Early GH response genes of the DNA-binding proteins and transcription factors.
\r\n\t
",isbn:"978-1-83969-452-3",printIsbn:"978-1-83969-451-6",pdfIsbn:"978-1-83969-453-0",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"a6e1a11c05ff8853c529750ddfac6c11",bookSignature:"Dr. René Mauricio Barría",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10734.jpg",keywords:"Neonatal Intensive Unit, Neonatal Diagnostic Techniques, Neonatal Nurses, Neonatologists, Newborn Diseases, Premature Diseases, Breast Feeding, Kangaroo-Mother Care Method, Neonatal Survival, Limit of Viability, Minimal Handling, Neonatal Stress",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 5th 2021",dateEndSecondStepPublish:"March 5th 2021",dateEndThirdStepPublish:"May 4th 2021",dateEndFourthStepPublish:"July 23rd 2021",dateEndFifthStepPublish:"September 21st 2021",remainingDaysToSecondStep:"8 days",secondStepPassed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:"The principal investigator and academic expert in epidemiological methods and evidence-based health with an emphasis on children's health. His research interests lie in the areas of Maternal-Child Health, Neonatal Care, and Environmental Health. From 2010 until 2017 he was Director of the Evidence-Based Health Office and currently serves as Director of the Nursing Institute at the Universidad Austral de Chile.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",middleName:null,surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría",profilePictureURL:"https://mts.intechopen.com/storage/users/88861/images/system/88861.jpg",biography:"R. Mauricio Barría, DrPH, is a Principal Investigator and Associate Professor at the Faculty of Medicine at Universidad Austral de Chile. He was trained as an epidemiologist and received his MSc in Clinical Epidemiology from Universidad de la Frontera in Temuco, Chile, and his DrPH from Universidad de Chile in Santiago, Chile. His research interests lie in the areas of Maternal-Child Health, Neonatal Care and Environmental Health. He is skilled in epidemiological studies designs with special interest in cohort studies and clinical trials. Since 2010 until 2017 he was Director of the Evidence-Based Health Office and currently serves as Director of the Nursing Institute at the Universidad Austral de Chile. He has published several articles related to the care and health of the newborn and is a reviewer of several international journals.",institutionString:"Austral University of Chile",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"4",institution:{name:"Austral University of Chile",institutionURL:null,country:{name:"Chile"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"345821",firstName:"Darko",lastName:"Hrvojic",middleName:null,title:"Mr.",imageUrl:"//cdnintech.com/web/frontend/www/assets/author.svg",email:"darko@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5821",title:"Selected Topics in Neonatal Care",subtitle:null,isOpenForSubmission:!1,hash:"711594f833d5470b73524758472f4d96",slug:"selected-topics-in-neonatal-care",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/5821.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8728",title:"Update on Critical Issues on Infant and Neonatal Care",subtitle:null,isOpenForSubmission:!1,hash:"52c4dbe7c0deb54899657dc4323238d6",slug:"update-on-critical-issues-on-infant-and-neonatal-care",bookSignature:"René Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/8728.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6191",title:"Selected Topics in Breastfeeding",subtitle:null,isOpenForSubmission:!1,hash:"3334b831761ffa52e78de6fc681e33b3",slug:"selected-topics-in-breastfeeding",bookSignature:"R. Mauricio Barría P.",coverURL:"https://cdn.intechopen.com/books/images_new/6191.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"29246",title:"Transcription Factors Potentially Involved in Regulation of Cytochrome P450 Gene Expression",doi:"10.5772/27817",slug:"transcription-factors-potentially-involved-in-regulation-of-cytochrome-p450-gene-expression",body:'Drug-metabolizing enzymes, including the cytochrome P450 (CYP) superfamily of enzymes, are subject to regulation by both exo- and endogenous factors, mostly hormones and cytokines (Monostory et al., 2009; Waxman & Chang, 2005). In this regulation transcription factors are the mediators. Among them, orphan nuclear receptors: CAR (Constitutive Androstane Receptor), PXR (Pregnane X Receptor), VDR (Vitamin D Receptor), FXR (Farnesoid X Receptor), LXR (Liver X Receptor), PPARα (Peroxisome Proliferator-Activated Receptor ) and RXR (Retinoid X Receptor) are the most important. They can create heterodimers in any configuration what, in conjunction with a broad spectrum of attached ligands, reflects the complexity of regulatory networks (Honkakoski & Negishi, 2000; Xu et al., 2005). Expression of some CYP isoforms is dependent on gender, which partly explains the metabolic difference between men and women in pharmacokinetics of drugs or, for instance, in susceptibility to carcinogens (Scandlyn et al., 2008). The main role in the sex-dependent regulation of CYP expression plays the growth hormone (GH) and to a lesser extent – other hormones. In principle, there are significant differences between genders in the daily profile of GH secretion into the bloodstream (Waxman & Chang, 2005). GH activates signaling pathway JAK-STAT (Lobie & Waxman, 2003). The main regulator of hepatic gene expression dependent on GH is transcription factor STAT5b which, together with other co-regulators (i.e. HNF-4α) can stimulate CYP genes directly by the binding to promoter sequences of target genes or indirectly by the activation of gene expressions of the gender-specific transcription factors (Park et al., 2006). As a result, in transactivation of cytochrome P450 genes, we can distinguish at least two pathways: (1) metabolic, dependent on the type of xeno- or endobiotic, mediated by several nuclear receptors and (2) signaling, associated with activation of numerous GH-dependent transcription factors. Therefore, some endocrine disorders may cause changes in the drug metabolism, as well as in the CYP-dependent metabolism of endogenous substrates.
Cytoplasmic and nuclear receptors participate in the regulation of cytochrome P450 genes expression (table 1). Best known is the aryl hydrocarbon receptor (AhR), which being inactive in the cytosol remains associated with several co-chaperones: Hsp90 (Heat shock protein-90), XAP2 (Hepatitis B virus X-associated Protein 2) and the co-chaperone p23, regulating ligand-dependent nuclear import and protecting AhR from ubiquitination and further proteolysis (Monostory et al., 2009). Upon ligand binding to AhR, the cytosolic complex with chaperones dissociate, allowing the receptor phosphorylation by stimulated tyrosine kinase and translocation of AhR/ligand complex to the nucleus. In the nucleus, binding with ARNT (AhR Nuclear Translocator) protein into the heterodimer and interaction of the activated AhR/ARNT complex with the respective XRE (Xenobiotic Response Element) sequences located in the CYP genes, takes place (Honkakoski & Negishi, 2000; Monostory et al., 2009).
Nuclear receptors: CAR, PXR, RXR, VDR, FXR, LXR and PPARα participate in the complex regulation of CYP gene transcription, as transcription factors activated by ligand. Frequently they are activated in the cytoplasm and then translocated to the nucleus, where they form a heterodimer with RXR. These receptors are third class of nuclear hormone receptors, called xenoreceptors (XR) or xenosensors (Xu et al., 2005).
CAR binds to RXR into the heterodimer, which after binding to coactivators, interacts with the relevant regulatory sequences of target genes, mostly with the module sensitive to retinoic acid - RARE (Retinoic Acid Response Element). In the case of phenobarbital induction the formed heterodimer binds to the NR1 sequence (Nuclear Receptor binding site 1) being a part of PBRU (Phenobarbital-Responsive enhancer Unit) - multicomponent enhancer necessary to run the phenobarbital-dependent gene expression. In turn, the binding of CAR with natural ligand causes a loss of its activity (Czekaj, 2000).
PXR participates in the response to the numerous and structurally diverse xenobiotics. Dimeric complex PXR/RXR interacts with AGTTCA sequence in CYP3A1/2 genes separated by a trinucleotide spacer (DR3, Direct Repeat-3), and with XREM (Xenobiotic-Response Enhancer Module) and ER6 (Everted Repeat with a 6-nucleotide spacer) in the CYP3A4 gene. PXR gene polymorphism is probably one of the reasons for varied response to pharmacotherapy and the incidence of side effects in the population (Lamba & Schuetz, 2009).
VDR heterodimerizes with RXR and the formed complex can bind sequences of human CYP3A4 gene: pER6 (proximal Everted Repeat with a 6-nucleotide spacer) and dXREM (distal Xenobiotic-Responsive Enhancer Module), increasing its expression (K. Wang et al., 2008). Through the influence on CYP3A4 - the main enzyme metabolizing drugs in the intestine - VDR is a potential modulator of first-pass effect in the gastrointestinal tract. Moreover, it can be stimulated by bile acids and interact with FXR, as calcitriol inhibits transactivation of genes regulated by this receptor. VDR can form complexes with p65 subunit of NFκB factor (Nuclear Factor kappa-light-chain-enhancer of activated B cells) and thereby inhibit gene expression of proinflammatory proteins (Levi, 2011).
FXR regulates the expression of genes as a FXR/FXR homodimer or FXR/RXR heterodimer. FXR, through the CYP3A11 gene induction, CYP7A1 gene repression, and induction of expression of ileal bile acid binding protein (IBABP), inhibits the biosynthesis of bile acids and increases their transport from the intestine to the liver. High content of FXR in tissues associated with enterohepatic circulation makes it a regulator of drug distribution in the body (Gnerre et al., 2004; X. Wang et al., 2009).
Important receptors regulating cytochrome P450 expressions.
Important receptors regulating cytochrome P450 expressions (Continuation).
LXR, after joining the ligand, heterodimerization with RXR and binding of the complex with the promoter of CYP7 gene coding element of steroid 7α-hydroxylase, acts as a \'sensor\' of cholesterol concentration, by stimulating its removal from the liver. Lack of LXR inhibits conversion of cholesterol into bile acids (Thomas et al., 2008; Wagner et al., 2011).
PPARα is most commonly associated with the mechanism of CYP4 gene family expression (Li & Chiang, 2009). After binding to ligand and heterodimerization with RXR, FXR, or LXR joins a PPRE (Peroxisome Proliferator Response Element) sequence, located in the promoter of target genes. PPARα is currently the subject of numerous pharmacological and pharmaceutical studies, as it is the target or it modulates the activity of many groups of commonly used hypolipemic and antidiabetic drugs: fibrates, glitazones and statins (Paumelle & Staels, 2007).
RXR, through the creation of numerous heterodimers, has a co-regulatory function as a nuclear auxiliary protein (NAP). There are two types of RXR heterodimers: a ‘permissive’, such as PPAR/RXR, LXR/RXR, FXR/RXR, activated freely by RXR ligands or his partner’s ligands; and the ‘nonpermissive’ type, such as RAR/RXR, VDR/RXR and T3R/RXR dimers, where only the ligands of bound orphan proteins are the activator (Xu et al., 2005). The fact that the receptors CAR, PXR, VDR, FXR, LXR and PPAR form heterodimers in any configuration with the same RXR protein related to the metabolism of endobiotics, makes him a ‘connector’ of various metabolic pathways in the body (the phenomenon of interference – ‘cross-talk ‘) and gives a picture of a complex regulatory network.
Currently, intensively investigated are epigenetic modifications of cytoplasmic and nuclear receptors, which include DNA methylation, modifications of histones and regulation by microRNA (Klaassen et al., 2011). AhR is under the epigenetic regulation consisting of hypermethylation of promoter region of AhR gene (Cui et al., 2009). Such regulation occurs in acute lymphoblastic leukemia and impairs binding of the transcription factor Sp1 to the AhR promoter and, as a result, the initiation of transcription (Mulero-Navarro et al., 2006). In mouse models of obesity and diabetes type II increased acetylation of FXR protein can be observed (Kemper et al., 2009). MicroRNA (miRNA) may regulate signaling pathways of nuclear receptors on three levels, through direct interaction with 3\'UTR mRNA sequence of: nuclear receptor, and/or co-regulators, or target genes (Pandey & Picard, 2009). It has been proven that the miR-148a causes post-transcriptional down regulation of PXR, which results in a lower induction of CYP3A4. Therefore, the levels of PXR mRNA and protein did not correlate with each other in normal human liver (Takagi et al., 2008). In the studies on the CAR receptor it has been shown that in precancerous, phenobarbital-induced lesions in the wild-type mice, disorders of gene methylation are present, in contrast to mice with silenced gene CAR (Philips et al., 2007). More and more evidences indicate the regulation of PPARα by miR-10b, depending on binding site in the 3\'UTR sequence. miR-10b may be a new player in the pathogenesis of non-alcoholic fatty liver disease (NAFLD) and a new target for drugs in the treatment of this disease (Zheng et al., 2010). It has also been shown that expression of VDR, stimulated by ligand attachment - 1,25(OH)2D3, is inhibited by miR-125b, miR-27b and mmu-miR- 298 (Mohri et al., 2009; Pan et al., 2009).
The main role in the sex-dependent regulation of CYP expression plays the growth hormone (GH) and to a lesser extent – other hormones. Growth hormone, also called somatotropic hormone (STH), is a 21.5 kDa protein secreted into the blood by acidic somatotrophs of the anterior pituitary. The release of this hormone is regulated by hypothalamic peptides, which means it is stimulated by somatotropin – GHRH (Growth Hormone-Releasing Hormone) and inhibited by somatostatin – GHIH (Growth Hormone-Inhibiting Hormone; SST). It is also regulated by other hormones and neurotransmitters, such as ghrelin (the strongest stimulator), leptin, sex hormones, corticosteroids, or dopamine (Veldhuis et al., 2006; Wójcikowski & Daniel, 2011). GH shows strong anabolic properties by stimulating the biosynthesis of proteins and nucleic acids, and insulin secretion, but also shows catabolic properties by stimulating lipolysis (Veldhuis et al., 2006).
In male rats the secretion of GH is a pulse type. Every 3.5–4 h the hormone concentration in blood reaches value up to 200 ng/ml, however outside these periods it is very low or even undetectable. To invoke the proper cellular response the impulse frequency, duration and amplitude are important. In females there is no clear pulsation and the average hormone concentration in serum is 30-60 ng/ml (Waxman & Chang, 2005).
The growth hormone receptor (GHR) is the integral cell membrane protein, by which GH has a direct impact on the cells of the liver, skeletal muscles, bones, brain, and adipose tissue (Rosenfeld & Hwa, 2009). On the surface of female hepatocytes there are much more GHRs, which probably play a role in different response to GH comparing to males (Waxman & Chang, 2005). Binding GH to the receptor causes its dimerization, and activation of JAK2 (Janus-type Tyrosine Kinase-2) tyrosine kinase initiating several signaling pathways. The main mechanism of GH-dependent transcriptional regulation is based on the JAK-STAT, pathway in which STAT (Signal Transducers and Activators of Transcription) proteins 1, 3, 5a and 5b are involved (Lobie & Waxman, 2003; Rosenfeld & Hwa, 2009). In addition, the small Ras (Rat sarcoma viral oncogene) proteins, the family of MAPK (Mitogen-Activated Protein Kinases), IRS-1-3 (Insulin Receptor Substrates) adapter proteins, GRB-2 (Growth factor Receptor-bound protein 2), SHC (Src Homology/Collagen homology); SOS (Son of Sevenless) protein, the protein kinase C (PKC) and phosphatidylinositol-3 kinase (PI 3-kinase) are activated. GH may also activate the epidermal growth factor receptor (EGFR) and non-receptor kinases: c-Src, c-Fyn and FAK (Lobie & Waxman, 2003). Indirectly, GH affects tissues through insulin-like growth factors: IGF-I and IGF-II, (GH/IGF axis), which are produced primarily in the liver (Veldhuis et al., 2006). In the external regulation of growth signal, CIS (Cytokine-inducible SH2 protein) and SOCS (Suppressors of Cytokine Signaling) proteins, are involved. They are regulated by proinflammatory interleukin 6 (IL-6) and concentration of these proteins increases in various pathological conditions, such as rheumatic diseases (MacRae et al., 2006).
In 2008, sex-dependent genes expressed in the liver of hypophysectomized rats administered GH were examined by means of the DNA microarrays technique (Wauthier & Waxman, 2008). Twenty four of 1032 genes were identified as early response genes, candidates for direct targets of GH action. 15 of them underwent induction and 9 - inhibition under the influence of GH (table 2). There were no cytochrome P450 genes among them, however, there were genes of transcription factors participating in their regulation, e.g. Bcl6, Cutl2, HNF-6 and PPARγ (described below), as well as Egr1, Myc and Nr0b2/SHP. It was also confirmed that GH maintains the hepatic sexual dimorphism, by means of both positive and negative regulatory mechanisms. In mouse liver, 88% of male-specific genes were subject to positive regulation by pituitary hormones, whereas in females, most genes (64%) were under negative regulation (Wauthier et al., 2010).
Gene symbol (alphabetical order) | Gene name | Responseto GH | Sex-specificgene class | Involvement in CYP regulation |
Asb9 | Ankyrin repeat and SOCS box-containing protein 9 | Suppression | none | no data |
Bcl3 | B-cell leukemia/lymphoma 3 | Induction | none | no data |
Bcl6 | B-cell leukemia/lymphoma 6 | Suppression | Male class IIA | yes |
Cux2 | Cutl2, Cut-like 2 | Induction | Female class IA | yes |
Egr1 | Early growth response 1 | Induction | none | yes |
Etv6 | Ets variant gene 6(TEL oncogene) | Induction | none | no data |
Foxq1 | Forkhead box Q1;HFH-1 | Induction | none | no data |
Hhex | Hematopoietically expressed homeobox | Induction | none | no data |
Jun | Jun oncogene | Induction | none | no data |
Klf9 | Kruppel-like factor 9 | Induction | none | no data |
Klf15 | Kruppel-like factor 15 | Suppression | none | no data |
Lef1 | Lymphoid enhancer binding factor 1 | Suppression | none | no data |
Lhx1 | LIM homeobox protein 1 | Suppression | none | no data |
Msx1 | Homeo box, msh-like 1 | Induction | none | no data |
Myc | Myelocytomatosis viral oncogene homolog (avian) | Induction | none | yes |
Ncl | Nucleolin | Induction | Female class IB | no data |
Nfyb | Nuclear transcription factor-Y beta | Induction | none | no data |
Nr0b2 | Nuclear receptor subfamily 0, group B, member 2; SHP | Suppression | none | yes |
Onecut1 | One cut domain, HNF6 | Induction | Female class IB | yes |
Pou3f3 | POU domain, class 3, transcription factor 3 | Induction | none | no data |
Pparg | Peroxisome proliferator activated receptor gamma | Suppression | Male class IIB | yes |
Tbx3 | T-box 3 | Suppression | none | no data |
Zfp37 | Zinc finger protein 37 | Induction | Male class IA | no data |
Zfp786 | Zinc finger protein 786 | Suppression | none | no data |
Early GH response genes of the DNA-binding proteins and transcription factors.
Well recognized examples of sex-specific transcription factors are: Tox (Thymus high-mobility group box protein), Cutl2 (Cut-like 2), and Trim 24 (Tripartite motif-containing 24). They undergo preferential expression in the liver of female rats, where their levels are accordingly 16, 125 and 73 times higher than those found in males. Both, Tox and Cutl2 belong to the GH response genes. Tox is a protein involved in the regulation of T lymphocytes maturation. Cutl2 (Cux2) is one of the early GH response genes and plays a role in the control of proliferation and differentiation of nervous tissue cells (Wauthier & Waxman, 2008). Trim 24 (TIF1α) participates in chromatin remodelling and thus controls its transcriptional activity. The expression of all three genes is increased, at least to the ‘female’ levels, in secondary feminized males (Laz et al., 2007).
Bcl6 (B-cell leukemia/lymphoma 6 protein) is a specific to males transcriptional repressor, whose binding with DNA increases significantly between GH pulsations, when the binding of the STAT5 factor is low. On the basis of studies on Bcl6, a new mechanism of GH-dependent sex specificity has been described (Meyer et al., 2009). The analysis of primary transcripts (hnRNA) showed that in females, in contrary to males, there comes to the dual block during the process of Bcl6 elongation: in the intron 4 and exon 5.
Sex-specific genes in rat liver were divided into two classes, depending on the character of the response to GH secretion pattern: class I genes, down-regulated in one, or both sexes after hypophysectomy and thus required pituitary hormones for full expression and class II genes, up-regulated in one or both sexes after hypophysectomy and thus suppressed by pituitary hormones (Wauthier & Waxman, 2008; Waxman & Chang, 2005; Waxman & Holloway, 2009). Additionally, these classes of genes were divided into subclasses. Male-specific genes into: class IA - down-regulated in males, but not in females; class IB - down-regulated in both males and females; class IC - down-regulated in males, but up-regulated in females; class IIA - selectively up-regulated in females; class IIB - up-regulated in both males and females. Female-specific genes into: class IA - down-regulated in females, but not in males; class IB - down-regulated in both males and females; class IC - down-regulated in females, but up-regulated in males; class IIA - selectively up-regulated in males; class IIB - up-regulated in both males and females (Wauthier & Waxman, 2008).
Class I, obligatorily dependent on GH pulsation includes ‘male’ CYP2C11 isoform (testosterone 2α- and 16α-hydroxylase). CYP2C11 expression does not occur in young animals and is induced only during sexual maturation. A similar dependence applies to CYP2A2, CYP2C13 and CYP3A18. Class I also includes ‘female’ CYP2C12 isoform (steroid sulfate 15α–hydroxylase), whose expression is similar in young rats of both sexes. However, in the progress of the sexual maturation the expression increases in females, whereas it is totally inhibited in males. The representative of class II is CYP3A2, whose expression in males occurs after reaching sexual maturation, whereas in females it is subject to selective suppression. In addition to the sex-specific isoforms, there are also isoforms which exist in both sexes, however they decisively prevail in one of them after reaching maturation. For example, in the liver of adult female rats the ‘prevailing’ isoforms are: CYP2C7, CYP3A9 and CYP2A1, because their expression is 3-10 times higher than in males. The best known model of sex-dependent hormonal regulation of cytochrome P450 expression is CYP2C11/12 expression in the rodent’s liver. It is believed that similar regulatory mechanisms are responsible for sexual dimorphism of human cytochromes P450, such as CYP3A4, CYP1A2 and CYP2E1, however, this dimorphism is much less expressed (Scandlyn et al., 2008).
GH activates several signaling pathways of potential importance for the regulation of CYP expression. In females one of them is the cascade of arachidonic acid triggered by activated phospholipase A2 and enhanced by Ca2+ influx into the cell. As a result, it comes to CYP–dependent production of epoxide derivatives of arachidonic acid, which increases CYP2C12 expression (Gonzalez & Lee, 1996). In the liver, the key regulator of the GH-dependent cytochrome P450 gene expression is STAT5b transcription factor being a representative of STAT protein family (Buitenhuis et al., 2004). In male rats, in the period between GH pulsations, the STAT5b activity is negligible or undetectable. In females the continuous profile of GH secretion causes its constant activation at low, but detectable level. STAT5b, together with STAT5a, can activate CYP2C12 gene expression by binding sequences, which are unavailable in males (Tannenbaum et al., 2001). STAT5b contains sulfhydryl groups so it can bind to cytoplasmic domain of the GHR and undergo phosphorylation through the active GHR-JAK2 complex. Subsequently, STAT undergoes dimerization and then rapid translocation to the nucleus, where it activates transcription of target genes. It can regulate the expression of CYP genes directly, by binding their promoter sequences, or indirectly, by co-activation or co-repression of other transcription factors genes, which play the role of primary target (Lobie & Waxman, 2003). STAT5b has an influence to epigenetic regulatory mechanisms as well. It activates the genes silenced as a result of methylation, and strengthens the local conversion of chromatin to the transcriptionally active form (Waxman & O\'Connor, 2006). On the other hand, it can inhibit binding of hepatocyte nuclear factors to CYP2C12 gene promoter. STAT5b is able to bind with the receptors of vitamin A derivatives, e.g. with retinoic acid receptor (RAR), however, it is not yet known if it is relevant in the hormone-dependent regulation of cytochrome P450. In the acute promyelocytic leukaemia, a fusion protein STAT5b-RARα has been described. It binds to RARE sequences both as a STAT5b-RARα/STAT5b-RARα homodimer and STAT5b-RARα/RXR heterodimer and inhibits the transcriptional activity of RARα/RXRα heterodimer (Dong & Tweardy, 2002).
In the process of the regulation of CYP gene expression, STAT proteins cooperate mostly with hepatocyte nuclear factors – HNFs (Park et al., 2006). HNFs representing this superfamily of proteins, such as HNF-1α, HNF-4α, HNF-3γ, HNF-3β and HNF-6, exist mainly in the liver. Some of them, e.g. HNF-6, are directly regulated by GH (Wauthier & Waxman, 2008). They take part in the differentiation of hepatocytes and regulation of gene expression associated with the fundamental metabolic pathways in the liver: glycolysis, gluconeogenesis, and the metabolism of lipoproteins, fatty acids and bile acids (Gonzalez, 2008). HNFs bind to DNA sequences as monomers, homodimers or RXR heterodimers.
A key role in the aspect of the sex-differentiated expression of hepatic proteins plays HNF-4α, binding GTTAAT sequence in target genes. HNF-3β and HNF-6 factors are the positive regulators of ‘female’ expression of CYP2C12 and the negative regulators of ‘male’ expression of CYP2C2, induced, in turn, by HNF-4α and HNF-3γ. In mice, HNF-4α is responsible for female-specific expression of Cyp3a41. Sex differences in the structure of chromatin - higher methylation and acetylation of respective binding sites in females, underlie this process (Bhadhprasit et al., 2011). HNF-4α is essential for the proper induction of CYP genes with participation of PXR (CYP2C9, CYP3A4) and CAR (CYP2C9) receptors (Tamási et al., 2011). It appeared that in humans, microRNA: miR-24 and miR-34a are responsible for the negative regulation of HNF-4α by degradation of its mRNA by miRNA/RISC complex (RNA-induced Silencing Complex) and/or translational repression (Takagi et al., 2010). Down-regulation of HNF-4α reduces the expression of CYP7A1 and CYP8B1 involved in the synthesis of bile acids. Because miR-24 and miR-34a are regulated by oxidative stress, it is considered that they play a negative role in the pathogenesis of liver diseases (Takagi et al., 2010). The fact that the natural HNF-4α ligand is linolenic acid, suggests the possibility of regulating its activity by the diet and pharmacological modulation (Gonzalez, 2008; Hwang-Verslues & Sladek, 2010; Jover et al., 2009).
GHNF (Growth Hormone-regulated liver Nuclear Factor) is another transcriptional factor regulated by GH, ‘dominant’ in females and having five binding sites in CYP2C12 gene promoter (Waxman et al., 1996). In turn, GABP (GA-binding Protein) is a protein, binding DNA sequences rich in guanine and adenine. It is associated with sex-dependent regulation of CYP genes on the epigenetic level. Demethylation of CpG (Cytosine-phosphate-Guanosine) islands existing within the promoters of different genes allows binding of GABP and their transactivation (Waxman & O\'Connor, 2006). Moreover, the representatives of Rsl (Regulators of sex-limited proteins) protein family – KRAB (Krüppel-associated Box) proteins, through the stabilization of the transcriptionally inactive heterochromatin, act as transcription repressors of genes specific to males in the liver of adult female rodents (Krebs et al., 2003).
In addition to already described factors, in the regulation of cytochrome P450 gene expression are involved numerous intracellular signaling cascades, until recently, not connected with this function. Among them are signaling pathways dependent on NF-κB, MAP kinases, and β-catenin (Braeuning, 2009; Murray et al., 2010; Zordoky & El-Kadi, 2009). Glucocorticoid receptor and GATA4, Nrf2 and C/EBP transcription factors also play important role in the transcriptional regulation of cytochromes P450 (Dvorak & Pavek, 2010; Jover et al., 2009; Mwinyi et al., 2010a; Yokota et al., 2011). It can not be excluded that there are significant functional dependencies allowing for the hormonal control of the mentioned signaling pathways. It is known that GH, the main hormone supervising CYP expression, directly regulates the gene of Nfkbiz (Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, zeta), the inhibitor of transcription factor NF-κB (Wauthier & Waxman, 2008). In addition, the phenomenon of cross-talk was confirmed between the nuclear receptors of xenobiotics and multimodal transcription factors like glucocorticoid receptor and NF-κB (Dvorak & Pavek, 2010; Zordoky & El-Kadi, 2009).
NF-κB is a pleiotropic transcription factor, which regulates over 200 genes related to, among others, the immune response, apoptosis, osteoclastogenesis, and inflammatory processes (Zordoky & El-Kadi, 2009). Classical (canonical) NF-κB signaling pathway is the phosphorylation and subsequent degradation of IκB (Inhibitory kappa B protein) - cytoplasmic protein inhibiting translocation of NF-κB factor to the nucleus – by the activated I-κB kinase - IKK (Inhibitory Kappa B protein Kinase). The released NF-κB may bind to the corresponding DNA sequences in the nucleus. Three mechanisms regulating cytochrome P450 expression and activity, with the participation of NF-κB have been proposed: direct, by binding to promoter sequences of CYP1A1, CYP2B1/2, CYP2C11, CYP2D5, CYP2E1, CYP3A7 and CYP27B1 genes; indirect, through repression of receptors, such as AhR, CAR, GR, PXR, RXR, PPAR, FXR, and LXR; and by post-translational regulation including induction of heme oxygenase and/or an impact on the stability of CYP proteins (Willson & Kliewer, 2002; Zordoky & El-Kadi, 2009).
Growing evidence indicates that MAP kinases participate in regulating the expression of drug metabolizing enzymes of phase I and II (Murray et al., 2010). MAPK activators: sorbitol and EGF (Epidermal Growth Factor) inhibit constitutive and induced expression of CYP isoforms, however anisomycin does not cause such an effect or shows a weak stimulation effect (Bachleda et al., 2009). MAP kinases catalyze the phosphorylation of the complexes formed with the participation of transcription factors, including nuclear receptors, cytoplasmic receptors of AhR type and members of the AP-1 family (c-Fos, c-Jun), and because of that, they may affect their ability to transactivate target gens (Braeuning, 2009; Murray et al., 2010). MAPK-dependent pathways are crucial for regulating proliferation and differentiation of cells and their response to stress factors, exposure to chemicals present in the environment, and radiation (Murray et al., 2010). Activation of MAPKs by pro- inflammatory cytokines causes, among others, phosphorylation of JNK (c-Jun N-terminus Kinase) kinase, which in turn phosphorylates HNF-4α and inhibits transactivation of CYP7A1 and CYP8B1 genes (Riddick et al., 2004). In this way, MAPKs are involved in the feedback inhibition of CYP genes participating in the metabolism of endobiotics.
In the liver, drug metabolizing enzymes are characterized by zonal distibution with the predominance of expression in the perivenous zone (Braeuning & Schwarz, 2010 a). EGF/Ras/MAPK and WNT/β-catenin/TCF signaling pathways participate in the regulation of such gene expression (Braeuning, 2009; Braeuning & Schwarz, 2010 a). A model of antagonistic relationship between these pathways has been proposed: Ras-dependent pathway promotes the expression of genes in periportal zone (so called zone 1), whereas β-catenin-dependent pathway promotes expression in pericentral zone (zone 3), of liver acinus (Braeuning, 2009). This applies not only to genes encoding CYP apoprotein, but also to genes involved in heme biosynthesis, which is the prosthetic group of these enzymes (Braeuning & Schwarz, 2010b). Studies in a mouse model showed that β-catenin cooperates with AhR, activating a constitutive CYP1A1 expression and increasing its induction by AhR ligands, through strengthening AhR potential for transactivation (Braeuning et al., 2011).
Glucocorticoid receptor (GR) is involved in the regulation of cytochrome P450 expression, through at least three mechanisms: direct binding of GR to specific promoter sequences called glucocorticoid response elements (GREs); indirect binding of GR to specific promoter sequences as a component of the multiprotein complex; and up or down-regulation of other transcription factors, AhR, or nuclear receptors: PXR, CAR and RXR. The final effect of glucocorticoids on CYP gene transcription is usually the result of several mechanisms (Dvorak & Pavek, 2010; Monostory et al., 2009).
GATA proteins belong to the group of transcription factors containing ‘zinc finger domains’, which recognize the DNA motif (A/T)GATA(A/G). They regulate the process of embryogenesis, especially heart development and the expression of detoxification enzymes and transporters. Binding sites of GATA-4, a main GATA protein in the liver, are located, among others, in the CYP2C19 and CYP2C9 gene. GATA-dependent expression is regulated by specific co-regulators, e.g. GATA-4-dependent activation of CYP2C19 gene transcription is inhibited by FOG-2 (Friend of GATA-2) (Mwinyi et al., 2010a, 2010b).
Transcription factor Nrf2 (Nuclear factor-erythroid 2-related factor or NFE2-related factor 2) is probably one of the main regulators of the antioxidant response (Nguyen et al., 2009). It belongs to the group of factors characterized by bZIP (basic-leucine Zipper) structure. It mostly regulates the expression of phase II enzymes of xenobiotic metabolism and phase III membrane-bound transporters, but it is also associated with the regulation of CYP2A5 and CYP2A6 genes through StRE (Stress Response Elements) and ARE (Antioxidant Response Elements) sequences (Abu-Bakar et al., 2007; Yokota et al., 2011). It has been suggested that there is interference between Nrf2 and other receptors regulating the expression of cytochrome P450, e.g. AhR, LXR and FXR. This may be important for individual susceptibility to the development of diseases, including lung cancer (Antiila et al., 2010; Kay et al., 2011).
C/EBP proteins (CCAAT/Enhancer Binding Protein) are transcription factors belonging to the group of LETF factors (Liver-Enriched Transcription Factors). They bind to CCAAT regulatory sequence and TT/GNNGA/CAAT enhancer sequence (Ramji & Foka, 2002; Rodríguez-Antona et al., 2003). Just as Nrf2, they have a characteristic C-terminal domain responsible for DNA binding, characterized by the structure of basic-leucine zipper. C/EBP may participate in the transcriptional regulation of some cytochrome P450 genes, such as CYP2A6, CYP2B6, CYP2C9, CYP2D6, CYP3A4, CYP3A5 and CYP3A7 (Pitarque et al., 2005). In hepatocytes, this regulation takes place in cooperation with HNFs and other transcription factors. C/EBPα and HNF-3γ regulate CYP3A4 gene expression probably by chromatin remodeling (Rodríguez-Antona et al., 2003).
Practical applications of the knowledge about signaling pathways regulating cytochrome P450 gene transcription are very attractive in the context of protection the body from the potential harmful action of xenobiotics and drugs, and retention of pathophysiological processes. Nuclear receptors important for transactivation of CYP genes play a key role in the pathogenesis of many diseases - mainly of metabolic origin – and they may represent valid therapeutic targets for these disorders. Their role in liver diseases, including cholestatic and fatty liver disease, drug-induced hepatotoxicity, viral hepatitis, fibrosis and neoplasmatic hiperplasia is well understood (Wagner et al., 2011). In the kidneys they play an important role in the mechanism of nephropathy, especially diabetic, as they regulate the intensity of cellular infiltration, apoptosis, secretion of inflammatory cytokines, intensity of oxidative and nitrosative stress, secretion of prothrombotic growth factors, fatty acids synthesis, and the accumulation of cholesterol and triglycerides. VDR, FXR and PPARs seem to play the main role in these processes (Levi, 2011). VDR shows a nephroprotective action, among others, by inhibition or antagonism in respect of the renin-angiotensin-aldosterone system (RAAS) and the NF-kB signaling pathway (Deb et al., 2009; Zhang et al., 2010). FXR inhibits expression of SREBP-1 (Sterol Regulatory Element-Binding Protein 1) and ChREBP (Carbohydrate Response Element-Binding Protein), transcription factors that regulate gene expression of lipogenic and glycolytic enzymes, especially in the liver and adipose tissue (X. Wang et al., 2009). PPARα regulates renal fatty acid β-oxidation, preventing at the same time the accumulation of lipids and lipotoxicity phenomenon, and also controls the formation of foam cells (Rigamonti et al., 2008).
Increasingly, attempts are being made to modulate the expression of nuclear receptors through the creation of specific ligands (Perez et al., 2011; Levi et al., 2011). Unfortunately, at the present stage it is impossible to determine the correlation between the structure of the ligand and physiological response. The administration of non-selective rexinoids increases triglycerides concentration (as the result of SREBP-1c transactivation by LXR/RXR), inhibits the thyroid axis and causes hepatomegaly. It is desirable therefore to develop rexinoids selective for PPARγ/RXR and LXR/RXR heterodimers, the so-called SNuRMs (Specific Nuclear Receptor Modulators), acting differently than the known PPARγ and LXR ligands (Perez et al., 2011). In the treatment of autoimmunological and neurodegenerative disorders, retinoids which are modulators of retinoic acid receptors can also be applied (Alvarez et al., 2011). Application of the agonists of: VDR (doxercalciferol), FXR (INT-747) and PPARs (fibrates) inhibits and even reverses the pathological changes observed in diabetic kidney injury (Levi, 2011; Thomas et al., 2008). Agonistic and antagonistic RXR ligands could be used in the treatment of obesity, type 2 diabetes and insulin resistance, i.e. the components of metabolic syndrome (Levi, 2011; Perez et al., 2011).
Some of cytochrome P450 and transcription factors genes are hormone-dependent. Sex differences in the expression of early GH response genes may be responsible for gender differences in predisposition to certain diseases. For example, 29 of these genes, specific to male mice, is a target for the Mef2 transcription factor (Myocyte enhancer factor 2), whose activation in hepatic stellate cells is associated with the process of liver fibrosis and cirrhosis, increasing the male’ risk of developing hepatocellular carcinoma (Wauthier et al., 2010). Progress of the studies on this phenomenon is necessary for rational drug administration, a good example of what can be attempt to clinical use of NF-kB inhibitors. Significant changes in cytochrome P450 expression and activity caused by the activation of NF-κB are found in the states, in which increased secretion of inflammatory mediators and the excessive oxidative stress can be observed, e.g.: inflammatory bowel diseases, rheumatoid arthritis, chronic exposure to stress, diabetes, kidney diseases, congenital heart diseases, or during aging (Zordoky & El-Kadi, 2009). NF-κB is now seen as a factor linking inflammatory process, oxidative stress and cancer with the metabolism of xenobiotics (Assenat et al., 2006). The inflammatory process accompanying cancers, may, through NF-κB, disturb CYP expression and thereby alter the effectiveness of chemotherapy.
In addition, the role of glucocorticoid receptor in the regulation of expression of cytochromes P450 such as CYP1A1 or CYP1A2, is extremely important for clinical practice. On one hand - the use of glucocorticoids as drugs is commonplace in medicine and has many side effects including not always conscious interactions of drug-drug type. On the other hand - CYP1A subfamily is the main group of cytochrome P450 responsible for bioactivation of xenobiotics and production of harmful and carcinogenic derivatives (Dvorak & Pavek, 2010; Monostory et al., 2009). That results in serious medical implications, namely changes in susceptibility to xenobiotics and in pharmacokinetics and pharmacodynamics of drugs, which must be taken into account by physicians and lead to the control of pharmacotherapy.
In recent years there has been significant progress within the meaning of the mechanisms regulating cytochrome P450 expression. It was found that the main role in the regulation of sex-specific CYP expression plays the growth hormone, the effects of which are dependent on daily secretion pattern, different in males and females. Disorders of intrinsic mechanisms controlling hormone secretion may lead to the modulation of CYP genes expression.
Both GH-dependent and GH-independent signal transduction is strictly connected with activation of numerous DNA-binding proteins. It has been described a number of new factors and signaling pathways involved directly or indirectly in the regulation of expression, primarily on the stage of transcription. The ligands for nuclear receptors previously known as orphan have been identified (receptors deorphanisation).
In addition, drug-metabolizing enzymes, xenobiotic transporters and their targets appear to be under the epigenetic control, hence separation of the new discipline called pharmacoepigenetics. Although the effects of epigenetic modifications on drug metabolism were not examined extensively, they probably play an important role in determining the tissue-specific expression of CYP genes both in normal and cancer tissues. As a result, epigenetic modifiers may considerably alter the metabolism and/or disposition of many xenobiotics. Post-transcriptional regulation by microRNAs seems to be a key mechanism underlying the discrepancy between hepatic mRNA and protein expression of genes involved in drug metabolism.
Our knowledge of the regulatory mechanisms for cytochrome P450 expression represents the base of understanding the cross-talk between endobiotic and xenobiotic metabolism. On the other hand, there are large inter-individual variations in the expression of CYP genes in humans and the genotypic and phenotypic variability of the key regulators of the CYP gene transcription significantly influences individual response to xenobiotics, including drugs. A major future challenge will be to explain the role of co-activators and co-repressors of cytochrome P450 gene transcription into current pathogenic and therapeutic concepts for the diseases. More population-based studies should be conducted, because they may help physicians predicting the results of therapy and adverse drug effects, including drug-drug interactions.
In electro rheological (ER fluids) the additive particles are kept in suspension in a dielectric fluid which is non-conducting. The Dielectric fluid, i.e., the Carrier fluid has high electrical resistivity and has a low viscosity like silicon oil, olive oil, hydrocarbons, etc. The additive particles which are mixed in the carrier fluids are mainly polymers, alumina silicates, metal oxides silica, etc. These additive particles commonly have low particles size which allows the carrier fluid to maintain low viscosity when the external electric field is not applied. In ER fluid the additive particles size range remains in 0.1–100 μm in the carrier fluid. Without any external electric field these fluids stays in liquid condition as soon as the external electric field is applied the ER fluid changes from liquid to solid by viscosity change of the fluid. In Electro rheological (ER) fluids a suspension of particles are present in a non-conducting fluid. The commonly used liquid i.e. hydrocarbon or silicon oil for suspension are low viscous and have high resistivity. Suspension particles are mainly polymers, alumina, silicates, metal oxides etc. These particles are present is very low concentration so that the viscosity of the suspending fluid remains low without application of the applied electric field. The suspension particles are dielectrics of size 0.1–100 μm. In absence of the electric field the particles exhibits properties like fluid and as the electric field is applied the particles behaves like solid. These fluids which change its physical properties like viscosity due to application of electric field are called electro rheological (ER) fluids or smart fluids. Types of ER or Smart fluids: (a) Electro Rheological (ER) Fluids—electric field changes the physical properties of the fluid, (b) Magneto Rheological (MR) Fluids—magnetic fields changes the physical properties of the fluid, (c) Positive Electro Rheological (ER) Fluids—by application of the electric field the viscosity increases and (d) Negative Electro Rheological studied by Ko et al. [1] (ER) Fluids—by application of electric field the viscosity decreases. These ER fluids are one kind of smarts fluids. One of the most easily made ER fluid is adding corn flour in silicon oil or vegetable oil.
\nWhen the electric field is applied on the ER fluid the suspension particles gets polarized and form a thick chain which is parallel to the electric field between the two electrodes. The thickness of the polarized suspension particles between the two electrodes is directly proportional to the intensity of the electric field. The rheological properties of the suspension depend on its change in structure. The more yield stress of the fluid is obtained from the particle columnar structure. When the electric field is removed the suspension particles polarization gets lost and the loose there structure and roam freely in the fluid which in turn reduces the viscosity. The period of returning from the solid state to the liquid state is few milliseconds upon removing the electric field. The material for electrorheological fluid is a superfine suspension of dielectric small particles which react to the applied electric field resulting in changing in the rheological properties of the ER fluid. There are three operational modes of the ER fluid which are as follows: (a) Flow mode—in this mode the electrodes are mounted and fixed and by controlling the motion of the flow the vibrational control is achieved, (b) Shear Mode—in this mode the vibrational control is achieved by varying the shear force here one electrode is fixed and the other is free for rotation and (c) Squeeze Mode—in this mode the space between the electrodes is changed which presses the ER fluid results with a normal force.
\nIn electro rheological fluids there is a large reversible change in the colloidal suspension rheological properties when subjected to the external electric field. Lots of studies are present in which the principle and the uses of the electrorheological fluid are presented by many researchers across the globe. Another property of the ER fluids is that the response time of the ER fluid is very quick for the applied electric fields so the band width is thick. \nFigure 1\n represents the effect of ER fluid particles when application of electric field. For this interesting property the ER fluid has more demand is carious technological applications like smart structure, shock absorbers, engine mount and machine mount. The yield stress of the ER fluid can also be varied by introduction of the external electric field that is why it is also known as functional fluid. Winslow [2] patented the invention of the ER fluid. This ER effect is introduced in state of art automobile. The ER effect was first invented in 1942 by Winslow [2] after that the details understanding of the EF effect took lots of time and then to find the suitable solution for the ER fluid effect took further more time. The properties which delays and stops the ER fluid in few application fields are temperature stability, yield stress and power consumption. Particles size, carrier fluid properties, density, temperature and additives of the ER fluids plays a vital role for most of the properties changes of the ER fluids.
\n(a) Dispersing particles without electric field, (b) dispersing particles with electric field.
There is a limit up to which the dispersing particles can be mixed with the fluid because by increasing the concentration of the dispersing particles volume fraction the electrorheological effect of the solution increases which also causes few problems. As increasing the concentration of the dispersing particle after a certain concentration limit the particles started settling down which cause a problem another problem which arises is the zero field viscosity increment. The viscosity is linked with the temperature i.e. the viscosity decreases when the temperature is increased. Temperature also decreases the dynamic yield strength. Mainly the change in the yield strength occurs due to relative permittivity and the conductivity of particle and also the chemical components of the fluid. Less amount of voltage approx. 1–4 KV/mm is needed for producing ER effect in the solution. 10–6 to 10–3 amp/cm2 is the minimum needed current density for the ER effect. For calculating the power consumption of the suitable ER fluid the measurement of the current density are needed. Dynamic yield stress is one of the important ER fluid property, this stress is the maximum amount of stress required to flow the liquid when the electric field is applied. 100 Pa to 3 KPa is the range of the dynamic yield stress in current ER fluid. The comparison of the various ER fluids are still now difficult as because the standard testing procedure and the state for the fluid is not yet available properly and due to the dependency of the ER fluids on its dispersing particles and the fluid used combinations. For practical applications of the ER fluid the fluid must meet the desired criteria which are (a) Current density 4.0 KV/mm DC less than 10 μA/cm2, (b) dynamic yield stress 4.0 KV/mm <3.0 KPa, (c) Zero field viscosity 0.1–0.3 Pas, i.e., 1–3 Poise, (d) Operational temp range −25°C to +125°C, (e) dielectric breakdown strength >50 KV/mm2, (f) particle size 10 μm, (g) response time < millimeter, (h) Density 1–2 g/cm3, (i) maximum energy density 0.001 Joule/cm3, (j) power supply 2–5 KV@ 1–10 mA, (k) Any conductive surface material, (l) any opaque or transparent, and (m) physically and chemically stable with low conductivity and high breakdown voltage.
\nFor shear loading state applications usually the ER materials are used. The relationship between the ER material and the share are shown in the \nFigure 2\n. In the year 1949 Winslow [2] invented the post-yield appearance of the ER effect. During that time the materials which behave like changing in viscosity were called electro-viscous fluids as their effective or actual viscosity changes were noticeable macroscopically. Many years after it was investigated that with the change in the applied electric field the apparent or the effective viscosity ʋ remains constant, only the noticeable change was found out was the yield stress of the Bingham plastic suspension. This is shown in \nFigure 2\n. Ideal plastic fluids are also another name given to the Bingham plastics, i.e., this fluid does not have viscosity (zero viscosity). A formula representing the shear stress exceeds the yield stress of the material is given by τ = τy + ϑγ, where τ represents Shear stress, τy represents Yield Stress and ϑγ represents Shear Strain. The behavior of the ER material the comparison of the post yield behavior still not investigated. With increasing in the electric field the shear yield stress increases while the yield strain remains 1% for almost all fields. The reaction of the ER fluid on electric field is shown in \nFigure 3\n.
\nSmart fluid characterization (a) without electric field and (b) with electric field.
Reaction of the ER fluid when external electric field is applied.
The ER fluids which are available in the markets are very costly so here are few lists of combinations of the additive particles with the fluid to prepare the cost effective ER fluid. With suitable proportions and amount of the additive particle we can achieve the desired ER fluid as per our need. Various carrier fluids are aldehyde, grease, ketones, kerosene, aroclor, castor oil, chloroform, mineral oil, olefins, olive oil, dielectric oil, diphenyl sebacate, various ethers, resin oil, transformer oil, silicon oil etc. Various additive particles for the ER fluid are alfa silica, alginic acid, alumina, alfa methylacrylate, mannitol, boron, macrocel-C, carbon, cellulose, charcoal, chlorides, dyes, gypsum, micronized mica, nylon powder, olefins, porhin, pyrogenic silica, quartz, rubber, silica gel, etc. [3].
\nER fluid preparation procedure are very simple and mostly all the ER fluids are prepared by this manner the following procedure is used for preparing the ER fluids: (a) The desired powder is chosen and same particle powder size particles are required for the ER fluid dispensing particle, (b) the chosen powder must be passed through size sieve for all the particles same and must be weighted on the weighing machine, (c) the powder is poured in glass container and desired amount of the ER fluid is poured in the glass container which contains the powder of uniform size and are stirred continuously until the powder mixed with the fluid completely, (d) the mixture of the powder and the fluid are stirred for 2 h by glass rod or magnetic starrer at a constant RPM to get a uniform homogenous mixture, (e) the mixed solution is passed to a vane pump five times to get a good result homogenous solution and (f) this process should be followed for other ER solution preparation [3].
\nThe testing of the ER fluid is necessary for selecting of the desired ER fluid for the desired application. The following tests are mainly used (a) Temperature test, (b) breakdown test, (c) viscosity test and (d) sedimentation test.
\nThe electrorheological fluids which are totally dependent on the applied electric fields are used in resistive force creation and damping. Examples of applications are active vibration suppression and motion control. Wang et al. [4] have presented the uses of ER fluids in microfluidics [5]. Various industries like automobiles industries are demanding modified ER fluids with more efficiency Gurka et al. [6] introduced ER-Fluid RheOil®3.0 which improves the sedimentation and re-dispersing behavior. Brennan et al. [7] studied and distinguished the two classes of the ER dampers, first one acts by shearing the stationary fluid and the second one acts by pumping the ER fluid [5]. The two classes are described in details below. Most of the dampers of smart fluids have three common components, i.e., a cylinder, cylinder valve housing and a piston. The vibrating structure kinetic energy can be controlled and dissipated by providing either electric or magnetic field in the valve. In the ER damping process two types of frictions are used they are viscous and coulomb friction [8]. The columbic force denotes the friction acting when two surfaces comes in contact to each other like friction of bearing and hinges friction. Friction is independent to the body velocity, i.e., it is constant. To push fluids through narrow obstructive passage viscous friction comes into play these exists in valves and orifices and is body velocity dependent. The viscous friction and the columbic friction summation is the actuation friction which is denoted in \nFigure 4\n. These frictions have good effects also in the damping machines. The transmission of the vibration to the device is possible by dry sealing friction. For sensitive instruments small vibrations can cause poor accuracy [9]. Bad effect of the friction is also present in the system when the force applied is near to overwhelm the static friction this is known as motion of stick–slip.
\nActuator friction (a) friction columbic, (b) friction viscous, and (c) total friction.
At a near to zero velocity the stick–slip motion happens like an unexpected motion of jerking. Naturally, kinetic friction coefficient in between the two surfaces is smaller than the static friction coefficient. When the given force is more to overwhelm than the static friction then the friction decreases from static to dynamic. Because of this sudden decrease of the friction there will be a sudden velocity jump movement. To show this effect the system of two degree of freedom is taken.
\nIn this type of mode of ER damper there are one or two parallel electrodes which can move parallel to each other and is always perpendicular to the electric field applied so that the fluid can have uniform shear and the ER fluid is present in between the two electrodes. From \nFigure 5a\n c and l are the breath and length of the electrode and j is the electrodes gap. Here E is given voltage, F is net damping force and V is the relative velocity of the electrodes. Two forces are acting in this ER damper (a) Active force Fc because of ER effect and (b) Passive force Fy due to the fluid viscosity. Fy, i.e., the passive force is always present and directly linked with the viscosity of the fluid as well as the damper geometric properties. During application of the electric field a force Fc (because of creation of particles suspension lining up between the electrodes) i.e. static force which is needed to overwhelmed so that the motion can occur [10]. The force Fc is product of area of electrode and the yield strength of the fluid and does not depend on the electrode plate velocity. The net force F of damping of this ER damper is the sum of two components of force. The main aim of this ER damper is to give large ratio of off-field to on-field damping by force ratios Fy and Fc. Because of this large ratio gives various responses by ER unit with changing voltage.
\nModes of operation: (a) shear, (b) valve, and (c) squeeze.
In this type of mode the ER fluid is pressed between the two electrodes as given in \nFigure 5b\n. Because of this the ER fluid is exposed to tensile, compression as wells as shear. In the absence of the given electric field if the ER fluid is pressed it behaves like Newtonian fluid. There is a pressure drop AP occurs at flow rate volume Q. This pressure change in between the valve is because of the velocity of the ER fluid. Moreover, during the presence of the electric field, yield stress is generated by the ER fluid which results more pressure drop between the electrodes plates length. The net damping force is summation of two force components of this type of ER damper. In this type of mode the device effectiveness is the across valves pressure drop with or without the effect of ER [10].
\nThe electrorheological fluids which are totally dependent on the applied electric fields are used in resistive force creation and damping. Examples of applications are active vibration suppression and motion control. L. Wang et al. [4] have presented the uses of ER fluids in microfluidics. Various industries like automobiles industries are demanding modified ER fluids with more efficiency Gurka et.al [6] introduced ER-Fluid RheOil®3.0 which improves the sedimentation and re-dispersing behavior. Brennan et al. [7] studied and distinguished the two classes of the ER dampers, first one acts by shearing the stationary fluid and the second one acts by pumping the ER fluid. The two classes are described in details below.
\nIn this mode the gap between the electrodes are changed and the ER fluid is pressed or squeezed by the force acting normally. \nFigure 5c\n represents the squeezing mode of the ER fluid.
\nER fluids have wide applicability, economic benefit, social benefit high performance for these advantages these smart fluids will find path in various engineering applications in various technological fields. Without any doubt we can say in the future ER technology is going to rule various applications in engineering technological fields. As soon as this technology is accepted then it will be a revolution in both economy and society. From all these advantages of the ER fluids we can predict that in the near future the ER fluids will be used in various technological fields as given below.
\nScientists and Engineers can develop new kind of parts that can easily fulfill the needs of the motor vehicles using the technology of ER. Like for example ER technology used for cooling engine i.e. speed fan clutch of the motor vehicle, shock absorber, brake having break torque controlled, system for suspensions by damping controlled etc., These components using ER technologies will have less wear and tear, more performance, less cost, prolong life service, controlled easily, easy to produce by microcomputer, fast response, high sensitivity.
\nThe valves which are used nowadays for control of pressure and flow rate control can be replaced by ER technology in the future. Because ER technology valves will have no or less movable parts, simple easy structure, low cost, prolong service life, no mechanical processing, minimal tear and wear and electronical control of pressure and rate of flow. For this reasons ER technology will rule the hydraulic industry in the near future.
\nBy utilizing the benefits of the ER technology engineers can produce new type of rotational sealing controlled devices for face the challenges of the magnetic fluid sealing and rubber fluid sealing. Because of the pros like good effect of sealing, minimal tear and wear, less magnetic field and prolong life of service.
\nIn robotic industries nowadays for flexible joints are being controlled by hydro-electric control devises instead of ER fluidic joints technology which can perform much better function than the hydraulic-electric control. Engineers are designing and manufacture flexible joints which will have less volume, fast response time, minimal wear as well as tear, nimble, and which can be easily controlled by micro-computers. ER fluids can provide all these advantages over the hydraulic-electric controls.
\nThere are various commercial uses of the ER fluids and many uses are still undiscovered, in automotive industries the ER fluids are used in clutches, seat dampers, shock absorber, engine mount etc. Many other applications of the ER fluids are listed as follows: (a) Fluid flow via thin channel, (b) for friction instruments clutches, (c) servomechanism for impact and vibrator instruments, (d) pick-pick applications, (e) damping isolator, (f) automobile damping, (g) mounts for engine, (h) power transmission in robots, (i) machine tool artificial intelligence, etc. This list is not the final list because still now many uses of the ER fluid in various fields are yet to discover.
\nRheological characterization is done to identify the change in viscosity of the ER fluid with respect to the shear rate at various electric fields. Garcia et al. [11] have studied the rheological properties of the ER fluid by using ARES rheometer by using parallel plate diameter 50 mm diameter electrode with 1 mm gap between them. High voltage amplifier was used to supply the DC voltage.
\nTo study the permittivity and the power factor of the ER fluid the dielectric properties characterization are done. Rejon et al. [12] describes the method of measuring the dielectric properties of the ER fluid. They used guard ring capacitors and high resistor meter. DC high voltages were used for the test.
\nThe structural changes of the ER field during and before the DC voltage was studied by Rejon et al. [13]. The studied the microscopic structure of the ER fluid by microscope. They studied the microstructural changes of the ER fluid at different DC applied voltages from 0.5 to 2.5 KV/mm.
\nER fluids have lots of interesting properties which attracts them in various applications fields among the various important properties of the ER fluid lies fast reaction, precise controllability and easy boundary between the electrical and mechanical input output power. Because of these interesting properties of the ER fluid the ER fluid is used in motion control and will be used in various applications fields in the near years to come. ER fluids characteristics in most advanced way is briefly described below as given in latest reports: (a) When external electric field is given ER effect is seen by change in viscosity of the carrier fluid from liquid to solid as the viscosity of the liquid increases and after removal of the electric field solid to liquid viscosity decreases making the liquid less thick like the initial state, (b) the process in which the ER fluid changes its state from liquid to solid upon application of the electric field must be reversible, i.e., it should return back to its original state (liquid state) as soon as the external electric field is removed. Viscosity change must be less step, (c) upon application of the electric field the transition of the liquid state to the solid state must be very fast, i.e., 5–10 s, (d) and liquid to solid transition must be only possible by electric field only and not by any other means. By all these characteristics of the ER fluid the ER fluid can be connected with the modern technological applications. This technology is one newly type of future challenge as its attractive properties are being used broadly, which can bring a big change in industries. The main component of the ER technology is the ER fluid which should bring in the technological applications like dampers of ER fluids which is a best solution for control of vibrations.
\nOve Odredbe i uvjeti ističu pravila i regulacije u svezi korištenja IntechOpenove stranice www.intechopen.com i svih poddomena u vlasništvu IntechOpena, tvrtke sa sjedištem u 5 Princes Gate Court, London, SW7 2QJ, Ujedinjeno Kraljevstvo.
',metaTitle:"Odredbe i uvjeti",metaDescription:"Ove Odredbe i uvjeti ističu pravila i regulacije u svezi korištenja IntechOpenove stranice www.intechopen.com i svih poddomena u vlasništvu IntechOpena, tvrtke sa sjedištem u 5 Princes Gate Court, London, SW7 2QJ, Ujedinjeno Kraljevstvo.",metaKeywords:null,canonicalURL:"/page/cro-terms-and-conditions",contentRaw:'[{"type":"htmlEditorComponent","content":"Pristupom na stranicu www.intechopen.com slažete se s ovim odredbama, sa svim primjenjivim zakonskim odredbama, te se slažete s poštovanjem svih lokalnih zakona. Korištenje i/ili pristup ovoj stranici temelji se na potpunom prihvaćanju ovih odredbi. Svi materijali na ovoj stranici zaštićeni su primjenjivim zakonima o autorskim pravima i žigu.
\\n\\nSljedeća terminologija odnosi se na Odredbe i uvjete, te na sve naše ugovore:
\\n\\nKlijent, stranka, vi, vaš odnosi se na vas, osobu koja pristupa ovoj stranici i prihvaća IntechOpenove Odredbe i uvjete;
\\n\\nKompanija, tvrtka, mi, naše odnosi se na tvrtku IntechOpen;
\\n\\nStranke, strane odnosi se na klijenta i na nas, ili samo na klijenta ili nas.
\\n\\nSve odredbe koje se odnose na ponudu, prihvat ili razmatranje plaćanja, a za koja mi pružamo asistenciju klijentu, bilo na ugovoreni ili fiksni način, a s ciljem da se ostvare potrebe i želje klijenta u svezi s našim uslugama, su podložne zakonskim odredbama Ujedinjenog Kraljevstva.
\\n\\nOsim ako nije suprotno navedeno, IntechOpen i/ili svi davatelji licence vlasnici su intelektualnog vlasništva nad svim materijalima na www.intechopen.com. Sva prava intelektualnog vlasništva su pridržana. Stranice sa www.intechopen.com možete gledati, preuzimati, dijeliti, dijeliti poveznice i printati za osobnu uporabu, a temeljem pravila sadržanih u ovim Odredbama i uvjetima.
\\n\\nMi koristimo kolačiće. Korištenjem IntechOpenove stranice slažete se s korištenjem kolačića u skladu s IntechOpenovom Politikom privatnosti. Većina modernih, interaktivnih stranica koristi kolačiće kako bi omogućila ponovno pronalaženje korisničkih detalja kod svakog posjeta. Na našoj stranici kolačići se uglavnom koriste kako bi omogućili funkcionalnost i olakšali posjetiteljima korištenje stranice.
\\n\\nIntechOpen ili njegovi suradnici niti u jednom slučaju neće biti odgovorni za štete (štete uključuju gubitak podataka ili profita, druge poslovne prekide, te sve ostale štete) koje nastanu zbog korištenja materijala na IntechOpenovoj stranici ili nemogućnosti da se iste koriste, čak i ako je IntechOpen ili njegov predstavnik o takvoj šteti obaviješten pismenim ili usmenim putem. Neke jurisdikcije ne dozvoljavaju ograničenja garancija ili ograničenja obveza za posljedične ili slučajne štete pa se u tom slučaju ova ograničenja možda ne odnose na vas.
\\n\\nMaterijali koji se pojavljuju na IntechOpenovoj stranici mogu sadržavati manje greške, tipfelere ili fotografske greške. IntechOpen može napraviti promjene na bilo kojem materijalu koji se nalazi na stranici u bilo koje vrijeme.
\\n\\nIntechOpen nije formalno povezan niti s jednom vanjskom stranicom čije poveznice vode na www.intechopen.com, osim ako to nije izravno navedeno. Iz tog razloga IntechOpen nije odgovoran za sadržaj koji se pojavljuje na takvim stranicama. Poveznica na IntechOpenovu stranicu ne implicira povezanost sa IntechOpenom. Korištenje takvih poveznica isključiva je odgovornost korisnika.
\\n\\nZadržavamo pravo vlasništva nad cjelokupnom stranicom www.intechopen.com i nad svim materijalom na toj stranici. Koristeći se našim uslugama, slažete se da maknete sve poveznice na našu stranicu odmah nakon što to od vas zatražimo. Također, zadržavamo pravo da ove Odredbe i uvjete, i politiku o poveznicama izmjenimo u bilo koje vrijeme. Koristeći se poveznicama na naše stranice slažete se s ovim Odredbama i uvjetima.
\\n\\nAko smatrate da je bilo koja poveznica na našoj stranici sumnjiva iz bilo kojeg razloga, molimo vas da nas kontaktirate. U tom slučaju razmotrit ćemo micanje poveznice s naše stranice, iako nismo obvezni to napraviti.
\\n\\nBez prethodne privole i izričite pisane dozvole, ne možete stvarati okvire oko naših stranica ili koristiti druge tehnike koje na bilo koji način mogu promijeniti prezentaciju ili izgled naše stranice.
\\n\\nIntechOpen može ove Odredbe izmijeniti u bilo koje vrijeme i bez prethodne obavijesti. Koristeći ovu stranicu vi se slažete s trenutnim Odredbama i uvjetima koje su na snazi.
\\n\\nOve Odredbe i uvjeti su sastavljeni u skladu s odredbama prava Ujedinjenog Kraljevstva, a za sve sporove nadležan je sud u Londonu, Ujedinjeno Kraljevstvo.
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Pristupom na stranicu www.intechopen.com slažete se s ovim odredbama, sa svim primjenjivim zakonskim odredbama, te se slažete s poštovanjem svih lokalnih zakona. Korištenje i/ili pristup ovoj stranici temelji se na potpunom prihvaćanju ovih odredbi. Svi materijali na ovoj stranici zaštićeni su primjenjivim zakonima o autorskim pravima i žigu.
\n\nSljedeća terminologija odnosi se na Odredbe i uvjete, te na sve naše ugovore:
\n\nKlijent, stranka, vi, vaš odnosi se na vas, osobu koja pristupa ovoj stranici i prihvaća IntechOpenove Odredbe i uvjete;
\n\nKompanija, tvrtka, mi, naše odnosi se na tvrtku IntechOpen;
\n\nStranke, strane odnosi se na klijenta i na nas, ili samo na klijenta ili nas.
\n\nSve odredbe koje se odnose na ponudu, prihvat ili razmatranje plaćanja, a za koja mi pružamo asistenciju klijentu, bilo na ugovoreni ili fiksni način, a s ciljem da se ostvare potrebe i želje klijenta u svezi s našim uslugama, su podložne zakonskim odredbama Ujedinjenog Kraljevstva.
\n\nOsim ako nije suprotno navedeno, IntechOpen i/ili svi davatelji licence vlasnici su intelektualnog vlasništva nad svim materijalima na www.intechopen.com. Sva prava intelektualnog vlasništva su pridržana. Stranice sa www.intechopen.com možete gledati, preuzimati, dijeliti, dijeliti poveznice i printati za osobnu uporabu, a temeljem pravila sadržanih u ovim Odredbama i uvjetima.
\n\nMi koristimo kolačiće. Korištenjem IntechOpenove stranice slažete se s korištenjem kolačića u skladu s IntechOpenovom Politikom privatnosti. Većina modernih, interaktivnih stranica koristi kolačiće kako bi omogućila ponovno pronalaženje korisničkih detalja kod svakog posjeta. Na našoj stranici kolačići se uglavnom koriste kako bi omogućili funkcionalnost i olakšali posjetiteljima korištenje stranice.
\n\nIntechOpen ili njegovi suradnici niti u jednom slučaju neće biti odgovorni za štete (štete uključuju gubitak podataka ili profita, druge poslovne prekide, te sve ostale štete) koje nastanu zbog korištenja materijala na IntechOpenovoj stranici ili nemogućnosti da se iste koriste, čak i ako je IntechOpen ili njegov predstavnik o takvoj šteti obaviješten pismenim ili usmenim putem. Neke jurisdikcije ne dozvoljavaju ograničenja garancija ili ograničenja obveza za posljedične ili slučajne štete pa se u tom slučaju ova ograničenja možda ne odnose na vas.
\n\nMaterijali koji se pojavljuju na IntechOpenovoj stranici mogu sadržavati manje greške, tipfelere ili fotografske greške. IntechOpen može napraviti promjene na bilo kojem materijalu koji se nalazi na stranici u bilo koje vrijeme.
\n\nIntechOpen nije formalno povezan niti s jednom vanjskom stranicom čije poveznice vode na www.intechopen.com, osim ako to nije izravno navedeno. Iz tog razloga IntechOpen nije odgovoran za sadržaj koji se pojavljuje na takvim stranicama. Poveznica na IntechOpenovu stranicu ne implicira povezanost sa IntechOpenom. Korištenje takvih poveznica isključiva je odgovornost korisnika.
\n\nZadržavamo pravo vlasništva nad cjelokupnom stranicom www.intechopen.com i nad svim materijalom na toj stranici. Koristeći se našim uslugama, slažete se da maknete sve poveznice na našu stranicu odmah nakon što to od vas zatražimo. Također, zadržavamo pravo da ove Odredbe i uvjete, i politiku o poveznicama izmjenimo u bilo koje vrijeme. Koristeći se poveznicama na naše stranice slažete se s ovim Odredbama i uvjetima.
\n\nAko smatrate da je bilo koja poveznica na našoj stranici sumnjiva iz bilo kojeg razloga, molimo vas da nas kontaktirate. U tom slučaju razmotrit ćemo micanje poveznice s naše stranice, iako nismo obvezni to napraviti.
\n\nBez prethodne privole i izričite pisane dozvole, ne možete stvarati okvire oko naših stranica ili koristiti druge tehnike koje na bilo koji način mogu promijeniti prezentaciju ili izgled naše stranice.
\n\nIntechOpen može ove Odredbe izmijeniti u bilo koje vrijeme i bez prethodne obavijesti. Koristeći ovu stranicu vi se slažete s trenutnim Odredbama i uvjetima koje su na snazi.
\n\nOve Odredbe i uvjeti su sastavljeni u skladu s odredbama prava Ujedinjenog Kraljevstva, a za sve sporove nadležan je sud u Londonu, Ujedinjeno Kraljevstvo.
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5763},{group:"region",caption:"Middle and South America",value:2,count:5227},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10365},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15784}],offset:12,limit:12,total:118187},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0"},books:[{type:"book",id:"8950",title:"Birds - Challenges and Opportunities for Business, Conservation and Research",subtitle:null,isOpenForSubmission:!0,hash:"404a05af45e47e43871f4a0b1bedc6fd",slug:null,bookSignature:"Dr. Heimo Juhani Mikkola",coverURL:"https://cdn.intechopen.com/books/images_new/8950.jpg",editedByType:null,editors:[{id:"144330",title:"Dr.",name:"Heimo",surname:"Mikkola",slug:"heimo-mikkola",fullName:"Heimo Mikkola"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8969",title:"Deserts and Desertification",subtitle:null,isOpenForSubmission:!0,hash:"4df95c7f295de7f6003e635d9a309fe9",slug:null,bookSignature:"Dr. Yajuan Zhu, Dr. Qinghong Luo and Dr. Yuguo Liu",coverURL:"https://cdn.intechopen.com/books/images_new/8969.jpg",editedByType:null,editors:[{id:"180427",title:"Dr.",name:"Yajuan",surname:"Zhu",slug:"yajuan-zhu",fullName:"Yajuan Zhu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8977",title:"Protein Kinase - New Opportunities, Challenges and Future Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"6d200cc031706a565b554fdb1c478901",slug:null,bookSignature:"Dr. Rajesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",editedByType:null,editors:[{id:"329385",title:"Dr.",name:"Rajesh",surname:"Singh",slug:"rajesh-singh",fullName:"Rajesh Singh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9615",title:"Chikungunya",subtitle:null,isOpenForSubmission:!0,hash:"c960d94a63867dd12a8ab15176a3ff06",slug:null,bookSignature:"Dr. Jean Engohang-Ndong",coverURL:"https://cdn.intechopen.com/books/images_new/9615.jpg",editedByType:null,editors:[{id:"180733",title:"Dr.",name:"Jean",surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9659",title:"Fibroblasts - Advances in Cancer, Autoimmunity and Inflammation",subtitle:null,isOpenForSubmission:!0,hash:"926fa6446f6befbd363fc74971a56de2",slug:null,bookSignature:"Ph.D. Mojca Frank Bertoncelj and Ms. Katja Lakota",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",editedByType:null,editors:[{id:"328755",title:"Ph.D.",name:"Mojca",surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9662",title:"Vegetation Index and Dynamics",subtitle:null,isOpenForSubmission:!0,hash:"0abf2a59ee63fc1ba4fb64d77c9b1be7",slug:null,bookSignature:"Dr. Eusebio Cano Carmona, Dr. Ricardo Quinto Canas, Dr. Ana Cano Ortiz and Dr. Carmelo Maria Musarella",coverURL:"https://cdn.intechopen.com/books/images_new/9662.jpg",editedByType:null,editors:[{id:"87846",title:"Dr.",name:"Eusebio",surname:"Cano Carmona",slug:"eusebio-cano-carmona",fullName:"Eusebio Cano Carmona"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9667",title:"Neuroimmunology",subtitle:null,isOpenForSubmission:!0,hash:"9cf0e8203ce088c0b84add014fd8d382",slug:null,bookSignature:"Prof. Robert Weissert",coverURL:"https://cdn.intechopen.com/books/images_new/9667.jpg",editedByType:null,editors:[{id:"79343",title:"Prof.",name:"Robert",surname:"Weissert",slug:"robert-weissert",fullName:"Robert Weissert"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9796",title:"Cancers of Childhood and Adolescence - Epidemiology, Diagnosis, Treatment and Prognosis",subtitle:null,isOpenForSubmission:!0,hash:"7c90c97b84629336aa5af2e9797f4cf2",slug:null,bookSignature:"Prof. Dariusz Borys",coverURL:"https://cdn.intechopen.com/books/images_new/9796.jpg",editedByType:null,editors:[{id:"91258",title:"Prof.",name:"Dariusz",surname:"Borys",slug:"dariusz-borys",fullName:"Dariusz Borys"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety - Volume 1",subtitle:null,isOpenForSubmission:!0,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:null,bookSignature:"Dr. Stanislaw P. Stawicki, Michael S. S Firstenberg and Dr. Vikas Yellapu",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editedByType:null,editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9816",title:"Idiopathic Pulmonary Fibrosis",subtitle:null,isOpenForSubmission:!0,hash:"365bb9762ba33db2d07e677690af1772",slug:null,bookSignature:"Dr. Salim Surani and Dr. Venkat Rajasurya",coverURL:"https://cdn.intechopen.com/books/images_new/9816.jpg",editedByType:null,editors:[{id:"15654",title:"Dr.",name:"Salim",surname:"Surani",slug:"salim-surani",fullName:"Salim Surani"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10218",title:"Flagellar Motility in Cells",subtitle:null,isOpenForSubmission:!0,hash:"5fcc15570365a82d9f2c4816f4e0ee2e",slug:null,bookSignature:"Prof. Yusuf Bozkurt",coverURL:"https://cdn.intechopen.com/books/images_new/10218.jpg",editedByType:null,editors:[{id:"90846",title:"Prof.",name:"Yusuf",surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:13},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:3},{group:"topic",caption:"Business, Management and Economics",value:7,count:1},{group:"topic",caption:"Chemistry",value:8,count:6},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:14},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:27},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:2},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Social Sciences",value:23,count:2},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:99},popularBooks:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9668",title:"Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging",subtitle:null,isOpenForSubmission:!1,hash:"c5484276a314628acf21ec1bdc3a86b9",slug:"chemistry-and-biochemistry-of-winemaking-wine-stabilization-and-aging",bookSignature:"Fernanda Cosme, Fernando M. Nunes and Luís Filipe-Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/9668.jpg",editors:[{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9660",title:"Inland Waters",subtitle:"Dynamics and Ecology",isOpenForSubmission:!1,hash:"975c26819ceb11a926793bc2adc62bd6",slug:"inland-waters-dynamics-and-ecology",bookSignature:"Adam Devlin, Jiayi Pan and Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/9660.jpg",editors:[{id:"280757",title:"Dr.",name:"Adam",middleName:"Thomas",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9122",title:"Cosmetic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"207026ca4a4125e17038e770d00ee152",slug:"cosmetic-surgery",bookSignature:"Yueh-Bih Tang",coverURL:"https://cdn.intechopen.com/books/images_new/9122.jpg",editors:[{id:"202122",title:"Prof.",name:"Yueh-Bih",middleName:null,surname:"Tang",slug:"yueh-bih-tang",fullName:"Yueh-Bih Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9043",title:"Parenting",subtitle:"Studies by an Ecocultural and Transactional Perspective",isOpenForSubmission:!1,hash:"6d21066c7438e459e4c6fb13217a5c8c",slug:"parenting-studies-by-an-ecocultural-and-transactional-perspective",bookSignature:"Loredana Benedetto and Massimo Ingrassia",coverURL:"https://cdn.intechopen.com/books/images_new/9043.jpg",editors:[{id:"193200",title:"Prof.",name:"Loredana",middleName:null,surname:"Benedetto",slug:"loredana-benedetto",fullName:"Loredana Benedetto"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5221},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9668",title:"Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging",subtitle:null,isOpenForSubmission:!1,hash:"c5484276a314628acf21ec1bdc3a86b9",slug:"chemistry-and-biochemistry-of-winemaking-wine-stabilization-and-aging",bookSignature:"Fernanda Cosme, Fernando M. Nunes and Luís Filipe-Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/9668.jpg",editors:[{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9660",title:"Inland Waters",subtitle:"Dynamics and Ecology",isOpenForSubmission:!1,hash:"975c26819ceb11a926793bc2adc62bd6",slug:"inland-waters-dynamics-and-ecology",bookSignature:"Adam Devlin, Jiayi Pan and Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/9660.jpg",editors:[{id:"280757",title:"Dr.",name:"Adam",middleName:"Thomas",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9122",title:"Cosmetic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"207026ca4a4125e17038e770d00ee152",slug:"cosmetic-surgery",bookSignature:"Yueh-Bih Tang",coverURL:"https://cdn.intechopen.com/books/images_new/9122.jpg",editors:[{id:"202122",title:"Prof.",name:"Yueh-Bih",middleName:null,surname:"Tang",slug:"yueh-bih-tang",fullName:"Yueh-Bih Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8098",title:"Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"d251652996624d932ef7b8ed62cf7cfc",slug:"resources-of-water",bookSignature:"Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq",coverURL:"https://cdn.intechopen.com/books/images_new/8098.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",middleName:null,surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editedByType:"Edited by",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editedByType:"Edited by",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8415",title:"Extremophilic Microbes and Metabolites",subtitle:"Diversity, Bioprospecting and Biotechnological Applications",isOpenForSubmission:!1,hash:"93e0321bc93b89ff73730157738f8f97",slug:"extremophilic-microbes-and-metabolites-diversity-bioprospecting-and-biotechnological-applications",bookSignature:"Afef Najjari, Ameur Cherif, Haïtham Sghaier and Hadda Imene Ouzari",coverURL:"https://cdn.intechopen.com/books/images_new/8415.jpg",editedByType:"Edited by",editors:[{id:"196823",title:"Dr.",name:"Afef",middleName:null,surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"697",title:"Microfluidics",slug:"microfluidics",parent:{title:"Biomedical Engineering",slug:"engineering-biomedical-engineering"},numberOfBooks:2,numberOfAuthorsAndEditors:64,numberOfWosCitations:49,numberOfCrossrefCitations:31,numberOfDimensionsCitations:60,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"microfluidics",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"5099",title:"Advances in Microfluidics",subtitle:"New Applications in Biology, Energy, and Materials Sciences",isOpenForSubmission:!1,hash:"bd857fbb862f64969eb6ba55b35f5ff4",slug:"advances-in-microfluidics-new-applications-in-biology-energy-and-materials-sciences",bookSignature:"Xiao-Ying Yu",coverURL:"https://cdn.intechopen.com/books/images_new/5099.jpg",editedByType:"Edited by",editors:[{id:"24996",title:"Dr.",name:"Xiao-Ying",middleName:null,surname:"Yu",slug:"xiao-ying-yu",fullName:"Xiao-Ying Yu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1792",title:"Advances in Microfluidics",subtitle:null,isOpenForSubmission:!1,hash:"113adf95d3ba8f7aaf46998603cc3a8b",slug:"advances-in-microfluidics",bookSignature:"Ryan T. Kelly",coverURL:"https://cdn.intechopen.com/books/images_new/1792.jpg",editedByType:"Edited by",editors:[{id:"111896",title:"Dr.",name:"Ryan",middleName:null,surname:"Kelly",slug:"ryan-kelly",fullName:"Ryan Kelly"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,mostCitedChapters:[{id:"29686",doi:"10.5772/38072",title:"Smart Microfluidics: The Role of Stimuli- Responsive Polymers in Microfluidic Devices",slug:"smart-microfluidics-the-role-of-stimuli-responsive-polymers-in-microfluidic-devices",totalDownloads:4176,totalCrossrefCites:3,totalDimensionsCites:7,book:{slug:"advances-in-microfluidics",title:"Advances in Microfluidics",fullTitle:"Advances in Microfluidics"},signatures:"Simona Argentiere, Giuseppe Gigli, Mariangela Mortato Irini Gerges and Laura Blasi",authors:[{id:"12979",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Gigli",slug:"giuseppe-gigli",fullName:"Giuseppe Gigli"},{id:"115443",title:"Dr.",name:"Simona",middleName:null,surname:"Argentiere",slug:"simona-argentiere",fullName:"Simona Argentiere"},{id:"115444",title:"Dr.",name:"Laura",middleName:null,surname:"Blasi",slug:"laura-blasi",fullName:"Laura Blasi"},{id:"138512",title:"Dr.",name:"Mariangela",middleName:null,surname:"Mortato",slug:"mariangela-mortato",fullName:"Mariangela Mortato"},{id:"138513",title:"Dr.",name:"Irini",middleName:null,surname:"Gerges",slug:"irini-gerges",fullName:"Irini Gerges"}]},{id:"51263",doi:"10.5772/64347",title:"High and Efficient Production of Nanomaterials by Microfluidic Reactor Approaches",slug:"high-and-efficient-production-of-nanomaterials-by-microfluidic-reactor-approaches",totalDownloads:2006,totalCrossrefCites:3,totalDimensionsCites:7,book:{slug:"advances-in-microfluidics-new-applications-in-biology-energy-and-materials-sciences",title:"Advances in Microfluidics",fullTitle:"Advances in Microfluidics - New Applications in Biology, Energy, and Materials Sciences"},signatures:"Victor Sebastian Cabeza",authors:[{id:"177071",title:"Dr.",name:"Victor",middleName:null,surname:"Sebastian",slug:"victor-sebastian",fullName:"Victor Sebastian"}]},{id:"29685",doi:"10.5772/35773",title:"Mesoscopic Simulation Methods for Studying Flow and Transport in Electric Fields in Micro- and Nanochannels",slug:"microfluidic-transport-driven-by-opto-thermal-effects",totalDownloads:2390,totalCrossrefCites:5,totalDimensionsCites:6,book:{slug:"advances-in-microfluidics",title:"Advances in Microfluidics",fullTitle:"Advances in Microfluidics"},signatures:"Jens Smiatek and Friederike Schmid",authors:[{id:"105802",title:"Dr.",name:"Jean-Pierre",middleName:null,surname:"Delville",slug:"jean-pierre-delville",fullName:"Jean-Pierre Delville"},{id:"111787",title:"Dr.",name:"Matthieu",middleName:null,surname:"Robert De Saint Vincent",slug:"matthieu-robert-de-saint-vincent",fullName:"Matthieu Robert De Saint Vincent"}]}],mostDownloadedChaptersLast30Days:[{id:"51262",title:"Electroosmotic Flow Pump",slug:"electroosmotic-flow-pump",totalDownloads:1910,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"advances-in-microfluidics-new-applications-in-biology-energy-and-materials-sciences",title:"Advances in Microfluidics",fullTitle:"Advances in Microfluidics - New Applications in Biology, Energy, and Materials Sciences"},signatures:"Meng Gao and Lin Gui",authors:[{id:"176994",title:"Prof.",name:"Lin",middleName:null,surname:"Gui",slug:"lin-gui",fullName:"Lin Gui"},{id:"177064",title:"Ph.D.",name:"Meng",middleName:null,surname:"Gao",slug:"meng-gao",fullName:"Meng Gao"}]},{id:"51263",title:"High and Efficient Production of Nanomaterials by Microfluidic Reactor Approaches",slug:"high-and-efficient-production-of-nanomaterials-by-microfluidic-reactor-approaches",totalDownloads:2006,totalCrossrefCites:3,totalDimensionsCites:7,book:{slug:"advances-in-microfluidics-new-applications-in-biology-energy-and-materials-sciences",title:"Advances in Microfluidics",fullTitle:"Advances in Microfluidics - New Applications in Biology, Energy, and Materials Sciences"},signatures:"Victor Sebastian Cabeza",authors:[{id:"177071",title:"Dr.",name:"Victor",middleName:null,surname:"Sebastian",slug:"victor-sebastian",fullName:"Victor Sebastian"}]},{id:"51594",title:"Integrated Control of Microfluidics – Application in Fluid Routing, Sensor Synchronization, and Real-Time Feedback Control",slug:"integrated-control-of-microfluidics-application-in-fluid-routing-sensor-synchronization-and-real-tim",totalDownloads:1419,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"advances-in-microfluidics-new-applications-in-biology-energy-and-materials-sciences",title:"Advances in Microfluidics",fullTitle:"Advances in Microfluidics - New Applications in Biology, Energy, and Materials Sciences"},signatures:"Elishai Ezra, Danny Bavli and Yaakov Nahmias",authors:[{id:"176924",title:"Prof.",name:"Yaakov",middleName:null,surname:"Nahmias",slug:"yaakov-nahmias",fullName:"Yaakov Nahmias"},{id:"176930",title:"Dr.",name:"Elishai",middleName:null,surname:"Ezra Tsur",slug:"elishai-ezra-tsur",fullName:"Elishai Ezra Tsur"},{id:"176931",title:"Dr.",name:"Danny",middleName:null,surname:"Bavli",slug:"danny-bavli",fullName:"Danny Bavli"}]},{id:"52959",title:"Overview of Materials for Microfluidic Applications",slug:"overview-of-materials-for-microfluidic-applications",totalDownloads:1878,totalCrossrefCites:1,totalDimensionsCites:6,book:{slug:"advances-in-microfluidics-new-applications-in-biology-energy-and-materials-sciences",title:"Advances in Microfluidics",fullTitle:"Advances in Microfluidics - New Applications in Biology, Energy, and Materials Sciences"},signatures:"Emmanuel Roy, Antoine Pallandre, Bacem Zribi, Marie‐Charlotte\nHorny, François Damien Delapierre, Andrea Cattoni, Jean Gamby\nand Anne‐Marie Haghiri‐Gosnet",authors:[{id:"45172",title:"Prof.",name:"Anne-Marie",middleName:null,surname:"Haghiri-Gosnet",slug:"anne-marie-haghiri-gosnet",fullName:"Anne-Marie Haghiri-Gosnet"}]},{id:"51878",title:"Application of Microfluidics in Stem Cell Culture",slug:"application-of-microfluidics-in-stem-cell-culture",totalDownloads:1577,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"advances-in-microfluidics-new-applications-in-biology-energy-and-materials-sciences",title:"Advances in Microfluidics",fullTitle:"Advances in Microfluidics - New Applications in Biology, Energy, and Materials Sciences"},signatures:"Shinji Sugiura, Kohji Nakazawa, Toshiyuki Kanamori and Kiyoshi\nOhnuma",authors:[{id:"83549",title:"Dr.",name:"Kiyoshi",middleName:null,surname:"Ohnuma",slug:"kiyoshi-ohnuma",fullName:"Kiyoshi Ohnuma"},{id:"177083",title:"Dr.",name:"Shinji",middleName:null,surname:"Sugiura",slug:"shinji-sugiura",fullName:"Shinji Sugiura"},{id:"177084",title:"Prof.",name:"Kohji",middleName:null,surname:"Nakazawa",slug:"kohji-nakazawa",fullName:"Kohji Nakazawa"},{id:"177085",title:"Dr.",name:"Toshiyuki",middleName:null,surname:"Kanamori",slug:"toshiyuki-kanamori",fullName:"Toshiyuki Kanamori"}]},{id:"52463",title:"Flow-Scanning Microfluidic Imaging",slug:"flow-scanning-microfluidic-imaging",totalDownloads:1206,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"advances-in-microfluidics-new-applications-in-biology-energy-and-materials-sciences",title:"Advances in Microfluidics",fullTitle:"Advances in Microfluidics - New Applications in Biology, Energy, and Materials Sciences"},signatures:"Nicolas Pégard, Chien-Hung Lu, Marton Toth, Monica Driscoll and\nJason Fleischer",authors:[{id:"177068",title:"Mr.",name:"Jason",middleName:null,surname:"Fleischer",slug:"jason-fleischer",fullName:"Jason Fleischer"},{id:"177174",title:"Dr.",name:"Nicolas",middleName:"C",surname:"Pegard",slug:"nicolas-pegard",fullName:"Nicolas Pegard"},{id:"177175",title:"Dr.",name:"Marton",middleName:null,surname:"Toth",slug:"marton-toth",fullName:"Marton Toth"},{id:"177176",title:"Prof.",name:"Monica",middleName:null,surname:"Driscoll",slug:"monica-driscoll",fullName:"Monica Driscoll"},{id:"177177",title:"Mr.",name:"Chien-Hung",middleName:null,surname:"Lu",slug:"chien-hung-lu",fullName:"Chien-Hung Lu"}]},{id:"51463",title:"Synthesis of Functional Materials by Non-Newtonian Microfluidic Multiphase System",slug:"synthesis-of-functional-materials-by-non-newtonian-microfluidic-multiphase-system",totalDownloads:1521,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"advances-in-microfluidics-new-applications-in-biology-energy-and-materials-sciences",title:"Advances in Microfluidics",fullTitle:"Advances in Microfluidics - New Applications in Biology, Energy, and Materials Sciences"},signatures:"Yong Ren, Kai Seng Koh and Yaping Zhang",authors:[{id:"177059",title:"Dr.",name:"Yong",middleName:null,surname:"Ren",slug:"yong-ren",fullName:"Yong Ren"},{id:"177106",title:"Dr.",name:"Yaping",middleName:null,surname:"Zhang",slug:"yaping-zhang",fullName:"Yaping Zhang"},{id:"177825",title:"Dr.",name:"Kai Seng",middleName:null,surname:"Koh",slug:"kai-seng-koh",fullName:"Kai Seng Koh"}]},{id:"52334",title:"Generation and Evaporation of Microsprays",slug:"generation-and-evaporation-of-microsprays",totalDownloads:1566,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"advances-in-microfluidics-new-applications-in-biology-energy-and-materials-sciences",title:"Advances in Microfluidics",fullTitle:"Advances in Microfluidics - New Applications in Biology, Energy, and Materials Sciences"},signatures:"Chin-Tai Chen",authors:[{id:"65914",title:"Prof.",name:"Chin-Tai",middleName:null,surname:"Chen",slug:"chin-tai-chen",fullName:"Chin-Tai Chen"}]},{id:"51264",title:"Microfluidics in CO2 Capture, Sequestration, and Applications",slug:"microfluidics-in-co2-capture-sequestration-and-applications",totalDownloads:1412,totalCrossrefCites:4,totalDimensionsCites:5,book:{slug:"advances-in-microfluidics-new-applications-in-biology-energy-and-materials-sciences",title:"Advances in Microfluidics",fullTitle:"Advances in Microfluidics - New Applications in Biology, Energy, and Materials Sciences"},signatures:"Taotao Fu",authors:[{id:"177065",title:"Associate Prof.",name:"Taotao",middleName:null,surname:"Fu",slug:"taotao-fu",fullName:"Taotao Fu"}]},{id:"51712",title:"Laser-Based Fabrication for Microfluidics Devices on Glass for Medical Applications",slug:"laser-based-fabrication-for-microfluidics-devices-on-glass-for-medical-applications",totalDownloads:1155,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"advances-in-microfluidics-new-applications-in-biology-energy-and-materials-sciences",title:"Advances in Microfluidics",fullTitle:"Advances in Microfluidics - New Applications in Biology, Energy, and Materials Sciences"},signatures:"Daniel Nieto García and Gerard O’Connor",authors:[{id:"176988",title:"Dr.",name:"Daniel",middleName:null,surname:"Nieto",slug:"daniel-nieto",fullName:"Daniel Nieto"},{id:"177787",title:"Prof.",name:"Gerard",middleName:null,surname:"O'Connor",slug:"gerard-o'connor",fullName:"Gerard O'Connor"}]}],onlineFirstChaptersFilter:{topicSlug:"microfluidics",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"chapter.detail",path:"/books/topics-on-drug-metabolism/transcription-factors-potentially-involved-in-regulation-of-cytochrome-p450-gene-expression",hash:"",query:{},params:{book:"topics-on-drug-metabolism",chapter:"transcription-factors-potentially-involved-in-regulation-of-cytochrome-p450-gene-expression"},fullPath:"/books/topics-on-drug-metabolism/transcription-factors-potentially-involved-in-regulation-of-cytochrome-p450-gene-expression",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()