Nanocarriers: general advantages and shortcomings
\\n\\n
IntechOpen Book Series will also publish a program of research-driven Thematic Edited Volumes that focus on specific areas and allow for a more in-depth overview of a particular subject.
\\n\\nIntechOpen Book Series will be launching regularly to offer our authors and editors exciting opportunities to publish their research Open Access. We will begin by relaunching some of our existing Book Series in this innovative book format, and will expand in 2022 into rapidly growing research fields that are driving and advancing society.
\\n\\nLaunching 2021
\\n\\nArtificial Intelligence, ISSN 2633-1403
\\n\\nVeterinary Medicine and Science, ISSN 2632-0517
\\n\\nBiochemistry, ISSN 2632-0983
\\n\\nBiomedical Engineering, ISSN 2631-5343
\\n\\nInfectious Diseases, ISSN 2631-6188
\\n\\nPhysiology (Coming Soon)
\\n\\nDentistry (Coming Soon)
\\n\\nWe invite you to explore our IntechOpen Book Series, find the right publishing program for you and reach your desired audience in record time.
\\n\\nNote: Edited in October 2021
\\n"}]',published:!0,mainMedia:{caption:"",originalUrl:"/media/original/132"}},components:[{type:"htmlEditorComponent",content:'With the desire to make book publishing more relevant for the digital age and offer innovative Open Access publishing options, we are thrilled to announce the launch of our new publishing format: IntechOpen Book Series.
\n\nDesigned to cover fast-moving research fields in rapidly expanding areas, our Book Series feature a Topic structure allowing us to present the most relevant sub-disciplines. Book Series are headed by Series Editors, and a team of Topic Editors supported by international Editorial Board members. Topics are always open for submissions, with an Annual Volume published each calendar year.
\n\nAfter a robust peer-review process, accepted works are published quickly, thanks to Online First, ensuring research is made available to the scientific community without delay.
\n\nOur innovative Book Series format brings you:
\n\nIntechOpen Book Series will also publish a program of research-driven Thematic Edited Volumes that focus on specific areas and allow for a more in-depth overview of a particular subject.
\n\nIntechOpen Book Series will be launching regularly to offer our authors and editors exciting opportunities to publish their research Open Access. We will begin by relaunching some of our existing Book Series in this innovative book format, and will expand in 2022 into rapidly growing research fields that are driving and advancing society.
\n\nLaunching 2021
\n\nArtificial Intelligence, ISSN 2633-1403
\n\nVeterinary Medicine and Science, ISSN 2632-0517
\n\nBiochemistry, ISSN 2632-0983
\n\nBiomedical Engineering, ISSN 2631-5343
\n\nInfectious Diseases, ISSN 2631-6188
\n\nPhysiology (Coming Soon)
\n\nDentistry (Coming Soon)
\n\nWe invite you to explore our IntechOpen Book Series, find the right publishing program for you and reach your desired audience in record time.
\n\nNote: Edited in October 2021
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"9280",leadTitle:null,fullTitle:"Underwater Work",title:"Underwater Work",subtitle:null,reviewType:"peer-reviewed",abstract:"Underwater work is work done underwater, generally by divers during diving operations. It also includes work done underwater by remotely operated vehicles (ROVs) and manned submersibles. The versatility and multifarious skills of underwater work mean that it is possible to operate over a wide range of activities, working in hyperbaric conditions or in confined spaces. This book exposes and discusses the inner workings of underwater work along with its challenges and opportunities.",isbn:"978-1-78985-229-5",printIsbn:"978-1-78985-222-6",pdfIsbn:"978-1-78985-230-1",doi:"10.5772/intechopen.83282",price:100,priceEur:109,priceUsd:129,slug:"underwater-work",numberOfPages:88,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"647b4270d937deae4a82f5702d1959ec",bookSignature:"Sérgio António Neves Lousada",publishedDate:"March 31st 2021",coverURL:"https://cdn.intechopen.com/books/images_new/9280.jpg",numberOfDownloads:1720,numberOfWosCitations:0,numberOfCrossrefCitations:2,numberOfCrossrefCitationsByBook:1,numberOfDimensionsCitations:2,numberOfDimensionsCitationsByBook:2,hasAltmetrics:0,numberOfTotalCitations:4,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 20th 2019",dateEndSecondStepPublish:"March 2nd 2020",dateEndThirdStepPublish:"May 1st 2020",dateEndFourthStepPublish:"July 20th 2020",dateEndFifthStepPublish:"September 18th 2020",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"248645",title:"Dr.",name:"Sérgio",middleName:null,surname:"Lousada",slug:"sergio-lousada",fullName:"Sérgio Lousada",profilePictureURL:"https://mts.intechopen.com/storage/users/248645/images/system/248645.jpg",biography:"Sérgio António Neves Lousada has an international Ph.D. in Civil Engineering (Hydraulics). He teaches Hydraulics, Environment, and Water Resources and Construction at the University of Madeira, Portugal. He has published articles and books and participated in events mainly in the areas of hydraulics, urban planning, and land management. Furthermore, he collaborates with the Environmental Resources Analysis Research Group (ARAM), University of Extremadura (UEx); VALORIZA - Research Center for the Enhancement of Endogenous Resources, Polytechnic Institute of Portalegre (IPP), Portugal; CITUR - Madeira - Centre for Tourism Research, Development and Innovation, Madeira, Portugal; and Institute of Research on Territorial Governance and Inter-Organizational Cooperation, Dąbrowa Górnicza, Poland. Moreover, he holds an International master\\'s degree in Ports and Coasts Engineering.",institutionString:"University of Madeira",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"9",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"University of Madeira",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"839",title:"Oceanography",slug:"oceanography"}],chapters:[{id:"72682",title:"Introductory Chapter: Underwater Ordeals",doi:"10.5772/intechopen.93165",slug:"introductory-chapter-underwater-ordeals",totalDownloads:243,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Sérgio Lousada and Rafael Camacho",downloadPdfUrl:"/chapter/pdf-download/72682",previewPdfUrl:"/chapter/pdf-preview/72682",authors:[{id:"248645",title:"Dr.",name:"Sérgio",surname:"Lousada",slug:"sergio-lousada",fullName:"Sérgio Lousada"}],corrections:null},{id:"72795",title:"Cross-Correlation-Based Fisheries Stock Assessment Technique: Utilization of Standard Deviation of Cross-Correlation Function as Estimation Parameter with Four Acoustic Sensors",doi:"10.5772/intechopen.93240",slug:"cross-correlation-based-fisheries-stock-assessment-technique-utilization-of-standard-deviation-of-cr",totalDownloads:312,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"In the past, cross-correlation-based fisheries stock assessment technique utilized the mean and the ratio of standard deviation to the mean of cross-correlation function (CCF) as estimation parameter. However, in this paper, we have utilized only standard deviation of CCF as estimation parameter to estimate the population size. We utilized four acoustic sensors and considered chirp sound which is commonly generated by damselfish (Dascyllus aruanus), humpback whales (Megaptera novaeangliae), dugongs (Dugong dugon), etc., species to accomplish the simulations. We found that a robust estimation can be obtained using standard deviation of CCF as estimation parameter even when the distances between acoustic sensors are small.",signatures:"Shaik Asif Hossain and Monir Hossen",downloadPdfUrl:"/chapter/pdf-download/72795",previewPdfUrl:"/chapter/pdf-preview/72795",authors:[{id:"288949",title:"MSc.",name:"Shaik",surname:"Asif Hossain",slug:"shaik-asif-hossain",fullName:"Shaik Asif Hossain"},{id:"320412",title:"Dr.",name:"Monir",surname:"Hossen",slug:"monir-hossen",fullName:"Monir Hossen"}],corrections:null},{id:"74156",title:"Diving as a Scientist: Training, Recognition, Occupation - The “Science Diver” Project",doi:"10.5772/intechopen.94601",slug:"diving-as-a-scientist-training-recognition-occupation-the-science-diver-project",totalDownloads:299,totalCrossrefCites:2,totalDimensionsCites:2,hasAltmetrics:0,abstract:"Conducting scientific work underwater is a challenging endeavor. From collecting samples to protecting underwater cultural heritage sites scientific divers need to address issues concerning scientific methodology, diving safety, professional acknowledgement, training, legal implications etc. All of these matters are handled in different ways depending on factors like region, organizations involved, legal framework, diving philosophy etc. producing a diverse framework on scientific diving as a distinct type of underwater work. The ScienceDIVER project’s main objective is to study and analyze this fragmented landscape, in order to provide insight and suggestions towards a commonly accepted framework that will promote scientific diving as a means of forwarding knowledge both within the scientific community and its interaction with the public.",signatures:"Alexandros Tourtas, Kimon Papadimitriou, Elpida Karadimou and Ralph O. Schill",downloadPdfUrl:"/chapter/pdf-download/74156",previewPdfUrl:"/chapter/pdf-preview/74156",authors:[{id:"162823",title:"Dr.",name:"Kimon",surname:"Papadimitriou",slug:"kimon-papadimitriou",fullName:"Kimon Papadimitriou"},{id:"327014",title:"Dr.",name:"Elpida",surname:"Karadimou",slug:"elpida-karadimou",fullName:"Elpida Karadimou"},{id:"331019",title:"Dr.",name:"Alexandros",surname:"Tourtas",slug:"alexandros-tourtas",fullName:"Alexandros Tourtas"},{id:"331030",title:"Dr.",name:"Ralph",surname:"Schill",slug:"ralph-schill",fullName:"Ralph Schill"}],corrections:null},{id:"71423",title:"Progressive Underwater Exploration with a Corridor-Based Navigation System",doi:"10.5772/intechopen.90934",slug:"progressive-underwater-exploration-with-a-corridor-based-navigation-system",totalDownloads:534,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"The present work focuses on the exploration of underwater environments by means of autonomous submarines like AUVs using vision-based navigation. An approach called Corridor SLAM (C-SLAM) was developed for this purpose. It implements a global exploration strategy that consists of first creating a trunk corridor on the seabed and then branching as far as possible in different directions to increase the explored region. The system guarantees the safe return of the vehicle to the starting point by taking into account a metric of the corridor lengths that are related to their energy autonomy. Experimental trials in a basin with underwater scenarios demonstrated the feasibility of the approach.",signatures:"Mario Alberto Jordan",downloadPdfUrl:"/chapter/pdf-download/71423",previewPdfUrl:"/chapter/pdf-preview/71423",authors:[{id:"152460",title:"Dr.",name:"Mario Alberto",surname:"Jordán",slug:"mario-alberto-jordan",fullName:"Mario Alberto Jordán"}],corrections:null},{id:"74726",title:"Underwater Technical Inspections Using ROV Applied to Maritime and Coastal Engineering: The Study Case of Canary Islands",doi:"10.5772/intechopen.95599",slug:"underwater-technical-inspections-using-rov-applied-to-maritime-and-coastal-engineering-the-study-cas",totalDownloads:332,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Underwater Technical Inspections using ROV have an important role in the design, construction, maintenance and repair of maritime and coastal infrastructures, trough video recording, digital photographs, collection of technical data and underwater topographic survey providing support for consultancy studies and projects and technical advice and appraisals. Routine inspections are the key to the maintenance of any submerged infrastructure. The importance of this type of inspection is increasing every day, but divers are also placed in increasingly dangerous scenarios to carry out this type of work. Inspections of underwater structures (as in dams, bridges, reservoirs, breakwaters, piers, oil rigs, etc.) have always been arduous and difficult, and often dangerous, but today underwater drones offer solutions that eliminate the risk faced by divers, and that also greatly reduce the high costs involved in such inspections.",signatures:"Sérgio António Neves Lousada, Rafael Freitas Camacho and Josué Suárez Palacios",downloadPdfUrl:"/chapter/pdf-download/74726",previewPdfUrl:"/chapter/pdf-preview/74726",authors:[{id:"248645",title:"Dr.",name:"Sérgio",surname:"Lousada",slug:"sergio-lousada",fullName:"Sérgio Lousada"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"6195",title:"Sea Level Rise and Coastal Infrastructure",subtitle:null,isOpenForSubmission:!1,hash:"4eb2fa7c0bf9d4a493375ee47276aa38",slug:"sea-level-rise-and-coastal-infrastructure",bookSignature:"Yuanzhi Zhang, Yijun Hou and Xiaomei Yang",coverURL:"https://cdn.intechopen.com/books/images_new/6195.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7606",title:"Coastal and Marine Environments",subtitle:"Physical Processes and Numerical Modelling",isOpenForSubmission:!1,hash:"dd1227726856d58b88116129b0de8384",slug:"coastal-and-marine-environments-physical-processes-and-numerical-modelling",bookSignature:"José Simão Antunes Do Carmo",coverURL:"https://cdn.intechopen.com/books/images_new/7606.jpg",editedByType:"Edited by",editors:[{id:"67904",title:"Prof.",name:"José Simão",surname:"Antunes Do Carmo",slug:"jose-simao-antunes-do-carmo",fullName:"José Simão Antunes Do Carmo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2221",title:"Tsunami - Analysis of a Hazard",subtitle:"From Physical Interpretation to Human Impact",isOpenForSubmission:!1,hash:"a7ce45cda9743300d394136417028a84",slug:"tsunami-analysis-of-a-hazard-from-physical-interpretation-to-human-impact",bookSignature:"Gloria I. Lopez",coverURL:"https://cdn.intechopen.com/books/images_new/2221.jpg",editedByType:"Edited by",editors:[{id:"146976",title:"Dr.",name:"Gloria",surname:"López",slug:"gloria-lopez",fullName:"Gloria López"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8669",title:"Coastal Environment, Disaster, and Infrastructure",subtitle:"A Case Study of China's Coastline",isOpenForSubmission:!1,hash:"52abc534177a147ffd3154db2f4f4ba1",slug:"coastal-environment-disaster-and-infrastructure-a-case-study-of-china-s-coastline",bookSignature:"X. San Liang and Yuanzhi Zhang",coverURL:"https://cdn.intechopen.com/books/images_new/8669.jpg",editedByType:"Edited by",editors:[{id:"210315",title:"Prof.",name:"X. San",surname:"Liang",slug:"x.-san-liang",fullName:"X. San Liang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}},{type:"book",id:"8007",title:"Estuaries and Coastal Zones",subtitle:"Dynamics and Response to Environmental Changes",isOpenForSubmission:!1,hash:"ec140486c42d62e69ef428e6cf71b6d7",slug:"estuaries-and-coastal-zones-dynamics-and-response-to-environmental-changes",bookSignature:"Jiayi Pan and Adam Devlin",coverURL:"https://cdn.intechopen.com/books/images_new/8007.jpg",editedByType:"Edited by",editors:[{id:"179303",title:"Prof.",name:"Jiayi",surname:"Pan",slug:"jiayi-pan",fullName:"Jiayi Pan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6012",title:"Morphodynamic Model for Predicting Beach Changes Based on Bagnold's Concept and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"79ce8dc1cde58947a61fe4aea725d437",slug:"morphodynamic-model-for-predicting-beach-changes-based-on-bagnold-s-concept-and-its-applications",bookSignature:"Takaaki Uda, Masumi Serizawa and Shiho Miyahara",coverURL:"https://cdn.intechopen.com/books/images_new/6012.jpg",editedByType:"Authored by",editors:[{id:"13491",title:"Dr.",name:"Takaaki",surname:"Uda",slug:"takaaki-uda",fullName:"Takaaki Uda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"64730",slug:"erratum-spectrum-decision-framework-to-support-cognitive-radio-based-iot-in-5g",title:"Erratum - Spectrum Decision Framework to Support Cognitive Radio Based IoT in 5G",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/64730.pdf",downloadPdfUrl:"/chapter/pdf-download/64730",previewPdfUrl:"/chapter/pdf-preview/64730",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/64730",risUrl:"/chapter/ris/64730",chapter:{id:"63606",slug:"spectrum-decision-framework-to-support-cognitive-radio-based-iot-in-5g",signatures:"Ahmad Naeem Akhtar, Fahim Arif and Adil Masood Siddique",dateSubmitted:"February 8th 2018",dateReviewed:"August 18th 2018",datePrePublished:null,datePublished:null,book:{id:"7291",title:"Cognitive Radio in 4G/5G Wireless Communication Systems",subtitle:null,fullTitle:"Cognitive Radio in 4G/5G Wireless Communication Systems",slug:"cognitive-radio-in-4g-5g-wireless-communication-systems",publishedDate:"December 5th 2018",bookSignature:"Shahriar Shirvani Moghaddam",coverURL:"https://cdn.intechopen.com/books/images_new/7291.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"185038",title:"Dr.",name:"Shahriar",middleName:null,surname:"Shirvani Moghaddam",slug:"shahriar-shirvani-moghaddam",fullName:"Shahriar Shirvani Moghaddam"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"244896",title:"Dr.",name:"Ahmad Naeem",middleName:null,surname:"Akhtar",fullName:"Ahmad Naeem Akhtar",slug:"ahmad-naeem-akhtar",email:"ahmadnaeem.akhtar@mcs.edu.pk",position:null,institution:null}]}},chapter:{id:"63606",slug:"spectrum-decision-framework-to-support-cognitive-radio-based-iot-in-5g",signatures:"Ahmad Naeem Akhtar, Fahim Arif and Adil Masood Siddique",dateSubmitted:"February 8th 2018",dateReviewed:"August 18th 2018",datePrePublished:null,datePublished:null,book:{id:"7291",title:"Cognitive Radio in 4G/5G Wireless Communication Systems",subtitle:null,fullTitle:"Cognitive Radio in 4G/5G Wireless Communication Systems",slug:"cognitive-radio-in-4g-5g-wireless-communication-systems",publishedDate:"December 5th 2018",bookSignature:"Shahriar Shirvani Moghaddam",coverURL:"https://cdn.intechopen.com/books/images_new/7291.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"185038",title:"Dr.",name:"Shahriar",middleName:null,surname:"Shirvani Moghaddam",slug:"shahriar-shirvani-moghaddam",fullName:"Shahriar Shirvani Moghaddam"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"244896",title:"Dr.",name:"Ahmad Naeem",middleName:null,surname:"Akhtar",fullName:"Ahmad Naeem Akhtar",slug:"ahmad-naeem-akhtar",email:"ahmadnaeem.akhtar@mcs.edu.pk",position:null,institution:null}]},book:{id:"7291",title:"Cognitive Radio in 4G/5G Wireless Communication Systems",subtitle:null,fullTitle:"Cognitive Radio in 4G/5G Wireless Communication Systems",slug:"cognitive-radio-in-4g-5g-wireless-communication-systems",publishedDate:"December 5th 2018",bookSignature:"Shahriar Shirvani Moghaddam",coverURL:"https://cdn.intechopen.com/books/images_new/7291.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"185038",title:"Dr.",name:"Shahriar",middleName:null,surname:"Shirvani Moghaddam",slug:"shahriar-shirvani-moghaddam",fullName:"Shahriar Shirvani Moghaddam"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"12019",leadTitle:null,title:"Chaos Theory - Recent Advances, New Perspectives and Applications",subtitle:null,reviewType:"peer-reviewed",abstract:"\r\n\tThe book is devoted to the recent research in the chaos theory covering the Mathematical Description of Chaos Phenomena, Chaotic Dynamical Systems, Chaos and Fractals, Chaos in the Classical and Quantum Mechanics, Advances of Chaos, and Application in the Pure Sciences and Technologies. The first topic covers the approaches to describing the chaos phenomena in terms of generalized differential equations; the second one describes the different approaches applied to the study of the non-classical dynamical systems. The topic Chaos and Fractals illustrates the application of the cellular automata, non-classical differential equations, and surprising attractors; the appearance of new physical phenomena are discussed in the Chaos in the Classical and Quantum Mechanics. The topic Advances of Chaos describes the novel results in the pure and applied science based on the chaotic background. The application in the Pure Sciences and Technologies covers the achievements based on the characteristics of the chaos fundamentals. Since huge progress on chaos theory predetermines its application in the many areas of pure and applied science, the proposed book will be demanded by many scientists and industrial engineers, as well as post-graduate students and beyond.
",isbn:"978-1-83768-123-5",printIsbn:"978-1-83768-122-8",pdfIsbn:"978-1-83768-124-2",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"38f0946fe1dd3314939e670799f88426",bookSignature:"Dr. Mykhaylo I. Andriychuk",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/12019.jpg",keywords:"Deterministic Laws, Chaotic Dynamical Systems, Chaotic Mixing, Bifurcation of Vector Fields, Fractal Patterns, Fractal Mapping, Entropy, Non-linear Transformations, Chaos and Fuzzy Systems, Euler Method, Nonlinear Chaotic Maps, Application",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 19th 2022",dateEndSecondStepPublish:"June 16th 2022",dateEndThirdStepPublish:"August 15th 2022",dateEndFourthStepPublish:"November 3rd 2022",dateEndFifthStepPublish:"January 2nd 2023",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"16 days",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"IEEE senior member and known researcher in the antenna synthesis according to the desired amplitude characteristics, numerical methods for solving the non-linear integral equations, and asymptotic scattering theory.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"57755",title:"Dr.",name:"Mykhaylo",middleName:"I.",surname:"Andriychuk",slug:"mykhaylo-andriychuk",fullName:"Mykhaylo Andriychuk",profilePictureURL:"https://mts.intechopen.com/storage/users/57755/images/system/57755.jpg",biography:"Prof. Andriychuk obtained the M.Sc. degree in computational mathematics from the Lviv National University, the Ph.D. degree in application of computational techniques from the Kyiv National University, and the D.Sc. degree in mathematical modelling from the Lviv Polytechnic National University in 1976, 1987, and 2015, respectively. He has been employed by the Pidstryhach Institute for Applied Problems of Mechanics and Mathematics (IAPMM), Ukraine for more than 40 years. Currently, he is the Head of Department of the Numerical Methods in Mathematical Physics at the IAPMM. His professional performance includes more than 160 papers in the scientific journals and international conference proceedings, which concern to the diffraction and antenna synthesis theory, optimization methods and nonlinear integral and matrix equations. He is author of two monographs in antenna theory. Dr. Andriychuk is IEEE Member since 1995, and IEEE Senior Member since 2003.",institutionString:"Pidstryhach Institute for Applied Problems of Mechanics and Mathematics",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Pidstryhach Institute for Applied Problems of Mechanics and Mathematics",institutionURL:null,country:{name:"Ukraine"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"15",title:"Mathematics",slug:"mathematics"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"466997",firstName:"Patricia",lastName:"Kerep",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/466997/images/21565_n.jpg",email:"patricia@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully"}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"40267",title:"Oral Delivery of Insulin: Novel Approaches",doi:"10.5772/52265",slug:"oral-delivery-of-insulin-novel-approaches",body:'Insulin is a hormone that is synthesized in the β-cells of the pancreas as a proinsulin precursor and is converted to insulin by enzymatic cleavage. The resulting insulin molecule is composed of 51 amino acids arranged into two polypeptide chains - the A and B chains - which are connected by two interchain disulphide bridges. In the A chain, there is an additional intrachain disulphide linkage [1]. The primary structure of human insulin is shown in Figure 1 a. In the secondary structure, chain A consists of two antiparallel α-helices (A2 to A8 and A13 to A20), while chain B forms a single α-helix “B9 to B19” followed by a turn and a β strand “B21 and B30” [2]. The folding of insulin into a tertiary structure is essential for its biological activity (Figure 1b). Insulin has an isoelectric point (pI) of 5.3 and a charge of -2 to -6 in the pH range 7-11. Another intrinsic property of insulin is its ability to readily associate into dimmers, hexamers and higher-order aggregates. At the low concentrations found in the blood stream (< 10-3 µM), insulin exists as a monomer, which is its biologically active form. Following biosynthesis, insulin is stored as crystalline zinc-bound hexamers in vesicles within the pancreatic β-cells from which secretion occurs in response to elevated blood glucose levels [3]. The biological actions of insulin are initiated when insulin binds to its cell surface receptor. Insulin is an anabolic hormone and when binding to its receptor begins, many protein activation cascades occur. These include: the translocation of the glucose transporter to the plasma membrane and the influx of glucose, glycogen synthesis, glycolysis and fatty acid synthesis. Insulin has been observed as promoting the transport of some amino acids and potassium ions. Insulin also inhibits the liberation of free fatty acids and glycerol from the adipose tissue [3].
Insulin is used for the treatment of diabetes, a disease which results from a defect in the secretion or action of insulin.
Insulin: a) Primary Structureb) Tertiary Structure
Insulin is introduced by the parenteral route and two or three injections are needed for the better control of diabetes and in order to reduce the long term complications of hyperglycaemia (retinopathy, neuropathy and nephropathy). Patient non-compliance is common with the parenteral route. In addition, repeated injections will cause lipoatrophy or lipohypertrophy. Moreover, insulin injected into the subcutaneous tissues goes directly into general circulation and leads to peripheral hyperinsulinemia, which is associated with peripheral hypertension, the development of atherosclerosis, cancer,hypoglycaemia and other adverse metabolic effects [4]. Thus, the conventional subcutaneous injection of insulin is unphysiological because it deprives patients of the benefits of portal insulin since the liver is the major metabolic modulator of the glucose metabolism.
Oral insulin is a dream of patients and a challenge for scientists. For patients, not only are the pain and stress of injections relieved but it may also protect beta cells, avoid the weight gain associated with insulin injections and correct the blunting of the first-phase release of insulin [5]. All these effects are due to the fact that oral route provide insulin directly to the liver through portal circulation, resembling that which occurs in the non-diabetic individual [6]. The achievement of an adequate level of insulin in portal circulation has been associated with more a rapid and significant lowering of plasma glucose and haemoglobin A1c levels, the normalization of the plasma levels of three carbon precursors - such as lactate, pyruvate and alanine - and the hormones cortisol, growth hormone and glucagon [7].
Another advantage of oral insulin is that the gastrointestinal tract is immune tolerant compared to other routes of drug administration since immunogenicity has become a major issue for most biotechnology products. Immunogenicity decreases in the following order: (inhalation > subcutaneous > intramuscular > intravenous > oral).
For scientists, greater effort is needed to develop a nontoxic, stable, bioactive oral insulin delivery system. To develop such systems, many barriers must be explored.
The major barrier is that of absorption through the gastrointestinal membrane. Generally, the absorption of molecules can occur through the paracellular or the transcellular route. The former is the preferred route for small hydrophilic molecules with a molecular weight below 500 Da [8]. Of course, molecules with a high molecular weight - such as insulin (about 6 KDa) - would not penetrate through this route. This large molecular size, its charge and its hydrophilicity all preclude insulin absorption by transcellular diffusion.
Another obstacle is those enzymes that are located throughout the GIT. In the stomach there is a family of aspartic proteases called pepsins. In the small intestine, pancreatic proteases consisting of the serine endopeptidase (trypsin, α-chymotrypsin, elastase and exopeptidases, carboxypeptidases A and B) are responsible for the degradation of proteins [9]. Other enzymes are located at the brush–border membrane (various peptidases) or within the enterocytes of the intestinal tract. It was demonstrated by Aoki et al. [10] that the enzymatic degradation activity for insulin in the mucous/glycocalyx layers tends to increase towards the upper small intestine in the following order: duodenum > jejunum > ileum.
Another challenge for the formulator is the stability of insulin. Insulin has a delicate structure, and both formulation and processing parameters could influence its stability [11]. The most common degradation reactions are deamidation and polymerization. Extensive deamidation at the residue AsnA21 of insulin occurs in acid solutions, while in neutral formulations deamidation takes place at AsnB3 at a substantially reduced rate [12]. High temperatures accelerate the formation of covalent insulin dimer and covalent insulin polymer [13].
The formulator could handle the enzyme and stability barriers. A well-formulated nanocarrier would protect insulin from enzymes. Also, and with the proper choice of excipients and a properly designed method of production, the stability of insulin could be preserved. Many investigated systems have overcome these two barriers. However, no system exhibits a reproducible and pronounced absorption.
To improve the bioavailability of insulin, different approaches have been explored, including chemical modification [14], co-administration with absorption enhancers and/or enzyme inhibitors [15] and incorporation into carriers, such as liposomes ]16], mixed micelles, lipid-based systems, microspheres and nanoparticles [17-20].
These are carriers with a particle size of less than 1000 nm. Nanocarriers have received more attention recently due to their submicron size and their large specific surface area, both of which favour their absorption compared to larger carriers.
1.4.1.1. Types
Nanocarriers are categorized into: polymeric nanoparticles, nanovesicles and solid lipid nanoparticles (Figure 2). There are two types of polymeric nanoparticles: the matrix particles termed ‘nanospheres’ and the reservoir-type named ‘nanocapsules’. Vesicles have a hydrophilic core and hydrophobic bilayers. Conventionally, liposomal vesicles were developed by the self-assembly of phospholipid molecules in an aqueous environment.Recently, polymeric vesicles were prepared from amphiphilic polymers which form aggregates in aqueous solutions [21]. Solid lipid nanoparticles (SLN) are submicron colloidal carriers prepared from solid lipids (lipids being solid at room and body temperatures), such as triacylglycerols, complex acylglycerol mixtures or waxes, and dispersed either in water or in an aqueous surfactant solution [22]. The important features of different nanocarriers are illustrated in Table 1.
1.4.1.2. Applications
1.4.1.2.1. Liposomes
Insulin-loaded liposomes containing different kinds of bile salts (glycocholate, sodium taurocholate or sodium deoxycholate) were prepared by a reversed-phase evaporation method and their hypoglycaemic activity was assessed after oral administration to male Wistar rats. Liposomes containing sodium glycocholate elicited higher bioavailability - of approximately 8.5% and 11.0% - in non-diabetic and diabetic rats, respectively [23]. A hepatic-directed vesicle insulin system (HDV-I) was developed byDiasome Pharmaceuticals, Inc. The vesicles contain a specific proprietary hepatocyte-targeting molecule - biotin-phosphatidylethanolamine - in their phospholipid bilayer. Clinical trials in adult patients with type 1 diabetes mellitus demonstrated that the postprandial glycaemic control produced by 0.1 and 0.2 U/kg oral HDV-I was similar to that produced by 0.07 U/kg SC Humulin R [7].
1.4.1.2.2. Polymeric nanovesicles
Poly(lactic acid)-b-Pluronic-b-poly(lactic acid) block copolymers were synthesized [21]. This amphiphilic block copolymer aggregates in an aqueous solution to form vesicular nanoparticles. The oral administration of insulin-loaded vesicles to diabetic mice resulted in the reduction of blood glucose levels - 25% of the initial glucose level - which was maintained at this level for an additional 18.5 h [21].
1.4.1.2.3. Solid Lipid Nanoparticles (SLN)
Sarmento et al. [24] prepared insulin-loaded cetylpalmitate solid lipid nanoparticles and demonstrated their potential to deliver insulin orally. The drug loading capacity in solid lipid nanoparticles was improved by enhancing insulin liposolubility. Insulin was solubilized into mixed reverse micelles of sodium cholate and soybean phosphatidylcholine and transformed into SLN using a novel reverse micelle-double emulsion technique. Stearic acid and palmatic acid were used as a biocompatible lipid matrix [25]. The surface of the nanoparticles was modified by chitosan to enhance their penetration through GIT. In addition, chitosan was able to provide stealth properties to SLN, resulting in the absence of phagocytosis. Pharmacological availability values of 5.1–8.3% for SLN and 17.7% for chitosan-coated SLN were reported [26]. Lectins are proteins that bind sugar reversibly and are involved in many cell recognition and adhesion processes. They have been extensively adopted to target both absorptive enterocytes and M cells [27]. Wheat germ agglutinin binds (WGA) specifically to cell membranes and is taken up into cells by receptor-mediated endocytosis [28]. Zhang et al. [29] utilized the advantages of WGA and formulated SLN modified with WGA to enhance the oral delivery of insulin. Insulin-loaded SLNs or WGA-modified SLNs were administered orally to rats and elicited relative pharmacological bioavailability values of 4.46% and 6.08% and relative bioavailability values of 4.99% and 7.11%, respectively, in comparison with the subcutaneous injection of insulin.
Nanocarriers: general advantages and shortcomings
Polymeric nanoparticles developed from biocompatible and biodegradable polymers are good candidates for insulin delivery
Types of nanocarriers
1.4.1.3. Polymers used for the fabrication of polymeric nanoparticles
Both synthetic and natural polymers were investigated for the production of nanosystems. These polymers may be used alone or in combination to develop nanoparticles. Several fabrication techniques have been developed and can generally be subdivided into two categories, according to whether a preformed polymer is used or else whether nanoparticles are formed during the polymerization reaction. Methods from the first category include: emulsification/solvent evaporation, solvent displacement and interfacial deposition, emulsification/solvent diffusion, salting out with synthetic polymers, ionotropic gelation,coacervation and polyelectrolyte complexation. Meanwhile, the methods of the second category are: emulsion polymerization, interfacial polymerization and interfacial polycondensation. These methods were thoroughly discussed by Reis et al. [30].
1.4.1.3.1. Synthetic polymers
Usually, these are well-defined structures that can be modified to yield reasonable degradability and functionality. Synthetic biodegradable polymers such as poly ɛ-caprolactone (PCL) poly (lactic-co-glycolic acid) (PLGA) and polylactides (PLA) are widely used in drug delivery due to their good biocompatibility, biodegradability and novel drug release behaviour. The chemical structures of synthetic polymers were depicted in Table 2 and an example of insulin nanoparticles fabricated from these polymers is illustrated in Table 3.
1.4.1.3.1.1. PLGA
Poly (lactic-co-glycolic acid) (PLGA) is an aliphatic polyester synthetic biodegradable biopolymer which is successfully used for the development of nanomedicines. It was also investigated for the delivery of insulin. In the work of Yang et al. [31], insulin was encapsulated in PLGA nanoparticles.The administration of insulin-loaded PLGA nanoparticles for diabetes mellitus induced a rapid decrease in blood glucose levels for up to 24 h and increased insulin levels. The loading capacity was 78.35%. To facilitate loading efficiency, the lipophilicity of the insulin was increased by complexation with sodium lauryl sulphate or sodium oleate. Insulin encapsulation efficiency reached up to 90%. [32, 33].Mucoadhesive PLGA nanoparticles were prepared to enhance the oral bioavailability of the negatively charged PLGA nanoparticles. The PLGA nanoparticles were coated with chitosan or Eudragit® RS (RS). The pharmacological availability of two kinds of nanoparticles - PLGA nanoparticles and chitosan-coated PLGA nanoparticles - relative to SC injection was calculated and found to be 7.6% and 10.5%, respectively, at an insulin dose of 15 IU/kg [34]. Meanwhile, the pharmacological availability of the 50 IU/kg Eudragit® RS (RS) coated PLGA nanoparticle was 9.2% [35]. The main shortcomings of PLGA are that the degradation products arising from degradation of PLGA (lactic and glycolic acid) result in the generation of acidic species which can provoke problems for long‐term stability when encapsulating bioactive molecules. Antacid-insulin co-encapsulated PLGA were investigated with a view to increasing the microclimate pH and preventing structural losses and aggregation [36]. The antacids assessed were magnesium hydroxide and zinc carbonate. However, short-term stability was not reported.
1.4.1.3.1.2. PLA
Polylactides (PLAs) have similar properties to PLGAs but they are more hydrophobic than PLGAs and they degrade more slowly due to their crystallinity [37]. Cui et al. [38] reported enhanced insulin entrapment efficiency (up to 90%) in PLA and PLGA nanoparticles, where insulin was complexed with phosphatidylcholine (SPC) to improve its liposolubility. An oral bioavailability of 7.7% relative to subcutaneous injection was obtained.
1.4.1.3.1.3. PCL
Another interesting biodegradable polyester polymer is poly-ɛcaprolactone (PCL). Compared with PLGA and PLA, PCL is semi‐crystalline, has superior viscoelastic properties and possesses easy formability. PCL has the advantage of generating a less acidic environment during degradation as compared with PLGA-based polymers [37]. Nevertheless, the hydrophobic nature of PCL affects the encapsulation of hydrophilic substances, such as peptides, enzymes and other proteins. Damgé et al. [39] prepared nanoparticles from a blend of a biodegradable polyester poly (ε-caprolactone) and a polycationic non-biodegradable acrylic polymer (Eudragit® RS). These nanoparticles were investigated as a carrier for the oral administration of insulin and demonstrated prolonged hypoglycaemic effect of insulin in both diabetic and normal rats. The same author loaded nanoparticles with regular insulin ((Actrapid, Novo Nordisk) or insulin-Aspart ((Novorapid). Regular insulin-loaded nanoparticles reduced glycaemia in a dose dependent manner with a maximal effect observed with 100 IU/kg. In contrast, insulin analogue did not elicit a dose-dependent hypoglycaemic effect. The maximal effect was observed with 50 IU/kg insulin while lower (25 IU/kg) and higher doses (100 IU/kg) did not show any significant reduction in glycaemia. The authors attributed these discrepancies to the saturation of the receptors when the dose of aspart-insulin increases to 100 IU/kg [40].
1.4.1.3.1.4. PACA
Poly (alkyl cyanoacrylate) is a biocompatible and biodegradable polymer. It is degraded by esterases in biological fluids and produces certain toxic products that will stimulate or damage the central nervous system. Thus, this polymer is not authorized for application in humans [41]. However, PACA polymers are used to encapsulate insulin using emulsion or interfacial polymerization. Damge et al. [42] prepared an insulin-loaded poly (alkyl cyanoacrylate) nanocapsule. The oral administration of nanocapsules dispersed in Miglyol 812 to diabetic rats resulted in a 50% reduction of initial glucose levels from the second hour for up to 10-13 days. This effect was shorter (2 days) or absent when the nanocapsules were dispersed in water, whether with surface active agents or not.Insulin-loaded poly (ethyl cyanoacrylate) nanoparticles were prepared from microemulsions with a different microstructure and were administered orally to diabetic rats.A consistent and significant hypoglycaemic effect over controls was found for up to 36 h depending upon the type of monomer (ethylcyanoacrylate or butyl cyanoacrylate). However, no significant serum insulin levels were detectable [43].
1.4.1.3.1.5. Poly (Acrylic acid)
These are non-degradable polymers with mucoadhesive properties based on acrylic or methacrylic acid. Anionic polymers, such as methyl acrylic acid (Eudragit L-100) and methyl methacrylate (S-100), have been used to formulate pH sensitive nanocarriers. Polymethacrylic acid–chitosan–polyethylene glycol nanoparticles were developed by Pawar et al. for the oral delivery of insulin. These nanoparticles displayed excellent binding efficiency on mucin from porcine stomach and elicited pH dependent release profiles in vitro [44]. The nanoparticles were formed by a complex coacervation method using EudragitL100-55 and chitosan of various molecular weights. Insulin release from these nanoparticles was pH-dependent [45]. The distribution, transition and bioadhesion of insulin-loaded pH-sensitive nanoparticles prepared from EudragitL100-55 and chitosan were investigated. The addition of the hydroxypropylmethylcellulose reduced the stomach- and intestine-emptying rates and enhanced the adhesion of the nanoparticles to the intestinal mucosa [46].
1.4.1.3.2. Natural polymers
The naturally-occurring polymers of particular interest in the oral delivery of insulin are either polysaccharides or else proteins. Polysaccharides include chitosan, hyaluronan, dextran, cellulose, pullulan, chondroitin sulphate and alginate. Meanwhile, the protencious polymers are casein and gelatin. They are nontoxic, biocompatible, biodegradable and hydrophilic. The structure of these natural polymers is illustrated in Table 4. Examples of the natural polymers used to prepare insulin-loaded nanoparticles and the methods used for their fabrication are shown in Table 5.
1.4.1.3.2.1. Dextran
Dextran sulphate is an exocellular bacterial polysaccharide consisting of linear 1,6-linked D-glucopyranose units and branches beginning from α-1,3-linkages with approximately 2.3 sulphate groups per glucosyl residue. It is a nontoxic, highly water-soluble, biodegradable and biocompatible branched negatively charged polyion. A nanoparticle insulin delivery system was prepared by the polyelectrolyte complexation of oppositely charged natural polymers - dextran sulphate and chitosan in an aqueous solution. These pH sensitive nanoparticles released insulin in the intestinal medium [47]. The natural uptake processes of the intestine were utilized for the oral delivery of peptides and proteins. Vitamin B12 is an example of such carriers and was investigated for delivering different peptides [48]. Due to the susceptibility of vitamin B12/peptide conjugate to gastrointestinal degradation, dextran nanoparticles were coated with vitamin B12 and used as a carrier for the oral delivery of insulin [49]. These nanoparticles were found to be targeted at the systemic circulation through vitamin B12-intrinsicfactor receptor ligand-mediated endocytosis via ileocytes of the intestine [49]. The % pharmacological availability of nanoparticle conjugates containing 2, 3 and 4% w/w insulin was 1.1, 1.9 and 2.6 times higher, respectively, compared with nanoparticles without VB12.
Chemical Structure of Synthetic Polymers
1.4.1.3.2.2. Alginate
Alginate is a naturally occurring polysaccharide obtained from marine brown algae. It is a linear copolymer composed of 1,4-linked-β-D-mannuronic acid and α-L-guluronic acid residues that gel in the presence of divalent cations. It is a nontoxic and biodegradable polyanion that forms polyelectrolyte complexes with polycations, such as chitosan. Insulin-loaded nanoparticles were prepared by the ionotropic pre-gelation of alginate with calcium chloride followed by complexation between alginate and chitosan [50]. The pharmacological effect of insulin-loaded nanoparticles was evaluated in diabetic rats. The pharmacological availability was 6.8% and 3.4% for the 50 and 100 IU/kg doses, respectively [51]. Alginate/chitosan nanoparticles form complexes with cationic β-cyclodextrin polymers. The nanoparticles protect insulin against degradation in simulated gastric fluid [52]. Reis et al. [53] evaluated nanoparticle systems composed of alginate/chitosan cores coated with chitosan-polyethylene glycol-albumin. Albumin was added to prevent protease attacks on the insulin and chitosan for its mucoadhesive properties, while PEG served as a nanosphere stabilizer toimprove the half-live of the insulin and increase the residence time along the intestine. Chitosan-PEG-albumin coated nanospheres demonstrated a more than 70% blood glucose reduction, increased insulinemia by a factor of seven and significantly improved the response to the glucose oral tolerance test following oral administration to diabetic rats. In contrast, nanospheres lacking albumin and PEG in the coating material were ineffective. Multilayer nanoparticles consisting of calcium cross-linked alginate, dextran sulphate, poloxamer 188, chitosan and an outermost coating of albumin were developed. A 3-factor 3-level Box–Behnken statistical design was used to optimize the nanoparticle formulation. Solutions of 0.20% calcium chloride, 0.04% chitosan and 0.47% albumin constituted theoptimum formulation of nanoparticles for orally-dosed insulin [54]. The relative pharmacological availability and bioavailability were calculated after oral administration of 50 IU/kg of insulin-loaded multilayered nanoparticles to diabetic rats and were found to be 11% and 13%, respectively [55].
Synthetic polymers used for the preparation of nanoparticles and the methods used for their fabrication
Chemical Structure of Natural Polymers
As illustrated in Table 5, the most widely explored polymer is chitosan. This is because of its favourable biological properties, safety, low cost and easy modification. Compared to synthetic polymers, the degradation products of chitosan are amino sugars, which are easily metabolized by the body. Therefore, there is no concern of an acidic microclimate being generated by chitosan particles [56].
Natural polymers used for the preparation of nanoparticles and the methods used for their fabrication
What is Chitosan?
Chitosan is a linear copolymer consisting of ß (1-4)-linked 2-amino-2-deoxy–D-glucose (D-glucosamine) and 2-acetamido-2-deoxy-D-glucose (N-acetyl-D-glucosamine) units (Table 4). It is obtained by the alkaline N-deacetylation of chitin, which is the primary structural component of the outer skeletons of crustaceans. Chitosan is a weak poly base due to the large quantities of amino groups on its chain [57]. Both high molecular weight (HMWC) and low molecular weight chitosans (LMWC) are available. The latter were obtained by the depolymerization of HMWC. This can be carried out by enzymatic [58,59], physical [60, 61] or chemical methods [62, 63]. Another important property of chitosan is the degree of deacetylation (DDA), defined in terms of the percentage of primary amino groups in the polymer backbone. The properties of chitosan and its biological role are dependent on the DDA and M.wt [64]. Chitosan dissolves easily at low pH due to the protonation of the amino groups, while it is insoluble at higher pH ranges since the amino groups become deprotonated, as the pH approach the pKa of chitosan(6-6.5). The solubility of chitosan depends upon the molecular weight and DDA.
Chitosan nanoparticles have been prepared using ionotropic gelation with tripolyphosphate or even simply polyelectrolyte complexation between insulin and chitosan. The interaction of chitosan and polyanions leads to the spontaneous formation of nanoparticles in an aqueous environment without the need for heating or the use of organic solvents [65]. In addition, to ease of preparation under mild conditions, a high level of drug entrapment can be achieved so that the protein secondary structure and biological activity is preserved [66]. Insulin-loaded chitosan nanoparticles were prepared by the ionotropic gelation of chitosan with tripolyphosphate anions [67]. These nanoparticles were effective at lowering the serum glucose level of streptozotocin-induced diabetic rats when administered orally at insulin doses of 50 U/kg and/or 100 U/kg. However, they dissociate easily in acidic gastric conditions. To protect insulin from harsh GIT conditions, chitosan nanoparticles were formulated with an enteric coating polymer - hydroxypropyl methylcellulose phthalate (HPMCP) - and evaluated for the oral delivery of insulin. HPMCP-chitosan nanoparticles showed a 2.8-fold increase in their hypoglycaemic effect when compared with chitosan nanoparticles without HPMCP [68]. Self-assembled nanoparticles were developed by mixing the anionic poly-γ-glutamic acid (γ-PGA) solution with the cationic chitosan solution in the presence of MgSO4 and sodium tripolyphosphate (TPP). TPP and sulphate salts were physically added to crosslink chitosan by ionic gelation, while physical gelation may occur between Mg+ and the carboxylate ions on γ-PGA via an electrostatic interaction. Chitosan-γ-PGA nanoparticles remained intact within the pH range of 2.0–7.2; however, at lower pH values they disintegrated. The pharmacodynamics and pharmacokinetics of insulin were evaluated in a diabetic rat model and the relative bioavailability was 15% [69]. For the further enhancement of bioavailability, two approaches were investigated: in the first, chitosan- γ-PGA nanoparticles were freeze-dried and placed in an enteric-coated capsule, while in the second, a penetration enhancer - diethylenetriaminepentaacetic acid (DTPA) - was added. In both cases the bioavailability was approximately 20% [70,71].
The problem of the low solubility of chitosan in the neutral environment of the intestine was solved by synthesis of a partially quaternized derivative of chitosan - Trimethyl chitosan (TMC). TMC has good solubility and a permeation enhancing effect [72]. The targeting of trimethyl chitosan chloride to goblet cells was achieved through modification with a CSKSSDYQC (CSK) targeting peptide.The significant internalization of insulin via clathrin- and caveolae-mediated endocytosis on goblet cell-like HT29-MTX cells results in a better hypoglycaemic effect with a 1.5-fold higher relative bioavailability compared with unmodified TMC nanoparticles [73]. Trimethyl chitosan-cysteine conjugate and N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan were synthesized and demonstrated high mucoadhesion capability compared with TMC/insulin nanoparticles or native chitosan [74, 75]. Quaternized derivatives of chitosan have a high positive charge, which can easily interact with negatively-charged blood corpuscles, resulting in haemolysis and toxicity [76]. To overcome these problems, chitosan derivatives were modified with polyethylene glycol to reduce the interaction between the cationic polymers and cell membranes [77]. Chitosan was also modified with hydrophobic fatty acids, such as anacardic acid. Anacardoylated chitosan spontaneously formed nanoparticles in an aqueous insulin solution that sustained the release of insulin in the intestinal environment [78].
The absorption of the nanoparticles was thoroughly reviewed by des Rieux [8]. A particle can traverse the intestinal epithelium by the paracellular (between cells) or transcellular route (through the cells). The transcellular route is the most common. With the transcellular transport of nanoparticles, the particles are taken up by cells through the endocytic process - which takes place at the cell apical membrane - transported through the cells and released at the basolateral pole. Two types of intestinal cells are important in nanoparticle transcytosis: the enterocytes lining the gastrointestinal tract and the M cells mainly located in Peyer’s patches. The uptake of nanoparticles takes place by one of three endocytotic mechanisms: pinocytosis, macropinocytosis or clathrin-mediated endocytosis. Clathrin vesicles are for particles smaller than 150 nm while phagocytosis is for particulate matters of up to several µm. The uptake of particles, microorganisms and macromolecules by M cells occurs by fluid phase endocytosis, adsorptive endocytosis and phagocytosis [8].
Lipid-based delivery systems (LDS) range from simple oil solutions to complex mixtures of oils, surfactants, cosurfactants and cosolvents [79]. The bioavailability of several peptides was improved when incorporated into LDS - e.g., cyclosporine (Neoral®). The enhancement in absorption was attributed to an increase in membrane permeability, the inhibition of efflux transporters, a reduction in cytochrome P450 enzymes, an increase in chylomicron production and lymphatic transport [80].
1.4.2.1. Types
The LDS investigated for the delivery of insulin are: multiple emulsions, microemulsions and solid in-oil-in water systems.
1.4.2.1.1. Water-in-oil-in-water
A water-in-oil-in-water (W/O/W) emulsion has been proposed to protect peptides against proteolysis and enhance their absorption. Multiple emulsions containing unsaturated fatty acids (oleic acid, linoleic acid and linolenic acid) have been reported to enhance the ileal and colonic absorption of insulin without tissue damage [81]. The transport enhancement of the W/O/W emulsion prepared with octanoic acid triacylglycerol was found to be affected by the size of oil droplets. When the oil-droplet median was 2.3 μm, an earlier hypoglycaemic response was observed compared with a multiple emulsion, having a diameter of 3.8 μm. In contrast, the emulsion with a diameter of 0.7 μm exhibited no effect [82].
1.4.2.1.2. Microemulsions
Microemulsions are clear, stable, isotropic mixtures of oil, water and surfactant, frequently in combination with a cosurfactant [83]. The average particle size of microemulsions falls in the range of 5-100 nm; they are polydispersed in nature and the polydispersity decreases with decreasing particle size [84]. Insulin-loaded microemulsions were developed using didodecyldimethylammonium bromide as the surfactant, propylene glycol as the co-surfactant, triacetin as the oil phase and insulin solution as the aqueous phase. These microemulsions displayed a 10-fold enhancement in bioavailability compared with a plain insulin solution administeredorally to healthy rats [85]. The improved oral bioavailability of the w/o microemulsion system was also shown for a lecithin-based microemulsion of rh-insulin [86]. On the other hand, Kraeling and Ritschel [87] found that the oral pharmacological availability of insulin microemulsions as compared with intravenous insulin in beagle dogs was 2.1%, which further increased to 6.4% with the encapsulation of gelled microemulsions in hard gelatine capsules along with the protease inhibitor aprotinin and coating of the capsules for colonic release [87]. The improved oral delivery of insulin from a microemulsion system was also demonstrated by others [88]. A stable self-emulsifying formulation for the oral delivery of insulin was developed by Ma et al. [89]. It is composed of two non-ionic surfactants (polyethylene glycol-8-glycol octanoate/decanoate and polyglycerol-3 oleate). In diabetic beagle dogs, the bioavailability of this formulation was up to 15.2% at a dose of 2.5 IU/kg in comparison with the hypoglycaemic effect of native insulin (0.5 IU/kg) delivered by subcutaneous injection.
1.4.2.1.3. Solid-in-oil-in water (S/O/W) emulsions
S/O/W emulsions were also developed for the delivery of insulin whereby insulin was converted into a lipophilic complexby coatingwith surfactant molecules and dispersed in an oil phase of oil in a water emulsion to form the S/O/W emulsion [90]. The stability of this system was enhanced by lyophilization [91].
1.4.2.2. Mechanism of the absorption of lipid-based formulations
Suggested mechanisms of intestinal drug absorption, using lipid-based formulations include: an increase in membrane fluidity facilitating transcellular absorption, the opening of the tight junctions to allow paracellular transport (mainly relevant for ionized drugs or hydrophilic macromolecules), the inhibition of P-glycoprotein and/or cytochrome P450 to increase intracellular concentration and residence time, and the stimulation of lipoprotein/ chylomicron production [92].
Chitosan nanoparticles prepared by ionotropic gelation or polyelectrolyte complexation dissociate easily in an acidic medium. This might be related to the fact that both insulin and chitosan have net positive charges at pH 1.2, that the columbic repulsive forces lead to the dissociation of the complex and that the free insulin is subjected to degradation. For example, nanoparticles prepared from chitosan and poly (γ-glutamic acid) became unstable at pH 1.2 and broke apart [93] and nanoparticles composed of chitosan and tripolyphosphate rendered the protein more susceptible to acid and enzymatic hydrolysis [94]. In the present investigation, we benefited from the advantages of polyelectrolyte complexation between chitosan and insulin, its formulation in an aqueous environment without the need for heat or an organic solvent, and the solution of the shortcomings of burst release by the dispersion of nanoparticles in an oily phase. The oily vehicle was intended to reduce proteolytic degradation and improve absorption [95, 96]. In addition, the free chitosan amine groups may interact with any adjacent carboxylic acid groups of oleic acid, forming a protective hydrophobic coating layer at the surface of the dispersed phase, which may enhance stability in the GIT and promote lymphatic uptake. The particle size of the chitosan-oleic system is above 1 µm, due to the interaction. The reduction of the particle size of chitosan-oleic acid emulsion to nanosize was achieved by high pressure homogenization or else by the addition of surfactants. PEG-8 caprylic/capric glycerides (Labrasol) and polyglyceryl-6 dioleate were selected as surfactant and cosurfactant, respectively. Chitosan-insulin nanoparticles were solubilized in the inverted micelles. Chitosan plays an important role - as a matrix for nanoparticles and stabilizers of inverted micelles. In a previous work [97], we demonstrated the role of chitosan in the reduction of particle size of the w/o emulsion containing Labrasol, plurololeique and oleic acid. This was attributed to the interaction of amine groups of chitosan with the surfactant-cosurfactant aggregates, resulting in the formation of a closer packing of surfactants at the interface, which leads to a reduction in particle size. This effect is more pronounced in 1:1 surfactant:cosurfactant rather than in 4:1 systems. Insulin is a water soluble protein that will be located inside the water droplets. Chitosan will be partly fixed near the surfactant head groups with the rest of it inside the water droplet. Interactions between chitosan, surfactants and insulin resulted in smaller microemulsion sizes [97]. Moreover, low molecular weight chitosans were chosen to prepare the nanoparticles, since their intestinal absorption is known to be significantly better than the high molecular weight candidates and showed a negligible cytotoxic effect on the Caco-2 cells [98].
The potential of chitosan-fatty acid or chitosan-fatty acid derivative nanoparticles as oral delivery carriers of insulin was investigated systematically.
Detailed descriptions of the compositions and preparation methods can be found in the relevant patents [99, 100]. Low molecular weight chitosans were obtained by the depolymerization of high molecular weight chitosan using 2 M hydrochloric acid. The resulting fractions were characterized by Fourier transformed infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), nuclear magnetic resonance (NMR) and dynamic light scattering (DLS). The polyelectrolyte complexation method was utilized to prepare insulin-chitosan nanocomplexes. Chitosan was dissolved in deionized water and its pH was adjusted to 5.5 using 0.2 M NaOH.rh-insulin powder was dissolved in 0.1 M HCl, followed by the addition of 1M Tris (hydroxymethyl)-aminomethane buffer pH 7. Chitosan-insulin complexes were prepared by adding chitosan solution to an equal volume of insulin solution in a glass vial under gentle magnetic stirring, and incubating for a further 15 minutes at room temperature. The parameters affecting the encapsulation efficiency were investigated (final pH of the complex, molecular weight of chitosan, DDA of chitosan, initial concentration of chitosan and insulin, and chitosan: insulin ratio). A phase diagram was constructed and the results were used as guidance to select the suitable percentages of surfactants, oil and aqueous phases suitable for the nanoparticle dispersion system. The nanoparticle dispersion system was prepared by mixing two phases - the aqueous phase and the oily phase. The oily phase consists of Labrasol® and plurololeique® at a fixed weight (1/1) ratio and oleic acid. The aqueous phase composed of a chitosan-insulin complex. To prepare the dispersion system, 50 µl of the aqueous phase was added to 2.5 g of the oily phase during mixing with a vortex mixer (VELP Scientifica, Europe) for 1 min. at room temperature (25 oC).The preparation was characterized: viscosity, particle size, morphology and encapsulation efficiency were all determined. The chemical and immunological stabilities of insulin after entrapment into nanoparticles were studied. The suitability of the preparation to preserve insulin activity, to withstand gut enzymes and to maintain the stability of insulin upon storage was investigated [101]. The hypoglycaemic effect of the preparation after oral administration to streptozotocin-diabetic rats was evaluated. The parameters that influence the pharmacological availability were characterized. The bioavailability of the preparation versus subcutaneous injection was calculated together with the pharmacokinetic parameters. Moreover, human studies were conducted where twenty-five healthy volunteers participated in five studies using a two-phase, two-sequence crossover design with a washout period of one day [102]. Other chitosan fatty acid systems were also formulated, for example chitosan sodium lauryl sulphate nanoparticles [103] and chitosan-oleic acid nanoemulsion (particle size reduced by a high pressure homogenizer) and their hypoglycaemic effects were evaluated and compared to the chitosan-oleic acid-surfactants system.
Most commercially available chitosans possess quite large M.wts. LMWCs are better amenable for a wide variety of biomedical applications due to their solubility in water [104-106]. In addition, chitooligomers were found to be non-mutagenic and non-genotoxic when orally administered to mice [107]. To generate low molecular weight chitosans from high molecular weight candidates, hydrolysis by hydrochloric acid was adopted due to its practicability and reproducibility. IR spectrum spectroscopy demonstrated that there was no structure change during depolymerization. DDA was determined by NMR and it was about 99%. [101]. The solubility of chitosan increased with decreasing molecular weight. Chitosan has a positive zeta potential and its value is affected by the pH, molecular weight, DDA and concentration [108]. LMWCs with an average molecular weight of 13 KDa and DDA ~99% were used for further studies.
Insulin was first complexed with chitosan through the interaction of negatively charged insulin with positively charged chitosan to form PEC before incorporation into the oily vehicle. This is because chitosan has many beneficial effects, such as penetration enhancement. Chitosan was also found to stabilize insulin when incubated at 50 ± 1 °C while shaking at 100 strokes/min in a water bath [101]. As shown in Figure 3, the insulin solution was almost degraded while the chitosan-insulin complex protected the insulin from degradation for at least 24 h.In addition, chitosan has a role in protecting insulin from those enzymes present in the small intestine. This was reflected in the partial protection of insulin from pancreatin, as depicted in Figure 4, and the protection increases with the increase of the chitosan ratio. Moreover, chitosan may also protect insulin from destabilization at the oil/water interface when the PEC was dispersed in the oily vehicle. ThePEC formationprocess is influenced by a variety of parameters, including the system pH, chitosan molecular weight and DDA. The most important factor appears to be the system pH [101].
Effect of the temperature and shakingon the stability of the insulin
Effect of the chitosan:insulin ratioon the pancreatic degradation of insulin
Chitosan-insulin PECs were solubilized in an oily vehicle composed of a surfactant Labrasol, cosurfactantPlurolOleique and an oily vehicle oleic acid. We attempted to formulate an oral insulin delivery system that combined the advantages of nanoencapsulation and the use of an oily vehicle. The nanoparticles were expected to translocate the intestinal epithelium, while the oily vehicle was intended to reduce proteolytic degradation and improve permeability [109, 110]. In addition, Labrasol and oleic acid are known penetration enhancers [111, 112]. Our expectation is thatpart of the chitosan will rest inside the water droplet of the inverted micelles where it forms PEC with insulin while the other part projecting near the surfactant head groups where it interacts with surfactants stabilizes the w/o microemulsion and resulted in smaller microemulsion sizes [97]. Chitosan at pH 6 will also interact with oleic acid to coat the particles with a hydrophobic layer. This interaction was studied by molecular mechanics, as illustrated in Figure 5. The structure of chitosan 13 KDa, oleic acid and chitosan-oleic acid
a. Top view (A) and side view of chitosan (B); b. The computed molecular geometries of oleic acid; c. Top view (A) and side view of the chitosan-oleic acid complex
complex, which were built up in Hyperchem®, was shown in Figures 5.a, b and c, respectively. The conformation of individual chitosan and oleic acid was the same as the complex.
It is obvious that the outer structure of the complex was hydrophobic due to presence of oleic acid while chitosan was embedded inside the structure. This is consistent with the immiscibility of the complex with water. The binding energy of the resulting chitosan oleic acid complex is calculated according to the following equation:
The value of the binding energy suggested a high degree of interaction between chitosan and oleic acid. The chitosan-oleic acid interaction was also studied using statistical design [108]. The effects of three formulation variables (the aqueous chitosan solution to oleic acid ratio, the chitosan molecular weight, and the degree of deacetylation of chitosan) on the viscosity of the system and the length of the emulsified layer (%) were studied in a conventional 23 factorial design. It was found that chitosan-oleic acid interaction is significantly influenced by pH. At a pH of around 6.5, chitosan is almost 50% ionized (p
The effect of the pH of chitosan on the viscosity of oleic acid chitosan dispersions
The mean particle size was determined by dynamic light scattering - it was 111 ± 6.9 nm - and showed a unimodal particle size distribution. The particle size is affected by the molecular weight of chitosan, as shown in Table 6. An increase in the molecular weight of the chitosan polymer led to an increase in the dispersed phase particle size. The particles’ shapes were assessed by a transmission electron microscope (TEM) and it was spherical, as depicted in Figure 7. The viscosity of the nanosystem was measured by a Vibro viscometer - it was 52.25 ± 2.6 mPa s. Neither the particle size nor the viscosity of the nanosystem changed upon storage at 4 or 25 ºC for one month, indicating the physical stability of the nanosystem. The preparation procedure is mild and the insulin is chemically and immunologically stable, as illustrated by RP-HPLC and ELISA, respectively. About 90% of the insulin was recovered from the preparation after incubation with pepsin, indicating the protective ability of the preparation for insulin under conditions simulating the gastric environment [97]. In addition, short termchemical stability demonstrates that the chemical stability of the insulin was maintained for at least 30 days of storage at 4 and 25 °C, according to the HPLC method. Moreover, the biological activity was reserved after one month at storage temperatures of 4 and 25 ºC.
The mean diameter of the oily nanosystem prepared from chitosans with different molecular weights
TEM image of the oily nanosystem
The preliminary screening of the biological activity of nanoparticles prepared from different grades of chitosan (different molecular weights and DDA) and administered orally to STZ diabetic rats revealed a maximum effect with nanoparticles prepared from chitosan with a molecular weight of 13 KDa and DDA~ 99%. Figure 8 illustrates changes in the plasma glucose levels after the oral administration of the nanoparticles prepared from chitosan with a molecular weight of 13 KDa and DDA99%. As expected, the insulin oral solution showed no hypoglycaemic effect compared to the control group (P > 0.05). In contrast, the blood glucose levels of the rats decreased remarkably after the oral administration of insulin-loaded nanosystem, achieving a significant decrease at 3 h when compared with the control group (P< 0.05). More interestingly, the hypoglycaemic effect was maintained without recovery at the baseline for 12 h. A pharmacological availability value of 29% was obtained for the dose 5 IU/kg. An explanation of this positive behaviour of the oily nanosystem could be put forward in terms of the demonstrated ability of oily preparations to make the entrapped insulin more stable and protect it from degradation in the harsh conditions of the gastrointestinal tract as well as enhance its intestinal absorption.
Changes in blood glucose level versus time profiles after a single oral administration of the oily dispersion of chitosan-insulin nanoparticles given at a dose level 5 IU/Kg (▪) to STZ-diabetic rats compared to a free insulin solution given orally (50 IU/Kg) as a control group (∆) and a subcutaneous injection of a free insulin solution (1IU/Kg) (). The results are expressed as the mean ± S.E.M (n = 12 per group)
A concomitant increase in plasma insulin levels was observed after the oral administration of the 5 IU/kg of insulin-loaded oily nanosystem to diabetic rats, as depicted in Figure 9. The pharmacokinetic parameters were determined based on the insulin concentration plasma profiles of Figure 9, as shown in Table 7. The subcutaneous injection group exhibited a rapid increase in serum rh-insulin concentration up to 279.2 µIU/ml over 30 min of administration. Meanwhile, the intragastric administration of 5 IU/kg of nanoparticles exhibited slower absorption and sustained elimination, reaching a maximum after 2 h (102.22 µIU/ml). Moreover, the serum rh-insulin levels of the nanoparticle group were significantly different from that of the control group (P < 0.001). The AUC0-12 of orally administered nanoparticles was 664.99 µg hr/ml for the 5 IU/kg dose and 626.02 µg hr/ml for the 1 IU/kg subcutaneous rh-insulin dose. The corresponding relative bioavailability was calculated to be 21.24% [108].
These results clearly show that rh-insulin absorption was markedly enhanced by the nanoparticles dispersed in oily vehicle. As a proof of concept, early clinical trials have been performed by Badwan et al. [102]. The pharmacokinetic, pharmacodynamic and absorption kinetics of insulin-loaded oily nanosystem preparations of different particle sizes (57-220 nm) were compared with those of subcutaneous formulation in 25 healthy individuals using a euglycaemic clamp technique. The dose used was either 1, 2 or 3 IU/Kg. The effective permeability ratio (Peff*) was higher for preparations with a particle size of 57 nm than for those with a larger particle size. The preparation with the lowest particle size also exhibited the highest ratio in the dimensional analysis of the glucose infusion rate as a pharmacodynamic effect, while the other insulin formulations that were tested showed similar ratio profiles. The calculated intestinal permeability coefficients (×10–4) of the insulin best test and reference formulations were 0.084 and 0.179 cm/sec respectively. The total fraction of the insulin dose absorbed (Fa) for the test and reference products were 3.0% and 19% respectively. From these small studies, it was concluded that oral insulin bioavailability is promising for the development of oral insulin products.
Insulin plasma levels profile after a single oral administration of the oily dispersion of chitosan-insulin nanoparticles (5 IU/Kg) (▪) in fasted diabetic rats compared to the subcutaneous injection of free insulin (1 IU/Kg) () and an oral insulin solution (50 IU/kg) as a control (). The results are expressed as the average of the three independent experiments (n = 18)
Pharmacokinetic parameters derived from the plasma level vs. the time profile for insulin
Other chitosan fatty-acid systems were also developed and compared to the above mentioned system. For example, chitosan-sodium lauryl sulphate nanoparticles dispersed in an aqueous vehicle elicited a pharmacological response after oral administration [103]. However, the pharmacological availability was poor - 1.1% versus 29% for nanoparticles dispersed in an oily vehicle. Another system was developed by dispersing PEC in oleic acid and the particle size was reduced using a high pressure homogenizer. The oral administration of this preparation resulted in a pronounced effect (P < 0.001) after 12 h of administration and the effect was sustained for 24 h (Figure 10). This indicates that chitosan-oleic acid nanoparticles were slowly absorbed in comparison with the preparation containing surfactants. This may be due to the permeation enhancing effect of surfactants[108]
Changes in blood glucose level versus time profiles after a single oral administration of an oily dispersion of a chitosan-insulin oily nanosystem containing surfactant given at a dose level of 5 IU/Kg (▪) to STZ-diabetic rats compared to a chitosan-insulin oily nanosystem without surfactant ().The control was given a placebo (a formula containing all excipient) (x). The results are expressed as the mean ± S.E.M (n = 12 per group)
In conclusion, the useof the combination strategy of nanoencapsulation and an oily vehicle has shown considerable improvement in insulin delivery along the following lines:
1) A significant hypoglycaemic action with a maximum pharmacological availability of 29.0% was obtained; 2) The relative bioavailability was 21.2%; 3) The antidiabetic activity was prolonged for many hours; 4) The insulin in the preparation was chemically and biologically stable for a period of one month at storage temperatures of 4 °C and 25 °C. 5). The system could be considered as a platform technology for the delivery of other peptides, such as calcitonin.
Oral systems in different clinical phases and the companies who have invested on them were listed in Table 8. The modification of proteins’ structures by the attachment of proper moieties which alter their biopharmaceutical properties have been investigated by Biocon (Bangalore, India) and Nobex Corporation (Research Triangle Park, NC, USA). Nobex developed an orally active amphiphilic human insulin analogue, methoxy (polyethylene glycol) hexanoyl human recombinant insulin. Biological activity is retained and this compound is readily absorbed from the gastrointestinal tract. The effect of a single oral dose of hexyl-insulin monoconjugate 2 (HIM2) on the rate of whole-body glucose disposal (
Systems currently being studied for the oral delivery of insulin
Oral delivery is a physiological route for insulin administration. Improved disease management, the enhancement of patient compliance and the reduction of long-term complications of diabetes could be achieved by oral application. However, the challenges for developing oral insulin dosage forms aresignificant. A number of reports have appeared in the literature seeking to enhance insulin delivery via the oral route; however, the bioavailability in humans has not exceeded 10%. Most systems evaluated the pharmacodynamics and pharmacokinetics of oral insulin preparations on animal models. However, a few reports studied absorption mechanisms. The absorption of insulin is the major obstacle. Therefore, more focus should be directed on studying the very small details of absorption, especially with the development of many instrumental technologies that will help in this area.Nanotechnology will contribute largely to the success of oral insulin delivery. The investigators should plan to search for safer, simpler and scalable methods using biologically acceptable polymers. Nowadays, researchers from both academia andindustrial fields work on oral insulin. With these efforts, the dream of oral insulin will become real in the near future.
The experimental work was carried out and financially supported by the Jordanian Pharmaceutical Manufacturing Company, Naor-Jordan. Dr. Adnan Badwan for hisconstructive comments and Dr.Mayyas El-Remawi for his revision of the manuscript.
It is very effective to provide an introduction to this chapter of the field of nuclear medicine and how radioisotopes are used in nuclear medicine for both diagnostic and therapeutic applications. Radiopharmaceuticals are compounds that administered intravenously whether diagnostic or therapeutic applications [1]. Diagnostic applications in nuclear medicine use low activity tracer levels of generally gamma- or positron-emitting radioisotopes which are generally produced in nuclear reactors and accelerators. In other hands, therapeutic applications use particle-emitting radionuclides for induction of radio toxicity to kill cells in the intended tissue. It is also noted that in the form of radioactive sources, therapeutic radioisotopes are also used in other clinical specialties will be discussed in this chapter. As well as this chapter focuses on the description of radioactive materials which are used for nuclear medicine therapy and how they are produced.
Improving the utilization of radiopharmaceuticals in the development of pharmaceutical drug delivery systems, the behavior of the tracers administered by various ways must be investigated. The main aim of radio pharmacology is to study the chemical properties of radiotracers and their interactions with living organisms. Radiopharmaceuticals are unique medicinal formulations containing radioisotopes which are used in major clinical areas for diagnosis and/or therapy. Radiopharmaceuticals is currently considered the cornerstone of nuclear medicine. That is why there is a requirement for new radiopharmaceuticals that could be utilized to explore more subtle mechanisms of body functions.
This part of chapter which presented in the symposium reflect current and future developments in diagnostic and therapeutic agents as it deals with (Tc-99 m), highlighting its continuing importance to nuclear medicine and the role of imaging as an important tool. The emerging interest in therapeutic radiopharmaceuticals based on beta emitting short lived isotopes such as Iodine (I-131).
It worth mentioning that The properties of bio distribution and pharmacokinetics play a major role in affecting and defining the efficacy and safety for the treatment with a medicine. Currently, several image guided modalities have been applied in nuclear medicine such as Single-Photon Emission Computed Tomography (SPECT), (SPECT/CT), Tomography Computed Tomography (PET/CT), and Positron Emission.
The use of radionuclides for medical applications has continued to grow at a very rapid pace. That is why, it is required to learn more about The use of radiotracers for nuclear medicine imaging as well as discussing in this part of chapter the different methods of preparation, bio distribution and pharmacokinetics of radio pharmaceuticals for diagnosis and research.
Radiopharmaceuticals can be defined as a chemicals substances that contain radioactive atoms within its structure and suitable for administration to human used for either diagnose or treat diseases [2].
Radiopharmaceuticals can be categorized into:
Diagnostic radiopharmaceuticals are administered to a patient and enable physicians and researchers to see the biochemical activity of cells, to diagnose or stage disease
Therapeutic radiopharmaceuticals are administered to a patient to seek out and deliver cell-killing radiation to the site of disease.
Radiopharmaceuticals can be categorized into two groups:
First group includes radionuclides with radioactive decay period (half-life) less than 2 h
The group includes radionuclides with half life higher than 2.
Cameras in nuclear medicine are suitable for identifying radioactive particles. The type of camera can be defined by The type of radiation emitted:
SPECT cameras are used to detect nuclides that decay through direct emission of single gamma rays
PET cameras are able to detect the pair of gamma rays emitted after a decay of positron.
when the number of neutrons (N) and protons (P) are approximately equal it’s called stable nuclei. The ratio of N/P is equal one when the elements become heavier, the ratio of neutrons (N) to protons (P) for nuclear stability increases from 1to 1.5. meanwhile the nucleuses has too high (Neutron rich) stability decreases at the line of stability See Figure 1.If the N/P ratio is too low for stability, the radioactive decay take places in a manner that will be reduce the number of protons and increase the number of neutrons by the net conversion of proton to neutron.
Nuclear stability diagram.
Radiopharmaceuticals are medicinal formulations involving radioisotopes which are safe for administration in humans with the purpose of diagnosis or for therapy.
Nuclear reactors have the ability to produce larger quantities of radioisotopes. Radioiodine (iodine-131), which was used as treatment of thyroid cancer, and still has the same importance but becomes the most efficacious method for the treatment of hyperthyroidism and thyroid cancer.
Preparing of radioisotopes is considered one of the most important and has the most priority among the several applications The medium flux and high flux research reactors are considered the most important source that used to produce radioisotopes for medical, and also industrial, applications and for producing isotopes in medical applications like molybdenum-99 (for production of technetium-99 m), iodine-131, phosphorus-32, chromium-51, strontium-89, samarium-153, rhenium-186 and lutetium-177.
Producing long lived radioisotopes use cyclotron in radiopharmaceuticals to prepare tracers for diagnostic imaging. Cyclotrons with high beam currents required For medium to high energy (20–70 MeV).
Most cyclotrons (~350) all over the world are used for the preparation of fluorine-18 for making radiolabelled glucose for medical imaging in the nuclear medicine.
Radioactive tracers is used by Diagnostic techniques in nuclear medicine that emit gamma radiation. The camera produces an image from the points at the radiation emission. The nuclear medicine techniques include
Single Photon Emission Computerized Tomography (SPECT)
Positron Emission Tomography (PET),
computed tomography-PET (PET-CT) (for better anatomical visualization)
micro-PET (with ultra-high resolution)
micro computerized axial tomography micro-CAT.
All above techniques are utilized to analyze biochemical dysfunctions with the purpose of showing early signs of the disease, their mechanisms and association with disease states.
A large number of chemicals that are absorbed by specific organs have been identified by specialists. For examples Thyroid absorbs iodine while the brain absorbs glucose. To monitor blood flow to the brain, liver, lung, heart, and kidney diagnostic radiopharmaceuticals can be used for that purposes see Figure 2. Destroying or weakening cancer cells can be done by particulate radiation as well as beta radiation causes ([3], p. 7).
Lists the radionuclides most commonly used for diagnosis and treatment of different organs of the human body.
This can be concluded that each organs of the human body requires different Radiopharmaceuticals to be administrated to it for the purpose of diagnose or treatment. This depends on the absorption of this organ to this chemical.
We can summarize the difference between normal medicines and radiopharmaceuticals is that the normal medicine has therapeutic effect while the latter does not. Besides that, radiopharmaceuticals have a short half-life, because of their rapid decay. For this reason, radiopharmaceuticals must be prepared immediately before their administration. The preparation and use of radiopharmaceuticals with safety and expertise are therefore vital for operator and patient protection.
Firstly, we should discuss the characteristics for radiopharmaceuticals to help us understand how to deal with it during the chapter and these characteristics can be summarized in the below points:
The decay of the radionuclide should be in specific ranges of energy emissions (511 keV for positron emission tomography – PET and 100–200 keV for gamma cameras) and in sufficient quantity for tomography detection.
It should have particulate radiation beta emissions because it the radiation dose is increased in the patients.
The half-life should be for a minimal hours.
The radionuclides should not be mixed with other radionuclides of the same element or its stable radionuclides.
radiopharmaceuticals are supposed to have certain activity as well as the highest specific activity comes from carrier-f456ree radionuclides.
The radiopharmaceuticals are supposed not to have toxicity and do not manifest physiological impact.
The radiopharmaceutical should be available for instant usage and easy to compound and reach the target organ quickly and accurately.
Most radionuclides are produced using two types of instruments:
Through the fission, neutrons are generated of nuclear fuel or neutron-capture reactions on stable targets. These neutrons are then utilized to create neutron-rich radionuclides that typically decay through beta emission and are therefore appropriate for the aimed radiotherapy.
Meanwhile, Accelerators, in contrast, accelerate protons or other charged particles to induce nuclear reactions on target materials. During these reactions proton-rich radionuclides can be created that decay by positron emission and are therefore useful for imaging applications.
In the following lines, we are going to discuss the production of Radionuclides with more details.
The production of radiopharmaceuticals involves the handling of large quantities of radioactive substances and chemical processing. The radionuclides used to make radiopharmaceuticals are produced artificially, mainly in a cyclotron or in a nuclear reactor. The type of radionuclides produced in a cyclotron or in a reactor depends on the type of energy of the bombarding particles and the target material ([4], p. 5).
The Cyclotrons are considered the most common type of accelerator which normally produce medical radionuclides through bombardment with charged particles. Its main usage is to accelerate charged particles in a circular fashion, cyclotrons used to take up less space than their linear counterparts.
The Cyclotrons typically accelerate charged particles to energies between 11 and 30 MeV, Despite the availability of the larger machines. Consequently, Cyclotrons can accelerate positive (e.g., protons, alpha particles) or negative (e.g., hydride ions) ions, but the majority of commercial machines manufactured today are negative ion.
The radionuclides produced by the cyclotron are distinguished by a presence of fewer neutrons, and their nuclear stability is obtained through electron capture or positron emission.
A cyclotron is a charged particle (cation or an ion) accelerator that transfers high energy to these particles, accelerating them in circular orbits by means of alternating electromagnetic fields until they collide with a target, with the consequent nuclear reaction and the production of positron-emitting radionuclides. The cyclotron was developed by with the purpose of accelerating particles such as protons or deuterons to achieve high levels of kinetic energy.
All cyclotrons are comprised of two electrodes in the form of semi-circular chambers (D) in which a vacuum is produced, and they are configured with the adjacent perimeter diameters in a uniform magnetic field. The Ds are coupled to a high-frequency electrical system that alternates about 107 times a second while the cyclotron is operating See Figure 3.
In each D, the ions are forced into a circular trajectory by means of an alternating magnetic field. When the ions complete a semi-circumference in the semi-period, the electrical field inverts polarity, causing acceleration of the ions in the electrical fields between the Ds, while also increasing the radius of their circular trajectory. This increase in acceleration involves an increase in kinetic energy See Figure 4.
continuously, this process is repeated, in semi-circular orbits that move in resonance with the oscillating field. In this way they gain energy continuously, describing a spiral trajectory until the periphery of the Ds is reached with the energy needed to escape from them and collide with the target, where the nuclear reactions will take place.
During nuclear reactions, The impacting particle can exit the nucleus after the interaction, and part of its energy is left in the nucleus, or it may be completely absorbed by the latter. In either case, a nucleus in an excited state is generated, and the excitation energy is released through the emission of nucleons (i.e., protons and neutrons). The emission of gamma radiation then occurs. Depending on the energy transmitted by the impacting particle, a random number of nucleons are emitted from the irradiated target, resulting in the formation of different nuclides. When the energy of the irradiating particle increases, more nucleons are generated and a greater variety of radionuclides are therefore produced. The radionuclides produced in a cyclotron are generally neutron-deficient and therefore decay with the emission of β + particles or through electron capture.
Radionuclides produced by the cyclotron and which are of interest in nuclear medicine comprise ([4], p.8):
Production processes in the cyclotron.
The process of producing of radionuclides in cyclotron.
Fluor-18: 18F - Carbon-11: 11C - Nitrogen-13: 13 N- Oxygen-15: 15O - Gallium-68: 68Ga - Scandium-44: 44Sc - Zirconium-89: 89Zr - Iodine-124: 124I See Figure 5.
Selected radionuclides produced by cyclotrons.
The process of producing radionuclides in nuclear medicine generated in nuclear reactors has two kinds of nuclear reactions including an interaction with neutrons:
During
Fission of heavy elements is categorized by the splitting of a heavy nucleus into two fragments of roughly the same mass, supplemented by the emission of two or three neutrons.
Each fission reaction releases a considerable amount of energy that is take out through heat exchangers to provide electricity in nuclear energy plants. When a fissionable heavy element target is interleaved into the core of the reactor, the heavy nuclides absorb thermal neutrons and experience the so-called fission reaction. Some fissionable heavy elements with an atomic number over 90 are: 235U, 239Pu, 237Np, 233U 232To. On the other hand, many clinically suitable radionuclides for instance 131I, 99Mo 133Xe and 137Cs are attained from the fission of 235 U See Figures 6 and 7.
Selected radionuclides produced by nuclear fission.
Radionuclide reactors.
Radionuclide generator.
They are considered a source of radionuclides which used for the production of radiopharmaceuticals. The 99Mo → 99mTc reactor often referred to as a technetium reactor is the most important radionuclide reactor for radiopharmaceutical preparation that is why it gets its importance. The reactor is capable of supplying short-lived radionuclides (short half-lives) over a time period much longer than this short half-life. It is also a unique equilibrium that is establishment between a long-lived “parent” radionuclide and its short-lived radioactive daughter. The second a ability to physically is the separation of the parent and daughter radionuclides to allow the daughter to be utilized for the preparation of short-lived radiopharmaceuticals. In the 99Mo → 99mTc reactor the parent is 99Mo with a half-life of 66 hours, which decays for producing the radioactive daughter 99mTc with a half-life of 6 hours. The separation of the parent and daughter is completed by simply washing the daughter from the reactor with sterile saline See Figure 9 [5].
Products of Radiocludes.
Several radioisotopes are produced by nuclear reactors and cyclotrons. As neutron-rich ones need to be made in reactors while neutron-depleted ones are made in cyclotrons, some examples of them as follows:
Carbon-11, Nitrogen-13, Oxygen-15, Fluorine-18: These positron emitters used in PET for studying brain physiology and pathology. They also have a significant role in cardiology. F-18 in FDG (fluorodeoxyglucose) is very important
Iodine-123 (13 h): Increasingly used for diagnosis of thyroid function, it is a gamma emitter without the beta radiation of I-131.
Thallium-201 (73 h): Used for diagnosis of coronary artery disease other heart conditions as well as it is used as substitute for technetium-99 in cardiac-stress tests.
It is required to have all the protective procedures towards the radiations in general and Pharmaceutical productions specifically Health and safety are an integral for protecting the patients, doctors, personnel and workers. The pharmacists are constantly being exposed to chemical and biological hazards which pose a serious threat to their health. Furthermore, during the production, lack of enough safety standards and non-compliance may cause negative impact in the long run. Therefore, it is important to have optimal health and safety practices while ensuring that all employees adhere to such regulations. Here are the tips to maintain improved health and safety standards in the pharmaceutical industry.
In case transporting or handling pharmaceuticals inappropriately, they can be dangerous. The trained staff are able to prevent chemical releases which can cause explosions and fire. That is why to reduce and minimize the risk and ensure more safety, Classification of Chemicals should be done by an effective way of handling hazardous chemicals. This can be done by trained and professional staff.
In addition, the Classification of Chemicals is an effective method to identify the way of how the chemicals can have harmful effects. It also helps in labeling correctly and handled in a legally manner to avoid health risks. Exploding or releasing chemicals normally can be caused by high temperature, high pressure or oxidation. This problem can be processed by lowering the oxidation work scale and understanding the right flammable limits. Certainly pharmaceutical companies have the main role to reduce these risks [6].
In the pharmaceutical industry, basic safety has to be maintained in the laboratory as well as employees must be conscious to the basic health and safety practices and take preventive processes during work in a hazard environment. These procedures can be carried out to maintain health and safety at the laboratory such as [6]:
Practice frequent cleaning
particularly Never eat, drink or smoke inside the laboratory
Making wearing suitable Personal Protective Equipment mandatory inside the laboratory
Coveralls, eye gear, protective helmet, shoe covers, etc.
We can conclude that the Radionuclides which are used in nuclear medicine are considered mostly to be artificial ones. We learned that these are primarily produced in a cyclotron or a reactor. The type of radionuclide produced in a cyclotron or a reactor depends mainly on the irradiating particle, its energy, and the target nuclei. Generally, it is noted the facilities which having such equipment are limited and supply radionuclides to remote facilities that do not possess them. Nuclear medicine is the medical specialty that employs radiopharmaceuticals, has presented itself as a very useful assistant for medicine supporting in several diagnoses and treatments. The main aim of this work is to define the vital radionuclides and metal. At the end, this chapter aims to be useful for all whom working in nuclear medicine and to be a guide for them. It is a guide to be used to shed some lights on radiopharmaceuticals and their uses, production and safety during handling [7].
IntechOpen has always supported new and evolving ideas in scholarly publishing. We understand the community we serve, but to provide an even better service for our IntechOpen Authors and Academic Editors, we have partnered with leading companies and associations in the scientific field and beyond.
",metaTitle:"Partnerships",metaDescription:"IntechOpen was built by scientists, for scientists. We understand the community we serve, but to bring an even better service to the table for IntechOpen Authors and Academic Editors, we partnered with the leading companies and associations in the industry and beyond.",metaKeywords:null,canonicalURL:"/page/partnerships",contentRaw:'[{"type":"htmlEditorComponent","content":"\\n"}]'},components:[{type:"htmlEditorComponent",content:'
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6675},{group:"region",caption:"Middle and South America",value:2,count:5955},{group:"region",caption:"Africa",value:3,count:2458},{group:"region",caption:"Asia",value:4,count:12718},{group:"region",caption:"Australia and Oceania",value:5,count:1017},{group:"region",caption:"Europe",value:6,count:17720}],offset:12,limit:12,total:134177},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"11369",title:"RNA Viruses",subtitle:null,isOpenForSubmission:!0,hash:"52f8a3a1486912beae40b34ac557fed3",slug:null,bookSignature:"Ph.D. Yogendra Shah",coverURL:"https://cdn.intechopen.com/books/images_new/11369.jpg",editedByType:null,editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11610",title:"New Insights in Herbicide Science",subtitle:null,isOpenForSubmission:!0,hash:"eb3830b8176caf3d1fd52c32313c5168",slug:null,bookSignature:"Ph.D. Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/11610.jpg",editedByType:null,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11027",title:"Basics of Hypoglycemia",subtitle:null,isOpenForSubmission:!0,hash:"98ebc1e36d02be82c204b8fd5d24f97a",slug:null,bookSignature:"Dr. Alok Raghav",coverURL:"https://cdn.intechopen.com/books/images_new/11027.jpg",editedByType:null,editors:[{id:"334465",title:"Dr.",name:"Alok",surname:"Raghav",slug:"alok-raghav",fullName:"Alok Raghav"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11124",title:"Next-Generation Textiles",subtitle:null,isOpenForSubmission:!0,hash:"093f9e26bb829b8d414d13626aea1086",slug:null,bookSignature:"Dr. Hassan Ibrahim",coverURL:"https://cdn.intechopen.com/books/images_new/11124.jpg",editedByType:null,editors:[{id:"90645",title:"Dr.",name:"Hassan",surname:"Ibrahim",slug:"hassan-ibrahim",fullName:"Hassan Ibrahim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11561",title:"Zeolite From Wastes - New Perspectives on Innovative Resources and Their Valorization Process",subtitle:null,isOpenForSubmission:!0,hash:"3ed0dfd842de9cd1143212415903e6ad",slug:null,bookSignature:"Dr. Claudia Belviso",coverURL:"https://cdn.intechopen.com/books/images_new/11561.jpg",editedByType:null,editors:[{id:"61457",title:"Dr.",name:"Claudia",surname:"Belviso",slug:"claudia-belviso",fullName:"Claudia Belviso"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11709",title:"Type 1 Diabetes Mellitus",subtitle:null,isOpenForSubmission:!0,hash:"cc0e61f864a2a8a9595f4975ce301f70",slug:null,bookSignature:"Dr. Shilpa Mehta and Dr. Resmy Palliyil Gopi",coverURL:"https://cdn.intechopen.com/books/images_new/11709.jpg",editedByType:null,editors:[{id:"342545",title:"Dr.",name:"Shilpa",surname:"Mehta",slug:"shilpa-mehta",fullName:"Shilpa Mehta"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11881",title:"Ventricular Assist Devices - Advances and Applications in Heart Failure",subtitle:null,isOpenForSubmission:!0,hash:"4c5136113dda974a93f03ba12724b31b",slug:null,bookSignature:"Associate Prof. Enkhsaikhan Purevjav, Dr. Hugo R. Martinez, Dr. Mohammed Absi, Dr. Jeffrey Allen Towbin and Dr. Umar Boston",coverURL:"https://cdn.intechopen.com/books/images_new/11881.jpg",editedByType:null,editors:[{id:"231585",title:"Associate Prof.",name:"Enkhsaikhan",surname:"Purevjav",slug:"enkhsaikhan-purevjav",fullName:"Enkhsaikhan Purevjav"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11669",title:"Fatty Acids - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"9117bd12dc904ced43404e3383b6591a",slug:null,bookSignature:"Assistant Prof. Erik Froyen",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",editedByType:null,editors:[{id:"415310",title:"Assistant Prof.",name:"Erik",surname:"Froyen",slug:"erik-froyen",fullName:"Erik Froyen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11800",title:"Cyanobacteria - Recent Advances and New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"645b037b086ec8c36af614326dce9804",slug:null,bookSignature:"Dr. Archana Tiwari",coverURL:"https://cdn.intechopen.com/books/images_new/11800.jpg",editedByType:null,editors:[{id:"186791",title:"Dr.",name:"Archana",surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11922",title:"Watermarking - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"9843dc1d810407088ed9eef10768a64b",slug:null,bookSignature:"Prof. Joceli Mayer",coverURL:"https://cdn.intechopen.com/books/images_new/11922.jpg",editedByType:null,editors:[{id:"110638",title:"Prof.",name:"Joceli",surname:"Mayer",slug:"joceli-mayer",fullName:"Joceli Mayer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11762",title:"Characteristics and Applications of Boron",subtitle:null,isOpenForSubmission:!0,hash:"611776f7f3cc9951a8956d2e3d535a8e",slug:null,bookSignature:"Associate Prof. Chatchawal Wongchoosuk",coverURL:"https://cdn.intechopen.com/books/images_new/11762.jpg",editedByType:null,editors:[{id:"34521",title:"Associate Prof.",name:"Chatchawal",surname:"Wongchoosuk",slug:"chatchawal-wongchoosuk",fullName:"Chatchawal Wongchoosuk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11910",title:"Frontiers in Voltammetry",subtitle:null,isOpenForSubmission:!0,hash:"fc53a7599a61ed04a0672a7bca81e9c2",slug:null,bookSignature:"Dr. Rajendrachari Shashanka, Dr. Kiran Kenchappa Somashekharappa, Dr. Sharath Peramenahalli Chikkegouda and Dr. Shamanth Vasanth",coverURL:"https://cdn.intechopen.com/books/images_new/11910.jpg",editedByType:null,editors:[{id:"246025",title:"Dr.",name:"Shashanka",surname:"Rajendrachari",slug:"shashanka-rajendrachari",fullName:"Shashanka Rajendrachari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:38},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:16},{group:"topic",caption:"Materials Science",value:14,count:25},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:116},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:417},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4431},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11043",title:"Endometriosis",subtitle:"Recent Advances, New Perspectives and Treatments",isOpenForSubmission:!1,hash:"7baf1c70b11d41400bb9302ae9411ca4",slug:"endometriosis-recent-advances-new-perspectives-and-treatments",bookSignature:"Giovana Ap. Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11043.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11083",title:"Hazardous Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"d553bd4f6f1c4b115ca69bd19faac7dc",slug:"hazardous-waste-management",bookSignature:"Rajesh Banu Jeyakumar, Kavitha Sankarapandian and Yukesh Kannah Ravi",coverURL:"https://cdn.intechopen.com/books/images_new/11083.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9625",title:"Spinocerebellar Ataxia",subtitle:"Concepts, Particularities and Generalities",isOpenForSubmission:!1,hash:"365a7025fd46eb45de2549bdd9d50b98",slug:"spinocerebellar-ataxia-concepts-particularities-and-generalities",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/9625.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"631",title:"Global Warming",slug:"global-warming",parent:{id:"100",title:"Climatology",slug:"earth-and-planetary-sciences-climatology"},numberOfBooks:2,numberOfSeries:0,numberOfAuthorsAndEditors:23,numberOfWosCitations:8,numberOfCrossrefCitations:13,numberOfDimensionsCitations:29,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"631",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9389",title:"Global Warming and Climate Change",subtitle:null,isOpenForSubmission:!1,hash:"435d35b33ec04fe921640a514feb19e4",slug:"global-warming-and-climate-change",bookSignature:"John P. Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/9389.jpg",editedByType:"Edited by",editors:[{id:"73876",title:"Dr.",name:"John P.",middleName:null,surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4495",title:"Global Warming",subtitle:"Causes, Impacts and Remedies",isOpenForSubmission:!1,hash:"2d99bd0d03471f9871f0fcadd967ba53",slug:"global-warming-causes-impacts-and-remedies",bookSignature:"Bharat Raj Singh",coverURL:"https://cdn.intechopen.com/books/images_new/4495.jpg",editedByType:"Edited by",editors:[{id:"26093",title:"Dr.",name:"Bharat Raj",middleName:null,surname:"Singh",slug:"bharat-raj-singh",fullName:"Bharat Raj Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"69171",doi:"10.5772/intechopen.84443",title:"Deciphering the Climate Change Conundrum in Zimbabwe: An Exposition",slug:"deciphering-the-climate-change-conundrum-in-zimbabwe-an-exposition",totalDownloads:987,totalCrossrefCites:8,totalDimensionsCites:11,abstract:"The notion that climate change has created development opportunities largely remains poorly understood despite phenomenal evidence that points toward positive gains across the broad socio-economic spectrum. Current understanding has largely concentrated on the negative effects of climate change, with limited exposition on the benefits associated with climatic responses. This article collates and reviews evidence that interventions to curtail climate change impacts have unlocked several development opportunities and potentially contribute in improving the living standards of many communities in Zimbabwe. It argues that although climate change effects permeate all the socio-economic development sectors of the country, the collective interventions by government, development partners and individuals on mitigation and adaptation actions could lead to a development trajectory that is evident in a number of indicators toward poverty alleviation, particularly through improved food, energy, water, and health access. The article, however, questions the sustainability of these unfolding benefits and advises on the need to enhance mechanisms for climatic programming in the country’s development plans, policies and strategies.",book:{id:"9389",slug:"global-warming-and-climate-change",title:"Global Warming and Climate Change",fullTitle:"Global Warming and Climate Change"},signatures:"Nelson Chanza and Veronica Gundu-Jakarasi",authors:[{id:"264749",title:"Dr.",name:"Nelson",middleName:null,surname:"Chanza",slug:"nelson-chanza",fullName:"Nelson Chanza"},{id:"309871",title:"Dr.",name:"Veronica",middleName:null,surname:"Gundu-Jakarasi",slug:"veronica-gundu-jakarasi",fullName:"Veronica Gundu-Jakarasi"}]},{id:"70313",doi:"10.5772/intechopen.85052",title:"The Developing World’s Contribution to Global Warming and the Resulting Consequences of Climate Change in These Regions: A Nigerian Case Study",slug:"the-developing-world-s-contribution-to-global-warming-and-the-resulting-consequences-of-climate-chan",totalDownloads:1263,totalCrossrefCites:3,totalDimensionsCites:10,abstract:"Hundreds of millions of urban dwellers in low- and middle-income nations are at risk as 4-5 of the global weather-driven disasters experienced are consequent of a changing climate. Studies have shown that residents in least developed countries have ten times more chances of being affected by these climate disasters than those in wealthy countries. Further, critical views have it, that it would take over 100years for lower income countries to attain the resiliency of developed countries. Unfortunately, global South is surrounded by a myriad of socio-economic and environmental factors limiting their fight against climate crisis. It is this germane reality that provoked the cause of this review. Hence, this paper reviewed the developing world’s contribution to global warming and the resulting consequences of climate change with focus on Nigeria. This purposive approach adopted an analysis of secondary data related to climate information. The findings from the paper affirmed that impacts of climate change in developing countries include loss in agriculture/forestry resources, water shortage, food insecurity, biodiversity loss, health risks among others. Finally, it identified the major factors that exacerbate climate crisis, the human actions that trigger global warming and adaptive and mitigation approaches to minimize climate change related disasters.",book:{id:"9389",slug:"global-warming-and-climate-change",title:"Global Warming and Climate Change",fullTitle:"Global Warming and Climate Change"},signatures:"Angela Oyilieze Akanwa and Ngozi Joe-Ikechebelu",authors:[{id:"262653",title:"Dr.",name:"Angela Oyilieze",middleName:null,surname:"Akanwa",slug:"angela-oyilieze-akanwa",fullName:"Angela Oyilieze Akanwa"},{id:"309477",title:"Ph.D. Student",name:"Ngozi",middleName:null,surname:"Joe-Ikechebelu",slug:"ngozi-joe-ikechebelu",fullName:"Ngozi Joe-Ikechebelu"}]},{id:"47250",doi:"10.5772/58877",title:"A Study on Economic Impact on the European Sardine Fishery due to Continued Global Warming",slug:"a-study-on-economic-impact-on-the-european-sardine-fishery-due-to-continued-global-warming",totalDownloads:1598,totalCrossrefCites:0,totalDimensionsCites:3,abstract:null,book:{id:"4495",slug:"global-warming-causes-impacts-and-remedies",title:"Global Warming",fullTitle:"Global Warming - Causes, Impacts and Remedies"},signatures:"M. Dolores Garza-Gil, Manuel Varela-Lafuente, Gonzalo Caballero-\nMíguez and Julia Torralba-Cano",authors:[{id:"54866",title:"Prof.",name:"M. Dolores",middleName:null,surname:"Garza-Gil",slug:"m.-dolores-garza-gil",fullName:"M. Dolores Garza-Gil"},{id:"59592",title:"Prof.",name:"Manuel M.",middleName:null,surname:"Varela-Lafuente",slug:"manuel-m.-varela-lafuente",fullName:"Manuel M. Varela-Lafuente"},{id:"172866",title:"Mr.",name:"Gonzalo",middleName:null,surname:"Caballero-Míguez",slug:"gonzalo-caballero-miguez",fullName:"Gonzalo Caballero-Míguez"},{id:"172867",title:"Ms.",name:"Julia",middleName:null,surname:"Torralba-Cano",slug:"julia-torralba-cano",fullName:"Julia Torralba-Cano"}]},{id:"47870",doi:"10.5772/59771",title:"A Study of Various Aspects of Cement Chemistry and Industry Relevant to Global Warming and the Low Carbon and Low Energy Molten Salt Synthesis of Cement Compounds",slug:"a-study-of-various-aspects-of-cement-chemistry-and-industry-relevant-to-global-warming-and-the-low-c",totalDownloads:2837,totalCrossrefCites:1,totalDimensionsCites:2,abstract:null,book:{id:"4495",slug:"global-warming-causes-impacts-and-remedies",title:"Global Warming",fullTitle:"Global Warming - Causes, Impacts and Remedies"},signatures:"Georgios M. Photiadis",authors:[{id:"149305",title:"Dr.",name:"Georgios",middleName:null,surname:"Photiadis",slug:"georgios-photiadis",fullName:"Georgios Photiadis"}]},{id:"47137",doi:"10.5772/58782",title:"Influence of Climate Change on Weed Vegetation",slug:"influence-of-climate-change-on-weed-vegetation",totalDownloads:2193,totalCrossrefCites:0,totalDimensionsCites:1,abstract:null,book:{id:"4495",slug:"global-warming-causes-impacts-and-remedies",title:"Global Warming",fullTitle:"Global Warming - Causes, Impacts and Remedies"},signatures:"Vytautas Pilipavičius",authors:[{id:"86510",title:"Prof.",name:"Vytautas",middleName:null,surname:"Pilipavicius",slug:"vytautas-pilipavicius",fullName:"Vytautas Pilipavicius"}]}],mostDownloadedChaptersLast30Days:[{id:"68928",title:"Mathematical Model for CO2 Emissions Reduction to Slow and Reverse Global Warming",slug:"mathematical-model-for-co-sub-2-sub-emissions-reduction-to-slow-and-reverse-global-warming",totalDownloads:1286,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"This chapter aims to provide climate policy makers with smooth patterns of global carbon dioxide (CO2) emissions consistent with the UN climate targets. An accessible mathematical approach is used to design such models. First, the global warming is quantified with time to determine when the climate targets will be hit in case of no climate mitigation. Then, the remaining budget for CO2 emissions is derived based on recent data. Considering this for future emissions, first proposed is an exponential model for their rapid reduction and long-term stabilization slightly above zero. Then, suitable interpolations are performed to ensure a smooth and flexible transition to the exponential decline. Compared to UN climate simulation models, the designed smooth pathways would, in the short term, overcome a global lack of no-carbon energy and, in the long term, tolerate low emissions that will almost disappear as soon as desired from the 2040s with no need for direct removal of CO2.",book:{id:"9389",slug:"global-warming-and-climate-change",title:"Global Warming and Climate Change",fullTitle:"Global Warming and Climate Change"},signatures:"Nizar Jaoua",authors:[{id:"308371",title:"Dr.",name:"Nizar",middleName:null,surname:"Jaoua",slug:"nizar-jaoua",fullName:"Nizar Jaoua"}]},{id:"69171",title:"Deciphering the Climate Change Conundrum in Zimbabwe: An Exposition",slug:"deciphering-the-climate-change-conundrum-in-zimbabwe-an-exposition",totalDownloads:987,totalCrossrefCites:8,totalDimensionsCites:11,abstract:"The notion that climate change has created development opportunities largely remains poorly understood despite phenomenal evidence that points toward positive gains across the broad socio-economic spectrum. Current understanding has largely concentrated on the negative effects of climate change, with limited exposition on the benefits associated with climatic responses. This article collates and reviews evidence that interventions to curtail climate change impacts have unlocked several development opportunities and potentially contribute in improving the living standards of many communities in Zimbabwe. It argues that although climate change effects permeate all the socio-economic development sectors of the country, the collective interventions by government, development partners and individuals on mitigation and adaptation actions could lead to a development trajectory that is evident in a number of indicators toward poverty alleviation, particularly through improved food, energy, water, and health access. The article, however, questions the sustainability of these unfolding benefits and advises on the need to enhance mechanisms for climatic programming in the country’s development plans, policies and strategies.",book:{id:"9389",slug:"global-warming-and-climate-change",title:"Global Warming and Climate Change",fullTitle:"Global Warming and Climate Change"},signatures:"Nelson Chanza and Veronica Gundu-Jakarasi",authors:[{id:"264749",title:"Dr.",name:"Nelson",middleName:null,surname:"Chanza",slug:"nelson-chanza",fullName:"Nelson Chanza"},{id:"309871",title:"Dr.",name:"Veronica",middleName:null,surname:"Gundu-Jakarasi",slug:"veronica-gundu-jakarasi",fullName:"Veronica Gundu-Jakarasi"}]},{id:"71858",title:"Introductory Chapter: Climates, Change, and Climate Change",slug:"introductory-chapter-climates-change-and-climate-change",totalDownloads:856,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"9389",slug:"global-warming-and-climate-change",title:"Global Warming and Climate Change",fullTitle:"Global Warming and Climate Change"},signatures:"John P. Tiefenbacher",authors:[{id:"73876",title:"Dr.",name:"John P.",middleName:null,surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}]},{id:"63386",title:"Ca-Cu Chemical Looping Process for Hydrogen and/or Power Production",slug:"ca-cu-chemical-looping-process-for-hydrogen-and-or-power-production",totalDownloads:1034,totalCrossrefCites:0,totalDimensionsCites:1,abstract:"It has been widely reckoned the potential of developing novel CO2 capture technologies aiming at low-energy penalties and reduced cost as a solution for fighting against climate change. The Ca-Cu chemical looping process emerged as a promising technology for producing hydrogen and/or power with inherently low CO2 emissions. The core of this concept is the calcination of the CaCO3 by coupling in the same solid bed the exothermic reduction of a CuO-based material, improving the efficiency of the CO2 sorbent regeneration step. Significant progress has been made since its first description in 2009, fulfilling the validation of the key stage under relevant conditions for the process in 2016. This chapter compiles the main advances in the Ca-Cu process regarding material development, reactor and process design and lab-scale testing, as well as in process simulation at large scale.",book:{id:"9389",slug:"global-warming-and-climate-change",title:"Global Warming and Climate Change",fullTitle:"Global Warming and Climate Change"},signatures:"Isabel Martínez, Jose R. Fernández and Gemma Grasa",authors:[{id:"261508",title:"Dr.",name:"Isabel",middleName:null,surname:"Martínez",slug:"isabel-martinez",fullName:"Isabel Martínez"},{id:"261681",title:"Dr.",name:"Jose R.",middleName:null,surname:"Fernández",slug:"jose-r.-fernandez",fullName:"Jose R. Fernández"},{id:"261682",title:"Dr.",name:"Gemma",middleName:null,surname:"Grasa",slug:"gemma-grasa",fullName:"Gemma Grasa"}]},{id:"70313",title:"The Developing World’s Contribution to Global Warming and the Resulting Consequences of Climate Change in These Regions: A Nigerian Case Study",slug:"the-developing-world-s-contribution-to-global-warming-and-the-resulting-consequences-of-climate-chan",totalDownloads:1263,totalCrossrefCites:3,totalDimensionsCites:10,abstract:"Hundreds of millions of urban dwellers in low- and middle-income nations are at risk as 4-5 of the global weather-driven disasters experienced are consequent of a changing climate. Studies have shown that residents in least developed countries have ten times more chances of being affected by these climate disasters than those in wealthy countries. Further, critical views have it, that it would take over 100years for lower income countries to attain the resiliency of developed countries. Unfortunately, global South is surrounded by a myriad of socio-economic and environmental factors limiting their fight against climate crisis. It is this germane reality that provoked the cause of this review. Hence, this paper reviewed the developing world’s contribution to global warming and the resulting consequences of climate change with focus on Nigeria. This purposive approach adopted an analysis of secondary data related to climate information. The findings from the paper affirmed that impacts of climate change in developing countries include loss in agriculture/forestry resources, water shortage, food insecurity, biodiversity loss, health risks among others. Finally, it identified the major factors that exacerbate climate crisis, the human actions that trigger global warming and adaptive and mitigation approaches to minimize climate change related disasters.",book:{id:"9389",slug:"global-warming-and-climate-change",title:"Global Warming and Climate Change",fullTitle:"Global Warming and Climate Change"},signatures:"Angela Oyilieze Akanwa and Ngozi Joe-Ikechebelu",authors:[{id:"262653",title:"Dr.",name:"Angela Oyilieze",middleName:null,surname:"Akanwa",slug:"angela-oyilieze-akanwa",fullName:"Angela Oyilieze Akanwa"},{id:"309477",title:"Ph.D. Student",name:"Ngozi",middleName:null,surname:"Joe-Ikechebelu",slug:"ngozi-joe-ikechebelu",fullName:"Ngozi Joe-Ikechebelu"}]}],onlineFirstChaptersFilter:{topicId:"631",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"June 25th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"7",title:"Bioinformatics and Medical Informatics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",isOpenForSubmission:!0,editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",slug:"slawomir-wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",biography:"Professor Sławomir Wilczyński, Head of the Chair of Department of Basic Biomedical Sciences, Faculty of Pharmaceutical Sciences, Medical University of Silesia in Katowice, Poland. His research interests are focused on modern imaging methods used in medicine and pharmacy, including in particular hyperspectral imaging, dynamic thermovision analysis, high-resolution ultrasound, as well as other techniques such as EPR, NMR and hemispheric directional reflectance. Author of over 100 scientific works, patents and industrial designs. Expert of the Polish National Center for Research and Development, Member of the Investment Committee in the Bridge Alfa NCBiR program, expert of the Polish Ministry of Funds and Regional Policy, Polish Medical Research Agency. Editor-in-chief of the journal in the field of aesthetic medicine and dermatology - Aesthetica.",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},{id:"8",title:"Bioinspired Technology and Biomechanics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",isOpenForSubmission:!0,editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",slug:"adriano-andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",biography:"Dr. Adriano de Oliveira Andrade graduated in Electrical Engineering at the Federal University of Goiás (Brazil) in 1997. He received his MSc and PhD in Biomedical Engineering respectively from the Federal University of Uberlândia (UFU, Brazil) in 2000 and from the University of Reading (UK) in 2005. He completed a one-year Post-Doctoral Fellowship awarded by the DFAIT (Foreign Affairs and International Trade Canada) at the Institute of Biomedical Engineering of the University of New Brunswick (Canada) in 2010. Currently, he is Professor in the Faculty of Electrical Engineering (UFU). He has authored and co-authored more than 200 peer-reviewed publications in Biomedical Engineering. He has been a researcher of The National Council for Scientific and Technological Development (CNPq-Brazil) since 2009. He has served as an ad-hoc consultant for CNPq, CAPES (Coordination for the Improvement of Higher Education Personnel), FINEP (Brazilian Innovation Agency), and other funding bodies on several occasions. He was the Secretary of the Brazilian Society of Biomedical Engineering (SBEB) from 2015 to 2016, President of SBEB (2017-2018) and Vice-President of SBEB (2019-2020). He was the head of the undergraduate program in Biomedical Engineering of the Federal University of Uberlândia (2015 - June/2019) and the head of the Centre for Innovation and Technology Assessment in Health (NIATS/UFU) since 2010. He is the head of the Postgraduate Program in Biomedical Engineering (UFU, July/2019 - to date). He was the secretary of the Parkinson's Disease Association of Uberlândia (2018-2019). Dr. Andrade's primary area of research is focused towards getting information from the neuromuscular system to understand its strategies of organization, adaptation and controlling in the context of motor neuron diseases. His research interests include Biomedical Signal Processing and Modelling, Assistive Technology, Rehabilitation Engineering, Neuroengineering and Parkinson's Disease.",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",isOpenForSubmission:!0,editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",biography:"Dr. Luis Villarreal is a research professor from the Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México. Dr. Villarreal is the editor in chief and founder of the Revista de Ciencias Tecnológicas (RECIT) (https://recit.uabc.mx/) and is a member of several editorial and reviewer boards for numerous international journals. He has published more than thirty international papers and reviewed more than ninety-two manuscripts. His research interests include biomaterials, nanomaterials, bioengineering, biosensors, drug delivery systems, and tissue engineering.",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:23,paginationItems:[{id:"82392",title:"Nanomaterials as Novel Biomarkers for Cancer Nanotheranostics: State of the Art",doi:"10.5772/intechopen.105700",signatures:"Hao Yu, Zhihai Han, Cunrong Chen and Leisheng Zhang",slug:"nanomaterials-as-novel-biomarkers-for-cancer-nanotheranostics-state-of-the-art",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11405.jpg",subseries:{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering"}}},{id:"82184",title:"Biological Sensing Using Infrared SPR Devices Based on ZnO",doi:"10.5772/intechopen.104562",signatures:"Hiroaki Matsui",slug:"biological-sensing-using-infrared-spr-devices-based-on-zno",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hiroaki",surname:"Matsui"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82122",title:"Recent Advances in Biosensing in Tissue Engineering and Regenerative Medicine",doi:"10.5772/intechopen.104922",signatures:"Alma T. Banigo, Chigozie A. Nnadiekwe and Emmanuel M. Beasi",slug:"recent-advances-in-biosensing-in-tissue-engineering-and-regenerative-medicine",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82080",title:"The Clinical Usefulness of Prostate Cancer Biomarkers: Current and Future Directions",doi:"10.5772/intechopen.103172",signatures:"Donovan McGrowder, Lennox Anderson-Jackson, Lowell Dilworth, Shada Mohansingh, Melisa Anderson Cross, Sophia Bryan, Fabian Miller, Cameil Wilson-Clarke, Chukwuemeka Nwokocha, Ruby Alexander-Lindo and Shelly McFarlane",slug:"the-clinical-usefulness-of-prostate-cancer-biomarkers-current-and-future-directions",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}}]},overviewPagePublishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}]},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",biography:"Michele Lanza is Associate Professor of Ophthalmology at Università della Campania, Luigi Vanvitelli, Napoli, Italy. His fields of interest are anterior segment disease, keratoconus, glaucoma, corneal dystrophies, and cataracts. His research topics include\nintraocular lens power calculation, eye modification induced by refractive surgery, glaucoma progression, and validation of new diagnostic devices in ophthalmology. \nHe has published more than 100 papers in international and Italian scientific journals, more than 60 in journals with impact factors, and chapters in international and Italian books. He has also edited two international books and authored more than 150 communications or posters for the most important international and Italian ophthalmology conferences.",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}]},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null}]},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}]}]},openForSubmissionBooks:{paginationCount:6,paginationItems:[{id:"11475",title:"Food Security Challenges and Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11475.jpg",hash:"090302a30e461cee643ec49675c811ec",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 5th 2022",isOpenForSubmission:!0,editors:[{id:"292145",title:"Dr.",name:"Muhammad",surname:"Haseeb Ahmad",slug:"muhammad-haseeb-ahmad",fullName:"Muhammad Haseeb Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11450",title:"Environmental Impacts of COVID-19 Pandemic on the World",coverURL:"https://cdn.intechopen.com/books/images_new/11450.jpg",hash:"a58c7b02d07903004be70f744f2e1835",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 10th 2022",isOpenForSubmission:!0,editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11477",title:"Public Economics - New Perspectives and Uncertainty",coverURL:"https://cdn.intechopen.com/books/images_new/11477.jpg",hash:"a8e6c515dc924146fbd2712eb4e7d118",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 27th 2022",isOpenForSubmission:!0,editors:[{id:"414400",title:"Dr.",name:"Habtamu",surname:"Alem",slug:"habtamu-alem",fullName:"Habtamu Alem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11457",title:"Forest Degradation Under Global Change",coverURL:"https://cdn.intechopen.com/books/images_new/11457.jpg",hash:"8df7150b01ae754024c65d1a62f190d9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 1st 2022",isOpenForSubmission:!0,editors:[{id:"317087",title:"Dr.",name:"Pavel",surname:"Samec",slug:"pavel-samec",fullName:"Pavel Samec"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11474",title:"Quality of Life Interventions - Magnitude of Effect and Transferability",coverURL:"https://cdn.intechopen.com/books/images_new/11474.jpg",hash:"5a6bcdaf5ee144d043bcdab893ff9e1c",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 7th 2022",isOpenForSubmission:!0,editors:[{id:"245319",title:"Ph.D.",name:"Sage",surname:"Arbor",slug:"sage-arbor",fullName:"Sage Arbor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11473",title:"Social Inequality - Structure and Social Processes",coverURL:"https://cdn.intechopen.com/books/images_new/11473.jpg",hash:"cefab077e403fd1695fb2946e7914942",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 13th 2022",isOpenForSubmission:!0,editors:[{id:"313341",title:"Ph.D.",name:"Yaroslava",surname:"Robles-Bykbaev",slug:"yaroslava-robles-bykbaev",fullName:"Yaroslava Robles-Bykbaev"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:54,paginationItems:[{id:"81595",title:"Prosthetic Concepts in Dental Implantology",doi:"10.5772/intechopen.104725",signatures:"Ivica Pelivan",slug:"prosthetic-concepts-in-dental-implantology",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"80963",title:"Pain Perception in Patients Treated with Ligating/Self-Ligating Brackets versus Patients Treated with Aligners",doi:"10.5772/intechopen.102796",signatures:"Farid Bourzgui, Rania Fastani, Salwa Khairat, Samir Diouny, Mohamed El Had, Zineb Serhier and Mohamed Bennani Othmani",slug:"pain-perception-in-patients-treated-with-ligating-self-ligating-brackets-versus-patients-treated-wit",totalDownloads:22,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Trends in Orthodontics",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"80964",title:"Upper Airway Expansion in Disabled Children",doi:"10.5772/intechopen.102830",signatures:"David Andrade, Joana Andrade, Maria-João Palha, Cristina Areias, Paula Macedo, Ana Norton, Miguel Palha, Lurdes Morais, Dóris Rocha Ruiz and Sônia Groisman",slug:"upper-airway-expansion-in-disabled-children",totalDownloads:35,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80839",title:"Herbs and Oral Health",doi:"10.5772/intechopen.103715",signatures:"Zuhair S. Natto",slug:"herbs-and-oral-health",totalDownloads:57,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80500",title:"Novel Dental Implants with Herbal Composites: A Review",doi:"10.5772/intechopen.101489",signatures:"Gopathy Sridevi and Seshadri Srividya",slug:"novel-dental-implants-with-herbal-composites-a-review",totalDownloads:49,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"78320",title:"Implant-Retained Maxillary and Mandibular Overdentures - A Solution for Completely Edentulous Patients",doi:"10.5772/intechopen.99575",signatures:"Dubravka Knezović Zlatarić, Robert Ćelić and Hrvoje Pezo",slug:"implant-retained-maxillary-and-mandibular-overdentures-a-solution-for-completely-edentulous-patients",totalDownloads:66,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"80441",title:"Periodontitis and Heart Disease: Current Perspectives on the Associative Relationships and Preventive Impact",doi:"10.5772/intechopen.102669",signatures:"Alexandra Roman, Andrada Soancă, Bogdan Caloian, Alexandru Bucur, Gabriela Valentina Caracostea, Andreia Paraschiva Preda, Dora Maria Popescu, Iulia Cristina Micu, Petra Șurlin, Andreea Ciurea, Diana Oneț, Mircea Viorel Ciurea, Dragoș Alexandru Țermure and Marius Negucioiu",slug:"periodontitis-and-heart-disease-current-perspectives-on-the-associative-relationships-and-preventive",totalDownloads:54,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79498",title:"Oral Aspects and Dental Management of Special Needs Patient",doi:"10.5772/intechopen.101067",signatures:"Pinar Kiymet Karataban",slug:"oral-aspects-and-dental-management-of-special-needs-patient",totalDownloads:84,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Pinar",surname:"Karataban"}],book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79699",title:"Metabolomics Distinction of Cigarette Smokers from Non-Smokers Using Non-Stationary Benchtop Nuclear Magnetic Resonance (NMR) Analysis of Human Saliva",doi:"10.5772/intechopen.101414",signatures:"Benita C. Percival, Angela Wann, Sophie Taylor, Mark Edgar, Miles Gibson and Martin Grootveld",slug:"metabolomics-distinction-of-cigarette-smokers-from-non-smokers-using-non-stationary-benchtop-nuclear",totalDownloads:54,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80295",title:"Preventive Methods and Treatments of White Spot Lesions in Orthodontics",doi:"10.5772/intechopen.102064",signatures:"Elif Nadide Akay",slug:"preventive-methods-and-treatments-of-white-spot-lesions-in-orthodontics",totalDownloads:82,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}}]},subseriesFiltersForOFChapters:[{caption:"Oral Health",value:1,count:20,group:"subseries"},{caption:"Prosthodontics and Implant Dentistry",value:2,count:34,group:"subseries"}],publishedBooks:{paginationCount:32,paginationItems:[{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",slug:"starch-evolution-and-recent-advances",publishedDate:"June 28th 2022",editedByType:"Edited by",bookSignature:"Martins Ochubiojo Emeje",hash:"f197f6062c1574a9a90e50a369271bcf",volumeInSeries:33,fullTitle:"Starch - Evolution and Recent Advances",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",institutionURL:null,country:{name:"Nigeria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",slug:"essential-oils-advances-in-extractions-and-biological-applications",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",hash:"742e6cae3a35686f975edc8d7f9afa94",volumeInSeries:32,fullTitle:"Essential Oils - Advances in Extractions and Biological Applications",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira",profilePictureURL:"https://mts.intechopen.com/storage/users/195290/images/system/195290.png",institutionString:"Museu Paraense Emílio Goeldi",institution:{name:"Museu Paraense Emílio Goeldi",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",slug:"protein-detection",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Yusuf Tutar and Lütfi Tutar",hash:"2f1c0e4e0207fc45c936e7d22a5369c4",volumeInSeries:31,fullTitle:"Protein Detection",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",institutionString:"University of Health Sciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10797",title:"Cell Culture",subtitle:"Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",slug:"cell-culture-advanced-technology-and-applications-in-medical-and-life-sciences",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"2c628f4757f9639a4450728d839a7842",volumeInSeries:30,fullTitle:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",slug:"hydrolases",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",hash:"4e868cde273d65a7ff54b1817d640629",volumeInSeries:29,fullTitle:"Hydrolases",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider",profilePictureURL:"https://mts.intechopen.com/storage/users/110708/images/system/110708.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",slug:"reactive-oxygen-species",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Rizwan Ahmad",hash:"176adcf090fdd1f93cb8ce3146e79ca1",volumeInSeries:28,fullTitle:"Reactive Oxygen Species",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",publishedDate:"March 23rd 2022",editedByType:"Edited by",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",hash:"8b43add5389ba85743e0a9491e4b9943",volumeInSeries:27,fullTitle:"Vitamin K - Recent Topics on the Biology and Chemistry",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9659",title:"Fibroblasts",subtitle:"Advances in Inflammation, Autoimmunity and Cancer",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",slug:"fibroblasts-advances-in-inflammation-autoimmunity-and-cancer",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Mojca Frank Bertoncelj and Katja Lakota",hash:"926fa6446f6befbd363fc74971a56de2",volumeInSeries:25,fullTitle:"Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer",editors:[{id:"328755",title:"Ph.D.",name:"Mojca",middleName:null,surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj",profilePictureURL:"https://mts.intechopen.com/storage/users/328755/images/system/328755.jpg",institutionString:"BioMed X Institute",institution:{name:"University Hospital of Zurich",institutionURL:null,country:{name:"Switzerland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8018",title:"Extracellular Matrix",subtitle:"Developments and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/8018.jpg",slug:"extracellular-matrix-developments-and-therapeutics",publishedDate:"October 27th 2021",editedByType:"Edited by",bookSignature:"Rama Sashank Madhurapantula, Joseph Orgel P.R.O. and Zvi Loewy",hash:"c85e82851e80b40282ff9be99ddf2046",volumeInSeries:23,fullTitle:"Extracellular Matrix - Developments and Therapeutics",editors:[{id:"212416",title:"Dr.",name:"Rama Sashank",middleName:null,surname:"Madhurapantula",slug:"rama-sashank-madhurapantula",fullName:"Rama Sashank Madhurapantula",profilePictureURL:"https://mts.intechopen.com/storage/users/212416/images/system/212416.jpg",institutionString:"Illinois Institute of Technology",institution:{name:"Illinois Institute of Technology",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9759",title:"Vitamin E in Health and Disease",subtitle:"Interactions, Diseases and Health Aspects",coverURL:"https://cdn.intechopen.com/books/images_new/9759.jpg",slug:"vitamin-e-in-health-and-disease-interactions-diseases-and-health-aspects",publishedDate:"October 6th 2021",editedByType:"Edited by",bookSignature:"Pınar Erkekoglu and Júlia Scherer Santos",hash:"6c3ddcc13626110de289b57f2516ac8f",volumeInSeries:22,fullTitle:"Vitamin E in Health and Disease - Interactions, Diseases and Health Aspects",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoğlu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoğlu",profilePictureURL:"https://mts.intechopen.com/storage/users/109978/images/system/109978.jpg",institutionString:"Hacettepe University",institution:{name:"Hacettepe University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Proteomics",value:18,count:4},{group:"subseries",caption:"Metabolism",value:17,count:6},{group:"subseries",caption:"Cell and Molecular Biology",value:14,count:9},{group:"subseries",caption:"Chemical Biology",value:15,count:13}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:8},{group:"publicationYear",caption:"2021",value:2021,count:7},{group:"publicationYear",caption:"2020",value:2020,count:12},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:2}],authors:{paginationCount:250,paginationItems:[{id:"274452",title:"Dr.",name:"Yousif",middleName:"Mohamed",surname:"Abdallah",slug:"yousif-abdallah",fullName:"Yousif Abdallah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274452/images/8324_n.jpg",biography:"I certainly enjoyed my experience in Radiotherapy and Nuclear Medicine, particularly it has been in different institutions and hospitals with different Medical Cultures and allocated resources. Radiotherapy and Nuclear Medicine Technology has always been my aspiration and my life. As years passed I accumulated a tremendous amount of skills and knowledge in Radiotherapy and Nuclear Medicine, Conventional Radiology, Radiation Protection, Bioinformatics Technology, PACS, Image processing, clinically and lecturing that will enable me to provide a valuable service to the community as a Researcher and Consultant in this field. My method of translating this into day to day in clinical practice is non-exhaustible and my habit of exchanging knowledge and expertise with others in those fields is the code and secret of success.",institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",biography:"Bartłomiej Płaczek, MSc (2002), Ph.D. (2005), Habilitation (2016), is a professor at the University of Silesia, Institute of Computer Science, Poland, and an expert from the National Centre for Research and Development. His research interests include sensor networks, smart sensors, intelligent systems, and image processing with applications in healthcare and medicine. He is the author or co-author of more than seventy papers in peer-reviewed journals and conferences as well as the co-author of several books. He serves as a reviewer for many scientific journals, international conferences, and research foundations. Since 2010, Dr. Placzek has been a reviewer of grants and projects (including EU projects) in the field of information technologies.",institutionString:"University of Silesia",institution:{name:"University of Silesia",country:{name:"Poland"}}},{id:"35000",title:"Prof.",name:"Ulrich H.P",middleName:"H.P.",surname:"Fischer",slug:"ulrich-h.p-fischer",fullName:"Ulrich H.P Fischer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/35000/images/3052_n.jpg",biography:"Academic and Professional Background\nUlrich H. P. has Diploma and PhD degrees in Physics from the Free University Berlin, Germany. He has been working on research positions in the Heinrich-Hertz-Institute in Germany. Several international research projects has been performed with European partners from France, Netherlands, Norway and the UK. He is currently Professor of Communications Systems at the Harz University of Applied Sciences, Germany.\n\nPublications and Publishing\nHe has edited one book, a special interest book about ‘Optoelectronic Packaging’ (VDE, Berlin, Germany), and has published over 100 papers and is owner of several international patents for WDM over POF key elements.\n\nKey Research and Consulting Interests\nUlrich’s research activity has always been related to Spectroscopy and Optical Communications Technology. Specific current interests include the validation of complex instruments, and the application of VR technology to the development and testing of measurement systems. He has been reviewer for several publications of the Optical Society of America\\'s including Photonics Technology Letters and Applied Optics.\n\nPersonal Interests\nThese include motor cycling in a very relaxed manner and performing martial arts.",institutionString:null,institution:{name:"Charité",country:{name:"Germany"}}},{id:"341622",title:"Ph.D.",name:"Eduardo",middleName:null,surname:"Rojas Alvarez",slug:"eduardo-rojas-alvarez",fullName:"Eduardo Rojas Alvarez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/341622/images/15892_n.jpg",biography:null,institutionString:null,institution:{name:"University of Cuenca",country:{name:"Ecuador"}}},{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",biography:"Muhammad Sarfraz is a professor in the Department of Information Science, Kuwait University. His research interests include computer graphics, computer vision, image processing, machine learning, pattern recognition, soft computing, data science, intelligent systems, information technology, and information systems. Prof. Sarfraz has been a keynote/invited speaker on various platforms around the globe. He has advised various students for their MSc and Ph.D. theses. He has published more than 400 publications as books, journal articles, and conference papers. He is a member of various professional societies and a chair and member of the International Advisory Committees and Organizing Committees of various international conferences. Prof. Sarfraz is also an editor-in-chief and editor of various international journals.",institutionString:"Kuwait University",institution:{name:"Kuwait University",country:{name:"Kuwait"}}},{id:"32650",title:"Prof.",name:"Lukas",middleName:"Willem",surname:"Snyman",slug:"lukas-snyman",fullName:"Lukas Snyman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/32650/images/4136_n.jpg",biography:"Lukas Willem Snyman received his basic education at primary and high schools in South Africa, Eastern Cape. He enrolled at today's Nelson Metropolitan University and graduated from this university with a BSc in Physics and Mathematics, B.Sc Honors in Physics, MSc in Semiconductor Physics, and a Ph.D. in Semiconductor Physics in 1987. After his studies, he chose an academic career and devoted his energy to the teaching of physics to first, second, and third-year students. After positions as a lecturer at the University of Port Elizabeth, he accepted a position as Associate Professor at the University of Pretoria, South Africa.\r\n\r\nIn 1992, he motivates the concept of 'television and computer-based education” as means to reach large student numbers with only the best of teaching expertise and publishes an article on the concept in the SA Journal of Higher Education of 1993 (and later in 2003). The University of Pretoria subsequently approved a series of test projects on the concept with outreach to Mamelodi and Eerste Rust in 1993. In 1994, the University established a 'Unit for Telematic Education ' as a support section for multiple faculties at the University of Pretoria. In subsequent years, the concept of 'telematic education” subsequently becomes well established in academic circles in South Africa, grew in popularity, and is adopted by many universities and colleges throughout South Africa as a medium of enhancing education and training, as a method to reaching out to far out communities, and as a means to enhance study from the home environment.\r\n\r\nProfessor Snyman in subsequent years pursued research in semiconductor physics, semiconductor devices, microelectronics, and optoelectronics.\r\n\r\nIn 2000 he joined the TUT as a full professor. Here served for a period as head of the Department of Electronic Engineering. Here he makes contributions to solar energy development, microwave and optoelectronic device development, silicon photonics, as well as contributions to new mobile telecommunication systems and network planning in SA.\r\n\r\nCurrently, he teaches electronics and telecommunications at the TUT to audiences ranging from first-year students to Ph.D. level.\r\n\r\nFor his research in the field of 'Silicon Photonics” since 1990, he has published (as author and co-author) about thirty internationally reviewed articles in scientific journals, contributed to more than forty international conferences, about 25 South African provisional patents (as inventor and co-inventor), 8 PCT international patent applications until now. Of these, two USA patents applications, two European Patents, two Korean patents, and ten SA patents have been granted. A further 4 USA patents, 5 European patents, 3 Korean patents, 3 Chinese patents, and 3 Japanese patents are currently under consideration.\r\n\r\nRecently he has also published an extensive scholarly chapter in an internet open access book on 'Integrating Microphotonic Systems and MOEMS into standard Silicon CMOS Integrated circuitry”.\r\n\r\nFurthermore, Professor Snyman recently steered a new initiative at the TUT by introducing a 'Laboratory for Innovative Electronic Systems ' at the Department of Electrical Engineering. The model of this laboratory or center is to primarily combine outputs as achieved by high-level research with lower-level system development and entrepreneurship in a technical university environment. Students are allocated to projects at different levels with PhDs and Master students allocated to the generation of new knowledge and new technologies, while students at the diploma and Baccalaureus level are allocated to electronic systems development with a direct and a near application for application in industry or the commercial and public sectors in South Africa.\r\n\r\nProfessor Snyman received the WIRSAM Award of 1983 and the WIRSAM Award in 1985 in South Africa for best research papers by a young scientist at two international conferences on electron microscopy in South Africa. He subsequently received the SA Microelectronics Award for the best dissertation emanating from studies executed at a South African university in the field of Physics and Microelectronics in South Africa in 1987. In October of 2011, Professor Snyman received the prestigious Institutional Award for 'Innovator of the Year” for 2010 at the Tshwane University of Technology, South Africa. This award was based on the number of patents recognized and granted by local and international institutions as well as for his contributions concerning innovation at the TUT.",institutionString:null,institution:{name:"University of South Africa",country:{name:"South Africa"}}},{id:"317279",title:"Mr.",name:"Ali",middleName:"Usama",surname:"Syed",slug:"ali-syed",fullName:"Ali Syed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/317279/images/16024_n.png",biography:"A creative, talented, and innovative young professional who is dedicated, well organized, and capable research fellow with two years of experience in graduate-level research, published in engineering journals and book, with related expertise in Bio-robotics, equally passionate about the aesthetics of the mechanical and electronic system, obtained expertise in the use of MS Office, MATLAB, SolidWorks, LabVIEW, Proteus, Fusion 360, having a grasp on python, C++ and assembly language, possess proven ability in acquiring research grants, previous appointments with social and educational societies with experience in administration, current affiliations with IEEE and Web of Science, a confident presenter at conferences and teacher in classrooms, able to explain complex information to audiences of all levels.",institutionString:null,institution:{name:"Air University",country:{name:"Pakistan"}}},{id:"75526",title:"Ph.D.",name:"Zihni Onur",middleName:null,surname:"Uygun",slug:"zihni-onur-uygun",fullName:"Zihni Onur Uygun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/75526/images/12_n.jpg",biography:"My undergraduate education and my Master of Science educations at Ege University and at Çanakkale Onsekiz Mart University have given me a firm foundation in Biochemistry, Analytical Chemistry, Biosensors, Bioelectronics, Physical Chemistry and Medicine. After obtaining my degree as a MSc in analytical chemistry, I started working as a research assistant in Ege University Medical Faculty in 2014. In parallel, I enrolled to the MSc program at the Department of Medical Biochemistry at Ege University to gain deeper knowledge on medical and biochemical sciences as well as clinical chemistry in 2014. In my PhD I deeply researched on biosensors and bioelectronics and finished in 2020. Now I have eleven SCI-Expanded Index published papers, 6 international book chapters, referee assignments for different SCIE journals, one international patent pending, several international awards, projects and bursaries. In parallel to my research assistant position at Ege University Medical Faculty, Department of Medical Biochemistry, in April 2016, I also founded a Start-Up Company (Denosens Biotechnology LTD) by the support of The Scientific and Technological Research Council of Turkey. Currently, I am also working as a CEO in Denosens Biotechnology. The main purposes of the company, which carries out R&D as a research center, are to develop new generation biosensors and sensors for both point-of-care diagnostics; such as glucose, lactate, cholesterol and cancer biomarker detections. My specific experimental and instrumental skills are Biochemistry, Biosensor, Analytical Chemistry, Electrochemistry, Mobile phone based point-of-care diagnostic device, POCTs and Patient interface designs, HPLC, Tandem Mass Spectrometry, Spectrophotometry, ELISA.",institutionString:null,institution:{name:"Ege University",country:{name:"Turkey"}}},{id:"267434",title:"Dr.",name:"Rohit",middleName:null,surname:"Raja",slug:"rohit-raja",fullName:"Rohit Raja",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/267434/images/system/267434.jpg",biography:"Dr. Rohit Raja received Ph.D. in Computer Science and Engineering from Dr. CVRAMAN University in 2016. His main research interest includes Face recognition and Identification, Digital Image Processing, Signal Processing, and Networking. Presently he is working as Associate Professor in IT Department, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur (CG), India. He has authored several Journal and Conference Papers. He has good Academics & Research experience in various areas of CSE and IT. He has filed and successfully published 27 Patents. He has received many time invitations to be a Guest at IEEE Conferences. He has published 100 research papers in various International/National Journals (including IEEE, Springer, etc.) and Proceedings of the reputed International/ National Conferences (including Springer and IEEE). He has been nominated to the board of editors/reviewers of many peer-reviewed and refereed Journals (including IEEE, Springer).",institutionString:"Guru Ghasidas Vishwavidyalaya",institution:{name:"Guru Ghasidas Vishwavidyalaya",country:{name:"India"}}},{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",biography:"Jaya T. Varkey, PhD, graduated with a degree in Chemistry from Cochin University of Science and Technology, Kerala, India. She obtained a PhD in Chemistry from the School of Chemical Sciences, Mahatma Gandhi University, Kerala, India, and completed a post-doctoral fellowship at the University of Minnesota, USA. She is a research guide at Mahatma Gandhi University and Associate Professor in Chemistry, St. Teresa’s College, Kochi, Kerala, India.\nDr. Varkey received a National Young Scientist award from the Indian Science Congress (1995), a UGC Research award (2016–2018), an Indian National Science Academy (INSA) Visiting Scientist award (2018–2019), and a Best Innovative Faculty award from the All India Association for Christian Higher Education (AIACHE) (2019). She Hashas received the Sr. Mary Cecil prize for best research paper three times. She was also awarded a start-up to develop a tea bag water filter. \nDr. Varkey has published two international books and twenty-seven international journal publications. She is an editorial board member for five international journals.",institutionString:"St. Teresa’s College",institution:null},{id:"250668",title:"Dr.",name:"Ali",middleName:null,surname:"Nabipour Chakoli",slug:"ali-nabipour-chakoli",fullName:"Ali Nabipour Chakoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/250668/images/system/250668.jpg",biography:"Academic Qualification:\r\n•\tPhD in Materials Physics and Chemistry, From: Sep. 2006, to: Sep. 2010, School of Materials Science and Engineering, Harbin Institute of Technology, Thesis: Structure and Shape Memory Effect of Functionalized MWCNTs/poly (L-lactide-co-ε-caprolactone) Nanocomposites. Supervisor: Prof. Wei Cai,\r\n•\tM.Sc in Applied Physics, From: 1996, to: 1998, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Determination of Boron in Micro alloy Steels with solid state nuclear track detectors by neutron induced auto radiography, Supervisors: Dr. M. Hosseini Ashrafi and Dr. A. Hosseini.\r\n•\tB.Sc. in Applied Physics, From: 1991, to: 1996, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Design of shielding for Am-Be neutron sources for In Vivo neutron activation analysis, Supervisor: Dr. M. Hosseini Ashrafi.\r\n\r\nResearch Experiences:\r\n1.\tNanomaterials, Carbon Nanotubes, Graphene: Synthesis, Functionalization and Characterization,\r\n2.\tMWCNTs/Polymer Composites: Fabrication and Characterization, \r\n3.\tShape Memory Polymers, Biodegradable Polymers, ORC, Collagen,\r\n4.\tMaterials Analysis and Characterizations: TEM, SEM, XPS, FT-IR, Raman, DSC, DMA, TGA, XRD, GPC, Fluoroscopy, \r\n5.\tInteraction of Radiation with Mater, Nuclear Safety and Security, NDT(RT),\r\n6.\tRadiation Detectors, Calibration (SSDL),\r\n7.\tCompleted IAEA e-learning Courses:\r\nNuclear Security (15 Modules),\r\nNuclear Safety:\r\nTSA 2: Regulatory Protection in Occupational Exposure,\r\nTips & Tricks: Radiation Protection in Radiography,\r\nSafety and Quality in Radiotherapy,\r\nCourse on Sealed Radioactive Sources,\r\nCourse on Fundamentals of Environmental Remediation,\r\nCourse on Planning for Environmental Remediation,\r\nKnowledge Management Orientation Course,\r\nFood Irradiation - Technology, Applications and Good Practices,\r\nEmployment:\r\nFrom 2010 to now: Academic staff, Nuclear Science and Technology Research Institute, Kargar Shomali, Tehran, Iran, P.O. Box: 14395-836.\r\nFrom 1997 to 2006: Expert of Materials Analysis and Characterization. Research Center of Agriculture and Medicine. Rajaeeshahr, Karaj, Iran, P. O. Box: 31585-498.",institutionString:"Atomic Energy Organization of Iran",institution:{name:"Atomic Energy Organization of Iran",country:{name:"Iran"}}},{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",biography:"Monika Elżbieta Machoy, MD, graduated with distinction from the Faculty of Medicine and Dentistry at the Pomeranian Medical University in 2009, defended her PhD thesis with summa cum laude in 2016 and is currently employed as a researcher at the Department of Orthodontics of the Pomeranian Medical University. She expanded her professional knowledge during a one-year scholarship program at the Ernst Moritz Arndt University in Greifswald, Germany and during a three-year internship at the Technical University in Dresden, Germany. She has been a speaker at numerous orthodontic conferences, among others, American Association of Orthodontics, European Orthodontic Symposium and numerous conferences of the Polish Orthodontic Society. She conducts research focusing on the effect of orthodontic treatment on dental and periodontal tissues and the causes of pain in orthodontic patients.",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",country:{name:"Poland"}}},{id:"252743",title:"Prof.",name:"Aswini",middleName:"Kumar",surname:"Kar",slug:"aswini-kar",fullName:"Aswini Kar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252743/images/10381_n.jpg",biography:"uploaded in cv",institutionString:null,institution:{name:"KIIT University",country:{name:"India"}}},{id:"204256",title:"Dr.",name:"Anil",middleName:"Kumar",surname:"Kumar Sahu",slug:"anil-kumar-sahu",fullName:"Anil Kumar Sahu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204256/images/14201_n.jpg",biography:"I have nearly 11 years of research and teaching experience. I have done my master degree from University Institute of Pharmacy, Pt. Ravi Shankar Shukla University, Raipur, Chhattisgarh India. I have published 16 review and research articles in international and national journals and published 4 chapters in IntechOpen, the world’s leading publisher of Open access books. I have presented many papers at national and international conferences. I have received research award from Indian Drug Manufacturers Association in year 2015. My research interest extends from novel lymphatic drug delivery systems, oral delivery system for herbal bioactive to formulation optimization.",institutionString:null,institution:{name:"Chhattisgarh Swami Vivekanand Technical University",country:{name:"India"}}},{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null},{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",country:{name:"Canada"}}},{id:"254463",title:"Prof.",name:"Haisheng",middleName:null,surname:"Yang",slug:"haisheng-yang",fullName:"Haisheng Yang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/254463/images/system/254463.jpeg",biography:"Haisheng Yang, Ph.D., Professor and Director of the Department of Biomedical Engineering, College of Life Science and Bioengineering, Beijing University of Technology. He received his Ph.D. degree in Mechanics/Biomechanics from Harbin Institute of Technology (jointly with University of California, Berkeley). Afterwards, he worked as a Postdoctoral Research Associate in the Purdue Musculoskeletal Biology and Mechanics Lab at the Department of Basic Medical Sciences, Purdue University, USA. He also conducted research in the Research Centre of Shriners Hospitals for Children-Canada at McGill University, Canada. Dr. Yang has over 10 years research experience in orthopaedic biomechanics and mechanobiology of bone adaptation and regeneration. He earned an award from Beijing Overseas Talents Aggregation program in 2017 and serves as Beijing Distinguished Professor.",institutionString:null,institution:{name:"Beijing University of Technology",country:{name:"China"}}},{id:"89721",title:"Dr.",name:"Mehmet",middleName:"Cuneyt",surname:"Ozmen",slug:"mehmet-ozmen",fullName:"Mehmet Ozmen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/89721/images/7289_n.jpg",biography:null,institutionString:null,institution:{name:"Gazi University",country:{name:"Turkey"}}},{id:"242893",title:"Ph.D. Student",name:"Joaquim",middleName:null,surname:"De Moura",slug:"joaquim-de-moura",fullName:"Joaquim De Moura",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/242893/images/7133_n.jpg",biography:"Joaquim de Moura received his degree in Computer Engineering in 2014 from the University of A Coruña (Spain). In 2016, he received his M.Sc degree in Computer Engineering from the same university. He is currently pursuing his Ph.D degree in Computer Science in a collaborative project between ophthalmology centers in Galicia and the University of A Coruña. His research interests include computer vision, machine learning algorithms and analysis and medical imaging processing of various kinds.",institutionString:null,institution:{name:"University of A Coruña",country:{name:"Spain"}}},{id:"294334",title:"B.Sc.",name:"Marc",middleName:null,surname:"Bruggeman",slug:"marc-bruggeman",fullName:"Marc Bruggeman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/294334/images/8242_n.jpg",biography:"Chemical engineer graduate, with a passion for material science and specific interest in polymers - their near infinite applications intrigue me. \n\nI plan to continue my scientific career in the field of polymeric biomaterials as I am fascinated by intelligent, bioactive and biomimetic materials for use in both consumer and medical applications.",institutionString:null,institution:null},{id:"255757",title:"Dr.",name:"Igor",middleName:"Victorovich",surname:"Lakhno",slug:"igor-lakhno",fullName:"Igor Lakhno",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255757/images/system/255757.jpg",biography:"Igor Victorovich Lakhno was born in 1971 in Kharkiv (Ukraine). \nMD – 1994, Kharkiv National Medical Univesity.\nOb&Gyn; – 1997, master courses in Kharkiv Medical Academy of Postgraduate Education.\nPh.D. – 1999, Kharkiv National Medical Univesity.\nDSC – 2019, PL Shupik National Academy of Postgraduate Education \nProfessor – 2021, Department of Obstetrics and Gynecology of VN Karazin Kharkiv National University\nHead of Department – 2021, Department of Perinatology, Obstetrics and gynecology of Kharkiv Medical Academy of Postgraduate Education\nIgor Lakhno has been graduated from international training courses on reproductive medicine and family planning held at Debrecen University (Hungary) in 1997. Since 1998 Lakhno Igor has worked as an associate professor in the department of obstetrics and gynecology of VN Karazin National University and an associate professor of the perinatology, obstetrics, and gynecology department of Kharkiv Medical Academy of Postgraduate Education. Since June 2019 he’s been a professor in the department of obstetrics and gynecology of VN Karazin National University and a professor of the perinatology, obstetrics, and gynecology department. He’s affiliated with Kharkiv Medical Academy of Postgraduate Education as a Head of Department from November 2021. Igor Lakhno has participated in several international projects on fetal non-invasive electrocardiography (with Dr. J. A. Behar (Technion), Prof. D. Hoyer (Jena University), and José Alejandro Díaz Méndez (National Institute of Astrophysics, Optics, and Electronics, Mexico). He’s an author of about 200 printed works and there are 31 of them in Scopus or Web of Science databases. Igor Lakhno is a member of the Editorial Board of Reproductive Health of Woman, Emergency Medicine, and Technology Transfer Innovative Solutions in Medicine (Estonia). He is a medical Editor of “Z turbotoyu pro zhinku”. Igor Lakhno is a reviewer of the Journal of Obstetrics and Gynaecology (Taylor and Francis), British Journal of Obstetrics and Gynecology (Wiley), Informatics in Medicine Unlocked (Elsevier), The Journal of Obstetrics and Gynecology Research (Wiley), Endocrine, Metabolic & Immune Disorders-Drug Targets (Bentham Open), The Open Biomedical Engineering Journal (Bentham Open), etc. He’s defended a dissertation for a DSc degree “Pre-eclampsia: prediction, prevention, and treatment”. Three years ago Igor Lakhno has participated in a training course on innovative technologies in medical education at Lublin Medical University (Poland). Lakhno Igor has participated as a speaker in several international conferences and congresses (International Conference on Biological Oscillations April 10th-14th 2016, Lancaster, UK, The 9th conference of the European Study Group on Cardiovascular Oscillations). His main scientific interests: are obstetrics, women’s health, fetal medicine, and cardiovascular medicine. \nIgor Lakhno is a consultant at Kharkiv municipal perinatal center. He’s graduated from training courses on endoscopy in gynecology. He has 28 years of practical experience in the field.",institutionString:null,institution:null},{id:"244950",title:"Dr.",name:"Salvatore",middleName:null,surname:"Di Lauro",slug:"salvatore-di-lauro",fullName:"Salvatore Di Lauro",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0030O00002bSF1HQAW/ProfilePicture%202021-12-20%2014%3A54%3A14.482",biography:"Name:\n\tSALVATORE DI LAURO\nAddress:\n\tHospital Clínico Universitario Valladolid\nAvda Ramón y Cajal 3\n47005, Valladolid\nSpain\nPhone number: \nFax\nE-mail:\n\t+34 983420000 ext 292\n+34 983420084\nsadilauro@live.it\nDate and place of Birth:\nID Number\nMedical Licence \nLanguages\t09-05-1985. Villaricca (Italy)\n\nY1281863H\n474707061\nItalian (native language)\nSpanish (read, written, spoken)\nEnglish (read, written, spoken)\nPortuguese (read, spoken)\nFrench (read)\n\t\t\nCurrent position (title and company)\tDate (Year)\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. Private practise.\t2017-today\n\n2019-today\n\t\n\t\nEducation (High school, university and postgraduate training > 3 months)\tDate (Year)\nDegree in Medicine and Surgery. University of Neaples 'Federico II”\nResident in Opthalmology. Hospital Clinico Universitario Valladolid\nMaster in Vitreo-Retina. IOBA. University of Valladolid\nFellow of the European Board of Ophthalmology. Paris\nMaster in Research in Ophthalmology. University of Valladolid\t2003-2009\n2012-2016\n2016-2017\n2016\n2012-2013\n\t\nEmployments (company and positions)\tDate (Year)\nResident in Ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl.\nFellow in Vitreo-Retina. IOBA. University of Valladolid\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. \n\t2012-2016\n2016-2017\n2017-today\n\n2019-Today\n\n\n\t\nClinical Research Experience (tasks and role)\tDate (Year)\nAssociated investigator\n\n' FIS PI20/00740: DESARROLLO DE UNA CALCULADORA DE RIESGO DE\nAPARICION DE RETINOPATIA DIABETICA BASADA EN TECNICAS DE IMAGEN MULTIMODAL EN PACIENTES DIABETICOS TIPO 1. Grant by: Ministerio de Ciencia e Innovacion \n\n' (BIO/VA23/14) Estudio clínico multicéntrico y prospectivo para validar dos\nbiomarcadores ubicados en los genes p53 y MDM2 en la predicción de los resultados funcionales de la cirugía del desprendimiento de retina regmatógeno. Grant by: Gerencia Regional de Salud de la Junta de Castilla y León.\n' Estudio multicéntrico, aleatorizado, con enmascaramiento doble, en 2 grupos\nparalelos y de 52 semanas de duración para comparar la eficacia, seguridad e inmunogenicidad de SOK583A1 respecto a Eylea® en pacientes con degeneración macular neovascular asociada a la edad' (CSOK583A12301; N.EUDRA: 2019-004838-41; FASE III). Grant by Hexal AG\n\n' Estudio de fase III, aleatorizado, doble ciego, con grupos paralelos, multicéntrico para comparar la eficacia y la seguridad de QL1205 frente a Lucentis® en pacientes con degeneración macular neovascular asociada a la edad. (EUDRACT: 2018-004486-13). Grant by Qilu Pharmaceutical Co\n\n' Estudio NEUTON: Ensayo clinico en fase IV para evaluar la eficacia de aflibercept en pacientes Naive con Edema MacUlar secundario a Oclusion de Vena CenTral de la Retina (OVCR) en regimen de tratamientO iNdividualizado Treat and Extend (TAE)”, (2014-000975-21). Grant by Fundacion Retinaplus\n\n' Evaluación de la seguridad y bioactividad de anillos de tensión capsular en conejo. Proyecto Procusens. Grant by AJL, S.A.\n\n'Estudio epidemiológico, prospectivo, multicéntrico y abierto\\npara valorar la frecuencia de la conjuntivitis adenovírica diagnosticada mediante el test AdenoPlus®\\nTest en pacientes enfermos de conjuntivitis aguda”\\n. National, multicenter study. Grant by: NICOX.\n\nEuropean multicentric trial: 'Evaluation of clinical outcomes following the use of Systane Hydration in patients with dry eye”. Study Phase 4. Grant by: Alcon Labs'\n\nVLPs Injection and Activation in a Rabbit Model of Uveal Melanoma. Grant by Aura Bioscience\n\nUpdating and characterization of a rabbit model of uveal melanoma. Grant by Aura Bioscience\n\nEnsayo clínico en fase IV para evaluar las variantes genéticas de la vía del VEGF como biomarcadores de eficacia del tratamiento con aflibercept en pacientes con degeneración macular asociada a la edad (DMAE) neovascular. Estudio BIOIMAGE. IMO-AFLI-2013-01\n\nEstudio In-Eye:Ensayo clínico en fase IV, abierto, aleatorizado, de 2 brazos,\nmulticçentrico y de 12 meses de duración, para evaluar la eficacia y seguridad de un régimen de PRN flexible individualizado de 'esperar y extender' versus un régimen PRN según criterios de estabilización mediante evaluaciones mensuales de inyecciones intravítreas de ranibizumab 0,5 mg en pacientes naive con neovascularización coriodea secunaria a la degeneración macular relacionada con la edad. CP: CRFB002AES03T\n\nTREND: Estudio Fase IIIb multicéntrico, randomizado, de 12 meses de\nseguimiento con evaluador de la agudeza visual enmascarado, para evaluar la eficacia y la seguridad de ranibizumab 0.5mg en un régimen de tratar y extender comparado con un régimen mensual, en pacientes con degeneración macular neovascular asociada a la edad. CP: CRFB002A2411 Código Eudra CT:\n2013-002626-23\n\n\n\nPublications\t\n\n2021\n\n\n\n\n2015\n\n\n\n\n2021\n\n\n\n\n\n2021\n\n\n\n\n2015\n\n\n\n\n2015\n\n\n2014\n\n\n\n\n2015-16\n\n\n\n2015\n\n\n2014\n\n\n2014\n\n\n\n\n2014\n\n\n\n\n\n\n\n2014\n\nJose Carlos Pastor; Jimena Rojas; Salvador Pastor-Idoate; Salvatore Di Lauro; Lucia Gonzalez-Buendia; Santiago Delgado-Tirado. Proliferative vitreoretinopathy: A new concept of disease pathogenesis and practical\nconsequences. Progress in Retinal and Eye Research. 51, pp. 125 - 155. 03/2016. DOI: 10.1016/j.preteyeres.2015.07.005\n\n\nLabrador-Velandia S; Alonso-Alonso ML; Di Lauro S; García-Gutierrez MT; Srivastava GK; Pastor JC; Fernandez-Bueno I. Mesenchymal stem cells provide paracrine neuroprotective resources that delay degeneration of co-cultured organotypic neuroretinal cultures.Experimental Eye Research. 185, 17/05/2019. DOI: 10.1016/j.exer.2019.05.011\n\nSalvatore Di Lauro; Maria Teresa Garcia Gutierrez; Ivan Fernandez Bueno. Quantification of pigment epithelium-derived factor (PEDF) in an ex vivo coculture of retinal pigment epithelium cells and neuroretina.\nJournal of Allbiosolution. 2019. ISSN 2605-3535\n\nSonia Labrador Velandia; Salvatore Di Lauro; Alonso-Alonso ML; Tabera Bartolomé S; Srivastava GK; Pastor JC; Fernandez-Bueno I. Biocompatibility of intravitreal injection of human mesenchymal stem cells in immunocompetent rabbits. Graefe's archive for clinical and experimental ophthalmology. 256 - 1, pp. 125 - 134. 01/2018. DOI: 10.1007/s00417-017-3842-3\n\n\nSalvatore Di Lauro, David Rodriguez-Crespo, Manuel J Gayoso, Maria T Garcia-Gutierrez, J Carlos Pastor, Girish K Srivastava, Ivan Fernandez-Bueno. A novel coculture model of porcine central neuroretina explants and retinal pigment epithelium cells. Molecular Vision. 2016 - 22, pp. 243 - 253. 01/2016.\n\nSalvatore Di Lauro. Classifications for Proliferative Vitreoretinopathy ({PVR}): An Analysis of Their Use in Publications over the Last 15 Years. Journal of Ophthalmology. 2016, pp. 1 - 6. 01/2016. DOI: 10.1155/2016/7807596\n\nSalvatore Di Lauro; Rosa Maria Coco; Rosa Maria Sanabria; Enrique Rodriguez de la Rua; Jose Carlos Pastor. Loss of Visual Acuity after Successful Surgery for Macula-On Rhegmatogenous Retinal Detachment in a Prospective Multicentre Study. Journal of Ophthalmology. 2015:821864, 2015. DOI: 10.1155/2015/821864\n\nIvan Fernandez-Bueno; Salvatore Di Lauro; Ivan Alvarez; Jose Carlos Lopez; Maria Teresa Garcia-Gutierrez; Itziar Fernandez; Eva Larra; Jose Carlos Pastor. Safety and Biocompatibility of a New High-Density Polyethylene-Based\nSpherical Integrated Porous Orbital Implant: An Experimental Study in Rabbits. Journal of Ophthalmology. 2015:904096, 2015. DOI: 10.1155/2015/904096\n\nPastor JC; Pastor-Idoate S; Rodríguez-Hernandez I; Rojas J; Fernandez I; Gonzalez-Buendia L; Di Lauro S; Gonzalez-Sarmiento R. Genetics of PVR and RD. Ophthalmologica. 232 - Suppl 1, pp. 28 - 29. 2014\n\nRodriguez-Crespo D; Di Lauro S; Singh AK; Garcia-Gutierrez MT; Garrosa M; Pastor JC; Fernandez-Bueno I; Srivastava GK. Triple-layered mixed co-culture model of RPE cells with neuroretina for evaluating the neuroprotective effects of adipose-MSCs. Cell Tissue Res. 358 - 3, pp. 705 - 716. 2014.\nDOI: 10.1007/s00441-014-1987-5\n\nCarlo De Werra; Salvatore Condurro; Salvatore Tramontano; Mario Perone; Ivana Donzelli; Salvatore Di Lauro; Massimo Di Giuseppe; Rosa Di Micco; Annalisa Pascariello; Antonio Pastore; Giorgio Diamantis; Giuseppe Galloro. Hydatid disease of the liver: thirty years of surgical experience.Chirurgia italiana. 59 - 5, pp. 611 - 636.\n(Italia): 2007. ISSN 0009-4773\n\nChapters in books\n\t\n' Salvador Pastor Idoate; Salvatore Di Lauro; Jose Carlos Pastor Jimeno. PVR: Pathogenesis, Histopathology and Classification. Proliferative Vitreoretinopathy with Small Gauge Vitrectomy. Springer, 2018. ISBN 978-3-319-78445-8\nDOI: 10.1007/978-3-319-78446-5_2. \n\n' Salvatore Di Lauro; Maria Isabel Lopez Galvez. Quistes vítreos en una mujer joven. Problemas diagnósticos en patología retinocoroidea. Sociedad Española de Retina-Vitreo. 2018.\n\n' Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor Jimeno. iOCT in PVR management. OCT Applications in Opthalmology. pp. 1 - 8. INTECH, 2018. DOI: 10.5772/intechopen.78774.\n\n' Rosa Coco Martin; Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor. amponadores, manipuladores y tinciones en la cirugía del traumatismo ocular.Trauma Ocular. Ponencia de la SEO 2018..\n\n' LOPEZ GALVEZ; DI LAURO; CRESPO. OCT angiografia y complicaciones retinianas de la diabetes. PONENCIA SEO 2021, CAPITULO 20. (España): 2021.\n\n' Múltiples desprendimientos neurosensoriales bilaterales en paciente joven. Enfermedades Degenerativas De Retina Y Coroides. SERV 04/2016. \n' González-Buendía L; Di Lauro S; Pastor-Idoate S; Pastor Jimeno JC. Vitreorretinopatía proliferante (VRP) e inflamación: LA INFLAMACIÓN in «INMUNOMODULADORES Y ANTIINFLAMATORIOS: MÁS ALLÁ DE LOS CORTICOIDES. RELACION DE PONENCIAS DE LA SOCIEDAD ESPAÑOLA DE OFTALMOLOGIA. 10/2014.",institutionString:null,institution:null},{id:"265335",title:"Mr.",name:"Stefan",middleName:"Radnev",surname:"Stefanov",slug:"stefan-stefanov",fullName:"Stefan Stefanov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/265335/images/7562_n.jpg",biography:null,institutionString:null,institution:null},{id:"243698",title:"Dr.",name:"Xiaogang",middleName:null,surname:"Wang",slug:"xiaogang-wang",fullName:"Xiaogang Wang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243698/images/system/243698.png",biography:"Dr. Xiaogang Wang, a faculty member of Shanxi Eye Hospital specializing in the treatment of cataract and retinal disease and a tutor for postgraduate students of Shanxi Medical University, worked in the COOL Lab as an international visiting scholar under the supervision of Dr. David Huang and Yali Jia from October 2012 through November 2013. Dr. Wang earned an MD from Shanxi Medical University and a Ph.D. from Shanghai Jiao Tong University. Dr. Wang was awarded two research project grants focused on multimodal optical coherence tomography imaging and deep learning in cataract and retinal disease, from the National Natural Science Foundation of China. He has published around 30 peer-reviewed journal papers and four book chapters and co-edited one book.",institutionString:null,institution:null},{id:"7227",title:"Dr.",name:"Hiroaki",middleName:null,surname:"Matsui",slug:"hiroaki-matsui",fullName:"Hiroaki Matsui",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Tokyo",country:{name:"Japan"}}},{id:"318905",title:"Prof.",name:"Elvis",middleName:"Kwason",surname:"Tiburu",slug:"elvis-tiburu",fullName:"Elvis Tiburu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"336193",title:"Dr.",name:"Abdullah",middleName:null,surname:"Alamoudi",slug:"abdullah-alamoudi",fullName:"Abdullah Alamoudi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"318657",title:"MSc.",name:"Isabell",middleName:null,surname:"Steuding",slug:"isabell-steuding",fullName:"Isabell Steuding",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"318656",title:"BSc.",name:"Peter",middleName:null,surname:"Kußmann",slug:"peter-kussmann",fullName:"Peter Kußmann",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"338222",title:"Mrs.",name:"María José",middleName:null,surname:"Lucía Mudas",slug:"maria-jose-lucia-mudas",fullName:"María José Lucía Mudas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Carlos III University of Madrid",country:{name:"Spain"}}}]}},subseries:{item:{id:"92",type:"subseries",title:"Health and Wellbeing",keywords:"Ecology, Ecological, Nature, Health, Wellbeing, Health production",scope:"
\r\n\tSustainable approaches to health and wellbeing in our COVID 19 recovery needs to focus on ecological approaches that prioritize our relationships with each other, and include engagement with nature, the arts and our heritage. This will ensure that we discover ways to live in our world that allows us and other beings to flourish. We can no longer rely on medicalized approaches to health that wait for people to become ill before attempting to treat them. We need to live in harmony with nature and rediscover the beauty and balance in our everyday lives and surroundings, which contribute to our well-being and that of all other creatures on the planet. This topic will provide insights and knowledge into how to achieve this change in health care that is based on ecologically sustainable practices.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/92.jpg",hasOnlineFirst:!1,hasPublishedBooks:!1,annualVolume:11976,editor:{id:"348225",title:"Prof.",name:"Ann",middleName:null,surname:"Hemingway",slug:"ann-hemingway",fullName:"Ann Hemingway",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035LZFoQAO/Profile_Picture_2022-04-11T14:55:40.jpg",biography:"Professor Hemingway is a public health researcher, Bournemouth University, undertaking international and UK research focused on reducing inequalities in health outcomes for marginalised and excluded populations and more recently focused on equine assisted interventions.",institutionString:null,institution:{name:"Bournemouth University",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null,series:{id:"24",title:"Sustainable Development",doi:"10.5772/intechopen.100361",issn:null},editorialBoard:[{id:"169536",title:"Dr.",name:"David",middleName:null,surname:"Claborn",slug:"david-claborn",fullName:"David Claborn",profilePictureURL:"https://mts.intechopen.com/storage/users/169536/images/system/169536.jpeg",institutionString:null,institution:{name:"Missouri State University",institutionURL:null,country:{name:"United States of America"}}},{id:"248594",title:"Ph.D.",name:"Jasneth",middleName:null,surname:"Mullings",slug:"jasneth-mullings",fullName:"Jasneth Mullings",profilePictureURL:"https://mts.intechopen.com/storage/users/248594/images/system/248594.jpeg",institutionString:"The University Of The West Indies - Mona Campus, Jamaica",institution:null},{id:"331299",title:"Prof.",name:"Pei-Shan",middleName:null,surname:"Liao",slug:"pei-shan-liao",fullName:"Pei-Shan Liao",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000032Fh2FQAS/Profile_Picture_2022-03-18T09:39:41.jpg",institutionString:"Research Center for Humanities and Social Sciences, Academia Sinica, Taiwan",institution:null}]},onlineFirstChapters:{paginationCount:1,paginationItems:[{id:"82310",title:"Knowledge of Intergenerational Contact to Combat Ageism towards Older People",doi:"10.5772/intechopen.105592",signatures:"Alice Nga Lai Kwong",slug:"knowledge-of-intergenerational-contact-to-combat-ageism-towards-older-people",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Social Aspects of Ageing - Selected Challenges, Analyses, and Solutions",coverURL:"https://cdn.intechopen.com/books/images_new/11479.jpg",subseries:{id:"90",title:"Human Development"}}}]},publishedBooks:{paginationCount:6,paginationItems:[{type:"book",id:"9493",title:"Periodontology",subtitle:"Fundamentals and Clinical Features",coverURL:"https://cdn.intechopen.com/books/images_new/9493.jpg",slug:"periodontology-fundamentals-and-clinical-features",publishedDate:"February 16th 2022",editedByType:"Edited by",bookSignature:"Petra Surlin",hash:"dfe986c764d6c82ae820c2df5843a866",volumeInSeries:8,fullTitle:"Periodontology - Fundamentals and Clinical Features",editors:[{id:"171921",title:"Prof.",name:"Petra",middleName:null,surname:"Surlin",slug:"petra-surlin",fullName:"Petra Surlin",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:"University of Medicine and Pharmacy of Craiova",institution:{name:"University of Medicine and Pharmacy of Craiova",institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9588",title:"Clinical Concepts and Practical Management Techniques in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9588.jpg",slug:"clinical-concepts-and-practical-management-techniques-in-dentistry",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Aneesa Moolla",hash:"42deab8d3bcf3edf64d1d9028d42efd1",volumeInSeries:7,fullTitle:"Clinical Concepts and Practical Management Techniques in Dentistry",editors:[{id:"318170",title:"Dr.",name:"Aneesa",middleName:null,surname:"Moolla",slug:"aneesa-moolla",fullName:"Aneesa Moolla",profilePictureURL:"https://mts.intechopen.com/storage/users/318170/images/system/318170.png",institutionString:"University of the Witwatersrand",institution:{name:"University of the Witwatersrand",institutionURL:null,country:{name:"South Africa"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8202",title:"Periodontal Disease",subtitle:"Diagnostic and Adjunctive Non-surgical Considerations",coverURL:"https://cdn.intechopen.com/books/images_new/8202.jpg",slug:"periodontal-disease-diagnostic-and-adjunctive-non-surgical-considerations",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Nermin Mohammed Ahmed Yussif",hash:"0aee9799da7db2c732be44dd8fed16d8",volumeInSeries:6,fullTitle:"Periodontal Disease - Diagnostic and Adjunctive Non-surgical Considerations",editors:[{id:"210472",title:"Dr.",name:"Nermin",middleName:"Mohammed Ahmed",surname:"Yussif",slug:"nermin-yussif",fullName:"Nermin Yussif",profilePictureURL:"https://mts.intechopen.com/storage/users/210472/images/system/210472.jpg",institutionString:"MSA University",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8837",title:"Human Teeth",subtitle:"Key Skills and Clinical Illustrations",coverURL:"https://cdn.intechopen.com/books/images_new/8837.jpg",slug:"human-teeth-key-skills-and-clinical-illustrations",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Zühre Akarslan and Farid Bourzgui",hash:"ac055c5801032970123e0a196c2e1d32",volumeInSeries:5,fullTitle:"Human Teeth - Key Skills and Clinical Illustrations",editors:[{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",institutionString:"Gazi University",institution:{name:"Gazi University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:{id:"52177",title:"Prof.",name:"Farid",middleName:null,surname:"Bourzgui",slug:"farid-bourzgui",fullName:"Farid Bourzgui",profilePictureURL:"https://mts.intechopen.com/storage/users/52177/images/system/52177.png",biography:"Prof. Farid Bourzgui obtained his DMD and his DNSO option in Orthodontics at the School of Dental Medicine, Casablanca Hassan II University, Morocco, in 1995 and 2000, respectively. Currently, he is a professor of Orthodontics. He holds a Certificate of Advanced Study type A in Technology of Biomaterials used in Dentistry (1995); Certificate of Advanced Study type B in Dento-Facial Orthopaedics (1997) from the Faculty of Dental Surgery, University Denis Diderot-Paris VII, France; Diploma of Advanced Study (DESA) in Biocompatibility of Biomaterials from the Faculty of Medicine and Pharmacy of Casablanca (2002); Certificate of Clinical Occlusodontics from the Faculty of Dentistry of Casablanca (2004); University Diploma of Biostatistics and Perceptual Health Measurement from the Faculty of Medicine and Pharmacy of Casablanca (2011); and a University Diploma of Pedagogy of Odontological Sciences from the Faculty of Dentistry of Casablanca (2013). He is the author of several scientific articles, book chapters, and books.",institutionString:"University of Hassan II Casablanca",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"7",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Hassan II Casablanca",institutionURL:null,country:{name:"Morocco"}}},equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7060",title:"Gingival Disease",subtitle:"A Professional Approach for Treatment and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/7060.jpg",slug:"gingival-disease-a-professional-approach-for-treatment-and-prevention",publishedDate:"October 23rd 2019",editedByType:"Edited by",bookSignature:"Alaa Eddin Omar Al Ostwani",hash:"b81d39988cba3a3cf746c1616912cf41",volumeInSeries:4,fullTitle:"Gingival Disease - A Professional Approach for Treatment and Prevention",editors:[{id:"240870",title:"Ph.D.",name:"Alaa Eddin Omar",middleName:null,surname:"Al Ostwani",slug:"alaa-eddin-omar-al-ostwani",fullName:"Alaa Eddin Omar Al Ostwani",profilePictureURL:"https://mts.intechopen.com/storage/users/240870/images/system/240870.jpeg",institutionString:"International University for Science and Technology.",institution:{name:"Islamic University of Science and Technology",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6668",title:"Dental Caries",subtitle:"Diagnosis, Prevention and Management",coverURL:"https://cdn.intechopen.com/books/images_new/6668.jpg",slug:"dental-caries-diagnosis-prevention-and-management",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Zühre Akarslan",hash:"b0f7667770a391f772726c3013c1b9ba",volumeInSeries:1,fullTitle:"Dental Caries - Diagnosis, Prevention and Management",editors:[{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",institutionString:"Gazi University",institution:{name:"Gazi University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[{id:"14",title:"Cell and Molecular Biology",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression"},{id:"15",title:"Chemical Biology",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors"},{id:"17",title:"Metabolism",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation"},{id:"18",title:"Proteomics",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:{title:"Biochemistry",id:"11"},selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/40267",hash:"",query:{},params:{id:"40267"},fullPath:"/chapters/40267",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()