\r\n\tThere will be a chapter on secondary causes of sexual dysfunction disorders related to diabetes, cardiovascular disease, and obesity. A chapter on remedial measures to enhance sexual activity and maintain human relationships will be discussed. As there is a growing number of cancer survivors a chapter on cancer-related sexual dysfunction will be welcomed for including it.
",isbn:null,printIsbn:null,pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"b988fda30a4e2364ee9d47e417bd0ba9",bookSignature:"Dr. Dhastagir Sultan Sheriff",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11889.jpg",keywords:"Sex, Sexual Response Cycle, Erection, Premature Ejaculation, Libido, Orgasm, Painful Intercourse, Psychological, Female, Lack of Desire, Erectile Disorders, Pain Disorders",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 8th 2022",dateEndSecondStepPublish:"May 6th 2022",dateEndThirdStepPublish:"July 5th 2022",dateEndFourthStepPublish:"September 23rd 2022",dateEndFifthStepPublish:"November 22nd 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"3 months",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Dhastagir Sultan Sheriff is a life member of the European Society for Human Reproduction and Early Human Development, Association of Physiologists and Pharmacologists of India, member of the National Academy of Medical Sciences, New Delhi, and resource person for UNESCO for Medical and Bioethics. Dr. Sheriff has authored five books including a textbook on medical biochemistry with additional interest in human sexology. He has done extensive research in andrology, sex education, and counseling.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"167875",title:"Dr.",name:"Dhastagir Sultan",middleName:null,surname:"Sheriff",slug:"dhastagir-sultan-sheriff",fullName:"Dhastagir Sultan Sheriff",profilePictureURL:"https://mts.intechopen.com/storage/users/167875/images/system/167875.jpg",biography:"Dhastagir Sultan Sheriff is a life member of the European Society for Human Reproduction and Early Human Development, Association of Physiologists and Pharmacologists of India, member of the National Academy of Medical Sciences, New Delhi, and resource person for UNESCO for Medical and Bioethics. Dr. Sheriff has authored five books including a textbook on medical biochemistry with additional interest in human sexology. He had editorials written in the British Journal of Sexology, Journal of Royal Society of Medicine, Postgraduate Medicine, and Scientist. He was a former Rotarian, Citizen Ambassador, and was selected for the Ford Foundation Fellowship.",institutionString:"University of Benghazi",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Benghazi",institutionURL:null,country:{name:"Libya"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:null},relatedBooks:[{type:"book",id:"6934",title:"Psycho-Social Aspects of Human Sexuality and Ethics",subtitle:null,isOpenForSubmission:!1,hash:"44731b106aa0d1ab5c64a7394483c7d5",slug:"psycho-social-aspects-of-human-sexuality-and-ethics",bookSignature:"Dhastagir Sultan Sheriff",coverURL:"https://cdn.intechopen.com/books/images_new/6934.jpg",editedByType:"Edited by",editors:[{id:"167875",title:"Dr.",name:"Dhastagir Sultan",surname:"Sheriff",slug:"dhastagir-sultan-sheriff",fullName:"Dhastagir Sultan Sheriff"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7163",title:"Infertility, Assisted Reproductive Technologies and Hormone Assays",subtitle:null,isOpenForSubmission:!1,hash:"6db6e4ccb7088f17f819121f7eb6424d",slug:"infertility-assisted-reproductive-technologies-and-hormone-assays",bookSignature:"Dhastagir Sultan Sheriff",coverURL:"https://cdn.intechopen.com/books/images_new/7163.jpg",editedByType:"Edited by",editors:[{id:"167875",title:"Dr.",name:"Dhastagir Sultan",surname:"Sheriff",slug:"dhastagir-sultan-sheriff",fullName:"Dhastagir Sultan Sheriff"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9500",title:"Recent Advances in Bone Tumours and Osteoarthritis",subtitle:null,isOpenForSubmission:!1,hash:"ea4ec0d6ee01b88e264178886e3210ed",slug:"recent-advances-in-bone-tumours-and-osteoarthritis",bookSignature:"Hiran Amarasekera",coverURL:"https://cdn.intechopen.com/books/images_new/9500.jpg",editedByType:"Edited by",editors:[{id:"67634",title:"Dr.",name:"Hiran",surname:"Amarasekera",slug:"hiran-amarasekera",fullName:"Hiran Amarasekera"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"10631",title:"A Sensor Classification Strategy for Robotic Manipulators",doi:"10.5772/9321",slug:"a-sensor-classification-strategy-for-robotic-manipulators",body:null,keywords:null,chapterPDFUrl:"https://cdn.intechopen.com/pdfs/10631.pdf",chapterXML:null,downloadPdfUrl:"/chapter/pdf-download/10631",previewPdfUrl:"/chapter/pdf-preview/10631",totalDownloads:2450,totalViews:115,totalCrossrefCites:0,totalDimensionsCites:1,totalAltmetricsMentions:0,introChapter:null,impactScore:0,impactScorePercentile:19,impactScoreQuartile:1,hasAltmetrics:0,dateSubmitted:null,dateReviewed:null,datePrePublished:null,datePublished:"April 1st 2010",dateFinished:null,readingETA:"0",abstract:null,reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/10631",risUrl:"/chapter/ris/10631",book:{id:"3649",slug:"robot-manipulators-new-achievements"},signatures:"Miguel F. M. Lima, J. A. Tenreiro Machado and Antonio Ferrolho",authors:null,sections:null,chapterReferences:null,footnotes:null,contributors:null,corrections:null},book:{id:"3649",type:"book",title:"Robot Manipulators",subtitle:"New Achievements",fullTitle:"Robot Manipulators New Achievements",slug:"robot-manipulators-new-achievements",publishedDate:"April 1st 2010",bookSignature:"Aleksandar Lazinica and Hiroyuki Kawai",coverURL:"https://cdn.intechopen.com/books/images_new/3649.jpg",licenceType:"CC BY-NC-SA 3.0",editedByType:"Edited by",isbn:null,printIsbn:"978-953-307-090-2",pdfIsbn:"978-953-51-5905-6",reviewType:"peer-reviewed",numberOfWosCitations:44,isAvailableForWebshopOrdering:!0,editors:[{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"5373",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kawai",slug:"hiroyuki-kawai",fullName:"Hiroyuki Kawai"},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1278"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"10623",type:"chapter",title:"Modeling and Control of a New Robotic Deburring System",slug:"modeling-and-control-of-a-new-robotic-deburring-system",totalDownloads:2523,totalCrossrefCites:0,signatures:"Jae H. Chung",reviewType:"peer-reviewed",authors:[null]},{id:"10627",type:"chapter",title:"Trajectory Tracking Control for Robot Manipulators with no Velocity Measurement Using Semi-Globally and Globally Asymptotically Stable Velocity Observers",slug:"trajectory-tracking-control-for-robot-manipulators-with-no-velocity-measurement-using-semi-globally-",totalDownloads:2592,totalCrossrefCites:0,signatures:"Farah Bouakrif",reviewType:"peer-reviewed",authors:[null]},{id:"10632",type:"chapter",title:"Robotic Machining from Programming to Process Control",slug:"robotic-machining-from-programming-to-process-control",totalDownloads:4533,totalCrossrefCites:1,signatures:"Zengxi Pan and Hui Zhang",reviewType:"peer-reviewed",authors:[null]},{id:"10638",type:"chapter",title:"Fuzzy Optimal Control for Robot Manipulators",slug:"fuzzy-optimal-control-for-robot-manipulators",totalDownloads:3358,totalCrossrefCites:0,signatures:"Basil M. Al-Hadithi, Agustin Jimenez and Fernando Matia",reviewType:"peer-reviewed",authors:[null]},{id:"10643",type:"chapter",title:"Development of Adaptive Learning Control Algorithm for a Two-Degree-of-Freedom Serial Ball And Socket Actuator",slug:"development-of-an-adaptive-learning-algorithm-for-controlling-a-two-degree-of-freedom-serial-ball-an",totalDownloads:2345,totalCrossrefCites:0,signatures:"Hayder M. A. A. Al-Assadi and Ahmed Jaffar",reviewType:"peer-reviewed",authors:[null]},{id:"10650",type:"chapter",title:"Singularity-Based Calibration – A Novel Approach for Absolute-Accuracy Enhancement of Parallel Robots",slug:"singularity-based-calibration-a-novel-approach-for-absolute-accuracy-enhancement-of-parallel-robots",totalDownloads:2173,totalCrossrefCites:2,signatures:"Philipp Last",reviewType:"peer-reviewed",authors:[null]},{id:"10648",type:"chapter",title:"Advanced Nonlinear Control of Robot Manipulators",slug:"advanced-nonlinear-control-of-robot-manipulators",totalDownloads:4626,totalCrossrefCites:2,signatures:"Adel Merabet and Jason Gu",reviewType:"peer-reviewed",authors:[null]},{id:"10633",type:"chapter",title:"Modeling of HDD Head Positioning Systems Regarded as Robot Manipulators Using Block Matrices",slug:"modeling-of-hdd-head-positioning-systems-regarded-as-robot-manipulators-using-block-matrices",totalDownloads:3122,totalCrossrefCites:1,signatures:"Tomasz Trawinski and Roman Witula",reviewType:"peer-reviewed",authors:[null]},{id:"10634",type:"chapter",title:"Mobile Manipulation: A Case Study",slug:"mobile-manipulation-a-case-study",totalDownloads:2551,totalCrossrefCites:9,signatures:"A. Hentout, B. Bouzouia, I. Akli and R. Toumi",reviewType:"peer-reviewed",authors:[null]},{id:"10620",type:"chapter",title:"A Concept for Isles of Automation",slug:"a-concept-for-isles-of-automation",totalDownloads:1835,totalCrossrefCites:0,signatures:"Mikko Sallinen and Tapio Heikkila",reviewType:"peer-reviewed",authors:[null]},{id:"10645",type:"chapter",title:"Stiffness Analysis for an Optimal Design of Multibody Robotic Systems",slug:"stiffness-analysis-for-an-optimal-design-of-multibody-robotic-systems",totalDownloads:2896,totalCrossrefCites:0,signatures:"Carbone Giuseppe",reviewType:"peer-reviewed",authors:[null]},{id:"10636",type:"chapter",title:"Concurrent Engineering of Robot Manipulators",slug:"concurrent-engineering-of-robot-manipulators",totalDownloads:2233,totalCrossrefCites:0,signatures:"M. Reza Emami and Robin Chhabra",reviewType:"peer-reviewed",authors:[null]},{id:"10637",type:"chapter",title:"Desktop Cartesian-Type Robot with Abilities of Compliant Motion and Stick-Slip Motion",slug:"desktop-cartesian-type-robot-with-abilities-of-compliant-motion-and-stick-slip-motion",totalDownloads:2086,totalCrossrefCites:0,signatures:"Fusaomi Nagata, Shintaro Tani and Takanori Mizobuchi, Tetsuo Hase, Zenku Haga and Keigo Watanabe",reviewType:"peer-reviewed",authors:[null]},{id:"10655",type:"chapter",title:"Kinematic Calibration of Articulated Arm Coordinate Measuring Machines and Robot Arms Using Passive and Active Self-Centering Probes and Multipose Optimization Algorithm Based in Point and Length Constrains",slug:"kinematic-calibration-of-articulated-arm-coordinate-measuring-machines-and-robot-arms-using-passive-",totalDownloads:3913,totalCrossrefCites:5,signatures:"Jorge Santolaria and Juan Jose Aguilar",reviewType:"peer-reviewed",authors:[null]},{id:"10646",type:"chapter",title:"Two Cooperating Manipulators with Fractional Controllers",slug:"two-cooperating-_manipulators-with-fractional-controllers",totalDownloads:2056,totalCrossrefCites:0,signatures:"N. M. Fonseca Ferreira, J. A. Tenreiro Machado and Jozsef K. Tar",reviewType:"peer-reviewed",authors:[null]},{id:"10649",type:"chapter",title:"MFR (Multi-purpose Field Robot) Based on Human-Robot Cooperative Manipulation for Handling Building Materials",slug:"mfr-multi-purpose-field-robot-based-on-human-robot-cooperative-manipulation-for-handling-building-ma",totalDownloads:2579,totalCrossrefCites:0,signatures:"Seungyeol Lee",reviewType:"peer-reviewed",authors:[null]},{id:"10631",type:"chapter",title:"A Sensor Classification Strategy for Robotic Manipulators",slug:"a-sensor-classification-strategy-for-robotic-manipulators",totalDownloads:2450,totalCrossrefCites:0,signatures:"Miguel F. M. Lima, J. A. Tenreiro Machado and Antonio Ferrolho",reviewType:"peer-reviewed",authors:[null]},{id:"10625",type:"chapter",title:"Passivity-based Visual Force Feedback Control for Eye-to-Hand Systems",slug:"passivity-based-visual-force-feedback-control-for-eye-to-hand-systems",totalDownloads:2264,totalCrossrefCites:1,signatures:"Hiroyuki Kawai, Toshiyuki Murao and Masayuki Fujita",reviewType:"peer-reviewed",authors:[null]},{id:"10629",type:"chapter",title:"Kinematic Analysis of 3-UCR Parallel Robot Leg",slug:"kinematic-analysis-of-3-ucr-parallel-robot-leg",totalDownloads:2152,totalCrossrefCites:0,signatures:"Cheng Gang and Ge Shi-rong",reviewType:"peer-reviewed",authors:[null]},{id:"10653",type:"chapter",title:"Digital Control of Free Floating Space Robot Manipulators Using Transpose of Generalized Jacobian Matrix",slug:"digital-control-of-free-floating-space-robot-manipulators-using-transpose-of-generalized-jacobian-ma",totalDownloads:2156,totalCrossrefCites:0,signatures:"Shinichi Sagara and Yuichiro Taira",reviewType:"peer-reviewed",authors:[null]},{id:"10630",type:"chapter",title:"Kinematics, Singularity and Dexterity Analysis of Planar Parallel Manipulators Based on DH Method",slug:"kinematics-singularity-and-dexterity-analysis-of-planar-parallel-manipulators-based-on-dh-method",totalDownloads:4285,totalCrossrefCites:2,signatures:"Serdar Kucuk",reviewType:"peer-reviewed",authors:[null]},{id:"10626",type:"chapter",title:"Robot Manipulator Probabilistic Workspace Applied to Robotic Assistance",slug:"robot-manipulator-probabilistic-workspace-applied-to-robotic-assistance",totalDownloads:2366,totalCrossrefCites:0,signatures:"Fernando A. Auat Cheein, Fernando di Sciascio, Juan Marcos Toibero and Ricardo Carelli",reviewType:"peer-reviewed",authors:[null]},{id:"10628",type:"chapter",title:"On the Design of Human-Safe Robot Manipulators",slug:"on-the-design-of-human-safe-robot-manipulators",totalDownloads:2816,totalCrossrefCites:1,signatures:"Vincent Duchaine, Nicolas Lauzier and Clement Gosselin",reviewType:"peer-reviewed",authors:[null]},{id:"10647",type:"chapter",title:"Vibration Based Control for Flexible Link Manipulator",slug:"vibration-based-control-for-flexible-link-manipulator",totalDownloads:3993,totalCrossrefCites:0,signatures:"Tamer Mansour, Atsushi Konno and Masaru Uchiyama",reviewType:"peer-reviewed",authors:[null]},{id:"10642",type:"chapter",title:"Control of Robotic Systems with Flexible Components Using Hermite Polynomial-Based Neural Networks",slug:"control-of-robotic-systems-with-flexible-components-using-hermite-polynomial-based-neural-networks",totalDownloads:2778,totalCrossrefCites:0,signatures:"Gerasimos G. Rigatos",reviewType:"peer-reviewed",authors:[null]},{id:"10635",type:"chapter",title:"Dimensional Optimization of Completely Restrained Positioning Cable Driven Parallel Manipulator with Large Span",slug:"dimensional-optimization-of-completely-restrained-positioning-cable-driven-parallel-manipulator-with",totalDownloads:2932,totalCrossrefCites:2,signatures:"XiaoQiang Tang and Rui Yao",reviewType:"peer-reviewed",authors:[null]},{id:"10641",type:"chapter",title:"Multi-Criteria Optimization Manipulator Trajectory Planning",slug:"multi-criteria-optimization-manipulator-trajectory-planning",totalDownloads:2596,totalCrossrefCites:1,signatures:"E. J. Solteiro Pires, P. B. de Moura Oliveira and J. A. Tenreiro Machado",reviewType:"peer-reviewed",authors:[null]},{id:"10621",type:"chapter",title:"On Designing Compliant Actuators Based On Dielectric Elastomers for Robotic Applications",slug:"on-designing-compliant-actuators-based-on-dielectric-elastomers-for-robotic-applications",totalDownloads:2456,totalCrossrefCites:5,signatures:"Giovanni Berselli, Gabriele Vassura, Vincenzo Parenti Castelli and Rocco Vertechy",reviewType:"peer-reviewed",authors:[null]},{id:"10624",type:"chapter",title:"Hybrid Control Techniques for Static and Dynamic Environments: a Step towards Robot-Environment Interaction",slug:"hybrid-control-techniques-for-static-and-dynamic-environments-a-step-towards-robot-environment-inter",totalDownloads:2366,totalCrossrefCites:1,signatures:"Fabrizio Romanelli",reviewType:"peer-reviewed",authors:[null]},{id:"10652",type:"chapter",title:"Maximal Operational Workspace of Parallel Manipulators",slug:"maximal-operational-workspace-of-parallel-manipulators",totalDownloads:2372,totalCrossrefCites:0,signatures:"E. Macho, O. Altuzarra and A. Hernandez",reviewType:"peer-reviewed",authors:[null]},{id:"10640",type:"chapter",title:"Kinematical and Dynamical Models of KR 6 KUKA Robot, Including the Kinematic Control in a Parallel Processing Platform",slug:"kinematical-and-dynamical-models-of-kr-6-kuka-robot-including-the-kinematic-control-in-a-parallel-pr",totalDownloads:10131,totalCrossrefCites:1,signatures:"John Faber Archila Diaz, Max Suell Dutra and Fernando Augusto de Noronha Castro Pinto",reviewType:"peer-reviewed",authors:[null]},{id:"10644",type:"chapter",title:"Manipulator Design Strategy for a Specified Task Based on Human-Robot Collaboration",slug:"manipulator-design-strategy-for-a-specified-task-based-on-human-robot-collaboration",totalDownloads:3513,totalCrossrefCites:0,signatures:"Seungnam Yu, Seungwhan Suh, Woonghee Son, Youngsoo Kim and Changsoo Han",reviewType:"peer-reviewed",authors:[null]},{id:"10639",type:"chapter",title:"P-SPR-D and P-SPR-D+I Control of Robot Manipulators and Redundant Manipulators",slug:"p-spr-d-and-p-spr-d-i-control-of-robot-manipulators-and-redundant-manipulators",totalDownloads:1838,totalCrossrefCites:0,signatures:"Kiyotaka Shimizu",reviewType:"peer-reviewed",authors:[null]},{id:"10651",type:"chapter",title:"3D Imaging System for Tele-Manipulation",slug:"3d-imaging-system-for-tele-manipulation",totalDownloads:2154,totalCrossrefCites:0,signatures:"Hideki Kakeya",reviewType:"peer-reviewed",authors:[null]},{id:"10622",type:"chapter",title:"Experimental Evaluation of Output–Feedback Tracking Controllers for Robot Manipulators",slug:"experimental-evaluation-of-output-feedback-tracking-controllers-for-robot-manipulators",totalDownloads:2126,totalCrossrefCites:0,signatures:"Javier Moreno–Valenzuela, Victor Santibanez and Ricardo Campa",reviewType:"peer-reviewed",authors:[null]},{id:"10654",type:"chapter",title:"Higher Dimensional Spatial Expression of Upper Limb Manipulation Ability Based on Human Joint Torque Characteristics",slug:"higher-dimensional-spatial-expression-of-upper-limb-manipulation-ability-based-on-human-joint-torque",totalDownloads:2416,totalCrossrefCites:15,signatures:"Makoto Sasaki, Takehiro Iwami, Kazuto Miyawaki, Ikuro Sato, Goro Obinata and Ashish Dutta",reviewType:"peer-reviewed",authors:[null]}]},relatedBooks:[{type:"book",id:"3759",title:"Particle Swarm Optimization",subtitle:null,isOpenForSubmission:!1,hash:"85447c3d76565043803bbf8de76e5729",slug:"particle_swarm_optimization",bookSignature:"Aleksandar Lazinica",coverURL:"https://cdn.intechopen.com/books/images_new/3759.jpg",editedByType:"Edited by",editors:[{id:"12392",title:"Mr.",name:"Alex",surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"6251",title:"Novel Binary Particle Swarm Optimization",slug:"novel_binary_particle_swarm_optimization",signatures:"Mojtaba Ahmadieh Khanesar, Hassan Tavakoli, Mohammad Teshnehlab and Mahdi Aliyari Shoorehdeli",authors:[null]},{id:"6252",title:"Swarm Intelligence Applications in Electric Machines",slug:"swarm_intelligence_applications_in_electric_machines",signatures:"Amr M. Amin and Omar T. Hegazy",authors:[null]},{id:"6253",title:"Particle Swarm Optimization for HW/SW Partitioning",slug:"particle_swarm_optimization_for_hw_sw_partitioning",signatures:"M. B. Abdelhalim and S. E. –D. Habib",authors:[null]},{id:"6254",title:"Particle Swarms in Statistical Physics",slug:"particle_swarms_in_statistical_physics",signatures:"Andrei Bautu and Elena Bautu",authors:[null]},{id:"6255",title:"Individual Parameter Selection Strategy for Particle Swarm Optimization",slug:"individual_parameter_selection_strategy_for_particle_swarm_optimization",signatures:"Xingjuan Cai, Zhihua Cui, Jianchao Zeng and Ying Tan",authors:[null]},{id:"6256",title:"Personal Best Oriented Particle Swarm Optimizer",slug:"personal_best_oriented_particle_swarm_optimizer",signatures:"Chang-Huang Chen, Jonq-Chin Hwang and Sheng-Nian Yeh",authors:[null]},{id:"6257",title:"Particle Swarm Optimization for Power Dispatch with Pumped Hydro",slug:"particle_swarm_optimization_for_power_dispatch_with_pumped_hydro",signatures:"Po-Hung Chen",authors:[null]},{id:"6258",title:"Searching for the Best Points of Interpolation Using Swarm Intelligence Techniques",slug:"searching_for_the_best_points_of_interpolation_using_swarm_intelligence_techniques",signatures:"Djerou L., Khelil N., Zerarka A. and Batouche M.",authors:[null]},{id:"6259",title:"Particle Swarm Optimization and Other Metaheuristic Methods in Hybrid Flow Shop Scheduling Problem",slug:"particle_swarm_optimization_and_other_metaheuristic_methods_in_hybrid_flow_shop_scheduling_problem",signatures:"M. Fikret Ercan",authors:[null]},{id:"6260",title:"A Particle Swarm Optimization Technique used for the Improvement of Analogue Circuit Performances",slug:"a_particle_swarm_optimization_technique_used_for_the_improvement_of_analogue_circuit_performances",signatures:"Mourad Fakhfakh, Yann Cooren, Mourad Loulou and Patrick Siarry",authors:[null]},{id:"6261",title:"Particle Swarm Optimization Applied for Locating an Intruder by an Ultra-Wideband Radar Network",slug:"particle_swarm_optimization_applied_for_locating_an_intruder_by_an_ultra-wideband_radar_network",signatures:"Rodrigo M. S. de Oliveira, Carlos L. S. S. Sobrinho, Josivaldo S. Araujo and Rubem G. Farias",authors:[null]},{id:"6262",title:"Application of Particle Swarm Optimization in Accurate Segmentation of Brain MR Images",slug:"application_of_particle_swarm_optimization_in_accurate_segmentation_of_brain_mr_images",signatures:"Nosratallah Forghani, Mohamad Forouzanfar, Armin Eftekhari, Shahab Mohammad-Moradi and Mohammad Teshnehlab",authors:[null]},{id:"6263",title:"Swarm Intelligence in Portfolio Selection",slug:"swarm_intelligence_in_portfolio_selection",signatures:"Shahab Mohammad-Moradi, Hamid Khaloozadeh, Mohamad Forouzanfar, Ramezan Paravi Torghabeh and Nosratallah Forghani",authors:[null]},{id:"6264",title:"Enhanced Particle Swarm Optimization for Design and Optimization of Frequency Selective Surfaces and Artificial Magnetic Conductors",slug:"enhanced_particle_swarm_optimization_for_design_and_optimization_of_frequency_selective_surfaces_and",signatures:"Simone Genovesi, Agostino Monorchio and Raj Mittra",authors:[null]},{id:"6265",title:"Search Performance Improvement for PSO in High Dimensional Space",slug:"search_performance_improvement_for_pso_in_high_dimensional_space",signatures:"Toshiharu Hatanaka, Takeshi Korenaga, Nobuhiko Kondo and Katsuji Uosaki",authors:[null]},{id:"6266",title:"Finding Base-Station Locations in Two-Tiered Wireless Sensor Networks by Particle Swarm Optimization",slug:"finding_base-station_locations_in_two-tiered_wireless_sensor_networks_by_particle_swarm_optimization",signatures:"Tzung-Pei Hong, Guo-Neng Shiu and Yeong-Chyi Lee",authors:[null]},{id:"6267",title:"Particle Swarm Optimization Algorithm for Transportation Problems",slug:"particle_swarm_optimization_algorithm_for_transportation_problems",signatures:"Han Huang and Zhifeng Hao",authors:[null]},{id:"6268",title:"A Particle Swarm Optimisation Approach to Graph Permutations",slug:"a_particle_swarm_optimisation_approach_to_graph_permutations",signatures:"Omar Ilaya and Cees Bil",authors:[null]},{id:"6269",title:"Particle Swarm Optimization Applied to Parameters Learning of Probabilistic Neural Networks for Classification of Economic Activities",slug:"particle_swarm_optimization_applied_to_parameters_learning_of_probabilistic_neural_networks_for_clas",signatures:"Patrick Marques Ciarelli, Renato A. Krohling and Elias Oliveira",authors:[null]},{id:"6270",title:"Path Planning for Formations of Mobile Robots using PSO Technique",slug:"path_planning_for_formations_of_mobile_robots_using_pso_technique",signatures:"Martin Macas, Martin Saska, Lenka Lhotska, Libor Preucil and Klaus Schilling",authors:[null]},{id:"6271",title:"Simultaneous Perturbation Particle Swarm Optimization and Its FPGA Implementation",slug:"simultaneous_perturbation_particle_swarm_optimization_and_its_fpga_implementation",signatures:"Yutaka Maeda and Naoto Matsushita",authors:[null]},{id:"6272",title:"Particle Swarm Optimization with External Archives for Interactive Fuzzy Multiobjective Nonlinear Programming",slug:"particle_swarm_optimization_with_external_archives_for_interactive_fuzzy_multiobjective_nonlinear_pr",signatures:"Takeshi Matsui, Masatoshi Sakawa, Kosuke Kato and Koichi Tamada",authors:[null]},{id:"6273",title:"Using Opposition-based Learning with Particle Swarm Optimization and Barebones Differential Evolution",slug:"using_opposition-based_learning_with_particle_swarm_optimization_and_barebones_differential_evolutio",signatures:"Mahamed G.H. Omran",authors:[null]},{id:"6274",title:"Particle Swarm Optimization: Dynamical Analysis through Fractional Calculus",slug:"particle_swarm_optimization__dynamical_analysis_through_fractional_calculus",signatures:"E. J. Solteiro Pires, J. A. Tenreiro Machado and P. B. de Moura Oliveira",authors:[null]},{id:"6275",title:"Discrete Particle Swarm Optimization Algorithm for Flowshop Scheduling",slug:"discrete_particle_swarm_optimization_algorithm_for_flowshop_scheduling",signatures:"S.G. Ponnambalam, N. Jawahar and S. Chandrasekaran",authors:[null]},{id:"6276",title:"A Radial Basis Function Neural Network with Adaptive Structure via Particle Swarm Optimization",slug:"a_radial_basis_function_neural_network_with_adaptive_structure_via_particle_swarm_optimization",signatures:"Tsung-Ying Sun, Chan-Cheng Liu, Chun-Ling Lin, Sheng-Ta Hsieh and Cheng-Sen Huang",authors:[null]},{id:"6277",title:"A Novel Binary Coding Particle Swarm Optimization for Feeder Reconfiguration",slug:"a_novel_binary_coding_particle_swarm_optimization_for_feeder_reconfiguration",signatures:"Men-Shen Tsai and Wu-Chang Wu",authors:[null]},{id:"6279",title:"Application of Particle Swarm Optimization Algorithm in Smart Antenna Array Systems",slug:"application_of_particle_swarm_optimization_algorithm_in_smart_antenna_array_systems",signatures:"May M.M. Wagih and Hassan M. Elkamchouchi",authors:[null]}]}],publishedBooks:[{type:"book",id:"3649",title:"Robot Manipulators",subtitle:"New Achievements",isOpenForSubmission:!1,hash:null,slug:"robot-manipulators-new-achievements",bookSignature:"Aleksandar Lazinica and Hiroyuki Kawai",coverURL:"https://cdn.intechopen.com/books/images_new/3649.jpg",editedByType:"Edited by",editors:[{id:"12392",title:"Mr.",name:"Alex",surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],publishedBooksByAuthor:[]},onlineFirst:{chapter:{type:"chapter",id:"75437",title:"Laser Treatment CVD Diamond Coated Punch for Ultra-Fine Piercing of Metallic Sheets",doi:"10.5772/intechopen.96446",slug:"laser-treatment-cvd-diamond-coated-punch-for-ultra-fine-piercing-of-metallic-sheets",body:'The CVD (Chemical Vapor Deposition)-diamond coating as well as the PCD (Poly-Crystalline Diamond)-chip have been widely utilized as a protective layer of special tools to prolong their life [1]. In addition to their application to cutting tools, the sintered diamond dies were employed as a tool in the metal forming [2]. In particular, the CVD-diamond coated tools become a standard procedure to cut the CFRP (Carbon Fiber reinforced plastic) members [3], to make deep drawing of stainless steel sheets to cups [4] and to precisely punch out the high strength copper alloy plates [5]. During those manufacturing processes, the diamond coating is usually damaged and chipped so that the tool substrates have to be recycled by removing away or ashing the used coatings before being wasted as an industrial dust.
Let us remember that WC (Co) and silicon were only utilized as a substrate for hot-filament CVD processes to have thick, uniform diamond layer. In particular, the cobalt content in WC (Co) substrate is optimally selected for proper nucleation and growth of diamond coating in practice. In order to improve the material efficiency in the coming circular economy, these used DLC- and diamond-coated cutting tools and forming dies must be recycled to reuse the original WC (Co) substrate for higher cost-competitiveness. In this circulation of WC (Co) substrates [6], the perfect removal or ashing of diamond film and metallic buffer layers with minimum damage to tool geometry is an essential process to reuse the WC (Co) as illustrated in Figure 1. RF (Radio-Frequency) – DC (Direct Current) plasma ashing process was developed to make perfect removal of the used DLC coatings without significant damages to substrates and to reuse the as-ashed WC (Co) substrate for recoating [7, 8, 9, 10, 11, 12]. As pointed in [13], the oxygen ion density in those ashing processes must be intensified enough to remove the used CVD-diamond coating with sufficiently high removal rate. This high density plasma ashing method has proper capacity to remove the diamond films even on the rake surfaces of cutting tool blades with less blade edge loss than 1 μm [14, 15, 16]. Hence, as a challenging issue in Figure 1 for circulation economy of WC (Co) tool substrates, the CVD-diamond coated tools must be shaped to have high capability for cutting and shearing in practical operations and to improve the total WC (Co) efficiency.
A circular economy of WC (Co) tools by the precise treatments of diamond coatings.
As-coated diamond film has a rough surface due to its three dimensional crystalline growth; the maximum surface roughness must be reduced down to the tolerance in the industrial applications, less than 0.5 μm. Its geometrical profile is never adaptive to the precise stamping tools; its surfaces must be trimmed to have accurate dimensions as a tool for fine cutting, shearing and piercing within the deviation of 1 μm. In addition, the diamond-coated tools and dies must have sharp edges enough to preserve the highly burnished surfaces of products. Furthermore, their lives must be elongated by reducing the adhesion of work material debris.
In the present chapter, among the laser processings [17, 18], the laser treatment of CVD-diamond coated tools is proposed to geometrically adjust their diamond coating profile, to trim their surfaces and sharpen their edges and to form the nanostructured micro-grooves for in situ ejection of debris particles during piercing process. Since the first world-wide notice on the importance of wear debris [19], a role of debris particles on the tribological performance in metal forming has been studied both in academic and industries. In particular, fine debris fragments induced the fretting wear in metal forming; how to eject those debris particles still becomes an issue of nuisance [20]. Hence, this laser nanostructuring technique is a powerful approach to prolong the fine piercing punch life and to control the piercing process for both ductile and brittle work sheets.
Furthermore, this laser nanostructuring provides a method to design and fabricate the engineered surfaces to mechanical elements such as the channel, the orifice and the heat sink. If their inner and outer surfaces have an appropriate nanostructure, these structured surfaces are expected to work as an engineered surface with higher wettability, more hydrophobicity and larger overall heat penetration. In the case of the orifice, the leak flow of gasoline through the orifice walls is minimized by their hydrophobicity of nanotextured surface [21, 22]. A nanotextured heat sink has a capacity to significantly improve the heat transfer coefficient, especially the boiling water heat transfer capacity [23, 24]. In particular, the AISI316L orifice plate is a target for the present fine piercing by the nanostructured surface to improve its surface property control.
A CVD-diamond coated WC (Co) specimen is first employed to demonstrate that the pulsed laser adjustment is effective to shape the diamond coated tools and to make microtexturing to diamond films without significant damage to the diamond structure. Next, the femtosecond laser micro-machining is employed to trim a diamond-coated piercing punch. This laser trimming enables to reduce the roughness of as-coated diamond films and to sharpen the punch edge width down to 2 μm. Furthermore, the nanotextures with the period of 300 nm are formed from the edge to the specified length on the punch side surfaces, simultaneously with trimming. Finally, the micro-stamping system is utilized to describe the piercing behavior of AISI316L austenitic stainless steel and amorphous steel sheets with the use of this laser trimmed punch. When using the WC (Co) punch with the sharpened edge, its piercing of AISI316L sheets partially induced a fractured hole surface; the burnished surface area ratio was limited by 70 to 80% of their whole pierced hole surface [25]. In addition to fine piercing performance with full burnished area ratio, the nanotextures on the punch side surface is concurrently transcribed onto the AISI316L holes together with this trimming. Due to this imprinting of the laser-trimmed punch surface with nanostructures, a mirror-shining hole surface is fabricated also to have a periodic nanotexture. An amorphous electrical steel sheet is also employed to investigate the piercing performance of brittle work materials [26]. The sharp edge profile and the nanostructured punch side surface have influence to reduce the damaged width and to improve the product quality. SEM (Scanning Electron Microscopy) and WIS (White Interference Spectroscopy) analyses are utilized to describe this formation of nanostructures into diamond-coated punch and their duplication onto the product surface.
Two types of laser treatment system are proposed to make geometric adjustment of CVD diamond coated punch with the use of pulsed laser irradiation and to trim the punch edge and make nanostructuring onto the side surface of punch with the use of femtosecond lasers. These two laser treatments are illustrated in Figure 2.
Two types of laser treatments for the diamond coated tools for fine and ultrafine piercing. (a) Geometric adjustment by pulsed laser irradiation, and (b) trimming by femtosecond laser machining.
As-CVD-coated diamond film with the thickness of 20 μm has a surface roughness of 3 to 5 μm. A sizing treatment [27, 28] process is necessary to reduce the surface roughness within tolerance for tooling in metal forming and to fit the surface profile of punch into tailored geometry for fine piercing and embossing. The pulsed laser irradiation process is employed to remove the unnecessary surface parts of CVD-diamond film through a series of shots in order that the whole surface profile should be fine enough to satisfy the designed CAD (Computer Aided Design) data of tools.
Figure 2a illustrates an experimental set-up for this sizing treatment. As-coated punch was fixed into a jig, which was located on the X-Y stage. With the use of this stage and Z-positioning controller, the work area on the punch surface was located for laser irradiation. After the pulsed irradiation, this work area was relocated for next irradiation. The number of pulses was directly controlled to correspond to each feeding depth for removal of diamond coating. A laser spot area was also controlled by optical masking; e.g., one segment on the mask became a transparent window for the pulsed laser beam to irradiate this segmented surface area of work. In this process, the removed thickness of CVD coating by single shot via laser abrasion was optimally determined to be around 0.1 μm by controlling the power profile of laser beams. The original laser beam was modified by the optical masking technique to focus only onto the segment of 250 μm x 125 μm. In the following experiments, the diamond coated punch was controlled to move stepwise in the X axis by 250 μm to form a rectangular micro-groove onto the diamond coating with the width of 125 μm.
The femtosecond laser micromachining is suitable to trimming and nanotexturing the CVD-diamond coated WC (Co) punches [29, 30, 31] for ultrafine piercing of metallic sheets [29, 30, 31, 32]. Figure 2b depicts the standard setup for this laser trimming and nanotexturing. The side surface was first trimmed by utilizing the laser beam control-1. The punch head was secondly processed by using the control-2. The laser beam was moved from the center to the end of the punch head. The fluence was also held constant at 0.265 J/cm2. During this two-step procedure in the experiment, the end of the punch was held in a jig to be rotated with a constant velocity by ω = 7.2 degrees/s. The galvanometer was utilized to distribute the laser beam as tailored by CAM (Computer Aided Machining) data for the trimming operation. The capacity of present femtosecond laser machining system is stated in the following. The wavelength of the femtosecond laser was 515 nm, the pulse width was 200 fs, and the pulse repetition rate was 400 kHz. The maximum average power was 40 W, and the maximum pulse energy was 50 μJ. The working stage was 300 mm × 300 mm. A work material with sized 280 mm × 150 mm was placed on the X- and Y-axes controlled stage in Figure 2b. The single-shot power was estimated to be 0.25 GW. High-powered irradiation of 200 fs was used to drive the well-defined ablation into the targeted materials.
The laser nanostructuring method stands on the LIPSS (Laser Induced Periodic Surface Structuring) performance [33, 34]. The directional nanotexture was in situ formed together with the laser trimming during the femtosecond laser machining process with a skew angle against the beam scanning direction. In the following experiments, the fluence was constant with 0.6 J/cm2. The laser machining track overlapped the working range 20 times by rotating the work. The LIPSS-ripple period was controllable by the laser fluence, pulse width, and so forth for femtosecond laser nanotexturing. In fact, LIPSS using high and low spatial frequencies with very different periods can be produced via the same laser setup, depending on the process conditions. This LIPSS-ripple period was estimated to be 250 nm in the present trimming conditions. To be discussed later, this LIPSS period as well as the nanostructuring alignment are controllable by the laser processing conditions during the optical polarization and transformation processes.
An excimer laser machining system (LIPS-Works, Co., Ltd.) was employed to make pulse laser irradiation of CVD-diamond coated rectangular punch. A micro-groove was formed onto the diamond coating to describe the dimensional accuracy in sizing treatment of diamond coated punch. Raman spectroscopy was employed to characterize the diamond film before and after this micro-grooving process.
The excimer laser was employed to make micro-grooving onto the CVD-diamond coating. In each pulsed laser irradiation, the area of 250 μm x 125 μm x 0.1 μm was stepwise removed by a single shot. After multi-shot irradiation, the punch was relocated to move in the X axis by 250 μm to continue this laser ablation process till the end of punch width. The number of laser pulse shots is constant by 50.
Figure 3a depicts the laser-machined track of CVD-diamond coating. Without damages to the un-irradiated surface, only a single micro-groove with the width of 125 μm is accurately cut-in by the present laser machining. This linear removal of coating takes place only with positioning control of specimens without any change in the laser irradiation conditions. The feeding depth is controlled by the number of shots independently from the above spatial control. This results in precise profiling of CVD-coated tool surface geometry in the suitable manner to tooling design. The laser-microscope (Laser-tech, SD 100; Tokyo, Japan) was utilized to measure the surface roughness distributions both in the longitudinal and the lateral directions of linear track. Figure 3b depicts the micro-groove surface depth profiles in the X- and Y-axes, respectively. Its average depth is 3.8 μm, and a deep valley is seen at either edge of micro-groove. This might be because the laser energy profile is intensified at the edge of masking window. The maximum roughness in the longitudinal direction at the bottom of micro-groove is only 0.8 μm. This proves that this sizing process by pulsed laser irradiation accurately adjusts the punch edge profile as demanded by the engineering CAD.
Micro-grooved diamond coating by the pulsed laser machining. (a) a micro-groove with the width of 125 mm with low and high magnifications, and (b) its surface depth profiles along the X- and Y-axes.
Raman spectroscopy (Renishaw, Co., Ltd.) was utilized to characterize the effect of the laser adjustment to the microstructure of CVD diamond. Figure 4 compares the Raman spectra and their deconvoluted profiles before and after laser adjustment. As-coated diamond is characterized by the graphite disordered D peak at 1340 cm−1, the crystalline G peak at 1580 cm−1 and sp3 diamond peak at 1320 cm−1. This reveals that CVD-coated diamond film consists of the nano-structured matrix of sp3 – sp2 binding-state carbon and the sp3-rich surface structure. After pulsed laser adjustment, this surface diamond D-peak disappears in Figure 4b. The same broad graphitic D and G peaks are deconvoluted from the measured spectra in Figure 4a and b. Remember that amorphous carbon films are also characterized by these D and G peak pair [10] and that carbon dusts are only detected by low intensity Raman spectra with much broadness [11]. Although the near-surface of diamond coating is affected by laser irradiation, its depth might be characterized by the diamond D-peak as well as these graphitic D and G peak pair [35]. No essential deterioration occurs in this sizing process of the diamond coating. The surface layer with characteristic sp3 nanostructure is only ablazed during irradiation.
Comparison of Raman spectra before and after the pulsed laser post-treatment. (a) Raman spectra before treatment, and (b) Raman spectra after treatment.
The quality profile of processed diamond coating is investigated by analyzing these graphitic D- and G-peak distributions in the longitudinal direction of micro-groove. Figure 5a depicts the Raman shift distributions; the graphitic D-peak Raman shift increases to the higher wave number from the center to both ends. As shown in Figure 5b, the graphitic D-peak area ratio is nearly constant and higher than 65%. In particular, the measured D-peak area ratio at the micro-groove bottom is always higher than that on the original diamond film. This also proves that the surface of sized diamond coating by the pulse laser irradiation has no significant deviation in quality of coating materials.
Characterization on the laser-processed diamond coatings with comparison to unprocessed film. (a) Distribution of ΛG and ΛD on the micro-grooved surface with comparison to the average ΛG and ΛD outside of the microgrooves, and (b) distribution of peak area ratio for G- and D-peaks on the micro-grooved surface with comparison to the average peak area ratios outside of the microgrooves.
Femtosecond laser irradiation system was utilized to trim the as-coated diamond film surfaces, to sharpen the punch edge and to make nanostructuring on the side surface of cylindrical punch. SEM with various magnifications was used to make microstructure analysis on these nanostructures. The white light interferometry was also employed to characterize them.
A CVD-diamond coated WC (Co) punch with the diameter of 2.00 mm was prepared for the present laser trimming and nanostructuring. As shown in Figure 6a, the original head and side surfaces of as-coated diamond film are rough by the polycrystalline diamond growth during CVD; e.g., its maximum surface roughness reaches to 5 μm. The punch edge curvature also becomes dull as an intersection of rough head and side surfaces.
Comparison of SEM image before and after laser treatment. (a) As-coated head and side surfaces with a dull edge, and (b) laser-trimmed head and side surfaces with a sharpened edge.
Figure 6b shows the laser-trimmed punch profile after surface cleaning. The maximum roughness of punch head is reduced down to 0.5 μm on the measured surface profile. Both head and side surfaces are laser-trimmed so that the punch edge is considered to be sharpened as an intersection of two surfaces.
Figure 7 compares the punch edge curvature radius before and after laser trimming. As-coated edge curvature radius (R) is 12.5 μm; this large R is reduced down to 2.75 μm by this trimming. This improvement proves that femtosecond laser trimming is effective to sharpen the punch edge width down to 2 μm.
Comparison of punch edge curvature before and after laser treatment. (a) before laser trimming, and (b) after laser trimming.
The femtosecond laser trimming process accompanies with nano-structuring on the trimmed surfaces. When laser-trimming the diamond coating, LIPSS takes place to form the intrinsic nano-textures with the LIPSS-period to the optical interaction between the laser beam scattered by the rough diamond surface and the incident laser beam. SEM was utilized to describe this simultaneous nano-structuring with trimming process in the above. Figure 8a shows the SEM image of head and side surfaces of punch. The punch edge width (WE) is also measured by LM (Laser Microscopy) in Figure 8b. WE = 2 μm just in correspondence to R = 2.75 μm in Figure 7b. Figure 8c depicts the change of microstructure from the punch head to its side surface across its edge. The trimmed head surface changes to the nanostructured surface just across the edge. This nanostructure consists of the regularly aligned nano-grooves with the LIPSS period of 300 nm. This measured pitch is corresponding to the estimated LIPSS period of 250 nm when using the above femtosecond laser processing conditions.
SEM and LM images on the laser treated side surface from the punch edge. (a) SEM image on the laser-trimmed head and side surfaces of punch in low magnification, (b) LM image around the punch edge, and (c) SEM image across the punch edge in high magnification. A nanostructure was formed to have a regular alignment with its period of 300 nm.
White light interferometry (WLI) was utilized as a nondestructive evaluation method for diagnosis of nanotextures on the trimmed punch surface profile. This WLI is usually utilized to measure the geometric angulation of polished and buffed die surfaces with relatively little curvature radius. In this measurement, a trimmed diamond-coated punch with the diameter of 2.00 mm has a curvature with influence on the interferometric measurement on the spatial period of nanotextured ripples on the trimmed surface. Figure 9a shows this local surface profile in this X-axis or in the lateral direction of punch surface, which was analyzed by the algorism of DEAP (Detection of Envelope and Absolute Phase) [36]. This profile gradually deviates from the center line; the nanotextures are formed on the trimmed punch surface with the skewed angle in the axial direction. The measured spatial period of nanotextures (Λpunch) is 900 nm, and, their average height reaches to 300 nm.
White light interferometry of the nano-structured diamond-coated punch as well as the imprinted nanotextures onto the hole surface together with the piercing process of AISI316L sheets. (a) Nano-structure on the diamond coating, and (b) imprinted nanotextures on the pierced hole surface.
Let us consider the difference in the spatial period of nanostructures, between the measured Λpunch of 900 nm in Figure 9a and the LIPSS-period of 300 nm in Figure 8c. In the detection of fine spatial peaks in the large area with the curvature by WLI, the neighboring peaks to a main peak are easily enveloped into a single signal by the DEAP algorism. Then, the WLI-measured period becomes three times more than the actual ripple period of 300 nm. In other words, the curvature effect to the measured profile of peaks cannot be sufficiently eliminated in the present measurement.
In the present trimming of the diamond coating on the cylindrical punch, the scattering laser on the coating is skewed by the local curvature on the trimmed diamond surface so that every nanotextured ripple is formed in the axial direction with a skewed angle. This nanotexturing process with trimming the cylindrical diamond coating is mainly governed by this local curvature of cylindrical punch as well as the original roughness of diamond coating.
As pointed out in [33, 34], the laser processing parameters also have influence on this LIPSS or nanotexturing onto the laser-trimmed surface. Among them, the laser pulse width has a direct influence on the ripple-period while the fluence of laser beam affects the LIPSS-profile more than the LIPSS-period. In particular, the depth of nanostructure is incrementally increased by increasing the number of pulses or by increasing the fluence. This laser beam fluence was varied to investigate the effect of irradiation fluence on the depth of nanostructures. Figure 10 compares the SEM images on the nanotextures on each trimmed surface among three punches. Although the peak-to-valley ratio of nanotextures increases with d, the unidirectional formation of nanotextures with a skewed angle is common to three punches. The measured LIPSS-period is also common to three cases; e.g., Λpunch = 300 nm. The similar nanotexturing profile are simultaneously machined onto the diamond coating with trimming; its depth is mainly determined by the fluence.
Effect of the threading depth (d) in the laser trimming process on the nanostructures formed on the punch side surface. (a) d = 1.8 μm, (b) d = 2.4 μm, and (c) d = 3.6 μm.
AISI316L austenitic stainless steel sheets with the thickness of 0.2 mm were utilized for fine piercing experiments with the use of the treated CVD-coated WC (Co) punch. SEM and white light interferometry were also employed to characterize the quality of pierced products.
Figure 11a depicts a piercing experimental set up where the stroke is controllable in every 1 μm. The relationship between the piercing load and the punch stroke is monitored during this piercing process. The laser trimmed diamond-coated WC (Co) punch with a diameter of 2.000 mm was fixed into an upper die in the cassette die-set for the piercing experiment. The WC (Co) core die with an inner diameter of 2.008 mm was also placed into the lower die. The load cell was embedded into the lower die set to monitor the applied load in every stoke. As illustrated in Figure 11b, the narrow clearance between the punch and die is controlled by the nano-metric PZT X-Y stage to preserve the coaxial position of punch to die.
Aluminum-flamed fine stamping system with high stiffness in the die set and flexible stamping structure. (a) Overview on the CNC mini-stamping with the maximum loading capacity of 10 kN, and (b) illustration of the die set.
The WC (Co) punch with the sharpened edge was also used as a reference punch for comparison of pierced hole surface to the present approach. Figure 12 compares the sheared surfaces by piercing process with the use of WC (Co) punch and trimmed diamond coated one after 100 shots in continuous.
Comparison of the optical-microscopic image on the pierced AISI316L hole surfaces when using two punches. The edge curvature in both punches is nearly the same as 2 μm. (a) Pierced hole surface by the normal WC (Co) punch with the sharpened edge, and (b) pierced hole surface by the laser-treated diamond-coated WC (Co) punch.
As depicted in Figure 12a, AISI316L sheet was punch out with full burnished surface area ratio even when using the WC (Co) normal punch with the sharpened edge. This fully sheared surface had lots of scratches since the side surface roughness of WC (Co) punch was transcribed onto the hole surface during the piercing process. When using the trimmed diamond-coated punch, the pierced hole also has no fractured surfaces in Figure 12b. In addition, this surface has a mirror-shining surface condition with tiny scratches only on its top. The length of nanostructured side surface from the punch edge is 200 μm and equal to the sheet thickness. Irregular texture between the nano-textured and non-textured side surfaces induced these scratch markings. The essential difference in the pierced surface condition comes from the shearing process by the punch with and without the nanotextures on its side surface from its edge.
Let us analyze the pierced hole surface condition by the nanostructured punch from the multi-dimensional view. As shown in Figure 13, SEM observation is made from the lowest magnification to the highest one. As seen in Figure 13a and b, the pierced surface looks smooth without any scratches just in correspondence to the optical-microscopic observation in Figure 12b. With increasing the magnification, this smooth surface is found to have nano-stripes as shown in Figure 13c to 13e. This reveals that nanostructures with the period of 300 nm on the diamond coated punch are imprinted onto the pierced hole surface as nano-stripes. Figure 13f proves this imprinting of nanostructures to product surface together with piercing the AISI316L sheet.
SEM image on the pierced AISI316L hole surface by using the laser treated diamond-coated WC (Co) punch with varying the magnifications from (a) to (f).
WLI is also utilized to make nondestructive analysis on the imprinted nanotextures in Figure 13f. Figure 9b depicts the pierced hole surface profile. In correspondence to nano-stripes in Figure 13f, nano-textures are detected on the hole surface. The DEAP alogorism in WLI also biased the measurement of nanotextures on the pierced hole by its local curvature to provide Λhole = 900 nm in Figure 9b. Since Λpunch = Λhole = 900 nm by WLI in Figure 9, the nanostuctures on the punch side surface is simultaneously imprinted onto the hole surface together with piercing the hole.
In the algorithm of DEAP, the effects of large curvatures on the interferometric measurements are difficult to avoid when analyzing nanotextured periods on the punch and pierced hole surfaces. The nanotextures on the punch and hole surfaces were over-estimated to have larger periods by this curvature effect in the WLI and DEAP analysis.
The debris particles splash in the air, easily deposit on the die surfaces and often lock the further steps in cutting and piercing the work materials. In particular, when fine piercing the work in the narrow clearance, they deposit on the punch head and side surfaces under high static pressure. This deposition increases the friction and wear in piercing, and damages to the tools. In the lubricated conditions, those particles are trapped into the lubricating oils and ejected to outside of cutting and stamping processes together with liquid lubricants. However, in the case of dry piercing of works, there are no ways to pocket the splashing particles and push out them from the piercing front on the interface between punch and work to its end. Those residual debris particles adhere to the punch surface and lock the piercing process at the risk of severe damage to punch edge and surfaces. Hence, how to trap those debris particles and to eject them out of the piercing system becomes an issue to promote the production quality in fine piercing.
The nanotextures formed on the punch side surface are expected to be working as a nano-groove to trap and eject these debris particles from the vicinity of punch edge to the length of punch. After continuously piercing the AISI316L sheets in a thousand shots, the punch surface was precisely analyzed by SEM. Figure 14 depicts the punch head and side surfaces with varying the magnification in SEM observation. As seen in Figure 14a, no adhesion of debris particles is detected on both surfaces. With increasing the magnification in SEM, the iron-rich debris particles of AISI316L are trapped into the nano-grooves on the side surface as shown in Figure 14b and c. As depicted in Figure 14c, most of nano-grooves trap the debris away from the punch edge by 8 μm.
SEM image on the laser-treated diamond-coated punch near the sharpened edge. (a) Lowest magnification, (b) lower magnification, and (c) higher magnification.
The nanotextures were formed from the punch edge to the length of 0.2 mm along the punch axis. Consider that this punch is pierced into the AISI316L sheet, and the sheared debris fragments by the sharp punch edge are infiltrated into these nanotextures. As seen in Figure 14, less amount of particles is trapped at the vicinity of punch edge but a lot of particles are lodged into them even far from the edge by 100 μm. This suggests that the trapped debris particles are transferred from the punch edge to the punch length during the piercing process. In order to demonstrate this transfer process, the whole punch surface is precisely analyzed along the length of punch. Figure 15 depicts how the debris particles are trapped and transferred to the punch length (L).
Fine SEM image on the laser-treated diamond-coated punch from the sharpened punch edge to the end of post-treated zone.
As stated before, little debris fragments are trapped at the vicinity of the punch edge. They fill into the nanostructured grooves; e.g., at L = 8 μm from the edge, most of grooves are stacked by them. To be interested, they overlapped the groove and form an agglomerate of debris fragments at L = 15 μm. Each nano-groove first traps a debris fragment and is gradually packed by debris with increasing the number of shots in piercing. Once the amount of debris exceeds the trapping capacity to fully pack the fragments with the length of 2 μm for each nano-groove, the debris fragments agglomerate to a platelet. These platelets are only seen around L = 15 μm. Since no platelets were seen for L > 15 μm, they delaminate from nanostructured punch surface and transfer to further length of punch.
Let us consider this ejection mechanism of debris particles in dry piercing. Due to precise SEM analysis on the nano-textured punch surface after continuous piercing in 1000 shots, various steps in this mechanism are described as shown in Figure 16.
Ejection model to capture, release and transfer the debris particles from the piercing front to the outside.
At the step-1, the AISI316L debris particles are trapped into a single nano-groove. This first trapping of debris occurs on the contact interface of nanostructured punch surface and AISI316L work under high static pressure during every shot in piercing. With increasing the number of shots, the probability also increases for the debris particles to be trapped into two adjacent nano-grooves in the setp-2. In further continuous piercing, each trapped debris agglomerates on a couple of nano-grooves in the step-3. When the size of agglomerates exceeds the critical volume of 5 μm3, they delaminate by themselves and dislodge to be pushed down into the punch length during the shearing process in piercing. At the step-4, the nano-groove becomes vacant enough to trap new debris particles in further piercing process. This ejection mechanism of debris particles during the piercing is effective to be free from their locking to clearance and to continue the fine piercing process with high product quality.
CVD-diamond, polycrystalline and single-crystal diamonds have intrinsic hardness ranging from 5000 HV to 10000 HV, controllable electric resistivity by doping from 100 GΩ·m to semi-conductivity, high thermal conductivities around 2200 W/(m·K), and high thermal stability. In its industrial applications to piercing punches and dies, their laser adjustment and surface treatment is indispensable to make full use of these properties.
The original roughness of bare diamond coating by its tetragonal crystal growth is in the order of 3 to 5 μm. As demonstrated in Figure 3, its maximum roughness can be lowered to be less than 0.8 μm even by the multi-pulse laser irradiation. A microgroove with the length of 10 mm, the width of 125 μm and the depth of 3.8 μm is accurately cut into the diamond film. This proves that the tailored geometry for fine piercing punch is shaped onto the diamond coating within the tolerance of submicron meter.
When using the femtosecond laser-treatment, the surface roughness is much reduced as shown in Figure 6 through the laser beam control in Figure 2b. This suggests that the punch edge as an intersection of its head and side surfaces can be sharpened by trimming these two surfaces and reducing their surface roughness. Figure 7 proves that the punch edge sharpening is driven by this surface trimming processes in Figure 2b. The most preferable merit to this femtosecond laser treatment is a simultaneous nano-structuring on the punch side surface together with the laser trimming process. As depicted in Figure 8, this nanostructuring by LIPSS commences just from the punch edge to the length on its side surface. The period of induced nanostructures is dependent on the laser pulse width, the fluence and the laser beam control in addition to the diamond film surface roughness. Their depth into the diamond is mainly controlled by the fluence in laser trimming, as shown in Figure 10. The direction of nanostructures is also tunable by the optical control.
In addition to the skew angled nanostructures in Figures 8c and 10, each nanostructure by LIPSS can be formed in the circumferential and longitudinal directions, respectively, by the polarization technique [37]. Figure 17 depicts two typical nanostructure alignments onto the diamond-coated punch side surface. SEM images in Figure 17a to 17c with varying the magnification, depict the longitudinally aligned nano-grooves along the punch length. Figure 17d to 17f show the SEM images on the circumferentially aligned nano-grooves with varying the magnification. The direction of nanostructures as well as their LIPSS periods are modified by this polarization control. In particular, when controlling the formation of nanogrooves in the circumferential direction, the LIPSS-ripples have smaller period of 100 nm than 300 nm for the nanogrooves formed in the longitudinal direction.
Controllability of the laser-induced nanostructures onto the side surface of CVD diamond-coated punches. (a-c) A longitudinal alignment of nanostructures on the trimmed punch with varying the magnification in SEM, and (d-f) a circumferential alignment of nanostructures on the trimmed punch with varying the magnification in SEM.
This control of nanogroove directions has direct influence on the piercing behavior. As introduced in [38], the sharpened punch edge behaves as a blade to cut into the work at the beginning of the piercing process as illustrated in Figure 18. The droop is formed by elastoplastic deformation of work at the indentation of punch, and the sheared work surface is generated by the contact of work to punch side surface before final fracture. In the nanostructured punches, each LIPSS-formed nanostructure works as a blade to advance the shearing process in piercing.
Schematic view on the cross-section of pierced hole in the AISI316L work by punching. A droop was formed by the initial indentation of punch; then, the burnished and fracture surfaces are formed by this shearing process of ductile work.
When using the nanostructured punch in Figure 17a to 17c, the straight nano-grooves are imprinted onto the pierced hole surface to have the LIPSS-period of 300 nm. During this piercing process, the debris fragments are easily driven to the length of punch. On the other hand, when using the nanostructured punch in Figure 17d to 17f, the finer nano-grooves with the LIPSS period of 100 nm are formed in the circumferential directions on the pierced hole surface. Every debris particle is stacked in each nano-groove during piercing. These ejection processes with dependence on the nanostructure alignment have an importance role to preserve the high quality piercing of work and prolong the punch life without damages by debris particles.
Let us reconsider the effect of debris particle fragmentation to the piercing process. How to deal with the debris particles is an essential issue in mechanical machining and metal forming. As proposed in [22, 39, 40], the micro-dimples on the rake surface of cutting tools work as a micro-reservoir to stock the debris particles. In case of end-milling of aluminum alloys, the machined chips stack to these dimples so that the adhesion wear of debris to cutting tools is saved to prolong the cutting tool life. In the metal forming under lubricating oils, the debris particles are included into these lubricating oils and ejected together to outside of forming system. When using this micro-dimple technique, a lubricating oil is indispensable to house and drive the debris particles into the micro-dimples. In case of the dry machining and metal forming, how to trap and eject them out of the working space becomes an issue to prevent the tools and dies from severe damage and to be free from the shortage of their lives. Nano-structuring to cutting and metal forming tools proves a method for trapping and ejecting the debris fragments to outside of the cutting and forming systems together with the movement of tools.
How to preserve the product quality, becomes another issue to be solved by tooling appropriately. Although this problem is not so severe in cutting and machining, a product quality assurance during the metal forming is an essential issue for die and punch design. The product surface quality in piercing depends on the shearing process on the interface between punch surface and work and on the flow stress of work materials. During the piercing process, the initial contact interface starts at the punch edge; the strain concentration at the sharp edge drives the shearing process of work materials. Let us consider how the punch edge profile in the edge width influences on the piercing process.
Two types of punch are prepared for piercing the amorphous electrical steel sheets with the thickness of 25 μm. As shown in Figure 19, one is a WC (Co) punch with the sharpened edge width of 2 μm and another is a laser-trimmed diamond-coated punch also with the edge width of 2 μm. The difference in the geometric topology between two punch edges is noticed as an edge profile morphology. The WC (Co) punch has a diffusing edge profile as seen in Figure 18a to 18c while the laser trimmed diamond-coated punch has a homogenous edge profile as shown in Figure 18d to 18f. A brittle amorphous electrical steel sheet is employed to describe the effect of two edge profiles to its piercing behavior.
Comparison of SEM images with different magnifications between two fine piercing punches with the same edge width of 2 mm . (a–c) WC (Co) punch with the sharpened edge width of 2 mm, and (d–f) diamond coated WC (Co) punch with the laser trimmed edge width of 2 mm.
First in the punching process as depicted in Figure 20, a brittle material begins to make elastic shear deformation by initial indentation of a punch edge into it. This bending deformation by indentation of the punch edge, results in the formation of droop with surface cracks in the circumferential direction or in θ-axis. In further indentation of punch, the compressive stress is induced in the radial direction to push back the work material in shearing. Under this compressive stress state, the wrinkling occurs in θ-axis. When punching out, the tensile stress is applied to the work so that the circumferential cracks are generated in the work surface.
Damaging process induced into the work sheet by the piercing process from (a) to (c). (a) Formation of a droop with circumferential cracks, generated by the initial indentation of punch to work, (b) formation of circumferential wrinkles, induced by the compressive stress in the radial direction, and (c) formation of circumferential cracks by perforation of a hole.
Figure 21 compares the pierced hole surface by two punches with the different edge profile. When using the sharpened WC (Co) punch, the droop, the wrinkling, and the circumferential cracking are all seen on the pierced sheet surface as A-zone, B-zone and C-zone, respectively in Figure 21a. On the other hand, the droop and the circumferential cracking are measured in Figure 21b when using the nano-structured diamond-coated punch. No circumferential wrinkling takes place in the latter. In addition, the circumferential cracking only occurs at the vicinity of hole surface. This difference does not come from the sharp edge width but from the homogeneous edge profile. As seen in Figure 19, the edge profile of sharpened WC (Co) punch is diffusing so that the circumferential distortion could be easily induced by the compressive stress at the contact of convex punch edge parts to the work. In the case of the nanostructured punch with homogeneous edge profile, the brittle work sheet is sheared without the wrinkling in the circumferential direction. This difference in the piercing behavior suggests that nano-structured punch has possibility to reduce the induced defects by controlling the structure of nano-grooves such as the direction of nanostructures and their LIPSS-period and depth. The direction of nanogrooves is optimized to reduce the cracking damage; e.g., the longitudinal nanostructuring is recommended to reduce the A- and C-damage widths and to eject the generated debris fragments. The nanostructure depth of 3 to 5 μm is necessary to stimulate the plastic flow of ductile work around the edge profile and to improve the punch life. The LIPSS-period is designed to reduce the A-damage width as well as the piercing stress.
Micro-damages induced into the amorphous electrical steel sheet by the piercing process. A-zone is a droop with the circumferential cracks at the stage of punch indentation. B-zone is a wrinkle with peaks and valleys where the short surface cracks are seen on the peaks. C-zone includes the long surface cracks in the circumferential direction. (a) When using the WC (Co) punch, and (b) when using the diamond-coated punch.
Let us be back to how to imprint the nanostructures by stamping as shown Figure 11. In case of the piercing process, the pierced hole surface is macroscopically smooth with metallic shining and microscopically has nanotextures on it. In case of the embossing and coining processes, the tailored nanotextured surfaces are directly imprinted onto various mechanical parts and tools. Nontraditional design on the micro−/nano-textures leads to development of new mechanical elements in application.
In fine piercing operations, most of piercing punches and dies have complex shaped heads and core-cavities with the accurate dimension, respectively. Let us evaluate on the application of the present laser trimming method to fabricate those complex-shaped punches and dies. A cross-lettered WC (Co) punch was employed for femtosecond laser trimming, as shown in Figure 22a. The laser-machining path schedule was optimized to make homogeneous machining the whole punch side surfaces around the cross-lettered head. Figure 22b shows the SEM image on the vicinity of punch edge with high magnification. The side surface was trimmed and nanostructured to have the LIPSS-period of 300 nm in the similar skewed angle as seen in Figure 8c. This demonstrates that the complexed shaped punches and dies are laser-trimmed to sharpen their edges and to form the nano-structures on their surfaces by the present laser-treatment.
Laser trimming of the complex shaped, diamond-coated WC (Co) punch for fine piercing. (a) Overview of the cross-lettered punch, and (b) nanostructured side surface of punch across its edge. The nanotextures are wavy in nature.
In addition to the CVD diamond coatings, this simultaneous laser trimming with nanostructuring is successfully applied to the ceramic coated dies such as CrN, AlCrN and DLC as well as the nitrided and carburized tools. Those nanostructured dies and tools work in metal forming to accurately yield the engineered surfaces onto the metallic products with higher cost-performance.
A circular economy stands on the sustainable manufacturing with high material efficiency, less emission of wastes and long-life tooling. The CVD diamond coated WC (Co) tooling grows up as a reliable method. The used diamond film was perfectly ashed with less damage to WC (Co) substrate. The tailored WC (Co) substrate is recycled as a tool after recoating the diamond films. Through the laser-treatment of recoated diamond layer, high qualification of products is put into practice together with prolongation of tool life. The laser-treatment provides a reliable method to resize the rough shape of as-coated diamond film into tailored geometry for punch and die in metal forming. No significant damages are generated through this processing. In particular, the femtosecond laser-treatment plays a role to adjust the as-coated diamond punch as a tool for ultra-fine piercing of stainless steel and amorphous electrical steel sheets at first. In second, the nano-textured surfaces are accommodated to punches and dies. In third, the laser-trimmed punch and die lives are prolonged with sufficient cost-competitiveness.
This laser treatment is characterized by the simultaneous edge-sharpening with nanostructuring. Especially, the laser-trimmed punch has a homogeneously sharpened edge with its width less than 2 μm. It has also a nano-structured side surface with the tailored LIPSS-period. In the fine piercing process, this nanostructure plays a double role. The pierced hole surface quality is improved from a fine surface with fully burnished area ratio to the hole surface to an ultrafine surface with mirror-polished condition. The generated debris fragments are ejected from the piercing front to the length of punch through this nanostructured groove. The affected zone width by piercing the ductile work is reduced by tailoring this nanostructures on the piercing punch. Since this zone of work experiences the plastic straining and strain recovery from plastic to elastic states, the reduction of its width improves the quality of products. In case of Fe-Si alloyed electrical steels, this reduction decreases the iron loss in the motor core and increases the product reliability as connector and sensing devices. In the similar manner, the damaged zone width of brittle amorphous sheets is also much reduced by this ultrafine piercing to lower the iron loss.
The imprinting method of nanostructures onto the product surface can be widely utilized to prepare for the engineered surfaces onto various products in application. Nanoscopic angulation onto the micro-textured product surfaces is useful to modify the original hydrophilic metallic surface to super-hydrophobic one. The critical heat flux of heat sink is enhanced by controlling the bubble nucleation at the imprinted micro-/nano-structure surfaces. The regularly aligned micro-/nano-structures surface work as an anti-bacteria part to prevent the human handling from infection. The tailored micro-/nano- textures on the medical tools assist a doctor to pick up and hold the targeting cells and organic parts. Through the imprinting process to dies and tools, various engineered surfaces are tailored and yielded onto the products.
The authors would like to express their gratitude to Mr. Y. Kira and Mr. S. Ishiguro (Graduate School of Engineering, University of Toyama) for their help in analysis. This study was financially supported in part by METI-program on the supporting industry, 2020.
The authors declare no conflict of interest.
This is a brief overview of the main steps involved in publishing with IntechOpen Compacts, Monographs and Edited Books. Once you submit your proposal you will be appointed a Author Service Manager who will be your single point of contact and lead you through all the described steps below.
",metaTitle:"Publishing Process Steps and Descriptions",metaDescription:"This is a brief overview of the main steps involved in publishing with InTechOpen Compacts, Monographs and Edited Books. Once you submit your proposal you will be appointed a Publishing Process Manager who will be your single point of contact and lead you through all the described steps below.",metaKeywords:null,canonicalURL:"page/publishing-process-steps",contentRaw:'[{"type":"htmlEditorComponent","content":"1. SEND YOUR PROPOSAL
\\n\\nPlease complete the publishing proposal form. The completed form should serve as an overview of your future Compacts, Monograph or Edited Book. Once submitted, your publishing proposal will be sent for evaluation, and a notice of acceptance or rejection will be sent within 10 to 30 working days from the date of submission.
\\n\\n2. SUBMIT YOUR MANUSCRIPT
\\n\\nAfter approval, you will proceed in submitting your full-length manuscript. 50-130 pages for compacts, 130-500 for Monographs & Edited Books.Your full-length manuscript must follow IntechOpen's Author Guidelines and comply with our publishing rules. Once the manuscript is submitted, but before it is forwarded for peer review, it will be screened for plagiarism.
\\n\\n3. PEER REVIEW RESULTS
\\n\\nExternal reviewers will evaluate your manuscript and provide you with their feedback. You may be asked to revise your draft, or parts of your draft, provide additional information and make any other necessary changes according to their comments and suggestions.
\\n\\n4. ACCEPTANCE AND PRICE QUOTE
\\n\\nIf the manuscript is formally accepted after peer review you will receive a formal Notice of Acceptance, and a price quote.
\\n\\nThe Open Access Publishing Fee of your IntechOpen Compacts, Monograph or Edited Book depends on the volume of the publication and includes: project management, editorial and peer review services, technical editing, language copyediting, cover design and book layout, book promotion and ISBN assignment.
\\n\\nWe will send you your price quote and after it has been accepted (by both the author and the publisher), both parties will sign a Statement of Work binding them to adhere to the agreed upon terms.
\\n\\nAt this step you will also be asked to accept the Copyright Agreement.
\\n\\n5. LANGUAGE COPYEDITING, TECHNICAL EDITING AND TYPESET PROOF
\\n\\nYour manuscript will be sent to Straive, a leader in content solution services, for language copyediting. You will then receive a typeset proof formatted in XML and available online in HTML and PDF to proofread and check for completeness. The first typeset proof of your manuscript is usually available 10 days after its original submission.
\\n\\nAfter we receive your proof corrections and a final typeset of the manuscript is approved, your manuscript is sent to our in house DTP department for technical formatting and online publication preparation.
\\n\\nAdditionally, you will be asked to provide a profile picture (face or chest-up portrait photograph) and a short summary of the book which is required for the book cover design.
\\n\\n6. INVOICE PAYMENT
\\n\\nThe invoice is generally paid by the author, the author’s institution or funder. The payment can be made by credit card from your Author Panel (one will be assigned to you at the beginning of the project), or via bank transfer as indicated on the invoice. We currently accept the following payment options:
\\n\\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\\n\\n7. ONLINE PUBLICATION, PRINT AND DELIVERY OF THE BOOK
\\n\\nIntechOpen authors can choose whether to publish their book online only or opt for online and print editions. IntechOpen Compacts, Monographs and Edited Books will be published on www.intechopen.com. If ordered, print copies are delivered by DHL within 12 to 15 working days.
\\n\\nIf you feel that IntechOpen Compacts, Monographs or Edited Books are the right publishing format for your work, please fill out the publishing proposal form. For any specific queries related to the publishing process, or IntechOpen Compacts, Monographs & Edited Books in general, please contact us at book.department@intechopen.com
\\n"}]'},components:[{type:"htmlEditorComponent",content:'1. SEND YOUR PROPOSAL
\n\nPlease complete the publishing proposal form. The completed form should serve as an overview of your future Compacts, Monograph or Edited Book. Once submitted, your publishing proposal will be sent for evaluation, and a notice of acceptance or rejection will be sent within 10 to 30 working days from the date of submission.
\n\n2. SUBMIT YOUR MANUSCRIPT
\n\nAfter approval, you will proceed in submitting your full-length manuscript. 50-130 pages for compacts, 130-500 for Monographs & Edited Books.Your full-length manuscript must follow IntechOpen's Author Guidelines and comply with our publishing rules. Once the manuscript is submitted, but before it is forwarded for peer review, it will be screened for plagiarism.
\n\n3. PEER REVIEW RESULTS
\n\nExternal reviewers will evaluate your manuscript and provide you with their feedback. You may be asked to revise your draft, or parts of your draft, provide additional information and make any other necessary changes according to their comments and suggestions.
\n\n4. ACCEPTANCE AND PRICE QUOTE
\n\nIf the manuscript is formally accepted after peer review you will receive a formal Notice of Acceptance, and a price quote.
\n\nThe Open Access Publishing Fee of your IntechOpen Compacts, Monograph or Edited Book depends on the volume of the publication and includes: project management, editorial and peer review services, technical editing, language copyediting, cover design and book layout, book promotion and ISBN assignment.
\n\nWe will send you your price quote and after it has been accepted (by both the author and the publisher), both parties will sign a Statement of Work binding them to adhere to the agreed upon terms.
\n\nAt this step you will also be asked to accept the Copyright Agreement.
\n\n5. LANGUAGE COPYEDITING, TECHNICAL EDITING AND TYPESET PROOF
\n\nYour manuscript will be sent to Straive, a leader in content solution services, for language copyediting. You will then receive a typeset proof formatted in XML and available online in HTML and PDF to proofread and check for completeness. The first typeset proof of your manuscript is usually available 10 days after its original submission.
\n\nAfter we receive your proof corrections and a final typeset of the manuscript is approved, your manuscript is sent to our in house DTP department for technical formatting and online publication preparation.
\n\nAdditionally, you will be asked to provide a profile picture (face or chest-up portrait photograph) and a short summary of the book which is required for the book cover design.
\n\n6. INVOICE PAYMENT
\n\nThe invoice is generally paid by the author, the author’s institution or funder. The payment can be made by credit card from your Author Panel (one will be assigned to you at the beginning of the project), or via bank transfer as indicated on the invoice. We currently accept the following payment options:
\n\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\n\n7. ONLINE PUBLICATION, PRINT AND DELIVERY OF THE BOOK
\n\nIntechOpen authors can choose whether to publish their book online only or opt for online and print editions. IntechOpen Compacts, Monographs and Edited Books will be published on www.intechopen.com. If ordered, print copies are delivered by DHL within 12 to 15 working days.
\n\nIf you feel that IntechOpen Compacts, Monographs or Edited Books are the right publishing format for your work, please fill out the publishing proposal form. For any specific queries related to the publishing process, or IntechOpen Compacts, Monographs & Edited Books in general, please contact us at book.department@intechopen.com
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13389},{group:"region",caption:"Middle and South America",value:2,count:11658},{group:"region",caption:"Africa",value:3,count:4168},{group:"region",caption:"Asia",value:4,count:22334},{group:"region",caption:"Australia and Oceania",value:5,count:2019},{group:"region",caption:"Europe",value:6,count:33642}],offset:12,limit:12,total:135272},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{},books:[{type:"book",id:"9985",title:"Geostatistics",subtitle:null,isOpenForSubmission:!0,hash:"423cb3896195a618c4acb493ce4fd23d",slug:null,bookSignature:"Prof. Jeffrey M. Yarus, Dr. Marko Maucec, Dr. Timothy C. Coburn and Associate Prof. Michael Pyrcz",coverURL:"https://cdn.intechopen.com/books/images_new/9985.jpg",editedByType:null,editors:[{id:"78011",title:"Prof.",name:"Jeffrey M.",surname:"Yarus",slug:"jeffrey-m.-yarus",fullName:"Jeffrey M. Yarus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10845",title:"Marine Ecosystems - Biodiversity, Ecosystem Services and Human Impacts",subtitle:null,isOpenForSubmission:!0,hash:"727e7eb3d4ba529ec5eb4f150e078523",slug:null,bookSignature:"Dr. Ana M.M. Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10845.jpg",editedByType:null,editors:[{id:"320124",title:"Dr.",name:"Ana M.M.",surname:"Gonçalves",slug:"ana-m.m.-goncalves",fullName:"Ana M.M. Gonçalves"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11027",title:"Basics of Hypoglycemia",subtitle:null,isOpenForSubmission:!0,hash:"98ebc1e36d02be82c204b8fd5d24f97a",slug:null,bookSignature:"Dr. Alok Raghav",coverURL:"https://cdn.intechopen.com/books/images_new/11027.jpg",editedByType:null,editors:[{id:"334465",title:"Dr.",name:"Alok",surname:"Raghav",slug:"alok-raghav",fullName:"Alok Raghav"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11124",title:"Next-Generation Textiles",subtitle:null,isOpenForSubmission:!0,hash:"093f9e26bb829b8d414d13626aea1086",slug:null,bookSignature:"Dr. Hassan Ibrahim",coverURL:"https://cdn.intechopen.com/books/images_new/11124.jpg",editedByType:null,editors:[{id:"90645",title:"Dr.",name:"Hassan",surname:"Ibrahim",slug:"hassan-ibrahim",fullName:"Hassan Ibrahim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11369",title:"RNA Viruses Infection",subtitle:null,isOpenForSubmission:!0,hash:"52f8a3a1486912beae40b34ac557fed3",slug:null,bookSignature:"Ph.D. Yogendra Shah",coverURL:"https://cdn.intechopen.com/books/images_new/11369.jpg",editedByType:null,editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11433",title:"Human Migration in the Last Three Centuries",subtitle:null,isOpenForSubmission:!0,hash:"9836df9e82aa9f82e3852a60204909a8",slug:null,bookSignature:"Dr. Ingrid Muenstermann",coverURL:"https://cdn.intechopen.com/books/images_new/11433.jpg",editedByType:null,editors:[{id:"77112",title:"Dr.",name:"Ingrid",surname:"Muenstermann",slug:"ingrid-muenstermann",fullName:"Ingrid Muenstermann"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11438",title:"Fake News in the Era of Global Crises",subtitle:null,isOpenForSubmission:!0,hash:"5f61f975031e13ee705d8b5853f1aa58",slug:null,bookSignature:"Dr. David Eller",coverURL:"https://cdn.intechopen.com/books/images_new/11438.jpg",editedByType:null,editors:[{id:"476616",title:"Dr.",name:"Jack",surname:"Eller",slug:"jack-eller",fullName:"Jack Eller"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11447",title:"Swarm Intelligence - Recent Advances and Current Applications",subtitle:null,isOpenForSubmission:!0,hash:"f68e3c3430a74fc7a7eb97f6ea2bb42e",slug:null,bookSignature:"Dr. Marco Antonio Aceves Fernandez",coverURL:"https://cdn.intechopen.com/books/images_new/11447.jpg",editedByType:null,editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11452",title:"Cryopreservation - Applications and Challenges",subtitle:null,isOpenForSubmission:!0,hash:"a6c3fd4384ff7deeab32fc82722c60e0",slug:null,bookSignature:"Dr. Marian Quain",coverURL:"https://cdn.intechopen.com/books/images_new/11452.jpg",editedByType:null,editors:[{id:"300385",title:"Dr.",name:"Marian",surname:"Quain",slug:"marian-quain",fullName:"Marian Quain"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11453",title:"Biomimetics - Bridging the Gap",subtitle:null,isOpenForSubmission:!0,hash:"173e62fa4d7bf5508cec3bdd8e3cb32d",slug:null,bookSignature:"Prof. Ziyad S. Haidar",coverURL:"https://cdn.intechopen.com/books/images_new/11453.jpg",editedByType:null,editors:[{id:"222709",title:"Prof.",name:"Ziyad S.",surname:"Haidar",slug:"ziyad-s.-haidar",fullName:"Ziyad S. Haidar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11456",title:"Autonomous Mobile Mapping Robots",subtitle:null,isOpenForSubmission:!0,hash:"405e1f7c0ef62700f4d590722cf428be",slug:null,bookSignature:"Dr. Janusz Bȩdkowski",coverURL:"https://cdn.intechopen.com/books/images_new/11456.jpg",editedByType:null,editors:[{id:"63695",title:"Dr.",name:"Janusz",surname:"Bȩdkowski",slug:"janusz-bdkowski",fullName:"Janusz Bȩdkowski"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11459",title:"Soft Robotics - Recent Advances and Applications",subtitle:null,isOpenForSubmission:!0,hash:"06e947238d5d4ea1162509a5d66de887",slug:null,bookSignature:"Dr. Mahmut Reyhanoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11459.jpg",editedByType:null,editors:[{id:"15068",title:"Dr.",name:"Mahmut",surname:"Reyhanoglu",slug:"mahmut-reyhanoglu",fullName:"Mahmut Reyhanoglu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:28},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:8},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:16},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:8},{group:"topic",caption:"Engineering",value:11,count:43},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:9},{group:"topic",caption:"Materials Science",value:14,count:17},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:69},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:3},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:6},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:7},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:500},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11263",title:"Supply Chain",subtitle:"Recent Advances and New Perspectives in the Industry 4.0 Era",isOpenForSubmission:!1,hash:"aab634c9c1f9a692c1e9881d18e9c9b7",slug:"supply-chain-recent-advances-and-new-perspectives-in-the-industry-4-0-era",bookSignature:"Tamás Bányai, Ágota Bányai and Ireneusz Kaczmar",coverURL:"https://cdn.intechopen.com/books/images_new/11263.jpg",editors:[{id:"201248",title:"Dr.",name:"Tamás",middleName:null,surname:"Bányai",slug:"tamas-banyai",fullName:"Tamás Bányai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4805},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7107,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1955,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1452,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2289,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11263",title:"Supply Chain",subtitle:"Recent Advances and New Perspectives in the Industry 4.0 Era",isOpenForSubmission:!1,hash:"aab634c9c1f9a692c1e9881d18e9c9b7",slug:"supply-chain-recent-advances-and-new-perspectives-in-the-industry-4-0-era",bookSignature:"Tamás Bányai, Ágota Bányai and Ireneusz Kaczmar",coverURL:"https://cdn.intechopen.com/books/images_new/11263.jpg",publishedDate:"July 27th 2022",numberOfDownloads:888,editors:[{id:"201248",title:"Dr.",name:"Tamás",middleName:null,surname:"Bányai",slug:"tamas-banyai",fullName:"Tamás Bányai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1566,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2054,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",publishedDate:"July 27th 2022",numberOfDownloads:780,editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318480,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271760,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11328",title:"Botulinum Toxin",subtitle:"Recent Topics and Applications",isOpenForSubmission:!1,hash:"7dd05a316001cef143e209eda51387a7",slug:"botulinum-toxin-recent-topics-and-applications",bookSignature:"Suna Sabuncuoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11328.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"270856",title:"Associate Prof.",name:"Suna",middleName:null,surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11085",title:"Polycystic Ovary Syndrome",subtitle:"Functional Investigation and Clinical Application",isOpenForSubmission:!1,hash:"3066dd3ff29e1fac072fd60b08d4d3e7",slug:"polycystic-ovary-syndrome-functional-investigation-and-clinical-application",bookSignature:"Zhengchao Wang",coverURL:"https://cdn.intechopen.com/books/images_new/11085.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"204883",title:"Dr.",name:"Zhengchao",middleName:null,surname:"Wang",slug:"zhengchao-wang",fullName:"Zhengchao Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10833",title:"Tumor Angiogenesis and Modulators",subtitle:null,isOpenForSubmission:!1,hash:"f29b575c46128b2da061ef7f9bd1070b",slug:"tumor-angiogenesis-and-modulators",bookSignature:"Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/10833.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"59529",title:"Dr.",name:"Ke",middleName:null,surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11356",title:"Molecular Cloning",subtitle:null,isOpenForSubmission:!1,hash:"671c629dd86e97f0fb467b9e70e92296",slug:"molecular-cloning",bookSignature:"Sadık Dincer, Hatice Aysun Mercimek Takcı and Melis Sumengen Ozdenef",coverURL:"https://cdn.intechopen.com/books/images_new/11356.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"188141",title:"Prof.",name:"Sadik",middleName:null,surname:"Dincer",slug:"sadik-dincer",fullName:"Sadik Dincer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Advanced Topics of Topology",subtitle:null,isOpenForSubmission:!1,hash:"bf964c52f9e653fac20a7fcab58070e5",slug:"advanced-topics-of-topology",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"92918",title:"Dr.",name:"Francisco",middleName:null,surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11195",title:"Recent Advances in Biometrics",subtitle:null,isOpenForSubmission:!1,hash:"2d32e33e0f499cb5241734bb75dd2a83",slug:"recent-advances-in-biometrics",bookSignature:"Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/11195.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"46",title:"Bromatology",slug:"biochemistry-genetics-and-molecular-biology-bromatology",parent:{id:"6",title:"Biochemistry, Genetics and Molecular Biology",slug:"biochemistry-genetics-and-molecular-biology"},numberOfBooks:7,numberOfSeries:0,numberOfAuthorsAndEditors:185,numberOfWosCitations:290,numberOfCrossrefCitations:165,numberOfDimensionsCitations:404,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"46",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10746",title:"Prebiotics and Probiotics",subtitle:"From Food to Health",isOpenForSubmission:!1,hash:"3ab2902c0d43605ab43cd0868542db95",slug:"prebiotics-and-probiotics-from-food-to-health",bookSignature:"Elena Franco Robles",coverURL:"https://cdn.intechopen.com/books/images_new/10746.jpg",editedByType:"Edited by",editors:[{id:"219102",title:"Dr.",name:"Elena",middleName:null,surname:"Franco-Robles",slug:"elena-franco-robles",fullName:"Elena Franco-Robles"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9709",title:"Fermentation",subtitle:"Processes, Benefits and Risks",isOpenForSubmission:!1,hash:"d26146973bbbbd704d555fe7182b8594",slug:"fermentation-processes-benefits-and-risks",bookSignature:"Marta Laranjo",coverURL:"https://cdn.intechopen.com/books/images_new/9709.jpg",editedByType:"Edited by",editors:[{id:"95242",title:"Dr.",name:"Marta",middleName:null,surname:"Laranjo",slug:"marta-laranjo",fullName:"Marta Laranjo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7261",title:"Active Antimicrobial Food Packaging",subtitle:null,isOpenForSubmission:!1,hash:"67704749aae30266576f17946a16e7b9",slug:"active-antimicrobial-food-packaging",bookSignature:"Işıl Var and Sinan Uzunlu",coverURL:"https://cdn.intechopen.com/books/images_new/7261.jpg",editedByType:"Edited by",editors:[{id:"202803",title:"Dr.",name:"Isıl",middleName:null,surname:"Var",slug:"isil-var",fullName:"Isıl Var"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6648",title:"Listeria Monocytogenes",subtitle:null,isOpenForSubmission:!1,hash:"4e4865c3e78c22ca80ff86ac5bf8be24",slug:"listeria-monocytogenes",bookSignature:"Monde Alfred Nyila",coverURL:"https://cdn.intechopen.com/books/images_new/6648.jpg",editedByType:"Edited by",editors:[{id:"101525",title:"Dr.",name:"Monde Alfred",middleName:null,surname:"Nyila",slug:"monde-alfred-nyila",fullName:"Monde Alfred Nyila"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5838",title:"Ideas and Applications Toward Sample Preparation for Food and Beverage Analysis",subtitle:null,isOpenForSubmission:!1,hash:"ca131c8fae8f09f74cd561d2bdd7034c",slug:"ideas-and-applications-toward-sample-preparation-for-food-and-beverage-analysis",bookSignature:"Mark T. Stauffer",coverURL:"https://cdn.intechopen.com/books/images_new/5838.jpg",editedByType:"Edited by",editors:[{id:"97565",title:"Dr.",name:"Mark",middleName:"Thomas",surname:"Stauffer",slug:"mark-stauffer",fullName:"Mark Stauffer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5766",title:"Food Additives",subtitle:null,isOpenForSubmission:!1,hash:"db60517de698281a1de9b335dd171236",slug:"food-additives",bookSignature:"Desiree Nedra Karunaratne and Geethi Pamunuwa",coverURL:"https://cdn.intechopen.com/books/images_new/5766.jpg",editedByType:"Edited by",editors:[{id:"130501",title:"Prof.",name:"Desiree Nedra",middleName:null,surname:"Karunaratne",slug:"desiree-nedra-karunaratne",fullName:"Desiree Nedra Karunaratne"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1484",title:"Soybean",subtitle:"Molecular Aspects of Breeding",isOpenForSubmission:!1,hash:"3bd8fd078e7df24f2eed6dc7bc226475",slug:"soybean-molecular-aspects-of-breeding",bookSignature:"Aleksandra Sudaric",coverURL:"https://cdn.intechopen.com/books/images_new/1484.jpg",editedByType:"Edited by",editors:[{id:"21485",title:"Dr.",name:"Aleksandra",middleName:null,surname:"Sudarić",slug:"aleksandra-sudaric",fullName:"Aleksandra Sudarić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:7,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"63469",doi:"10.5772/intechopen.80869",title:"Use of Natural Antimicrobial Agents: A Safe Preservation Approach",slug:"use-of-natural-antimicrobial-agents-a-safe-preservation-approach",totalDownloads:2920,totalCrossrefCites:18,totalDimensionsCites:36,abstract:"Microorganism contamination at various stages of food chain is one of the major causes for food spoilage that ultimately leads to food waste, increasing food insecurity issues and substantial economic losses. Various synthetic chemical preservatives are being used to control microbial food spoilage and to extend product shelf life. Researchers and consumers are discouraging the use of synthetic preservatives due to their negative health impacts. Naturally occurring antimicrobials have gained attention among researchers and food manufacturer due to their safety and nontoxic status. Natural preservatives are easy to obtain from plants, animals and microbes. These naturally occurring antimicrobial agents can be isolated from indigenous sources using various advanced techniques. Natural preservatives such as nisin, essential oils, and natamycin have effective potential against spoilage and pathogenic microorganisms. The regulations regarding the use of these naturally occurring preservatives are not well defined in some developing countries. This chapter focuses on source and their potential role, antimicrobial mechanism in food preservation, and current knowledge on the subject.",book:{id:"7261",slug:"active-antimicrobial-food-packaging",title:"Active Antimicrobial Food Packaging",fullTitle:"Active Antimicrobial Food Packaging"},signatures:"Farhan Saeed, Muhammad Afzaal, Tabussam Tufail and Aftab Ahmad",authors:[{id:"192244",title:"Dr.",name:"Farhan",middleName:null,surname:"Saeed",slug:"farhan-saeed",fullName:"Farhan Saeed"},{id:"232885",title:"Dr.",name:"Aftab",middleName:null,surname:"Ahmed",slug:"aftab-ahmed",fullName:"Aftab Ahmed"},{id:"245894",title:"Dr.",name:"Muhammad",middleName:null,surname:"Afzaal",slug:"muhammad-afzaal",fullName:"Muhammad Afzaal"},{id:"255994",title:"Mr.",name:"Tabussam",middleName:null,surname:"Tufail",slug:"tabussam-tufail",fullName:"Tabussam Tufail"}]},{id:"14941",doi:"10.5772/14407",title:"Evolution of Soybean Aphid Biotypes: Understanding and Managing Virulence to Host-Plant Resistance",slug:"evolution-of-soybean-aphid-biotypes-understanding-and-managing-virulence-to-host-plant-resistance",totalDownloads:3463,totalCrossrefCites:2,totalDimensionsCites:34,abstract:null,book:{id:"1484",slug:"soybean-molecular-aspects-of-breeding",title:"Soybean",fullTitle:"Soybean - Molecular Aspects of Breeding"},signatures:"Andrew P. Michel, Omprakash Mittapalli and M. A. Rouf Mian",authors:[{id:"17721",title:"Dr.",name:"Andrew P.",middleName:null,surname:"Michel",slug:"andrew-p.-michel",fullName:"Andrew P. Michel"},{id:"22017",title:"Dr.",name:"Omprakash",middleName:null,surname:"Mittapalli",slug:"omprakash-mittapalli",fullName:"Omprakash Mittapalli"},{id:"22018",title:"Dr.",name:"M. A. Rouf",middleName:null,surname:"Mian",slug:"m.-a.-rouf-mian",fullName:"M. A. Rouf Mian"}]},{id:"56718",doi:"10.5772/intechopen.70197",title:"Natural Antimicrobials, their Sources and Food Safety",slug:"natural-antimicrobials-their-sources-and-food-safety",totalDownloads:4075,totalCrossrefCites:12,totalDimensionsCites:27,abstract:"With consumer awareness about food safety and quality, there is a high demand for the preservative (synthetic)-free foods and use of natural products as preservatives. Natural antimicrobials from different sources are used to preserve food from spoilage and pathogenic microorganisms. Plants (herbs and spices, fruits and vegetables, seeds and leaves) are the main source of antimicrobials and contain many essential oils that have preservation effect against different microorganisms. Mainly, herb and spices contain many essential oils and the examples include rosemary, sage, basil, oregano, thyme, cardamom, and clove. These essential oils are very effective against many pathogenic and spoilage microorganisms like Salmonella, Escherichia coli, Listeria monocytogenes, Campylobacter spp., and Staphylococcus aureus and help to increase their quality and shelf stability. These antimicrobial compounds are also used in combination with edible food coatings and inhibit the ability of microorganisms to grow on the surface of food and food products.",book:{id:"5766",slug:"food-additives",title:"Food Additives",fullTitle:"Food Additives"},signatures:"Muhammad Sajid Arshad and Syeda Ayesha Batool",authors:[{id:"192998",title:"Dr.",name:"Muhammad Sajid",middleName:null,surname:"Arshad",slug:"muhammad-sajid-arshad",fullName:"Muhammad Sajid Arshad"},{id:"209272",title:"Ms.",name:"Syeda Ayesha",middleName:null,surname:"Batool",slug:"syeda-ayesha-batool",fullName:"Syeda Ayesha Batool"}]},{id:"55599",doi:"10.5772/intechopen.69301",title:"Nutritional, Bioactive and Physicochemical Characteristics of Different Beetroot Formulations",slug:"nutritional-bioactive-and-physicochemical-characteristics-of-different-beetroot-formulations",totalDownloads:3938,totalCrossrefCites:15,totalDimensionsCites:27,abstract:"Beetroot possesses high nutritional value and is considered one of the main dietary sources of nitrate. Nitrate has increasingly attracted the interest of the scientific community regarding new physiological, nutritional and therapeutic approaches with beneficial effects on the cardiovascular system. These effects can be explained by the possible effect of dietary nitrate in stimulating nitric oxide synthesis. Dietary nitrate can be reduced to nitrite in the oral cavity, which is then decomposed to nitric oxide and other bioactive nitrogen oxides in the stomach. Beetroot administration can be conducted by several types of formulations, in order to provide a convenient and alternative source of dietary beetroot, such as beetroot juice or beetroot chips and powder. The challenge in providing a product which, in addition to being rich in nitrate, is attractive and easy to administer, while also being microbiologically safe, is increased by the limited scientific information available concerning the nutritional aspects of beetroot formulations. In this chapter, a brief review on the efficiency of different beetroot formulations on health indicators is conducted, emphasizing the effects following the intake of nitrate-enriched beetroot gel. The metabolic and hemodynamic effects of beetroot formulations in healthy and non-healthy volunteers are also discussed.",book:{id:"5766",slug:"food-additives",title:"Food Additives",fullTitle:"Food Additives"},signatures:"Diego dos S. Baião, Davi V.T. da Silva, Eduardo M. Del Aguila and\nVânia M. Flosi Paschoalin",authors:[{id:"97533",title:"Dr.",name:"Vania",middleName:null,surname:"Paschoalin",slug:"vania-paschoalin",fullName:"Vania Paschoalin"}]},{id:"14938",doi:"10.5772/15688",title:"Phomopsis Seed Decay of Soybean",slug:"phomopsis-seed-decay-of-soybean",totalDownloads:4513,totalCrossrefCites:10,totalDimensionsCites:22,abstract:null,book:{id:"1484",slug:"soybean-molecular-aspects-of-breeding",title:"Soybean",fullTitle:"Soybean - Molecular Aspects of Breeding"},signatures:"Shuxian Li",authors:[{id:"21619",title:"Dr.",name:"Shuxian",middleName:null,surname:"Li",slug:"shuxian-li",fullName:"Shuxian Li"}]}],mostDownloadedChaptersLast30Days:[{id:"57363",title:"Some Aspects of Animal Feed Sampling and Analysis",slug:"some-aspects-of-animal-feed-sampling-and-analysis",totalDownloads:2953,totalCrossrefCites:0,totalDimensionsCites:2,abstract:"Animal feed plays an important part in the food chain and the composition and quality of the livestock products (milk, meat and eggs) that people consume. Animal feeds are either classified as fodder, forage, or mixed feeds. Fodders could be classified as roughages (fresh cut forage, hay or dry forage, straw, root crops, stover and silage) and concentrates such as grains, legumes and by-products of processing. Safety is perhaps one of the most important reasons for feed analysis by the manufacturers and consumers. Storage duration and conditions for feed samples, as well as of stable and unstable parameters are important in sample preparation. A number of sub-samples for preparing final sample for various categories of feed products are recommended. Some analysis conducted on feed include; dry matter, crude ash, ash insoluble in acid (sand), crude protein, crude fat, fibre analysis, starch, gross energy, minerals. More are amino acids (excluding tryptophan), amino acids (tryptophan), fatty acids, vitamins, reducing sugar, mycotoxins, and pesticides. Various types of samples depending on their purposes and uses are available from check, standard, working and referee samples to composite types. Sampling errors in procedures exists and can be minimized by standards or purposes of the analysis, appropriate sampling equipment and using the right quantity of materials.",book:{id:"5838",slug:"ideas-and-applications-toward-sample-preparation-for-food-and-beverage-analysis",title:"Ideas and Applications Toward Sample Preparation for Food and Beverage Analysis",fullTitle:"Ideas and Applications Toward Sample Preparation for Food and Beverage Analysis"},signatures:"Gabriel Adebayo Malomo and Nnemeka Edith Ihegwuagu",authors:[{id:"94246",title:"Dr.",name:"Nnemeka",middleName:"Edith",surname:"Ihegwuagu",slug:"nnemeka-ihegwuagu",fullName:"Nnemeka Ihegwuagu"},{id:"217809",title:"Dr.",name:"Gabriel",middleName:null,surname:"Malomo",slug:"gabriel-malomo",fullName:"Gabriel Malomo"}]},{id:"56317",title:"Food Additives and Processing Aids used in Breadmaking",slug:"food-additives-and-processing-aids-used-in-breadmaking",totalDownloads:3852,totalCrossrefCites:8,totalDimensionsCites:10,abstract:"The main classes of additives used in breadmaking are: (i) oxidants/reductants; (ii) emulsifiers; (iii) hydrocolloids; and (iv) preservatives. The main processing aids used are enzymes. Historically, market trends have developed from the use of ingredients in greater quantities - to obtain specific effects in bread (such as fat for crumb softness) - to the use of additives at much lower levels (max. 1%) and, more recently, to enzymes which are used in parts per million (ppm). According to many regulations, enzymes do not need to be declared on the label of the final product, attending the “clean label” trend. We will describe the food additives used under each class, individually describing their mode of action and effects on dough rheology, during the breadmaking process, and on product quality. We will also describe the main enzymes currently used, dividing them according to the substrate they act on (gluten, starch, lipids, non-starch polysaccharides or NSPS), individually describing their mode of action and effects on dough rheology, during the breadmaking process, and on product quality. Legal aspects will also be addressed. We will conclude with future trends in the use of additives and processing aids in breadmaking.",book:{id:"5766",slug:"food-additives",title:"Food Additives",fullTitle:"Food Additives"},signatures:"Luis Carlos Gioia, José Ricardo Ganancio and Caroline Joy Steel",authors:[{id:"196530",title:"Prof.",name:"Caroline",middleName:"Joy",surname:"Steel",slug:"caroline-steel",fullName:"Caroline Steel"},{id:"197499",title:"BSc.",name:"Luis Carlos",middleName:null,surname:"Gioia Jr.",slug:"luis-carlos-gioia-jr.",fullName:"Luis Carlos Gioia Jr."},{id:"197500",title:"BSc.",name:"José Ricardo",middleName:null,surname:"Crepaldi Ganancio",slug:"jose-ricardo-crepaldi-ganancio",fullName:"José Ricardo Crepaldi Ganancio"}]},{id:"60470",title:"Contamination, Prevention and Control of Listeria monocytogenes in Food Processing and Food Service Environments",slug:"contamination-prevention-and-control-of-listeria-monocytogenes-in-food-processing-and-food-service-e",totalDownloads:2138,totalCrossrefCites:1,totalDimensionsCites:7,abstract:"This chapter reviews issues related to the occurrence and growth of Listeria monocytogenes in food processing and food service environments. L. monocytogenes is a food-borne pathogen with the capacity to contaminate raw or minimally processed foods such as chilled ready-to-eat (RTE) foods. The consumption of food contaminated with L. monocytogenes can result in a disease known as listeriosis among vulnerable groups of people such as pregnant women and fetuses, newborns, adults between the ages of 65 and 75, and people with weakened immune systems. L. monocytogenes is ubiquitous and has been isolated from soil, vegetation, sewage, water, animal feed, fresh and frozen meat including poultry, slaughterhouse wastes and the feces of healthy animals and humans. The bacterium is both acid tolerant and salt tolerant. It is able to grow at refrigerator temperature, and is therefore often associated with the consumption of raw or minimally processed and often chilled RTE foods. L. monocytogenes is able to form biofilms on food processing and preparation surfaces, which protects it from antimicrobial action. Continuous education of vulnerable groups regarding food safety will increase their awareness of the importance of practicing safer food handling practices such as hand washing and safe storage of RTE foods as a means to prevent listeriosis.",book:{id:"6648",slug:"listeria-monocytogenes",title:"Listeria Monocytogenes",fullTitle:"Listeria Monocytogenes"},signatures:"Frederick Tawi Tabit",authors:[{id:"229896",title:"Dr.",name:"Frederick Tawi",middleName:null,surname:"Tabit",slug:"frederick-tawi-tabit",fullName:"Frederick Tawi Tabit"}]},{id:"56718",title:"Natural Antimicrobials, their Sources and Food Safety",slug:"natural-antimicrobials-their-sources-and-food-safety",totalDownloads:4086,totalCrossrefCites:12,totalDimensionsCites:28,abstract:"With consumer awareness about food safety and quality, there is a high demand for the preservative (synthetic)-free foods and use of natural products as preservatives. Natural antimicrobials from different sources are used to preserve food from spoilage and pathogenic microorganisms. Plants (herbs and spices, fruits and vegetables, seeds and leaves) are the main source of antimicrobials and contain many essential oils that have preservation effect against different microorganisms. Mainly, herb and spices contain many essential oils and the examples include rosemary, sage, basil, oregano, thyme, cardamom, and clove. These essential oils are very effective against many pathogenic and spoilage microorganisms like Salmonella, Escherichia coli, Listeria monocytogenes, Campylobacter spp., and Staphylococcus aureus and help to increase their quality and shelf stability. These antimicrobial compounds are also used in combination with edible food coatings and inhibit the ability of microorganisms to grow on the surface of food and food products.",book:{id:"5766",slug:"food-additives",title:"Food Additives",fullTitle:"Food Additives"},signatures:"Muhammad Sajid Arshad and Syeda Ayesha Batool",authors:[{id:"192998",title:"Dr.",name:"Muhammad Sajid",middleName:null,surname:"Arshad",slug:"muhammad-sajid-arshad",fullName:"Muhammad Sajid Arshad"},{id:"209272",title:"Ms.",name:"Syeda Ayesha",middleName:null,surname:"Batool",slug:"syeda-ayesha-batool",fullName:"Syeda Ayesha Batool"}]},{id:"77442",title:"Fermentation of Cocoa Beans",slug:"fermentation-of-cocoa-beans",totalDownloads:484,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"Cocoa bean fermentation is a spontaneous process driven by an ordered microbial succession of a wide range of yeasts, lactic acid and acetic acid bacteria, some aerobic sporeforming bacteria and various species of filamentous fungi. The process of cocoa fermentation is a very important step for developing chocolate flavor precursors which are attributable to the metabolism of succession microbial. The microbial ecology of cocoa has been studied in much of the world. In Venezuela, studies have been carried out with Criollo, Forastero, and Trinitario cocoa, fermented under various conditions, the results obtained coinciding with the reported scientific information. Fermentation must be associated with the type of cocoa available, carried out knowing the final processing and derivative (paste, butter, powder). The results shown in this chapter correspond to investigations carried out with cocoa from three locations in Venezuela. The quantification, identification, isolation, functionality of the most representative microbiota involved in the fermentation of these grains was sought. This to give possible answers to the fermentation times and improvement of the commercial quality. Likewise, generate greater interest on the part of the producers in carrying out the fermentation.",book:{id:"9709",slug:"fermentation-processes-benefits-and-risks",title:"Fermentation",fullTitle:"Fermentation - Processes, Benefits and Risks"},signatures:"Romel E. Guzmán-Alvarez and José G. Márquez-Ramos",authors:[{id:"238233",title:"Dr.",name:"Romel",middleName:null,surname:"E. Guzmán-Alvarez",slug:"romel-e.-guzman-alvarez",fullName:"Romel E. Guzmán-Alvarez"},{id:"269154",title:"Dr.",name:"José",middleName:null,surname:"G. Márquez-Ramos",slug:"jose-g.-marquez-ramos",fullName:"José G. Márquez-Ramos"}]}],onlineFirstChaptersFilter:{topicId:"46",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:139,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:122,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:21,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"25",title:"Environmental Sciences",doi:"10.5772/intechopen.100362",issn:"2754-6713",scope:"\r\n\tScientists have long researched to understand the environment and man’s place in it. The search for this knowledge grows in importance as rapid increases in population and economic development intensify humans’ stresses on ecosystems. Fortunately, rapid increases in multiple scientific areas are advancing our understanding of environmental sciences. Breakthroughs in computing, molecular biology, ecology, and sustainability science are enhancing our ability to utilize environmental sciences to address real-world problems.
\r\n\tThe four topics of this book series - Pollution; Environmental Resilience and Management; Ecosystems and Biodiversity; and Water Science - will address important areas of advancement in the environmental sciences. They will represent an excellent initial grouping of published works on these critical topics.