IntechOpen Book Series will also publish a program of research-driven Thematic Edited Volumes that focus on specific areas and allow for a more in-depth overview of a particular subject.
\\n\\n
IntechOpen Book Series will be launching regularly to offer our authors and editors exciting opportunities to publish their research Open Access. We will begin by relaunching some of our existing Book Series in this innovative book format, and will expand in 2022 into rapidly growing research fields that are driving and advancing society.
With the desire to make book publishing more relevant for the digital age and offer innovative Open Access publishing options, we are thrilled to announce the launch of our new publishing format: IntechOpen Book Series.
\n\n
Designed to cover fast-moving research fields in rapidly expanding areas, our Book Series feature a Topic structure allowing us to present the most relevant sub-disciplines. Book Series are headed by Series Editors, and a team of Topic Editors supported by international Editorial Board members. Topics are always open for submissions, with an Annual Volume published each calendar year.
\n\n
After a robust peer-review process, accepted works are published quickly, thanks to Online First, ensuring research is made available to the scientific community without delay.
\n\n
Our innovative Book Series format brings you:
\n\n
\n\t
Topic Focused Publications - Each topic showcases high impact subject areas
\n\t
Renowned Editorial Expertise - Series Editors, Topic Editors, and a team of international Board Members that permanently support each Book Series
\n\t
Fast Publishing - quick turnaround which is unique for book publishing
\n\t
The benefit of ISSN and ISBN for increased citation and indexing possibilities
\n
\n\n\n\n
IntechOpen Book Series will also publish a program of research-driven Thematic Edited Volumes that focus on specific areas and allow for a more in-depth overview of a particular subject.
\n\n
IntechOpen Book Series will be launching regularly to offer our authors and editors exciting opportunities to publish their research Open Access. We will begin by relaunching some of our existing Book Series in this innovative book format, and will expand in 2022 into rapidly growing research fields that are driving and advancing society.
We invite you to explore our IntechOpen Book Series, find the right publishing program for you and reach your desired audience in record time.
\n\n
Note: Edited in October 2021
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"1511",leadTitle:null,fullTitle:"Deforestation Around the World",title:"Deforestation Around the World",subtitle:null,reviewType:"peer-reviewed",abstract:"Deforestation and forest degradation represent a significant fraction of the annual worldwide human-induced emission of greenhouse gases to the atmosphere, the main source of biodiversity losses and the destruction of millions of people's homes. Despite local/regional causes, its consequences are global. This book provides a general view about deforestation dynamics around the world, incorporating analyses of its causes, impacts and actions to prevent it. Its 17 Chapters, organized in three sections, refer to deforestation impacts on climate, soil, biodiversity and human population, but also describe several initiatives to prevent it. A special emphasis is given to different remote-sensing and mapping techniques that could be used as a source for decision-makers and society to promote forest conservation and control deforestation.",isbn:null,printIsbn:"978-953-51-0417-9",pdfIsbn:"978-953-51-5264-4",doi:"10.5772/1979",price:139,priceEur:155,priceUsd:179,slug:"deforestation-around-the-world",numberOfPages:388,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"9eeb50fd58ff5ebb4151b5368105e9ef",bookSignature:"Paulo Moutinho",publishedDate:"March 30th 2012",coverURL:"https://cdn.intechopen.com/books/images_new/1511.jpg",numberOfDownloads:50726,numberOfWosCitations:34,numberOfCrossrefCitations:12,numberOfCrossrefCitationsByBook:2,numberOfDimensionsCitations:39,numberOfDimensionsCitationsByBook:2,hasAltmetrics:1,numberOfTotalCitations:85,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 19th 2011",dateEndSecondStepPublish:"May 17th 2011",dateEndThirdStepPublish:"September 21st 2011",dateEndFourthStepPublish:"October 21st 2011",dateEndFifthStepPublish:"February 20th 2012",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"115144",title:"Dr.",name:"Paulo",middleName:null,surname:"Moutinho",slug:"paulo-moutinho",fullName:"Paulo Moutinho",profilePictureURL:"https://mts.intechopen.com/storage/users/115144/images/system/115144.jpg",biography:"Current Executive Director for the Amazon Environmental Research Institute (IPAM), Dr. Paulo Moutinho has worked with the Amazon region over the past twenty years. His studies are related to deforestation patterns and their effects on biodiversity, climate and local communities. He carried out pioneering research on the processes of forest recovery on degraded areas and on the impacts of rainfall reduction on ecological function of Amazon forests. He is one of the authors of the proposal for compensating reduced deforestation, which supports international financial incentives for developing countries making efforts to reduce deforestation rates. Such proposal provided the basis for the REDD mechanism (Reducing Emissions from Deforestation and Forest Degradation) under discussion in the UNFCCC. He has also worked actively for the adoption of a National Policy on Climate Change, which sets up unprecedented targets for greenhouse gas emission reduction for Brazil.",institutionString:null,position:"Director",outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"1",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"331",title:"Forestry Science",slug:"agricultural-and-biological-sciences-ecology-forestry-science"}],chapters:[{id:"34532",title:"The Climatic Effects of Deforestation in South and Southeast Asia",doi:"10.5772/34101",slug:"the-climatic-effects-of-deforestation-in-south-and-southeast-asia",totalDownloads:2941,totalCrossrefCites:3,totalDimensionsCites:5,hasAltmetrics:0,abstract:null,signatures:"Rachindra Mawalagedara and Robert J. Oglesby",downloadPdfUrl:"/chapter/pdf-download/34532",previewPdfUrl:"/chapter/pdf-preview/34532",authors:[{id:"98711",title:"Prof.",name:"Robert",surname:"Oglesby",slug:"robert-oglesby",fullName:"Robert Oglesby"},{id:"105712",title:"MSc.",name:"Rachindra",surname:"Mawalagedara",slug:"rachindra-mawalagedara",fullName:"Rachindra Mawalagedara"}],corrections:null},{id:"34533",title:"Impacts of Deforestation on Climate and Water Resources in Western Amazon",doi:"10.5772/35734",slug:"impacts-of-deforestation-on-climate-and-water-resources-in-western-amazon",totalDownloads:2330,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Ranyére Silva Nóbrega",downloadPdfUrl:"/chapter/pdf-download/34533",previewPdfUrl:"/chapter/pdf-preview/34533",authors:[{id:"105663",title:"Dr.",name:"Ranyére",surname:"Nóbrega",slug:"ranyere-nobrega",fullName:"Ranyére Nóbrega"}],corrections:null},{id:"34534",title:"Deforestation and Water Borne Parasitic Zoonoses",doi:"10.5772/35798",slug:"deforestation-and-waterborne-parasitic-zoonoses",totalDownloads:2474,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Maria Anete Lallo",downloadPdfUrl:"/chapter/pdf-download/34534",previewPdfUrl:"/chapter/pdf-preview/34534",authors:[{id:"105885",title:"Dr.",name:"Maria",surname:"Lallo",slug:"maria-lallo",fullName:"Maria Lallo"}],corrections:null},{id:"34535",title:"Impact of Deforestation on the Sustainability of Biodiversity in the Mesoamerican Biological Corridor",doi:"10.5772/35173",slug:"impact-of-deforestation-on-the-sustainability-of-biodiversity-in-mesoamerican-biological-corridor",totalDownloads:3501,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Vani Starry Manoharan, John Mecikalski, Ronald Welch and Aaron Song",downloadPdfUrl:"/chapter/pdf-download/34535",previewPdfUrl:"/chapter/pdf-preview/34535",authors:[{id:"103286",title:"Dr.",name:"Vani Starry",surname:"Manoharan",slug:"vani-starry-manoharan",fullName:"Vani Starry Manoharan"},{id:"128126",title:"Dr.",name:"John",surname:"Mecikalski",slug:"john-mecikalski",fullName:"John Mecikalski"},{id:"131741",title:"Prof.",name:"Ronald",surname:"Welch",slug:"ronald-welch",fullName:"Ronald Welch"},{id:"131742",title:"Dr.",name:"Aaron",surname:"Song",slug:"aaron-song",fullName:"Aaron Song"}],corrections:null},{id:"34536",title:"Dinaric Karst - An Example of Deforestation and Desertification of Limestone Terrain",doi:"10.5772/34275",slug:"dinaric-karst-an-example-of-deforestation-and-desertification-of-limestone-terrain",totalDownloads:2347,totalCrossrefCites:2,totalDimensionsCites:5,hasAltmetrics:0,abstract:null,signatures:"Andrej Kranjc",downloadPdfUrl:"/chapter/pdf-download/34536",previewPdfUrl:"/chapter/pdf-preview/34536",authors:[{id:"99468",title:"Prof.",name:"Andrej",surname:"Kranjc",slug:"andrej-kranjc",fullName:"Andrej Kranjc"}],corrections:null},{id:"34537",title:"Landslides Caused Deforestation",doi:"10.5772/36993",slug:"landslides-caused-deforestation",totalDownloads:3816,totalCrossrefCites:2,totalDimensionsCites:3,hasAltmetrics:0,abstract:null,signatures:"Diandong Ren, Lance M. Leslie and Qingyun Duan",downloadPdfUrl:"/chapter/pdf-download/34537",previewPdfUrl:"/chapter/pdf-preview/34537",authors:[{id:"87393",title:"Prof.",name:"Lance",surname:"Leslie",slug:"lance-leslie",fullName:"Lance Leslie"},{id:"110769",title:"Prof.",name:"Diandong",surname:"Ren",slug:"diandong-ren",fullName:"Diandong Ren"},{id:"132708",title:"Prof.",name:"Qingyun",surname:"Duan",slug:"qingyun-duan",fullName:"Qingyun Duan"}],corrections:null},{id:"34538",title:"Deforestation Dynamics: A Review and Evaluation of Theoretical Approaches and Evidence from Greece",doi:"10.5772/35839",slug:"deforestation-dynamics-a-review-and-evaluation-of-theoretical-approaches",totalDownloads:3585,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Serafeim Polyzos and Dionysios Minetos",downloadPdfUrl:"/chapter/pdf-download/34538",previewPdfUrl:"/chapter/pdf-preview/34538",authors:[{id:"106057",title:"Dr.",name:"Serafeim",surname:"Polyzos",slug:"serafeim-polyzos",fullName:"Serafeim Polyzos"},{id:"106070",title:"Dr.",name:"Dionysios",surname:"Minetos",slug:"dionysios-minetos",fullName:"Dionysios Minetos"}],corrections:null},{id:"34539",title:"Geospatial Analysis of Deforestation and Land Use Dynamics in a Region of Southwestern Nigeria",doi:"10.5772/35117",slug:"geospatial-analysis-of-deforestation-and-land-use-dynamics",totalDownloads:4002,totalCrossrefCites:1,totalDimensionsCites:4,hasAltmetrics:0,abstract:null,signatures:"Nathaniel O. Adeoye, Albert A. Abegunde and Samson Adeyinka",downloadPdfUrl:"/chapter/pdf-download/34539",previewPdfUrl:"/chapter/pdf-preview/34539",authors:[{id:"103039",title:"Dr.",name:"Nathaniel",surname:"Adeoye",slug:"nathaniel-adeoye",fullName:"Nathaniel Adeoye"}],corrections:null},{id:"34540",title:"Unsupervised Classification of Aerial Images Based on the Otsu's Method",doi:"10.5772/33670",slug:"unsupervised-classification-of-aerial-images-based-on-the-otsu-s-method",totalDownloads:2672,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Antonia Macedo-Cruz, I. Villegas-Romero, M. Santos-Peñas and G. Pajares-Martinsanz",downloadPdfUrl:"/chapter/pdf-download/34540",previewPdfUrl:"/chapter/pdf-preview/34540",authors:[{id:"13697",title:"Dr.",name:"Gonzalo",surname:"Pajares",slug:"gonzalo-pajares",fullName:"Gonzalo Pajares"},{id:"96619",title:"Dr.",name:"Antonia",surname:"Macedo-Cruz",slug:"antonia-macedo-cruz",fullName:"Antonia Macedo-Cruz"},{id:"106676",title:"Dr.",name:"Isidro",surname:"Villegas",slug:"isidro-villegas",fullName:"Isidro Villegas"},{id:"106677",title:"Dr.",name:"Matilde",surname:"Santos",slug:"matilde-santos",fullName:"Matilde Santos"}],corrections:null},{id:"34541",title:"Deforestation and Waodani Lands in Ecuador: Mapping and Demarcation Amidst Shaky Politics",doi:"10.5772/35851",slug:"deforestation-and-waorani-lands-in-ecuador-mapping-and-demarcation-amidst-shaky-politics",totalDownloads:2818,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Anthony Stocks, Andrew Noss, Malgorzata Bryja and Santiago Arce",downloadPdfUrl:"/chapter/pdf-download/34541",previewPdfUrl:"/chapter/pdf-preview/34541",authors:[{id:"106095",title:"Dr.",name:"Anthony",surname:"Stocks",slug:"anthony-stocks",fullName:"Anthony Stocks"},{id:"117897",title:"Dr.",name:"Andrew",surname:"Noss",slug:"andrew-noss",fullName:"Andrew Noss"},{id:"135199",title:"Mr.",name:"Santiago",surname:"Arce",slug:"santiago-arce",fullName:"Santiago Arce"},{id:"135592",title:"Dr.",name:"Malgorzata",surname:"Bryja",slug:"malgorzata-bryja",fullName:"Malgorzata Bryja"}],corrections:null},{id:"34542",title:"Sustainable Forest Management Techniques",doi:"10.5772/35823",slug:"sustainable-techniques-to-prevent-the-deforestation-",totalDownloads:4567,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"K.P. Chethan, Jayaraman Srinivasan, Kumar Kriti and Kaki Sivaji",downloadPdfUrl:"/chapter/pdf-download/34542",previewPdfUrl:"/chapter/pdf-preview/34542",authors:[{id:"59563",title:"Dr.",name:"Srinivasan",surname:"Jayaraman",slug:"srinivasan-jayaraman",fullName:"Srinivasan Jayaraman"},{id:"105989",title:"Mr.",name:"Chethan",surname:"Kp",slug:"chethan-kp",fullName:"Chethan Kp"},{id:"105990",title:"Ms.",name:"Kriti",surname:"Kumar",slug:"kriti-kumar",fullName:"Kriti Kumar"},{id:"105992",title:"Mr.",name:"Sivaji",surname:"Kaki",slug:"sivaji-kaki",fullName:"Sivaji Kaki"}],corrections:null},{id:"34543",title:"Bunjil Forest Watch a Community-Based Forest Monitoring Service",doi:"10.5772/34808",slug:"bunjil-forest-watch-a-community-based-forest-monitoring-service",totalDownloads:2111,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Chris Goodman",downloadPdfUrl:"/chapter/pdf-download/34543",previewPdfUrl:"/chapter/pdf-preview/34543",authors:[{id:"101697",title:"Mr.",name:"Chris",surname:"Goodman",slug:"chris-goodman",fullName:"Chris Goodman"}],corrections:null},{id:"34544",title:"Remnant Vegetation Analysis of Guanabara Bay Basin, Rio de Janeiro, Brazil, Using Geographical Information System",doi:"10.5772/35774",slug:"remnant-vegetation-analysis-of-guanabara-bay-basin-rio-de-janeiro-brazil-using-geographical-informat",totalDownloads:2875,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Luzia Alice Ferreira de Moraes",downloadPdfUrl:"/chapter/pdf-download/34544",previewPdfUrl:"/chapter/pdf-preview/34544",authors:[{id:"105811",title:"Dr.",name:"Luzia Alice Ferreira",surname:"De Moraes",slug:"luzia-alice-ferreira-de-moraes",fullName:"Luzia Alice Ferreira De Moraes"}],corrections:null},{id:"34545",title:"Preserving Biodiversity and Ecosystems: Catalyzing Conservation Contagion",doi:"10.5772/35435",slug:"preserving-biodiversity-and-ecosystems-catalyzing-conservation-contagion",totalDownloads:2450,totalCrossrefCites:0,totalDimensionsCites:6,hasAltmetrics:1,abstract:null,signatures:"Robert H. Horwich, Jonathan Lyon, Arnab Bose and Clara B. Jones",downloadPdfUrl:"/chapter/pdf-download/34545",previewPdfUrl:"/chapter/pdf-preview/34545",authors:[{id:"104422",title:"Dr.",name:"Robert",surname:"Horwich",slug:"robert-horwich",fullName:"Robert Horwich"},{id:"105667",title:"Dr.",name:"Jonathan",surname:"Lyon",slug:"jonathan-lyon",fullName:"Jonathan Lyon"},{id:"105668",title:"Mr.",name:"Arnab",surname:"Bose",slug:"arnab-bose",fullName:"Arnab Bose"},{id:"105669",title:"Dr.",name:"Clara",surname:"Jones",slug:"clara-jones",fullName:"Clara Jones"}],corrections:null},{id:"34546",title:"Efficiency of the Strategies to Prevent and Mitigate the Deforestation in Costa Rica",doi:"10.5772/33527",slug:"efficiency-of-the-strategies-to-prevent-and-mitigate-the-deforestation-in-costa-rica",totalDownloads:2473,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Óscar M. Chaves",downloadPdfUrl:"/chapter/pdf-download/34546",previewPdfUrl:"/chapter/pdf-preview/34546",authors:[{id:"96000",title:"Dr.",name:"Óscar M.",surname:"Chaves",slug:"oscar-m.-chaves",fullName:"Óscar M. Chaves"}],corrections:null},{id:"34547",title:"Agroforestry Systems and Local Institutional Development for Preventing Deforestation in Chiapas, Mexico",doi:"10.5772/35172",slug:"agroforestry-systems-and-local-institutional-development-for-preventing-deforestation-in-chiapas-mex",totalDownloads:3308,totalCrossrefCites:0,totalDimensionsCites:7,hasAltmetrics:0,abstract:null,signatures:"Lorena Soto-Pinto, Miguel A. Castillo-Santiago and Guillermo Jiménez-Ferrer",downloadPdfUrl:"/chapter/pdf-download/34547",previewPdfUrl:"/chapter/pdf-preview/34547",authors:[{id:"103284",title:"Dr.",name:"Lorena",surname:"Soto-Pinto",slug:"lorena-soto-pinto",fullName:"Lorena Soto-Pinto"},{id:"105073",title:"Dr.",name:"Miguel A.",surname:"Castillo",slug:"miguel-a.-castillo",fullName:"Miguel A. Castillo"},{id:"105075",title:"Dr.",name:"Guillermo",surname:"Jimenez-Ferrer",slug:"guillermo-jimenez-ferrer",fullName:"Guillermo Jimenez-Ferrer"}],corrections:null},{id:"34548",title:"Economic Models of Shifting Cultivation: A Review",doi:"10.5772/35745",slug:"economic-models-of-shifting-cultivation-a-review",totalDownloads:2459,totalCrossrefCites:1,totalDimensionsCites:3,hasAltmetrics:0,abstract:null,signatures:"Yoshito Takasaki",downloadPdfUrl:"/chapter/pdf-download/34548",previewPdfUrl:"/chapter/pdf-preview/34548",authors:[{id:"105713",title:"Prof.",name:"Yoshito",surname:"Takasaki",slug:"yoshito-takasaki",fullName:"Yoshito Takasaki"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"2246",title:"Global Perspectives on Sustainable Forest Management",subtitle:null,isOpenForSubmission:!1,hash:"b633fc6fc6a3a8f24dd4c4373fb14cb7",slug:"global-perspectives-on-sustainable-forest-management",bookSignature:"Okia Clement Akais",coverURL:"https://cdn.intechopen.com/books/images_new/2246.jpg",editedByType:"Edited by",editors:[{id:"119660",title:"Dr.",name:"Dr. Clement A.",surname:"Okia",slug:"dr.-clement-a.-okia",fullName:"Dr. Clement A. Okia"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"616",title:"Forest Ecosystems",subtitle:"More than Just Trees",isOpenForSubmission:!1,hash:"00ecaa84de1aa2d7116ab5871b353b82",slug:"forest-ecosystems-more-than-just-trees",bookSignature:"Juan A. Blanco and Yueh-Hsin Lo",coverURL:"https://cdn.intechopen.com/books/images_new/616.jpg",editedByType:"Edited by",editors:[{id:"51995",title:"Dr.",name:"Juan",surname:"Blanco",slug:"juan-blanco",fullName:"Juan Blanco"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"617",title:"Sustainable Forest Management",subtitle:"Current Research",isOpenForSubmission:!1,hash:"a8d91cf4745e90f7510e056fd508dc46",slug:"sustainable-forest-management-current-research",bookSignature:"Jorge Martin Garcia and Julio Javier Diez Casero",coverURL:"https://cdn.intechopen.com/books/images_new/617.jpg",editedByType:"Edited by",editors:[{id:"88987",title:"Dr.",name:"Julio J.",surname:"Diez",slug:"julio-j.-diez",fullName:"Julio J. Diez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2073",title:"Sustainable Forest Management",subtitle:"Case Studies",isOpenForSubmission:!1,hash:"656069330afd66b7a27ca8963a544092",slug:"sustainable-forest-management-case-studies",bookSignature:"Jorge Martin-Garcia and Julio Javier Diez",coverURL:"https://cdn.intechopen.com/books/images_new/2073.jpg",editedByType:"Edited by",editors:[{id:"88987",title:"Dr.",name:"Julio J.",surname:"Diez",slug:"julio-j.-diez",fullName:"Julio J. Diez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1815",title:"New Advances and Contributions to Forestry Research",subtitle:null,isOpenForSubmission:!1,hash:"fb2caa8ab3683ea8aeba1810e7903a4a",slug:"new-advances-and-contributions-to-forestry-research",bookSignature:"Andrew Akwasi Oteng-Amoako",coverURL:"https://cdn.intechopen.com/books/images_new/1815.jpg",editedByType:"Edited by",editors:[{id:"119148",title:"Dr.",name:"Dr. Andrew A.",surname:"Oteng-Amoako",slug:"dr.-andrew-a.-oteng-amoako",fullName:"Dr. Andrew A. Oteng-Amoako"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4757",title:"Precious Forests",subtitle:"Precious Earth",isOpenForSubmission:!1,hash:"6bd8329fb8128da2fc08c1c6d8a22613",slug:"precious-forests-precious-earth",bookSignature:"Miodrag Zlatic",coverURL:"https://cdn.intechopen.com/books/images_new/4757.jpg",editedByType:"Edited by",editors:[{id:"174414",title:"Dr.",name:"Miodrag",surname:"Zlatic",slug:"miodrag-zlatic",fullName:"Miodrag Zlatic"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5877",title:"Plant Ecology",subtitle:"Traditional Approaches to Recent Trends",isOpenForSubmission:!1,hash:"788a981ecedf0d9c0205869788524a80",slug:"plant-ecology-traditional-approaches-to-recent-trends",bookSignature:"Zubaida Yousaf",coverURL:"https://cdn.intechopen.com/books/images_new/5877.jpg",editedByType:"Edited by",editors:[{id:"196003",title:"Dr.",name:"Zubaida",surname:"Yousaf",slug:"zubaida-yousaf",fullName:"Zubaida Yousaf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5455",title:"Global Exposition of Wildlife Management",subtitle:null,isOpenForSubmission:!1,hash:"0c60fd890b4af7771afc5211fdabe762",slug:"global-exposition-of-wildlife-management",bookSignature:"Gbolagade Stephen A. Lameed",coverURL:"https://cdn.intechopen.com/books/images_new/5455.jpg",editedByType:"Edited by",editors:[{id:"142349",title:"Dr.",name:"Lameed",surname:"Gbolagade Akeem",slug:"lameed-gbolagade-akeem",fullName:"Lameed Gbolagade Akeem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6162",title:"New Perspectives in Forest Science",subtitle:null,isOpenForSubmission:!1,hash:"514f8da8e59157028c3707db0deec202",slug:"new-perspectives-in-forest-science",bookSignature:"Helder Filipe dos Santos Viana and Francisco Antonio García Morote",coverURL:"https://cdn.intechopen.com/books/images_new/6162.jpg",editedByType:"Edited by",editors:[{id:"37172",title:"Prof.",name:"Helder",surname:"Viana",slug:"helder-viana",fullName:"Helder Viana"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6304",title:"Forest Fire",subtitle:null,isOpenForSubmission:!1,hash:"5d379ad4bcbaa4c9b702c13254a45f76",slug:"forest-fire",bookSignature:"Janusz Szmyt",coverURL:"https://cdn.intechopen.com/books/images_new/6304.jpg",editedByType:"Edited by",editors:[{id:"180608",title:"Dr.",name:"Janusz",surname:"Szmyt",slug:"janusz-szmyt",fullName:"Janusz Szmyt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"81439",slug:"corrigendum-to-the-development-biology-authentic-learning-of-mahasarakham-university-demonstration-s",title:"Corrigendum to: The Development Biology Authentic Learning of Mahasarakham University Demonstration School (Secondary), Thailand",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/81439.pdf\r\n",downloadPdfUrl:"/chapter/pdf-download/81439",previewPdfUrl:"/chapter/pdf-preview/81439",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/81439",risUrl:"/chapter/ris/81439",chapter:{id:"78086",slug:"the-development-biology-authentic-learning-of-mahasarakham-university-demonstration-school-secondary",signatures:"Wutthisak Bunnaen",dateSubmitted:"April 27th 2021",dateReviewed:"June 8th 2021",datePrePublished:"August 13th 2021",datePublished:"February 9th 2022",book:{id:"9558",title:"Active Learning",subtitle:"Theory and Practice",fullTitle:"Active Learning - Theory and Practice",slug:"active-learning-theory-and-practice",publishedDate:"February 9th 2022",bookSignature:"Olena Lutsenko and Gregory Lutsenko",coverURL:"https://cdn.intechopen.com/books/images_new/9558.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"225667",title:"Mrs.",name:"Olena",middleName:null,surname:"Lutsenko",slug:"olena-lutsenko",fullName:"Olena Lutsenko"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"342787",title:"Dr.",name:"Wutthisak",middleName:null,surname:"Bunnaen",fullName:"Wutthisak Bunnaen",slug:"wutthisak-bunnaen",email:"wutthisakcomplete@gmail.com",position:null,institution:null}]}},chapter:{id:"78086",slug:"the-development-biology-authentic-learning-of-mahasarakham-university-demonstration-school-secondary",signatures:"Wutthisak Bunnaen",dateSubmitted:"April 27th 2021",dateReviewed:"June 8th 2021",datePrePublished:"August 13th 2021",datePublished:"February 9th 2022",book:{id:"9558",title:"Active Learning",subtitle:"Theory and Practice",fullTitle:"Active Learning - Theory and Practice",slug:"active-learning-theory-and-practice",publishedDate:"February 9th 2022",bookSignature:"Olena Lutsenko and Gregory Lutsenko",coverURL:"https://cdn.intechopen.com/books/images_new/9558.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"225667",title:"Mrs.",name:"Olena",middleName:null,surname:"Lutsenko",slug:"olena-lutsenko",fullName:"Olena Lutsenko"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"342787",title:"Dr.",name:"Wutthisak",middleName:null,surname:"Bunnaen",fullName:"Wutthisak Bunnaen",slug:"wutthisak-bunnaen",email:"wutthisakcomplete@gmail.com",position:null,institution:null}]},book:{id:"9558",title:"Active Learning",subtitle:"Theory and Practice",fullTitle:"Active Learning - Theory and Practice",slug:"active-learning-theory-and-practice",publishedDate:"February 9th 2022",bookSignature:"Olena Lutsenko and Gregory Lutsenko",coverURL:"https://cdn.intechopen.com/books/images_new/9558.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"225667",title:"Mrs.",name:"Olena",middleName:null,surname:"Lutsenko",slug:"olena-lutsenko",fullName:"Olena Lutsenko"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11822",leadTitle:null,title:"Polypropylene Materials",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tThis book aims to introduce the products of polypropylene and the preparation and usage areas of industrial polypropylene. As it is known, Polypropylene is one of the most important industrial polymers used in many fields such as the automotive, medical, and packaging industries. Today, researchers are doing a lot of work to eliminate the undesirable properties of polypropylene or to improve some of its properties. These studies are generally aimed at the preparation of functional polypropylenes, the preparation of composites with various chemicals, and the creation of blends with various polymers. Thus, it is aimed to obtain engineering polypropylenes. As a result, it is planned to expand the usage areas of polypropylene in the industry. We hope that the studies included in this book will guide the researchers. We aim to have studies on pure polypropylene, studies on the modification of pure polypropylene, and the use of polypropylene in the industry.
",isbn:"978-1-80356-657-3",printIsbn:"978-1-80356-656-6",pdfIsbn:"978-1-80356-658-0",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"ef3d0c8ed4d00b2d7204102f8125e0f0",bookSignature:"Dr. Fatih Dogan",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11822.jpg",keywords:"Industrial Polypropylene, Polypropylene Materials in Industry, Polypropylene Composites, Modified Polypropylenes, Textile Products, Automotive Products, Packaging Products, Medical Products, Rheological Properties, Structural Properties, Morphological Properties, Thermal Properties",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 18th 2022",dateEndSecondStepPublish:"May 25th 2022",dateEndThirdStepPublish:"July 24th 2022",dateEndFourthStepPublish:"October 12th 2022",dateEndFifthStepPublish:"December 11th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"a month",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Dr. Doğan has published about 40 original research papers in different peer-reviewed international journals. He serves as a member of the editorial board of many international journals. His research interests involve the synthesis of macromolecular structures and high-performance materials. Dr. Doğan is a member of the Turkish Chemists Association and the American Chemical Society.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"105969",title:"Dr.",name:"Fatih",middleName:null,surname:"Dogan",slug:"fatih-dogan",fullName:"Fatih Dogan",profilePictureURL:"https://mts.intechopen.com/storage/users/105969/images/system/105969.jpg",biography:"Fatih Doğan is an associate professor of the Chemistry department at Çanakkale Onsekiz Mart University, Turkey. He received his B.Sc. degree from Selcuk University in 1996 and received his Ph.D. degree in Polymer Science from the Ege University–İzmir in 2006. In 2008 he joined the faculty of the Department of Science and Letters at the Çanakkale Onsekiz Mart as Assistant Professor. He has published about 40 original research papers in different peer-reviewed international journals. Dr. Doğan has supervised several M.Sc. students. He serves as a member of the editorial board of many international journals. His research interests involve the synthesis of macromolecular structures and high-performance materials. Specific areas of current research also are properties of phenol-based polymer solid-state decomposition kinetic of different materials and polymer architecture for optoelectronic applications.",institutionString:"Canakkale Onsekiz Mart Universitesi Tip Fakultesi Hastanesi",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Canakkale Onsekiz Mart Universitesi Tip Fakultesi Hastanesi",institutionURL:null,country:{name:"Turkey"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"14",title:"Materials Science",slug:"materials-science"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"466997",firstName:"Patricia",lastName:"Kerep",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/466997/images/21565_n.jpg",email:"patricia@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully"}},relatedBooks:[{type:"book",id:"1797",title:"Polypropylene",subtitle:null,isOpenForSubmission:!1,hash:"45b694d8c36144473ad19233fe4a4359",slug:"polypropylene",bookSignature:"Fatih Dogan",coverURL:"https://cdn.intechopen.com/books/images_new/1797.jpg",editedByType:"Edited by",editors:[{id:"105969",title:"Dr.",name:"Fatih",surname:"Dogan",slug:"fatih-dogan",fullName:"Fatih Dogan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6320",title:"Advances in Glass Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6d0a32a0cf9806bccd04101a8b6e1b95",slug:"advances-in-glass-science-and-technology",bookSignature:"Vincenzo M. Sglavo",coverURL:"https://cdn.intechopen.com/books/images_new/6320.jpg",editedByType:"Edited by",editors:[{id:"17426",title:"Prof.",name:"Vincenzo Maria",surname:"Sglavo",slug:"vincenzo-maria-sglavo",fullName:"Vincenzo Maria Sglavo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6802",title:"Graphene Oxide",subtitle:"Applications and Opportunities",isOpenForSubmission:!1,hash:"075b313e11be74c55a1f66be5dd56b40",slug:"graphene-oxide-applications-and-opportunities",bookSignature:"Ganesh Kamble",coverURL:"https://cdn.intechopen.com/books/images_new/6802.jpg",editedByType:"Edited by",editors:[{id:"236420",title:"Dr.",name:"Ganesh",surname:"Kamble",slug:"ganesh-kamble",fullName:"Ganesh Kamble"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6517",title:"Emerging Solar Energy Materials",subtitle:null,isOpenForSubmission:!1,hash:"186936bb201bb186fb04b095aa39d9b8",slug:"emerging-solar-energy-materials",bookSignature:"Sadia Ameen, M. Shaheer Akhtar and Hyung-Shik Shin",coverURL:"https://cdn.intechopen.com/books/images_new/6517.jpg",editedByType:"Edited by",editors:[{id:"52613",title:"Dr.",name:"Sadia",surname:"Ameen",slug:"sadia-ameen",fullName:"Sadia Ameen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6188",title:"Solidification",subtitle:null,isOpenForSubmission:!1,hash:"0405c42586170a1def7a4b011c5f2b60",slug:"solidification",bookSignature:"Alicia Esther Ares",coverURL:"https://cdn.intechopen.com/books/images_new/6188.jpg",editedByType:"Edited by",editors:[{id:"91095",title:"Dr.",name:"Alicia Esther",surname:"Ares",slug:"alicia-esther-ares",fullName:"Alicia Esther Ares"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6656",title:"Phase Change Materials and Their Applications",subtitle:null,isOpenForSubmission:!1,hash:"9b257f8386280bdde4633d36124787f2",slug:"phase-change-materials-and-their-applications",bookSignature:"Mohsen Mhadhbi",coverURL:"https://cdn.intechopen.com/books/images_new/6656.jpg",editedByType:"Edited by",editors:[{id:"228366",title:"Dr.",name:"Mohsen",surname:"Mhadhbi",slug:"mohsen-mhadhbi",fullName:"Mohsen Mhadhbi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6805",title:"Electrical and Electronic Properties of Materials",subtitle:null,isOpenForSubmission:!1,hash:"f6b6930e7ae9d0704f68b5c180526309",slug:"electrical-and-electronic-properties-of-materials",bookSignature:"Md. Kawsar Alam",coverURL:"https://cdn.intechopen.com/books/images_new/6805.jpg",editedByType:"Edited by",editors:[{id:"199691",title:"Dr.",name:"Md. Kawsar",surname:"Alam",slug:"md.-kawsar-alam",fullName:"Md. Kawsar Alam"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6851",title:"New Uses of Micro and Nanomaterials",subtitle:null,isOpenForSubmission:!1,hash:"49e0ab8961c52c159da40dd3ec039be0",slug:"new-uses-of-micro-and-nanomaterials",bookSignature:"Marcelo Rubén Pagnola, Jairo Useche Vivero and Andres Guillermo Marrugo",coverURL:"https://cdn.intechopen.com/books/images_new/6851.jpg",editedByType:"Edited by",editors:[{id:"112233",title:"Dr.Ing.",name:"Marcelo Rubén",surname:"Pagnola",slug:"marcelo-ruben-pagnola",fullName:"Marcelo Rubén Pagnola"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9393",title:"Engineering Steels and High Entropy-Alloys",subtitle:null,isOpenForSubmission:!1,hash:"d33466a3272f97353a6bf6d76d7512a5",slug:"engineering-steels-and-high-entropy-alloys",bookSignature:"Ashutosh Sharma, Zoia Duriagina, Sanjeev Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/9393.jpg",editedByType:"Edited by",editors:[{id:"145236",title:"Dr.",name:"Ashutosh",surname:"Sharma",slug:"ashutosh-sharma",fullName:"Ashutosh Sharma"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7360",title:"Fillers",subtitle:"Synthesis, Characterization and Industrial Application",isOpenForSubmission:!1,hash:"4cb5f0dcdfc23d6ec4c1d5f72f726ab4",slug:"fillers-synthesis-characterization-and-industrial-application",bookSignature:"Amar Patnaik",coverURL:"https://cdn.intechopen.com/books/images_new/7360.jpg",editedByType:"Edited by",editors:[{id:"43660",title:"Associate Prof.",name:"Amar",surname:"Patnaik",slug:"amar-patnaik",fullName:"Amar Patnaik"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"16572",title:"Gold and Silver Nanowires for Fluorescence Enhancement",doi:"10.5772/16330",slug:"gold-and-silver-nanowires-for-fluorescence-enhancement",body:'\n\t\t
\n\t\t\t
1. Introduction
\n\t\t\t
One-dimensional (1-D) noble metallic nanoscale materials, particularly silver or gold have been attracting wide interest due to their unique optical, electronic, catalytic and mechanical properties. Recently significant interest has been devoted to ultrasensitive detection of trace analytes down to a single molecule level. Various strategies to lower the detection limit for fluorescence-based sensors include increasing the signal from fluorescent dyes that indicate the presence of a specific analyte. Metals such as gold and silver with nanometer scale dimensions (in the 1-100 nm range) exhibit a remarkable optical effect known as localised surface plasmon resonance (Hutter and Fendler 2004, Lakowicz et all 2002 and 2003, Geddes et all 2003a, Geddes et all 2003b,Liebermann and Knoll 2000, Tarcha et all 1998, Tarcha et all 1999, Sokolov et all 1998, Kummerlen et all 1993, Felidi et all 1999, Jensen at all 2000), which is due to resonant photons inducing coherent surface plasmon oscillations of their conduction band electrons. The confinement of the surface plasmon resonance to the nanoparticle dimensions can increase the amplitude of electromagnetic wave by as much as orders of magnitude. This strong electromagnetic field decays exponentially over a distance comparable with nanostructures size. Correspondingly, light intensity near such nanostructures (proportional to the square of the wave’s amplitude) is also significantly increased. In such a way noble metal particles through plasmonic confinement, effectively focus resonantly coupled light. As a result, all radiative properties of molecules in proximity of such nanoparticles, such as light absorption, fluorescence, Rayleigh scattering and Raman scattering can be enhanced by orders of magnitude, when certain conditions are met. In particular, metal nanoparticles can modify the properties of close fluorophores. The presence of a nearby metallic nanoparticle can not only enhance fluorophore quantum yield but also stabilize adjacent fluorophores against photobleaching, further enhancing their utility in fluorescence sensing and imaging. However, when fluorophores are very close to the metal surface, the fluorescence quenching effect competes with these favorable effects2 and it dominates within 5 nm from the surface of metallic particles. At larger distances, the enhancement starts to override the quenching and it reaches its maximum at about 10 nm from the metal surface (Kerker et all 1982, Gersten and Nitzan 1985). At larger metal-fluorophore separation, the enhancement effect progressively decreases. Early studies using colloidal silver or silver fractals deposited electrochemically on glass substrates showed substantial enhancement of fluorescence in the visible range (Geddes et at all 2003a, 2003b, Sokolov et all 1998, Kummerlen et all 1993). Larger enhancements were created using more precisely controlled, regular arrangements of noble metal nano-structures (Corrigan at all 2006, Corrigan et all 2005). Uniform arrays of nanostructures produced narrower resonances; allowing better control of the scattered light and optimization of spectral overlap between the metal particle plasmon resonances and absorption/emission of fluorescent molecules. Fluorescence intensities of up to 350 times of the original value on a bare glass surface had been observed for Ag nanoparticles on an “active” substrate (Guo et all 2008a, Guo at all 2008b) and even higher enhancement factors have been theoretically predicted.
\n\t\t\t
Since last decade it has been anticipated that noble metal nanorods and nanowires offer exceptional potential to modify electromagnetic fields, on the basis of their apparent similarities to simple antennas. Indeed, Schatz et al (Hao and Schatz 2004) have theoretically calculated that isolated nanorods and nanowires show the highest electromagnetic (EM) field enhancement at their ends compared to other nanoparticle shapes, making them potentially attractive substrates for metal enhanced fluorescence (MEF), but very few reports to-date have reported relevant experiments. In our previous work (Goldys at all 2007) we showed that the nanowires were responsible for the fluorescence amplification factors of up to two orders of magnitude. Such amplification factors were induced by plasmon resonance in the nanowires but they were also due to the fact that these nanowires with high aspect ratio and sharp tips act as antennas for the radiating emission from fluorophores. Even higher enhancements can be expected for nanorods aligned end-to-end in one dimension. In such configuration large electromagnetic fields at the neighbouring nanorods can be coupled and used for sensing of single molecules.
\n\t\t\t
In this chapter we explain unique, highly tuneable optical properties of gold and silver nanorods and briefly describe their synthesis. Further, we discuss functionalisation of silver and gold nanorods, designed to bind these nanorods to proteins labelled with fluorophores. These fluorophores are selected so that their excitation-emission characteristics provide the best overlap with plasmon resonances. These nanorods are then used to form well controlled arrays on glass substrates. Here we discuss various arrangements including glass substrates with thin continuous noble metal layer separated by a dielectric spacer from the nanorods. We also show various nanoantenna designs, modelled using Finite Element Method, which are able to efficiently couple light in and out of fluorophores.
\n\t\t
\n\t\t
\n\t\t\t
2. Optical properties of metal nanorods and their effect on fluorescence enhancement
\n\t\t\t
The extinction spectrum of metal nanoparticles consists of two components: scattering and absorption, whose relative contributions depends on size and shape of the nanoparticle. The scattering component is known to be responsible for fluorescence enhancement and the absorption component for fluorescence quenching. Another important parameter, the scattering quantum yield, η, was defined by El Sayed et al. (Lee and El-Sayed 2005) as the ratio of the scattering cross section σsca to the extinction cross section σext of the nanoparticle:
In order for metal nanoparticles to strongly enhance fluorescence several conditions must be met. One of the most important is the spectral overlap of the resonant plasmon position in the metal nanoparticle with excitation/emission spectrum of the fluorophore (Chen et all 2007). The fluorescence enhancement also depends on nanoparticle geometry. This is because only the scattering component of the extinction spectrum of metal nanoparticles contributes to the fluorescence enhancement and its magnitude compared to the absorption component depends on size. For example, it starts to dominate for spherical nanoparticles larger than ~50 nm for silver and ~80 nm for gold. Another important aspect of the plasmon resonance is its linewidth as narrow resonances lead to higher enhancements and higher sensitivity to the local changes in dielectric constant of the environment, which can be also used for molecular sensing. When plasmon oscillations are generated in the metal nanoparticle, they are subject to a number of processes which dampen the collective oscillations and result in the plasmons decay. The plasmon resonance linewidth is inversely proportional to the lifetime of the plasmon and it provides a measure of this decay process. Damping can occur either through radiative or nonradiative processes. Radiative damping occurs when the oscillating dipole moment of the plasmon gives rise to photon emission. Nonradiative damping occurs when the plasmon excites intraband or interband electronic transitions within metal particle or through electron scattering processes at the surface of the nanostructure. Plasmon position and near-field electric fields created near metal particles can be additionally very strongly affected by nanostructure arrangement.
\n\t\t\t
Metal nanostructures can enhance or quench fluorescence by modifying radiative and non-radiative emission rates of the fluorophore as a result of interactions of their plasmon resonances with absorption/emission bands of fluorophore. This effect is observed by changes in fluorophore quantum yield, and its lifetime. Nanorods have particularly favourable optical properties for fluorescence enhancement due to their high tunability of position of plasmon resonances, polarization sensitivity and their long dephasing times leading to strong, narrow spectral resonances.
\n\t\t\t
\n\t\t\t\t
2.1. Tunability of resonance
\n\t\t\t\t
In 1912, Gans (Gans 1915) predicted that for very small ellipsoids, where the dipole approximation is satisfied, the surface plasmon mode splits into two distinct modes. This is a consequence of the surface curvature, which classically determines the restoring force or depolarization field that acts on the population of confined conduction electrons. He quantified the response as a function of the ellipsoid aspect ratio. For such oblate and prolate spheroid geometry analytical solutions have been found. In this case methods such as discrete dipole approximation (DDA) and numerical calculations such as T-matrix method are commonly used. Schatz and co-workers have recently reviewed this computational approach (Kelly at all 2003), which can be successfully applied to nanorods, nanowires and nanocylinder structures as confirmed by very good agreement of the calculated and experimentally measured resonance spectra for such particles.
\n\t\t\t\t
According to Gans’s formula, the polarizability of an ellipsoidal metal particle along the x (y,z) axis is given by:
Here a, b and c refer to the length of the ellipse along the x, y and z axes (a> b = c), \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tϓ\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tm\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\tis the dielectric function of metal, \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tϓ\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t0\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\tthe dielectric constant of the medium at optical frequencies and L\n\t\t\t\t\t\n\t\t\t\t\t\tx,y,z\n\t\t\t\t\t is the depolarization factor for the respective axis, which is given by:
Here, e is the rod ellipticity given by e\n\t\t\t\t\t2 = 1−(b/a)2 which can be also rearranged and expressed as a function of the aspect ratio\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\tR\n\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\tb\n\t\t\t\t\t\t\t/\n\t\t\t\t\t\t\ta\n\t\t\t\t\t\t\n\t\t\t\t\t. For a sphere e = 0 and L = 1/3 and Equation /6/ becomes:
where V is the nanoparticle volume. As it is clearly seen by comparing equations /6/ and /9/, for the same effective volume of the nanoparticle, the spectral tunability of the plasmon resonance for elliptical particle is much larger, and it is more sensitive to the aspect ratio than to the absolute particle size.
\n\t\t\t\t
Finally the extinction of light is related directly to the polarizability by relationship in Equation /3/ and for an assembly of randomly oriented N ellipsoids the extinction coefficient γ can be calculated according to Gans formula.
where V is particle volume and \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tϓ\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tm\n\t\t\t\t\t\t\t\t\t1\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t and \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tϓ\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tm\n\t\t\t\t\t\t\t\t\t2\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t are real and imaginary components of dielectric function of metal nanoparticle and \n\t\t\t\t\t\t\n\t\t\t\t\t\t\tϙ\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\tis the incident light wavelength.
\n\t\t\t\t
For ellipsoidal nanoparticles the resonances for light polarized in the longitudinal (LE) direction (along the long axis of the particle) and in transverse (TE) direction are different, hence two peaks are observed in the absorption spectra for randomly oriented assembly of nanorods corresponding to LE and TE modes as calculated according to Equation /10/ and shown in Figure 1.
\n\t\t\t\t
These relationships show that size and shape of the nanoparticle can control the plasmonic resonances, and thus by varying nanoparticle geometry it is possible to synthesize materials with tuneable extinction spectra. Gans’s equations also predict that the LSPR position varies linearly with aspect ratio for small ellipsoids embedded in the same medium and that for the same aspect ratio nanoparticles their plasmon peak position will red shift, when the dielectric function of the surrounding medium increases. These attractive properties motivated intense experimental efforts to develop controlled synthesis of metal nanorods summarised recently in several reviews (Huang et all 2009, Perez-Juste et all 2005).
\n\t\t\t\t
Figure 1.
Calculated absorption spectra of elongated ellipsoids with varying aspect ratios R using Equation /10/. The medium dielectric constant was fixed at a value of 4. The short wavelength peak corresponds to the transverse mode resonance, and the long wavelength one to longitudinal resonance which is very sensitive to the aspect ratio R. The inset shows a plot of the peak of the longitudinal plasmon band determined from the calculated spectra as a function of the aspect ratio. The solid line is a linear fit to the data points. (Reprinted from Reference Link at all 1999).
\n\t\t\t\t
\n\t\t\t\t\tFigure 2 shows that by varying the aspect ratio of gold nanorods it is possible to adjust the plasmon resonance position in a broad spectral range (530 – 1200 nm), but the optimum scattering efficiency is reached for the nanorods with an aspect ratio of 3.4 (Figure 2 b) and for the rod diameter of 60 nm (Figure 2 c). The double peak character of extinction spectra for nanorods allows to predict that uniformly oriented ellipsoids and cylinders should exhibit strong, polarization-dependent optical spectra with tunability of enhancement for two different fluorophores.
\n\t\t\t\t
\n\t\t\t\t\tKhlebtsov at all (Klebtsov 2007) used T-matrix formalism to study the multipole resonances in long gold and silver nanorods whose shape was modeled by prolate spheroids and cylinders with flat or semispherical ends. The particle diameters and aspect ratio were varied from 20 to 80 nm and from 2 to 20, respectively. They found that the parity of a given spectral resonance number n coincides with the parity of their multipole contributions l, where l is equal to or greater than n, and the total resonance magnitude is determined by the lowest multipole contribution. According to their calculations, multipole resonance wavelengths also obey a universal linear scaling behaviour when plotted versus the particle aspect ratio divided by the resonance number. This remarkable property of multipole resonances can be understood in terms of a simple concept based on plasmon standing waves excited in metal nanowires by an electric field of incident light (Schider et all 2003). The refractive index sensitivity of the multipole resonance wavelength to a dielectric environment also exhibits linear scaling properties. Specifically, the relative shift of the resonance wavelength is proportional to the relative refractive index increment with a universal angular slope coefficient.
\n\t\t\t\t
Figure 2.
a) Dependence of the plasmon peak wavelength and (b) scattering quantum yield of the longitudinal surface plasmon resonance on the aspect ratio. Unlike resonance wavelength, which shows a linear relationship with the nanorod aspect ratio R, the scattering quantum yield increases with increasing R, reaching a maximum at 3.4, and begins to decrease from then on.(c) Relative contributions of light scattering and absorption to the total extinction efficiency for various rod diameters at a fixed aspect ratio of 3.4 for rods illuminated by light polarized in longitudinal direction. Reproduced from Ref. (Lee et all 2006).
\n\t\t\t
\n\t\t\t
\n\t\t\t\t
2.2. Surface plasmon resonance linewidth and dephasing time
\n\t\t\t\t
Sönnichsen (Sonnichen et all 2002) and co-workers studied the dephasing of plasmons in single gold nanoparticles and their results are presented in Figure 3. They have found a pronounced reduction of the plasmon dephasing rate in nanorods compared to small nanospheres due to suppression of interband damping. In comparison to the same volume nanospheres, the examined rods showed also much weaker radiation damping. These findings explained higher light-scattering efficiencies and larger local-field enhancement factors for nanorods as compared with nanospheres; features that are especially beneficial for MEF applications.
\n\t\t\t\t
Other authors (Novo et all 2006, Hu et all 2008) attempted to determine the optimum nanorod geometry that gives rise to the longest plasmon lifetimes by examining plasmon linewidths for nanorods of various width, but with identical aspect ratios. As expected, with the increase of the nanorod width the linewidth broadening was observed due to the increased radiation damping for larger volumes. However, such broadening was also observed for small nanorod width, due to increased surface scattering contribution. It was found that the optimised nanorod diameter is in the range of 10-20 nm, leading to the narrowest plasmon spectra and the strongest near-field enhancements.
\n\t\t\t\t
Figure 3.
a) Measured linewidth (G) of plasmon resonances in single nanorods (dots) and nanospheres (open triangles) as a function of resonance energy Eres. The right scale gives the dephasing times calculated from G. Black triangles: averages for spherical particles of the same nominal size (150, 100, 80, 60, 40, and 20 nm from left to right). Lines: theoretical simulations. Some selected aspect ratios b/a are indicated in the figure. (b) The same data plotted as quality factor Q = Eres/G which is expressed as a ratio of extinction intensity at resonance to FWHM of plasmon peak. Reprinted from Ref (Sonnichsen at all 2002).
\n\t\t\t
\n\t\t\t
\n\t\t\t\t
2.3. Near field effect and coupling
\n\t\t\t\t
Near field effect around nanoparticle depends on the particle type, size and shape. Silver is known to give more pronounced near field effects than gold due to less pronounced resonance damping by interband electron transitions, as it is known to have a higher energy separation between LSPR and interband absorption. High curvature nanoparticles give a strong field enhancement due to lightning rod-effect (Gersten 1985\n\t\t\t\t\t). Schatz and co-workers used DDA calculations (Hao et all 2004a, 2004b) to compare the electric field enhancement for nanoparticles of various shapes, showing that rods and spheroids with similar sizes and optimum aspect ratios of 3.4 produce similar enhancement in the range of >103, which are one order of magnitude larger than for spheres. The nanorod shows elevated electric fields (EF) at the ends of their long axis while the field is weakest at the centre of the rod and they were slightly higher than EF for spheroid of the same length and diameter as nanorod.
\n\t\t\t\t
When plasmonic nanostructures are brought in close proximity to one another, their near-fields interact resulting in strong coupling. This effect was observed and most accurately quantified for electron lithographically produced gold and silver nanodisk pairs where clear trends were observed and confirmed by theoretical calculations. Coupled nanorods provide an attractive geometry, due to large oscillator strength and tunability of longitudinal plasmon mode. They were studied in various configurations: side-by-side, end-to-end and at various angles to each other (Funston et all 2009, Slaughter et all 2010). For two identical nanorods, the side-by-side geometry showed a blue-shift of the londitudinal mode and a red-shift of the transverse mode. The end-to-end geometry shows a red-shift of the longitudinal mode with a minor change in the transverse mode compared to the single nanorod spectra (see Figure 4 left). For different size nanorods arranged in the end-to-end geometry an additional antibonding dimer mode was observed on the blue side of the bonding mode peak (Figure 4 right).
\n\t\t\t\t
Figure 4.
Left: (a) Polarization averaged extinction of a pair of gold hemispherically capped rods with aspect ratio 2.0 interacting end-to-end as a function of interparticle separations 56.5, 42.4, 28.2, 14.1, 7.1, 5.3, and 3.5 nm with smaller separations more red shifted. Inset: Fractional shift of the longitudinal plasmon band as a function of interparticle distance scaled for rod length. The point at Gap/Rod-Length equal 3 represents the plasmon resonance of a fully decoupled rod with the same dimensions as those in the dimer. Reprinted from Ref (Funston at all 2009). Right: Integrated darkfield scattering spectra with varying angular offset for the pair of same size gold nanorods (b) and for a pair with increasing the length of the right rod starting from 80 x 30 nm in increments of 10 nm β=right rod length/left rod length (c). All spectra are normalized to the linear homo-dimer case. Reprinted from Reference (Slaughter et all 2010).
\n\t\t\t\t
\n\t\t\t\t\tSu et al (Su et all 2003) demonstrated that the resonant wavelength peak of two interacting cylindrical particles is also red-shifted from that of a single particle because of near-field coupling. They found that the shift decays approximately exponentially with increasing particle spacing and becomes negligible when the gap between the two particles exceeds about 2.5 times the particle axis length. The change in plasmon position Δλ in respect to plasmon position without coupling λ\n\t\t\t\t\t\n\t\t\t\t\t\t0\n\t\t\t\t\t follows a phenomenological equation:
where κ is proportionality factor, s is the interparticle spacing, D is the diameter for cylindrical particles or length of long axis in the nanorods and τ is the decay length with the value around 0.2. This equation emphasises that Δλ/λ\n\t\t\t\t\t\n\t\t\t\t\t\t0\n\t\t\t\t\t is the same for all particles with the same s/D values. This behaviour, termed as “Universal Scaling Law”, is a result of interplay of nanoparticle polarizability, which varies as the cubic power of the nanoparticle size and the plasmonic near field coupling, which varies as the inverse cubic power of the distance. It is useful to predict the coupling response from a wide variety of nanostructures. The universal scaling behaviour makes it possible to predict plasmon position shifts upon coupling between homogenous metal particles but is not able to predict the exact plasmon position or near-field strength.
\n\t\t\t
\n\t\t
\n\t\t
\n\t\t\t
3. Nanorod fabrication
\n\t\t\t
\n\t\t\t\t
3.1. Synthesis methods
\n\t\t\t\t
Gold nanorods are most often prepared by a seed-mediated approach developed by Murphy’s group in 2001 (Jana et all 2001a, 2001b, Murphy at all 2005) in which spherical ‘seed’ nanoparticles (4 nm diameter) are added to the growth solution containing gold salt, silver nitrate, ascorbic acid, and cetyltrimethylammonium bromide (CTAB) leading to the formation of gold nanoparticles having a rodlike morphology (Figure 5). Gold salt in the growth solution is slowly reduced in the presence of ‘seed’ particles while the growth-directing agent, CTAB, facilitates rod formation by preferentially binding to the side facets of the nanoparticle. The amount of silver nitrate additive is varied to alter rod length which is controlled by under-potential deposition of silver on the gold nanorod surface. Once synthesized, gold nanorod suspension is purified via centrifugation to remove excess CTAB, unreacted metal ions, and ascorbic acid. This step is important as failure to remove unreacted species will result in morphological changes over time and also to prevent cytotoxicity due to residual CTAB. The same method can be applied to produce silver nanorods. In this case the seed-mediated method uses silver ‘seed’ nanoparticles prepared by the reduction of silver by strong reducing agent such as sodium borohydride. Gold nanorods are very stable for all aspect ratios but low aspect ratio silver nanorods are usually unstable on the timescale of minutes in air and in light, tentatively attributed to a photo-oxidation process that releases Ag+. However, silver nanowires that are 30 nm in diameter, but up to a dozen microns long, are very stable in these conditions.
\n\t\t\t\t
In 2003, El-Sayed (Nikoobakt and El Sayed 2003) proposed two modifications to this method: replacing sodium citrate with a stronger CTAB stabilizer in the seed formation process and utilizing silver ions to control the aspect ratio of gold nanorods. This protocol includes two steps:
\n\t\t\t\t
synthesis of seed solution by the reduction of an auric acid in the presence of CTAB with ice-cold sodium borohydride and
the addition of the seed solution to Au+ stock solution in the presence of CTAB which is obtained by the reduction of HAuCl4 with ascorbic acid.
\n\t\t\t\t
Silver nitrate is introduced to the gold solution before seed addition to facilitate the rod formation and to tune the aspect ratio. This method produces high yield gold nanorods (99%) with aspect ratio 1.5 to 4.5 and it avoids repetitive centrifugations. In order to grow nanorods with higher aspect ratios a co-surfactant bezyldimethylhexadecylammonium chloride (BDAC) is introduced to the original solution. By adding this surfactant it is possible to produce nanorods with aspect ratios up to 10 by changing silver concentration (Nikoobakt and El- Sayed 2003). With the Pluronic F-127 co-surfactant system nanorods with aspect ratios up to 20 were produced with good monodispersity (Iqbal et all 2007). In both methods, the yield, monodispersity, size and fine details of gold nanorods shape are affected by multiple parameters such as seed concentration, size, structure, ascorbic acid and surfactant concentration, the use of other surfactants, additives, solvents and even the aging time.
\n\t\t\t\t
Figure 5.
The colour of gold rods and the respective micrographs. The colour changes take place for very small changes in mean aspect ratio. From Ref (Perez-Juste et all 2005).
\n\t\t\t\t
Recently, polyol synthesis method developed by Xia and co-workers (Xia et all 2009) has been commonly used for the preparation of single-crystal Ag nanoparticles with uniform size and shape using polyvinylpyrrolidone (PVP) as a protecting agent (Willey at all 2007a,\n\t\t\t\t\t2007b, 2005) (Figure 6). The same group synthesized Ag nanowires with higher aspects ratios by injection of ethylene glycol (EG) solutions of AgNO3 and PVP, added dropwise, at a constant solution temperature of 160 °C (Chen et all 2007, Chen et all 2002). In the polyol process, the introduction of an exotic reagent is considered to be the key factor that leads to the formation of wire-like structures. In their experiments, Ag nanowires are generated using a self-seeding process and EG acts as both solvent and reducing agent, with addition of a trace amount of salt, such as NaCl, Fe(NO)3, CuCl2 and CuCl to assist one-dimensional growth. For the formation of silver nanowires, low precursor concentrations and slow addition rates are necessary. By controlling the injection rate, multiple-twined particle formed at the initial stage of the reduction process serve as seeds for the subsequent growth of silver nanowires. It was found that the morphologies and aspect ratios of Ag nanowires strongly depend on the molar ratio between the repeating unit of PVP and AgNO3. When the molar ratio between PVP and AgNO3 was more than 15, the final product was essentially composed of silver nanoparticles. When the molar ratio decreased to 6, the resulting product contained mainly nanorods. Using this method, the authors demonstrated high throughput synthesis of Ag nanorice with well controllable aspect ratios (Iqbal et all 2007) and pentagonal silver nanorods Liang et all 2009).
\n\t\t\t\t
Other methods for gold or silver nanorod synthesis include the electrochemical method (Pietrobon et all 2009, Goldys et all 2007) in which nanorods are grown in an electrolytic solution between two electrodes under controlled currents or template based methods (e.g. synthesis of particles confined within cylindrical membrane pores or synthesized around cylindrical particles). Template-related approaches have been performed with porous anodic aluminum oxide membranes, carbon nanotubes or block copolymers (Nicewarner-Pena et all 2001). Other advanced fabrication methods such as electron-beam lithography (EBL) were also used to achieve high level of control over shape, position and arrangement of gold or silver nanorod structures (Yu at all 1997, Smythe et all 2007, Billot et all 2006). Assemblies of nanorods with long axis of the nanorods protruding from substrate were also obtained by oblique angle vacuum evaporation (Chaney et all 2005, Liu et all 2006). Examples of synthesised silver and gold nanorods are shown in Figure 5 and Figure 6.
\n\t\t\t\t
Figure 6.
Left: SEM images of longer pentagonal faceted silver nanorods with the aspect ratios of (a) 8.7 and (b) 10.2; as well as (c) and (d) longer 2μm pentagonal faceted silver rods regrown from ca. 0.5 μm rods. The scale bar is 100 nm for (a) and (b) and 2 μm for (c) and (d). Right: Optical properties of synthesized pentagonal faceted silver nanorods. (e) Photographs of aqueous dispersions and (f) UV-vis spectra of pentagonal faceted silver nanorods with thickness of 49.5 ± 2.5 nm and length of (1) 62 ± 3 nm; (2) 75 3± nm; (3) 108 ± 5 nm; (4)142 7± nm; (5) 158 ± 8 nm. From Ref (Pietrobon et all 2009).
\n\t\t\t
\n\t\t\t
\n\t\t\t\t
3.2. Surface modification
\n\t\t\t\t
Introduction of surface modification makes it possible to increase stability, facilitate surface chemistry, tune plasmonic properties and broaden practical applications of metal nanorods. For instance, by introducing silver coating on gold nanorods surface it is possible to increase metal enhanced fluorescence due to reduced plasmon damping and to provide a broader spectral range by controlling plasmon peak position. Silica coating can be used to control spacing from the metal surface, it prevents quenching due to FRET and induces red-shift of plasmon resonance position. Silver over-coating is usually carried out by the reduction of silver nitrate with ascorbic acid at base condition in the presence of gold nanorods and a stabilizing agent such as citrate, CTAB and PVP and the silver thickness is controlled by tuning the concentration of silver precursor. Silicon coatings are produced on silver or gold nanorods by dispersing nanorods in solution with 3-mercaptopropyl trimethoxysilane (MPTMS) or 3 mercaptopropyl triethoxysilane (MPTES) and adding aqueous sodium silicate (Obare et all 2001).
\n\t\t\t
\n\t\t\t
\n\t\t\t\t
3.3. Bioconjugation
\n\t\t\t\t
Biological detection methods based on fluorescence require controlled, specific binding protocols in which signal from fluorescent dye attached to signalling molecule is measured and quantified. To take advantage of the effect of MEF the biological molecule with fluorophore is either attached directly to the nanostructured metal surface or through another molecule using highly specific binding protocols. There is also a fast, growing interest in using gold nanorods in imaging applications of cells in both in vivo and in vitro due to their exceptional light scattering properties and relatively intense two-photon luminescence (Mohamed et all 2000).
\n\t\t\t\t
One of the reasons that MEF has not been intensely explored for colloidal silver or gold nanorods is the fact that during their synthesis complex organic molecules such as CTAB or PVP remain on their surface and these molecules are not suitable for biological binding protocols without exchange or complex modifications. Conjugation of biomolecules to gold or silver nanorods can be divided into four different methodologies: direct ligand exchange, the use of biofunctional linker, surface coating and electrostatic absorption. Similarly to other types of gold or silver nanoparticles, thiol exchange is the most common way to replace the capping molecules, since the metal–sulfur bond is known to be stronger than bonds with alternative functional groups (i.e., amines, carboxylic acids, alcohols, and phosphors). Molecules, such as PEG (Grand et all 2003), DNA (Niidome et all 2006), or lipids (Yelin et all 2003) are firstly functionalized with an alkythiolated linker and then bound to gold nanorods through Au–S bonds in a prolonged (few hours) reaction. For complete exchange, sonication and heating might be required to remove CTAB while preventing the nanoparticles from aggregation. For some biomolecules, such as antibodies and proteins, thiolation is complicated by the fact that molecules are too large to reach the gold surface due to dense packing of the CTAB double layers. In this case, small biofunctional molecules such as 3-mercaptopropionic acid (MPA), 11-mercaptoundecanoic acids (MUDA) (Brown et all 2001, Dai et all 2008) and cysteamine (Li et all 2006) are suitable replacements. As most thiol molecules are not water-soluble, the use of organic solvents (such as ethanol and chloroform) and phase extraction are needed. This presents challenges for the modification of gold or silver nanorods as they easily aggregate in organic solvents. The easiest way to prevent this aggregation is to adsorb charged proteins, such as antibodies, by electrostatic forces. At pH higher than the isoelectric point (pI), the proteins are negatively charged, and therefore they can be directly adsorbed to metal nanorods via electrostatic attraction. However, the protein/rod ratio needs be optimized to avoid the aggregation of the nanoparticles due to charge neutralization while ensuring high loading of the protein onto the nanorods.
\n\t\t\t\t
Despite the fact that gold and silver nanorods produced by seed mediated methods are characterized by the most controllable and tunable LSPRs, more work is required to demonstrate their full potential for metal enhanced fluorescence.
\n\t\t\t
\n\t\t
\n\t\t
\n\t\t\t
4. Experimental examples of MEF on metal nanorods
\n\t\t\t
Since the synthesis of gold nanorods with decent yield and monodispersity has been developed comparatively recently, only a few papers were published related to their application in MEF. Up to date, the majority of biological applications of metal nanorods is based on direct observation of changes in position of plasmon resonances upon binding with molecules, which can involve agglomeration, binding in end-to-end pairs or release of molecules which fluorescence is otherwise quenched, or in imaging applications, utilizing their strong anisotropic light scattering properties. Imaging applications often use dark field microscopy to improve contrast and take advantage of excellent scattering properties of metal nanoparticles. As the scattering cross-section of gold nanoparticles is very high, they offer better visibility than fluorescent dye molecules and are therefore very well suited for biomedical imaging using reflectance confocal microscopy and for in vivo imaging using optical coherence microscopy. In the case of white light illumination using simple dark field microscopy, which is suitable for cellular imaging, the particles scatter strongly around the spectral position of surface plasmon resonance making them individually recognizable by their colour that is dependent on the particle size and shape. Applications involving modifications of fluorophore emissions in close proximity to metal nanorods are just only starting to appear in literature due to limitations in commercial availability of metal nanorods with functionalized surfaces for biological conjugations.
\n\t\t\t
\n\t\t\t\t
4.1. Polarisation dependence
\n\t\t\t\t
The geometry of nanowires and nanorods is clearly compatible with strong polarisation effects, and it is therefore surprising that this property in MEF has only just been demonstrated by Ming et al. (Ming et all 2009). This group described strong excitation polarization dependence of the plasmon-enhanced fluorescence on single gold nanorods. The nanorods were encapsulated in a thin ~ 20 nm silica shell, while the nanorods were about 90 nm long and 42 nm wide, with an aspect ratio of ~ 2.1. The authors showed that fluorescence from the organic fluorophores (Oxazine 725 perchlorate) embedded in a mesostructured silica shell around individual gold nanorods is enhanced by the longitudinal plasmon resonance of the nanorods. This enhancement is the greatest (by a factor of 56) when the excitation energy is matched to the longitudinal plasmon energy. The polarization dependence of the plasmon-enhanced fluorescence is due to the dependence of the averaged electric field intensity enhancement within the silica shell on the polarisation of the excitation beam. Under off-resonance excitation, the electric field intensity contour around a nanorod rotates away from the length axis as the excitation polarization is varied. As expected, the fluorescence enhancement factor increases as the longitudinal plasmon wavelength is tuned close to the excitation wavelength by varying nanorod length. Furthermore, the emission spectrum of the fluorophore is modified by the longitudinal plasmon resonance of the gold nanorods, a phenomenon attributed to the enhanced probability of fluorophore transition from the excited state to a specific vibrational ground state with the transition energy close to the plasmon resonance energy. The authors did not consider the possibility of strong coupling between fluorophores and plasmons, which is also able to produce similar spectral deformations. A linear correlation between the modified emission peak wavelength and the longitudinal plasmon wavelength was observed.
\n\t\t\t
\n\t\t\t
\n\t\t\t\t
4.2. Complex nanowire geometries.
\n\t\t\t\t
It is not necessary for nanorods or nanowires to have uniform shapes in order to show attractive optical properties. Any elongated shape is capable of similar pattern of fluorescence enhancement as long as there is adequate electrical contact between nanowire subsections. This has been illustrated in the publication of He and Zhao (He and Zhao 2009). In this work novel silver chain-like triangular nanoplate assemblies (CTNAs) were synthesized via a solvothermal approach. The shape of CTNAs was determined by synthesis parameters, including the concentration of PVP, reaction time and temperature. Each CTNA is a combination of one dimensional nanobelt and two-dimensional nanoplates. The edges of the nanoplates in the assembly are parallel to each other in order to lower surface energy. Interestingly, this novel nanostructure is able to show high enhancement factors in metal-enhanced fluorescence. Typically, 88- and 13-fold enhancement in the emission intensity of dye Rhodamine B were, respectively, achieved on the surface of silver colloids and silver coated-glass. The silver nanostructures were coated with PVP to ensure nanoscale separation between the metal and fluorophores. Our own studies (Goldys et all 2007) showed that electrochemically deposited silver structures with nanowires of 50−100 nm in diameter demonstrated high up to 57 times fluorescence amplification of conjugated to HSA protein, FITC fluorophore and strongly reduced fluorescence lifetimes. Both quantities depended on the structure thickness. With increasing thickness of the silver nanostructure the fluorescence amplification proportionally increased in correlation with strongly reduced fluorophore lifetimes. This thickness dependence was caused by fluorophore interaction with plasmon excitations in coupled nanowires extending over micrometer size regions. Thus the amplification was attributed to a combination of extended structure area and strong plasmonic coupling between nanowires which also helped to radiatively scatter via lighting rod effect the fluorescence emission. Another system (Drozdowicz-Tomsia et all 2010) investigated in our group contained complex elongated silver fractal nanostructures grown on silicon. Fluorescence of Deep Purple fluorophore in this structure showed uniform enhancements (average factor of 40) dominated by emission enhancement, and this was achieved by good correlation of fluorophore emission with plasmon position for such system.
\n\t\t\t\t
Figure 7.
Fluorescence enhancement study of BSA-Deep Purple (DP) fluorophore conjugate on silver fractal deposited by electroless deposition on silicon. Left: fluorescence spectra of DP for various silver growth times, middle: schematic of experimental sample, right: SEM images of silver fractals at various growth times. Reproduced from Ref (Drozdowicz-Tomsia et all 2010).
\n\t\t\t
\n\t\t\t
\n\t\t\t\t
4.3. Nanorod-modified surfaces
\n\t\t\t\t
The advantage of columnar geometry with nanorods coating the surface was realised as early as 2005 with the work by Aslan et al (Aslan et all 2005) who attempted to create a fast an inexpensive method of metal surface modification that would show at least some advantages of nanolithography. They developed two new techniques for the deposition of silver nanorods onto conventional glass substrates. In the first method, silver nanorods were deposited onto 3-(aminopropyl)triethoxysilane (APTMS)-coated glass substrates simply by immersing the substrates in the silver nanorod solution. In the second method, spherical silver seeds that were chemically attached to the surface were subsequently converted and grown into silver nanorods in the presence of a cationic surfactant and silver ions. The size of the silver nanorods, ranging from tens of nanometers to a few micrometers, was controlled by sequential immersion of silver seed-coated glass substrates into the growth solution and by the duration of immersion. Atomic force microscopy and optical density measurements showed that the silver nanorods deposited onto the surface of the glass substrates were irregularly deposited. These new surfaces have been applied to MEF where they performed much better compared to traditional silver islands or colloid films, with amplification factors between 10 and 50.
\n\t\t\t\t
The same idea has been explored in a more recent publication from Halas group (Bardhan et all 2009) who enhanced fluroescence of an infrared dye IR800 with gold nanorods and nanoshells. Fluorescent molecules emitting at wavelengths in the physiologically relevant “water window” (700-900 nm) are of particular interest due to large penetration depth of near infrared (NIR) light in most biological media and offer the potential for imaging at significant depths in living tissues. However, achieving bright fluorescent emission with photostable and biocompatible near-IR fluorophores has proven to be extremely difficult, prior to this work. Several interdependent processes are responsible for IR800 fluorescence enhancement, these include absorption enhancement, scattering enhancement, and radiative decay rate enhancement. In this report, the scattering efficiency of a nanoparticle appeared to provide the most important mechanism for improving the quantum yield of a fluorophore. Nanorods preferentially enhance the emission of the fluorophore by absorption enhancement, owing to the high-intensity near field resulting from the longitudinal plasmon resonance. However, due to the significant difference in scattering cross sections of nanoshells and nanorods, it is apparent that nanoshells increase the coupling efficiency of the fluorescence emission to the far field more efficiently than nanorods. This explains the 40-fold fluorescence enhancement observed for IR800 bound to nanoshells compared to the 9-fold enhancement for IR800 bound to nanorods. The radiative decay rate enhancement of the fluorophore is dependent on both the scattering efficiency as well as the absorption efficiency of nanoparticles. This explains why nanorods enhance the quantum yield of IR800 by 74% as well as considerably decrease the fluorophore’s lifetime.
\n\t\t\t
\n\t\t\t
\n\t\t\t\t
4.4. Applications of nanorods in SERS
\n\t\t\t\t
Surface-deposited nanorods have also been tested with respect to their surface-enhanced Raman scattering (SERS) properties (Guo et all 2009). These authors established the correlation of the shape andposition of surface plasmon resonance with SERS properties of gold nanorods in dilute colloids. A series of gold nanorods with various aspect ratios was prepared via an improved seed-mediated technique. As discussed previously, increasing the aspect ratio finely tunes the position of the longitudinal plasmon mode of the nanorods in a wide spectral range. The subtle influence of surface plasmon resonance on SERS was then demonstrated by gradually tuning the plasmon wavelength across a fixed excitation line. The authors demonstrated that close overlap of surface plasmon and the excitation line maximizes the SERS enhancement. Tao et al. (Tao et all 2003) have earlier attempted to create a similar SERS surface by using a Langmuir-Blodgett method for silver nanorod deposition. They assembled large area (over 20 cm2) monolayers of aligned silver nanowires that were 50 nm in diameter and 2-3 um in length. Their nanowires had pentagonal cross-sections and pyramidal tips. They were close-packed and aligned parallel to each other. The resulting monolayers deposited on nanowires were tested for SERS with electromagnetic field enhancement factors of 2x105 for thiol and 2,4-dinitrotoluene, and 2 x 109 for Rhodamine 6G. Another example are the studies by Oyelere et al. (Oyelere et all 2007) who used nanorods to observe enhanced Raman bands from the nucleus of both cancer and non-cancer cells. In this study, the nucleus localization signal from binding peptide was conjugated to gold nanorods via a thioazide linker, and the incubation of the conjugates with cells led to preferential accumulation of the nanorods inside the cellular nucleus. Using a micro-Raman spectrometer with excitation at 785 nm, DNA backbone vibration and guanine Raman bands from a single cell were clearly observed. Normal and cancer cells showed fingerprint differences which could be useful for molecular cancer diagnosis. In the recent studies by Huang et al. (Hunag et all 2007) the assembly of gold nanorods by cancer cells due to the binding of the anti-EGFR-conjugated rods to the over-expressed EGFR (epidermal growth factor receptor) on the cancer cell surface has given highly enhanced, sharp, and polarized SERS, while no SERS was observed from the majority of the normal cells.
\n\t\t\t
\n\t\t\t
\n\t\t\t\t
4.5. Applications of nanorods for resonant energy transfer
\n\t\t\t\t
While metal nanostrutcures are known to extend the range of resoanant energy transfer, there is very limited literature on the application of nanorods. Zhou et al. (Zhou et all 2010) reported efficient plasmon-mediated excitation energy transfer between the CdSe/ZnS semiconductor quantum dots (QDs) across silver nanorods array consisting of nanorods with lengths up to 560 nm. The sub-wavelength imaging and spectral response of the silver nanowire arrays with near-field point-source excitations have been also theoretically simulated. This nanowire array showed efficient exciton-plasmon conversion at the input side of the array through strong near-field coupling, directional guiding of waves and resonant transmission via half-wave plasmon modes of the nanowire array, making possible sub-wavelength imaging at the output side of the array. These advantages allow a long-range radiative excitation energy transfer with a high efficiency and good directionality.
\n\t\t\t
\n\t\t\t
\n\t\t\t\t
4.6. Nanowires on metal films
\n\t\t\t\t
A number of recent works have been focusing on using metal nanowires with a columnar morphology protruding from metal films. These films have been produced by using oblique angle deposition (OAD) technique. (Laktakhia and Messier 2005, Messaier and Latakhia 1999). The growth mechanism is based on self-organized nucleation of nanoparticles and subsequent highly directional growth due to atomic shadowing of the nanoparticle flux reaching the substrate at a large, oblique angle with respect to the substrate normal. The OAD substrates have been recently used for surface enhanced Raman effect for virus detection (Shanmukh et all 2006). The application in MEF has been demonstrated only recently (Abdulhalim et all 2009). In this work metal enhanced fluorescence from porous, metallic sculptured thin films was demonstrated for sensing of bacteria in water. Enhancement factors larger than 15 were observed using structures made of silver, aluminium, gold, and copper with respect to their dense film counterparts. The structures used are assemblies of tilted, shaped, parallel nanowires prepared with several variants of the oblique-angle-deposition technique. Comparison between the different films indicates that the enhancement factor is higher when the tilt is either small (30 deg) or large (80 deg); thus, the enhancement is higher when only a single resonance in the nanowires is excited.
\n\t\t\t\t
Several mechanisms can contribute to the MEF from metallic OAD substrate, firstly such structures can act as reflective interfaces, secondly they constitute a porous material with high surface-to-volume ratio, and finally, metal nanorods enhance the local electromagnetic field and act as nanoantennas. The dipole-dipole coupling between neighbouring nanorods is also expected to play a role. The dipole-dipole interaction occurs when light incident on a nanorod induces across it an electric field that depends both on the shape of the nanorod and on the contributions from the neighboring nanorods. Near-field effects are important for internanorod distance much less than the wavelength while far-field effects can play a role for nanorods of larger size.
\n\t\t\t
\n\t\t\t
\n\t\t\t\t
4.7. Single nanorods and MEF
\n\t\t\t\t
Recently, Fu, Zhang and Lakowicz (Fu et all 2010) used a single nanorod to enhance emission of fluorophore molecules coupled to one of its ends. Through covalent linkages of fluorophores at the preferred longitudinal axis of the nanorods, they were able to increase the overall optical signal for improved sensitivity. Their nanorods had an average aspect ratio of 6 (ca. 80 nm in length and 13 nm in diameter) and the longitudinal plasmon band at 980 nm. Functionalization of the nanorods was performed with biotin, however only on rod ends, owing to the difficulty of replacing CTAB molecules on the sides of the nanorods. Binding of thiol molecules to the end of the gold nanorod tips was mediated by streptavidin. The functionalized nanorods were incubated with a low concentration of solution of oligonucleotides labelled with biotin and Cy5 (Biotin- 3′-AGG-TGT-ATG-ACC-GGT-AGA-AG-5′-Cy5, ca. 8 nm in length) to obtain hybrid nanocomplexes. This linker molecule has been optimisted for best fluorescence enhancement. Much higher fluorophore emission rate has been clearly observed, approximately 40-fold greater than that observed in the absence of gold nanostructure. Additionally, polarization dependence of the excitation was demonstrated on a single Au nanocomplex excited at different directions. The emission intensity decreased abruptly as the excitation angle rotated 90 as for this orientation transverse plasmon excitations were excited in gold nanorods. These occur at much shorter wavelengths and out of resonance with fluorophore excitation/emission. The magnitude of the enhancement also depends on the location of the fluorophore around the particle and the orientation of its dipole moment relative to the metallic surface.
\n\t\t\t
\n\t\t
\n\t\t
\n\t\t\t
5. Theoretical simulations
\n\t\t\t
Theoretical simulations of spontaneous emission of fluorophores coupled to nanoantennas were carried out by Giannini et al. (Giannini et all 2009). The modification of the corresponding radiative and nonradiative decay rates and resulting quantum efficiencies was calculated by means of the rigorous formulation of the Green’s theorem surface integral equations. Resonant enhancement of the radiative and nonradiative decay rates of a fluorescent molecule was shown when coupled to an optical dimer nanoantenna. A numerical example was presented comprising two silver rectangular nanowires with the dimensions of each rectangle 20 x 200 nm, with a gap of 10 nm. Upon varying the dipole position, it was possible to obtain preferential enhancement of radiative decay rates over the nonradiative counterpart, resulting in an increase of the internal quantum efficiency. For emitters positioned in the gap, quantum efficiency enhancements from the initial value of 1% to 75% was possible, however emitters that are originally more efficient can not be enhanced as much.
\n\t\t\t
Kappeller et al ( Keppeler et all 2007) studied locally enhanced optical fields created near tunable laser-irradiated metal nanostructures acting as local probes. Using three dimensional simulations with a commercial COMSOL Multiphysics software package based on the finite element method (FEM) they have shown electromagnetic fields near various optical antennas and optimized their geometry in order to obtain a strong enhancement in a selected frequency range and the results are shown in Figure 8 below. They compared three antenna designs:
\n\t\t\t
a self-similar antenna, which is consisting, of four overlapping gold nanospheres each smaller than the previous by scaling constant with tip of 10 nm radius,
conical antenna, which has the same length and outside front and end curvatures as previous antenna and
nanorod antenna, which has 200 nm length and 20 nm diameter.
\n\t\t\t
According to their calculations the strongest lighting rod effect was observed for self-similar antenna, slightly weaker for conical antenna and the most complex for nanorod antenna where bright and dark modes were observed at different spectral resonance conditions. This suggests that strong lighting rod effect desirable for MEF can be achieved when the length of the nanorods is carefully tuned to emission of fluorophore.
\n\t\t
\n\t\t
\n\t\t\t
6. Conclusions
\n\t\t\t
Silver and gold nanorods have shown excellent optical properties suitable for a wide range of applications including MEF, SERS and resonant energy transfer. In this chapter we outlined the basic theory of optical properties of the nanorods, centred around their polarisability. We highlighted the opportunities they provide to tune plasmonic properties by varying the details of nanorod shape and size. For MEF applications the key parameters of relevance are the match of fluorophore emission and excitation to plasmonic characteristics, because at these wavelengths the near-field enhancement of the electromagnetic fields are maximised. The plasmon linewidth and plasmon dephasing time are also relevant as long dephasing times lead to increased fields. The effect of inter-particle coupling can also be exploited to maximise MEF, as well as the fact that complex geometries for example nanorods on a metal film may provide not only improved plasmon coupling but also better fluorescence out-coupling efficiency and high surface areas. Polarisation properties of aligned nanorods have been reported, but are yet to be exploited more fully. Theoretical work in this area is facilitated by the availability of commercial software packages such as COMSOL Multiphysics, but those attempting to use them should carefully match the simulated results with experiments, which still present a challenge. Further challenges remain in the areas of nanorod synthesis and post-processing discussed in the second part of this chapter. These include the understanding of nanorods chemistry, their functionalisation, controllable assembly and stability. Despite this (or perhaps because of this) we expect this area to continue rapid progress, stimulated by the increasing commercial availability of nanorods including their bioconjugates and a wide range of significant applications in biosensing and bioimaging.
\n\t\t\t
Figure 8.
Left: calculated field strength (|E|) for the resonance conditions and right: corresponding resonance spectra for three different antenna designs: (a) self-similar antenna at resonance λ= 708 nm, (c) conical antenna with resonance at 610 nm, (e) nanorod antenna with field distributions corresponding to the three extrema observed in resonance curve (f). For nanorod antenna electric field distribution (e) at λ~1300 nm (right) corresponds to the λ/2 mode, the mode at λ~650 nm (left) is the 3/2 λ mode and the ‘dark’ mode at λ~780 nm (centre) corresponds to the symmetric λ-mode. (Reproduced from Ref Keppeler et all 2007).
\n\t\t
\n\t\n',keywords:null,chapterPDFUrl:"https://cdn.intechopen.com/pdfs/16572.pdf",chapterXML:"https://mts.intechopen.com/source/xml/16572.xml",downloadPdfUrl:"/chapter/pdf-download/16572",previewPdfUrl:"/chapter/pdf-preview/16572",totalDownloads:5753,totalViews:441,totalCrossrefCites:2,totalDimensionsCites:10,totalAltmetricsMentions:0,impactScore:4,impactScorePercentile:90,impactScoreQuartile:4,hasAltmetrics:0,dateSubmitted:"October 8th 2010",dateReviewed:"April 14th 2011",datePrePublished:null,datePublished:"July 19th 2011",dateFinished:null,readingETA:"0",abstract:null,reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/16572",risUrl:"/chapter/ris/16572",book:{id:"156",slug:"nanowires-fundamental-research"},signatures:"Goldys and Krystyna Drozdowicz-Tomsia",authors:[{id:"24735",title:"Dr.",name:"Ewa",middleName:null,surname:"Goldys",fullName:"Ewa Goldys",slug:"ewa-goldys",email:"ewa.goldys@mq.edu.au",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null},{id:"39076",title:"MSc.",name:"Krystyna",middleName:null,surname:"Drozdowicz-Tomsia",fullName:"Krystyna Drozdowicz-Tomsia",slug:"krystyna-drozdowicz-tomsia",email:"krystyna.drozdowicz-tomsia@mq.edu.au",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null}],sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Optical properties of metal nanorods and their effect on fluorescence enhancement",level:"1"},{id:"sec_2_2",title:"2.1. Tunability of resonance",level:"2"},{id:"sec_3_2",title:"2.2. Surface plasmon resonance linewidth and dephasing time",level:"2"},{id:"sec_4_2",title:"2.3. Near field effect and coupling",level:"2"},{id:"sec_6",title:"3. Nanorod fabrication ",level:"1"},{id:"sec_6_2",title:"3.1. Synthesis methods",level:"2"},{id:"sec_7_2",title:"3.2. Surface modification",level:"2"},{id:"sec_8_2",title:"3.3. Bioconjugation",level:"2"},{id:"sec_10",title:"4. Experimental examples of MEF on metal nanorods",level:"1"},{id:"sec_10_2",title:"4.1. Polarisation dependence",level:"2"},{id:"sec_11_2",title:"4.2. Complex nanowire geometries.",level:"2"},{id:"sec_12_2",title:"4.3. Nanorod-modified surfaces",level:"2"},{id:"sec_13_2",title:"4.4. Applications of nanorods in SERS",level:"2"},{id:"sec_14_2",title:"4.5. Applications of nanorods for resonant energy transfer",level:"2"},{id:"sec_15_2",title:"4.6. Nanowires on metal films ",level:"2"},{id:"sec_16_2",title:"4.7. Single nanorods and MEF ",level:"2"},{id:"sec_18",title:"5. Theoretical simulations",level:"1"},{id:"sec_19",title:"6. Conclusions",level:"1"}],chapterReferences:[{id:"B1",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAbdulhalim\n\t\t\t\t\t\t\tI.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKarabchevsky\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPatzig\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRauschenbach\n\t\t\t\t\t\t\tB.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tFuhrmann\n\t\t\t\t\t\t\tB.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tEltzov\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMarks\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tXu\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZhang\n\t\t\t\t\t\t\tF.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLakhtakia\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2009 “Surface enhanced fluorescence form metal-sculptured thin films with application to biosensing in water” App. Phys. Lett., 94, 063106.\n\t\t\t'},{id:"B2",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAslan\n\t\t\t\t\t\t\tK.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLeonenko\n\t\t\t\t\t\t\tZ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLakowicz\n\t\t\t\t\t\t\tJ. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGeddes\n\t\t\t\t\t\t\tC. D.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2005 “Fast and Slow Deposition of Silver Nanorods on Planar Surfaces: Application to Metal-Enhanced Fluorescence”, J. Phys. Chem. B, 109\n\t\t\t\t\t3157\n\t\t\t\t\t3162\n\t\t\t\t\n\t\t\t'},{id:"B3",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBardhan\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGrady\n\t\t\t\t\t\t\tN. K.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCole\n\t\t\t\t\t\t\tJ. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJoshi\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHalas\n\t\t\t\t\t\t\tN. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2009 ”Fluorescence Enhancement by Au Nanostructures: Nanoshells and Nanorods”, ACS Nano,, 3\n\t\t\t\t\t744\n\t\t\t\t\t752 .\n\t\t\t'},{id:"B4",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBillot\n\t\t\t\t\t\t\tL.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLamy la\n\t\t\t\t\t\t\tChapelle. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGrimault\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVial\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBarchiesi\n\t\t\t\t\t\t\tD.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBijeon\n\t\t\t\t\t\t\tJ.L.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAdam\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRoyer\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2006 “Surface enhanced Raman scattering on gold nanowire arrays: Evidence of strong multipolar surface plasmon resonance enhancement” Chem. Phys. Lett., 422, 303.\n\t\t\t'},{id:"B5",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBrown\n\t\t\t\t\t\t\tM. D.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSchatzlein\n\t\t\t\t\t\t\tA. G.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tUchegbu\n\t\t\t\t\t\t\tI. F.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2001 “Gene delivery with synthetic (non viral) carriers”. Int. J. Pharm., 229\n\t\t\t\t\t1\n\t\t\t\t\t21 .\n\t\t\t'},{id:"B6",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tChaney\n\t\t\t\t\t\t\tS. B.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tShanmukh\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDluhy\n\t\t\t\t\t\t\tR. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZhao\n\t\t\t\t\t\t\tY. P.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2005 "Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates," Appl. Phys. Lett, 87, 031908 EOF .\n\t\t\t'},{id:"B7",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tChen\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMunechika\n\t\t\t\t\t\t\tK.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGinger\n\t\t\t\t\t\t\tD. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007 “Dependence of Fluorescence Intensity on the Spectral Overlap between Fluorophores and Plasmon Resonant Single Silver Nanoparticles”\n\t\t\t\t\tNanoLetters\n\t\t\t\t\t7\n\t\t\t\t\t690\n\t\t\t\t\t696 .\n\t\t\t'},{id:"B8",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tChen\n\t\t\t\t\t\t\tJ. Y.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWiley\n\t\t\t\t\t\t\tB. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tXia\n\t\t\t\t\t\t\tY. N.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2002 “One-dimensional nanostructures of metals: Large-scale synthesis and some potential applications”. Langmuir, 2007, 23, 4120-4129 (b) Sun, Y. G. & Xia, Y. N. “Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process”. Advanced Materials, 14\n\t\t\t\t\t833\n\t\t\t\t\t837 .\n\t\t\t'},{id:"B9",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCorrigan\n\t\t\t\t\t\t\tT. D.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGuo\n\t\t\t\t\t\t\tS. H.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSzmacinski\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPhaneuf\n\t\t\t\t\t\t\tR. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2006 “Systematic study of the size and spacing dependence of Ag nanoparticle enhanced fluorescence using electron-beam lithography” Appl.Phys. Lett., 88 (10), 101112 EOF .\n\t\t\t'},{id:"B10",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCorrigan\n\t\t\t\t\t\t\tT. D.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGuo\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPhaneuf\n\t\t\t\t\t\t\tR. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSzmacinski\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2005 “Enhanced Fluorescence from Periodic Arrays of Silver Nanoparticles” J. Fluoresc., 15 (5), 777 EOF\n\t\t\t\t\t784 EOF .\n\t\t\t'},{id:"B11",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDai\n\t\t\t\t\t\t\tQ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCoutts\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZou\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHuo\n\t\t\t\t\t\t\tQ.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2008 "Surface modification of gold nanorods through a place exchange reaction inside an anionic exchange resin". Chem. Comm.\n\t\t\t\t\t2858\n\t\t\t\t\t2860 .\n\t\t\t'},{id:"B12",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDrozdowicz-Tomsia\n\t\t\t\t\t\t\tK.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tXie\n\t\t\t\t\t\t\tF.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGoldys\n\t\t\t\t\t\t\tE. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2010 “Deposition of silver dentritic nanostructures on silicon for enhanced fluorescence” J Phys Chem C, 114\n\t\t\t\t\t1562\n\t\t\t\t\t1569\n\t\t\t\t\n\t\t\t'},{id:"B13",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tFelidi\n\t\t\t\t\t\t\tN.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAubard\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLevi\n\t\t\t\t\t\t\tG.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1999 “Discrete dipole approximation for ultraviolet-visible extinction spectra simulation of silver and gold colloids” J. Chem. Phys. 111 (3), 1195-1208.\n\t\t\t'},{id:"B14",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tFu\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZhang\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLakowicz\n\t\t\t\t\t\t\tJ. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2010 “Plasmon-Enhanced Fluorescence from Single Fluorophores End-Linked to Gold Nanorods”, J. Am. Chem. Soc. 132\n\t\t\t\t\t5540\n\t\t\t\t\t5541\n\t\t\t\t\n\t\t\t'},{id:"B15",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tFunston\n\t\t\t\t\t\t\tA. F.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNovo\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDavis\n\t\t\t\t\t\t\tT. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMulvaney\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2009 ”Plasmon Coupling of Gold Nanorods at Short Distances and in Different Geometries” NanoLett.,\n\t\t\t\t\t9\n\t\t\t\t\t1651\n\t\t\t\t\t1658 .\n\t\t\t'},{id:"B16",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGans\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1915 “Über die Form ultramikroskopischer Silberteilchen” Ann. Phys., 47, 270.\n\t\t\t'},{id:"B17",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGeddes\n\t\t\t\t\t\t\tC. D.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCao\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGryczynski\n\t\t\t\t\t\t\tI.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGryczynski\n\t\t\t\t\t\t\tZ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tFang\n\t\t\t\t\t\t\t J. Y.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLakowicz\n\t\t\t\t\t\t\tJ. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2003 “Metal-Enhanced Fluorescence (MEF) Due to Silver Colloids on a Planar Surface: Potential Applications of Indocyanine Green to in Vivo Imaging” J. Phys. Chem. A,\n\t\t\t\t\t107 (18), 3443–3449.\n\t\t\t'},{id:"B18",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGeddes\n\t\t\t\t\t\t\tC. D.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tParfenov\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRoll\n\t\t\t\t\t\t\tD.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGryczynski\n\t\t\t\t\t\t\tI.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMalicka\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLakowicz\n\t\t\t\t\t\t\tJ. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2003 “Silver fractal-like structures for metal-enhanced fluorescence: Enhanced fluorescence intensities and increased probe photostabilities”. J. Fluorescence, 13\n\t\t\t\t\t267\n\t\t\t\t\t276 .\n\t\t\t'},{id:"B19",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGersten\n\t\t\t\t\t\t\tJ. I.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNitzan\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1985 “Photophysics and photochemistry near surfaces and small particles” Surf. Sci 158, 165 EOF\n\t\t\t\t\t189 EOF .\n\t\t\t'},{id:"B20",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGiannini\n\t\t\t\t\t\t\tV.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSánchez-Gil\n\t\t\t\t\t\t\tJ. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMuskens\n\t\t\t\t\t\t\tO. L.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRivas\n\t\t\t\t\t\t\tJ. G.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2009 “Electrodynamic calculations of spontaneous emission coupled to metal nanostructures of arbitrary shape: nanoantenna-enhanced fluorescence”, J. Opt. Soc Am. B. 26\n\t\t\t\t\t1569\n\t\t\t\t\t1577 .\n\t\t\t'},{id:"B21",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGoldys\n\t\t\t\t\t\t\tE. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDrozdowicz-Tomsia\n\t\t\t\t\t\t\tK.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tXie\n\t\t\t\t\t\t\tF.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tShtoyko\n\t\t\t\t\t\t\tT.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMatveeva\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGryczynski\n\t\t\t\t\t\t\tI.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGryczynski\n\t\t\t\t\t\t\tZ.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007 “Fluorescence amplification by electrochemically deposited silver nanowires with fractal architecture”\n\t\t\t\t\tJ. Am. Chem. Soc., 129 (40), 12117\n\t\t\t\t\t12122 .\n\t\t\t'},{id:"B22",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGrand\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKostcheev\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBijeon\n\t\t\t\t\t\t\tJ.L.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLamy la\n\t\t\t\t\t\t\tChapelle. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAdam\n\t\t\t\t\t\t\tP.M.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRumyantseva\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLe´rondel\n\t\t\t\t\t\t\tG.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRoyer\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2003 “Optimization of SERS-active substrates for near-field Raman spectroscopy” Synth. Met. 139, 621 EOF .\n\t\t\t'},{id:"B23",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGuo\n\t\t\t\t\t\t\tS. H.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTsai\n\t\t\t\t\t\t\tS. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKan\n\t\t\t\t\t\t\tH. C.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTsai\n\t\t\t\t\t\t\tD. H.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZachariah\n\t\t\t\t\t\t\tM. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPhaneuf\n\t\t\t\t\t\t\tR. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2008a “The Effect of an Active Substrate on Nanoparticle-Enhanced Fluorescence” Adv. Mater. 20\n\t\t\t\t\t1424\n\t\t\t\t\t1428 .\n\t\t\t'},{id:"B24",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGuo\n\t\t\t\t\t\t\tS. H.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTsai\n\t\t\t\t\t\t\tS. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKan\n\t\t\t\t\t\t\tH. C.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTsai\n\t\t\t\t\t\t\tD. H.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZachariah\n\t\t\t\t\t\t\tM. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPhaneuf\n\t\t\t\t\t\t\tR. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2008b “Spacer Layer Effect in Fluorescence Enhancement from Silver Nanowires over a Silver Film; Switching of Optimum Polarization” Adv. Mater. 20 (8), 1424-1428.\n\t\t\t'},{id:"B25",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGuo\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRuan\n\t\t\t\t\t\t\tF.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLu\n\t\t\t\t\t\t\tL.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHu\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPan\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tYang\n\t\t\t\t\t\t\tZ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRen\n\t\t\t\t\t\t\tB.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2009 “Correlating the Shape, Surface Plasmon Resonance, and Surface-Enhanced Raman Scattering of Gold Nanorods”, J. Phys. Chem. C\n\t\t\t\t\t113\n\t\t\t\t\t10459\n\t\t\t\t\t10464\n\t\t\t\t\n\t\t\t'},{id:"B26",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHao\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSchatz\n\t\t\t\t\t\t\tG. C.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2004 “Electromagnetic field around silver nanoparticles and dimmers” J. Chem. Phys.\n\t\t\t\t\t120\n\t\t\t\t\t357\n\t\t\t\t\t366 .\n\t\t\t'},{id:"B27",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHe\n\t\t\t\t\t\t\tX.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZhao\n\t\t\t\t\t\t\tX.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2009 “Solvothermal synthesis and formation mechanism of chain-like triangular silver nanoplate assemblies: Application to metal-enhanced fluorescence (MEF)”, Applied Surface Science\n\t\t\t\t\t255\n\t\t\t\t\t7361\n\t\t\t\t\t7368\n\t\t\t\t\n\t\t\t'},{id:"B28",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHu\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNovo\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tFunston\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWang\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tStaleva\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZou\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMulvaney\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tXia\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHartland\n\t\t\t\t\t\t\tG. V.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2008 “Dark-Field Microscopy Studies of Single Metal Nanoparticles: Understanding the Factors that Influence the Linewidth of the Localized Surface Plasmon Resonance” J. Mater. Chem. 18, 1949 EOF\n\t\t\t\t\t1960 EOF .\n\t\t\t'},{id:"B29",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHuang\n\t\t\t\t\t\t\tX.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNeretina\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tEl -Sayed\n\t\t\t\t\t\t\tM. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2009 “Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications” Adv. Mater. 21\n\t\t\t\t\t4880\n\t\t\t\t\t4910 .\n\t\t\t'},{id:"B30",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHuang\n\t\t\t\t\t\t\tX.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tEl-Sayed\n\t\t\t\t\t\t\tI. H.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tQian\n\t\t\t\t\t\t\tw.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tEl-Sayed\n\t\t\t\t\t\t\tM. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007 “Cancer Cells Assemble and Align Gold Nanorods Conjugated to Antibodies to Produce Highly Enhanced, Sharp, and Polarized Surface Raman Spectra: A Potential Cancer Diagnostic Marker” Nano Lett.\n\t\t\t\t\t 7, 1591.\n\t\t\t'},{id:"B31",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHutter\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tFendler\n\t\t\t\t\t\t\tJ. H.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2004 “Exploitation of Localized Plasmon Resonance Adv. Mat. 16\n\t\t\t\t\t1685\n\t\t\t\t\t1706 .\n\t\t\t'},{id:"B32",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tIqbal\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tChung\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTae\n\t\t\t\t\t\t\tG.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007 “An enhanced synthesis of gold nanorods by the addition of Pluronic (F-127) via a seed mediated growth process” J. Mater. Chem.\n\t\t\t\t\t17\n\t\t\t\t\t335\n\t\t\t\t\t342 .\n\t\t\t'},{id:"B33",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJana\n\t\t\t\t\t\t\tN. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGearheart\n\t\t\t\t\t\t\tL.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMurphy\n\t\t\t\t\t\t\tC. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2001 “Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template” Adv. Mater. 13, 1389 EOF\n\t\t\t\t\t1393 EOF .\n\t\t\t'},{id:"B34",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJana\n\t\t\t\t\t\t\tN. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGearheart\n\t\t\t\t\t\t\tL.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMurphy\n\t\t\t\t\t\t\tC. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2001 “Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods” J. Phys. Chem. B 105, 4065 EOF\n\t\t\t\t\t4067 EOF .\n\t\t\t'},{id:"B35",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJensen\n\t\t\t\t\t\t\tT. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMalinsky\n\t\t\t\t\t\t\t M. D.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHaynes\n\t\t\t\t\t\t\t C. L.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVan Duyne\n\t\t\t\t\t\t\t R. P.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2000 “Nanosphere Lithography: Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles” J.Phys. Chem. B\n\t\t\t\t\t104 (45, 10549–10556.\n\t\t\t'},{id:"B36",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKappeler\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tErni\n\t\t\t\t\t\t\tD.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tXudong\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNovotny\n\t\t\t\t\t\t\tL.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007 “Field Computations of Optical Antennas”, J. Comp. Theor. Nanosc. 4, 686 EOF\n\t\t\t\t\t691 EOF .\n\t\t\t'},{id:"B37",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKelly\n\t\t\t\t\t\t\tK.L.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCoronado\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZhao\n\t\t\t\t\t\t\tL.L.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSchatz\n\t\t\t\t\t\t\tG.C.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2003 “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment” J. Phys. Chem. B\n\t\t\t\t\t107, 668.\n\t\t\t'},{id:"B38",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKerker\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBlatchford\n\t\t\t\t\t\t\tC. G.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1982 “Elastic scattering, absorption, and surface-enhanced Raman scattering by concentric spheres comprised of a metallic and a dielectric region” Phys. Rev. B 26, 4082.\n\t\t\t'},{id:"B39",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKhlebtsov\n\t\t\t\t\t\t\tB. N.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKhlebtsov\n\t\t\t\t\t\t\tN. G.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007 “Multipole Plasmons in Metal Nanorods: Scaling Properties and Dependence on Particle Size, Shape, Orientation, and Dielectric Environment” J. Phys. Chem. C\n\t\t\t\t\t111\n\t\t\t\t\t11516\n\t\t\t\t\t11527 .\n\t\t\t'},{id:"B40",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKummerlen\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLeitner\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBrunner\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAussenegg\n\t\t\t\t\t\t\tF. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWokaun\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1993 “Enhanced dye fluorescence over silver island films: Analysis of the distance dependence”.Mol. Phys. 80 (5), 1031-1046.\n\t\t\t'},{id:"B41",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLakhtakia\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMessier\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2005 “Sculptured Thin Films: Nanoengineered Morphology and Optics”\n\t\t\t\t\t SPIEBellingham, WA.\n\t\t\t'},{id:"B42",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLakowicz\n\t\t\t\t\t\t\tJ. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2001 “Radiative decay engineering” Anal. Biochem. 298, 1.\n\t\t\t'},{id:"B43",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLakowicz\n\t\t\t\t\t\t\tJ. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tShen\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tD’Auria\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMalicka\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tFang\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGryczynski\n\t\t\t\t\t\t\tZ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGryczynski\n\t\t\t\t\t\t\tI.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2002 “Radiative decay engineering: Effects of Silver Island Films on Fluorescence Intensity, Lifetimes, and Resonance Energy Transfer“Anal. Biochem.\n\t\t\t\t\t301\n\t\t\t\t\t261\n\t\t\t\t\t277 .\n\t\t\t'},{id:"B44",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLee\n\t\t\t\t\t\t\tK. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tEl -Sayed\n\t\t\t\t\t\t\tM. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2005 “Dependence of the Enhanced Optical Scattering Efficiency Relative to That of Absorption for Gold Metal Nanorods on Aspect Ratio, Size, End-Cap Shape, and Medium Refractive Index”\n\t\t\t\t\tJ. Phys. Chem. B 109, 20331 EOF\n\t\t\t\t\t8 EOF .\n\t\t\t'},{id:"B45",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLee\n\t\t\t\t\t\t\tK. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tEl-Sayed\n\t\t\t\t\t\t\tM.A.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2006 “Gold and Silver Nanoparticles in Sensing and Imaging: Sensitivity of Plasmon Response to Size, Shape, and Metal Composition” J. Phys. Chem. B\n\t\t\t\t\t 110, 19220.\n\t\t\t'},{id:"B46",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLi\n\t\t\t\t\t\t\tP. C.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWei\n\t\t\t\t\t\t\tC. W.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLiao\n\t\t\t\t\t\t\tC. K.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tChen\n\t\t\t\t\t\t\tC. D.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPao\n\t\t\t\t\t\t\tK. C.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWang\n\t\t\t\t\t\t\tC. R. C.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWu\n\t\t\t\t\t\t\tY. N.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tShieh\n\t\t\t\t\t\t\tD. B.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2006 "Multiple targeting in photoacoustic imaging using bioconjugated gold nanorods," \n\t\t\t\t\tPhotons Plus Ultrasound: Imaging and Sensing 2006: The 7th Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics, Proc. of SPIE,\n\t\t\t\t\t6086\n\t\t\t\t\t60860M\n\t\t\t\t\n\t\t\t'},{id:"B47",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLiang\n\t\t\t\t\t\t\tH. Y.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tYang\n\t\t\t\t\t\t\tH. X.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWang\n\t\t\t\t\t\t\tW. Z.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLi\n\t\t\t\t\t\t\tJ. Q.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tXu\n\t\t\t\t\t\t\tH. X.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2009 “High-Yield Uniform Synthesis and Microstructure-Determination of Rice-Shaped Silver Nanocrystals” J. Am. Chem. Soc.\n\t\t\t\t\t131\n\t\t\t\t\t6068\n\t\t\t\t\t6069 .\n\t\t\t'},{id:"B48",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLiebermann\n\t\t\t\t\t\t\tT.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKnoll\n\t\t\t\t\t\t\tW.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2000 “Surface plasmon field-enhanced fluorescence spectroscopy“Colloid Surf. A 171 (1-3), 115-130.\n\t\t\t'},{id:"B49",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLink\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMohamed\n\t\t\t\t\t\t\tM. B.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tEl -Sayed\n\t\t\t\t\t\t\tM. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1999 “Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their aspect Ratio and the Effect of the Medium Dielectric Constant” J. Phys. Chem. B 103\n\t\t\t\t\t3073\n\t\t\t\t\t3077 .\n\t\t\t'},{id:"B50",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLiu\n\t\t\t\t\t\t\tY. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tFan\n\t\t\t\t\t\t\tJ. G.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZhao\n\t\t\t\t\t\t\tY. P.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tShanmukh\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDluhy\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\tR. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2006 "Angle dependent surface enhanced Raman scattering obtained from a Ag nanorod array substrate," Appl. Phys. Lett, 89, 173134 EOF .\n\t\t\t'},{id:"B51",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMessaier\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLatakhia\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1999 “Scalptured thin films II Experiments and applications” Mater. Res. Innovations 2, 217.\n\t\t\t'},{id:"B52",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMing\n\t\t\t\t\t\t\tT.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZhao\n\t\t\t\t\t\t\tL.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tYang\n\t\t\t\t\t\t\tZ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tChen\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSun\n\t\t\t\t\t\t\tL.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWang\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tYan\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2009 “Strong Polarization Dependence of Plasmon-Enhanced Fluorescence on Single Gold Nanorods”, Nano letters, 11\n\t\t\t\t\t3896\n\t\t\t\t\t3903 .\n\t\t\t'},{id:"B53",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMohamed\n\t\t\t\t\t\t\tM. B.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVolkov\n\t\t\t\t\t\t\tV.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLink\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tEl -Sayed\n\t\t\t\t\t\t\tM. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2000 “The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal” Chem. Phys. Lett.\n\t\t\t\t\t317\n\t\t\t\t\t517\n\t\t\t\t\t523\n\t\t\t\t\n\t\t\t'},{id:"B54",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMurphy\n\t\t\t\t\t\t\tC. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSan\n\t\t\t\t\t\t\tT. K.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGole\n\t\t\t\t\t\t\tA. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tOrendorff\n\t\t\t\t\t\t\tC. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGao\n\t\t\t\t\t\t\tJ. X.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGao\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGou\n\t\t\t\t\t\t\tL.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHunyadi\n\t\t\t\t\t\t\tS. E.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLi\n\t\t\t\t\t\t\tT.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2005 “Anisotropic metal nanoparticles: synthesis, assembly, and optical applications”. J Phys Chem B\n\t\t\t\t\t109\n\t\t\t\t\t13857\n\t\t\t\t\t13870 .\n\t\t\t'},{id:"B55",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNicewarner-Pena\n\t\t\t\t\t\t\tS. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tFreeman\n\t\t\t\t\t\t\tR. G.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tReiss\n\t\t\t\t\t\t\tB. D.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHe\n\t\t\t\t\t\t\tL.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPena\n\t\t\t\t\t\t\tD. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWalton\n\t\t\t\t\t\t\tI. D.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCromer\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKeating\n\t\t\t\t\t\t\tC. D.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNatan\n\t\t\t\t\t\t\tM. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2001 “Submicrometer Metallic Barcodes” Science, 294, 137 EOF\n\t\t\t\t\t141 EOF\n\t\t\t\t\n\t\t\t'},{id:"B56",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNiidome\n\t\t\t\t\t\t\tT.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tYamagata\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tOkamoto\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAkiyama\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTakahashi\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKawano\n\t\t\t\t\t\t\tT.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKatayama\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNiidome\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2006 “PEG-modified gold nanorods with a stealth character for in vivo applications” J. Controlled Release, 114, 343 EOF\n\t\t\t\t\t347 EOF .\n\t\t\t'},{id:"B57",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNikoobakht\n\t\t\t\t\t\t\tB.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tEl -Sayed\n\t\t\t\t\t\t\tM. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2003 "Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method," Chem. Mater. 15, 1957 EOF\n\t\t\t\t\t1962 EOF .\n\t\t\t'},{id:"B58",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNovo\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGomez\n\t\t\t\t\t\t\tD.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPerez-Juste\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZhang\n\t\t\t\t\t\t\tZ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPetrova\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tReismann\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMulvaney\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHartland\n\t\t\t\t\t\t\tG. V.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2006 “Contributions from Radiation Damping and Surface Scattering to the Linewidth of the Longitudinal Plasmon Band of Gold Nanorods: A Single Particle“ Phys. Chem. Chem. Phys., 8, 3540.\n\t\t\t'},{id:"B59",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tObare\n\t\t\t\t\t\t\tS. O.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJana\n\t\t\t\t\t\t\tN. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMurphy\n\t\t\t\t\t\t\tC. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2001 “Preparation of Polystyrene and Silica-Coated Gold Nanorods and their use as Templates for the Synthesis of Hollow Nanotubes,” Nano Lett. 1, 601 EOF\n\t\t\t\t\t603 EOF .\n\t\t\t'},{id:"B60",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tOyelere\n\t\t\t\t\t\t\tA. K.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tChen\n\t\t\t\t\t\t\tB.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHuang\n\t\t\t\t\t\t\tX.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tEl -Sayed\n\t\t\t\t\t\t\tI. H.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tEl -Sayed\n\t\t\t\t\t\t\tM. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007 “Peptide-Conjugated Gold Nanorods for Nuclear Targeting”\n\t\t\t\t\tBioconjug. Chem., 18, 1490 EOF\n\t\t\t\t\t7 EOF .\n\t\t\t'},{id:"B61",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tP´erez-Juste\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPastoriza-Santos\n\t\t\t\t\t\t\tI.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLiz-Marzan\n\t\t\t\t\t\t\tL. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMulvaney\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2005 “Gold nanorods: Synthesis, characterization and applications” Coordination Chemistry Reviews\n\t\t\t\t\t249\n\t\t\t\t\t1870\n\t\t\t\t\t1901 .\n\t\t\t'},{id:"B62",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPietrobon\n\t\t\t\t\t\t\tB.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMc Eachran\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKitaev\n\t\t\t\t\t\t\tV.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2009 “Synthesis of Size-Controlled Faceted Pentagonal Silver Nanorods with Tunable Plasmonic Properties and Self- Assembly of These Nanorods” ACS Nano, 3\n\t\t\t\t\t21\n\t\t\t\t\t26 .\n\t\t\t'},{id:"B63",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSchider\n\t\t\t\t\t\t\tG.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKrenn\n\t\t\t\t\t\t\tJ.R\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHohenau\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDitlbacher\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLeitner\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAussenegg\n\t\t\t\t\t\t\tF. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSchaich\n\t\t\t\t\t\t\tW. L.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPuscasu\n\t\t\t\t\t\t\tI.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMonacelli\n\t\t\t\t\t\t\tB.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBoreman\n\t\t\t\t\t\t\tG.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2003 “Plasmon dispersion relation of Au and Ag nanowires” Phys. Rev. B,68, 155427.\n\t\t\t'},{id:"B64",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tShanmukh\n\t\t\t\t\t\t\tS. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJones\n\t\t\t\t\t\t\tL.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDriskell\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZhao\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDluhy\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTripp\n\t\t\t\t\t\t\tR. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2006 “Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate,” Nano Lett. 6, 2630 EOF\n\t\t\t\t\t6 EOF 30\n\t\t\t'},{id:"B65",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSlaughter\n\t\t\t\t\t\t\tL. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWu\n\t\t\t\t\t\t\tY. P.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWillingham\n\t\t\t\t\t\t\tB.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNordlander\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLink\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2010 “Effects of symmetry breaking and conductive contact on the plasmon coupling in gold nanorod dimmers”, ACS Nano\n\t\t\t\t\t4\n\t\t\t\t\t4657\n\t\t\t\t\t4666 .\n\t\t\t'},{id:"B66",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSmythe\n\t\t\t\t\t\t\tE. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCubukcu\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCapasso\n\t\t\t\t\t\t\tF.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007 “Optical Properties of Surface Plasmon Resonances of Coupled Metallic Nanorods”\n\t\t\t\t\tOpt. Express 15, 7439 EOF\n\t\t\t\t\t47 EOF .\n\t\t\t'},{id:"B67",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSokolov\n\t\t\t\t\t\t\tK.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tChumanov\n\t\t\t\t\t\t\tG.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCotton\n\t\t\t\t\t\t\tT. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1998 “Enhancement of Molecular Fluorescence near the Surface of Colloidal Metal Films”\n\t\t\t\t\tAnal. Chem. 70 (18), 3898 EOF\n\t\t\t\t\t905 EOF .\n\t\t\t'},{id:"B68",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSonnichsen\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tFranzl\n\t\t\t\t\t\t\tT.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWilk\n\t\t\t\t\t\t\tT.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPlessen\n\t\t\t\t\t\t\tG. V.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tFeldmann\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2002 “Drastic Reduction of Plasmon Damping in Gold Nanorods”\n\t\t\t\t\tPhys. Rev. Lett. 88, 077402 EOF .\n\t\t\t'},{id:"B69",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSu\n\t\t\t\t\t\t\tK. H.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWei\n\t\t\t\t\t\t\tQ. H.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZhang\n\t\t\t\t\t\t\tX.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMock\n\t\t\t\t\t\t\tJ. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSmith\n\t\t\t\t\t\t\tD. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSchultz\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2003 “Interparticle coupling effects on plasmon resonances of nanogold particles” NanoLett. 3, 1087 EOF\n\t\t\t\t\t1090 EOF .\n\t\t\t'},{id:"B70",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTao\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKim\n\t\t\t\t\t\t\tF.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHess\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGoldberger\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHe\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSun\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tXia\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tYang\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2003 “Langmuir-Blodgett Silver Nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy”, Nano letters, 3\n\t\t\t\t\t1229\n\t\t\t\t\t1233 .\n\t\t\t'},{id:"B71",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTarcha\n\t\t\t\t\t\t\tP. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDe Saja-Gonzalez\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRodriguez-Llorente\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAroca\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1999 “Surface-Enhanced Fluorescence on SiO2 -Coated Silver Island Films “Appl. Spectrosc. 53 (1), 43-48.\n\t\t\t'},{id:"B72",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWiley\n\t\t\t\t\t\t\tB.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSun\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMayers\n\t\t\t\t\t\t\tB.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tXia\n\t\t\t\t\t\t\tY. N.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2005 “Shape-controlled synthesis of metal nanostructures: The case of silver”. Chemistry-A European Journal, 11\n\t\t\t\t\t454\n\t\t\t\t\t463 .\n\t\t\t'},{id:"B73",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWiley\n\t\t\t\t\t\t\tB.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSun\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tXia\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007 “Synthesis of silver nanostructures with controlled shapes and properties”. Accounts of Chemical Research, 40\n\t\t\t\t\t1067\n\t\t\t\t\t1076 .\n\t\t\t'},{id:"B74",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWiley\n\t\t\t\t\t\t\tB.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSun\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tChen\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCang\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLi-Y\n\t\t\t\t\t\t\tZ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tXingde\n\t\t\t\t\t\t\tL.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tXia\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007 “Shape-controlled synthesis of silver and gold nanostructures”. MRS Bulletin, 30, 356 EOF\n\t\t\t\t\t361 EOF ,\n\t\t\t'},{id:"B75",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWiley\n\t\t\t\t\t\t\tB.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSun\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tYu\n\t\t\t\t\t\t\tY. Y.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tChang-S\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLee-L\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWang\n\t\t\t\t\t\t\tC. C. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1997“Gold nanorod select rochemical synthesis optical properties”. J Phys Chem B\n\t\t\t\t\t101\n\t\t\t\t\t6661\n\t\t\t\t\t6664 .\n\t\t\t'},{id:"B76",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tXia\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tXiong\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLim\n\t\t\t\t\t\t\tB.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSkrabalak\n\t\t\t\t\t\t\tS. E.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2009 “Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics”\n\t\t\t\t\tAngewandte Chemie-International Edition,\n\t\t\t\t\t48\n\t\t\t\t\t60\n\t\t\t\t\t103 .\n\t\t\t'},{id:"B77",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tYelin\n\t\t\t\t\t\t\tD.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tOron\n\t\t\t\t\t\t\tD.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tThiberge\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMoses\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSilberberg\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2003 “Multiphoton Plasmon-Resonance Microscopy”\n\t\t\t\t\tOpt. Express 11, 1385 EOF\n\t\t\t\t\t91 EOF .\n\t\t\t'},{id:"B78",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZhou\n\t\t\t\t\t\t\tZ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLi\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tYang\n\t\t\t\t\t\t\tZ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPeng\n\t\t\t\t\t\t\tX.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSu\n\t\t\t\t\t\t\tX.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZhang\n\t\t\t\t\t\t\tZ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLi\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKim\n\t\t\t\t\t\t\tN.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tYu\n\t\t\t\t\t\t\tX.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZhou\n\t\t\t\t\t\t\tL.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHao\n\t\t\t\t\t\t\tZ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWang\n\t\t\t\t\t\t\tQ.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2010 “Plasmon-Mediated Radiative Energy Transfer across a Silver Nanowire Array via Resonant Transmission and Subwavelength Imaging” ACS Nano, 4\n\t\t\t\t\t5003\n\t\t\t\t\t5010 .\n\t\t\t'}],footnotes:[],contributors:[{corresp:null,contributorFullName:"Drozdowicz-Tomsia Krystyna",address:null,affiliation:'
'}],corrections:null},book:{id:"156",type:"book",title:"Nanowires",subtitle:"Fundamental Research",fullTitle:"Nanowires - Fundamental Research",slug:"nanowires-fundamental-research",publishedDate:"July 19th 2011",bookSignature:"Abbass Hashim",coverURL:"https://cdn.intechopen.com/books/images_new/156.jpg",licenceType:"CC BY-NC-SA 3.0",editedByType:"Edited by",isbn:null,printIsbn:"978-953-307-327-9",pdfIsbn:"978-953-51-4487-8",reviewType:"peer-reviewed",numberOfWosCitations:106,isAvailableForWebshopOrdering:!0,editors:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1169"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"16559",type:"chapter",title:"Silicon Nanowire Waveguides and Their Applications in Planar Wavelength Division Multiplexers/Demultiplexers",slug:"silicon-nanowire-waveguides-and-their-applications-in-planar-wavelength-division-multiplexers-demult",totalDownloads:4867,totalCrossrefCites:1,signatures:"Jun Song and Jinfei Ding",reviewType:"peer-reviewed",authors:[{id:"24620",title:"Dr.",name:"Jun",middleName:null,surname:"Song",fullName:"Jun Song",slug:"jun-song"}]},{id:"16560",type:"chapter",title:"Four-Wave Mixing in Silicon Nanowire Waveguides and Its Applications in Wavelength Conversion",slug:"four-wave-mixing-in-silicon-nanowire-waveguides-and-its-applications-in-wavelength-conversion",totalDownloads:3387,totalCrossrefCites:1,signatures:"Shiming Gao and Sailing He",reviewType:"peer-reviewed",authors:[{id:"29083",title:"Prof.",name:"Shiming",middleName:null,surname:"Gao",fullName:"Shiming Gao",slug:"shiming-gao"},{id:"75709",title:"Prof.",name:"Sailing",middleName:null,surname:"He",fullName:"Sailing He",slug:"sailing-he"}]},{id:"16561",type:"chapter",title:"Wet - Chemically Etched Silicon Nanowire Architectures: Formation and Properties",slug:"wet-chemically-etched-silicon-nanowire-architectures-formation-and-properties",totalDownloads:7068,totalCrossrefCites:5,signatures:"Vladimir Sivakov, Felix Voigt, Björn Hoffmann, Viktor Gerliz and Silke Christiansen",reviewType:"peer-reviewed",authors:[{id:"16065",title:"Dr.",name:"Vladimir",middleName:"A.",surname:"Sivakov",fullName:"Vladimir Sivakov",slug:"vladimir-sivakov"},{id:"16500",title:"Dr.",name:"Felix",middleName:null,surname:"Voigt",fullName:"Felix Voigt",slug:"felix-voigt"},{id:"26361",title:"Dr.",name:"Silke",middleName:null,surname:"Christiansen",fullName:"Silke Christiansen",slug:"silke-christiansen"},{id:"73476",title:"MSc",name:"Viktor",middleName:null,surname:"Gerliz",fullName:"Viktor Gerliz",slug:"viktor-gerliz"},{id:"153308",title:"M.Sc.",name:"Björn",middleName:"Michael",surname:"Hoffmann",fullName:"Björn Hoffmann",slug:"bjorn-hoffmann"}]},{id:"16562",type:"chapter",title:"First Principles Study of Si/Ge Core-Shell Nanowires ---- Structural and Electronic Properties",slug:"first-principles-study-of-si-ge-core-shell-nanowires-structural-and-electronic-properties",totalDownloads:3269,totalCrossrefCites:2,signatures:"Xihong Peng, Fu Tang and Paul Logan",reviewType:"peer-reviewed",authors:[{id:"24647",title:"Prof.",name:"Xihong",middleName:null,surname:"Peng",fullName:"Xihong Peng",slug:"xihong-peng"},{id:"35267",title:"Mr",name:"Paul",middleName:null,surname:"Logan",fullName:"Paul Logan",slug:"paul-logan"},{id:"67726",title:"Dr.",name:"Fu",middleName:null,surname:"Tang",fullName:"Fu Tang",slug:"fu-tang"}]},{id:"16563",type:"chapter",title:"Nanowire Applications: Thermoelectric Cooling and Energy Harvesting",slug:"nanowire-applications-thermoelectric-cooling-and-energy-harvesting",totalDownloads:3450,totalCrossrefCites:1,signatures:"Gang Zhang",reviewType:"peer-reviewed",authors:[{id:"26402",title:"Dr.",name:null,middleName:null,surname:"Zhang",fullName:"Zhang",slug:"zhang"}]},{id:"16564",type:"chapter",title:"Silicide Nanowires from Coordination Compound Precursors",slug:"silicide-nanowires-from-coordination-compound-precursors",totalDownloads:2677,totalCrossrefCites:1,signatures:"John Philip",reviewType:"peer-reviewed",authors:[{id:"26617",title:"Prof.",name:"John",middleName:null,surname:"Philip",fullName:"John Philip",slug:"john-philip"}]},{id:"16565",type:"chapter",title:"The Anisotropic Growth of Perovskite Oxide Nanowires",slug:"the-anisotropic-growth-of-perovskite-oxide-nanowires",totalDownloads:4776,totalCrossrefCites:2,signatures:"Yongming Hu, Haoshuang Gu and Zhao Wang",reviewType:"peer-reviewed",authors:[{id:"24638",title:"Prof.",name:"Haoshuang",middleName:null,surname:"Gu",fullName:"Haoshuang Gu",slug:"haoshuang-gu"},{id:"26486",title:"Dr.",name:"Yongming",middleName:null,surname:"Hu",fullName:"Yongming Hu",slug:"yongming-hu"},{id:"26487",title:"Mr.",name:"Zhao",middleName:null,surname:"Wang",fullName:"Zhao Wang",slug:"zhao-wang"}]},{id:"16566",type:"chapter",title:"Junction Properties and Applications of ZnO Single Nanowire Based Schottky Diode",slug:"junction-properties-and-applications-of-zno-single-nanowire-based-schottky-diode",totalDownloads:4824,totalCrossrefCites:1,signatures:"Sachindra Nath Das, Jyoti Prakash Kar and Jae-Min Myoung",reviewType:"peer-reviewed",authors:[{id:"24791",title:"Dr.",name:"Sachindra Nath",middleName:null,surname:"Das",fullName:"Sachindra Nath Das",slug:"sachindra-nath-das"},{id:"34681",title:"Dr.",name:"Jyoti Prakash",middleName:null,surname:"Kar",fullName:"Jyoti Prakash Kar",slug:"jyoti-prakash-kar"},{id:"34908",title:"Prof.",name:"Jae-Min",middleName:null,surname:"Myoung",fullName:"Jae-Min Myoung",slug:"jae-min-myoung"}]},{id:"16567",type:"chapter",title:"Metal Oxide Nanowires – Structural and Mechanical Properties",slug:"metal-oxide-nanowires-structural-and-mechanical-properties",totalDownloads:4228,totalCrossrefCites:0,signatures:"L. Dai, C.H. Sow, C.T. Lim and V.B.C. Tan",reviewType:"peer-reviewed",authors:[{id:"24802",title:"Dr.",name:"Vincent",middleName:"Bc",surname:"Tan",fullName:"Vincent Tan",slug:"vincent-tan"},{id:"35634",title:"Dr.",name:"Ling",middleName:null,surname:"Dai",fullName:"Ling Dai",slug:"ling-dai"}]},{id:"16568",type:"chapter",title:"Synthesis of Pt–Containing Metals Alloy and Hybrid Nanowires and Investigation of Electronic Structure Using Synchrotron-Based X-Ray Absorption Techniques",slug:"synthesis-of-pt-containing-metals-alloy-and-hybrid-nanowires-and-investigation-of-electronic-structu",totalDownloads:2562,totalCrossrefCites:1,signatures:"Xiaowei Teng, Wenxin Du and Qi Wang",reviewType:"peer-reviewed",authors:[{id:"24478",title:"Prof.",name:"Xiaowei",middleName:null,surname:"Teng",fullName:"Xiaowei Teng",slug:"xiaowei-teng"},{id:"33584",title:"Mr.",name:"Wenxin",middleName:null,surname:"Du",fullName:"Wenxin Du",slug:"wenxin-du"},{id:"33585",title:"Dr",name:"Qi",middleName:null,surname:"Wang",fullName:"Qi Wang",slug:"qi-wang"}]},{id:"16569",type:"chapter",title:"GaN Nanowires Fabricated by Magnetron Sputtering Deposition",slug:"gan-nanowires-fabricated-by-magnetron-sputtering-deposition",totalDownloads:4092,totalCrossrefCites:2,signatures:"Feng Shi",reviewType:"peer-reviewed",authors:[{id:"24821",title:"Dr.",name:"Feng",middleName:null,surname:"Shi",fullName:"Feng Shi",slug:"feng-shi"}]},{id:"16570",type:"chapter",title:"Fabrication, Characterization and Thermal Properties of Nanowires",slug:"fabrication-characterization-and-thermal-properties-of-nanowires",totalDownloads:5215,totalCrossrefCites:1,signatures:"Yang-Yuan Chen, Cheng-Lung Chen, Ping-Chung Lee and Min-Nan Ou",reviewType:"peer-reviewed",authors:[{id:"26736",title:"Prof.",name:"Yang-Yuan",middleName:"David",surname:"Chen",fullName:"Yang-Yuan Chen",slug:"yang-yuan-chen"},{id:"36767",title:"Dr.",name:"Cheng-Lung",middleName:null,surname:"Chen",fullName:"Cheng-Lung Chen",slug:"cheng-lung-chen"},{id:"36768",title:"Mr",name:"Ping-Chung",middleName:null,surname:"Lee",fullName:"Ping-Chung Lee",slug:"ping-chung-lee"},{id:"36769",title:"Dr.",name:"Min-Nan",middleName:null,surname:"Ou",fullName:"Min-Nan Ou",slug:"min-nan-ou"}]},{id:"16571",type:"chapter",title:"Role of Intrinsic Defects in Nanowires",slug:"role-of-intrinsic-defects-in-nanowires",totalDownloads:3035,totalCrossrefCites:1,signatures:"Usha Philipose",reviewType:"peer-reviewed",authors:[{id:"24712",title:"Dr.",name:"Usha",middleName:null,surname:"Philipose",fullName:"Usha Philipose",slug:"usha-philipose"}]},{id:"16572",type:"chapter",title:"Gold and Silver Nanowires for Fluorescence Enhancement",slug:"gold-and-silver-nanowires-for-fluorescence-enhancement",totalDownloads:5753,totalCrossrefCites:2,signatures:"Goldys and Krystyna Drozdowicz-Tomsia",reviewType:"peer-reviewed",authors:[{id:"24735",title:"Dr.",name:"Ewa",middleName:null,surname:"Goldys",fullName:"Ewa Goldys",slug:"ewa-goldys"},{id:"39076",title:"MSc.",name:"Krystyna",middleName:null,surname:"Drozdowicz-Tomsia",fullName:"Krystyna Drozdowicz-Tomsia",slug:"krystyna-drozdowicz-tomsia"}]},{id:"16573",type:"chapter",title:"On the behavior of Ni Magnetic Nanowires as studied by FMR and the effect of “blocking”.",slug:"on-the-behavior-of-ni-magnetic-nanowires-as-studied-by-fmr-and-the-effect-of-blocking-",totalDownloads:3104,totalCrossrefCites:0,signatures:"Carlos A. Ramos, Ettore Vassallo Brigneti, Emilio De Biasi and Manuel Vázquez",reviewType:"peer-reviewed",authors:[{id:"26697",title:"Dr.",name:"Carlos A.",middleName:null,surname:"Ramos",fullName:"Carlos A. Ramos",slug:"carlos-a.-ramos"},{id:"44650",title:"Dr.",name:"Ettore",middleName:null,surname:"Vassallo Brigneti",fullName:"Ettore Vassallo Brigneti",slug:"ettore-vassallo-brigneti"},{id:"44651",title:"Dr.",name:"Manuel",middleName:null,surname:"Vázquez",fullName:"Manuel Vázquez",slug:"manuel-vazquez"},{id:"83705",title:"Dr.",name:"Emilio",middleName:null,surname:"De Biasi",fullName:"Emilio De Biasi",slug:"emilio-de-biasi"}]},{id:"16574",type:"chapter",title:"Growth of Germanium Nanowires on a Flexible Organic Substrate",slug:"growth-of-germanium-nanowires-on-a-flexible-organic-substrate",totalDownloads:2759,totalCrossrefCites:0,signatures:"Lauren Klein, Daniel Mastrogiovanni, Alan Wan and Eric Garfunkel",reviewType:"peer-reviewed",authors:[{id:"32895",title:"Ms",name:"Lauren",middleName:null,surname:"Klein",fullName:"Lauren Klein",slug:"lauren-klein"},{id:"35270",title:"Mr.",name:"Daniel",middleName:null,surname:"Mastrogiovanni",fullName:"Daniel Mastrogiovanni",slug:"daniel-mastrogiovanni"},{id:"35276",title:"Dr.",name:"Alan",middleName:null,surname:"Wan",fullName:"Alan Wan",slug:"alan-wan"},{id:"35290",title:"Dr.",name:"Eric",middleName:null,surname:"Garfunkel",fullName:"Eric Garfunkel",slug:"eric-garfunkel"}]},{id:"16575",type:"chapter",title:"Thermoelectric and Magnetic Nanowires",slug:"thermoelectric-and-magnetic-nanowires",totalDownloads:2471,totalCrossrefCites:0,signatures:"Yu-Biao Liu and Shao-Min Zhou",reviewType:"peer-reviewed",authors:[{id:"27255",title:"Prof.",name:"Shaomin",middleName:null,surname:"Zhou",fullName:"Shaomin Zhou",slug:"shaomin-zhou"}]},{id:"16576",type:"chapter",title:"Nanowire formation under femtosecond laser radiation in liquid",slug:"nanowire-formation-under-femtosecond-laser-radiation-in-liquid",totalDownloads:3820,totalCrossrefCites:2,signatures:"Kiyotaka Miura, Kazuyuki Hirao and Yasuhiko Shimotsuma",reviewType:"peer-reviewed",authors:[{id:"29247",title:"Prof.",name:"Yasuhiko",middleName:null,surname:"Shimotsuma",fullName:"Yasuhiko Shimotsuma",slug:"yasuhiko-shimotsuma"},{id:"34673",title:"Prof.",name:"Kiyotaka",middleName:null,surname:"Miura",fullName:"Kiyotaka Miura",slug:"kiyotaka-miura"},{id:"34674",title:"Prof.",name:"Kazuyuki",middleName:null,surname:"Hirao",fullName:"Kazuyuki Hirao",slug:"kazuyuki-hirao"}]},{id:"16577",type:"chapter",title:"High-Bias Instability of Atomic and Molecular Junctions",slug:"high-bias-instability-of-atomic-and-molecular-junctions",totalDownloads:1816,totalCrossrefCites:0,signatures:"Akira Sakai",reviewType:"peer-reviewed",authors:[{id:"29940",title:"Prof.",name:"Akira",middleName:null,surname:"Sakai",fullName:"Akira Sakai",slug:"akira-sakai"}]},{id:"16578",type:"chapter",title:"Electron Diffraction and HRTEM Structure Analysis of Nanowires",slug:"electron-diffraction-and-hrtem-structure-analysis-of-nanowires",totalDownloads:13244,totalCrossrefCites:1,signatures:"David Romeu, Alfredo Gomez and Jose Reyes-Gasga",reviewType:"peer-reviewed",authors:[{id:"32978",title:"Dr.",name:"Jose",middleName:null,surname:"Reyes-Gasga",fullName:"Jose Reyes-Gasga",slug:"jose-reyes-gasga"},{id:"65795",title:"Dr.",name:"David",middleName:null,surname:"Romeu",fullName:"David Romeu",slug:"david-romeu"},{id:"65796",title:"Dr.",name:"Alfredo",middleName:null,surname:"Gómez",fullName:"Alfredo Gómez",slug:"alfredo-gomez"}]},{id:"16579",type:"chapter",title:"Charge and Spin Transport in Magnetic Nanowires",slug:"charge-and-spin-transport-in-magnetic-nanowires",totalDownloads:2097,totalCrossrefCites:0,signatures:"Jamal Berakdar, Vitalii Dugaev, Jozef Barnas and Nicholas Sedlmayr",reviewType:"peer-reviewed",authors:[{id:"30045",title:"Prof.",name:"Jamal",middleName:null,surname:"Berakdar",fullName:"Jamal Berakdar",slug:"jamal-berakdar"},{id:"34763",title:"Prof.",name:"Vitalii",middleName:null,surname:"Dugaev",fullName:"Vitalii Dugaev",slug:"vitalii-dugaev"},{id:"34764",title:"Prof.",name:"Jozef",middleName:null,surname:"Barnas",fullName:"Jozef Barnas",slug:"jozef-barnas"},{id:"34765",title:"Dr",name:"Nicholas",middleName:null,surname:"Sedlmayr",fullName:"Nicholas Sedlmayr",slug:"nicholas-sedlmayr"}]},{id:"16580",type:"chapter",title:"Nanowires of Molecule-Based Conductors",slug:"nanowires-of-molecule-based-conductors",totalDownloads:2528,totalCrossrefCites:0,signatures:"Dominique De Caro",reviewType:"peer-reviewed",authors:[{id:"24556",title:"Prof.",name:"Dominique",middleName:null,surname:"De Caro",fullName:"Dominique De Caro",slug:"dominique-de-caro"}]},{id:"16581",type:"chapter",title:"Novel Pressure-Induced Structural Transformations of Inorganic Nanowires",slug:"novel-pressure-induced-structural-transformations-of-inorganic-nanowires",totalDownloads:3165,totalCrossrefCites:0,signatures:"Zhaohui Dong and Yang Song",reviewType:"peer-reviewed",authors:[{id:"27204",title:"Prof.",name:"Yang",middleName:null,surname:"Song",fullName:"Yang Song",slug:"yang-song"},{id:"34337",title:"Ms.",name:"Zhaohui",middleName:null,surname:"Dong",fullName:"Zhaohui Dong",slug:"zhaohui-dong"}]}]},relatedBooks:[{type:"book",id:"191",title:"Advances in Nanocomposite Technology",subtitle:null,isOpenForSubmission:!1,hash:"4dc3407e602cdd348af663727baebe3d",slug:"advances-in-nanocomposite-technology",bookSignature:"Abbass Hashim",coverURL:"https://cdn.intechopen.com/books/images_new/191.jpg",editedByType:"Edited by",editors:[{id:"6700",title:"Dr.",name:"Abbass A.",surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"17087",title:"Solar Nanocomposite Materials",slug:"solar-nanocomposite-materials",signatures:"Zhengdong Cheng",authors:[{id:"33890",title:"Dr.",name:"Eleonora",middleName:null,surname:"Erdmann",fullName:"Eleonora Erdmann",slug:"eleonora-erdmann"},{id:"44236",title:"Prof.",name:"Hugo A.",middleName:null,surname:"Destéfanis",fullName:"Hugo A. Destéfanis",slug:"hugo-a.-destefanis"},{id:"44237",title:"Dr.",name:"Marcos L.",middleName:null,surname:"Dias",fullName:"Marcos L. Dias",slug:"marcos-l.-dias"}]},{id:"17088",title:"Conducting Polymer-Metal Nanocomposite Coating on Fibers",slug:"conducting-polymer-metal-nanocomposite-coating-on-fibers",signatures:"Syuji Fujii, Mizuho Kodama, Soichiro Matsuzawa, Hiroyuki Hamasaki, Atsushi Ohtaka and Yoshinobu Nakamura",authors:[{id:"26655",title:"Dr.",name:"Syuji",middleName:null,surname:"Fujii",fullName:"Syuji Fujii",slug:"syuji-fujii"},{id:"38106",title:"Mr.",name:"Soichiro",middleName:null,surname:"Matsuzawa",fullName:"Soichiro Matsuzawa",slug:"soichiro-matsuzawa"},{id:"38108",title:"Dr.",name:"Atsushi",middleName:null,surname:"Ohtaka",fullName:"Atsushi Ohtaka",slug:"atsushi-ohtaka"},{id:"38109",title:"Prof.",name:"Yoshinobu",middleName:null,surname:"Nakamura",fullName:"Yoshinobu Nakamura",slug:"yoshinobu-nakamura"},{id:"38123",title:"Ms",name:"Mizuho",middleName:null,surname:"Kodama",fullName:"Mizuho Kodama",slug:"mizuho-kodama"},{id:"38128",title:"Mr",name:"Hiroyuki",middleName:null,surname:"Hamasaki",fullName:"Hiroyuki Hamasaki",slug:"hiroyuki-hamasaki"}]},{id:"17089",title:"Electroplated Nanocomposites of High Wear Resistance for Advanced Systems Application",slug:"electroplated-nanocomposites-of-high-wear-resistance-for-advanced-systems-application",signatures:"Ioury Timoshkov, Victor Kurmashev and Vadim Timoshkov",authors:[{id:"28545",title:"Dr.",name:"Ioury",middleName:"Victorovich",surname:"Timoshkov",fullName:"Ioury Timoshkov",slug:"ioury-timoshkov"},{id:"39183",title:"Prof.",name:"Victor",middleName:"Ivanovich",surname:"Kurmashev",fullName:"Victor Kurmashev",slug:"victor-kurmashev"},{id:"39186",title:"Mr",name:"Vadim",middleName:null,surname:"Timoshkov",fullName:"Vadim Timoshkov",slug:"vadim-timoshkov"}]},{id:"17090",title:"Nanocomposite Thin Films Resulting from Au Nanoclusters Dispersed in Titanium Oxide Dielectric Matrixes: the Surface Plasmon Resonance Effect",slug:"nanocomposite-thin-films-resulting-from-au-nanoclusters-dispersed-in-titanium-oxide-dielectric-matri",signatures:"Marc Torrell Faro, Mikhail I. Vasilevskiy, Albano Cavaleiro and Filipe Vaz",authors:[{id:"32034",title:"Dr.",name:"Marc",middleName:null,surname:"Torrell Faro",fullName:"Marc Torrell Faro",slug:"marc-torrell-faro"},{id:"37071",title:"Prof.",name:"Albano",middleName:null,surname:"Cavaleiro",fullName:"Albano Cavaleiro",slug:"albano-cavaleiro"},{id:"37072",title:"Dr.",name:"Filipe",middleName:null,surname:"Vaz",fullName:"Filipe Vaz",slug:"filipe-vaz"},{id:"99627",title:"Prof.",name:"Mikhail I.",middleName:null,surname:"Vasilevskiy",fullName:"Mikhail I. Vasilevskiy",slug:"mikhail-i.-vasilevskiy"}]},{id:"17091",title:"Comparative Study of Membranes Obtained from PA6 and PA66/National Clay Nanocomposites",slug:"comparative-study-of-membranes-obtained-from-pa6-and-pa66-national-clay-nanocomposites",signatures:"Edcleide Araujo, Amanda M. D. Leite, Vanessa Da N. Medeiros, Rene Anisio Paz and Helio De L. Lira",authors:[{id:"39987",title:"Prof.",name:"Edcleide",middleName:null,surname:"Araujo",fullName:"Edcleide Araujo",slug:"edcleide-araujo"},{id:"40708",title:"Ms.",name:"Amanda M. D.",middleName:null,surname:"Leite",fullName:"Amanda M. D. Leite",slug:"amanda-m.-d.-leite"},{id:"40709",title:"Ms.",name:"Vanessa da N.",middleName:null,surname:"Medeiros",fullName:"Vanessa da N. Medeiros",slug:"vanessa-da-n.-medeiros"},{id:"40710",title:"Mr.",name:"Rene Anisio",middleName:null,surname:"Paz",fullName:"Rene Anisio Paz",slug:"rene-anisio-paz"},{id:"40711",title:"Prof.",name:"Helio De L.",middleName:null,surname:"Lira",fullName:"Helio De L. Lira",slug:"helio-de-l.-lira"}]},{id:"17092",title:"Clay-Containing Polysulfone Nanocomposites",slug:"clay-containing-polysulfone-nanocomposites",signatures:"Priscila Anadão",authors:[{id:"27239",title:"Dr.",name:"Priscila",middleName:null,surname:"Anadão",fullName:"Priscila Anadão",slug:"priscila-anadao"}]},{id:"17093",title:"Processing and Characterization of Alumina/ Chromium Carbide Ceramic Nanocomposite",slug:"processing-and-characterization-of-alumina-chromium-carbide-ceramic-nanocomposite",signatures:"Jow-Lay Huang and Pramoda Nayak",authors:[{id:"29768",title:"Prof.",name:"Jow-Lay",middleName:null,surname:"Huang",fullName:"Jow-Lay Huang",slug:"jow-lay-huang"},{id:"38997",title:"Dr.",name:"Pramoda Kumar",middleName:null,surname:"Nayak",fullName:"Pramoda Kumar Nayak",slug:"pramoda-kumar-nayak"}]},{id:"17094",title:"Environmentally-Safe Catalytically Active and Biocide Polymer-Metal Nanocomposites with Enhanced Structural Parameters",slug:"environmentally-safe-catalytically-active-and-biocide-polymer-metal-nanocomposites-with-enhanced-str",signatures:"Amanda Alonso, Jorge Macanás, Gemma-Louise Davies, Yuri Gounko, Maria Muñoz and Dmitri Muraviev",authors:[{id:"30295",title:"Dr.",name:"Dmitri",middleName:null,surname:"Muraviev",fullName:"Dmitri Muraviev",slug:"dmitri-muraviev"},{id:"38647",title:"MSc.",name:"Amanda",middleName:null,surname:"Alonso",fullName:"Amanda Alonso",slug:"amanda-alonso"},{id:"38648",title:"Dr.",name:"Yurii",middleName:null,surname:"Gunko",fullName:"Yurii Gunko",slug:"yurii-gunko"},{id:"100085",title:"Dr",name:"Gemma-Louise",middleName:null,surname:"Davies",fullName:"Gemma-Louise Davies",slug:"gemma-louise-davies"},{id:"100086",title:"Dr.",name:"Maria",middleName:null,surname:"Muñoz",fullName:"Maria Muñoz",slug:"maria-munoz"},{id:"100087",title:"Prof.",name:"Jorge",middleName:null,surname:"Macanás",fullName:"Jorge Macanás",slug:"jorge-macanas"}]},{id:"17095",title:"Silicate Glass-Based Nanocomposite Scintillators",slug:"silicate-glass-based-nanocomposite-scintillators",signatures:"Martin Nikl, Daniel Niž?anský, Jakub Ruzicka, Carla Cannas and Takayuki Yanagida",authors:[{id:"37021",title:"Dr.",name:"Martin",middleName:null,surname:"Nikl",fullName:"Martin Nikl",slug:"martin-nikl"},{id:"40644",title:"Mr.",name:"Daniel",middleName:null,surname:"Niznansky",fullName:"Daniel Niznansky",slug:"daniel-niznansky"},{id:"40645",title:"Mr.",name:"Jakub",middleName:null,surname:"Ruzicka",fullName:"Jakub Ruzicka",slug:"jakub-ruzicka"},{id:"123460",title:"Dr.",name:"Carla",middleName:null,surname:"Cannas",fullName:"Carla Cannas",slug:"carla-cannas"},{id:"123461",title:"Prof.",name:"Takayuki",middleName:null,surname:"Yanagida",fullName:"Takayuki Yanagida",slug:"takayuki-yanagida"}]},{id:"17096",title:"Deformation and Failure Mechanisms in Ceramic-Reinforced Metal-Matrix Composites at Atomic Scales",slug:"deformation-and-failure-mechanisms-in-ceramic-reinforced-metal-matrix-composites-at-atomic-scales",signatures:"Avinash Dongare and Bruce LaMattina",authors:[{id:"39840",title:"Prof.",name:"Bruce",middleName:null,surname:"LaMattina",fullName:"Bruce LaMattina",slug:"bruce-lamattina"},{id:"39841",title:"Dr.",name:"Avinash",middleName:null,surname:"Dongare",fullName:"Avinash Dongare",slug:"avinash-dongare"}]},{id:"17097",title:"Functionalized Graphene Nanocomposites",slug:"functionalized-graphene-nanocomposites",signatures:"Paula Marques, Gil Gonçalves, Sandra Cruz, Nuno Almeida, Manoj Singh, José Grácio and António Sousa",authors:[{id:"30747",title:"Dr.",name:"Paula",middleName:null,surname:"Marques",fullName:"Paula Marques",slug:"paula-marques"},{id:"34732",title:"Dr.",name:"Manoj",middleName:null,surname:"Singh",fullName:"Manoj Singh",slug:"manoj-singh"},{id:"40735",title:"Dr.",name:"Gil",middleName:"Alberto Batista",surname:"Gonçalves",fullName:"Gil Gonçalves",slug:"gil-goncalves"},{id:"40736",title:"Dr.",name:"Sandra",middleName:"M. A.",surname:"Cruz",fullName:"Sandra Cruz",slug:"sandra-cruz"},{id:"40737",title:"MSc.",name:"Nuno",middleName:null,surname:"Almeida",fullName:"Nuno Almeida",slug:"nuno-almeida"},{id:"40738",title:"Prof.",name:"António",middleName:null,surname:"Sousa",fullName:"António Sousa",slug:"antonio-sousa"},{id:"40739",title:"Prof.",name:"José",middleName:"joaquim",surname:"Grácio",fullName:"José Grácio",slug:"jose-gracio"}]},{id:"17098",title:"Biofunctional Composites of Polysaccharides Containing Inorganic Nanoparticles",slug:"biofunctional-composites-of-polysaccharides-containing-inorganic-nanoparticles",signatures:"Tito Trindade and Ana Luísa Daniel-Da-Silva",authors:[{id:"30304",title:"Prof.",name:"Tito",middleName:null,surname:"Trindade",fullName:"Tito Trindade",slug:"tito-trindade"},{id:"30476",title:"Dr.",name:"Ana Luísa",middleName:null,surname:"Daniel-da-Silva",fullName:"Ana Luísa Daniel-da-Silva",slug:"ana-luisa-daniel-da-silva"}]},{id:"17099",title:"Applications of Antimicrobial Polymer Nanocomposites in Food Packaging",slug:"applications-of-antimicrobial-polymer-nanocomposites-in-food-packaging",signatures:"Aryou Emamifar",authors:[{id:"31204",title:"Dr.",name:"Aryou",middleName:null,surname:"Emamifar",fullName:"Aryou Emamifar",slug:"aryou-emamifar"}]},{id:"17100",title:"Functional Polymer Nanocomposite Materials from Microfibrillated Cellulose",slug:"functional-polymer-nanocomposite-materials-from-microfibrillated-cellulose",signatures:"Philippe Tingaut, Christian Eyholzer and Tanja Zimmermann",authors:[{id:"40601",title:"Dr.",name:"Philippe",middleName:null,surname:"Tingaut",fullName:"Philippe Tingaut",slug:"philippe-tingaut"},{id:"40608",title:"Dr.",name:"Tanja",middleName:null,surname:"Zimmermann",fullName:"Tanja Zimmermann",slug:"tanja-zimmermann"}]},{id:"17101",title:"Versatile Nanocomposite Formulation System of Non-Steroidal Anti-Inflammatory Drugs of the Arylalkanoic Acids",slug:"versatile-nanocomposite-formulation-system-of-non-steroidal-anti-inflammatory-drugs-of-the-arylalkan",signatures:"Mohamed Berber, Inas Hafez, Keiji Minagawa, Takeshi Mori and Masami Tanaka",authors:[{id:"41703",title:"Dr.",name:"Mohamed",middleName:"R.",surname:"Berber",fullName:"Mohamed Berber",slug:"mohamed-berber"},{id:"43066",title:"Mrs.",name:"Inas",middleName:null,surname:"Hafez",fullName:"Inas Hafez",slug:"inas-hafez"},{id:"43067",title:"Prof.",name:"Keiji",middleName:null,surname:"Minagawa",fullName:"Keiji Minagawa",slug:"keiji-minagawa"},{id:"43068",title:"Prof.",name:"Takeshi",middleName:null,surname:"Mori",fullName:"Takeshi Mori",slug:"takeshi-mori"},{id:"43069",title:"Mr.",name:"Masami",middleName:null,surname:"Tanaka",fullName:"Masami Tanaka",slug:"masami-tanaka"}]},{id:"17102",title:"Dendrimers in Anti-HIV Therapy",slug:"dendrimers-in-anti-hiv-therapy",signatures:"Volha Dzmitruk, Dzmitry Shcharbin, Elzbieta Pedziwiatr and Maria Bryszewska",authors:[{id:"27027",title:"Dr.",name:"Dzmitry",middleName:null,surname:"Shcharbin",fullName:"Dzmitry Shcharbin",slug:"dzmitry-shcharbin"},{id:"32632",title:"Ms.",name:"Volha",middleName:null,surname:"Dzmitruk",fullName:"Volha Dzmitruk",slug:"volha-dzmitruk"},{id:"32633",title:"Mrs.",name:"Elzbieta",middleName:null,surname:"Pedziwiatr",fullName:"Elzbieta Pedziwiatr",slug:"elzbieta-pedziwiatr"},{id:"32634",title:"Prof.",name:"Maria",middleName:"Jolanta",surname:"Bryszewska",fullName:"Maria Bryszewska",slug:"maria-bryszewska"}]}]}],publishedBooks:[{type:"book",id:"1045",title:"Nanocomposites and Polymers with Analytical Methods",subtitle:null,isOpenForSubmission:!1,hash:"65d477e855685ea85913e5aba0c5217e",slug:"nanocomposites-and-polymers-with-analytical-methods",bookSignature:"John Cuppoletti",coverURL:"https://cdn.intechopen.com/books/images_new/1045.jpg",editedByType:"Edited by",editors:[{id:"49991",title:"Dr.",name:"John",surname:"Cuppoletti",slug:"john-cuppoletti",fullName:"John Cuppoletti"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5308",title:"Nanofiber Research",subtitle:"Reaching New Heights",isOpenForSubmission:!1,hash:"e5d2ad58b1840ec81e587914d52f5e0b",slug:"nanofiber-research-reaching-new-heights",bookSignature:"Mohammed Muzibur Rahman and Abdullah M. Asiri",coverURL:"https://cdn.intechopen.com/books/images_new/5308.jpg",editedByType:"Edited by",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8447",title:"Density Functional Theory Calculations",subtitle:null,isOpenForSubmission:!1,hash:"430664e87463d090a0f03b1f096a7d9d",slug:"density-functional-theory-calculations",bookSignature:"Sergio Ricardo De Lazaro, Luis Henrique Da Silveira Lacerda and Renan Augusto Pontes Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/8447.jpg",editedByType:"Edited by",editors:[{id:"176017",title:"Prof.",name:"Sergio Ricardo De",surname:"Lazaro",slug:"sergio-ricardo-de-lazaro",fullName:"Sergio Ricardo De Lazaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1504",title:"Fingerprints in the Optical and Transport Properties of Quantum Dots",subtitle:null,isOpenForSubmission:!1,hash:"426663a84c1bdc6d7af7042655bda8a0",slug:"fingerprints-in-the-optical-and-transport-properties-of-quantum-dots",bookSignature:"Ameenah Al-Ahmadi",coverURL:"https://cdn.intechopen.com/books/images_new/1504.jpg",editedByType:"Edited by",editors:[{id:"25229",title:"Dr.",name:"Ameenah",surname:"Al-Ahmadi",slug:"ameenah-al-ahmadi",fullName:"Ameenah Al-Ahmadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5402",title:"X-ray Characterization of Nanostructured Energy Materials by Synchrotron Radiation",subtitle:null,isOpenForSubmission:!1,hash:"1a53b7530fa9a013104e94871bf9258b",slug:"x-ray-characterization-of-nanostructured-energy-materials-by-synchrotron-radiation",bookSignature:"Mehdi Khodaei and Luca Petaccia",coverURL:"https://cdn.intechopen.com/books/images_new/5402.jpg",editedByType:"Edited by",editors:[{id:"19478",title:"Dr.",name:"Mehdi",surname:"Khodaei",slug:"mehdi-khodaei",fullName:"Mehdi Khodaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],publishedBooksByAuthor:[{type:"book",id:"2245",title:"Plasmonics",subtitle:"Principles and Applications",isOpenForSubmission:!1,hash:"e74f79681a8c87bb027f48ad33a3e068",slug:"plasmonics-principles-and-applications",bookSignature:"Ki Young Kim",coverURL:"https://cdn.intechopen.com/books/images_new/2245.jpg",editedByType:"Edited by",editors:[{id:"12009",title:"Dr.",name:"Ki Young",surname:"Kim",slug:"ki-young-kim",fullName:"Ki Young Kim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"156",title:"Nanowires",subtitle:"Fundamental Research",isOpenForSubmission:!1,hash:"cb9807317fbac1c3c7775b10ae2921a7",slug:"nanowires-fundamental-research",bookSignature:"Abbass Hashim",coverURL:"https://cdn.intechopen.com/books/images_new/156.jpg",editedByType:"Edited by",editors:[{id:"6700",title:"Dr.",name:"Abbass A.",surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},onlineFirst:{chapter:{type:"chapter",id:"78323",title:"Goat Type Selection and Molecular Markers; a Solution for Milk Production in Recently Desertified Zones",doi:"10.5772/intechopen.99346",slug:"goat-type-selection-and-molecular-markers-a-solution-for-milk-production-in-recently-desertified-zon",body:'
1. Introduction
The current climate change is a consequence of the increased content of atmospheric CO2, CH4, N2O, and particulate matter, which raised in 1.2°C (2018) the surface air temperature [1]. This warming climate change has impacted the hydrological cycle inducing a Hadley cell expansion and poleward movements of the jet stream, making dry areas becoming drier and wet areas became wetter [1]. This effect has been observed mainly in countries situated between 30 degrees latitude south and 30-degree latitude north (Hardly cell) and correspond very well with the reported literature by these countries to counteracts or diminish the drought effect on farming activities [2, 3, 4, 5]. Among these detrimental effects, desertification is defined as the effects of constant dry or persistent drought on fertile lands, making them desert and unsuitable for agricultural activities.
Farming land is a limited resource and climate change is reducing it, due to the desertification of rural areas usually used for agricultural purposes [6]. This devastating impact requires mitigation actions to prevent the advance of poverty in farming communities, the food shortage, and the loss of farming land [5, 6]. In this sense, is necessary to take action and start goat breeding plans in places with advanced desertification conditions that threaten the goat farming activity and their rural communities. One of these actions has been the migration of Pastoral activities to livestock production to sustain the goat farming in lands hardly affected by desertification [5]. This adaptation involves changes in the feed resources, the growth of forage resistance to desert or arid conditions but with good nourish properties, and the improvements in goat management to reduce the heat stress and sustain the goat milk and milk derivatives such as Cheese, and Yogurt [2, 5, 7].
Fortunately, the solution to sustaining goat farming activities is the goat itself. Among livestock animals, the goat is the best candidate to sustain farming activities in desert or arid zones [3, 8]. This is because domestic goat (C. hircus) is originally from the middle east and then was diversifying and habitat diverse places in Europe, Asia, and North Africa, to finally arrives in America and Australia by the European conquers [9, 10, 11]. C. hircus species has three genetic lineages. The first lineage A is present in diverse goat types across many continents and started at >200,000 years ago (YA), a long period before the beginning of goat domestication estimated around 9,000–13,000 YA according to fossil evidence [12]. While the lineage B and C started immediately after goat domestication and expanded around 10,000 YA to South and West Asia [12]. Regarding the descendant of lineage A, there is a weak cluster geographically marked (around 10%), suggesting that most of them have been widespread across the globe due to their natural migration with the human population across human history [10, 13]. That suggests domestic goat has a genetic diversity across the globe, being a huge source of diverse goat types with different adaptation traits to improve milk production in different local environments and resist climate change in rural places with limited resources [3, 14].
This chapter will discuss goat diversity and its potential in developing high milk production in desert zones. The unsuccessful experiences of not-desert dairy goats introduced in desert zones will be commented on, and the advantage of desert goats as well. Besides, the unexplored creole goats will be commented as an unexplored goat type with a valuable genetic patrimony to adapt to harsher conditions. Finally, taking advantage of all advances in genomics and molecular markers to follow goat milk production, will be discussed how these tools have been used and which are their potential to assist crossbreeding plan to improve goat milk production in areas affected by desertification.
2. Methodology
The literature analysis was done using google scholar and keywords such as; dry, desert, milk production, goat, farming, casein among other related words. Those studies performed on countries with hot, arid, or desert zones were considered for analysis and others studies from other countries that not belong to dry or desert areas were added to enrich the discussion.
2.1 Comparison of Milk Yield in Diverse Goat Types
Table 1 is a comparative and normalized analysis of milk yield per day for diverse goat species that inhabit hot, desert, or arid zones was performed. Not all these studies have reported the same milk yield parameter in terms of kg of milk per day. For those studies with a reported total lactation yield, the total milk yield was divided by the lactation period to obtain the milk yield in kg/day. In cases of total or daily milk, the yield was reported in liters, the conversion to kg was performed using the goat milk density of 1,11285 kg/l. That value comes as the average of the milk density considered in a range of 0.9917 to 1.2324 kg/l according to the report by Gabas et al. [29].
3.1 Milk production by dairy goat naturally not adapted for arid or drought zones
Dairy goats like Saanen (Sweden), Toggenburg (Sweden), Alpine (France), and Anglo-Nubian (England) have a remarkable high milk yield under extensive breeding conditions producing between 600 to 1000 kg of milk per lactation period and extraordinarily exception until 3000 kg of milk as described for a Toggenburg goat animal in 1997 [16, 30]. Therefore, seems common sense to introduce any of these dairy goats in arid zones to promote goat milk production. However, this naive approach does not always have succeed. Common dairy goats are naturally adapted to live in moistening and cold environments with plenty of food and water covering all their metabolic demands. While in dry or arid zones they have a limited food resources and dry conditions that do not satisfy their metabolic demand for high milk production [31].
Common dairy goats introduced in tropical or desert environments have a low milk yield barely producing. 200 L and 80 L, respectively [16, 22, 32, 33], as a consequence of the heat stress condition and changes in their cellular metabolism and immune response [22, 33, 34, 35, 36, 37]. Dairy goats under heat stress conditions reduce their food intake between 22 and 35% and their milk production between 3 and 10% with a reduced content of lipids, proteins, and lactose [35]. In Trinidad and Tobago, Saanen goats were introduced to improve local goat milk production but this initiative never prospered because the animals never were able to adapt to their arid conditions, manifesting detrimental thermoregulation, reduced prolificacy, and low kidding interval [38]. In a similar situation, local farmers from Tanzania imported Saanen, Toggenburg, and Norwegian goats to start dairy goat farming, and they reached a maximum milk yield of 1.2 kg per day, which was three times less than the expected 3.5 kg per day for Saanen and Toggenburg and the half of expected 2.3 kg for Norwegian goats [17]. These authors also noted that dairy goats had a low birth rate of 64%, while in a cool and moist environment the Saanen goat has an 81% of birth rate (Figure 1) [39], concluding that new breeding schemes must be planned to support a more productive goat farming activity [17].
Figure 1.
Milk production of Saanen goat in different environments.
Another interesting experience was took place in the Atacama Desert in Northern Chile. This place is one of the driest deserts in the world with less than 5 mm of rainwater per year, and comprise the Pampa of Tamarugal as an agricultural area with a protected forest placed at its core [40, 41, 42]. Underground of this Pampa of Tamarugal there is a water basin that sustains these agricultural activities and its forest, which have trees with deep roots to reach this water source [43, 44]. However, even with this water and food supplies available, the high temperatures and low moisture may induce heat stress on dairy goats affecting their milk yield (Figure 1). That explains the low milk yield observed in Saanen goats introduced in this Pampa in 2008–2009 by local ranchers within a regional strategy to improve goat milk production in local communities [33]. They include a low number of animals and in consequence, their statistics is not strong enough, but still this study worth its analysis.
They perform a crossbreeding between Saanen goat using one male and ten females, and another crossbreeding with one creole male and six Saanen females. In the first crossbreeding group they had seven pregnant goats and one of them had a spontaneous abortus, while the second crossbreeding group had four pregnant goats and any spontaneous abortus. Unexpectedly, all pregnant goats of the first group ended their gestation period delivering twins of the same gender or different genders. While the second group had only one pregnant goat that delivered twins of the same gender [33]. Usually, Saanen has a 22–45% of goat’s twins birth rates according to the doe age [39], so these unexpected results might be linked to some genetic traits present in the male Saanen [45], although this observation was unexplored by the authors [33].
The litter size observation is relevant because could be considered as a predictive value for milk yield. In Alpine goats with twins or triplets offspring produced on average 32 kg more milk than singletons goats [46]. Similarly, a study performed in the United Kingdom demonstrated that Saanen goat with single birth, during its first, second, and third lactation period produced at the 50 days a total of 143, 150, and 91 kg of milk, respectively. While twin birth goats produced 156, 205, and 216 kg of milk in the same period [47]. That constitutes an increment of 37% and 137% regarding the singleton milk yield during the second and third lactation periods.
From that perspective, for Olave et al., the high amount of twin birth observed in their study would auspice a high milk yield in that study group. However, they reported an opposite result. The maximum milk yield was 1,8 L of milk at day 10, decreasing the milk production at 1 L at 50 days and then 0.5 L until 100 days of lactation. Although the authors [17] did not determine the average total milk yield per goat, their graphic suggests a total milk production of around 60 L at day 50. Considering a milk density of 1.112 kg per mm3 [29], the authors probably produced around 66.7 kg of total milk at day 50, which is around 46% less than the expected for a Saanen goat only the 32% of the expected production for a mother goat with twin birth rate at the second lactation period [47].
In summary, the study of Olave et al. [33] is interesting because demonstrates that the introduction of common dairy goats in desert zones, even under a controlled condition with plenty of food and water, finally is hardly affected by the low moisture and high temperatures reducing their milk yield. Therefore, seems do not recommendable to introduce common dairy goats in desert zones, unless a high investment in technology would be endorsed to adapt the desert environment for a more moisture and cool husbandry. Although this investment could be afforded by developed countries, for smallholder from developing countries [48, 49] cheaper alternatives are needed, being important to explore new crossbreeding programs with native and dairy goats without major changes in goat farming.
3.2 Milk production by dairy goat adapted to arid or drought zones
In arid or desert zones, native goats have been well adapted to produce high-quality milk under limited supply conditions. In Israel, the black Bedouin goat that habitat at the desert of Negev (Figure 2), can produce between 0.95 to 1.561 kg of milk per day during the first lactation period in goats of 1–2 biological years (Table 1), and until 1.640 kg per day in older goats of 3–7 biological years [50]. This goat produces quality milk with a stable content of protein, fat, and lactose in 3.5%, 5.5%, and 5%, respectively, until the fourth lactation period [15]. Therefore, this goat is a highly efficient livestock animal that produces high-quality milk under desert conditions [51].
Figure 2.
Distribution of desert and creole goats with the potential to boost milk production in desertified areas. The map represents the land and ocean temperatures departures for average Dec 2020 with respect to a 1981–2010 base period (map from National Center for environmental information, GHCNM v4 0.1.20210105.qfe). The maps shows the habitat of selected goat breed that habitat to hot area in the Middle East, India and northern Chile. The goat breeds are: 1, northern Chilean Creole goat; 2, Barki goat; 3, Zarabi goat; 4, black Bedouin goat; 5, Ardi goat; 6, Kutchi goat; 7, Beetal goat; 8, Jamunapari goat.
Black Bedouin goat has a better adapted physiological response for dryness conditions than Saanen goat. The Bedouin goat can adapt its feed intake from 63.9 g/kg to 52.0 g/kg after 3 days of dehydration, while for the Saanen goat the same adaptation involves a more extensive feed intake reduction from 95.0 to 55.3 g/kg in the same period [52]. In other words, Bedouin goat is already adapated for goat farming under low consumption of nutrients and waters in heat stress envirnments, reaching a basal physiological condition without stress. Meanwhile, for Saanen goats, there is a higher gap between the standard food and water demands under milk farming production, and a basal physiological state under heat stress conditions, being more physiologically stressfull for this dairy goat. Curiously, both Bedouin and Saanen goats were able of reaches the same water and food intake rate after three days of dryness [52]. In consequence, the black Bedouin goat tolerates much better the heat stress and constitutes a better race option for goat farming in arid and desert zones [53].
Black Bedouin (Dhaiwi), Sahrawi (Desert) and Jordanian Damascus (Shami) goats are from Jordan (Figure 2), and like many other goats of the middle east have a common genetic origin [54]. Black Bedouin, Sharawi and Ardi goats belong to the same phylogenetic cluster according to genetic studies based on the polymorphisms of 17 microsatellite [54]. Curiously, the Ardi goat does not belong to the Jordan Country but to the Kingdom of Saudi Arabia (KSA), the nearby country (Figure 2). This goat is capable of regulating its hearth beat, corporal temperature, and diverse hormones like cortisol, triiodothyronine, and thyroxin according to the season (winter or summer), showing its evolutionary adaptation traits to live in hot and dry environments [55]. Consequently, the Ardi goat is considered the best animal for goat farming across all KAS, supporting harsher conditions, limited feed nutrition, and still give enough meat and milk to sustain economically to local farmers [56]. For that reason has been included in a national breeding program to spread its genetic trait on the herd of goat farmers across the KAS to increase the meat and milk productivity and decrease the national poverty rate [56]. The Ardi goat has a milk yield production of around 225 kg for milk yield [57], and within a crossbreeding plan with Damascus goat, they have produced a hybrid offspring capable of produce until 514.19 kg for milk yield and better milk quality in term of fats and proteins content than the Ardi and Damascus goats by itself, suggesting a good opportunity to improve the herd genetic background and increase the milk production among goat ranchers [57].
Egypt is another country of the middle east, and its coast harbor the Barki goat (Figure 2), which has evolved to live in arid zones [18]. Its genome possesses genes related to thermotolerance, body size, energy metabolism, digestive and nervous system, and immune response [18]. In a study with a lactation period of 16 weeks, the Barki and Zarabi goats have a low milk yield of around 0.7 kg/day of milk and 1.0 kg/day, in comparison with the 1.3 kg/day produced by Damascus Breed (Table 1) [58]. The crossbreeding between Zaraibi or Damascus male with Barki Dam produced an offspring that increased the milk yield to an equal or similar value of Zarabi and Damascus parental goats (Table 1) [58]. This improvement may be related to the polymorphism of the β-lactoglobulin gene [57], a molecular marker for milk production [19]. In this genotype the alleles most related to milk production in decreasing order are; A > B > C > D. Therefore, goats with A or B genotypes will produce more milk than those with C or D genotype. For example, in Damascus goat the most frequent polymorphism is AC (33%), BD(25%), BB(17%) and AA(17%), while in Zarabi goat is mainly BD(73%) and a reduced population of AC(27%), and for Barki goats is BD (73%) [59]. Therefore, using molecular markers to select those parents with A or B genotype and then identify in the offspring those with AA, BB or AB genotype, could help to adders crossbreeding strategies between Barki and Zaraibi or Damascus goats to improve the genetic background of the selected herd keeping only those kids with the AA genotype for milk production, shown in Figure 3.
Figure 3.
Example of a crossbreeding strategy assisted by β-lactoglobulin molecular markers.
Another interesting dairy goat from dryer zones is the Indian Beetal goat (Figure 2). Its lactation curve showed a milk yield of 1.2–1.3 kg/day according to the parity and doe age [60], and its milk has been used for yogurt production with good sensory and nutritional characteristics [20]. The Beetal goat, together with Kutchi and Jamunapari breeds are classified among the more productive dairy goats in India (Figure 2) [16] and considered a useful multipurpose goat for tropical and dry environments [34, 61]. Regarding the crossbreeding strategies, the crossbreed between Barbari and Beetal goat produced an offspring more productive than their parents [62]. The Barbari goat produced 0.886 kg for milk yield, meanwhile, the Barbari x Beetal crossed goat produced 1,045 kg for milk yield (Table 1) [63]. In the same way, a crossbreed between Beetal with Saanen or Alpine goats produced offspring with the same milk yield as Saanen and Alpine goats in tropical environments (291.4 kg vs. 303.1 kg), but with a shorter lactation period (230 days vs. 248.2 days) [22] (Table 1). That improvement was an advantage for local farmers because involve the same milk production but in a shortened period.
In other desert areas, the crossbreeding experiences using parental desert goat breeds and non-desert dairy goats have given different results. However, these studies have shown inconsistency in the parity, milking frequency per day, feed conditions, lactation stage, and environmental factors, making it difficult to do a fair comparative analysis between them. For example, in Sudan, the crossbred Saanen-Nubian goat produced 1.2 L (≈ 1.3 kg) per day and with only one milking per day (Table 1), with limited food, and during the second lactation period [21], while in a similar experience applying the same crossbreeding strategy (Saanen-Nubian) had an offspring able of produced 2.55 kg for daily milk yield during the second lactation period and increasing to 3.37 kg for milk yield in the third lactation period [23]. In this last study, the pure parental Saanen and Nubian breed animals produced 0.67 and 0.73 kg of milk daily, evidencing the detrimental effect of the heat stress on their milk production, and suggesting that the off spring have acquired the best adaptative traits from their Saanen and Namibia goat parental to produce high milk yield in the desert and arid conditions.
Another good experience was reported for a crossbreeding between the Sahelian and Anglo-Nubian goats. The offspring produced 1.37 kg milk per day, while the Sahelian goats only produce 0.74 kg/day, half of the hybrid milk production. Besides, this hybrid crossbred goat increased their milk quality from 4.7% to 5.8% for total lipids concentration and from 3.9% to 4.1% for total protein contents [64]. On the contrary, in Iran, the crossbreeding between local goat Mamasani and Saanen breed had a progeny able to produce 1.31 kg of milk per day, the double volume produced by the local Mamasani goat (0.65 kg per day) (Table 1). However, this progeny produced low-quality milk with reduced fat-protein contents, changing the expected 4.8% to 4.1% of fat and protein contents from 3.9% to 3.6%, respectively [24]. In Albania, the crossbreed goat between Alpine and local goats produced 30% more milk than native goats, but still was half of the milk yield of the Alpine breed and the milk quality was not evaluated [25].
In consequence, a great diversity of goat breeds well adapted for arid and desert zones are good candidates for crossbreeding plans addressed to improve the goal milk yield of the herd. However, each crossbreeding plan has to be meticulously planned and executed because diverse experiences have shown different results, some of them very successfully but others barely succeed.
3.3 The creole goats in dairy goat farming; an unexplored type
Creole goats arrives with the colonizers and was adapted to the local environment across the centuries. Genetic studies based on the polymorphism of microsatellite markers were done on goats located across the American continent and their results show that creole goat comes from Iberia and Africa and are geographically clustered [65, 66]. Their origin started in Veracruz (Mexico) and goes in three directions; to the North, to Central America passing through Panama and to the Vice Kingdom of Peru, and then to Argentina [67]. Meanwhile, the Portuguese introduced the goat in Brazil, explaining this particular genetic cluster differentiated from the rest of America [65, 66].
The Creole geographical cluster has a low diversity due to the inbreed tendency among farmers that introduced goats during the 19th century to increase the goat farming production according to European breeding programs [65]. Nevertheless, between geographically groups their different origin and admixture with different parental populations contribute to producing a high significant genetic distance among Creole groups (distance 0.16), compared with the genetic distance observed between Iberian Groups (0.05) and African groups (0.11) [66]. This genetic distance also reflects the differences regarding the adaptation against different geographic environmental conditions such as dry, hot, wet, or moisture places, selecting a goat breed well adapted to local conditions [65, 66]. Therefore, these Creole goats represent an underestimated genetic patrimony that changes according to the geographic distribution and with the threat to be lost due to the transboundary practices that replace the creole goat with common dairy goats in modern goat farming practices [66].
In Northern Chile in desert and arid zones the creole goats (Figure 2) were introduced by Spanish conquers during the XVI century and used with multi-purpose uses [68]. Throughout Chilean history, these goats were admixed with others breeds without any record and breeding plan, raising a broad diversity among Chilean creole goats [69]. In desert and arid zones, the Chilean creole goats are a robust animal, resistant to diseases, and adapted to pastoring with longer walks distances until reach the foods [69]. However, they have low milk yield of 0.2–0.9 kg/day in comparison with the milk production by Saanen goat of 1.0–2.3 kg/day under the same husbandry conditions, and the crossbreeding between Saanem and creole goats had an offspring able to produce 0.6–1.6 kg/day improving the genetic background of Chilean creole goats (Table 1) [70]. In the same way, the indigenous goats that live in Nigeria such as Sahel, Red Sokoto, and West African Dwarf have low milk yield between 0.3–0.5 kg/day (Table 1) being historically breeding for multi-purpose [26, 49]. For that reason, the creole or native goats are usually prejudged as low milk producers but without any serious studies that determine the milk yield under intensive breeding conditions.
In Greece, Italy, and India, genetics studies using molecular markers on casein genes as genetic markers for milk production, found a good potentiality for milk production in creole goats, proposing an affordable alternative for local goat farming [27, 71]. In Mexico, a study demonstrated that the milk yield of creole goats changes from 0.65 kg/day to 1.14 kg/day just moving from pasturing farming to stalled management and improved diet [72]. Thus, the potential of native and creole goats in dry local areas is still an unexplored field, and more studies about their milk yield under intensive husbandry conditions in desert and arid zones is still pending.
4. Goat milk quality
4.1 Benefits of goat Milk
Milk is a supplementary food from livestock animals like cows, goats, donkeys, and other mammals, and also is considered a rich source of carbohydrates, lipids, proteins, vitamins, minerals, and immune defense factors [28]. Cow milk is the most demanded by consumers, but goat milk has better nutritional properties enriched in vitamin A, riboflavin, growth factors, and lipids of short-chain such as; capric, caproic, and caprylic acids [28]. These lipids have better dissolution properties for serum cholesterol preventing coronary disease, cystic fibrosis, and gallstone, and can reduce body weight by promoting lipid oxidation, reducing lipogenesis, and increasing the synthesis of ketonic bodies [73]. Finally, goat milk is easily digested because has more dispersive bulbs and is recommended for milk allergic individuals for their reduced content or even lacks α-casein protein [28, 74].
4.2 Goat Milk quality
The goat milk quality is expressed in terms of sanitary, dietetic, nutritional, and technological properties, and evaluated according to their gustative, rheological, gastronomic, and hedonic features [75]. In general, the milk quality is determined according to the content of protein, lipid, and carbohydrates, among other parameters, and these concentrations are crucial for cheese production. The cheese yield depends on the protein content, while the texture, fineness, flavor, taste, and nutritional value is depending on the content of fatty acids and lipo-vitamins [75]. Environmental stress can affect the goat milk quality that finally affects the cheese quality. Saanen goats exposed to heat stress have low-quality milk with a low content of fat, protein, non-fat dry matter, and lactose [37]. However, with just a few adjustments the milk quality can be improved. The lipid profile can be modified according to the diet contents and management procedures, but protein concentration is more dependable on goat genetic background [46, 75, 76, 77, 78]. In a study with Saanen goats, the milk quality was improved after the introduction of a diet based on stoned olive cake silage modified with a lipid profile [79]. Meanwhile, in Creole goat, a new integral diet (1 kg) increases in 6% the protein and lactose content and 200% the milk volume [72]. Alpine goat fed with a diet based on alfalfa hay with different quality plus concentrates pellets did not change the total protein or casein milk concentration but modified the lipids and lactose concentration according to the diet used [80].
These fluctuations in the milk protein and lipid concentration according to diets used may be explained in terms of the relationship between the doe and the kid. In general, proteins are crucial for kid nutrition and their milk concentration remains constant adjusting protein synthesis according to the food intake rate [81]. Meanwhile, lipid content and lipid profile are dependable on gene expression and metabolic activity, and are controlled by metabolic precursors and hormones added to diets or promoted by nutritional factors that modified the rumen microflora activity [82]. In fact, the goat lipids metabolism is more complex than expected. A recent study about gene expression in mammary gland cells during a diet improvement demonstrated that lipid profiles change according to the gene expression of the protein associated with goat metabolism and protein transport, instead of genes directly related to lipids synthesis [83]. This observation encourages to do more studies to understand these correlations and the links among lipid metabolism, genetic polymorphism, and diet composition, and how this can affect the milk lipid content.
5. Molecular markers for dairy goats
5.1 General characteristic of domestic goats
The domestic goat is a livestock animal with attractive properties. A comparative genomic study reveals major differences between domestic goat breeds and their ancestor C. aegagrus, related to coat color, which is more uniform in domestic goats, and genes linked to the immune system, behavior, and reproduction, which are features related to domestication practices [84]. In another study, the complete genome annotation of a female Yunnan black goat using whole-genome optical mapping methodology found common characteristics with cattle, but more efficiency for milk secretion in goats, due to the presence of genes related to Prolactin hormone and its metabolism. Besides, an expansion in genes related to the olfactory receptor gene subfamilies was observed in goats and linked to the historical selection of a broad spectrum of forage during the expansion of goat farming. Finally, another remarkable fact is that the goat immune system has a Major Histocompatibility Complex (MHC) highly conserved with sheep and humans, suggesting an interesting animal model for immunological studies [85].
Transcriptomics analysis reveals interesting traits in goat breed for goat farming activities. In the Inner Mongolia Cashmere goats, the transcriptomic analysis reveals the expression of genes related to keratin and keratin-associated proteins of the primary and secondary hair follicles tissue that were directly associated with the goat hair phenotype [85]. Later, a gene knockout by CRISP/Cas9 technology produced modified Cashmere goats that express long secondary hair [86]. In Alpine goats, a similar transcriptomic study but using a cow microarray (there was no goat genome array available at that time) identified the gene expression associated with the animal response against food deprivation. Under this food poor condition, the milk yield was reduced to 16%, and the lactose, protein, and lipids concentration was reduced to 10%, 25%, and 45%, respectively [36]. These changes provoke a downregulation of many genes in the mammary gland cells, and some of them corresponded to casein genes, cell proliferation gene, and estrogen receptor gene, among others [36]. In this way, was possible to associate the gene expression with milk production, although still needs to be confirmed with other studies. Currently, there is a wide technology accessible to afford this challenge like those used to produce transgenic goats to synthesize human lysozyme or spider web protein and released through the milk [87, 88]. Therefore, the technology is available for improvements in goat milk production to move forward goat farming activity to produce a high volume of milk with high quality in arid and desert zones.
5.2 αS1, αS2, β, and Κ-casein polymorphism
The most abundant milk proteins are: αs1(CSN1S1), αs2 (CSN1S2), β (CSN2) and κ-casein (CSN3), β-lactoglobulin (BLG), and α-lactalbumin (LALBA) and they represent 95% of the total protein content in ruminant milk [89]. These proteins are encoded on chromosome 6 in a segment of 250 kbps [90], have different post-translation modification [91], and their milk concentration changes according to the gene expression of these casein genes [92].
These casein genes have a polymorphism within the same breed [93] and among diverse breeds [27, 90], and this biodiversity might impact the goat milk quality and milk properties in term of their role with the immune system, nutritional quality, and as raw material to produce other products derived from milk [91].
The most stronger correlation between casein polymorphism and milk quality has been described for the αS1-casein gene [89, 94, 95]. This gene has 18 alleles (represented as a capital letter) and is phenotypically grouped as “strong” with a milk yield of 3,6 g/L (A, B1, B2, B3, B4, C, H, L, M), “intermediate” with milk yield of 1.6 g/L (E, I), “weak” with milk yield of 0.6 g/L (F, G), and “null” because did not synthesize the αS1-casein protein (N, O1, O2, ON) [94, 95]. In the Sicilian goat breed Girgentana and Argentata dell etna, the “strong” alleles were identified as homozygote or heterozygote with null allele [27]. In Spanish goats, the most predominant alleles were B and E, while other goats showed different heterozygosity; Murciana-Granadina (B, E), Malagueña (E), Payoya (B, E), Canaria-Palmera (A, B), Canaria-Majorera (B, E, D + O), and Canaria-Tinerfeña (B, E, D + O) [96]. In the Malagueña goat breed, the BB genotype produces 6.94 g/L, meanwhile, EE phenotype produces 4.58 g/L [96]. In Girgentana goats, the genotypes AA not only produce more casein protein in milk (43.4 g/day) than FF genotype (25.4 g/day) but also more milk volume (1.419 kg of milk per day) than the FF (1.014 kg of milk per day) after improvements in diet nutrition [97].
Saanen and Alpine goats with the AF genotype produced more αS1-casein protein in milk than the FF genotype (4.26 g/L vs. 1.21 g/L) [98]. Meanwhile, in another study on dairy French Saanen and Alpine goats, the αS1-casein polymorphism predicted the fat and protein content but was influenced by the goat gender [99]. The authors also found that almost 65% of the Saanen goats studied were AA and AE genotypes, being biallelic for the αS1-casein gene [94]. Future studies that apply molecular techniques like PCR to identify αS1-casein polymorphism in Saanen goats, may validate the biallelic tendency, and impulse improvements in milk goat farming through selective crossbreeding strategies [99].
In the West Africa goats such as; Borno, Red Sokoto, and West African Dwarf Cameroon the most frequent alleles found are B and B′, while in the Nigerian Dwarf breed was the A, B, and B′ alleles [100]. Thus, the natural segregation for high milk production by goat farmers has promoted the dominance of certain strong and intermedia alleles in the goat herd.
Polymorphism in αs2-casein have seven alleles with three different gene expression levels: A, B, C, E and F, associated with a high expression of αs2-casein (2.5 kg/l); D allele with moderate expression (1.25 kg/l) and O (null) allele with no expression and undetected αs2-casein content [101, 102], but still inducing an allergic reaction for those people immune sensitive to milk casein proteins [103].
Variations in the β-casein gene (CSN2) locus involves ten alleles with different gene expression. Alleles A, A1, C1, E, O, O′, D, F, C, and B that has been identified from the cDNA analysis, using MS analysis, and from the electrophoretic pattern [104]. The C and F alleles are associated with low concentration or traces of β-casein protein in milk due to mutation that makes an unstable mRNA that finally reduces the protein content [104]. In consequence, this milk with low content of casein is the best option to produce infant milk formula for those kids with restricted acces to milk products due to their cow milk allergies [105].
In the case of the kappa-casein gene (CSN3), up to 21 allelic variants has been described, and according to their isoelectric point they are separated into two groups, AIEF (A, B, B´, B´´, C, C´, F, G, H, I, J, L,) and BIEF (D, E, K, M, N, O, P, Q, and R) [106]. This last group shows differences in their milk protein content according to the genotype, and the BB alleles are those with higher content of casein in the goat milk with a 2.98% [107]. In the Murciano-Granadina goat, the BB genotype had an effect on the rennet coagulation time evidencing the important role of Κ-casein in cheese production [104]. Therefore, these reports evidence the importance in identify the Κ-casein genotype in the herd to find the best goats for goat cheese production.
5.3 Single nucleotide polymorphism
The genetic polymorphism of genes related to protein content in goat milk is not only limited to casein genes. The molecular technique denominated KAS PCR (Kompetitive Allele Specific PCR) was applied on 40 genes previously identifies as molecular markers and includes; caseins genes, genes related to the immune systems, growth, proliferation, and milk production [108]. The study analyzes 48 single nucleotide polymorphisms (SNP) present across these 40 genes encoded in the genome of Alpine and Saanen goats. The study found 13 polymorphic SNPs and 4 of them were directly associated with the protein, fat, and lactose milk content. These 4 SNPs encode two interleukins receptors (Il1RN, IL15RA), one suppressor of cytokine signaling (SOC3), and a growth hormone-releasing hormone receptor (GHRHR) [108]. In this way, these casein genes and other molecular markers are currently used to study milk yield in dairy goats.
The SNPs technology consists in analyze a single nucleotide change (transition or transversion) present in a small region of selected loci in both chromosomes to identify a genotype classified as homo or heterozygous [109]. The uses of SNPs analysis in conjunction with massive sequencing or arrays technologies allow analyze hundreds or even thousands of polymorphic genes and correlated them with a specific phenotype [109]. The SNPs analysis has been successfully used in collaboration with the International Goat Genome Consortium (www.goatgenome.org) and the data reported by diverse researchers in the field have been able of creating a 52 K SNP CHIP that detects more than 50,000 SNPs in diverse goats breed [110]. The CHIP was constructed using diverse breeds as references, including milk representative types such as Saanen, Alpine, LaMancha, and Toggenburg breed, and as a meat representative to Boer and Rangeland breed, and as milk-meat representative to Nubian goat breed. Thus, the CHIP technology can be applied to diverse goat breeds, including mixed-breed [111, 112]. The CHIP allows the understanding of genetic diversity among goat breeds and their relationship with a specific productive trait [111]. In South Africa for instance, a study used the 52 K CHIP to analyzes genetically the most local representative breeds and correlated them with their adaptation characteristic to different environments. That study identified many SNPs associated with the geographical distribution and physiological adaptation to local environments [113]. A total of 205 pathways were identified after the analysis of 474 adaptive genes with significant SNPs classification. The temperature was a selective environmental factor for the most adaptive animal, and several genes linked to heat stress responses, circadian rhythms, and vascular smooth contraction were involved in this natural selection [114]. That describes a more efficient metabolism to adsorbed nutrients from food with low nutritional value, and efficient use of water sources, reducing the water loss released through the urine and feces [114]. Besides, these goats encoded genes related to better resistance against disease in comparison with other non-desert goats [114]. All these features are consistent with previous physiological studies on the goat that habitat in desert zones [31]. For example, a goat adapted for harsh environments has a small body with a high efficient metabolism rate and a functional rumen adapted to obtain a high amount of nutrients from low-grade nutritional foods [31]. Also, a desert goat can perform a high efficient nitrogen recycling system and water recycling system, allowing survival for long periods with limited sources of water and foods [31, 115]. In consequence, although for a traditional goat farmer a desert goat could look smaller and thinner than a highly efficient dairy goat, they still can produce high-quality milk under restricted diet conditions. This is important because dairy goats well adapted to arid and desert zones will not require expensive investments in farming management to improve their milk yield. The achievement of this goal supported by molecular makers and techniques currently available, would allow to afford the next challenge for goat farming in arid and desert zones, to produce high volume of high-quality milk in a current climate change scenario.
6. Conclusion
In conclusion, goats are extraordinary farming animals capable of being productive under harsher conditions, because the origin of this species comes from the middle east, a place with limited conditions to sustain life. The expansive goat dispersion across the globe associated with human migration along the centuries has generated a genetical richness superior to any other livestock farming animals, allowing its uses as a multi-purpose animal. Taking advantage of this biological diversity and current knowledge about goat physiology and genomic expression, today is possible to create crossbreeding plan that introduces goats bred from the Middle East, India, or even creole goat to produce hybrid offspring well adapted to dry or drought environments and still produce a high volume of high-quality milk. The advances and discovery of new molecular markers associated with milk yield can support breeding plan through the selection of the best parents and offspring to improve the herd genetic background and overcome the nutritional deficiency and heat stress conditions to produce high-quality milk in lands affected by desertification and without major changes in the goat farming management conditions.
Acknowledgments
The authors acknowledge to the doctoral program of Agricultura para Ambientes Áridos y Desérticos of Faculty of Renewable Natural Resources, Arturo Prat University. Juan Scopinich-Cisternas is financed by a doctoral scholarship from this doctoral program.
Conflict of interest
The authors declare no conflict of interest.
\n',keywords:"goat type, lactation, mating, Creole, molecular markers, crossbreeding, desert, arid, genomics",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/78323.pdf",chapterXML:"https://mts.intechopen.com/source/xml/78323.xml",downloadPdfUrl:"/chapter/pdf-download/78323",previewPdfUrl:"/chapter/pdf-preview/78323",totalDownloads:122,totalViews:0,totalCrossrefCites:0,dateSubmitted:"February 1st 2021",dateReviewed:"July 9th 2021",datePrePublished:"October 15th 2021",datePublished:null,dateFinished:"August 30th 2021",readingETA:"0",abstract:"Goat farming has been severely affected by Desertification, limiting their water and food resources and inducing physiological heat stress that reduces the doe milk yield. Does well adapted to heat stress would be a possible solution, but creole or indigenous goats from desert or arid areas produce between 0.5 to 1.5 L of milk per day, which is lower than the 3 L of milk per day produced by dairy goats like the Saanen breed. Nevertheless, in this chapter, we will discuss the disadvantages of introducing common dairy goats in dry places. Instead, we propose the introduction of desert goats from the Middle East or India, because they produce high-quality milk with low feed intake, making a profitable goat farming activity, and an opportunity to include crossbreeding strategies to improve the herd milk yield. Creole goats, on other hand, has been an underestimated livestock animal with a rich and unveil genetic patrimony that migth improve the herd milk yield. The effect of improved diets and extensive husbandry conditions remains unexplored in desert creole goats, and the use of advanced knowledge in goat genomics, genetic expression, and a wide variety of molecular markers can improve the studies on creole goats for crossbreeding strategies identifying the best traits involved in high-quality milk production and adaptation to dry environments. In this way, the synergy between goat type selection and molecular markers should boost goat farming in recently new desert or arid zones, counteracting the detrimental effects produced by the desertification.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/78323",risUrl:"/chapter/ris/78323",signatures:"Erwin Strahsburger and Juan Scopinich-Cisternas",book:{id:"9706",type:"book",title:"Goat Science - Environment, Health and Economy",subtitle:null,fullTitle:"Goat Science - Environment, Health and Economy",slug:null,publishedDate:null,bookSignature:"Prof. Sándor Kukovics",coverURL:"https://cdn.intechopen.com/books/images_new/9706.jpg",licenceType:"CC BY 3.0",editedByType:null,isbn:"978-1-78984-709-3",printIsbn:"978-1-78984-708-6",pdfIsbn:"978-1-78985-193-9",isAvailableForWebshopOrdering:!0,editors:[{id:"25894",title:"Prof.",name:"Sándor",middleName:null,surname:"Kukovics",slug:"sandor-kukovics",fullName:"Sándor Kukovics"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:null,sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Methodology",level:"1"},{id:"sec_2_2",title:"2.1 Comparison of Milk Yield in Diverse Goat Types",level:"2"},{id:"sec_4",title:"3. The dairy goat type for desertify zones",level:"1"},{id:"sec_4_2",title:"3.1 Milk production by dairy goat naturally not adapted for arid or drought zones",level:"2"},{id:"sec_5_2",title:"3.2 Milk production by dairy goat adapted to arid or drought zones",level:"2"},{id:"sec_6_2",title:"3.3 The creole goats in dairy goat farming; an unexplored type",level:"2"},{id:"sec_8",title:"4. Goat milk quality",level:"1"},{id:"sec_8_2",title:"4.1 Benefits of goat Milk",level:"2"},{id:"sec_9_2",title:"4.2 Goat Milk quality",level:"2"},{id:"sec_11",title:"5. Molecular markers for dairy goats",level:"1"},{id:"sec_11_2",title:"5.1 General characteristic of domestic goats",level:"2"},{id:"sec_12_2",title:"5.2 αS1, αS2, β, and Κ-casein polymorphism",level:"2"},{id:"sec_13_2",title:"5.3 Single nucleotide polymorphism",level:"2"},{id:"sec_15",title:"6. Conclusion",level:"1"},{id:"sec_16",title:"Acknowledgments",level:"1"},{id:"sec_19",title:"Conflict of interest",level:"1"}],chapterReferences:[{id:"B1",body:'Chen J, Dahlin MJ, Luuppala L, Bickford D, Boljka L, Burns V, et al. Air Pollution and Climate Change: Sustainability, Restoration, and Ethical Implications. Encyclopedia of Sustainability Science and Technology. 2020. 1-48 p.'},{id:"B2",body:'Rust JM, Rust T. Climate change and livestock production: A review with emphasis on Africa. South African J Anim Sci. 2013;43(3):256-267.'},{id:"B3",body:'Scopinich-Cisternas J, Strahsburger E. Goat type: The key factor to produce goat milk with economic profitable purpose in arid and desert zones. Idesia. 2019;37(4):122-123.'},{id:"B4",body:'Scopinich-Cisternas J, Strahsburger E. The goat farming management for arid and desert zones: A technical approach to produce high quality milk during all the year. Idesia. 2020;38(1):119-125.'},{id:"B5",body:'Feleke FB, Berhe M, Gebru G, Hoag D. Determinants of adaptation choices to climate change by sheep and goat farmers in Northern Ethiopia: the case of Southern and Central Tigray, Ethiopia. Springerplus. 2016;5(1).'},{id:"B6",body:'Houghton R, Connors S, Krinner G. Land | Ch2: Land–climate interactions. IPCC Rep. 2019;131-248.'},{id:"B7",body:'Rashamol VP, Sejian V, Bagath M, Krishnan G, Archana PR, Bhatta R. Physiological adaptability of livestock to heat stress: an updated review. J Anim Behav Biometeorol. 2018;6(3):62-71.'},{id:"B8",body:'Koluman Darcan N, Silanikove N. The advantages of goats for future adaptation to Climate Change: A conceptual overview. Small Rumin Res. 2018;163(February 2017):34-38.'},{id:"B9",body:'Amills M, Capote J, Tosser-Klopp G. Goat domestication and breeding: a jigsaw of historical, biological and molecular data with missing pieces. Anim Genet. 2017;48(6):631-644.'},{id:"B10",body:'Amills M, Ramírez O, Tomàs A, Badaoui B, Marmi J, Acosta J, et al. Mitochondrial DNA diversity and origins of South and central American goats. Anim Genet. 2009;40(3):315-322.'},{id:"B11",body:'Pidancier N, Jordan S, Luikart G, Taberlet P. Evolutionary history of the genus Capra (Mammalia, Artiodactyla): Discordance between mitochondrial DNA and Y-chromosome phylogenies. Mol Phylogenet Evol. 2006;40:739-749.'},{id:"B12",body:'Luikart G, Gielly L, Excoffier L, Vigne J-DD, Bouvet J, Taberlet P. Multiple maternal origins and weak phylogeographic structure in domestic goats. Proc Natl Acad Sci U S A. 2001;98(10):5927-5932.'},{id:"B13",body:'Alberto FJ, Orozco-terwengel P, Streeter I, Villemereuil P De, Benjelloun B, Librado P, et al. Convergent genomic signatures of domestication in sheep and goats. Nat Commun. 2018;9(813):1-9.'},{id:"B14",body:'Ollivier L, Foulley JL. Aggregate diversity: New approach combining within- and between-breed genetic diversity. Livest Prod Sci. 2005;95(3):247-254.'},{id:"B15",body:'Shkolnik A, Maltz E, Gordin. S. Desert conditions and goat milk production. J Dairy Sci,. 1980;63(10):1749-1754.'},{id:"B16",body:'Serradilla JM. Use of high yielding goat breeds for milk production. Livest Prod Sci. 2001;71(1):59-73.'},{id:"B17",body:'Nziku ZC, Kifaro GC, Eik LO, Steine T, Ådnøy T. Reasons for keeping dairy goats in Tanzania, and possible goals for a sustainable breeding program. Anim Prod Sci. 2017;57(2):338-346.'},{id:"B18",body:'Kim ES, Elbeltagy AR, Aboul-Naga AM, Rischkowsky B, Sayre B, Mwacharo JM, et al. Multiple genomic signatures of selection in goats and sheep indigenous to a hot arid environment. Heredity (Edinb) [Internet]. 2016;116(3):255-264. Available from: http://dx.doi.org/10.1038/hdy.2015.94'},{id:"B19",body:'Kahilo K, El-Shazly S, El-Khadrawy A, Fattouh I. Genetic Polymorphism in β-lactoglobulin Gene of Some Goat Breeds in Egypt and its Influence on Milk Yield. Life Sci J. 2014;11(10):232-238.'},{id:"B20",body:'Kumar S, Guru M, Dev A, Science A, Panwar H, Angad G, et al. Evaluation of quality of yoghurt prepared from goat milk of Beetal breed. Indian J Dairy Sci. 2018;7(1):54-60.'},{id:"B21",body:'EI Gadir MEA, EI Zubeir IEM. Production performance of crossbred(saanen and Nubian) goats in the second kidding under sudan condition. Pakistan J Biol Sci. 2005;8(5):734-739.'},{id:"B22",body:'Shelton M. Breed Use and Crossbreeding in Goat Production. 3rd World Congr Genet Appl to Livest Prod. 1986;4:523-532.'},{id:"B23",body:'Gol MY. Evaluation of Some Productive Traits and Milk Composition of Goats in Khartoum State [Internet]. University of Khartoum, Sudan.; 2015. Available from: http://khartoumspace.uofk.edu/handle/123456789/13993'},{id:"B24",body:'Hosseini SM, Yang LG, Abbas Raza SH, Khan R, Kalantar M, Syed SF, et al. Comparison of Weight Gain, Milk Production, and Milk Composition of Iranian Mamasani Goat and its Cross with Saanen. J Vet Sci Anim Husb [Internet]. 2017;5(2):203. Available from: http://www.annexpublishers.co/full-text/JVSAH/5203/Comparison-of-Weight-Gain-Milk-Production-and-Milk-Composition-of-Iranian-Mamasani-Goat-and-its-Cross-with-Saanen.php'},{id:"B25",body:'Kume K, Papa L, Hajno L. Effects on milk production in F 1 crossbred of Alpine goat breed (♂) and albanian goat breed (♀). Ital J Anim Sci. 2012;11(3):258-261.'},{id:"B26",body:'Egwu GO, Onyeyili PA, Chibuzo GA, Ameh JA. Improved productivity of goats and utilisation of goat milk in Nigeria. Small Rumin Res. 1995;16(3):195-201.'},{id:"B27",body:'Marletta D, Bordonaro S, Guastella AM, Criscione A, D’Urso G. Genetic polymorphism of the calcium sensitive caseins in sicilian Girgentana and Argentata dell’Etna goat breeds. Small Rumin Res. 2005;57(2-3):133-139.'},{id:"B28",body:'Turkmen N. The Nutritional Value and Health Benefits of Goat Milk Components. In: Watson RR, Collier RJ, Preedy V, editors. Nutrients in Dairy and Their Implications for Health and Disease [Internet]. 2017th ed. London: Elsevier Inc.; 2017. p. 441-449. Available from: http://dx.doi.org/10.1016/B978-0-12-809762-5.00035-8'},{id:"B29",body:'Gabas AL, Alexandre R, Cabral F, Augusto C, Oliveira F De, Telis-romero J. Density and Rheological Parameters of Goat Milk. Cienc e Tecnol Aliment. 2012;32(2):381-385.'},{id:"B30",body:'Haenlein GFW. About the evolution of goat and sheep milk production. Small Rumin Res. 2007;68(1-2):3-6.'},{id:"B31",body:'Silanikove N. The physiological basis of adaptation in goats to harsh environments. Small Ruminant Research. 2000.'},{id:"B32",body:'Knights M, Garcia GW. The status and characteristics of the goat (Capra hircus) and its potential role as a significant milk producer in the tropics: A review. Small Rumin Res. 1997;26(3):203-215.'},{id:"B33",body:'Olave J, Canales T, Meneses R. Introducción de cabras lecheras saanen a la pampa del tamarugal para el mejoramiento del ganado local. Bol INIA [Internet]. 2009;197:130-134. Available from: http://www2.inia.cl/medios/biblioteca/boletines/NR36706.pdf'},{id:"B34",body:'Devendra C. Milk Production in Goats Compared to Buffalo and Cattle in Humid Tropics. J Dairy Sci [Internet]. 1980;63(10):1755-1767. Available from: http://dx.doi.org/10.3168/jds.S0022-0302(80)83135-3'},{id:"B35",body:'Salama AAK, Caja G, Hamzaoui S, Badaoui B, Castro-Costa A, Façanha DAE, et al. Different levels of response to heat stress in dairy goats. Small Rumin Res. 2014;121(1):73-79.'},{id:"B36",body:'Jyotiranjan T, Mohapatra S, Mishra C, Dalai N, Kundu AK. Heat tolerance in goat-A genetic update. Th Pharma Innov J. 2017;6(9):237-245.'},{id:"B37",body:'Kljajevic N V., Tomasevic IB, Miloradovic ZN, Nedeljkovic A, Miocinovic JB, Jovanovic ST. Seasonal variations of Saanen goat milk composition and the impact of climatic conditions. J Food Sci Technol. 2018;55(1):299-303.'},{id:"B38",body:'Lallo CHO, Paul I, Bourne G. Thermoregulation and performance of British Anglo-Nubian and Saanen goats reared in an intensive system in Trinidad. Trop Anim Health Prod. 2012;44(3):491-496.'},{id:"B39",body:'Ince D. Reproduction performance of Saanen goats raised under extensive conditions. African J Biotechnol. 2010;9(48):8253-8256.'},{id:"B40",body:'Houston J. Variability of Precipitation In The Atacama Desert: Its Causes And Hydrological Impact. Int J Climatol. 2006;26:2181-2198.'},{id:"B41",body:'Clarke JDA. Antiquity of aridity in the Chilean Atacama Desert. Geomorphology. 2006;73(1-2):101-114.'},{id:"B42",body:'Viguier B, Jourde H, Yáñez G, Lira ES, Leonardi V, Moya CE, et al. Multidisciplinary study for the assessment of the geometry, boundaries and preferential recharge zones of an overexploited aquifer in the Atacama Desert (Pampa del Tamarugal, Northern Chile). J South Am Earth Sci [Internet]. 2018;86:366-83. Available from: https://doi.org/10.1016/j.jsames.2018.05.018'},{id:"B43",body:'Jayne RS, Pollyea RM, Dodd JP, Olson EJ, Swanson SK. Contraintes spatiales et temporelles sur l’écoulement régional des eaux souterraines dans la pampa du bassin du Tamarugal, désert d’Atacama, Chili. Hydrogeol J. 2016;24(8):1921-1937.'},{id:"B44",body:'Chávez RO, Clevers JGPW, Decuyper M, de Bruin S, Herold M. 50 years of water extraction in the Pampa del Tamarugal basin: Can Prosopis tamarugo trees survive in the hyper-arid Atacama Desert (Northern Chile)? J Arid Environ. 2016;124:292-303.'},{id:"B45",body:'Gomes de Lima L, Oliveira N, Rodrigues R, Araujo B, Thayse L, De Morales K, et al. Advances in Molecular Genetic Techniques applied to Selection for Litter Size in Goats (Capra hircus): a review. J Appl Anim Resarch. 2020;48(1):38-44.'},{id:"B46",body:'Goetsch A L, Zeng SS, Gipson TA. Factors affecting goat milk production and quality. Small Rumin Res. 2011;101:55-63.'},{id:"B47",body:'Hayden TJ, Thomas CR, Forsyth IA. Effect of Number of Young Born (Litter Size) on Milk Yield of Goats: Role for Placental Lactogen. J Dairy Sci [Internet]. 1979;62(1):53-57. Available from: http://dx.doi.org/10.3168/jds.S0022-0302(79)83201-4'},{id:"B48",body:'Ayalew W, King JM, Bruns E, Rischkowsky B. Economic evaluation of smallholder subsistence livestock production: Lessons from an Ethiopian goat development program. Ecol Econ. 2003;45(3):473-485.'},{id:"B49",body:'Escareño L, Salinas-Gonzalez H, Wurzinger M, Iñiguez L, Sölkner J, Meza-Herrera C. Dairy goat production systems: Status quo, perspectives and challenges. Trop Anim Health Prod. 2012;45(1):17-34.'},{id:"B50",body:'Maltz E, Shkolnik A. Milk Production in the Desert: Lactation and Water Economy in the Black Bedouin Goat. Physiol Zool. 1980;53(1):12-18.'},{id:"B51",body:'Maltz E, Shkolnik A. Milk Production in the Desert : Lactation and Water Economy in the Black Bedouin Goat. Physiol Zool [Internet]. 1980;53(1):12-18. Available from: http://www.jstor.org/stable/30155770'},{id:"B52",body:'Silanikove N. Effect of dehydration on feed intake and dry matter digestibility in desert (black bedouin) and non-desert (Swiss saanen) goats fed on lucerne hay. Comp Biochem Physiol -- Part A Physiol. 1985;80(3):449-452.'},{id:"B53",body:'Maltz E, Shkolnik A. Milk composition and yeild of the black bedouin goat during dehydration and rehydration. JDairy Res. 1984;51(August 1979):23-27.'},{id:"B54",body:'Al-Atiyat RM. Genetic diversity analyses of tropical goats from some countries of Middle East. Genet Mol Res. 2017;16(3):1-13.'},{id:"B55",body:'Al-Samawi KA, Al-Hassan MJ, Swelum AA. Thermoregulation of female Aardi goats exposed to environmental heat stress in Saudi Arabia. Indian J Anim Res. 2014;48(4):344-349.'},{id:"B56",body:'Aljumaah RS. Simulated genetic gain of a close breeding program for Ardi goat in Saudi Arabia. J Saudi Soc Agric Sci [Internet]. 2019;18(4):418-22. Available from: https://doi.org/10.1016/j.jssas.2018.02.001'},{id:"B57",body:'Kamal El-den M, Mohammed K, Dahmoush A. Genetic evaluation of milk yield and milk composition of Saudi Aradi and Damascus goats. Arch Agric Sci J. 2020;3(2):118-126.'},{id:"B58",body:'Shrestha JNB, Fahmy MH. Breeding goats for meat production. 2. Crossbreeding and formation of composite population. Small Rumin Res. 2007;67(2-3):93-112.'},{id:"B59",body:'Ahmed S, Othman E. Genotyping Analysis of Milk Protein Genes in Different Goat Breeds Reared in Egypt. J Genet Eng Biotechnol. 2009;7(2):33-39.'},{id:"B60",body:'Waheed A, Khan M. Lactation curve of Beetal goats in Pakistan. Arch Tierzucht [Internet]. 2013;56(89):892-898. Available from: http://doi.fbn-dummerstorf.de/2013/at56a089.pdf'},{id:"B61",body:'Devendra C. Sustainable small rumiant production system in asia. Proc The4th ISTAP“Animal Prod Sustain Agric Trop. 2006;18-36.'},{id:"B62",body:'Prasad H, Sengar OPS. Milk yield and composition of the beetal breed and their crosses with Jamunapari, Barbari and Black Bengal breeds of goat. Small Rumin Res. 2002;45:79-83.'},{id:"B63",body:'Prasad H, Tewari HA, Sengar OPS. Milk yield and composition of the beetal breed and their crosses with Jamunapari, Barbari and Black Bengal breeds of goat. Small Rumin Res. 2005;58(2):195-199.'},{id:"B64",body:'Sanogo S, Shaker MM, Nantoumé H, Salem AFZM. Milk yield and composition of crossbred Sahelian × Anglo-Nubian goats in the semi-intensive system in Mali during the preweaning period. Trop Anim Health Prod. 2012;45(1):305-310.'},{id:"B65",body:'Ginja C, Gama LT, Martínez A, Sevane N, Martin-Burriel I, Lanari MR, et al. Genetic diversity and patterns of population structure in Creole goats from the Americas. Anim Genet. 2017;48(3):315-329.'},{id:"B66",body:'Sevane N, Cortés O, Gama LT, Martínez A, Zaragoza P, Amills M, et al. Dissection of ancestral genetic contributions to Creole goat populations. Animal [Internet]. 2018;12(10):2017-2026. Available from: http://dx.doi.org/10.1017/S1751731117003627'},{id:"B67",body:'Primo A. El ganado bovino ibérico en las Américas: 500 años después. Arch Zootec. 1992;41(154):13.'},{id:"B68",body:'Contreras C, Meneses R, Cofré P. Cabra Criolla [Internet]. Boletin IN. Mujica F, editor. Razas ovinas y caprinas en el Instituto de Investigaciones Agropecuarias. Osorno: Instituto de Investigaciones Agropecuarias; 2004. 77-80. p. Available from: www2.inia.cl/medios/biblioteca/boletines/NR32226.pdf'},{id:"B69",body:'Contreras C, Meneses R, Romero O, Cofré P. Razas caprinas para zonas aridas y semiaridas de Chile. Tierra Adentro. 2001;41:63-80.'},{id:"B70",body:'Jahn E. Producción de leche con distintos genotipos de cabras. In: Cofre B P, editor. Boletin INIA No 66, Produccion de Cabras Lecheras [Internet]. Instituto. Chillan, Chile: INIA, Minsterio de Agricultura, Chile.; 2001. p. 109-120. Available from: http://www2.inia.cl/medios/biblioteca/boletines/NR28598.pdf'},{id:"B71",body:'Kumar A, Rout PK, Mandal A, Roy R. Identification of the CSN1S1 allele in Indian goats by the PCR-RFLP method. Animal. 2007;1(8):1099-1104.'},{id:"B72",body:'Maldonado-Jaquez JA, Granados-Rivera LD, Hernandez-Mendo O, Pastor-Lopez FJ, Isidro-Requejo LM, Salinas-Gonzalez H, et al. Use of total mixed ration as supplement in grazing local goats : Milk production response and chemical composition. Nov Sci. 2017;9(1):55-75.'},{id:"B73",body:'Park YW, Juarez M, Ramos M, Haenlein GF. Rheological characteristics of goat and sheep milk. Small Rumin Res. 2007;68:88-113.'},{id:"B74",body:'Kondyli E, Svarnas C, Samelis J, Katsiari MC. Chemical composition and microbiological quality of ewe and goat milk of native Greek breeds. Small Rumin Res [Internet]. 2012;103(2-3):194-199. Available from: http://dx.doi.org/10.1016/j.smallrumres.2011.09.043'},{id:"B75",body:'Morand-Fehr P, Fedele V, Decandia M, Le Frileux Y. Influence of farming and feeding systems on composition and quality of goat and sheep milk. Small Rumin Res. 2007;68:20-34.'},{id:"B76",body:'Martin P, Szymanowska M, Zwierzchowski L, Leroux C. The impact of genetic polymorphisms on the protein composition of ruminant milks. Reprod Nutr Dev. 2002;42:433-459.'},{id:"B77",body:'Catota-Gómez LD, Parra-Bracamonte GM, Cienfuegos-Rivas EG, Hernández-Meléndez J, Sifuentes-Rincón AM, Martínez-González JC. Frequency and association of polymorphisms in CSN3 gene with milk yield and composition in Saanen goats. Ecosistemas y Recur Agropecu [Internet]. 2017;4(12):411-417. Available from: http://era.ujat.mx/index.php/rera/article/view/1165'},{id:"B78",body:'Yurchenko S, Sats A, Tatar V, Kaart T, Mootse H, Jõudu I. Fatty acid profile of milk from Saanen and Swedish Landrace goats. Food Chem. 2018;254:326-332.'},{id:"B79",body:'Keles G, Yildiz-Akgul F, Kocaman V. Performance and milk composition of dairy goats as affected by the dietary level of stoned olive cake silages. Asian-Australasian J Anim Sci. 2017;30(3):363-369.'},{id:"B80",body:'Morand-Fehr P, Sauvant D. Composition and Yield of Goat Milk as Affected by Nutritional Manipulation. J Dairy Sci [Internet]. 1980;63(10):1671-1680. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0022030280831298'},{id:"B81",body:'Fekadu B, Soryal K, Zeng S, Van Hekken D, Bah B, Villaquiran M. Changes in goat milk composition during lactation and their effect on yield and quality of hard and semi-hard cheeses. Small Rumin Res. 2005;59(1):55-63.'},{id:"B82",body:'Toral PG, Bernard L, Belenguer A, Rouel J, Hervás G, Chilliard Y, et al. Comparison of ruminal lipid metabolism in dairy cows and goats fed diets supplemented with starch, plant oil, or fish oil. J Dairy Sci [Internet]. 2016;99(1):301-316. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0022030215008504'},{id:"B83",body:'Faulconnier Y, Bernard L, Boby C, Domagalski J, Chilliard Y, Leroux C. Extruded linseed alone or in combination with fish oil modifies mammary gene expression profiles in lactating goats. Animal [Internet]. 2017;1-12. Available from: https://www.cambridge.org/core/product/identifier/S1751731117002816/type/journal_article'},{id:"B84",body:'Dong Y, Zhang X, Xie M, Arefnezhad B, Wang Z, Wang W, et al. Reference genome of wild goat (Capra aegagrus) and sequencing of goat breeds provide insight into genic basis of goat domestication. BMC Genomics. 2015;16(1):1-11.'},{id:"B85",body:'Wang W, Dong Y, Xie M, Jiang Y, Xiao N, Du X, et al. Sequencing and automated whole-genome optical mapping of the genome of a domestic goat (Capra hircus). Nat Biotechnol. 2013;31(2):135-141.'},{id:"B86",body:'Wang X, Cai B, Zhou J, Zhu H, Niu Y, Ma B, et al. Disruption of FGF5 in cashmere goats using CRISPR/Cas9 results in more secondary hair follicles and longer fibers. PLoS One. 2016;11(10):1-12.'},{id:"B87",body:'Service RF. Mammalian Cells Spin A Spidery New Yarn. Science (80-). 2002;295(5554):419-421.'},{id:"B88",body:'Carneiro I de S, Menezes JNR de, Maia JA, Miranda AM, Oliveira VBS de, Murray JD, et al. Milk from transgenic goat expressing human lysozyme for recovery and treatment of gastrointestinal pathogens. Eur J Pharm Sci [Internet]. 2018;112(October 2017):79-86. Available from: https://doi.org/10.1016/j.ejps.2017.11.005'},{id:"B89",body:'Selvaggi M, Laudadio V, Dario C, Tufarelli V. Major proteins in goat milk: An updated overview on genetic variability. Mol Biol Rep. 2014;41(2):1035-1048.'},{id:"B90",body:'Marletta D, Criscione A, Bordonaro S, Maria A, Urso GD, Marletta D, et al. Casein polymorphism in goat ’ s milk To cite this version : HAL Id : hal-00895642 Casein polymorphism in goat ’ s milk. Le Lait, INRA Ed. 2007;87(6):491-504.'},{id:"B91",body:'Rout PK, Verma M. Post translational modifications of milk proteins in geographically diverse goat breeds. Sci Rep [Internet]. 2021;11(1):1-16. Available from: https://doi.org/10.1038/s41598-021-85094-9'},{id:"B92",body:'Boutinaud M, Rulquin H, Keisler DH, Djiane J, Jammes H. Use of somatic cells from goat milk for dynamic studies of gene expression in the mammary gland. J Anim Sci. 2002;80(5):1258-1269.'},{id:"B93",body:'Hassan YA, Ibrahim MT, George E. Genetic polymorphism of Casein cluster in Sudan Nubian dairy goats. 1992;(Haenlein).'},{id:"B94",body:'Martin P, Bianchi L, Cebo C, Miranda G. Genetic Polymorphism of Milk Proteins. In: McSweeney PLH, Fox PF, editors. Advanced Dairy Chemistry: Volume 1A: Proteins: Basic Aspects, 4th Edition [Internet]. Boston, MA: Springer US; 2013. p. 463-514. Available from: https://doi.org/10.1007/978-1-4614-4714-6_15'},{id:"B95",body:'Marletta D, Criscione A, Bordonaro S, Guastella AM, D’Urso G. Casein polymorphism in goat’s milk. Lait [Internet]. 2007;87(6):491-504. Available from: http://www.lelait-journal.org/10.1051/lait:2007034'},{id:"B96",body:'Caravaca F, Amills M, Jordana J, Angiolillo A, Agüera P, Aranda C, et al. Effect of αs1-casein (CSN1S1) genotype on milk CSN1S1 content in Malagueña and Murciano-Granadina goats. J Dairy Res. 2008;75(4):481-484.'},{id:"B97",body:'Pagano RI, Pennisi P, Valenti B, Lanza M, Di Trana A, Di Gregorio P, et al. Effect of CSN1S1 genotype and its interaction with diet energy level on milk production and quality in Girgentana goats fed ad libitum. J Dairy Res. 2010;77(2):245-251.'},{id:"B98",body:'Grosclaude F, Mahe M-F, Brignon G, Di Stasio L, Jeunet R. A Mendelian polymorphism underlying quantitative variations of goat alpha S1-Casein. Genet Sel Evol. 1987;19(4):399-412.'},{id:"B99",body:'Carillier-Jacquin C, Larroque H, Robert-Granié C. Including α s1 casein gene information in genomic evaluations of French dairy goats. Genet Sel Evol. 2016;48(1):1-13.'},{id:"B100",body:'Caroli A, Chiatti F, Chessa S, Rignanese D, Ibeagha-Awemu EM, Erhardt G. Characterization of the casein gene complex in west african goats and description of a new αs1-Casein polymorphism. J Dairy Sci [Internet]. 2007;90(6):2989-2996. Available from: http://linkinghub.elsevier.com/retrieve/pii/S002203020770111X'},{id:"B101",body:'Ramunno L, Cosenza G, Pappalardo M, Longobardi E, Gallo D, Pastore N, et al. Characterization of two new alleles at the goat CSN1S2 locus. Anim Genet. 2001;32(5):264-268.'},{id:"B102",body:'Ramunno L, Longobardi E, Pappalardo M, Rando A, Di Gregorio P, Cosenza G, et al. An allele associated with a non-detectable amount of casein in of αS2 casein in goat milk. Anim Genet. 2001;32(1):19-26.'},{id:"B103",body:'Marletta D, Bordonaro S, Guastella AM, Falagiani P, Crimi N, D’Urso G. Goat milk with different αs2-casein content: Analysis of allergenic potency by REAST-inhibition assay. Small Rumin Res. 2004;52(1-2):19-24.'},{id:"B104",body:'Caravaca F, Ares JL, Carrizosa J, Urrutia B, Baena F, Jordana J, et al. Effects of αs1-casein (CSN1S1) and κ-casein (CSN3) genotypes on milk coagulation properties in Murciano-Granadina goats. J Dairy Res. 2011;78(1):32-37.'},{id:"B105",body:'Albenzio M, Campanozzi A, D’Apolito M, Santillo A, Mantovani MP, Sevi A. Differences in protein fraction from goat and cow milk and their role on cytokine production in children with cow’s milk protein allergy. Small Rumin Res [Internet]. 2012;105(1-3):202-205. Available from: http://dx.doi.org/10.1016/j.smallrumres.2012.02.018'},{id:"B106",body:'Prinzenberg EM, Gutscher K, Chessa S, Caroli A, Erhardt G. Caprine κ-casein (CSN3) polymorphism: New developments in molecular knowledge. J Dairy Sci [Internet]. 2005;88(4):1490-1498. Available from: http://dx.doi.org/10.3168/jds.S0022-0302(05)72817-4'},{id:"B107",body:'Chiatti F, Chessa S, Bolla P, Cigalino G, Caroli A, Pagnacco G. Effect of k-casein polymorphism on milk composition in the orobica goat. J Dairy Sci [Internet]. 2007;90(4):1962-1966. Available from: http://dx.doi.org/10.3168/jds.2006-508'},{id:"B108",body:'Kusza S, Loor J, Cziszter LT, Ilie DE, Sauer M, Padeanu I, et al. Kompetitive Allele Specific PCR (KASP TM) genotyping of 48 polymorphisms at different caprine loci in French Alpine and Saanen goat breeds and their association with milk composition. PeerJ. 2018;6:e4416.'},{id:"B109",body:'Vignal A, Milan D, San Cristobal M, Eggen A. A review on SNP and other types of molecular markers and their use in animal genetics. Genet Sel Evol. 2002;34(March):275-305.'},{id:"B110",body:'Tosser-Klopp G, Bardou P, Bouchez O, Cabau C, Crooijmans R, Dong Y, et al. Design and characterization of a 52K SNP chip for goats. PLoS One. 2014;9(1):e86227.'},{id:"B111",body:'Brito LF, Kijas JW, Ventura R V., Sargolzaei M, Porto-Neto LR, Cánovas A, et al. Genetic diversity and signatures of selection in various goat breeds revealed by genome-wide SNP markers. BMC Genomics. 2017;18:229.'},{id:"B112",body:'Mucha S, Mrode R, Coffey M, Kizilaslan M, Desire S, Conington J. Genome-wide association study of conformation and milk yield in mixed-breed dairy goats. J Dairy Sci. 2017;101(3):2213-2225.'},{id:"B113",body:'Mdladla K, Dzomba EF, Muchadeyi FC. Landscape genomics and pathway analysis to understand genetic adaptation of South African indigenous goat populations. Heredity (Edinb) [Internet]. 2018;120(4):369-378. Available from: https://doi.org/10.1038/s41437-017-0044-z'},{id:"B114",body:'Mdladla K, Dzomba EF, Huson HJ, Muchadeyi FC. Population genomic structure and linkage disequilibrium analysis of South African goat breeds using genome-wide SNP data. Anim Genet. 2016;47:471-482.'},{id:"B115",body:'Alamer M. Physiological responses of Saudi Arabia indigenous goats to water deprivation. Small Rumin Res. 2006;63:100-109.'}],footnotes:[],contributors:[{corresp:"yes",contributorFullName:"Erwin Strahsburger",address:"erwin.strahsburger@uda.cl",affiliation:'
Fellow from Doctoral Program of Agriculture in Desert and Arid Zones, of the Faculty of Renewable Natural Resources, Arturo Prat University, Chile
'}],corrections:null},book:{id:"9706",type:"book",title:"Goat Science - Environment, Health and Economy",subtitle:null,fullTitle:"Goat Science - Environment, Health and Economy",slug:null,publishedDate:null,bookSignature:"Prof. Sándor Kukovics",coverURL:"https://cdn.intechopen.com/books/images_new/9706.jpg",licenceType:"CC BY 3.0",editedByType:null,isbn:"978-1-78984-709-3",printIsbn:"978-1-78984-708-6",pdfIsbn:"978-1-78985-193-9",isAvailableForWebshopOrdering:!0,editors:[{id:"25894",title:"Prof.",name:"Sándor",middleName:null,surname:"Kukovics",slug:"sandor-kukovics",fullName:"Sándor Kukovics"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},profile:{item:{id:"103479",title:"Dr.",name:"Yoko",middleName:null,surname:"Matsushita",email:"neu087@poh.osaka-med.ac.jp",fullName:"Yoko Matsushita",slug:"yoko-matsushita",position:null,biography:null,institutionString:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",totalCites:0,totalChapterViews:"0",outsideEditionCount:0,totalAuthoredChapters:"1",totalEditedBooks:"0",personalWebsiteURL:null,twitterURL:null,linkedinURL:null,institution:{name:"Osaka Medical College",institutionURL:null,country:{name:"Japan"}}},booksEdited:[],chaptersAuthored:[{id:"22650",title:"Clinical Study on Modified Boron Neutron Capture Therapy for Newly Diagnosed Glioblastoma",slug:"clinical-study-on-modified-boron-neutron-capture-therapy-for-newly-diagnosed-glioblastoma",abstract:null,signatures:"Shinji Kawabata, Yoko Matsushita, Motomasa Furuse, Shin-Ichi Miyatake, Toshihiko Kuroiwa and Koji Ono",authors:[{id:"45774",title:"Dr.",name:"Shinji",surname:"Kawabata",fullName:"Shinji Kawabata",slug:"shinji-kawabata",email:"neu046@poh.osaka-med.ac.jp"},{id:"103479",title:"Dr.",name:"Yoko",surname:"Matsushita",fullName:"Yoko Matsushita",slug:"yoko-matsushita",email:"neu087@poh.osaka-med.ac.jp"},{id:"103481",title:"Dr.",name:"Motomasa",surname:"Furuse",fullName:"Motomasa Furuse",slug:"motomasa-furuse",email:"neu054@poh.osaka-med.ac.jp"},{id:"103483",title:"Dr.",name:"Shin-Ichi",surname:"Miyatake",fullName:"Shin-Ichi Miyatake",slug:"shin-ichi-miyatake",email:"neu070@poh.osaka-med.ac.jp"},{id:"103484",title:"Prof.",name:"Toshihiko",surname:"Kuroiwa",fullName:"Toshihiko Kuroiwa",slug:"toshihiko-kuroiwa",email:"neu040@poh.osaka-med.ac.jp"},{id:"103485",title:"Dr.",name:"Koji",surname:"Ono",fullName:"Koji Ono",slug:"koji-ono",email:"onokoji@rri.kyoto-u.ac.jp"}],book:{id:"1295",title:"Advances in the Biology, Imaging and Therapies for Glioblastoma",slug:"advances-in-the-biology-imaging-and-therapies-for-glioblastoma",productType:{id:"1",title:"Edited Volume"}}}],collaborators:[{id:"47015",title:"Dr.",name:"Jerry R.",surname:"Williams",slug:"jerry-r.-williams",fullName:"Jerry R. Williams",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"53396",title:"Dr.",name:"Kathryn",surname:"Huber-Keener",slug:"kathryn-huber-keener",fullName:"Kathryn Huber-Keener",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"62462",title:"Prof.",name:"Clark",surname:"Chen",slug:"clark-chen",fullName:"Clark Chen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62462/images/1731_n.jpg",biography:"Dr. Clark C. Chen received his B.S. from Stanford University in 1992, M.S. from Columbia University in 1993, and his M.D.-Ph.D. from Harvard Medical School in 2001. He completed his neurosurgery training at the Massachusetts General Hospital and subsequently completed independent fellowships in stereotactic neurosurgery and radiosurgery. Dr. Chen previously served as the director of Clinical Neuro-Oncology at the Beth Israel Deaconess Medical Center before his current role as the Director of Stereotactic and Radiosurgery and Co-Director of Surgical Neuro-Oncology at the University of California, San Diego. Dr. Chen’s research is directed at identifying alterations in DNA repair pathways as they relate to brain cancer therapy. Dr. Chen is the recipient of the Damon Runyon Fellowship Award, the James Kerr Award, American Brain Tumor Association Investigator Award, Paul Calabresi Scholar Award, Burroughs Wellcome Career Award, William Guy Forbeck Scholar Award, the Doris Duke Clinical Scientist Award and the Kimmel Scholar Award.",institutionString:null,institution:{name:"University of California, San Diego",institutionURL:null,country:{name:"United States of America"}}},{id:"85623",title:"Prof.",name:"Kimberly",surname:"Ng",slug:"kimberly-ng",fullName:"Kimberly Ng",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Dana-Farber/Brigham and Women's Cancer Center",institutionURL:null,country:{name:"United States of America"}}},{id:"85624",title:"Prof.",name:"Santosh",surname:"Kesari",slug:"santosh-kesari",fullName:"Santosh Kesari",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of California San Diego Medical Center",institutionURL:null,country:{name:"United States of America"}}},{id:"86815",title:"Dr.",name:"Bob",surname:"Carter",slug:"bob-carter",fullName:"Bob Carter",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of California San Diego Medical Center",institutionURL:null,country:{name:"United States of America"}}},{id:"86816",title:"Dr.",name:"Jiri",surname:"Bartek Sr",slug:"jiri-bartek-sr",fullName:"Jiri Bartek Sr",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"86817",title:"Dr.",name:"Jiri",surname:"Bartek Jr",slug:"jiri-bartek-jr",fullName:"Jiri Bartek Jr",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Karolinska Institute",institutionURL:null,country:{name:"Sweden"}}},{id:"137918",title:"PhD.",name:"Daila",surname:"Gridley",slug:"daila-gridley",fullName:"Daila Gridley",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Loma Linda University Medical Center",institutionURL:null,country:{name:"United States of America"}}},{id:"137919",title:"Dr.",name:"James",surname:"Slater",slug:"james-slater",fullName:"James Slater",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Loma Linda University",institutionURL:null,country:{name:"United States of America"}}}]},generic:{page:{slug:"open-access-funding-institutions-list",title:"List of Institutions by Country",intro:"
If you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links.
",metaTitle:"List of Institutions by Country",metaDescription:"If you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links. However, if your research is financed through any of the below-mentioned funders, please consult their Open Access policies or grant ‘terms and conditions’ to explore ways to cover your publication costs (also accessible by clicking on the link in their title).",metaKeywords:null,canonicalURL:"open-access-funding-institutions-list",contentRaw:'[{"type":"htmlEditorComponent","content":"
Corresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\n
CSIC affiliated authors can also take advantage of a central Open Access fund (amounting to 10,000 EUR) to cover up to 50% of the rest of the OAPF until it expires. Effective for chapters accepted from January 1, 2020.
Corresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
Corresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
Corresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
The Claremont Colleges are pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\n
Corresponding authors will receive a 15% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
The University of Massachusetts, Amherst is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\n
Corresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
The University of Surrey is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\n
Corresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\n
\\n\\t
Virginia Polytechnic Institute and State University
Corresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\n
CSIC affiliated authors can also take advantage of a central Open Access fund (amounting to 10,000 EUR) to cover up to 50% of the rest of the OAPF until it expires. Effective for chapters accepted from January 1, 2020.
Corresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
Corresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
Corresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
The Claremont Colleges are pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\n
Corresponding authors will receive a 15% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
The University of Massachusetts, Amherst is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\n
Corresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
The University of Surrey is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\n
Corresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\n
\n\t
Virginia Polytechnic Institute and State University
Important: You must be a member or grantee of the above listed institutions in order to apply for their Open Access publication funds.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"-totalCites"},profiles:[{id:"131328",title:"Prof.",name:"Abdennasser",middleName:null,surname:"Chebira",slug:"abdennasser-chebira",fullName:"Abdennasser Chebira",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/131328/images/system/131328.jpg",biography:"Dr. Abdennasser Chebira received his Ph.D. degree in Electrical Engineering and Computer Sciences from PARIS XI University, Orsay, France, in 1994. Since September 1994 he works as Professor Assistant at Sénart Institute of Technology of PARIS XII – Val de Marne University. He is a staff researcher at Images, Signal and Intelligent Systems Laboratory (LISSI / EA 3956) of this University. His current research works concern selforganizing neural network based multi-modeling, hybrid neural based information processing systems; Neural based data fusion and complexity estimation.",institutionString:null,institution:null},{id:"262400",title:"Dr.",name:"Thiago Lopes",middleName:null,surname:"Rocha",slug:"thiago-lopes-rocha",fullName:"Thiago Lopes Rocha",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"327936",title:"Dr.",name:"Mohamed",middleName:null,surname:"Anli",slug:"mohamed-anli",fullName:"Mohamed Anli",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"197120",title:"Mr.",name:"Habib Ur",middleName:null,surname:"Rehman",slug:"habib-ur-rehman",fullName:"Habib Ur Rehman",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"328192",title:"Dr.",name:"Sameer",middleName:null,surname:"Kumar",slug:"sameer-kumar",fullName:"Sameer Kumar",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"1024",title:"Dr.",name:"Keinosuke",middleName:null,surname:"Matsumoto",slug:"keinosuke-matsumoto",fullName:"Keinosuke Matsumoto",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Osaka Prefecture University",country:{name:"Japan"}}},{id:"66560",title:"Dr.",name:"Nicole",middleName:null,surname:"Verrills",slug:"nicole-verrills",fullName:"Nicole Verrills",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Newcastle Australia",country:{name:"Australia"}}},{id:"197632",title:"Ph.D.",name:"Karolína",middleName:null,surname:"Barinková",slug:"karolina-barinkova",fullName:"Karolína Barinková",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Pavol Jozef Šafárik",country:{name:"Slovakia"}}},{id:"328704",title:"Dr.",name:"Esther",middleName:null,surname:"Carrillo-Pérez",slug:"esther-carrillo-perez",fullName:"Esther Carrillo-Pérez",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidad de Sonora",country:{name:"Mexico"}}},{id:"66816",title:"Dr.",name:"Iwao",middleName:null,surname:"Emura",slug:"iwao-emura",fullName:"Iwao Emura",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"67072",title:"Mr.",name:"Matthew",middleName:null,surname:"Lorenzi",slug:"matthew-lorenzi",fullName:"Matthew Lorenzi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"The Bristol-Myers Squibb Children's Hospital",country:{name:"United States of America"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6674},{group:"region",caption:"Middle and South America",value:2,count:5955},{group:"region",caption:"Africa",value:3,count:2461},{group:"region",caption:"Asia",value:4,count:12719},{group:"region",caption:"Australia and Oceania",value:5,count:1018},{group:"region",caption:"Europe",value:6,count:17724}],offset:12,limit:12,total:134203},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish",topicId:"5"},books:[{type:"book",id:"11616",title:"Foraging",subtitle:null,isOpenForSubmission:!0,hash:"955b60bb658c8d1a09dd4efc9bf6674b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11616.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11794",title:"Coconut Cultivation",subtitle:null,isOpenForSubmission:!0,hash:"48e1cb42a4162f64cae3a2e777472f21",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11794.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11809",title:"Lagomorpha",subtitle:null,isOpenForSubmission:!0,hash:"1e8fd5779205c16e5797b05455dc5be0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11809.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11610",title:"New Insights in Herbicide Science",subtitle:null,isOpenForSubmission:!0,hash:"eb3830b8176caf3d1fd52c32313c5168",slug:null,bookSignature:"Ph.D. Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/11610.jpg",editedByType:null,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12146",title:"Cellulose",subtitle:null,isOpenForSubmission:!0,hash:"b1196cf20a9e42db795c2d647681aa9d",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12146.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12147",title:"Abiotic Stress in Plants",subtitle:null,isOpenForSubmission:!0,hash:"f3d8c31029650b7ce536da7ab9d7a5a0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12147.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12148",title:"Cucurbitaceae",subtitle:null,isOpenForSubmission:!0,hash:"0029e5c84528142bf2eff0cbd5b14fa2",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12148.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12149",title:"Solanum tuberosum",subtitle:null,isOpenForSubmission:!0,hash:"39bdc8ce8b54bc666a3ab765a29c6edd",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12149.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12151",title:"Poultry Farming",subtitle:null,isOpenForSubmission:!0,hash:"acd89c676ce6c3da7af23d64e30828f6",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12151.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12154",title:"Organic Fertilizers",subtitle:null,isOpenForSubmission:!0,hash:"8634d6ecdb6fc207336d8b95a169e400",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12154.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12156",title:"Legumes",subtitle:null,isOpenForSubmission:!0,hash:"a97becd6aa14a480ce28c05a3116f639",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12156.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12158",title:"Insecticides",subtitle:null,isOpenForSubmission:!0,hash:"247c6afbbb411e49d33864c1911b3242",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12158.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:36},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:22},{group:"topic",caption:"Computer and Information Science",value:9,count:23},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:61},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:15},{group:"topic",caption:"Materials Science",value:14,count:24},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:108},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3}],offset:12,limit:12,total:72},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4433},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11043",title:"Endometriosis",subtitle:"Recent Advances, New Perspectives and Treatments",isOpenForSubmission:!1,hash:"7baf1c70b11d41400bb9302ae9411ca4",slug:"endometriosis-recent-advances-new-perspectives-and-treatments",bookSignature:"Giovana Ap. Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11043.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11083",title:"Hazardous Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"d553bd4f6f1c4b115ca69bd19faac7dc",slug:"hazardous-waste-management",bookSignature:"Rajesh Banu Jeyakumar, Kavitha Sankarapandian and Yukesh Kannah Ravi",coverURL:"https://cdn.intechopen.com/books/images_new/11083.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9625",title:"Spinocerebellar Ataxia",subtitle:"Concepts, Particularities and Generalities",isOpenForSubmission:!1,hash:"365a7025fd46eb45de2549bdd9d50b98",slug:"spinocerebellar-ataxia-concepts-particularities-and-generalities",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/9625.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"163",title:"Applied Mathematics",slug:"applied-mathematics",parent:{id:"15",title:"Mathematics",slug:"mathematics"},numberOfBooks:37,numberOfSeries:0,numberOfAuthorsAndEditors:740,numberOfWosCitations:584,numberOfCrossrefCitations:451,numberOfDimensionsCitations:863,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"163",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9965",title:"Computational Optimization Techniques and Applications",subtitle:null,isOpenForSubmission:!1,hash:"d2c7d240aed947e7780605dab6dde1c3",slug:"computational-optimization-techniques-and-applications",bookSignature:"Muhammad Sarfraz and Samsul Ariffin Abdul Karim",coverURL:"https://cdn.intechopen.com/books/images_new/9965.jpg",editedByType:"Edited by",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10471",title:"Advances in Dynamical Systems Theory, Models, Algorithms and Applications",subtitle:null,isOpenForSubmission:!1,hash:"689fdf3cdc78ade03f0c43a245dcf818",slug:"advances-in-dynamical-systems-theory-models-algorithms-and-applications",bookSignature:"Bruno Carpentieri",coverURL:"https://cdn.intechopen.com/books/images_new/10471.jpg",editedByType:"Edited by",editors:[{id:"92921",title:"Dr.",name:"Bruno",middleName:null,surname:"Carpentieri",slug:"bruno-carpentieri",fullName:"Bruno Carpentieri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9325",title:"Mathematical Theorems",subtitle:"Boundary Value Problems and Approximations",isOpenForSubmission:!1,hash:"38c88a4ec0ff6c0184a6694c21ddedc5",slug:"mathematical-theorems-boundary-value-problems-and-approximations",bookSignature:"Lyudmila Alexeyeva",coverURL:"https://cdn.intechopen.com/books/images_new/9325.jpg",editedByType:"Edited by",editors:[{id:"232525",title:"Prof.",name:"Lyudmila",middleName:"Alexeyevna",surname:"Alexeyeva",slug:"lyudmila-alexeyeva",fullName:"Lyudmila Alexeyeva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8521",title:"Multicriteria Optimization",subtitle:"Pareto-Optimality and Threshold-Optimality",isOpenForSubmission:!1,hash:"05baea741edde509bab2259dad7f6384",slug:"multicriteria-optimization-pareto-optimality-and-threshold-optimality",bookSignature:"Nodari Vakhania and Frank Werner",coverURL:"https://cdn.intechopen.com/books/images_new/8521.jpg",editedByType:"Edited by",editors:[{id:"202585",title:"Prof.",name:"Nodari",middleName:null,surname:"Vakhania",slug:"nodari-vakhania",fullName:"Nodari Vakhania"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7428",title:"Advances on Tensor Analysis and their Applications",subtitle:null,isOpenForSubmission:!1,hash:"2339ac5eb978557d01451489e961b102",slug:"advances-on-tensor-analysis-and-their-applications",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/7428.jpg",editedByType:"Edited by",editors:[{id:"92918",title:"Dr.",name:"Francisco",middleName:null,surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7662",title:"Nonlinear Systems",subtitle:"Theoretical Aspects and Recent Applications",isOpenForSubmission:!1,hash:"fdcb3bf6de1d84506ffc6aa9e5b691b3",slug:"nonlinear-systems-theoretical-aspects-and-recent-applications",bookSignature:"Walter Legnani and Terry E. Moschandreou",coverURL:"https://cdn.intechopen.com/books/images_new/7662.jpg",editedByType:"Edited by",editors:[{id:"199059",title:"Dr.",name:"Walter",middleName:"Edgardo",surname:"Legnani",slug:"walter-legnani",fullName:"Walter Legnani"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8656",title:"Probability, Combinatorics and Control",subtitle:null,isOpenForSubmission:!1,hash:"9993ec9b59bcb38d206f2e31125028b7",slug:"probability-combinatorics-and-control",bookSignature:"Andrey Kostogryzov and Victor Korolev",coverURL:"https://cdn.intechopen.com/books/images_new/8656.jpg",editedByType:"Edited by",editors:[{id:"148322",title:"Dr.",name:"Andrey",middleName:null,surname:"Kostogryzov",slug:"andrey-kostogryzov",fullName:"Andrey Kostogryzov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9324",title:"Dynamical Systems Theory",subtitle:null,isOpenForSubmission:!1,hash:"413cbcf9c048bb251eca1b5e32bbc640",slug:"dynamical-systems-theory",bookSignature:"Jan Awrejcewicz and Dariusz Grzelczyk",coverURL:"https://cdn.intechopen.com/books/images_new/9324.jpg",editedByType:"Edited by",editors:[{id:"68338",title:"Prof.",name:"Jan",middleName:null,surname:"Awrejcewicz",slug:"jan-awrejcewicz",fullName:"Jan Awrejcewicz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7776",title:"Research Advances in Chaos Theory",subtitle:null,isOpenForSubmission:!1,hash:"e9646ec4b2bff873ce958ed4d5ad7248",slug:"research-advances-in-chaos-theory",bookSignature:"Paul Bracken",coverURL:"https://cdn.intechopen.com/books/images_new/7776.jpg",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7751",title:"Fault Detection, Diagnosis and Prognosis",subtitle:null,isOpenForSubmission:!1,hash:"d54796f7da58f58fa679b94a2b83af00",slug:"fault-detection-diagnosis-and-prognosis",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/7751.jpg",editedByType:"Edited by",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:37,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"14634",doi:"10.5772/15998",title:"The Application of FT-IR Spectroscopy in Waste Management",slug:"the-application-of-ft-ir-spectroscopy-in-waste-management",totalDownloads:6640,totalCrossrefCites:18,totalDimensionsCites:34,abstract:null,book:{id:"1574",slug:"fourier-transforms-new-analytical-approaches-and-ftir-strategies",title:"Fourier Transforms",fullTitle:"Fourier Transforms - New Analytical Approaches and FTIR Strategies"},signatures:"Ena Smidt, Katharina Böhm and Manfred Schwanninger",authors:[{id:"20376",title:"Dr.",name:"Katharina",middleName:null,surname:"Böhm",slug:"katharina-bohm",fullName:"Katharina Böhm"},{id:"22840",title:"Dr.",name:"Ena",middleName:null,surname:"Smidt",slug:"ena-smidt",fullName:"Ena Smidt"},{id:"22915",title:"Dr.",name:"Manfred",middleName:null,surname:"Schwanninger",slug:"manfred-schwanninger",fullName:"Manfred Schwanninger"}]},{id:"15157",doi:"10.5772/15959",title:"Fourier Transform Mass Spectrometry for the Molecular Level Characterization of Natural Organic Matter: Instrument Capabilities, Applications, and Limitations",slug:"fourier-transform-mass-spectrometry-for-the-molecular-level-characterization-of-natural-organic-matt",totalDownloads:4334,totalCrossrefCites:6,totalDimensionsCites:33,abstract:null,book:{id:"122",slug:"fourier-transforms-approach-to-scientific-principles",title:"Fourier Transforms",fullTitle:"Fourier Transforms - Approach to Scientific Principles"},signatures:"Rachel L. Sleighter and Patrick G. Hatcher",authors:[{id:"22676",title:"Dr.",name:"Rachel L.",middleName:null,surname:"Sleighter",slug:"rachel-l.-sleighter",fullName:"Rachel L. Sleighter"},{id:"23168",title:"Dr.",name:"Patrick G.",middleName:null,surname:"Hatcher",slug:"patrick-g.-hatcher",fullName:"Patrick G. Hatcher"}]},{id:"60097",doi:"10.5772/intechopen.75381",title:"Robust Optimization: Concepts and Applications",slug:"robust-optimization-concepts-and-applications",totalDownloads:2539,totalCrossrefCites:23,totalDimensionsCites:31,abstract:"Robust optimization is an emerging area in research that allows addressing different optimization problems and specifically industrial optimization problems where there is a degree of uncertainty in some of the variables involved. There are several ways to apply robust optimization and the choice of form is typical of the problem that is being solved. In this paper, the basic concepts of robust optimization are developed, the different types of robustness are defined in detail, the main areas in which it has been applied are described and finally, the future lines of research that appear in this area are included.",book:{id:"6587",slug:"nature-inspired-methods-for-stochastic-robust-and-dynamic-optimization",title:"Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization",fullTitle:"Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization"},signatures:"José García and Alvaro Peña",authors:[{id:"227809",title:"Ph.D.",name:"Jose",middleName:null,surname:"Garcia",slug:"jose-garcia",fullName:"Jose Garcia"},{id:"240407",title:"Dr.",name:"Alvaro",middleName:null,surname:"Peña",slug:"alvaro-pena",fullName:"Alvaro Peña"}]},{id:"51131",doi:"10.5772/63785",title:"Survey of Meta-Heuristic Algorithms for Deep Learning Training",slug:"survey-of-meta-heuristic-algorithms-for-deep-learning-training",totalDownloads:3140,totalCrossrefCites:15,totalDimensionsCites:24,abstract:"Deep learning (DL) is a type of machine learning that mimics the thinking patterns of a human brain to learn the new abstract features automatically by deep and hierarchical layers. DL is implemented by deep neural network (DNN) which has multi-hidden layers. DNN is developed from traditional artificial neural network (ANN). However, in the training process of DL, it has certain inefficiency due to very long training time required. Meta-heuristic aims to find good or near-optimal solutions at a reasonable computational cost. In this article, meta-heuristic algorithms are reviewed, such as genetic algorithm (GA) and particle swarm optimization (PSO), for traditional neural network’s training and parameter optimization. Thereafter the possibilities of applying meta-heuristic algorithms on DL training and parameter optimization are discussed.",book:{id:"5165",slug:"optimization-algorithms-methods-and-applications",title:"Optimization Algorithms",fullTitle:"Optimization Algorithms - Methods and Applications"},signatures:"Zhonghuan Tian and Simon Fong",authors:[{id:"1952",title:"Dr.",name:"Simon",middleName:null,surname:"Fong",slug:"simon-fong",fullName:"Simon Fong"},{id:"186166",title:"MSc.",name:"Zhonghuan",middleName:null,surname:"Tien",slug:"zhonghuan-tien",fullName:"Zhonghuan Tien"}]},{id:"40430",doi:"10.5772/50403",title:"Mathematical Modelling and Numerical Investigations on the Coanda Effect",slug:"mathematical-modelling-and-numerical-investigations-on-the-coanda-effect",totalDownloads:5147,totalCrossrefCites:15,totalDimensionsCites:23,abstract:null,book:{id:"2508",slug:"nonlinearity-bifurcation-and-chaos-theory-and-applications",title:"Nonlinearity, Bifurcation and Chaos",fullTitle:"Nonlinearity, Bifurcation and Chaos - Theory and Applications"},signatures:"A. Dumitrache, F. Frunzulica and T.C. Ionescu",authors:[{id:"151443",title:"Dr.",name:"Dumitrache",middleName:null,surname:"Alexandru",slug:"dumitrache-alexandru",fullName:"Dumitrache Alexandru"},{id:"151449",title:"Dr.",name:"Frunzulica",middleName:null,surname:"Florin",slug:"frunzulica-florin",fullName:"Frunzulica Florin"},{id:"151451",title:"Dr.",name:"Ionescu",middleName:null,surname:"Tudor",slug:"ionescu-tudor",fullName:"Ionescu Tudor"}]}],mostDownloadedChaptersLast30Days:[{id:"74096",title:"Time Frequency Analysis of Wavelet and Fourier Transform",slug:"time-frequency-analysis-of-wavelet-and-fourier-transform",totalDownloads:1219,totalCrossrefCites:6,totalDimensionsCites:8,abstract:"Signal processing has long been dominated by the Fourier transform. However, there is an alternate transform that has gained popularity recently and that is the wavelet transform. The wavelet transform has a long history starting in 1910 when Alfred Haar created it as an alternative to the Fourier transform. In 1940 Norman Ricker created the first continuous wavelet and proposed the term wavelet. Work in the field has proceeded in fits and starts across many different disciplines, until the 1990’s when the discrete wavelet transform was developed by Ingrid Daubechies. While the Fourier transform creates a representation of the signal in the frequency domain, the wavelet transform creates a representation of the signal in both the time and frequency domain, thereby allowing efficient access of localized information about the signal.",book:{id:"10065",slug:"wavelet-theory",title:"Wavelet Theory",fullTitle:"Wavelet Theory"},signatures:"Karlton Wirsing",authors:[{id:"325178",title:"Dr.",name:"Karlton",middleName:null,surname:"Wirsing",slug:"karlton-wirsing",fullName:"Karlton Wirsing"}]},{id:"54366",title:"Solution of Differential Equations with Applications to Engineering Problems",slug:"solution-of-differential-equations-with-applications-to-engineering-problems",totalDownloads:6815,totalCrossrefCites:5,totalDimensionsCites:7,abstract:"Over the last hundred years, many techniques have been developed for the solution of ordinary differential equations and partial differential equations. While quite a major portion of the techniques is only useful for academic purposes, there are some which are important in the solution of real problems arising from science and engineering. In this chapter, only very limited techniques for solving ordinary differential and partial differential equations are discussed, as it is impossible to cover all the available techniques even in a book form. The readers are then suggested to pursue further studies on this issue if necessary. After that, the readers are introduced to two major numerical methods commonly used by the engineers for the solution of real engineering problems.",book:{id:"5513",slug:"dynamical-systems-analytical-and-computational-techniques",title:"Dynamical Systems",fullTitle:"Dynamical Systems - Analytical and Computational Techniques"},signatures:"Cheng Yung Ming",authors:[{id:"191017",title:"Dr.",name:"Cheng",middleName:null,surname:"Y.M.",slug:"cheng-y.m.",fullName:"Cheng Y.M."}]},{id:"56538",title:"Stochastic Resonance and Related Topics",slug:"stochastic-resonance-and-related-topics",totalDownloads:1695,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"The stochastic resonance (SR) is the phenomenon which can emerge in nonlinear dynamic systems. In general, it is related with a bistable nonlinear system of Duffing type under additive excitation combining deterministic periodic force and Gaussian white noise. It manifests as a stable quasiperiodic interwell hopping between both stable states with a small random perturbation. Classical definition and basic features of SR are regarded. The most important methods of investigation outlined are: analytical, semi-analytical, and numerical procedures of governing physical systems or relevant Fokker-Planck equation. Stochastic simulation is mentioned and experimental way of results verification is recommended. Some areas in Engineering Dynamics related with SR are presented together with a particular demonstration observed in the aeroelastic stability. Interaction of stationary and quasiperiodic parts of the response is discussed. Some nonconventional definitions are outlined concerning alternative operators and driving processes are highlighted. The chapter shows a large potential of specific basic, applied and industrial research in SR. This strategy enables to formulate new ideas for both development of nonconventional measures for vibration damping and employment of SR in branches, where it represents an operating mode of the system itself. Weaknesses and empty areas where the research effort of SR should be oriented are indicated.",book:{id:"6128",slug:"resonance",title:"Resonance",fullTitle:"Resonance"},signatures:"Jiří Náprstek and Cyril Fischer",authors:[{id:"207472",title:"Dr.",name:"Jiri",middleName:null,surname:"Naprstek",slug:"jiri-naprstek",fullName:"Jiri Naprstek"},{id:"213311",title:"Dr.",name:"Cyril",middleName:null,surname:"Fischer",slug:"cyril-fischer",fullName:"Cyril Fischer"}]},{id:"74032",title:"Wavelets for EEG Analysis",slug:"wavelets-for-eeg-analysis",totalDownloads:1208,totalCrossrefCites:3,totalDimensionsCites:3,abstract:"This chapter introduces the applications of wavelet for Electroencephalogram (EEG) signal analysis. First, the overview of EEG signal is discussed to the recording of raw EEG and widely used frequency bands in EEG studies. The chapter then progresses to discuss the common artefacts that contaminate EEG signal while recording. With a short overview of wavelet analysis techniques, namely; Continues Wavelet Transform (CWT), Discrete Wavelet Transform (DWT), and Wavelet Packet Decomposition (WPD), the chapter demonstrates the richness of CWT over conventional time-frequency analysis technique e.g. Short-Time Fourier Transform. Lastly, artefact removal algorithms based on Independent Component Analysis (ICA) and wavelet are discussed and a comparative analysis is demonstrated. The techniques covered in this chapter show that wavelet analysis is well-suited for EEG signals for describing time-localised event. Due to similar nature, wavelet analysis is also suitable for other biomedical signals such as Electrocardiogram and Electromyogram.",book:{id:"10065",slug:"wavelet-theory",title:"Wavelet Theory",fullTitle:"Wavelet Theory"},signatures:"Nikesh Bajaj",authors:[{id:"326400",title:"Dr.",name:"Nikesh",middleName:null,surname:"Bajaj",slug:"nikesh-bajaj",fullName:"Nikesh Bajaj"}]},{id:"70067",title:"Analytic Prognostic in the Linear Damage Case Applied to Buried Petrochemical Pipelines and the Complex Probability Paradigm",slug:"analytic-prognostic-in-the-linear-damage-case-applied-to-buried-petrochemical-pipelines-and-the-comp",totalDownloads:2681,totalCrossrefCites:3,totalDimensionsCites:3,abstract:"In 1933, Andrey Nikolaevich Kolmogorov established the system of five axioms that define the concept of mathematical probability. This system can be developed to include the set of imaginary numbers by adding a supplementary three original axioms. Therefore, any experiment can be performed in the set \n\nC\n\n of complex probabilities which is the summation of the set \n\nR\n\n of real probabilities and the set \n\nM\n\n of imaginary probabilities. The purpose here is to include additional imaginary dimensions to the experiment taking place in the “real” laboratory in \n\nR\n\n and hence to evaluate all the probabilities. Consequently, the probability in the entire set \n\nC\n=\nR\n+\nM\n\n is permanently equal to one no matter what the stochastic distribution of the input random variable in \n\nR\n\n is; therefore the outcome of the probabilistic experiment in \n\nC\n\n can be determined perfectly. This is due to the fact that the probability in \n\nC\n\n is calculated after subtracting from the degree of our knowledge the chaotic factor of the random experiment. Consequently, the purpose in this chapter is to join my complex probability paradigm to the analytic prognostic of buried petrochemical pipelines in the case of linear damage accumulation. Accordingly, after the calculation of the novel prognostic model parameters, we will be able to evaluate the degree of knowledge, the magnitude of the chaotic factor, the complex probability, the probabilities of the system failure and survival, and the probability of the remaining useful lifetime; after that a pressure time t has been applied to the pipeline, which are all functions of the system degradation subject to random and stochastic influences.",book:{id:"7751",slug:"fault-detection-diagnosis-and-prognosis",title:"Fault Detection, Diagnosis and Prognosis",fullTitle:"Fault Detection, Diagnosis and Prognosis"},signatures:"Abdo Abou Jaoude",authors:[{id:"248271",title:"Dr.",name:"Abdo",middleName:null,surname:"Abou Jaoudé",slug:"abdo-abou-jaoude",fullName:"Abdo Abou Jaoudé"}]}],onlineFirstChaptersFilter:{topicId:"163",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"81892",title:"Perspective Chapter: Lattice Solitons in a Nonlocal Nonlinear Medium with Self-Focusing and Self-Defocusing Quintic Nonlinearity",slug:"perspective-chapter-lattice-solitons-in-a-nonlocal-nonlinear-medium-with-self-focusing-and-self-defo",totalDownloads:5,totalDimensionsCites:0,doi:"10.5772/intechopen.104824",abstract:"The fundamental lattice solitons are explored in a nonlocal nonlinear medium with self-focusing and self-defocusing quintic nonlinearity. The band-gap boundaries, soliton profiles, and stability domains of fundamental solitons are investigated comprehensively by the linear stability spectra and nonlinear evolution of the solitons. It is demonstrated that fundamental lattice solitons can stay stable for a wide range of parameters with the weak self-focusing and self-defocusing quintic nonlinearity, while strong self-focusing and self-defocusing quintic nonlinearities are shortened the propagation distance of evolved solitons. Furthermore, it is observed that when the instability emerges from strong quintic nonlinearity, increasing anisotropy of the medium and modification of lattice depth can be considered as a collapse arrest mechanism.",book:{id:"10959",title:"The Nonlinear Schrödinger Equation",coverURL:"https://cdn.intechopen.com/books/images_new/10959.jpg"},signatures:"Mahmut Bağcı, Theodoros P. Horikis, İlkay Bakırtaş and Nalan Antar"},{id:"80350",title:"A Comparison of the Undetermined Coefficient Method and the Adomian Decomposition Method for the Solutions of the Sasa-Satsuma Equation",slug:"a-comparison-of-the-undetermined-coefficient-method-and-the-adomian-decomposition-method-for-the-sol",totalDownloads:42,totalDimensionsCites:0,doi:"10.5772/intechopen.101817",abstract:"This chapter will talk about the mathematical as well as numerical aspects of the Sasa-Satsuma equation that is the extended nontrivial version of nonlinear Schrödinger’s equation. The exact solution will be found out by the undetermined coefficient method. After that, the Adomian decomposition method is secure numerical simulations of computed analytical solutions. The error plots are given to see the accuracy of the results.",book:{id:"10959",title:"The Nonlinear Schrödinger Equation",coverURL:"https://cdn.intechopen.com/books/images_new/10959.jpg"},signatures:"Mir Asma"},{id:"79127",title:"Soliton Like-Breather Induced by Modulational Instability in a Generalized Nonlinear Schrödinger Equation",slug:"soliton-like-breather-induced-by-modulational-instability-in-a-generalized-nonlinear-schr-dinger-equ",totalDownloads:97,totalDimensionsCites:0,doi:"10.5772/intechopen.100522",abstract:"We consider the nonlinear Schrödinger equation modified by a rational nonlinear term. The model appears in various studies often in the context of the Ginzburg-Landau equation. We investigate modulational instability by means of a linear stability analysis and show how the nonlinear terms affect the growth rate. This analytical result is confirmed by a numerical simulation. The latter analysis shows that breather-like solitons are generated from the instability, and the effects of the nonlinear terms are again clearly seen. Moreover, by employing an auxiliary-equation method we obtain kink and anti-kink soliton as analytical solutions. Our theoretical solution is in good agreement with our numerical investigation.",book:{id:"10959",title:"The Nonlinear Schrödinger Equation",coverURL:"https://cdn.intechopen.com/books/images_new/10959.jpg"},signatures:"Saïdou Abdoulkary and Alidou Mohamadou"},{id:"79040",title:"Traveling Wave Solutions and Chaotic Motions for a Perturbed Nonlinear Schrödinger Equation with Power-Law Nonlinearity and Higher-Order Dispersions",slug:"traveling-wave-solutions-and-chaotic-motions-for-a-perturbed-nonlinear-schr-dinger-equation-with-pow",totalDownloads:92,totalDimensionsCites:0,doi:"10.5772/intechopen.100396",abstract:"This chapter aims to study and solve the perturbed nonlinear Schrödinger (NLS) equation with the power-law nonlinearity in a nano-optical fiber, based upon different methods such as the auxiliary equation method, the Stuart and DiPrima’s stability analysis method, and the bifurcation theory. The existence of the traveling wave solutions is discussed, and their stability properties are investigated through the modulational stability gain spectra. Moreover, the development of the chaotic motions for the systems is pointed out via the bifurcation theory. Taking into account an external periodic perturbation, we have analyzed the chaotic behavior of traveling waves through quasiperiodic route to chaos.",book:{id:"10959",title:"The Nonlinear Schrödinger Equation",coverURL:"https://cdn.intechopen.com/books/images_new/10959.jpg"},signatures:"Mati Youssoufa, Ousmanou Dafounansou, Camus Gaston Latchio Tiofack and Alidou Mohamadou"},{id:"78957",title:"Resonant Optical Solitons in (3 + 1)-Dimensions Dominated by Kerr Law and Parabolic Law Nonlinearities",slug:"resonant-optical-solitons-in-3-1-dimensions-dominated-by-kerr-law-and-parabolic-law-nonlinearities",totalDownloads:96,totalDimensionsCites:0,doi:"10.5772/intechopen.100469",abstract:"This study investigates the optical solitons of of (3+1)-dimensional resonant nonlinear Schrödinger (3D-RNLS) equation with the two laws of nonlinearity. The two forms of nonlinearity are represented by Kerr law and parabolic law. Based on complex transformation, the traveling wave reduction of the governing model is derived. The projective Riccati equations technique is applied to obtain the exact solutions of 3D-RNLS equation. Various types of waves that represent different structures of optical solitons are extracted. These structures include bright, dark, singular, dark-singular and combined singular solitons. Additionally, the obliquity effect on resonant solitons is illustrated graphically and is found to cause dramatic variations in soliton behaviors.",book:{id:"10959",title:"The Nonlinear Schrödinger Equation",coverURL:"https://cdn.intechopen.com/books/images_new/10959.jpg"},signatures:"Khalil S. Al-Ghafri"},{id:"78793",title:"Nonlinear Generalized Schrödinger’s Equations by Lifting Hamilton-Jacobi’s Formulation of Classical Mechanics",slug:"nonlinear-generalized-schr-dinger-s-equations-by-lifting-hamilton-jacobi-s-formulation-of-classical-",totalDownloads:100,totalDimensionsCites:0,doi:"10.5772/intechopen.100068",abstract:"It is well known that, by taking a limit of Schrödinger’s equation, we may recover Hamilton-Jacobi’s equation which governs one of the possible formulations of classical mechanics. Conversely, we may start from the Hamilton-Jacobi’s equation and, by using a lifting principle, we may reach a set of nonlinear generalized Schrödinger’s equations. The classical Schrödinger’s equation then occurs as the simplest equation among the set.",book:{id:"10959",title:"The Nonlinear Schrödinger Equation",coverURL:"https://cdn.intechopen.com/books/images_new/10959.jpg"},signatures:"Gérard Gouesbet"}],onlineFirstChaptersTotal:7},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:320,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:133,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:16,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"24",title:"Sustainable Development",doi:"10.5772/intechopen.100361",issn:null,scope:"
\r\n\tTransforming our World: the 2030 Agenda for Sustainable Development endorsed by United Nations and 193 Member States, came into effect on Jan 1, 2016, to guide decision making and actions to the year 2030 and beyond. Central to this Agenda are 17 Goals, 169 associated targets and over 230 indicators that are reviewed annually. The vision envisaged in the implementation of the SDGs is centered on the five Ps: People, Planet, Prosperity, Peace and Partnership. This call for renewed focused efforts ensure we have a safe and healthy planet for current and future generations.
\r\n
\r\n\t
\r\n
\r\n\tThis Series focuses on covering research and applied research involving the five Ps through the following topics:
\r\n
\r\n\t
\r\n
\r\n\t1. Sustainable Economy and Fair Society that relates to SDG 1 on No Poverty, SDG 2 on Zero Hunger, SDG 8 on Decent Work and Economic Growth, SDG 10 on Reduced Inequalities, SDG 12 on Responsible Consumption and Production, and SDG 17 Partnership for the Goals
\r\n
\r\n\t
\r\n
\r\n\t2. Health and Wellbeing focusing on SDG 3 on Good Health and Wellbeing and SDG 6 on Clean Water and Sanitation
\r\n
\r\n\t
\r\n
\r\n\t3. Inclusivity and Social Equality involving SDG 4 on Quality Education, SDG 5 on Gender Equality, and SDG 16 on Peace, Justice and Strong Institutions
\r\n
\r\n\t
\r\n
\r\n\t4. Climate Change and Environmental Sustainability comprising SDG 13 on Climate Action, SDG 14 on Life Below Water, and SDG 15 on Life on Land
\r\n
\r\n\t
\r\n
\r\n\t5. Urban Planning and Environmental Management embracing SDG 7 on Affordable Clean Energy, SDG 9 on Industry, Innovation and Infrastructure, and SDG 11 on Sustainable Cities and Communities.
\r\n
\r\n\t
\r\n
\r\n\tThe series also seeks to support the use of cross cutting SDGs, as many of the goals listed above, targets and indicators are all interconnected to impact our lives and the decisions we make on a daily basis, making them impossible to tie to a single topic.
",coverUrl:"https://cdn.intechopen.com/series/covers/24.jpg",latestPublicationDate:"July 5th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:0,editor:{id:"262440",title:"Prof.",name:"Usha",middleName:null,surname:"Iyer-Raniga",slug:"usha-iyer-raniga",fullName:"Usha Iyer-Raniga",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRYSXQA4/Profile_Picture_2022-02-28T13:55:36.jpeg",biography:"Usha Iyer-Raniga is a professor in the School of Property and Construction Management at RMIT University. Usha co-leads the One Planet Network’s Sustainable Buildings and Construction Programme (SBC), a United Nations 10 Year Framework of Programmes on Sustainable Consumption and Production (UN 10FYP SCP) aligned with Sustainable Development Goal 12. The work also directly impacts SDG 11 on Sustainable Cities and Communities. She completed her undergraduate degree as an architect before obtaining her Masters degree from Canada and her Doctorate in Australia. Usha has been a keynote speaker as well as an invited speaker at national and international conferences, seminars and workshops. Her teaching experience includes teaching in Asian countries. She has advised Austrade, APEC, national, state and local governments. She serves as a reviewer and a member of the scientific committee for national and international refereed journals and refereed conferences. She is on the editorial board for refereed journals and has worked on Special Issues. Usha has served and continues to serve on the Boards of several not-for-profit organisations and she has also served as panel judge for a number of awards including the Premiers Sustainability Award in Victoria and the International Green Gown Awards. Usha has published over 100 publications, including research and consulting reports. Her publications cover a wide range of scientific and technical research publications that include edited books, book chapters, refereed journals, refereed conference papers and reports for local, state and federal government clients. She has also produced podcasts for various organisations and participated in media interviews. She has received state, national and international funding worth over USD $25 million. Usha has been awarded the Quarterly Franklin Membership by London Journals Press (UK). Her biography has been included in the Marquis Who's Who in the World® 2018, 2016 (33rd Edition), along with approximately 55,000 of the most accomplished men and women from around the world, including luminaries as U.N. Secretary-General Ban Ki-moon. In 2017, Usha was awarded the Marquis Who’s Who Lifetime Achiever Award.",institutionString:null,institution:{name:"RMIT University",institutionURL:null,country:{name:"Australia"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:5,paginationItems:[{id:"91",title:"Sustainable Economy and Fair Society",coverUrl:"https://cdn.intechopen.com/series_topics/covers/91.jpg",isOpenForSubmission:!0,annualVolume:11975,editor:{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo",profilePictureURL:"https://mts.intechopen.com/storage/users/181603/images/system/181603.jpg",biography:"Antonella Petrillo is a Professor at the Department of Engineering of the University of Naples “Parthenope”, Italy. She received her Ph.D. in Mechanical Engineering from the University of Cassino. Her research interests include multi-criteria decision analysis, industrial plant, logistics, manufacturing and safety. She serves as an Associate Editor for the International Journal of the Analytic Hierarchy Process. She is a member of AHP Academy and a member of several editorial boards. She has over 160 Scientific Publications in International Journals and Conferences and she is the author of 5 books on Innovation and Decision Making in Industrial Applications and Engineering.",institutionString:null,institution:{name:"Parthenope University of Naples",institutionURL:null,country:{name:"Italy"}}},editorTwo:null,editorThree:null},{id:"92",title:"Health and Wellbeing",coverUrl:"https://cdn.intechopen.com/series_topics/covers/92.jpg",isOpenForSubmission:!0,annualVolume:11976,editor:{id:"348225",title:"Prof.",name:"Ann",middleName:null,surname:"Hemingway",slug:"ann-hemingway",fullName:"Ann Hemingway",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035LZFoQAO/Profile_Picture_2022-04-11T14:55:40.jpg",biography:"Professor Hemingway is a public health researcher, Bournemouth University, undertaking international and UK research focused on reducing inequalities in health outcomes for marginalised and excluded populations and more recently focused on equine assisted interventions.",institutionString:null,institution:{name:"Bournemouth University",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null},{id:"93",title:"Inclusivity and Social Equity",coverUrl:"https://cdn.intechopen.com/series_topics/covers/93.jpg",isOpenForSubmission:!0,annualVolume:11977,editor:{id:"210060",title:"Prof. Dr.",name:"Ebba",middleName:null,surname:"Ossiannilsson",slug:"ebba-ossiannilsson",fullName:"Ebba Ossiannilsson",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6LkBQAU/Profile_Picture_2022-02-28T13:31:48.png",biography:"Professor Dr. Ebba Ossiannilsson is an independent researcher, expert, consultant, quality auditor and influencer in the fields of open, flexible online and distance learning (OFDL) and the 'new normal'. Her focus is on quality, innovation, leadership, and personalised learning. She works primarily at the strategic and policy levels, both nationally and internationally, and with key international organisations. She is committed to promoting and improving OFDL in the context of SDG4 and the future of education. Ossiannilsson has more than 20 years of experience in her current field, but more than 40 years in the education sector. She works as a reviewer and expert for the European Commission and collaborates with the Joint Research Centre for Quality in Open Education. Ossiannilsson also collaborates with ITCILO and ICoBC (International Council on Badges and Credentials). She is a member of the ICDE Board of Directors and has previously served on the boards of EDEN and EUCEN. Ossiannilsson is a quality expert and reviewer for ICDE, EDEN and the EADTU. She chairs the ICDE OER Advocacy Committee and is a member of the ICDE Quality Network. She is regularly invited as a keynote speaker at conferences. She is a guest editor for several special issues and a member of the editorial board of several scientific journals. She has published more than 200 articles and is currently working on book projects in the field of OFDL. Ossiannilsson is a visiting professor at several international universities and was recently appointed Professor and Research Fellow at Victoria University of Wellington, NZ. Ossiannilsson has been awarded the following fellowships: EDEN Fellows, EDEN Council of Fellows, and Open Education Europe. She is a ICDE OER Ambassador, Open Education Europe Ambassador, GIZ Ambassador for Quality in Digital Learning, and part of the Globe-Community of Digital Learning and Champion of SPARC Europe. On a national level, she is a quality developer at the Swedish Institute for Standards (SIS) and for ISO. She is a member of the Digital Skills and Jobs Coalition Sweden and Vice President of the Swedish Association for Distance Education. She is currently working on a government initiative on quality in distance education at the National Council for Higher Education. She holds a Ph.D. from the University of Oulu, Finland.",institutionString:"Swedish Association for Distance Education, Sweden",institution:null},editorTwo:null,editorThree:null},{id:"94",title:"Climate Change and Environmental Sustainability",coverUrl:"https://cdn.intechopen.com/series_topics/covers/94.jpg",isOpenForSubmission:!0,annualVolume:11978,editor:{id:"61855",title:"Dr.",name:"Yixin",middleName:null,surname:"Zhang",slug:"yixin-zhang",fullName:"Yixin Zhang",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYWJgQAO/Profile_Picture_2022-06-09T11:36:35.jpg",biography:"Professor Yixin Zhang is an aquatic ecologist with over 30 years of research and teaching experience in three continents (Asia, Europe, and North America) in Stream Ecology, Riparian Ecology, Urban Ecology, and Ecosystem Restoration and Aquatic Conservation, Human-Nature Interactions and Sustainability, Urbanization Impact on Aquatic Ecosystems. He got his Ph.D. in Animal Ecology at Umeå University in Sweden in 1998. He conducted postdoc research in stream ecology at the University of California at Santa Barbara in the USA. After that, he was a postdoc research fellow at the University of British Columbia in Canada to do research on large-scale stream experimental manipulation and watershed ecological survey in temperate rainforests of BC. He was a faculty member at the University of Hong Kong to run ecological research projects on aquatic insects, fishes, and newts in Tropical Asian streams. He also conducted research in streams, rivers, and caves in Texas, USA, to study the ecology of macroinvertebrates, big-claw river shrimp, fish, turtles, and bats. Current research interests include trophic flows across ecosystems; watershed impacts of land-use change on biodiversity and ecosystem functioning; ecological civilization and water resource management; urban ecology and urban/rural sustainable development.",institutionString:null,institution:{name:"Soochow University",institutionURL:null,country:{name:"China"}}},editorTwo:null,editorThree:null},{id:"95",title:"Urban Planning and Environmental Management",coverUrl:"https://cdn.intechopen.com/series_topics/covers/95.jpg",isOpenForSubmission:!0,annualVolume:11979,editor:{id:"181079",title:"Dr.",name:"Christoph",middleName:null,surname:"Lüthi",slug:"christoph-luthi",fullName:"Christoph Lüthi",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRHSqQAO/Profile_Picture_2022-04-12T15:51:33.png",biography:"Dr. Christoph Lüthi is an urban infrastructure planner with over 25 years of experience in planning and design of urban infrastructure in middle and low-income countries. He holds a Master’s Degree in Urban Development Planning from the University College of London (UCL), and a Ph.D. in Urban Planning & Engineering from TU Berlin. He has conducted applied research on urban planning and infrastructure issues in over 20 countries in Africa and Asia. In 2005 he joined Eawag-Sandec as Leader of the Strategic Environmental Sanitation Planning Group. Since 2015 he heads the research department Sanitation, Water and Solid Waste for Development (Sandec) at the Swiss Federal Institute of Aquatic Research and Technology (Eawag).",institutionString:"Swiss Federal Institute of Aquatic Science and Technology, Switzerland",institution:null},editorTwo:{id:"290571",title:"Dr.",name:"Rui Alexandre",middleName:null,surname:"Castanho",slug:"rui-alexandre-castanho",fullName:"Rui Alexandre Castanho",profilePictureURL:"https://mts.intechopen.com/storage/users/290571/images/system/290571.jpg",biography:"Rui Alexandre Castanho has a master\\'s degree in Planning, Audit, and Control in Urban Green Spaces and an international Ph.D. in Sustainable Planning in Borderlands. Currently, he is a professor at WSB University, Poland, and a visiting professor at the University of Johannesburg, South Africa. Dr. Castanho is a post-doc researcher on the GREAT Project, University of Azores, Ponta Delgada, Portugal. He collaborates with the Environmental Resources Analysis Research Group (ARAM), University of Extremadura (UEx), Spain; VALORIZA - Research Center for the Enhancement of Endogenous Resources, Polytechnic Institute of Portalegre (IPP), Portugal; Centre for Tourism Research, Development and Innovation (CITUR), Madeira, Portugal; and AQUAGEO Research Group, University of Campinas (UNICAMP), Brazil.",institutionString:"University of Johannesburg, South Africa and WSB University, Poland",institution:{name:"University of Johannesburg",institutionURL:null,country:{name:"South Africa"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:10,paginationItems:[{id:"82380",title:"Evolution of Parasitism and Pathogenic Adaptations in Certain Medically Important Fungi",doi:"10.5772/intechopen.105206",signatures:"Gokul Shankar Sabesan, Ranjit Singh AJA, Ranjith Mehenderkar and Basanta Kumar Mohanty",slug:"evolution-of-parasitism-and-pathogenic-adaptations-in-certain-medically-important-fungi",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fungal Infectious Diseases - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11400.jpg",subseries:{id:"4",title:"Fungal Infectious Diseases"}}},{id:"82367",title:"Spatial Variation and Factors Associated with Unsuppressed HIV Viral Load among Women in an HIV Hyperendemic Area of KwaZulu-Natal, South Africa",doi:"10.5772/intechopen.105547",signatures:"Adenike O. Soogun, Ayesha B.M. Kharsany, Temesgen Zewotir and Delia North",slug:"spatial-variation-and-factors-associated-with-unsuppressed-hiv-viral-load-among-women-in-an-hiv-hype",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"HIV-AIDS - Updates, Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82193",title:"Enterococcal Infections: Recent Nomenclature and emerging trends",doi:"10.5772/intechopen.104792",signatures:"Kavita Raja",slug:"enterococcal-infections-recent-nomenclature-and-emerging-trends",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"82207",title:"Management Strategies in Perinatal HIV",doi:"10.5772/intechopen.105451",signatures:"Kayla Aleshire and Rima Bazzi",slug:"management-strategies-in-perinatal-hiv",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"HIV-AIDS - Updates, Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}}]},overviewPagePublishedBooks:{paginationCount:13,paginationItems:[{type:"book",id:"6667",title:"Influenza",subtitle:"Therapeutics and Challenges",coverURL:"https://cdn.intechopen.com/books/images_new/6667.jpg",slug:"influenza-therapeutics-and-challenges",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"105e347b2d5dbbe6b593aceffa051efa",volumeInSeries:1,fullTitle:"Influenza - Therapeutics and Challenges",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}]},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}]},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",slug:"current-topics-in-neglected-tropical-diseases",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"61c627da05b2ace83056d11357bdf361",volumeInSeries:3,fullTitle:"Current Topics in Neglected Tropical Diseases",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}]},{type:"book",id:"7839",title:"Malaria",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",slug:"malaria",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Fyson H. Kasenga",hash:"91cde4582ead884cb0f355a19b67cd56",volumeInSeries:4,fullTitle:"Malaria",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga",profilePictureURL:"https://mts.intechopen.com/storage/users/86725/images/system/86725.jpg",biography:"Dr. Kasenga is a graduate of Tumaini University, Kilimanjaro Christian Medical College, Moshi, Tanzania and Umeå University, Sweden. He obtained a Master’s degree in Public Health and PhD in Public Health and Epidemiology. He has a background in Clinical Medicine and has taken courses at higher diploma levels in public health from University of Transkei, Republic of South Africa, and African Medical and Research Foundation (AMREF) in Nairobi, Kenya. Dr. Kasenga worked in different places in and outside Malawi, and has held various positions, such as Licensed Medical Officer, HIV/AIDS Programme Officer, HIV/AIDS resource person in the International Department of Diakonhjemet College, Oslo, Norway. He also managed an Integrated HIV/AIDS Prevention programme for over 5 years. He is currently working as a Director for the Health Ministries Department of Malawi Union of the Seventh Day Adventist Church. Dr. Kasenga has published over 5 articles on HIV/AIDS issues focusing on Prevention of Mother to Child Transmission of HIV (PMTCT), including a book chapter on HIV testing counseling (currently in press). Dr. Kasenga is married to Grace and blessed with three children, a son and two daughters: Happy, Lettice and Sungani.",institutionString:"Malawi Adventist University",institution:{name:"Malawi Adventist University",institutionURL:null,country:{name:"Malawi"}}}]}]},openForSubmissionBooks:{paginationCount:5,paginationItems:[{id:"11450",title:"Environmental Impacts of COVID-19 Pandemic on the World",coverURL:"https://cdn.intechopen.com/books/images_new/11450.jpg",hash:"a58c7b02d07903004be70f744f2e1835",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 10th 2022",isOpenForSubmission:!0,editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11477",title:"Public Economics - New Perspectives and Uncertainty",coverURL:"https://cdn.intechopen.com/books/images_new/11477.jpg",hash:"a8e6c515dc924146fbd2712eb4e7d118",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 27th 2022",isOpenForSubmission:!0,editors:[{id:"414400",title:"Dr.",name:"Habtamu",surname:"Alem",slug:"habtamu-alem",fullName:"Habtamu Alem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11457",title:"Forest Degradation Under Global Change",coverURL:"https://cdn.intechopen.com/books/images_new/11457.jpg",hash:"8df7150b01ae754024c65d1a62f190d9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 1st 2022",isOpenForSubmission:!0,editors:[{id:"317087",title:"Dr.",name:"Pavel",surname:"Samec",slug:"pavel-samec",fullName:"Pavel Samec"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11474",title:"Quality of Life Interventions - Magnitude of Effect and Transferability",coverURL:"https://cdn.intechopen.com/books/images_new/11474.jpg",hash:"5a6bcdaf5ee144d043bcdab893ff9e1c",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 7th 2022",isOpenForSubmission:!0,editors:[{id:"245319",title:"Ph.D.",name:"Sage",surname:"Arbor",slug:"sage-arbor",fullName:"Sage Arbor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11473",title:"Social Inequality - Structure and Social Processes",coverURL:"https://cdn.intechopen.com/books/images_new/11473.jpg",hash:"cefab077e403fd1695fb2946e7914942",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 13th 2022",isOpenForSubmission:!0,editors:[{id:"313341",title:"Ph.D.",name:"Yaroslava",surname:"Robles-Bykbaev",slug:"yaroslava-robles-bykbaev",fullName:"Yaroslava Robles-Bykbaev"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:5,paginationItems:[{id:"82394",title:"Learning by Doing Active Social Learning",doi:"10.5772/intechopen.105523",signatures:"Anat Raviv",slug:"learning-by-doing-active-social-learning",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"82310",title:"Knowledge of Intergenerational Contact to Combat Ageism towards Older People",doi:"10.5772/intechopen.105592",signatures:"Alice Nga Lai Kwong",slug:"knowledge-of-intergenerational-contact-to-combat-ageism-towards-older-people",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Social Aspects of Ageing - Selected Challenges, Analyses, and Solutions",coverURL:"https://cdn.intechopen.com/books/images_new/11479.jpg",subseries:{id:"90",title:"Human Development"}}},{id:"81993",title:"Emergent Chemistry: Using Visualizations to Develop Abstract Thinking and a Sense of Scale Within the Preschool Setting",doi:"10.5772/intechopen.105216",signatures:"Karina Adbo",slug:"emergent-chemistry-using-visualizations-to-develop-abstract-thinking-and-a-sense-of-scale-within-the",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"82252",title:"Early Childhood: Enriched Environments and Roles of Caring Adults",doi:"10.5772/intechopen.105157",signatures:"Analía Mignaton",slug:"early-childhood-enriched-environments-and-roles-of-caring-adults",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"81996",title:"Perspective Chapter: New Active Learning Models in Africa",doi:"10.5772/intechopen.105217",signatures:"Fred Awaah, Cosmas Lambini Kombat and Emmanuel Okyere Ekwam",slug:"perspective-chapter-new-active-learning-models-in-africa",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}}]},subseriesFiltersForOFChapters:[{caption:"Human Development",value:90,count:1,group:"subseries"},{caption:"Education",value:89,count:4,group:"subseries"}],publishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"9883",title:"Biosensors",subtitle:"Current and Novel Strategies for Biosensing",coverURL:"https://cdn.intechopen.com/books/images_new/9883.jpg",slug:"biosensors-current-and-novel-strategies-for-biosensing",publishedDate:"May 5th 2021",editedByType:"Edited by",bookSignature:"Luis Jesús Villarreal-Gómez and Ana Leticia Iglesias",hash:"028f3e5dbf9c32590183ac4b4f0a2825",volumeInSeries:11,fullTitle:"Biosensors - Current and Novel Strategies for Biosensing",editors:[{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",slug:"biomedical-signal-and-image-processing",publishedDate:"April 14th 2021",editedByType:"Edited by",bookSignature:"Yongxia Zhou",hash:"22b87a09bd6df065d78c175235d367c8",volumeInSeries:10,fullTitle:"Biomedical Signal and Image Processing",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou",profilePictureURL:"https://mts.intechopen.com/storage/users/259308/images/system/259308.jpeg",institutionString:"University of Southern California",institution:{name:"University of Southern California",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9973",title:"Data Acquisition",subtitle:"Recent Advances and Applications in Biomedical Engineering",coverURL:"https://cdn.intechopen.com/books/images_new/9973.jpg",slug:"data-acquisition-recent-advances-and-applications-in-biomedical-engineering",publishedDate:"March 17th 2021",editedByType:"Edited by",bookSignature:"Bartłomiej Płaczek",hash:"75ea6cdd241216c9db28aa734ab34446",volumeInSeries:9,fullTitle:"Data Acquisition - Recent Advances and Applications in Biomedical Engineering",editors:[{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",institutionString:"University of Silesia",institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9905",title:"Biometric Systems",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9905.jpg",slug:"biometric-systems",publishedDate:"February 10th 2021",editedByType:"Edited by",bookSignature:"Muhammad Sarfraz",hash:"c730560dd2e3837a03407b3a86b0ef2a",volumeInSeries:8,fullTitle:"Biometric Systems",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",institutionString:"Kuwait University",institution:{name:"Kuwait University",institutionURL:null,country:{name:"Kuwait"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8622",title:"Peptide Synthesis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8622.jpg",slug:"peptide-synthesis",publishedDate:"December 18th 2019",editedByType:"Edited by",bookSignature:"Jaya T. Varkey",hash:"de9fa48c5248dbfb581825b8c74f5623",volumeInSeries:0,fullTitle:"Peptide Synthesis",editors:[{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",institutionString:"St. Teresa’s College",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7497",title:"Computer Vision in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7497.jpg",slug:"computer-vision-in-dentistry",publishedDate:"September 18th 2019",editedByType:"Edited by",bookSignature:"Monika Elzbieta Machoy",hash:"1e9812cebd46ef9e28257f3e96547f6a",volumeInSeries:7,fullTitle:"Computer Vision in Dentistry",editors:[{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8633",title:"Novel Diagnostic Methods in Ophthalmology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8633.jpg",slug:"novel-diagnostic-methods-in-ophthalmology",publishedDate:"September 4th 2019",editedByType:"Edited by",bookSignature:"Anna Nowinska",hash:"da2c90e8db647ead30504defce3fb5d3",volumeInSeries:6,fullTitle:"Novel Diagnostic Methods in Ophthalmology",editors:[{id:"261466",title:"Dr.",name:"Anna",middleName:"Karolina",surname:"Nowińska",slug:"anna-nowinska",fullName:"Anna Nowińska",profilePictureURL:"https://mts.intechopen.com/storage/users/261466/images/system/261466.jpeg",institutionString:"Medical University of Silesia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7437",title:"Nanomedicines",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7437.jpg",slug:"nanomedicines",publishedDate:"February 13th 2019",editedByType:"Edited by",bookSignature:"Muhammad Akhyar Farrukh",hash:"0e1f5f6258f074c533976c4f4d248568",volumeInSeries:5,fullTitle:"Nanomedicines",editors:[{id:"63182",title:"Dr.",name:"Muhammad Akhyar",middleName:null,surname:"Farrukh",slug:"muhammad-akhyar-farrukh",fullName:"Muhammad Akhyar Farrukh",profilePictureURL:"https://mts.intechopen.com/storage/users/63182/images/system/63182.png",institutionString:"Forman Christian College",institution:{name:"Forman Christian College",institutionURL:null,country:{name:"Pakistan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",institutionString:"University of Silesia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",value:9,count:1},{group:"subseries",caption:"Bioinspired Technology and Biomechanics",value:8,count:2},{group:"subseries",caption:"Bioinformatics and Medical Informatics",value:7,count:9}],publicationYearFilters:[{group:"publicationYear",caption:"2021",value:2021,count:4},{group:"publicationYear",caption:"2019",value:2019,count:5},{group:"publicationYear",caption:"2018",value:2018,count:3}],authors:{paginationCount:229,paginationItems:[{id:"318170",title:"Dr.",name:"Aneesa",middleName:null,surname:"Moolla",slug:"aneesa-moolla",fullName:"Aneesa Moolla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/318170/images/system/318170.png",biography:"Dr. Aneesa Moolla has extensive experience in the diverse fields of health care having previously worked in dental private practice, at the Red Cross Flying Doctors association, and in healthcare corporate settings. She is now a lecturer at the University of Witwatersrand, South Africa, and a principal researcher at the Health Economics and Epidemiology Research Office (HE2RO), South Africa. Dr. Moolla holds a Ph.D. in Psychology with her research being focused on mental health and resilience. In her professional work capacity, her research has further expanded into the fields of early childhood development, mental health, the HIV and TB care cascades, as well as COVID. She is also a UNESCO-trained International Bioethics Facilitator.",institutionString:"University of the Witwatersrand",institution:{name:"University of the Witwatersrand",country:{name:"South Africa"}}},{id:"419588",title:"Ph.D.",name:"Sergio",middleName:"Alexandre",surname:"Gehrke",slug:"sergio-gehrke",fullName:"Sergio Gehrke",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038WgMKQA0/Profile_Picture_2022-06-02T11:44:20.jpg",biography:"Dr. Sergio Alexandre Gehrke is a doctorate holder in two fields. The first is a Ph.D. in Cellular and Molecular Biology from the Pontificia Catholic University, Porto Alegre, Brazil, in 2010 and the other is an International Ph.D. in Bioengineering from the Universidad Miguel Hernandez, Elche/Alicante, Spain, obtained in 2020. In 2018, he completed a postdoctoral fellowship in Materials Engineering in the NUCLEMAT of the Pontificia Catholic University, Porto Alegre, Brazil. He is currently the Director of the Postgraduate Program in Implantology of the Bioface/UCAM/PgO (Montevideo, Uruguay), Director of the Cathedra of Biotechnology of the Catholic University of Murcia (Murcia, Spain), an Extraordinary Full Professor of the Catholic University of Murcia (Murcia, Spain) as well as the Director of the private center of research Biotecnos – Technology and Science (Montevideo, Uruguay). Applied biomaterials, cellular and molecular biology, and dental implants are among his research interests. He has published several original papers in renowned journals. In addition, he is also a Collaborating Professor in several Postgraduate programs at different universities all over the world.",institutionString:null,institution:{name:"Universidad Católica San Antonio de Murcia",country:{name:"Spain"}}},{id:"342152",title:"Dr.",name:"Santo",middleName:null,surname:"Grace Umesh",slug:"santo-grace-umesh",fullName:"Santo Grace Umesh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/342152/images/16311_n.jpg",biography:null,institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}},{id:"333647",title:"Dr.",name:"Shreya",middleName:null,surname:"Kishore",slug:"shreya-kishore",fullName:"Shreya Kishore",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/333647/images/14701_n.jpg",biography:"Dr. Shreya Kishore completed her Bachelor in Dental Surgery in Chettinad Dental College and Research Institute, Chennai, and her Master of Dental Surgery (Orthodontics) in Saveetha Dental College, Chennai. She is also Invisalign certified. She’s working as a Senior Lecturer in the Department of Orthodontics, SRM Dental College since November 2019. She is actively involved in teaching orthodontics to the undergraduates and the postgraduates. Her clinical research topics include new orthodontic brackets, fixed appliances and TADs. She’s published 4 articles in well renowned indexed journals and has a published patency of her own. Her private practice is currently limited to orthodontics and works as a consultant in various clinics.",institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}},{id:"323731",title:"Prof.",name:"Deepak M.",middleName:"Macchindra",surname:"Vikhe",slug:"deepak-m.-vikhe",fullName:"Deepak M. Vikhe",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/323731/images/13613_n.jpg",biography:"Dr Deepak M.Vikhe .\n\n\t\n\tDr Deepak M.Vikhe , completed his Masters & PhD in Prosthodontics from Rural Dental College, Loni securing third rank in the Pravara Institute of Medical Sciences Deemed University. He was awarded Dr.G.C.DAS Memorial Award for Research on Implants at 39th IPS conference Dubai (U A E).He has two patents under his name. He has received Dr.Saraswati medal award for best research for implant study in 2017.He has received Fully funded scholarship to Spain ,university of Santiago de Compostela. He has completed fellowship in Implantlogy from Noble Biocare. \nHe has attended various conferences and CDE programmes and has national publications to his credit. His field of interest is in Implant supported prosthesis. Presently he is working as a associate professor in the Dept of Prosthodontics, Rural Dental College, Loni and maintains a successful private practice specialising in Implantology at Rahata.\n\nEmail: drdeepak_mvikhe@yahoo.com..................",institutionString:null,institution:{name:"Pravara Institute of Medical Sciences",country:{name:"India"}}},{id:"204110",title:"Dr.",name:"Ahmed A.",middleName:null,surname:"Madfa",slug:"ahmed-a.-madfa",fullName:"Ahmed A. Madfa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204110/images/system/204110.jpg",biography:"Dr. Madfa is currently Associate Professor of Endodontics at Thamar University and a visiting lecturer at Sana'a University and University of Sciences and Technology. He has more than 6 years of experience in teaching. His research interests include root canal morphology, functionally graded concept, dental biomaterials, epidemiology and dental education, biomimetic restoration, finite element analysis and endodontic regeneration. Dr. Madfa has numerous international publications, full articles, two patents, a book and a book chapter. Furthermore, he won 14 international scientific awards. Furthermore, he is involved in many academic activities ranging from editorial board member, reviewer for many international journals and postgraduate students' supervisor. Besides, I deliver many courses and training workshops at various scientific events. Dr. Madfa also regularly attends international conferences and holds administrative positions (Deputy Dean of the Faculty for Students’ & Academic Affairs and Deputy Head of Research Unit).",institutionString:"Thamar University",institution:null},{id:"210472",title:"Dr.",name:"Nermin",middleName:"Mohammed Ahmed",surname:"Yussif",slug:"nermin-yussif",fullName:"Nermin Yussif",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/210472/images/system/210472.jpg",biography:"Dr. Nermin Mohammed Ahmed Yussif is working at the Faculty of dentistry, University for October university for modern sciences and arts (MSA). Her areas of expertise include: periodontology, dental laserology, oral implantology, periodontal plastic surgeries, oral mesotherapy, nutrition, dental pharmacology. She is an editor and reviewer in numerous international journals.",institutionString:"MSA University",institution:null},{id:"204606",title:"Dr.",name:"Serdar",middleName:null,surname:"Gözler",slug:"serdar-gozler",fullName:"Serdar Gözler",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204606/images/system/204606.jpeg",biography:"Dr. Serdar Gözler has completed his undergraduate studies at the Marmara University Faculty of Dentistry in 1978, followed by an assistantship in the Prosthesis Department of Dicle University Faculty of Dentistry. Starting his PhD work on non-resilient overdentures with Assoc. Prof. Hüsnü Yavuzyılmaz, he continued his studies with Prof. Dr. Gürbüz Öztürk of Istanbul University Faculty of Dentistry Department of Prosthodontics, this time on Gnatology. He attended training programs on occlusion, neurology, neurophysiology, EMG, radiology and biostatistics. In 1982, he presented his PhD thesis \\Gerber and Lauritzen Occlusion Analysis Techniques: Diagnosis Values,\\ at Istanbul University School of Dentistry, Department of Prosthodontics. As he was also working with Prof. Senih Çalıkkocaoğlu on The Physiology of Chewing at the same time, Gözler has written a chapter in Çalıkkocaoğlu\\'s book \\Complete Prostheses\\ entitled \\The Place of Neuromuscular Mechanism in Prosthetic Dentistry.\\ The book was published five times since by the Istanbul University Publications. Having presented in various conferences about occlusion analysis until 1998, Dr. Gözler has also decided to use the T-Scan II occlusion analysis method. Having been personally trained by Dr. Robert Kerstein on this method, Dr. Gözler has been lecturing on the T-Scan Occlusion Analysis Method in conferences both in Turkey and abroad. Dr. Gözler has various articles and presentations on Digital Occlusion Analysis methods. He is now Head of the TMD Clinic at Prosthodontic Department of Faculty of Dentistry , Istanbul Aydın University , Turkey.",institutionString:"Istanbul Aydin University",institution:{name:"Istanbul Aydın University",country:{name:"Turkey"}}},{id:"240870",title:"Ph.D.",name:"Alaa Eddin Omar",middleName:null,surname:"Al Ostwani",slug:"alaa-eddin-omar-al-ostwani",fullName:"Alaa Eddin Omar Al Ostwani",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/240870/images/system/240870.jpeg",biography:"Dr. Al Ostwani Alaa Eddin Omar received his Master in dentistry from Damascus University in 2010, and his Ph.D. in Pediatric Dentistry from Damascus University in 2014. Dr. Al Ostwani is an assistant professor and faculty member at IUST University since 2014. \nDuring his academic experience, he has received several awards including the scientific research award from the Union of Arab Universities, the Syrian gold medal and the international gold medal for invention and creativity. Dr. Al Ostwani is a Member of the International Association of Dental Traumatology and the Syrian Society for Research and Preventive Dentistry since 2017. He is also a Member of the Reviewer Board of International Journal of Dental Medicine (IJDM), and the Indian Journal of Conservative and Endodontics since 2016.",institutionString:"International University for Science and Technology.",institution:{name:"Islamic University of Science and Technology",country:{name:"India"}}},{id:"42847",title:"Dr.",name:"Belma",middleName:null,surname:"Işik Aslan",slug:"belma-isik-aslan",fullName:"Belma Işik Aslan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/42847/images/system/42847.jpg",biography:"Dr. Belma IşIk Aslan was born in 1976 in Ankara-TURKEY. After graduating from TED Ankara College in 1994, she attended to Gazi University, Faculty of Dentistry in Ankara. She completed her PhD in orthodontic education at Gazi University between 1999-2005. Dr. Işık Aslan stayed at the Providence Hospital Craniofacial Institude and Reconstructive Surgery in Michigan, USA for three months as an observer. She worked as a specialist doctor at Gazi University, Dentistry Faculty, Department of Orthodontics between 2005-2014. She was appointed as associate professor in January, 2014 and as professor in 2021. Dr. Işık Aslan still works as an instructor at the same faculty. She has published a total of 35 articles, 10 book chapters, 39 conference proceedings both internationally and nationally. Also she was the academic editor of the international book 'Current Advances in Orthodontics'. She is a member of the Turkish Orthodontic Society and Turkish Cleft Lip and Palate Society. She is married and has 2 children. Her knowledge of English is at an advanced level.",institutionString:"Gazi University Dentistry Faculty Department of Orthodontics",institution:null},{id:"178412",title:"Associate Prof.",name:"Guhan",middleName:null,surname:"Dergin",slug:"guhan-dergin",fullName:"Guhan Dergin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/178412/images/6954_n.jpg",biography:"Assoc. Prof. Dr. Gühan Dergin was born in 1973 in Izmit. He graduated from Marmara University Faculty of Dentistry in 1999. He completed his specialty of OMFS surgery in Marmara University Faculty of Dentistry and obtained his PhD degree in 2006. In 2005, he was invited as a visiting doctor in the Oral and Maxillofacial Surgery Department of the University of North Carolina, USA, where he went on a scholarship. Dr. Dergin still continues his academic career as an associate professor in Marmara University Faculty of Dentistry. He has many articles in international and national scientific journals and chapters in books.",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"178414",title:"Prof.",name:"Yusuf",middleName:null,surname:"Emes",slug:"yusuf-emes",fullName:"Yusuf Emes",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/178414/images/6953_n.jpg",biography:"Born in Istanbul in 1974, Dr. Emes graduated from Istanbul University Faculty of Dentistry in 1997 and completed his PhD degree in Istanbul University faculty of Dentistry Department of Oral and Maxillofacial Surgery in 2005. He has papers published in international and national scientific journals, including research articles on implantology, oroantral fistulas, odontogenic cysts, and temporomandibular disorders. Dr. Emes is currently working as a full-time academic staff in Istanbul University faculty of Dentistry Department of Oral and Maxillofacial Surgery.",institutionString:null,institution:{name:"Istanbul University",country:{name:"Turkey"}}},{id:"192229",title:"Ph.D.",name:"Ana Luiza",middleName:null,surname:"De Carvalho Felippini",slug:"ana-luiza-de-carvalho-felippini",fullName:"Ana Luiza De Carvalho Felippini",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/192229/images/system/192229.jpg",biography:null,institutionString:"University of São Paulo",institution:{name:"University of Sao Paulo",country:{name:"Brazil"}}},{id:"256851",title:"Prof.",name:"Ayşe",middleName:null,surname:"Gülşen",slug:"ayse-gulsen",fullName:"Ayşe Gülşen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/256851/images/9696_n.jpg",biography:"Dr. Ayşe Gülşen graduated in 1990 from Faculty of Dentistry, University of Ankara and did a postgraduate program at University of Gazi. \nShe worked as an observer and research assistant in Craniofacial Surgery Departments in New York, Providence Hospital in Michigan and Chang Gung Memorial Hospital in Taiwan. \nShe works as Craniofacial Orthodontist in Department of Aesthetic, Plastic and Reconstructive Surgery, Faculty of Medicine, University of Gazi, Ankara Turkey since 2004.",institutionString:"Univeristy of Gazi",institution:null},{id:"255366",title:"Prof.",name:"Tosun",middleName:null,surname:"Tosun",slug:"tosun-tosun",fullName:"Tosun Tosun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255366/images/7347_n.jpg",biography:"Graduated at the Faculty of Dentistry, University of Istanbul, Turkey in 1989;\nVisitor Assistant at the University of Padua, Italy and Branemark Osseointegration Center of Treviso, Italy between 1993-94;\nPhD thesis on oral implantology in University of Istanbul and was awarded the academic title “Dr.med.dent.”, 1997;\nHe was awarded the academic title “Doç.Dr.” (Associated Professor) in 2003;\nProficiency in Botulinum Toxin Applications, Reading-UK in 2009;\nMastership, RWTH Certificate in Laser Therapy in Dentistry, AALZ-Aachen University, Germany 2009-11;\nMaster of Science (MSc) in Laser Dentistry, University of Genoa, Italy 2013-14.\n\nDr.Tosun worked as Research Assistant in the Department of Oral Implantology, Faculty of Dentistry, University of Istanbul between 1990-2002. \nHe worked part-time as Consultant surgeon in Harvard Medical International Hospitals and John Hopkins Medicine, Istanbul between years 2007-09.\u2028He was contract Professor in the Department of Surgical and Diagnostic Sciences (DI.S.C.), Medical School, University of Genova, Italy between years 2011-16. \nSince 2015 he is visiting Professor at Medical School, University of Plovdiv, Bulgaria. \nCurrently he is Associated Prof.Dr. at the Dental School, Oral Surgery Dept., Istanbul Aydin University and since 2003 he works in his own private clinic in Istanbul, Turkey.\u2028\nDr.Tosun is reviewer in journal ‘Laser in Medical Sciences’, reviewer in journal ‘Folia Medica\\', a Fellow of the International Team for Implantology, Clinical Lecturer of DGZI German Association of Oral Implantology, Expert Lecturer of Laser&Health Academy, Country Representative of World Federation for Laser Dentistry, member of European Federation of Periodontology, member of Academy of Laser Dentistry. Dr.Tosun presents papers in international and national congresses and has scientific publications in international and national journals. He speaks english, spanish, italian and french.",institutionString:null,institution:{name:"Istanbul Aydın University",country:{name:"Turkey"}}},{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",biography:"Zühre Akarslan was born in 1977 in Cyprus. She graduated from Gazi University Faculty of Dentistry, Ankara, Turkey in 2000. \r\nLater she received her Ph.D. degree from the Oral Diagnosis and Radiology Department; which was recently renamed as Oral and Dentomaxillofacial Radiology, from the same university. \r\nShe is working as a full-time Associate Professor and is a lecturer and an academic researcher. \r\nHer expertise areas are dental caries, cancer, dental fear and anxiety, gag reflex in dentistry, oral medicine, and dentomaxillofacial radiology.",institutionString:"Gazi University",institution:{name:"Gazi University",country:{name:"Turkey"}}},{id:"256417",title:"Associate Prof.",name:"Sanaz",middleName:null,surname:"Sadry",slug:"sanaz-sadry",fullName:"Sanaz Sadry",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/256417/images/8106_n.jpg",biography:null,institutionString:null,institution:null},{id:"272237",title:"Dr.",name:"Pinar",middleName:"Kiymet",surname:"Karataban",slug:"pinar-karataban",fullName:"Pinar Karataban",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/272237/images/8911_n.png",biography:"Assist.Prof.Dr.Pınar Kıymet Karataban, DDS PhD \n\nDr.Pınar Kıymet Karataban was born in Istanbul in 1975. After her graduation from Marmara University Faculty of Dentistry in 1998 she started her PhD in Paediatric Dentistry focused on children with special needs; mainly children with Cerebral Palsy. She finished her pHD thesis entitled \\'Investigation of occlusion via cast analysis and evaluation of dental caries prevalance, periodontal status and muscle dysfunctions in children with cerebral palsy” in 2008. She got her Assist. Proffessor degree in Istanbul Aydın University Paediatric Dentistry Department in 2015-2018. ın 2019 she started her new career in Bahcesehir University, Istanbul as Head of Department of Pediatric Dentistry. In 2020 she was accepted to BAU International University, Batumi as Professor of Pediatric Dentistry. She’s a lecturer in the same university meanwhile working part-time in private practice in Ege Dental Studio (https://www.egedisklinigi.com/) a multidisciplinary dental clinic in Istanbul. Her main interests are paleodontology, ancient and contemporary dentistry, oral microbiology, cerebral palsy and special care dentistry. She has national and international publications, scientific reports and is a member of IAPO (International Association for Paleodontology), IADH (International Association of Disability and Oral Health) and EAPD (European Association of Pediatric Dentistry).",institutionString:null,institution:null},{id:"202198",title:"Dr.",name:"Buket",middleName:null,surname:"Aybar",slug:"buket-aybar",fullName:"Buket Aybar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202198/images/6955_n.jpg",biography:"Buket Aybar, DDS, PhD, was born in 1971. She graduated from Istanbul University, Faculty of Dentistry, in 1992 and completed her PhD degree on Oral and Maxillofacial Surgery in Istanbul University in 1997.\nDr. Aybar is currently a full-time professor in Istanbul University, Faculty of Dentistry Department of Oral and Maxillofacial Surgery. She has teaching responsibilities in graduate and postgraduate programs. Her clinical practice includes mainly dentoalveolar surgery.\nHer topics of interest are biomaterials science and cell culture studies. She has many articles in international and national scientific journals and chapters in books; she also has participated in several scientific projects supported by Istanbul University Research fund.",institutionString:null,institution:null},{id:"260116",title:"Dr.",name:"Mehmet",middleName:null,surname:"Yaltirik",slug:"mehmet-yaltirik",fullName:"Mehmet Yaltirik",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/260116/images/7413_n.jpg",biography:"Birth Date 25.09.1965\r\nBirth Place Adana- Turkey\r\nSex Male\r\nMarrial Status Bachelor\r\nDriving License Acquired\r\nMother Tongue Turkish\r\n\r\nAddress:\r\nWork:University of Istanbul,Faculty of Dentistry, Department of Oral Surgery and Oral Medicine 34093 Capa,Istanbul- TURKIYE",institutionString:null,institution:null},{id:"172009",title:"Dr.",name:"Fatma Deniz",middleName:null,surname:"Uzuner",slug:"fatma-deniz-uzuner",fullName:"Fatma Deniz Uzuner",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/172009/images/7122_n.jpg",biography:"Dr. Deniz Uzuner was born in 1969 in Kocaeli-TURKEY. After graduating from TED Ankara College in 1986, she attended the Hacettepe University, Faculty of Dentistry in Ankara. \nIn 1993 she attended the Gazi University, Faculty of Dentistry, Department of Orthodontics for her PhD education. After finishing the PhD education, she worked as orthodontist in Ankara Dental Hospital under the Turkish Government, Ministry of Health and in a special Orthodontic Clinic till 2011. Between 2011 and 2016, Dr. Deniz Uzuner worked as a specialist in the Department of Orthodontics, Faculty of Dentistry, Gazi University in Ankara/Turkey. In 2016, she was appointed associate professor. Dr. Deniz Uzuner has authored 23 Journal Papers, 3 Book Chapters and has had 39 oral/poster presentations. She is a member of the Turkish Orthodontic Society. Her knowledge of English is at an advanced level.",institutionString:null,institution:null},{id:"332914",title:"Dr.",name:"Muhammad Saad",middleName:null,surname:"Shaikh",slug:"muhammad-saad-shaikh",fullName:"Muhammad Saad Shaikh",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Jinnah Sindh Medical University",country:{name:"Pakistan"}}},{id:"315775",title:"Dr.",name:"Feng",middleName:null,surname:"Luo",slug:"feng-luo",fullName:"Feng Luo",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Sichuan University",country:{name:"China"}}},{id:"423519",title:"Dr.",name:"Sizakele",middleName:null,surname:"Ngwenya",slug:"sizakele-ngwenya",fullName:"Sizakele Ngwenya",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of the Witwatersrand",country:{name:"South Africa"}}},{id:"419270",title:"Dr.",name:"Ann",middleName:null,surname:"Chianchitlert",slug:"ann-chianchitlert",fullName:"Ann Chianchitlert",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Walailak University",country:{name:"Thailand"}}},{id:"419271",title:"Dr.",name:"Diane",middleName:null,surname:"Selvido",slug:"diane-selvido",fullName:"Diane Selvido",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Walailak University",country:{name:"Thailand"}}},{id:"419272",title:"Dr.",name:"Irin",middleName:null,surname:"Sirisoontorn",slug:"irin-sirisoontorn",fullName:"Irin Sirisoontorn",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Walailak University",country:{name:"Thailand"}}},{id:"355660",title:"Dr.",name:"Anitha",middleName:null,surname:"Mani",slug:"anitha-mani",fullName:"Anitha Mani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}},{id:"355612",title:"Dr.",name:"Janani",middleName:null,surname:"Karthikeyan",slug:"janani-karthikeyan",fullName:"Janani Karthikeyan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}},{id:"334400",title:"Dr.",name:"Suvetha",middleName:null,surname:"Siva",slug:"suvetha-siva",fullName:"Suvetha Siva",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}}]}},subseries:{item:{id:"90",type:"subseries",title:"Human Development",keywords:"Neuroscientific research, Brain functions, Human development, UN’s human development index, Self-awareness, Self-development",scope:"
\r\n\tIn order to scientifically address significant issues such as climate change, which puts into question our very survival as a species, the current pandemic with its massive physical, socio-economical, and psychological consequences, and the rise of AI which challenges our established economic structures, we need to ask insightful questions: What is truly human? How can humans develop further? The answers to these questions are necessary not only to find new solutions to the current challenges, but also to shape new visions of what can come next.
\r\n
\r\n\tNeuroscientific research linking brain functions has produced a perspective on human development that includes normal, impaired, and enhanced neurophysiological, emotional and cognitive functioning. Human development has been considered the very aim of education and of educative processes. Indeed, the capabilities built through educational training are included in the UN’s human development index, according to which such capabilities are the ultimate criteria to assess the development of a country, rather than economic growth alone. Yet a full understanding of what Human Development truly constitutes, remains open. For example, tackling the question of what distinguishes human beings from other animals, and what humans’ possible development trajectory might look like, calls for a multidisciplinary approach. Consequently, contributions to such an inquiry might come from very different scientific fields, ranging from cognitive neuroscience to socioeconomics. For instance, in the field of neuroscience, self-awareness—the most specific characteristic of human beings—has been investigated in connection with its neural correlates. Recent research points to self-awareness as the particular ability of our species, directly connecting it to our abstract thinking which in turn enables envisioning new possible futures and self-development
\r\n
\r\n\tTo achieve a broad, multidisciplinary perspective on possible human development, subjects will be considered through varied— yet related—approaches. We will provide a complex yet consistent framework through which we will explore a substantial amount and variety of theories and case studies. Our ultimate goal will be to produce useful indications for policy making in diverse contexts, assist teachers and parents with child development in an optimal way, and enhance theoretical and practical knowledge.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/90.jpg",hasOnlineFirst:!0,hasPublishedBooks:!1,annualVolume:11974,editor:{id:"191040",title:"Dr.",name:"Tal",middleName:null,surname:"Dotan Ben-Soussan",slug:"tal-dotan-ben-soussan",fullName:"Tal Dotan Ben-Soussan",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBf1QAG/Profile_Picture_2022-03-18T07:56:11.jpg",biography:"Tal Dotan Ben-Soussan, Ph.D., is the director of the Research Institute for Neuroscience, Education and Didactics (RINED) – Paoletti Foundation. Ben-Soussan leads international studies on training and neuroplasticity from neurophysiological and psychobiological perspectives. As a neuroscientist and bio-psychologist, she has published numerous articles on neuroplasticity, movement and meditation. She acts as an editor and reviewer in several renowned journals and coordinates international conferences integrating theoretical, methodological and practical approaches on various topics, such as silence, logics and neuro-education. She lives in Assisi, Italy.",institutionString:"Research Institute for Neuroscience, Education and Didactics, Patrizio Paoletti Foundation",institution:null},editorTwo:null,editorThree:null,series:{id:"23",title:"Education and Human Development",doi:"10.5772/intechopen.100360",issn:null},editorialBoard:[{id:"337845",title:"Prof.",name:"Anke",middleName:null,surname:"Koenig",slug:"anke-koenig",fullName:"Anke Koenig",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000032KEmKQAW/Profile_Picture_2022-03-28T08:12:49.jpg",institutionString:null,institution:{name:"University of Vechta",institutionURL:null,country:{name:"Germany"}}},{id:"28286",title:"Dr.",name:"Fernanda Dreux Miranda",middleName:null,surname:"Fernandes",slug:"fernanda-dreux-miranda-fernandes",fullName:"Fernanda Dreux Miranda Fernandes",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYOLpQAO/Profile_Picture_1643350340880",institutionString:null,institution:{name:"University of Sao Paulo",institutionURL:null,country:{name:"Brazil"}}},{id:"289526",title:"Dr.",name:"Michael John",middleName:null,surname:"Stones",slug:"michael-john-stones",fullName:"Michael John Stones",profilePictureURL:"https://mts.intechopen.com/storage/users/289526/images/system/289526.png",institutionString:null,institution:{name:"Lakehead University",institutionURL:null,country:{name:"Canada"}}}]},onlineFirstChapters:{paginationCount:10,paginationItems:[{id:"82196",title:"Multi-Features Assisted Age Invariant Face Recognition and Retrieval Using CNN with Scale Invariant Heat Kernel Signature",doi:"10.5772/intechopen.104944",signatures:"Kamarajugadda Kishore Kumar and Movva Pavani",slug:"multi-features-assisted-age-invariant-face-recognition-and-retrieval-using-cnn-with-scale-invariant-",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"82063",title:"Evaluating Similarities and Differences between Machine Learning and Traditional Statistical Modeling in Healthcare Analytics",doi:"10.5772/intechopen.105116",signatures:"Michele Bennett, Ewa J. Kleczyk, Karin Hayes and Rajesh Mehta",slug:"evaluating-similarities-and-differences-between-machine-learning-and-traditional-statistical-modelin",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Machine Learning and Data Mining - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11422.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:30,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79345",title:"Application of Jump Diffusion Models in Insurance Claim Estimation",doi:"10.5772/intechopen.99853",signatures:"Leonard Mushunje, Chiedza Elvina Mashiri, Edina Chandiwana and Maxwell Mashasha",slug:"application-of-jump-diffusion-models-in-insurance-claim-estimation-1",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81471",title:"Semantic Map: Bringing Together Groups and Discourses",doi:"10.5772/intechopen.103818",signatures:"Theodore Chadjipadelis and Georgia Panagiotidou",slug:"semantic-map-bringing-together-groups-and-discourses",totalDownloads:21,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79491",title:"Fuzzy Perceptron Learning for Non-Linearly Separable Patterns",doi:"10.5772/intechopen.101312",signatures:"Raja Kishor Duggirala",slug:"fuzzy-perceptron-learning-for-non-linearly-separable-patterns",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Raja Kishor",surname:"Duggirala"}],book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81331",title:"Machine Learning Algorithm-Based Contraceptive Practice among Ever-Married Women in Bangladesh: A Hierarchical Machine Learning Classification Approach",doi:"10.5772/intechopen.103187",signatures:"Iqramul Haq, Md. Ismail Hossain, Md. Moshiur Rahman, Md. Injamul Haq Methun, Ashis Talukder, Md. Jakaria Habib and Md. Sanwar Hossain",slug:"machine-learning-algorithm-based-contraceptive-practice-among-ever-married-women-in-bangladesh-a-hie",totalDownloads:21,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Machine Learning and Data Mining - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11422.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"80937",title:"Assessing Heterogeneity of Two-Part Model via Bayesian Model-Based Clustering with Its Application to Cocaine Use Data",doi:"10.5772/intechopen.103089",signatures:"Ye-Mao Xia, Qi-Hang Zhu and Jian-Wei Gou",slug:"assessing-heterogeneity-of-two-part-model-via-bayesian-model-based-clustering-with-its-application-t",totalDownloads:24,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"78846",title:"Clustering Algorithms: An Exploratory Review",doi:"10.5772/intechopen.100376",signatures:"R.S.M. Lakshmi Patibandla and Veeranjaneyulu N",slug:"clustering-algorithms-an-exploratory-review",totalDownloads:146,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"78463",title:"Clustering by Similarity of Brazilian Legal Documents Using Natural Language Processing Approaches",doi:"10.5772/intechopen.99875",signatures:"Raphael Souza de Oliveira and Erick Giovani Sperandio Nascimento",slug:"clustering-by-similarity-of-brazilian-legal-documents-using-natural-language-processing-approaches",totalDownloads:157,totalCrossrefCites:1,totalDimensionsCites:1,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}}]},publishedBooks:{paginationCount:2,paginationItems:[{type:"book",id:"9883",title:"Biosensors",subtitle:"Current and Novel Strategies for Biosensing",coverURL:"https://cdn.intechopen.com/books/images_new/9883.jpg",slug:"biosensors-current-and-novel-strategies-for-biosensing",publishedDate:"May 5th 2021",editedByType:"Edited by",bookSignature:"Luis Jesús Villarreal-Gómez and Ana Leticia Iglesias",hash:"028f3e5dbf9c32590183ac4b4f0a2825",volumeInSeries:11,fullTitle:"Biosensors - Current and Novel Strategies for Biosensing",editors:[{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:319,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:133,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:16,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"14",title:"Cell and Molecular Biology",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression"},{id:"15",title:"Chemical Biology",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors"},{id:"17",title:"Metabolism",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation"},{id:"18",title:"Proteomics",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"July 5th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:320,numberOfPublishedBooks:32,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"219081",title:"Dr.",name:"Abdulsamed",middleName:null,surname:"Kükürt",fullName:"Abdulsamed Kükürt",profilePictureURL:"https://mts.intechopen.com/storage/users/219081/images/system/219081.png",institutionString:null,institution:{name:"Kafkas University",institutionURL:null,country:{name:"Turkey"}}},{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://mts.intechopen.com/storage/users/81926/images/system/81926.png",institutionString:"Suez Canal University",institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/16572",hash:"",query:{},params:{id:"16572"},fullPath:"/chapters/16572",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var t;(t=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(t)}()