1. Introduction
Gene delivery, transfection, cytotoxicity, and many other factors influence the ability of gene therapy to treat cancer. In addition, as with pharmacologic agents, longer exposure to higher concentrations of gene products should intensify their effects (Wada et al., 2007). Cytotoxic gene products, such as FasL and TRAIL, may remain in tissues after the death of the transfected cells, and they are known to induce apoptosis in both transfected cells and neighbouring cells (Hyer et al., 2003; Kagawa et al., 2001). They have been examined for use in cancer gene therapy and its effects have been examined
Currently, multiple injections with a gene therapeutic agent are needed because it is unlikely for a single injection to eliminate a cancer. Therefore, gene therapeutic agents need to be not only safe but inexpensive. Non-viral vectors represent a possible safe and inexpensive way of delivering genes for gene therapy (Lungwitz et al., 2005). However, the gene transfer efficiency of non-viral vectors remains low. New non-viral vectors that are non-carcinogenic, non-immunogenic, and highly efficient are currently being developed.
Here, we discuss the use of non-viral vectors encoding Del1 in cancer gene therapy. Del1 is an extracellular matrix (ECM) protein expressed by embryonic endothelial cells and hypertrophic chondrocytes (Fig. 1a) (Hidai et al., 1998). We examined the biological functions of Del1 domains by generating non-viral vectors encoding fragments of the Del1 gene.
2. Del1 and its application in cancer gene therapy
Del1 is a 480-amino acid protein made up of five regions, including three epidermal growth factor (EGF) repeats (E1-3) at its N-terminus and two discoidin domains (C1 and C2) at its C-terminus (Fig. 1b). The C1 domain is essential for the deposition of Del1 in the ECM, and E3 enhances the ECM deposition mediated by C1 (Hidai et al., 2007). Proteins fused to the E3 and C1 domains are deposited in the ECM, where they accumulate. The E3 domain can also increase the endocytosis of transfected genes, and at high concentrations, E3 induces apoptosis (Kitano et al., 2008, 2010). We therefore examined the possible application of Del1 in cancer gene therapy by transfecting a squamous cell carcinoma line with cDNA encoding a FasL-E3C1 fusion protein. This protein was deposited in ECM, increased apoptosis, and enhanced the efficiency of a following second transfection
2.1. E3 enhances the efficiency of gene transfection
Although viral vectors are highly efficient for gene transfer, they can be carcinogenic and immunogenic (Check, 2002). They also require more time and are more expensive than non-viral vectors. However, non-viral vectors are less efficient for gene transfer. Various methods have been made to improve the efficiency of non-viral vectors. For example, novel chemical transfection reagents have been developed to improve extracellular binding. Also, vectors have been modified with chemicals, growth factor peptides, extracellular matrix proteins, and viral proteins to improve uptake via receptor-mediated endocytosis (Al-Taei et al., 2006; Kikuchi et al., 1996; Nam et al., 2009; Oba et al., 2007).
Although the characteristics of the transfection reagents are important, differences between cell types are a more important determinant of transfection efficiency; some cells are always more easily transfected than others (Von Gersdorff et al., 2006). In this regard, the biological state of a given cell type, such as which endocytic pathways are functional in the cell prior to treatment, may be an important factor in endocytosis-mediated gene transfer. Molecules that initiate and enhance endocytosis are needed to improve endocytosis as a method for delivering exogenous molecules.
Del1 protein is one such a factor that increases the efficiency of transfection
The effects of Del1 on gene transfer were observed
Del1 over-expressing mice (TG) and wild-type mice (WT) were intravenously injected with a cDNA encoding AP using jet-PEI (Polyplus-transfection, San Marco, CA, USA). Mice injected with an empty vector were used as negative controls. After 24 h, serum AP activity was measured. AP activities were normalized by the AP activity of wild-type mice. Results represent means ± SEM (n=6). N.S., not significant. These results revealed that Del1 increased the susceptibility to gene transfer
2.2. E3 induces apoptosis
Del1 is present in branchless cavities, such as the heart and umbilical veins, as well as in avascular tissue with hypertrophic chondrocytes in developing embryos (Hidai et al., 1998). In transgenic mice, constitutive expression of Del1 decreases the total volume of the vascular bed (Hidai et al., 2005). These findings suggest that Del1 is inhibits angiogenesis activity. However, some evidence suggests that Del1 promotes angiogenesis. Zhong et al. reported that Del1 can stimulate angiogenesis in animal models of ischemia (Zhong et al., 2003). Additionally, Del1 can accelerate tumor growth by enhancing vascular formation (Aoka et al., 2002). Del1 has seemed to have ambiguous characteristics.
We have found that Del1 induces cell death
The C1 domain of Del1 also mediates apoptosis. Hanayama et al. reported that the C1 domain binds to phosphatidylserine (PS), a component of the plasma membrane (Hanayama et al., 2004). In healthy cells, PS is maintained on the inner leaflet of the plasma membrane lipid bilayer. However, in apoptotic cells, PS is present in the outer leaflet. Del1 may link phagocytes with apoptotic cells via the integrin-binding RGD sequence in the E2 domain and the PS-binding C1 domain, which can bind to apoptotic cells. Thus, Del1 can both initiate apoptosis and enhance the elimination of apoptotic cells.
2.3. C1 as a deposition domain
The ECM is a critical factor in morphogenesis (Fujiwara et al., 2011; Sakai et al., 2003). Because the organization of the ECM directly influences the structure of tissues and organs, determining how ECM organization is regulated can help clarify the process of morphogenesis. We therefore investigated how Del1 is assembled in the ECM using an AP-Del1 fusion protein. We found that the fusion protein is secreted from cells and deposited in the ECM (Fig. 5).
CHO cells were cultured and transfected with cDNA of an AP-Del1 fusion protein. Cells were removed from tissue culture plates with EDTA and the ECM remaining was collected with a cell scraper, followed by centrifugation. Collected ECM pellets were incubated with p-nitrophenyl phosphate in microcentrifuge tubes. The ECM pellet on the left was collected from wild-type cells, the pellet in the middle from cells transfected with a cDNA encoding AP, and the pellet on the right from cells transfected with cDNA encoding the AP-Del1 fusion protein. The pellet on the right was stained purple indicating that the AP-Del1 fusion protein was present in the ECM.
Using various Del1 deletion mutants, we have found that the C-terminus of the C1 domain, which contains a lectin-like structure, mediates ECM deposition (Hidai et al., 2007). The efficiency of deposition is influences by the presence of other domains in Del1. A fragment containing E3 and C1 (E3C1) had the highest level of ECM deposition, with approximately 70% of the secreted AP fusion protein deposited in the ECM. In contrast, fragments containing C2, which is highly homologous to C1, were present at much lower levels in the ECM. The E3C1 fragment was deposited in the ECM by all cell types examined, although the efficiency varied. Digestion of the ECM with bovine testis hyaluronidase released Del1 from ECM, suggesting that glycosaminoglycans are involved in the deposition of Del1.
In addition to AP protein, the E3C1 sequence of Del1 can immobilize several proteins, including yellow fluorescent protein (YFP) (Fig. 6). Therefore, the E3C1 sequence should be a powerful tool for targeting therapeutic proteins to target tissues and thereby increasing the efficacy and decreasing side-effects.
To examine whether the E3C1 domain interferes with the function of fused enzymes, we fused it to 3α-hydorxysteroid dehydrogenase and expressed it in the prostatic cancer-derived, androgen-dependent cell line LNCap (Hidai et al., 2009). The 3α-hydorxysteroid dehydrogenase-E3C1 fusion protein was localized in the ECM and metabolized dihydrotestosterone in the medium, inhibiting cell growth. Thus, the E3C1 domain can target proteins to the ECM without interfering with their function.
2.4. Potential of a FasL-E3C1 fusion protein in cancer gene therapy
We next considered fusing the E3C1 domain to FasL, a cytotoxic protein that has been studied for cancer gene therapy. A FasL-E3C1 fusion protein was deposited and concentrated in the ECM and enhanced the efficiency of subsequent transfections with the same plasmid (Fig. 7).
SCCKN oral squamous cell carcinoma cells (Urade et al., 1992) were transfected with a non-viral vector encoding a FasL-E3C1 fusion protein or encoding FasL alone (control). Three days later, the cells were transfected with a cDNA encoding AP. E3C1 was expected to target FasL to the ECM, increase cytotoxicity, and increase the efficiency of the secondary transfection with AP.
2.4.1. The E3C1 sequence of Del1 targets FasL to the ECM
2.4.1.1. Materials and methods
Cell culture
CHO cells were purchased from ATCC and grown in α-minimum essential medium (Invitrogen, Carlsbad, CA) supplemented with 10% fetal bovine serum (Invitrogen). The human oral squamous cell carcinoma cell line, SCCKN, a gift from Dr. Hayashido, Hiroshima university, was grown in RD medium (45% Dulbecco's modified Eagle's medium [Invitrogen], 45% RPMI 1640 medium (Invitrogen), and 10% fetal bovine serum. Cells were cultured in 5% CO2 at 37°C.
DNA constructs
Mouse FasL cDNA was a gift of Dr. Tagawa, Chiba cancer center. Mouse Del1 cDNA in pcDNA3 (Invitrogen, Carlsbad, CA) was a gift from Dr. Quertermous, Stanford university. First, a cDNA fragment encoding the mouse FasL gene was amplified by reverse transcriptase-PCR using the forward primer 5’- TACCGAGCTCGGATCCATGCAGCAGCCCATGAATTAC and the reverse primer 5’- GGCACTGTGCTGGATATCAAGCTTATACAAGCCGAA and then cloned into pcDNA3D (Invitrogen), resulting in pFasL. Next, a fragment encoding the E3 and D1 sequence (E3D1, amino acids 122–316 of mouse Del1) was amplified with the forward primer 5’-TGTGAAGCTGAGCCTTGCAGAATGGCCGGA and the reverse primer 5’- ACAGCCTGAGAGCTCACAGCCAAGAAGTT and cloned into the 3’-end of the FasL gene in pFasL, resulting in pFasL-E3D1. The recombinant proteins expressed by these constructs also had a V5 epitope tag at their C-terminal ends.
Immunoblotting
Immunoblotting was used to determine whether E3C1 can target FasL protein to the ECM. CHO cells were used for the experiment because they are more efficiently transfected than SCCKN cells. CHO cells was cultured in 60-mm tissue culture plates and transfected with pFasL-E3D1, pFasL, or a empty vector using jet-PEI (PolyPlus-transfection; San Marcos, CA). Six hours later, the medium was replaced with 3 ml of fresh medium. After 72 h, cells were harvested by incubation with 10 mM EDTA and then solubilized with SDS-sample buffer. Next, the remaining ECM was fixed with 1 ml of 10% trichloroacetic acid in PBS (Wako, Osaka, Japan) and harvested with a cell scraper. One-fourth of the protein from the samples was analyzed by SDS-polyacrylamide gel electrophoresis, after which protein was transferred to a poluvinylidene difluoride membrane (ATTO, Tokyo, Japan). After blocking and incubation with anti-V5 antibody (Invitrogen), anti-laminin antibody (Sigma, Saint Louis, MO), or anti-tubulin antibody (Oncogene, San Diego, CA), and HRP conjugated secondary antibody (Cell signaling technology, Denvers, MA). an ECL advance western blotting detection kit (Amersham, Piscataway, NJ) was used to detect immunoreactive protein.
2.4.1.2. Results
Immunoblotting of cell lysate showed that the recombinant FasL and FasL-E3C1 fusion proteins had the expected sizes (Fig. 8a). Immunoblotting of conditioned ECM remaining after cell removal showed that FasL-E3C1 fusion protein but not FasL was present in the ECM (Fig. 8b).
Immunoblotting of cell lysate (a) and ECM (b) from CHO cells transfected with empty vector, pFasL, or pFasL-E3C1. Immunoblotting for tubulin and laminin was used to confirm equal loading.
2.4.2. The E3C1 fragment of Del1 improved the effects of FasL
2.4.2.1. Materials and methods
Induction of apoptosis by FasL fusion proteins
SCCKN cells were plated on a 24-weel plate at 30% confluency. After 1 or 4 days, cells were transfected with an empty vector, pFasL, or pFasL-E3C1. Cells were co-transfected with pAP-tag4 (GenHunter, Nashville, TN) as a control for transfection efficiency. After 48 h, cell death was analyzed by measuring lactate dehydrogenase (LDH) in the cell medium using a LDH cytotoxicity detection kit (Takara) according to the manufacturer’s protocol (Decker and Lohmann-Matthes, 1988; Legrand et al., 1992). Percent cell death was calculated as 100% x [(LDH activity for the test condition – LDH activity for the negative control)/LDH activity in cells treated with 1% Triton X-100 (positive control)]. LDH activity was normalized to the heat stable AP activity, which was measured as follows. Conditioned medium (20 μl/well) was added to a 96-well plate, heated at 65ºC for 30 min to inactivate endogenous AP activity, and mixed with 200 μl/well of 1 mg/ml p-nitrophenyl phosphate (Sigma, St Louis, MO) in 1 mM MgCl2 and 1 M diethanolamine, pH 9.8. The absorbance at 405 nm was measured after 30 to 60 min.
2.4.2.2. Results
In a first set of experiments, cells were transfected with plasmids 1 day after plating (Fig. 9a). In this experiment, expression of the FasL-E3C1 fusion protein was as cytotoxic as FasL. Because the deposition activity of Del1 varies between cells, possibly because of the composition and amount of ECM, we repeated the experiment with transfection 4 days after plating to allow them to produce sufficient ECM (Fig. 9b). Under these conditions, transfection with pFasL-E3C1 was twice as effective as transfection with pFasL at inducing cell death.
KN cells were transfected 1 (a) or 4 (b) days after plating with an empty vector, pFasL, or pFasL-E3C1. Results represent means ± SEM (n=8). N.S., not significant. Asterisk, P<0.01.
2.4.3. The E3C1 fragment of Del1 enhances the efficiency of a following transfection
2.4.3.1. Materials and methods
Evaluation of the effects of FasL-E3C1 on the efficiency of a second gene transfer
SCCKN cells were cultured at 30% confluency in 96-well plates for 4 days. The cells were transfected with 1 μg of pFasL, pFasL-E3C1, or empty vector (negative control) using jet-PEI. After the cells were cultured for 72 h, the cells that survived the first transfection were transfected with pAPtag-4. Next, the cells were cultured for 24 h before analysis. The AP activity in medium was measured as described above. To count the number of cells, cells were harvested with trypsin EDTA, stained with Trypan blue, and counted using a counting chamber. The AP activity was calculated as the total AP activity in medium/cell numbers.
2.4.3.2. Results
The efficiency of the second transfection was evaluated by measuring the secreted AP activity per cells (Fig. 10). Efficiency increased in the following order: empty vector < pFasL < pFasL-E3C1. Because cells transfected with empty vector during the first transfection were cultured for 8 days without significant cell death, they may have been too dense to allow for an efficient second transfection, which could explain the higher efficiency of secondary transfection in the pFasL-transfected cells than in the control cells.
Results represent mean ± SEM (n=8). N.S., not significant. Asterisk, P<0.01.
2.5. Discussion
Expression of Del1 is cell- and tissue-specific. As some reports suggest that Del1 promotes angiogenesis, whereas other reports suggest that it inhibits it, Del1 may be bifunctional. Furthermore, the E3 and C1 domains of Del1 have distinct functions and can act on a variety of cells, and they might be useful as fusion partners to enhance gene therapy using FasL or other proteins.
Neck and esophageal cancer can cause obstruction. Although they can be treated using radiation therapy, its use is limited by the total dosage. As an alternative treatment, we designed a fusion protein of FasL and E3C1 to allow multiple rounds of cancer gene therapy with non-viral vectors. Further study of this fusion protein in the treatment of cancer needs is warranted and should be explored
3. Conclusion
The E3C1 fragment of Del1 can substantially improve the efficiency of cancer gene therapy using FasL.
Acknowledgments
This work was supported by Grant 04-162 from the Japan Science and Technology Agency.
References
- 1.
Al-Taei S. Penning N. A. Simpson J. C. Futaki S. Takeuchi T. Nakase I. Jones A. T. 2006 Intracellular Traffic and Fate of Protein Transduction Domains Hiv-1 Tat Peptide and Octaarginine. Implications for Their Utilization as Drug Delivery Vectors. ,17 1 (February 2006),90 100 ),1043-1802 - 2.
Aoka Y. Johnson F. L. Penta K. Hirata Ki. K. Hidai C. Schatzman R. Varner J. A. Quertermous T. 2002 The Embryonic Angiogenic Factor Del1 Accelerates Tumor Growth by Enhancing Vascular Formation. ,64 1 (July 2002),148 161 ),0026-2862 - 3.
Check E. 2002 Gene Therapy: Shining Hopes Dented- but Not Dashed. ,420 6917 (December 2002),735 ,0028-0836 - 4.
Decker T. Lohmann-Matthes M. L. 1988 A Quick and Simple Method for the Quantitation of Lactate Dehydrogenase Release in Measurements of Cellular Cytotoxicity and Tumor Necrosis Factor (Tnf) Activity. ,115 1 (November 1988),61 69 ),0022-1759 - 5.
Elojeimy S. Mckillop J. C. El -Zawahry A. M. Holman D. H. Liu X. Schwartz D. A. Day T. A. Dong J. Y. Norris J. S. 2006 Fasl Gene Therapy: A New Therapeutic Modality for Head and Neck Cancer. ,13 8 (August 2006),739 745 ),0929-1903 - 6.
Fujiwara H. Ferreira M. Donati G. Marciano D. K. Linton J. M. Sato Y. Hartner A. Sekiguchi K. Reichardt L. F. Watt F. M. 2011 The Basement Membrane of Hair Follicle Stem Cells Is a Muscle Cell Niche. ,144 4 (February 2011),577 589 ),1097-4172 - 7.
Griffith T. S. Stokes B. Kucaba T. A. Earel J. K. Jr Vanoosten R. L. Brincks E. L. Norian L. A. 2009 Trail Gene Therapy: From Preclinical Development to Clinical Application. ,9 1 (February 2009),9 19 ),1566-5232 - 8.
Hanayama R. Tanaka M. Miwa K. Nagata S. 2004 Expression of Developmental Endothelial Locus-1 in a Subset of Macrophages for Engulfment of Apoptotic Cells. ,172 6 (March 2004),3876 3882 ),0022-1767 - 9.
Hidai C. Kawana M. Habu K. Kazama H. Kawase Y. Iwata T. Suzuki H. Quertermous T. Kokubun S. 2005 Overexpression of the Del1 Gene Causes Dendritic Branching in the Mouse Mesentery. ,287 2 (December 2005),1165 1175 ),1552-4884 - 10.
Hidai C. Kawana M. Kitano H. Kokubun S. 2007 Discoidin Domain of Del1 Protein Contributes to Its Deposition in the Extracellular Matrix. ,330 1 (Octtober 2007),83 95 ),0030-2766 X - 11.
Hidai C. Kitano H. Kokubun S. 2009 The Del1 Deposition Domain Can Immobilize 3alpha-Hydroxysteroid Dehydrogenase in the Extracellular Matrix without Interfering with Enzymatic Activity. ,32 5 (August 2009),569 573 ),1615-7605 - 12.
Hidai C. Zupancic T. Penta K. Mikhail A. Kawana M. Quertermous E. E. Aoka Y. Fukagawa M. Matsui Y. Platika D. Auerbach R. Hogan B. L. Snodgrass R. Quertermous T. 1998 Cloning and Characterization of Developmental Endothelial Locus-1: An Embryonic Endothelial Cell Protein That Binds the Alphavbeta3 Integrin Receptor. ,12 1 (January 1998),21 33 ),0890-9369 - 13.
Hyer M. L. Sudarshan S. Schwartz D. A. Hannun Y. Dong J. Y. Norris J. S. 2003 Quantification and Characterization of the Bystander Effect in Prostate Cancer Cells Following Adenovirus-Mediated Fasl Expression. ,10 4 (April 2003),330 339 ),0929-1903 - 14.
Kagawa S. He C. Gu J. Koch P. Rha S. J. Roth J. A. Curley S. A. Stephens L. C. Fang B. 2001 Antitumor Activity and Bystander Effects of the Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (Trail) Gene. ,61 8 (April 2001),3330 3338 ),0008-5472 - 15.
Kikuchi A. Sugaya S. Ueda H. Tanaka K. Aramaki Y. Hara T. Arima H. Tsuchiya S. Fuwa T. 1996 Efficient Gene Transfer to Egf Receptor Overexpressing Cancer Cells by Means of Egf-Labeled Cationic Liposomes. ,227 3 (October 1996),666 671 ),0000-6291 X - 16.
Kitano H. Hidai C. Kawana M. Kokubun S. 2008 An Epidermal Growth Factor-Like Repeat of Del1 Protein Increases the Efficiency of Gene Transfer in Vitro. ,39 3 (July 2008),179 185 ),1073-6085 - 17.
Kitano H. Kokubun S. Hidai C. 2010 The Extracellular Matrix Protein Del1 Induces Apoptosis Via Its Epidermal Growth Factor Motif. ,393 4 (March 2010),757 761 ),1090-2104 - 18.
Legrand C. Bour J. M. Jacob C. Capiaumont J. Martial A. Marc A. Wudtke M. Kretzmer G. Demangel C. Duval D. Et Al. 1992 Lactate Dehydrogenase (Ldh) Activity of the Cultured Eukaryotic Cells as Marker of the Number of Dead Cells in the Medium [Corrected]. ,25 3 (September 1992),231 243 ),0168-1656 - 19.
Lungwitz U. Breunig M. Blunk T. Gopferich A. 2005 Polyethylenimine-Based Non-Viral Gene Delivery Systems. ,60 2 (July 2005),247 266 ),0939-6411 - 20.
Nam H. Y. Park J. H. Kim K. Kwon I. C. Jeong S. Y. 2009 Lipid-Based Emulsion System as Non-Viral Gene Carriers. ,32 5 (May 2009),639 646 ),0253-6269 - 21.
Oba M. Fukushima S. Kanayama N. Aoyagi K. Nishiyama N. Koyama H. Kataoka K. 2007 Cyclic Rgd Peptide-Conjugated Polyplex Micelles as a Targetable Gene Delivery System Directed to Cells Possessing Alphavbeta3 and Alphavbeta5 Integrins. ,18 5 (September 2007),1415 1423 ),1043-1802 - 22.
Sakai T. Larsen M. Yamada K. M. 2003 Fibronectin Requirement in Branching Morphogenesis. ,423 6942 (June 2003),876 881 ),0028-0836 - 23.
Urade M. Ogura T. Mima T. Matsuya T. 1992 Establishment of Human Squamous Carcinoma Cell Lines Highly and Minimally Sensitive to Bleomycin and Analysis of Factors Involved in the Sensitivity. ,69 10 (May 1992),2589 2597 ),0000-8543 X - 24.
Von Gersdorff. K. Sanders N. N. Vandenbroucke R. De Smedt S. C. Wagner E. Ogris M. 2006 The Internalization Route Resulting in Successful Gene Expression Depends on Both Cell Line and Polyethylenimine Polyplex Type. ,14 5 (November 2006),745 753 ),1525-0016 - 25.
Wada A. Tada Y. Kawamura K. Takiguchi Y. Tatsumi K. Kuriyama T. Takenouchi T. J. O. W. Tagawa M. 2007 The Effects of Fasl on Inflammation and Tumor Survival Are Dependent on Its Expression Levels. ,14 3 (March 2007),262 267 ),0929-1903 - 26.
Zhong J. Eliceiri B. Stupack D. Penta K. Sakamoto G. Quertermous T. Coleman M. Boudreau N. Varner J. A. 2003 Neovascularization of Ischemic Tissues by Gene Delivery of the Extracellular Matrix Protein Del-1. ,112 1 (July 2003),30 41 ),0021-9738