon on the high frequency side of the clipped peak. With increasing amplitude, the output power eventually saturates, at least approximately. These effects have been observed in several devices, e.g. in a mesoscale electromagnetic harvester by [16], a mesoscale piezoelectric harvester [18-19] and a microscale electrostatic harvester [17]. Some examples of measured and simulated characteristics of a microscale electrostatic energy harvester from [30] are shown in Figure 2 which displays “clipping“ of the response and extended up-sweep bandwidth, and Figure 3 which displays saturation.
The clipping of the response in Figure 2 and the saturation in Figure 3 are direct negative consequences of the displacement limit. Whether the end-stop impacts are elastic or give loss of kinetic energy, is not significant for the output power when the vibrations are sinusoidal and at the resonant frequency [19]. Loss at end-stop impacts mainly affects the phase relationship between the driving force and the displacement. This has consequences for the value of the jump-down frequency in the up-sweep (at about 1450 Hz in Figure 2) and the details of displacement waveform. The displacement waveform may even show period doubling or chaotic-like behaviour without significant deviation from the saturation characteristic in Figure 3, see [32]. If we are mainly concerned with vibrations at the resonant frequency, we are then free to design the end-stop with any degree of loss that we deem suitable without compromising the output power performance.

Figure 1.
A schematic illustration of typical energy harvesters including a spring-dashpot mass system with use of mechanical end-stops to limit mass motion

Figure 2.
Up-sweep frequency response of RMS output voltage for different acceleration levels at bias voltage

Figure 3.
Output power versus acceleration amplitude for different bias voltages. From [
The observation that end-stop loss is not important suggests that it can be beneficial to design end-stops that are also transducers. The concept is illustrated by velocity damped end-stops in Figure 4. If these secondary transducers can scavenge significant proof-mass kinetic energy at each impact and convert it to electrical energy, we obtain power in addition to that already available from a primary transducer that will be present and associated with the proof-mass motion anyway. The questions are then how these transducing end-stops can be made and, since some chip real estate must be allocated for them, if this approach has any advantages over using the entire area for a conventional device.

Figure 4.
A schematic illustration of device concept with use of end-stops as additional transducers
3. MEMS devices
Here we consider a MEMS realisation of a device based on internal impacts as motivated in the previous section.
3.1. Impact device
Figure 5 shows an impact-device design. There are three independently suspended structures that constitute the device: one primary mass with its electrostatic transducer (ET1) and two secondary electrostatic structures with their own transducers (ET2) acting as end-stops to prevent the ET1 proof mass motion. The ET1 is an ordinary comb-drive structure driven by a movable proof mass

Figure 5.
Schematic layout of the impact device with additional secondary electrostatic transducers functioning as end-stops for the primary mass

Figure 6.
A total view of the impact device with primary and secondary electrostatic transducers (Photograph: Tronics Microsystems S.A.)

Figure 7.
A close-up view of the primary and secondary transducers of the impact device (Photograph: Tronics Microsystems S.A.)

Figure 8.
Secondary spring and gap-closing transducer of the secondary structure (Photograph: Tronics Microsystems S.A.)
The ET2 transducer has a mass
The ET1 and ET2 are accelerated in the same direction. Assuming negligible inertial actuation of the secondary structure, the impact between the primary and secondary masses occurs when the displacement amplitude of the primary mass reaches the limit
The die is 8×4mm2 and is fabricated in the Tronics MPW (multi-project wafer) service with high aspect ratio micromachining of the 60µm thick device layer of Silicon-on-Insulator (SOI) wafers [31]. Figure 6 shows the full view of the device. The ET2 mass
Figure 7 shows a close-up view of the primary and secondary masses. The ET1 proof mass is attached to four springs. The springs in this device are designed as folded flexures with released stress in the axial direction, resulting in the linear beams for transverse motion. The ET2 spring design makes use of two single beams separated by a distance of 2.5mm, giving linear behavior within the ET2-structure travel length. In order to secure predictable beam widths, protection beams oriented in parallel with the spring beams are included to reduce over-etching of the spring beam during fabrication. With this counter measure, we expect the beam cross-section to be closer to the ideal rectangular shape, and therefore its stiffness to be close to the design value. The measured resonance frequency deviates approximately 1.5% from the design value.
There are four metal pads on anchors: two placed on the ET1’s anchors and two deposited on the ET2’s anchors. They connect to voltage sources used for external biasing in the experiments. Four remaining metal pads are placed on the fixed electrodes to connect the external load resistances.
Figure 8 presents details of the ET2. We see the gap-closing transducer and the bump geometry for the contact regions between the ET1 and ET2 structures. The spring anchors of the ET2 structure also function as rigid end-stops that restrict maximum displacement of both ET1 and ET2 structures to avoid contact between fixed and counter electrodes. All of the device parameters for the ET1 and the ET2 are listed in Table 1.
Die dimensions | 8×4mm2 | |
Device thickness, | 60µm | |
Length of capacitor fingers, | 25µm | 30 µm |
Width of capacitor fingers, | 4µm | 4µm |
Gap between capacitor fingers, | 3.0µm | 3.5µm |
Number of capacitor fingers on each electrode, | 416 | 225 |
Nominal capacitor finger overlap, | 10µm | 25 µm |
Length of spring Width of spring | 500µm 6.5µm | 350µm 5.2µm |
Distance between primary and secondary masses, | 4.0µm | |
Distance between secondary mass and rigid end stops, | 3.0µm | |
Bump radius, | 30µm |
Table 1.
3.2. Reference device
Figure 8 shows a view of the reference device with its in-plane overlap-varying transducer. The transducer is similar to the primary transducer of the impact device. Both device prototypes have the same chip dimension. The reference transducer has a larger area for the proof mass and a slightly higher transducer capacitance than the ET1. This is due to more space being available within the same chip real-estate when there are no transducing end-stops. The reference proof mass is suspended by four folded flexure beams. The beams are connected to fours anchors acting as rigid end-stops to confine maximum displacement of the proof mass. This device was described in detail in [30] where end-stop modeling was studied.

Figure 9.
A view of the reference device with the same die dimension [
The reference transducer is also biased externally. The output voltage is simply connected to load resistance via the metal pads deposited on the fixed electrodes. Further details of the reference-device geometry can be found in [30].
4. Modelling
As a check that the device operates according to our understanding, we will compare measurements to simulation. At the lumped-model level, the device dynamics is governed by a few nonlinear differential equations that can be solved by a variety of numerical tools. We prefer to use a circuit simulator as a solver, i.e. LT-SPICE, and therefore need to formulate the dynamics as an equivalent circuit. The overall scheme of the modelling is the same as we previously used for our previous MEMS devices [30]. Special features here are that there are 3 mechanical degrees of freedom in the impact device, the proof mass position and the position of each of the two secondary structures, and that the impacts are very crucial for the operation.

Figure 10.
Lumped model of the impact device: a) primary electrostatic transducer (ET1) and b) secondary electrostatic transducer (ET2) in one port
The device is modeled as showed in Figure 10 which gives equivalent circuits for the mechanical and electrical parts of the primary structure and of a secondary structure. The proof mass displacement of the ET1 and ET2 are characterized by two variables
Inertial proof mass, | 2.1mg | 0.15mg |
Spring stiffness, | 115.1N/m | 29.5N/m |
Damping coefficient, | 4.0e-3Ns/m | 0.2e-3Ns/m |
Nominal variable capacitance, | 1.3pF | 1.6pF |
Parasitic capacitance, | 17.9pF | 6.0pF |
Load resistance, | 4.9MΩ | 4.9MΩ |
Load parasitic capacitance, | 4.2pF | 2.0pF |
Table 2.
Model parameters of the impact device: primary and secondary electrostatic transducers
5. Measurements
Figure 11 shows the frequency response of the impact device compared with the reference device response for an RMS acceleration of 0.71g and a bias voltage

Figure 11.
Frequency response of the impact device compared to the reference device for bias voltage
Fig. 12 shows the output power for frequency up-sweeps for each transducer in the reference and impact devices at
A wider response bandwidth is obtained in simulation for the secondary transducer, while the primary transducer response behaves qualitatively like the measured result. The main differences between the measured and simulated results can be explained from the modeling of the impacts. We have seen in the simulations that when varying the loss in the impact model, the bandwidth is affected so inaccuracy in the loss representation can be at least partly responsible for the discrepancy. In addition, the design values for the device geometry have been used in the model and therefore small deviations in the distance of travel before impact could influence the impact events and thereby the bandwidth.

Figure 12.
Output power frequency responses of the primary and secondary transducers in the impact device compared to the output from the reference device at RMS acceleration of 5.5g and bias voltage
Figure 13 compares the output powers of the reference and impact devices under bias voltage
Figure 14 illustrates the frequency response of the total output power of the impact device and the reference device in frequency up- and down sweeps at an acceleration amplitude of 5.5g and bias voltage

Figure 13.
Comparison between measured output power of the reference and impact devices for bias voltage
One notable difference between this encapsulated low-
The merits of the impact-device concept can be quantified through the figure of merit

Figure 14.
Frequency response of the measured output power of the reference and impact devices for a RMS acceleration of 5.5g and bias voltage
2.10 | 0.074 | 0.037 | 0.04 | 11.18 | 9.56 | ||
4.19 | 0.145 | 0.078 | 0.06 | 17.42 | 14.81 | ||
5.15 | 0.139 | 3.017 | 1.76 | 5.40 | 14.44 | ||
5.50 | 0.106 | 4.249 | 1.87 | 5.09 | 23.12 |
Table 3.
Comparison of harvester effectiveness between the reference and impact devices
6. Conclusion
An electrostatic energy harvester with in-plane overlap-varying transducers on the primary mass and with secondary gap varying transducers as end-stops has been designed, modeled and characterized. The simulations are consistent with the measurement results. The performance was compared with that of a standard in-plane- overlap-varying type device. With the transducing end-stops we have seen that a considerable performance boost is obtained, with output power up to a factor 33 over the reference device, even though the reference device performed a factor of 3.4 better at low acceleration levels. None of the typical jump phenomena were observed in up and down frequency sweeps for this device. The frequency response of the impact device had approximately the same bandwidth as the reference device had on down sweeps.
Acknowledgement
This work was financially supported by the Research Council of Norway under grant 191282. We thank Prof. Eric Yeatman and Prof. Oddvar Søråsen for useful discussions and suggestions.
References
- 1.
Mitcheson P D, Yeatman E M, Rao G K, Holmes A S, Green T C. Energy harvesting from human and machine motion for wireless electronic devices. Proceedings of the IEEE2008 96 9 1457 1486 - 2.
Beeby S P, Tudor M J, White N M. Energy harvesting vibration sources for microsystems applications. Measurement Science and Technology2006 17 175 - 3.
Computer CommunicationsRoundy S. Wright P. K. Rabaey J. A. study of. low level. as vibrations a. power source. for wireless. sensor nodes. 2003 26 1131 - 4.
Power sources for wireless sensor networks. Computer ScienceRoundy S. Steingart D. Frechette L. Wright P. Rabaey J. 2004 2920 1 17 - 5.
Human generated power for mobile electronics. In: Piguet C. (ed.) Low-Power Electronics. Boca Raton FL: CRC Press;Starner T. Paradiso J. A. 2004 1 35 - 6.
Energy scavenging and power management in networks of autonomous microsensors. Microelectronics JournalCantatore E. Ouwerkerk M. 2006 37 12 1584 1590 - 7.
http://www.perpetuum.com/fsh.asp/ (accessed 19 June2012 - 8.
Journal of Smart Materials and StructuresAnton S. R. Sodano H. A. A. review of. power harvesting. using piezoelectric. materials ( 2003 2006 .2007 - 9.
Williams C B, Yates R B. Analysis of a micro-electric generator for microsystems. Sensors and Actuators A: Physical1996 52 8 - 10.
Sensors and Actuators A: PhysicalMitcheson P. D. Miao P. Stark B. H. Yeatman E. M. Holmes A. S. Green T. C. M. E. M. S. electrostatic micropower. generator for. low frequency. operation 2004 115 523 - 11.
Electrostatic micro power generator from low frequency vibration such as human motion. Journal of Micromechanics and MicroengineeringNaruse Y. Matsubara N. Mabuchi K. Izumi M. Suzuki S. 2009 - 12.
Piezoelectric multifrequency energy converter for power harvesting in autonomous microsystems. Sensors and Actuators A: PhysicalFerrari M. Ferrari V. Guizzetti M. Marioli D. Taroni A. 2008 142 329 - 13.
Microelectromechanical systems vibration powered electromagnetic generator for wireless sensor applications. Journal of Microsystems TechnologyKoukharenko E. Beeby S. P. Tudor M. J. White N. M. O’Donnell T. Saha C. Kulkarni S. Roy S. 2006 12 10 1071 1077 - 14.
Journal of Micromechanics and MicroengineeringBeeby S. P. Torah R. N. Tudor M. J. Glynne-Jones P. O’Donnell T. Saha C. Roy S. A. micro electromagnetic. generator for. vibration energy. harvesting 2007 17 1257 - 15.
Simulation of an electrostatic energy harvester at large amplitude narrow and wide band vibrations. In: Proceedings of Symposium on Design, Test, Integration, Packaging of MEMS/MOEMS,Tvedt L. Blystad-C L. Halvorsen J. E. 9 11 April2008 Nice, France; 2008. - 16.
Journal of Micromechanics and MicroengineeringSoliman M. S. M. Abdel-Rahman E. M. El -Saadany E. F. Mansour R. R. A. wideband vibration-based. energy harvester. 2008 - 17.
Journal of Micromechanics and MicroengineeringHoffmann D. Folkmer B. Manoli Y. Fabrication characterization. modeling of. electrostatic micro-generators. 2009 - 18.
Journal of Microsystems TechnologyBlystad-C L. Halvorsen J. piezoelectric E. A. energy harvester. with a. mechanical end. stop on. one side. 2011 17 505 - 19.
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency ControlBlystad-C L. Halvorsen J. Husa E. Piezoelectric S. energy M. E. M. S. harvesting driven. by harmonic. random vibrations. I. E. E. 2010 57 4 908 919 - 20.
Journal of Microelectromechanical systemsLiu H. Tay C. J. Quan C. Kobayashi T. Lee C. Piezoelectric M. E. M. S. energy harvester. for low-frequency. vibrations with. wideband operation. range steadily increased. output power. 2011 20 5 1131 1142 - 21.
Journal of Smart Materials and StructuresMoss S. Barry A. Powlesland I. Galea S. Carman G. P. A. broadband vibro-impacting. power harvester. with symmetrical. piezoelectric bimorph-stops. 2011 - 22.
Energy storage characteristics of a piezo-generator using impact induced vibration. Japanese Journal of Applied PhysicsUmeda M. Nakamura K. Ueha S. 1997 - 23.
Electrical power generation characteristics of PZT piezoelectric ceramics. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency ControlXu-N C. Akiyama M. Nonaka K. Watanabe T. 1998 45 1065 - 24.
Piezoelectric generator using a LiNbO3 plate with an inverted domain. In: Proceeding of Symposium on IEEE Ultrasonics,Funasaka T. Furuhata M. Hashimoto Y. Nakamura K. 5 8 October, Sendai, Japan;1998 - 25.
Energy-harvesting characteristics of PZT-5A under gunfire shock. Materials LettersYoon S. H. Lee Y. H. Lee S. W. Lee C. 2008 62 3632 - 26.
The European Physical Journal Applied PhysicsDjugum R. Trivailo P. Graves K. A. study of. energy harvesting. from piezoelectrics. using impact. forces 2009 - 27.
Journal of Smart Materials and StructuresGu L. Livermore C. Impact-driven frequency. up-converting coupled. vibration energy. harvesting device. for low. frequency operation. 2011 - 28.
An electrostatic energy harvester with power-extracting end stops driven by wideband vibrations. In: Proceedings of the PowerMEMS2011 Workshop,Le Halvorsen C. P. Søråsen E. Yeatman O. E. M. 5 18 November, Seoul, Korea;2011 - 29.
Microscale electrostatic energy harvester using internal impacts. Journal of Intelligent Material Systems and StructuresLe Halvorsen C. P. Søråsen E. Yeatman O. E. M. 2012 DOI: X12436739. - 30.
Journal of Micromechanics and MicroengineeringLe Halvorsen C. P. electrostatic E. M. E. M. S. energy harvesters. with end-stop. effects 2012 - 31.
http://www.tronicsgroup.com/full-service-MEMS-foundry/ (accessed 19 June2012 - 32.
Numerical analysis of nonlinearities due to rigid end-stops in energy harvesters. In: Proceedings of the PowerMEMS2010 Workshop, 30 Nov-3 December, Leuven, Belgium;Kaur S. Halvorsen E. Søråsen O. Yeatman E. M. 2010 - 33.
Investigation of a resonance microgenerator. Journal of Micromechanics and MicroengineeringMizuno M. Chetwynd D. G. 2003 13 209 - 34.
Electric-energy generation using variable-capacitive resonator for power-free LSI: efficiency analysis and fundamental experiment. In: Proceeding of the 2003 International Symposium on Low Power Electronics and Design,Miyazaki M. Tanaka H. Ono G. Nagano T. Ohkubo N. Kawahara T. Yano K. 25 27 August, Seoul, Korea;2003 - 35.
High damping electrostatic system for vibration energy scavenging. In: Proceeding of the Joint Conference on Smart Objects and Ambient Intelligence,Despesse G. Chaillout J. Jager T. Leger J. M. Vassilev A. Basrour S. Charlot B. 12 14 October, Grenoble, France;2005 - 36.
Journal of Microsystem TechnologyMiao P. Mitcheson P. D. Holmes A. S. Yeatman E. M. Green T. C. Stark B. H. M. E. M. S. inertial power. generators for. biomedical applications. 2006 12 1079