The role of
1. Introduction
1.1. General properties and functions of METCAM/MUC18
Human
It is now well documented that although tissue specific signatures exist in different cancer types, cancers from different tissues also express some common genes [10-12]. One group of them is cell adhesion molecules (
mediating the remodeling of cytoskeleton [13]. They also actively mediate the cell-to-cell and cell-to-extracellular matrix interactions to allow cells to constantly respond to physiological fluctuations and to alter/remodel the surrounding microenvironment for survival [14]. They do so by crosstalk with cellular surface growth factor receptors, which interact with growth factors that may be secreted from stromal cells or released from circulation and embedded in the extracellular matrix [13-14]. Thus an altered expression of
However, METCAM enables both human and mouse melanoma cells to metastasize only under an experimental metastasis assay (tail vein injection), not under a spontaneous metastasis assay (subcutaneous injection). In addition, the ectopic expression of METCAM in METCAM-minus melanoma cell lines has no effect or a slight suppressive effect on the tumorigenesis. Taken together, this suggests that METCAM promotes the metastasis of melanoma cells only at later stages of progression (it has been found that fibroblast growth factor-2 initiates the metastatic process) [19].
Recently, we further investigated the effect of moMETCAM expression on tumorigenesis and metastasis of a different mouse melanoma subline #9 of K1735 (K1735-9 or K9), which is also METCAM-minus and lowly metastatic, but has a highly tumorigenic phenotype (tumor+++/metlow), in the syngeneic C3H mouse model. We tested the effect of ectopic expression of moMETCAM on
We suggest that METCAM-mediated tumorigenesis and metastasis of melanoma cells and other cancer cells is dependent on intrinsic co-factors of different K1735 sublines and cancer types. The establishment of an immune-competent syngeneic mouse model for the METCAM-mediated progression is physiologically more relevant to and should provide knowledge more applicable to clinical melanoma than immune-deficient xenograft mouse models. The putative mechanisms of METCAM-mediated promotion/suppression of melanoma progression will also be discussed.
2. Metcam and melanoma tumorigenesis
Over-expression of
Only one group showed that over-expression of
The most convincing evidence for its tumor suppressor effect is in the subline #9 of the mouse melanoma cell line
3. Metcam and melanoma metastasis
However,
METCAM increases the progression of most melanoma cell lines with the exception of one mouse melanoma subline, K1735-9. We found over-expression of
Table 1 summarizes the possible role of
Melanoma cells | Tumorigenesis | Metastasis | References |
Clinical melanoma and human melanoma cell lines | No effect | Increasing (effect is in the late stages) | 3, 17 |
Mouse melanoma K1735 sublines #3 and #10 | No effect or slight suppression | Increasing (effect is in the late stages) | 9, 18 |
Mouse melanoma K1735 subline #9 | Suppression | Suppression | 20, 21 |
As shown in Table 1,
4. Mechanisms of metcam-mediated melanoma progression
How does
First, the transcriptional expression of
Second, since the cytoplasmic tail of
Third, after the engagement of
Fourth, from what we know about the roles of other
Fifth,
Sixth,
Seventh,
Eighth, malignant progression of cancer cells has been shown to associate with abnormal glycosylation, resulting in expression of altered carbohydrate determinants [42]. Thus, the glycosylated status of
We should always keep in mind that the mechanisms of
Mechanisms of
5. Conclusion and clinical applications
Acknowledgments
I thank Mr. Jonathan C. – Y. Wu for critical reading of the manuscript and proof reading of the English.
References
- 1.
Lehmann J. M. Reithmuller G. Johnson J. P. 1989 MUC18, a marker of tumor progression in human melanoma.” Proc. Natl. Acad. Sci. USA,86 9891 9895 - 2.
Anfosso F. Bardin N. Vivier E. Sabatier F. Sampol J. Dignat-George F. 2001 Outside-in signaling pathway linked to CD146 engagement in human endothelial cells. J. Biol. Chem.,276 1564 1569 - 3.
Xie S. Luca M. Huang S. Gutman M. Reich R. Johnson J. P. Bar-Eli M. 1997 Expression of MCAM/MCU18 by human melanoma cells leads to increased tumor growth and metastasis.” Cancer Research,57 2295 2303 - 4.
Shih I. M. Elder D. E. Hsu M. Y. Herlyn M. 1994 Regulation of Mel-CAM/MUC18 expression on melanocytes of different stages of tumor progression by normal keratinocytes. Am. J. Pathol.,145 837 845 - 5.
Shih I. M. Elder D. E. Speicher D. Johnson J. P. Herlyn M. 1994 Isolation and functional characterization of the A32 melanoma-associated antigen. 54 2514 2520 - 6.
Bardin N. George F. Mutin M. Brisson C. Horschowski N. Frances V. Lesaule G. Sampol J. 1996 S-endo1, a pan-endothelial monoclonal antibody recognizing a novel human endothelial antigen.” Tissue Antigens,48 531 539 - 7.
Wu G. J. 2005 METCAM/MUC18 expression and cancer metastasis 6 333 349 - 8.
Wu G. J. Wu M. W. H. Wang S. W. Liu Z. Peng Q. Qu P. Yang H. Varma V. A. Sun Q. Petros J. A. Lim S. Amin M. B. 2001 Isolation and characterization of the major form of human MUC18 cDNA gene and correlation of MUC18 over-expression in prostate cancer cells and tissues with malignant progression.” 279 17 31 - 9.
Yang H. Wu M. W. H. Wang S. W. Liu Z. Wu G. J. 2001 Isolation and characterization of murine MUC18 cDNA, and correlation of its expression in murine melanoma cell lines with their metastatic ability.” Gene,265 133 145 - 10.
Vogelstein B. Kinzler K. W. 2004 Cancer genes and the pathways they control. 10 789 799 - 11.
Christofori G. 2006 New signals from the invasive front. 44 444 450 - 12.
Gupta G. P. Massague J. 2006 Cancer metastasis: building a frame work.” Cell,127 679 695 - 13.
Cavallaro U. Christofori G. 2005 Cell adhesion and signaling by cadherins and Ig-CAMs in cancer.” Cancer,4 118 132 - 14.
Chambers A. Groom A. C. Mac Donald. I. C. 2002 Dissemination and growth of cancer cells in metastatic sites. Cancer2 563 572 - 15.
Shih I. M. 1999 The role of CD146 (MelCAM), in biology and pathology.” Am. J. Pathol.,189 4 11 - 16.
Lin J. C. Chiang C. F. Wang S. W. Wang W. Y. Kwan P. C. Wu G. J. 2010 Decreased expression of METCAM/MUC18 correlates with the appearance of, but its increased expression with metastasis of nasopharyngeal carcinoma.” (Submitted). - 17.
Schlagbauer-Wadl H. Jansen B. Muller M. Polterauer P. Wolff K. Eichler H. G. Pehamberger H. Konak E. Johnson J. P. 1999 Influence of MUC18/MCAM/CD146 expression on human melanoma growth and metastasis in SCID mice. Int. J. Cancer,81 951 955 - 18.
Wu G. J. Fu P. Wang S. W. Wu M. W. H. 2008 Enforced expression of MCAM/MUC18 increases in vitro motility and invasiveness and in vivo metastasis of two mouse melanoma K1735 sublines in a syngeneic mouse model 1666 EOF 1677 EOF - 19.
Meier F. Caroli U. Satyamoorthy K. Schittek B. Bauer J. Berking C. Moller H. Maczey E. Rassner G. Herlyn M. Garbe C. 2003 Fibroblast growth factor-2 but not Mel-CAM and/or α3 integrin promotes progression of melanocytes to melanoma.” Expt. Dermatology,12 296 306 - 20.
Wu G. J. Peng Q. Wang S. W. Yang H. Wu M. W. H. 2001 Effect of MUC18 expression on the in vitro invasiveness and in vivo tumorigenesis and metastasis of mouse melanoma cell lines in a syngeneic mouse model", The proceedings of the 92nd Annual Meeting of American Association for the Cancer Research, 42,516 Abstract # 2776. - 21.
Wu G. J. Wu M. W. H. 2011 Ectopic expression of MCAM/MUC18 increases in vitro motility and invasiveness, but decreases tumorigenesis and metastasis of a mouse melanoma K1735 9 subline in a syngeneic mouse model.” (In preparation). - 22.
Hanahan D. Weinberg R. A. 2000 The hallmarks of cancer. 100 57 70 - 23.
Li G. Kalabis J. Xu X. Meier F. Oka M. Bogenrieder T. Herlyn M. 2003 Reciprocal regulation of MelCAM and AKT in human melanoma. 22 6891 6899 - 24.
Melnikva V. O. Balasubramanian K. Villares G. J. Debroff A. S. Zigler M. Wang H. Petersson F. Price J. E. Schroit A. Prieto V. G. Hung M. C. Bar-Eli M. 2009 Crosstalk between protease-activated receptor1 and platelet-activating factor receptor regulates melanoma cell adhesion molecule (MCAM/MUC18) expression and melanoma metastasis.” J. Biol. Chem., 284(42), 28845-28855. - 25.
Melnikova V. O. Debroff A. S. Zigler M. Villares G. J. Braeuer R. Wang H. Huang L. Bar-Eli M. 2010 CREB inhibits AP-2α expression to regulate the malignant phenotype of melanoma.” PLoS One, 5, e12452. - 26.
Sers C. Riethmuller G. Johnson J. P. 1994 MUC18, a melanoma-progression associated molecule, and its potential role in tumor vascularization and hematogenous spread.” Cancer Research,54 5689 5694 - 27.
Bardin N. Anfosso F. Masse J. Cramer E. Sabatier F. Le Bivic A. Sampol J. Dignat-George F. 2001 Identification of CD146 as a component of the endothelial junction involved in the control of cell-cell adhesion.” Blood,98 3677 3684 - 28.
Kang Y. Wang F. Feng J. Yang D. Yang X. Yan X. 2006 Knockdown of CD146 reduces the migration and proliferation of human endothelial cells. 16 313 318 - 29.
Yan X. Lin Y. Tang D. Shen Y. Yuan M. Zhang Z. Li P. Xia H. Li L. Luo D. Liu Q. Mann K. Bader B. L. 2003 A novel anti-CD146 monoclonal antibody, AA98, inhibits angiogenesis and tumor growth. 102 184 191 - 30.
Maggio F. Pinna L. A. 2003 One-thousand-and-one substrates of protein kinase CK2?” FASEB J.,17 349 368 - 31.
Wu G. J. Wu M. W. H. Liu Y. 2011 Enforced expression of human METCAM/MUC18 increases the tumorigenesis of human prostate cancer cells in nude mice.” J Urology185 1504 1512 - 32.
Datta S. R. Brunet A. Greenberg M. E. 1999 Cellular survival: a play in three AKTs.” Genes and Development13 2905 2927 - 33.
Wu G. J. Son E. L. 2006 Soluble METCAM/MUC18 blocks angiogenesis during tumor formation of human prostate cancer cells.” The proceedings of the 97th Annual Meeting of American Association for the Cancer Research, 47, #252. - 34.
Song B. Tang J. W. Wang B. Cui X. N. Zhou C. H. Hou L. 2005 Screening for lymphatic metastasis-associated genes in mouse hepatocarcinoma cell lines Hca-F and Hca-P using gene chip.” Chinese J. Cancer, 24(7), 774-780. - 35.
Zhang Q. Liu Z. Carney P. R. Yuan Z. Chen H. Roper S. N. Jiang H. 2008 Non-invasive imaging of epileptic seizures in vivo using photoacoustic tomography (PAT).” Phys. Med. Biol.,53 1921 1931 - 36.
Wang L. V. 2008 Prospects of photoacoustic tomography Med. Phys., 35(12), 5758-5767. - 37.
Schaffer B. S. Grayson M. H. Wortham J. M. Kubicek C. B. Mc Cleish A. T. Prajapati S. I. Nelon L. D. Brady M. M. Jung I. Hosoyama T. Sarro L. M. Hanes M. A. Rubin B. P. Michalek J. E. Clifford C. B. Infante A. J. Keller C. 2010 Immune competency of a hairless mouse strain for improved preclinical studies in genetically engineered mice Mol. Cancer Therapy, 9(8),2354 EOF 2364 EOF - 38.
Sorrentino A. Ferracin M. Castelli G. Biffoni M. Tomaselli G. Baiocchi M. Fatica A. Negrini M. Peschle C. Valtieri M. 2008 Isolation and characterization of CD146+ multipotent mesenchymal stromal cells. Exp. Hematol.,36 1035 1046 - 39.
de Visser K. E. Eichten A. Coussens L. M. 2006 Paradoxical roles of the immune system during cancer development.” Nature Review/Cancer6 24 37 - 40.
Staquicini F. Tandle A. Libutti S. K. Sun J. Zigler M. Bar-Eli M. Aliperti F. Perez E. C. Gershenwald J. E. Mariano M. Pasqualini R. Arap W. Lopes J. D. 2008 A subset of host B lymphocytes controls melanoma metastasis through a melanoma cell adhesion molecule/MUC 18 -dependent interaction: evidence from mice and humans - 41.
Despoix N. Walzer T. Jouve N. Blot-Chabaud M. Bardin N. Paul P. Lyonnet L. Vivier E. Dignat-George F. Vely F. 2008 Mouse CD146/MCAM is a marker of natural killer cell maturation Eur. J. Immunol.,38 2855 2864 - 42.
Kannagi R. Izawa M. Koike T. Miyazaki K. Kimura N. 2004 Carbohydrate-mediated cell adhesion in cancer metastasis and angiogenesis. 377 EOF 84 EOF - 43.
Wu C. Cipollone J. Maines-Bandiera S. Tan C. Karsan A. Auersperg N. Roskelley C. D. 2008 The morphogenic function of E-cadherin-mediated adherens junctions in epithelial ovarian carcinoma formation and progression.”76 193 205 - 44.
Shih I. M. Hsu M. Palazzo Y. J. P. Herlyn M. 1997 The cell-cell adhesion receptor MEL-CAM acts as a tumor suppressor in breast carcinoma. Am. J. Pathology,151 745 751 - 45.
Zeng G. Cai S. Wu G. J. 2011 Up-regulation of METCAM/MUC18 promotes motility, invasion, and tumorigenesis of human breast cancer cells. 113 EOF March 2011)doi: - 46.
Zeng G. Wu G. J. 2011 METCAM/MUC18 over-expression suppresses motility and invasiveness and in vivo progression of human ovarian cancer cells.” (in preparation). - 47.
Ribeiro A. S. Albergaria A. Sousa B. Correia A. L. Bracke M. Seruca R. Schmitt F. C. Paredes J. 2010 Extracellular cleavage and shedding of P-cadherin: a mechanism underlying the invasive behaviour of breast cancer cells 29 392 402 - 48.
Mills L. Ellez C. Huang S. Baker C. Mc Carty M. Green L. Gudas J. M. Feng X. Bar-Eli M. 2002 Fully human antibodies to MCAM/MUC18 inhibit tumor growth and metastasis of human melanoma. 62 5106 5114 - 49.
Leslie M. C. Zhao Y. J. Lachman L. B. Hwu P. Wu G. J. Bar-Eli M. 2007 Immunization against MUC18/MCAM, a novel antigen that drives melanoma invasion and metastasis. 14 316 323 - 50.
Satyamoothy K. Muyrers J. Meier F. Patel D. Herlyn M. 2001 Mel-CAM-specific genetic suppressor elements inhibit melanoma growth and invasion through loss of gap junction communication.” Oncogene,20 4676 4684 - 51.
Hafner C. Samwald U. Wagner S. Felici F. Heere-Ress E. Jensen-Jarolim E. Wolff K. Scheiner O. Pehamberger H. Breiteneder H. 2002 Selection of mimotopes of the cell surface adhesion molecule of Mel-CAM from a random pVIII-28aa phage peptide libr ary.” J. Invest. Dermatol.,119 865 869 - 52.
Nie S. 2006 Nanotechnology for personalized and predictive medicine Nanomedicine, 2(4),305 EOF