A summary ofstudies on the use of harmonic scalpel(HS) versus conventional suture ligation(CSL)
\r\n\tNatural hazards are potentially damaging physical events and phenomena, which may cause the loss of life, injury or human life disruption, property damage, social, economic, and political disruption, or environmental degradation.
\r\n\tNatural hazards can be divided into different groups: geological, hydro-meteorological, climatological, outer space, and biological hazards.
\r\n\tA disaster is a serious disruption of the normal functioning of a society causing widespread human, material, economic or environmental losses. A disaster results from the combination of hazards, conditions of vulnerability and insufficient capacity or measures to reduce the potential negative consequences of risk, and exposure.
\r\n\tEarthquakes, volcano eruptions, tsunamis, curst, suffusion, coast erosion, and landslides belong to geological hazards.
\r\n\tHydro-meteorological and climatological hazards are the most frequent causes of the disaster events among all natural hazards. The most common meteorological hazards are heavy rains, tornadoes, storms, hurricanes, droughts, tropical cyclones, rainstorm floods, heat waves, and low-temperature disasters.
\r\n\tA comparison of the loss events and fatalities shows that the regions with economically less-developed countries have more fatalities, but more rich countries have higher damage during disasters.
\r\n\tThe Book addresses principles, concepts and paradigms of environmental economics connected discipline, as well as operational terms, materials, tools, techniques, and methods including processes, procedures and implications.
\r\n\tThe Book equips professionals and others with a formal understanding of environmental economics topics. Clarifies the similarities or differences in fundamental concepts and principles in the discipline. Captures the wide range of expanding disciplinary activities under a single umbrella of environmental economics concept.
One of the earliest references to a successful surgical attempt for the treatment of goitre can be found in the medical writings of the Moorish physician Ali Ibn Abbas. In 952 A.D., he recorded his experience with the removal of a large goitre under opium sedation using simple ligatures and hot cautery irons as the patient sat with a bag around his neck to catch the blood. The first accounts of thyroid surgery for the treatment of goiters were given by Roger Frugardi in 1170. In response to failure of medical treatment, two setons were inserted at right angles into the goiter and tightened twice daily until the goiter separated. The open wound was treated with caustic powder and left to heal. The first successful typical partial thyroidectomy was performed by the French Surgeon, Pierre Joseph Desault, in 1791 during the French Revolution. Dupuytren followed in 1808 with the first total thyroidectomy, but the patient died 36 hours after the operation.
Despite these limited descriptions of early successes, the surgical approach to goitre remained shrouded in misunderstanding and superstition. Thyroid surgery in the 19th century carried a mortality of around 40% even in the most skilled surgical hands, mainly due to haemorrhage and infection. The French Academy of Medicine actually banned thyroid surgery in 1850 and German authorities called for restrictions on such ‘foolhardy performances’. Leading surgeons avoided thyroid surgery if at all possible, and would only intervene in cases of respiratory obstruction. Samuel Gross wrote in 1848:"Can the thyroid gland when in the state of enlargement be removed…?If a surgeon should be so foolhardy as to undertake it..every step he takes will be environed with difficulty, every stroke of his knife will be followed by a torrent of blood and lucky it would be for him if his victim lives long enough to enable him to finish his horrid butchery. No honest and sensible surgeon would ever engage in it."
Early surgical approaches for treatment of thyroid disorders were associated with high rates of mortality and morbidity due to hemorrhage, asphyxia, air embolism, and infection. Surgical approach to thyroid disease was seen as the last resort. It was not until the late 1800s after the advent of ether as anesthesia, antiseptic technique, and effective artery forceps that allowed Theodor Kocher to perfect the technique for thyroidectomy. Kocher used the technique of precise ligation of the arterial blood supply to perform an unhurried, meticulous dissection of the thyroid gland, decreasing the morbidity and mortality associated with thyroid surgery to less than 1% ( Giddings,1998).
Advancements could only take place in the field of thyroid surgery with the introduction of improved anaesthesia, antiseptic techniques, and improved ways of controlling haemorrhage during surgery. The first thyroidectomy under ether anaesthesia took place in St Petersburg in 1849; the second half of the 19th century saw the introduction of Lister’s antiseptic techniques through Europe, and the development of haemostatic forceps by such figures as Spencer Wells in London led to much better haemostasis than could be achieved by crude ligatures and cautery.
The most notable thyroid surgeons were Emil Theodor Kocher (1841–1917) and C.A. Theodor Billroth (1829–1894), who performed thousands of operations with increasingly successful results. However, as more patients survived thyroid operations, new problems and issues became apparent. After total thyroidectomy, patients became myxedematous with cretinous features. Myxedema effectively treated in 1891 by George Murray and Edward Fox. In 1909, Kocher was awarded the Nobel Prize for medicine in recognition "for his works on the physiology, pathology, and surgery of the thyroid gland."
The thyroid gland is removed traditionally through a small curvilinear incision approximately 3 cm above the sternal notch. While these original incisions allow for optimal exposure and successful removal of the diseased organ, they tend to subject the patients to lengthy hospital stays,significant postoperative pain, and in some cases, cosmetically undesirable results.
By the end of the twentieth century, laparoscopy was already accepted worldwide for a large number of operations in general surgery. By minimizing the size of the skin incisions while still permitting superior visualization of the operative field, laparoscopy was proven for certain operations to lessen postoperative pain, improve cosmesis, and shorten postoperative hospital stays.
As minimally invasive surgery became more popular,surgeons realized some true limitations. Sensory information is limited due to lack of tactile feedback and restriction to a two-dimensional (2D) image. In addition, compared to the human hand in an open case,laparoscopic instruments have restricted degrees of freedom mainly due to the lack of a wrist-like joint in the instrument tip and the lack of maneuverability due to a fixed axis point at the trocar ( Hansenet al., 1997).
The advent of robot-assisted laparoscopic surgery seems to deal with many of the recognized limitations of hand-held laparoscopic surgery. In general, robots reduce the natural tremor of the human hand, reestablish comfortable ergonomics, reducing stress and surgeon fatigue, and,in certain cases, reestablish the three-dimensional (3D) view of the surgical field. In addition, surgical robots have the potential to be more precise and permit greater accuracy when it comes to suturing tasks and careful perivascular dissections. (Jacob et al., 2005)
Thyroid surgery involves meticulous devascularization of the thyroid gland, which has one of the richest blood supplies of all organs, with numerous blood vessels and plexuses enteringits parenchyma. Therefore, hemostasis is of paramount importance when dividing the various vessels before excising the gland(Çakabay et al., 2009).
Although nearly a century has passed since Halstead and Kocher first described thyroidectomy, it has changed little until recently, and is a procedure that is performed extensively. Two of the most commonly used techniques for hemostasis are suture ligation and electrocoagulation.The disadvantage of suture ligation and electrocoagulation techniques is the prolonged operating time. Recently, a number of innovative methods of hemostasis in thyroid surgery have been tested, with promising results. New techniques developed over the past decade include hemostatic clipping, laser, LigaSure diathermy (ValleyLab, CO, USA) (or the LigaSure vessel sealing system), and ultrasonic instrumentation. Clips work for large vessels and are subject to dislodgment; whereas staples are wasted and costly for multiple single-vessel applications. Lasers are hindered by the risk of injury to many vital structures (such as the recurrent nerves) in the operative field, and bipolar electrocautery does not give the surgeon the freedom of applicability at different angles ( Kennedy et al., 1998).
There have been significant advances in vessel sealing systems for the occlusion of blood vessels during general and gynecological surgical procedures. Two such devices are now commonly used in thyroid surgery: a bipolar energy sealing system and ultrasonic coagulation ( Rahbari et al., 2011).Thyroid surgery is the most common endocrine surgical operation. Like all surgical procedures, the basic tenant of good exposure and hemostasis apply to thyroid surgery.
LigaSure (ValleyLab, CO, USA) is a bipolar diathermy system that seals vessels with reduced thermal spread. The device has been used successfully in abdominal surgery and has been introduced as a new method for hemostasis during thyroidectomy. The LigaSure diathermy system enables simultaneous selective sealing and division of a vessel without dispersion of the electric power, and with less heat production. The device is used in abdominal surgery and has proved suitable for use in thyroid surgery(Çakabay et al., 2009).
Any new surgical technology or operating technique should yield similar or improved patient outcomes and similar or lower rates of complications, compared with conventional methods. LigaSure, allowing vessel sealing and division with no dispersion of the electric power and with little or no heat production, has been widely used in diverse fields of surgery for its efficiency and safety. However, in thyroid surgery,where a considerable amount of minute vessels must be divided and hence microsurgical techniques required, LigaSure is also preferred for its further efficiency by shortening the duration of the operation.
Various specialties have reported shorter operating times with LigaSure (Lee et al.,2003,Levy et al., 2003,Jayne et al., 2002). However, in the literature, the postoperative outcome of thyroidectomy with LigaSure is controversial. Some studies (Petrakis et al., 2004) reported fewer complications and shorter operating times in the LigaSure, while others (Kiriakopoulos et al., 2004) did not observe a reduction in operating time for patients who underwent total or near-total thyroidectomy with LigaSure. According to two studies (Kirdak et al., 2005,Shen et al., 2005) the operating time was reduced substantially and the reduction in operating time in the LigaSure group was most probably a reflection of changes in operating technique (Shen et al., 2005).They reported that this change in technique facilitates dissection of the thyroid lobes and helps to reduce operating time and results ina decreased requirement for lateral skin etraction;the reduction in incision length in the LigaSuregroup is probably a result of this decreased need for lateral retraction.The reduced operating time may result in decreased postoperative pain. The cause of postoperative pain is hyperextension of the neck (Defechereux et al., 2003); therefore, the pain can be reduced if the operating time is minimized. We found (Çakabay et al., 2009) that the use of the LigaSure significantly reduced the operating time for both total and one side total+other side subtotal thyroidectomy. The reduction in operating time was greatest in the total+subtotal thyroidectomy group. This is probably the result of faster but equally safe dissection of the thyroid gland compared with the conventional clamp-and-tie technique. In our experience, thyroid surgery using LigaSure does not require a significant learning period.
The major complications of thyroidectomy are laryngeal nerve injury and hypocalcemia. The reported permanent RLN palsy rate is 0%-14%. The use of LigaSure did not increase the RLN palsy risk(Çakabay et al., 2009). Iatrogenic injury to the parathyroid glands resulting in hypocalcemia can occur from direct damage through inappropriate manipulation of surgery.
The cost of the LigaSure device is an important issue. According to some studies (Kirdak et al., 2005)the use of LigaSure is more expensive than the other conventional techniques. They reported that a cost-benefit analysis of this instrument may be helpful when choosing one of these techniques over the other. However, as the LigaSure device is produced to be disposable, the costeffectivenessof LigaSure can be increased by using one device for several patients. The reuse of LigaSure hand pieces decreases its cost of purchase (Dilek et al., 2005). İn our exprience,we found that the additional cost of using LigaSure was $95 per operation, and our observations indicate that the same device will provide safe hemostasis for no more than 10 patients.
New techniques, such as hemostatic clipping, monopolar/bipolar diathermy, and laser and ultrasonic instrumentation, have been developed over the past decade. Of these, the harmonic scalpel is the most frequently used. The harmonic scalpeluses high-frequency mechanical energy to cut and coagulate tissues at the same time,and it is widely used in otorhinolaryngological, cardiac, gastrointestinal, vascular, hemorrhoid, laparoscopic, obstetric, and gynecological surgery. The main advantages of ultrasonic coagulating /dissecting systems compared with a standard electrosurgical device are represented by minimal lateral thermal tissue damage (the harmonic scalpelcauses lateral thermal injury 1-3 mm wide, approximately half that caused by bipolar systems),less smoke formation, no neuromuscular stimulation, and no electrical energy to or through the patient (Roye et al.,2000). Since its introduction, the harmonic scalpelhas also gained popularity in thyroid and neck surgery. The proposed advantages of the harmonic scalpelinclude less lateral thermal tissue damage with no electrical energy transferred to the patient, as in electrocautery. In addition, the harmonic scalpelhas some advantages over conventional techniques, particularly in terms of operative time, intraoperative bleeding, and hospitalization time.
The harmonic scalpelis a new surgical device for thyroid surgery and, to the best of our knowledge, studies in the English-language literature have been undertaken to compare harmonic scalpelversus conventional techniques.The characteristics of these studies summarized in Table1. The majority of these studies compared operative time, hospitalization time, drain use, incision size, postoperative pain, cosmetic results, cost analysis, and RLNP and other postoperative complications. The main advantage of using the harmonic scalpel in thyroid surgery is the reduction in operative time. Studies showed that the use of a harmonic scalpelsignificantly decreased the operative time (Yildirim et al., 2008, Voutilainen et al., 2000).
Some studies shown that no difference (Siperstein et al., 2002) was observed between the two techniques (harmonic scalpeland conventional techniques ) regarding the amount of blood loss,others (Miccoli et al., 2006,Kilic et al., 2007, Yildirim et al., 2008) have shown that drainage volume is significantly lower in patients treatment with a harmonic scalpelcompared to those treated with conventional techniques.
Despite the safety demonstrated by harmonic scalpelin several studies, specific training and experience in the use of the device are necessary because the active blade in inexperienced hands can easily injure surrounding vital structures. Approximately 10 h of experience are required (Voutilainen et al., 2000).The majority of transient and permanent complications occurred in the period of early training. Hypocalcemia and nerve palsy rates will decrease in time as our experience with the harmonic scalpeltechnique increases.
References | Year | Type of study | Number of patients (HS/CSL) | Summary of studies | |
1 | Voutilainen et al., | 2000 | Prospective | 19/17 | Hospitalization time, postoperative drainage, and intraoperative bleeding were similar between groups. Operative time was shorter in the HS group than in the CSL group. |
2 | Shemen | 2002 | Retrospective | 105/20 | The incision length was shorter and the operating time was reduced in the HS compared to CSL group. Bleeding was negligible and complications were few. |
3 | Siperstein et al., | 2002 | Retrospective | 86/85 | Operative time was shorter in the HS group than in the CSL group. Thyroid size tended to be larger in the HS group than in the CSL group. The two groups were similar regarding blood loss. |
4 | Ortega et al., | 2004 | Prospective | 100/100 | The operative time was shorter in the HS group than in the CSL group. Hospitalization was similar between groups, but the global cost per patient was significantly less in the HS group. Postoperative complications were similar between groups. |
5 | Cordon et al., | 2005 | Prospective | 30/30 | Operative time and number of ligatures were significantly reduced in the HS group compared to the CSL group. Drainage and postoperative pain were similar between groups. No episode of persistent RLNP or hypoparathyroidism occurred in either group. |
6 | Miccoli et al., | 2006 | Prospective | 50/50 | Postoperative pain, operative time, drainage volume, and transient hypocalcemia decreased significantly in the HS group compared to the CSL group. |
7 | Karvounaris et al., | 2006 | Prospective | 150/150 | No significant difference was observed in terms of postoperative blood loss, temporary hypoparathyroidism, or RLNP, although use of the HS significantly decreased operative time. |
8 | Koutsoumanis et al., | 2007 | Prospective | 107/88 | Use of the HS decreased operative time, but increased the cost of surgery. |
9 | Kilic et al., | 2007 | Prospective | 40/40 | Use of the HS in thyroid surgery resulted in decreased operative time, number of ligatures, total drain time, average incision length, and number of blood-soaked gauzes; it also produced bettercosmetic results, but did not increase postoperative complications. |
10 | Hallgrimsson et al., | 2008 | Prospective | 27/24 | Operative time was significantly shorter in the HS group than in the CSL group. |
11 | Lombardi et al., | 2008 | Prospective | 100/100 | Operative time and total operating room occupation time were significantly shorter in the HS group than in the CSL group. The cost of the disposable materials was significantly higher in the HS group. |
12 | Leonard et al., | 2008 | Prospective | 21/31 | The two groups were similar regarding operative time and incision size. This was the first reported series in which HS usage did not reduce operative time. |
13 | Yildirim et al., | 2008 | Prospective | 50/54 | Use of the HS in thyroid surgery decreased operative time, mean blood loss, drain usage, number of ligatures, and amount of bleeding, and did not increase postoperative complications. |
14 | Manouras et al., | 2008 | Prospective | 144/90 | The operative time was shorter in the HS group than in the CSL group. The rate of postoperative complications and hospitalization time were similar between groups. |
15 | Sebaq et al., | 2009 | Prospective | 50/50 | The two groups were similar regarding hospitalization time and operative cost. Operative time decreased significantly in the HS group compared to the CSL group. |
A summary ofstudies on the use of harmonic scalpel(HS) versus conventional suture ligation(CSL)
Neck surgey is one of the newest and most interesting applications of minimally invasive surgery.Several approaches have ben proposed in the application of endoscopic thyroidectomy. The primary aim of all these different approaches has been to improve the cosmetic results of conventional surgery. Endoscopic thyroidectomy has been divided into two types, videoassisted and total endoscopic. Others classified it as with CO2 insufflation or gasless.
Minimally invasive video-assisted thyroidectomy (MIVAT) is characterized by a single access of 1.5 cm in the middle area of the neck, approximately 1-2 cm above the sternal notch; the midline is incised, and a blunt dissection is carried out with tiny spatulas to separate the strap muscles from the underlying thyroid lobe. From this point on the procedure is performed endoscopically on a gasless basis with an external retraction. An laparoscopeof 5 mm, 30 degrees, is used. After the insertion oflaparoscope through the skin incision, the lobe was completely dissected from the strap muscles with 2-mm-diameter laparoscopic instruments and other instruments regularly used. The optical magnification allows an excellent vision of both the external branch of the superior laryngeal nerve and the recurrent nerve, which are prepared together with the upper parathyroid gland. The vessels are ligated between clips or with the harmonic scalpel until the lobe, completely freed, can be extracted by gently pulling it out through the skin incision.The isthmus is then dissected from the trachea and divided. After checking the recurrent laryngeal nerve once again, the lobe is finally removed(Miccoli et al., 2001). In this technique, no subplatysmal flaps are raised and no muscules are divided, resulting in reduced tissue edema when compared with conventional surgery.I nitial experiences published on MIVAT underlined the advantages of the procedure in terms of a better cosmetic result and less postoperative pain when compared with conventional surgery.
Endoscopic lateral cervical approach used for hemithyroidectomy, two 2-5 mm trocars an done 10-mm trocar are inserted along the anterior border of the sternocleidomastoid muscle on the ipsilateral side and using endoscopic instruments specially designed fort his procedure. An additional advantage of this technique over endoscopically assisted midline technique was that no additional assistants were requred to hold retractors(Palazzo et al., 2006).
Total endoscopic thyroidectomy is a more sophisticated variation of minimally invasive thyroid. Using special instrument and technique, part or all of the thyroid gland can be removed through small puncture site, avoiding any incision on the neck whatsoever. Various approaches have been devised and improved further to fulfill this goal, mainly including the cervical approach, anterior chest approach, axillary and breast approach. However, none of these approaches is exclusively advantageous and universally accepted. (Irawati,2010). The cervical approach and anterior chest approach are minimally invasive, but not cosmetically excellent. The axillary and breast approaches have maximized cosmesis, but meanwhile cause much invasiveness. Furthermore, the axillary approaches is not suitable for bilateral manipulation and even more technically challenging with abnormal anatomic vision. Therefore, an axillary-bilateral-breast approach (ABBA) has been developed, which is actually a combination of the procedure. Bilateral-axillary-breast approach (BABA) was introduced later and was claimed be easily applied for thyroid cancer as well. Whereas applicability of the endoscopic-assisted approach is limited by the size of the gland, the investigators noted that this constraint does not exist for BABA, as even large glands are easily retrieved through the axillary port (Becker et al., 2008). This technique now is even improved by using Da Vinci robotic system (Eun Lee et al., 2009). The endowrist function of the instrument is beneficial in doing complex tasks in difficult areas with limited access.
Disadvatages of endoscopic thyroidectomy include the requirement for additional equipment, namely high-resolution endoscopes and monitors for video-assisted techniques and insufflation units for purely endoscopic approaches. In addition,there is a distinct learning curve, which is more pronounced with purely endoscopic approaches.While video-assisted techniques clearly result in limited surgical dissection, purely endoscopic approaches, by virtue of their remote approaches, result in an equivalent amount of dissection. Because of this, most description include the routine use of drains, which may increase the lenght of hospitalization (Becker 2008).The increased chest-wall dissection can result in hypoesthesia in this area, and cases of pneumothorax have been described (Choe et al., 2007).Operative time for endoscopic approaches may be up to %30 longer than they are for traditional approaches (Terris et al.,2007).
Robots have been in the operating room for approximately 15 years now, but their use in assisting laparoscopic endocrine surgery is very new. With the refinement of the technology, easier set up, better image quality, and smaller robotic systems, there has been an interest in using the robot for more general surgical laparoscopic procedures as well as for thyroid surgery. Thyroid surgery procedures are excellent targets for robotic instrumentation when compared with the conventional endoscopic techniques, since it requires to work in a small space, significantly limiting the type of equipment that can be used. In spite of its deficiencies and unanswered questions especially about cost efectiveness, robotic technology seems to overcome the limitations of conventional laparoscopic technology in thyroid surgery.
The Da Vinci Surgical System consists of a ‘‘surgeon console’’ and a ‘‘surgical arm cart.’’. The surgical arm cart holds the robotic instruments and the endoscopic camera. The endoscope for the Da Vinci system is a specially designed 12 mm dual-camera endoscope that is capable of sending a 3D image to a specialized viewing screen in the console called the InSite Vision System. By looking into this 3D-image system, which eliminates all extraperipheral images other than those on the screen, the surgeon immerses himself in the operative field. The camera and instruments are both controlled by maneuvering the joysticks on the console. To alternate the digital handle’s control back and forth between control of the camera and control of the instruments, the surgeon taps a foot pedal at the base of the console. At the current time there are 18 different robotic instruments in the Da Vinci system, which are appropriately called ‘‘endowrist instruments.’’
Once immersed in the Da Vinci’s virtual field, the surgeon inserts his fingers into the handles, sits in an ergonomically correct position, and then maneuvers the endowrist instruments with up to 7 degrees freedom: yaw (side-to-side), pitch (up/down), insertion (in andout), grip, and three additional degrees of freedom provided by the second joint in the instrument tip. In effect, maneuvering the Da Vinci instruments is like miniaturizing your hands and wrists and placing them into cavities they normally could never fit into, thus permitting the performance of delicate, precise dissection and suturing in the smallest cavity—all through small skin incisions (Jacob BP& Gagner M,2004).
Once the system was on the market, Intuitive continued perfecting it, and the second generation—the da Vinci S—was released in 2006 (Figure 1). The latest version, the da Vinci Si became available in April 2009 with improved full HD camera system, advanced ergonomic features, and most importantly, the possibility to use two consoles for assisted surgery.
Master controllers and the patient side manipulators of the new Da Vinci Si surgical system. (Photo: Intuitive Surgical Inc.)
The Zeus Robotic Surgical System also has two components: the surgeon console and the robotic instrument arms connected by a computer interface that can filter tremor and adjust the movement and rotational scale of the instruments. Unlike the Da Vinci system, the Zeus robotic arms are not on a cart, but instead can be attached directly to the operating room table. A second difference between the Zeus and the Da Vinci is that the Zeus uses aoiceactivated camera control system called the AESOP Robotic Endoscope Positioner. Instead of requiring a special 12 mm endoscope as with the Da Vinci, the Zeus allows the use of routine 5 or 10 mm endoscopes with the AESOP arm. With this system the surgeon can continuously maneuver the camera’s position with simple voice commands like ‘‘camera in, camera out.’’ The third difference between the two robotic surgery systems is that currently the Zeus system uses robotic laparoscopic instruments that mimic the hand-held laparoscopic instruments, thus lacking the additional degrees of freedom that you would get with an ‘‘endorist’’ instrument tip designed to mimic the human hand. Like standard laparoscopic instruments, these current Zeus instruments have only 5 degrees of freedom.
As the robotic technology is advancing rapidly, the Zeus is already in its third phase of design and is now available with instruments called ‘‘Microwrist technology.’’ These new instruments, like the Da Vinci, have tips that offer a second joint mimicking the movementsof the human wrist. Because this technology has just become available, there are no studies or published results demonstrating their efficiency, but the ability to perform wrist-likearticulations inside the abdomen through small skin incisions is obviously promising.
The Zeus robot proved to be a solid platform to test and experiment different telesurgical scenarios. Between 1994 and 2003 the French Institut de Recherche contre les Cancers de l\'Appareil Digestif (IRCAD) (Strasbourg, France) and Computer Motion Inc. Worked together in several experiments to learn about the feasibility of long distance telesurgery and effects of latency, signal quality degradation (Fig. 2).
The Zeus robot during the first intercontinental surgery, the colecystectomy was performed on the patient in Strasbourg from New York. (Photo: IRCAD)
Each robotic system has been used for a large number of different surgical procedures. The Da Vincisurgical robot system provides a three dimensional field of view and a more accurate sense of perspective (Ballantyne et al., 2007, Hartmann et al., 2008,Jacobsen et al., 2004).Moreover, because this system can magnify target structures, it more easily enables the preservation of the parathyroid and recurrent laryngeal nerves. The robot arm can be driven in multi-angular motions with seven degrees freedom. This enables safe and complete central compartment node dissection in the deep and narrow operation space (Jacob et al.,2003). The hand-tremor filtration, the fine motion scaling, the negative motion reversal of the robot system (providing minute and precise manipulations of tissue), and the ergonomically designed console means that surgeons experience less fatigue (Gutt et al., 2004, Savitt et al.,2005, Link et al., 2006).
Despite these various advantages of the Da Vinci surgical robot system, it may prove cost inhibitive when factors such as general cost, fees of disposables, and maintenance are taken into consideration. Additionally, the large room space it requires may be another factor thatlimits its widespread use in thyroid surgery (Link et al., 2006).
The early surgical outcomes of robot-assisted endoscopic thyroidectomies were compared with the data for conventional open thyroidectomies. As described earlier, this transaxillary approach is a more time-consuming procedure than conventional open thyroidectomy. However,with accumulation of experience, the actual operation time is decreasing. The patients in the robotic group were highly selected for several reasons such as the expected risk group and the expensive operation fee, and the difference in operation method was expected. However, there was little difference in the retrieved lymph node numbers, postoperative hospital stays, and pain between the two groups. Moreover, the postoperative complications in the robotic group were somewhat fewer than in the conventional open thyroidectomy group.
Although robot-assisted endoscopic thyroid surgery showed cosmetic and various technical advantages for surgeons, the major concerns when a new treatment technique for malignant tumors is considered should be the safety and radicalness of the operation to prevent local recurrence and distant metastasis. The relative oncologic safety of endoscopic versus robot-assisted endoscopic thyroid surgery has not yet been established due to the newness of this technology. To prevent cancer cell dissemination and to minimize the possibility of local recurrence during endoscopic thyroidectomy, the safety of the operational methods and the degree of surgical skill are important. If the safety and radicalness of robotic thyroid surgery as a treatment for papillary thyroid microcarcinoma can be established by the performance of complete thyroidectomies with secure lymphadenectomies, then the application boundaries and development area of this technique can be gradually extended(Kang et al., 2009).
Over the last few decades, the field of magnetism has assumed a remarkable importance in the field of science and technology due to the development of new technologies. Such kind of technologies are based on the capability of control not only the electrical degree of freedom of electrons (charge) but also the magnetic nature associated with the intrinsic angular momentum of a given particle so-called spin [1].
For instance, in recent years, the scientific interest on the development of devices in the field of spintronic has been intensified. The performance of these devices depends on the spin polarization of the current used for information storage; i. e. the development of spintronic devices requires an effective way of control charge-based electronic properties by magnetic field, as well as of controlling the magnetic properties by electric currents [2, 3, 4].
In this context, multiferroic materials are essentially the best candidates due to the intrinsic multifunctional features associated with such class of compounds. In a general view, the most complete definition for these materials is based on two or more ferroic ordering (i.e. ferroelectricity, ferroelasticity, ferromagnetism, ferrotoroidicity) coupled in a single crystalline phase. Nowadays, the majority of studies are strictly focused on candidates that combine a magnetic order (ferromagnetism, antiferromagnetism) with ferroelectricity and are known as magnetoelectric multiferroics. The interest on multiferroic materials was rebirthed by theoretical reports about the scarcity of such compounds, which are also responsible for explain the unusual phenomena and successfully predict new candidates. The main advances addressed to such kind of materials are novel devices such as actuators, transducers and storage devices, as well as other potential applications including multiple state memories and novel memory media [5, 6, 7, 8, 9].
In order to clarify the unusual phenomena’s commonly observed in such complex materials, as well as to design new candidates with feasible properties, the understanding of magnetism in solid state materials plays a fundamental role due to the complexity of the so-called itinerant electrons commonly founded in transition metals.
In this chapter, we propose a theoretical point of view about the magnetism of Ilmenite and Corundum-ordered structures—widespread candidates for multiferroic and spintronic applications—focusing on the relation between crystalline and electronic structure associated with the ground state magnetic ordering attributed to the materials. The following sections are dedicated to explain the (i) magnetism in solid state materials, (ii) the magnetic ordering of Ilmenite and Corundum-ordered materials, and (iii) theoretical approaches to investigate magnetic solid state materials.
Magnetic materials are the ideal candidates for the consolidation of spintronic technology due to the high degree of freedom of the spin in these materials. Magnetism is one of the oldest and most fundamental scientific problems not completely clear until now. Numerous theories are proposed to explain the magnetic behavior of materials, as the well-known classical formalism where all substances have small magnets that align in certain directions depending on the chemical environment. Another theory is domain-based, where a magnetic domain represents a region with uniform magnetization, separated from other domains by well-defined boundaries. This theory allowed the observation of the Curie temperature (TC) above which the ferromagnetic domains become paramagnetic and the magnetism disappears [10, 11].
In the Quantum Theory of magnetism, the formalism is based on the quantum angular momentum of electron, so-called spin, associated with open-shell orbitals commonly founded in Transition Metals. In this way, the microscopic origin of the magnetism is the strong electron-electron interaction that arises from the chemical bond inside the crystalline structure. Moreover, the itinerant character associated with the magnetic moments can be localized or delocalized that originates dia- or paramagnetism in solid state materials. However, the collective magnetism in the perspective of ferromagnetism, antiferromagnetism and ferrimagnetism are the fundamental keys to overcome the main questions behind the solid state magnetic ordering [11] . A schematic overview about this kind of magnetic ordering is given in Figure 1.
Different collective arrangements of magnetic moments for ordered magnetic systems: (a) ferromagnets, (b) antiferromagnets, (c) ferrimagnets.
A ferromagnetic (FM—Figure 1a) material is characterized by a spontaneous magnetization even in the absence of a magnetic field. At T = 0 K all magnetic moments are parallel ordered due to the stronger exchange interaction between them, differently of paramagnetic species that exhibit non-interacting magnetic moments. The conventional magnetic transition metal elements with ferromagnetic ordering are Mn, Fe, Ni and Co, where Mn and Fe can also show antiferromagnetic order depending upon the crystalline structure. In addition, the thermal energy eventually overcomes the exchange the electronic exchange in ferromagnets, producing a randomizing effect where the saturation magnetization goes to zero due to the disorder associated with the magnetic moments. This occurs at a particular temperature called the Curie temperature (TC) [1].
On the other hand, antiferromagnetic materials (AFM—Figure 1b) show an antiparallel arrangement between neighboring magnetic moments. In this case, this ordering can be attributed to the existence of negative exchange interaction between the nearest neighbors, as well as for some lattices that can be divided in two ferromagnetic sublattices, which exhibit an antiferromagnetic ordering between them. This class of compounds is the most common magnetic materials in the nature and shows good perspectives regarding the technological applications. In this class, both metals (Mn2Au, FexMny and others) and semiconductors/insulators (NiO, Cr2O3, CoO, BiFeO3, MnF2 and others) are founded [12].
Ferrimagnetism represents an intermediate position between FM and AFM orderings. In this case, the simplest picture related to solid state materials can be understood by the assumption of two magnetic sublattices with antiparallel orientation but with different magnitude of each magnetization, resulting that the total magnetization does not vanish as for the antiferromagnetic case, as represented in Figure 1c. Magnetite (Fe3O4) is a well-known ferrimagnetic material, where the spins on the tetrahedral Fe A-sublattice are antiparallel to those on the octahedral Fe B-sublattice, resulting in a net magnetic moment for the B-site [11].
Let us now briefly introduce the concept of magnetic interactions, which are responsible for the collective ordering presented in Figure 1. In magnetic solid state materials different types of magnetic interaction can be observed, being responsible for intriguing properties associated to the fact that magnetic moments interact between them, enabling the long range magnetic ordering. In a general point of view, two main interactions are founded in solid state materials: direct and indirect. In the first case, the electrons of neighboring magnetic atoms directly interact through an overlap between atomic wave-functions called “direct exchange”. On the other hand, if the overlap of the involved wave functions is only small the direct exchange does not represent the dominating mechanism for magnetic properties because an additional atom act as a bridge between the magnetic centers, resulting in an indirect exchange interaction is responsible for magnetism. The representation of different kinds of magnetic interactions commonly founded in magnetic solid state materials is depicted in Figure 2.
Representation of magnetic interactions in solid state materials. (a) Bethe-Slater curve for direct coupling. (b) Indirect coupling between Mn3+ mediated by oxygen atoms in MnO. (c) Oxygen-mediated indirect double-exchange coupling for cations with distinct orbital occupations. (d) RKKY coupling and its dependence with the distance between the magnetic centers.
This type of coupling occurs when a direct overlap between the orbitals of adjacent magnetic sites is observed. The collective arrangement associated with the signal of direct coupling depends of the distance between species. At short distance the electrons tend to spend most of the time between the atoms giving rise to an antiparallel coupling due to the Pauli Exclusion Principle. However, at long distances the overlap between the orbital is reduced, inducing a minimization of potential energy for this interaction. This variation was named of Bethe-Slater curve, due to the elucidation of the behavior by these researchers. The representation of this curve is shown in Figure 2a [1, 11].
In this case the electrons located in the partially occupied orbitals are separated from the neighboring electrons by an atom or non-magnetic ligand. The coupling force is dependent on the amount of energy transferred between the levels and the Coulomb repulsion between these particles. Another important feature of this model is that the oxidation numbers for the magnetic cations must be equal or have a difference equal to two, so that there is no movement between the levels. This model is present in several materials, such as the MnO shown in Figure 2b [1, 11].
This coupling is quite similar to that previously mentioned; however the main difference lies in the movement of the electrons between the orbitals. As the oxidation numbers of the metals are different, in this case, the mismatched electrons of the A site can move to the B site, since it is possible to find unoccupied levels with the same spin orientation (Figure 2c) [1, 11].
The RKKY coupling was discovered by Ruderman, Kittel, Kasuya and Yosida (RKKY) and characterized as a long-range interaction. This type of coupling is very common in metals where the overlap between orbitals is minimal or zero, causing a polarized spin ion to induce a field on the conducting electrons of the neighboring atoms allowing a magnetic influence on a second polarized neighbor. As well as direct coupling, the orientation of neighbors is dependent on the distance between them as shown in Figure 2d. Another important feature of this class of magnetic couplings is the existence of effects such as Giant Magnetoresistance and Spin Tunneling that can be explained by the use of RKKY Hamiltonian [1, 11, 13, 14, 15].
The Goodenough-Kanamori-Anderson (GKA) rule describe the interatomic spin-spin interactions between two atoms considering the existence of a virtual electron transfers between them (superexchange) and/or between a shared anion (so-called “bridge”) and the two atoms. As consequence, in this rule atoms with orthogonal orbitals do not overlap reducing the repulsion between the electrons, following the Hund’s rule. Therefore, the exchange interaction between spins is positive and a ferromagnetic ordering arises.
In addition, the GKA rule predicts some interactions that depend on the occupation of interacting orbitals. In the first case, an antiferromagnetic interaction occurs when the virtual electron transfer is between half-filled orbitals. In opposition, they are ferromagnetic once the virtual electron transfer is from a half-filled to an empty/filled orbital.
The GKA rules are important due to the introduction of bond character in the evaluation of the magnetic interactions. It is important to point out that the net spin does not change with the covalent component associated with the chemical bonds; however this component can extends the cation wave function out because the interaction between the orbitals is large, resulting in chemical dependent ferromagnetic/antiferromagnetic couplings associated the superexchange electron transfer [16].
The Dzyaloshinskii-Moriya [17, 18, 19, 20] rule states that a low magnetic resultant is observed in antiferromagnetic material due to a long range interaction between magnetic atoms in disordered crystalline structures. This particular behavior is called weak-Ferromagnetism.
Perovskites oxides, which have the general formula ABO3, are widely studied by theoretical or experimental efforts because of the large variety of intriguing properties, such as ferroelectricity, piezoelectricity, multiferroism and others [21, 22, 23]. The interest in this kind of structure arise from the possibility of to control the existence of different properties from chemical substitution or doping on A- and B-sites [24]. For instance, a very common mineral on earth surface (FeTiO3) presents the ilmenite structure can shelter a high compositional diversity of A2+ and B4+ cations that occupy alternate basal-planes along the [001] hexagonal axis of a ordered corundum structure (R3) [25]. The most investigated ilmenite materials are based on Ti atoms in B sites with different atoms in A2+ (A = Mn, Fe, Ni, Co) cations; however, other materials were known in this structure [26, 27, 28, 29].
Goodenough and Stickler proved that the magnetic ordering of ilmenite materials, mainly ATiO3 (A = Mn, Fe, Ni, Co), are antiferromagnetic insulators and have two different magnetic couplings constants: Intralayer (J1) and Interlayers (J2), as shown in Figure 1. J1 refers to the magnetic exchange that happens between A-O-A atoms and is dominated by the coupling of a t2g orbital in one cation with an eg orbital in other. Therefore, the signal for exchange parameter depends upon the occupancies of the interacting orbitals making MnTiO3 antiferromagnetic and FeTiO3, CoTiO3, NiTiO3 ferromagnetic for intralayer coupling (J1). In turn, J2 interactions are mediated by the BO6 clusters in the intermetallic connection A-O-B-O-A, having less contribution of a direct overlap in [001] direction because of the vacancy in cationic sublattice (Figure 3) with opposite magnetization directions between adjacent A layers (antiferromagnetic) [25, 30].
Ilmenite-type conventional unit cell and their exchange coupling constants. Black, orange and red balls represent A2+, B4+ and O2− ions, respectively.
In Fe-based ilmenite materials the long-range exchange coupling (J2) stabilizes the antiferromagnetism; since J2 depends of intermetallic connection Fe-O-B-O-Fe, the non-magnetic B-site replacement can control such magnetic ordering. As previously discussed, the ilmenite structure arrangement creates vacancies between adjacent Fe2+ layers that are separated each other by a B-site plane. So, the interlayer magnetic coupling integral can be visualized as a direct coupling between 3d orbitals of adjacent Fe2+ cations. Furthermore, other evidence that the non-magnetic B-site substitution affects the magnetic ordering is: the vacancy formation occurs in this cationic sublattice and the direct exchange coupling depends on the distance.
This behavior was confirmed investigating the magnetic ground-state of FeBO3 (B = Ti, Zr, Hf, Si, Ge, Sn) materials by means of Density Functional Theory (DFT) calculations [31, 32]. Figure 4 shows the relative Energy between AFM and FM structures as function of ionic radii of B4+ site cations.
Energy difference (in meV) between AFM and FM configuration as function of B-site cation ionic radii (in Å).
From these results, it was observed that the FEM state is stabilized for ilmenite materials with large B-site metals (Sn, Hf, Zr); whereas, ilmenite cells contracted (Si, Ge, Ti) exhibit an AFM behavior. This result can be discussed as function of electronic repulsion between Fe2+ atoms 3d orbitals in different layers. In this case, we use the c-axis oriented to 3dz2 orbital, once the cationic vacancy induces a coupling in such direction. Therefore, the B-cation volume control the distance among different Fe2+ layers from an angular distortion in O-B-O bonds in axial plane, which causes an increase/decrease in B-O bond distances allowing a higher/lower interlayer distance between adjacent Fe2+ layers, affecting the signal of J, as represented in Figure 5.
Representation of electronic repulsion between adjacent Fe2+ layer in FeBO3 (B = Ti, Zr, Hf, Si, Ge, Sn) as function of ionic radius of B-site cation and its influence on magnetic ordering.
In addition, the interlayer coupling has an additional degree of freedom associated with the Fe-O-B-O-Fe intermetallic connection, which is the responsible to originate a long-range coupling. This behavior can be related to the large overlap between valence orbitals from transition metals and 2p oxygen orbitals, which strengthen the intermetallic connection and, consequently, it induces a large electronic repulsion among unpaired electrons stabilizing the AFM configuration from Pauli Exclusion Principle. In case of the moving from Ti to Hf, it was noted that only FeTiO3 shows a large contribution of 3d overlapped with O 2p orbital suggesting a higher overlap between these states providing strengthens in intermetallic connection that stabilizes AFM ground-state. In contrast, the smaller overlap between Zr(4d)/Hf(5d) and O(2p) orbitals allied to large Zr-O and Hf-O bond distances creates a smaller interlayer electronic repulsion responsible by FEM ordering.
Likewise, for FeBO3 (B = Si, Ge, Sn) ilmenite materials is expected a FM ordering due to the absence of d valence orbitals. Nevertheless, only Sn-based ilmenite has this configuration indicating a big effect of ionic radius and interlayer distance of the FeO6 clusters. The analysis of ionic radius and bond distance for FeBO3 (B = Si, Ge, Sn) materials shows that the increase in ionic radius from Si4+ to Sn4+ results entails on a large distancing among Fe2+ layers in intermetallic connection that drastically reduce the electronic repulsion and stabilize the FM configuration. The information obtained by these theoretical results demonstrates that the control of magnetic ordering in ilmenite materials is based on a complex relation between ionic radius and valence orbitals of the B-site non-magnetic metals.
The corundum ordered structure is most commonly called LiNbO3-type since this is the first material to present such crystalline phase. R3c materials are largely employed in development of memory devices, holographic data storage, electronic, electro-optical and optical devices, photo-induced devices and photocatalytic application due to a unique set of electronic, optical and ferroelectric properties usually observed for these materials. The first work on LiNbO3 (LNO) structure were reported in 1949 and discuss this new structure as a ilmenite type; [33] however, in 1952 such information were refuted by Bailey [34, 35] that obtained results proving that, at room conditions, the LNO crystallizes in a R3c group instead of a R3 group characteristic of ilmenite. In particular, LNO structure has an ABO3 general formula, lattice parameters a = b ≠ c and angles α = β = 90° and γ = 120°; the A and B cations are both surrounded by six O atoms forming two distorted octahedra. Some features of LiNbO3-type structure are: (i) high distortion degree for octahedra within structure (Figure 6a); (ii) alternation between the cations A and B cation and vacancies along the c axis (Figure 6b); (iii) highly compacted layer composed by O atoms; (iv) the presence of intrinsic ordering vacancies [36, 37, 38]. These features are the responsible for the high ferroelectric properties characteristic of this type of structure.
Crystalline structures of R3c structure showing the alternation between B, A and vacancies along z axis (a), [AO6] and [BO6] octahedra within structure (b) and magnetic coupling constant (J) for R3c structures (c).
The magnetism in this structure arises from unpaired electron from atoms occupying A or B sites within structure. In particular, the ground state spin ordering for materials in LiNbO3-type structure is determined by collinear interaction between layers in the structure and presents only one magnetic coupling constant (J) that refers to intralayer interaction (J) that occurs between M-O-M in the structure, where M is the magnetic cation in the structure (as observed in Figure 6c). At general, the magnetism in Solid State materials can be successfully described by Direct or Indirect interactions, Exchange interactions and Super Exchange interactions or Goodenough-Kanamori-Anderson (GKA) Rule; all of them, considers the unit cell magnetic resultant to determine the magnetism. However, the structural disorder makes such approaches not enough to predict the magnetism in R3c structures.
The magnetic properties for XNiO3 and NiXO3 (X = Ti, Ge, Zr, Sn, Hf and Pb) in R3c structures were evaluated by computational methodologies based on DFT [39, 40]. The obtained results for J for such materials were presented in Figure 7; as observed, TiNiO3, GeNiO3, ZrNiO3, PbNiO3, NiTiO3 and NiHfO3 are AFM and, as predicted by DMI interaction, are weak-ferromagnetic; whereas, the other materials are FM. The evaluation of structural properties for such materials evidences a connection between structural regularity and magnetic phase stability, according to the relation between the distortion degree (δ) between [AO6] and [BO6], as expressed by
Magnetic coupling constant (J) for XNiO3 and NiXO3 (X = Ti, Ge, Zr, Sn, Hf, Pb) materials. The red region refers to the AFM materials, while the blue range represents the FM systems.
Moreover, the theoretical investigation also provides information regarding to electronic levels of magnetic cations in XNiO3 and NiXO3. In these materials, FM and AFM ordering are originated from eg and t2g energy levels of Ni2+ cations localized on [NiO6] clusters. Furthermore, projected Density of States (DOS) clarifies why magnetic ordering is changed from chemical modifications. In particular, for AFM materials there are [NiO6] clusters magnetically ordered as α and β spins (Figure 8); structurally, these clusters are distributed by adjacent layers being each one oriented as one spin channel. Henceforth, α and β spins localized on eg energy levels are responsible to stabilize the AFM state.
DOS projected results for eg and t2g energy levels localized on Ni2+ in AFM and FM materials. The gray region represents the broken on degeneration of t2g energy levels.
However, how to understand the origin of the FM ordering in these materials? The existence of the FM ordering in materials is dependent on the spin orientation being in the same direction on all magnetic clusters. Thus, it is necessary to discuss the electronic configuration of the eg and t2g energy levels of Ni2+. The projected DOS prove that in FM materials were observed a displacement on degenerated t2g energy levels that creates two new groups of non-degenerated t2g energy levels (Figure 8). In particular, the lowest t2g energy levels and highest t2g energy levels are occupied by α and β spins, respectively. For all NiXO3 and XNiO3 materials the [NiO6] clusters have the same electronic configuration, i.e., five α spins and three β spins giving rise to FM state, where all magnetic clusters are clearly at same orientation.
Moreover, magnetic LNO-type materials have attracted the interest of materials scientist around the world in the last years as promising alternatives as smart and functional materials, mainly as multiferroic (MF) materials. The multiferroism consists on the coupling between magnetic ordering and some ferroic property in the same crystalline phase, but the main form of multiferroism is called of magnetoelectric (ME) coupling and are obtained by coupling between the magnetic ordering and ferroelectric properties. Consequently, electric polarization can be induced by a magnetic field or vice-versa.
The ME coupling was first reported in the first years of 1960s decade; thus, the study of this effect keep stable until that, in 2003, a strong coupling between ferroelectric and magnetic properties was observed for TbMnO3 and TbMn2O5 materials as well as a high ferroelectricity for BiFeO3 (BFO) films. Thenceforth, the study of MF materials increases drastically so that a fast search on Web of Science indicates at least 970 manuscripts focused in this class of material only in 2017. The investigation of multiferroic materials aims its application at development of several devices such as actuators, magnetic readers, sensors, tunneling and data storage devices. Moreover, MF materials are also potential alternatives for spintronics. The main representative of this class is the BFO; this material exhibits antiferromagnetic ordering as well as Magnetoelectric coupling at room conditions allied to a unique set of electronic, optical, magnetic and ferroelectric properties. In addition, other multiferroic materials were investigated by means of theoretical and experimental efforts, such as YMnO3, BiMnO3, PbNiO3 (PNO), FeTiO3; PbVO3, TbMnO3, TbMn2O5, Ca3CoMnO6, LuFe2O4, BaNiF4 and others [41].
Even that many multiferroic materials are currently known, the development of MF material is this kind of material is delayed by crystalline structure and low Curie temperature (TC); the first due to the fact that only 13 symmetry groups are able to exhibit multiferroic coupling, while the last makes its application impossible in technological purposes [42]. In a very restrict group of crystalline structures and, among then, are observed structures with lower and higher symmetry, such as P2/c, P-1, perovskite, ilmenite (R3) and LiNbO3-type structures (R3c). It is important to highlight that the R3c structure is the most common structure observed in known multiferroic materials, such as BFO, PNO, YMnO3, BiMnO3 and TbMnO3.
Historically, the investigation of new materials aiming technological applications was a hard task that needed a long time of study. In this period, the theoretical-computational method was seen only as tool to study of materials already discovered. Front of the fact that the technological advance is extremely dependent on development of new materials, theoretical methods helped materials chemists and physicist on development materials at higher speed. Ever since, theoretical methods based on quantum mechanical simulations are an important tool to evaluate material properties, mainly at the molecular level [43].
Nowadays, innumerous theoretical methods are available; however, in the last 30 years the Density Functional Theory (DFT) changes the world offering the best relation between the results precision and study time [44]. Another factor responsible for wide use of this theory is the high versatility, once presents good results to investigation of magnetic materials, semiconductors, proteins, organic compounds and others [45].
Several computational approaches can be applied to evaluation of materials properties; for instance: Molecular Dynamics (MD), ab initio methods and Semi-Empirical Methods. The MD analyzes the system properties based on the behavior of ball-and-springs models under application of an Force external field to atoms representation, while ab initio and Semi-empirical methodologies uses different approaches to solve the Schrödinger Equation and to obtain the system Wave-function (Ψ). In turn, DFT assumes that the system Total Energy is a unique functional of electronic density; this methodology can be simplified in two postulates: [46].
The ground state properties for a system can be exactly and completely determined by the Density Functional (ρ), which is only dependent of three variables that determines the position (x, y and z).
Any try function for electronic density will have energy greater or equal than the ground state energy for a real system.
However, the analytical function for electronic density is not known; thus, the electronic density is obtained by Hartree-Fock Equations (HF) for achievement of ρ by a Self Consistent Field (SCF) Method. Although this similarity was observed, the DFT shows a highest precision and computational cost in relation to HF simulations due to smaller number of variable. The HF and Semi-Empirical methods employ a number of variables in the 4n order, where n refers to the number of electrons in the system; whereas, the DFT is dependent on three variables [43, 44].
The DFT formulism was proposed by Kohn and Shan (KS) in 1965 and consists in two equations applied on two different systems; such systems consider that there are no or there are interactions between electrons, respectively. The results for both systems show a significant difference of energy between then, and, aiming to correct this difference, the Exchange-correlation Term (EXC) was inserted in DFT proposed. The EXC is the sum of kinetic and potential energy difference between both systems. The physical meaning of EXC is the interaction between electrons in the investigated system and refers to 1% of system Total Energy; due to this, DFT describes 100% of system Total Energy.
The description of EXC terms changes according to employed exchange-correlation functional and, hence, the choice of a functional has a giant effect on materials properties evaluation, as offering better results as offering a reduction in computational cost. Among the EXC functional stands out local (LDA and LSDA), non-local (pure GGA, PBE) and hybrid (PBE0, B3PW91, B3LYP, HSE06) types; the last represents the most powerful alternative to predict materials project.
The DFT is widely used on materials modeling since offers an excellent relation time x efficiency, as denoted by results precision on prevision of materials properties in a short time. For instance, a DFT methodology provides thermodynamic properties for bulk or surfaces of materials directly or using some additional approach as Berry Phase [47, 48] or Bulk Modulus [49, 50]. In turn, in Solid State materials the magnetic interactions are usually described by the Heisenberg Hamiltonian; however, in computer simulations this approach cannot be used because later determinant is not an eigenstate of such Hamiltonian. Thus, it is necessary the application of the Ising model which possibilities the evaluation of J magnetic coupling constant and ground-state magnetic ordering for simple and complex magnetic structure since using the energy difference between AFM and FM magnetic states since the unpaired electrons are well defined in the model Eq. (1). The Ising Model is described by Eq. (2), where N refers to number of magnetic cations in unit cell, Z is the number of magnetic neighbors and Sx represents the spin charge for each magnetic atom in unit cell. Both Eqs. (1) and (2) are combined in Eq. (3). The application of Ising Model was performed after the structural optimization of magnetic materials and requires that the spin orientation of unpaired electrons is well defined in the model. The Ising Model is described by Eqs. (1) and (2), where N refers to number of magnetic cations in unit cell, Z is the number of magnetic neighbors and Sx represents the spin charge for each magnetic atom in unit cell. The application of Ising Model was performed after the structural optimization of magnetic materials and requires that the spin orientation of unpaired electrons is well defined in the model. Plus, in materials with more than one magnetic and not reproductive site, the Ising model should be applied to each magnetic ordering and thus, applied to ground-state model.
The Ising Model methodology to prevision of magnetic properties of Solid State materials was employed by Ribeiro and coauthors [51], Chartier and coauthors [52], Feng and Harrison [53] and Lacerda and de Lazaro [39] to investigate materials and different crystalline structures proving the efficiency of this approach. The high efficiency and almost direct measurement offered by Ising Model indicates it as the best theoretical approach to investigation of magnetic solid state materials.
In this chapter, the role of Density Functional Theory calculations for strongly correlated materials was summarized, focusing in the description of the ground-state magnetic ordering for solid state materials, in particular ATiO3 (A = Ti, Zr, Hf, Si, Ge, Sn) ilmenite derivatives and corundum ordered XNiO3 and NiXO3 (X = Ti, Ge, Zr, Sn, Hf and Pb) materials. A review about the theories behind the magnetism in solid state materials was presented in order to clarify the contribution of collective magnetic ordering, local structure and exchange interactions.
In case of ilmenite ATiO3 derivatives, the local structure associated with the magnetic ordering of Fe2+ layers was systematic investigated from theoretical calculations, resulting in chemical dependent interactions depending upon the interlayer distance (B-site cation volume) and orbital-resolved electron transfer. The summation between this analysis was helpful to predict new ferromagnetic materials such as FeSnO3, FeZrO3 and FeHfO3.
Additionally, for corundum ordered XNiO3 and NiXO3 (X = Ti, Ge, Zr, Sn, Hf and Pb) materials the theoretical results indicates that the magnetic ordering is: (i) dependent on structural distortion in [XO6] and [NiO6] clusters; (ii) arise from Ni t2g and eg not conventional energy degeneration and (iii) even antiferromagnetic materials presents a magnetic resultant in consequence of structural distortion characteristic of R3c structure. The employment of theoretical approaches based on DFT possibilities the proposal of new material to technological purpose based in the magnetism as well as provides a complete description of magnetic, structural and electronic properties in a short time period.
Despite the challenge dealing with magnetic materials, theoretical simulations, mainly DFT-based, can be used to clarify the unusual phenomena’s commonly observed in such materials, as well as to predict new candidates with singular properties, improving the perspective of materials design.
Book - collection of Works distributed in a book format, whose selection, coordination, preparation, and arrangement has been performed and published by IntechOpen, and in which the Work is included in its entirety in an unmodified form along with one or more other contributions, each constituting separate and independent sections, but together assembled into a collective whole.
",metaTitle:"Attribution Policy",metaDescription:"DEFINITION OF TERMS",metaKeywords:null,canonicalURL:"/page/attribution-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"Work - a book Chapter (as well as Conference Papers), including any and all content, graphics, images and/or other materials forming part of, or accompanying, the Chapter/Conference Paper.
\\n\\nAttribution – appropriate credit for the used Work or book.
\\n\\nCreative Commons licenses – enable licensors to retain copyright while allowing others to use their Works in an appropriate way.
\\n\\nWith the purpose of protecting Authors' copyright and the transparent reuse of OA (Open Access) content, IntechOpen has developed Rules of Attribution of Works licensed under Creative Commons licenses.
\\n\\nIn case you reuse or republish any of the Works licensed under CC licenses, you must abide by the guidelines outlined below:
\\n\\nAll rights to Books and other compilations published on the IntechOpen platform and in print are reserved by IntechOpen. The Copyright to Books and other compilations is subject to a separate Copyright from any that exists in the included Works.
\\n\\nA Book in its entirety or a significant part of a Book cannot be translated freely without specific written consent by the publisher. Further information can be obtained at permissions@intechopen.com.
\\n\\nIn instances where permission is obtained from the publisher for reusing or republishing the Book, or significant parts of the Book, all of the following conditions apply:
\\n\\nEvery single Work that is used has to be attributed in the way described. If you are unsure about proper attribution, please write to permissions@intechopen.com.
\\n\\nIndividual Works originally published in IntechOpen books are licensed under Creative Commons licenses and can be freely used under terms of the respective CC license, if properly attributed. In order to properly attribute the Work you must respect all the conditions outlined below:
\\n\\nEvery single Work that is used has to be attributed in the way as described. If you are unsure about proper attribution, please contact Us at permissions@intechopen.com.
\\n\\nIn the event that you use more than one of IntechOpen's Works published in one or more books (but not a significant part of the book that is under separate Copyright), each of these have to be properly attributed in the way described.
\\n\\nIntechOpen does not have any claims on newly created copyrighted Works, but the Works originally published by IntechOpen must be properly attributed.
\\n\\nAll these rules apply to BOTH online and offline use.
\\n\\nParts of the Rules of Attribution are based on Work Attributing Creative Commons Materials published by the Australian Research Council Centre of Excellence for Creative Industries and Innovation, in partnership with Creative Commons Australia, which can be found at creativecommons.org.au licensed under Creative Commons Attribution 2.5 Australia license, and Best practices for attribution published by Creative Commons, which can be found at wiki.creativecommons.org under the Creative Commons Attribution 4.0 license.
\\n\\nAll the above rules are subject to change, IntechOpen reserves the right to take appropriate action if any of the conditions outlined above are not met.
\\n\\nPolicy last updated: 2016-06-09
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Work - a book Chapter (as well as Conference Papers), including any and all content, graphics, images and/or other materials forming part of, or accompanying, the Chapter/Conference Paper.
\n\nAttribution – appropriate credit for the used Work or book.
\n\nCreative Commons licenses – enable licensors to retain copyright while allowing others to use their Works in an appropriate way.
\n\nWith the purpose of protecting Authors' copyright and the transparent reuse of OA (Open Access) content, IntechOpen has developed Rules of Attribution of Works licensed under Creative Commons licenses.
\n\nIn case you reuse or republish any of the Works licensed under CC licenses, you must abide by the guidelines outlined below:
\n\nAll rights to Books and other compilations published on the IntechOpen platform and in print are reserved by IntechOpen. The Copyright to Books and other compilations is subject to a separate Copyright from any that exists in the included Works.
\n\nA Book in its entirety or a significant part of a Book cannot be translated freely without specific written consent by the publisher. Further information can be obtained at permissions@intechopen.com.
\n\nIn instances where permission is obtained from the publisher for reusing or republishing the Book, or significant parts of the Book, all of the following conditions apply:
\n\nEvery single Work that is used has to be attributed in the way described. If you are unsure about proper attribution, please write to permissions@intechopen.com.
\n\nIndividual Works originally published in IntechOpen books are licensed under Creative Commons licenses and can be freely used under terms of the respective CC license, if properly attributed. In order to properly attribute the Work you must respect all the conditions outlined below:
\n\nEvery single Work that is used has to be attributed in the way as described. If you are unsure about proper attribution, please contact Us at permissions@intechopen.com.
\n\nIn the event that you use more than one of IntechOpen's Works published in one or more books (but not a significant part of the book that is under separate Copyright), each of these have to be properly attributed in the way described.
\n\nIntechOpen does not have any claims on newly created copyrighted Works, but the Works originally published by IntechOpen must be properly attributed.
\n\nAll these rules apply to BOTH online and offline use.
\n\nParts of the Rules of Attribution are based on Work Attributing Creative Commons Materials published by the Australian Research Council Centre of Excellence for Creative Industries and Innovation, in partnership with Creative Commons Australia, which can be found at creativecommons.org.au licensed under Creative Commons Attribution 2.5 Australia license, and Best practices for attribution published by Creative Commons, which can be found at wiki.creativecommons.org under the Creative Commons Attribution 4.0 license.
\n\nAll the above rules are subject to change, IntechOpen reserves the right to take appropriate action if any of the conditions outlined above are not met.
\n\nPolicy last updated: 2016-06-09
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:null},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5319},{group:"region",caption:"Middle and South America",value:2,count:4830},{group:"region",caption:"Africa",value:3,count:1469},{group:"region",caption:"Asia",value:4,count:9372},{group:"region",caption:"Australia and Oceania",value:5,count:837},{group:"region",caption:"Europe",value:6,count:14789}],offset:12,limit:12,total:108347},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"24"},books:[{type:"book",id:"8213",title:"Audio Signal Processing",subtitle:null,isOpenForSubmission:!0,hash:"95a662956526e566e5885e68c1d500ed",slug:null,bookSignature:"Dr. Carlos M. Manuel Travieso-Gonzalez",coverURL:"https://cdn.intechopen.com/books/images_new/8213.jpg",editedByType:null,editors:[{id:"27170",title:"Dr.",name:"Carlos M.",surname:"Travieso-Gonzalez",slug:"carlos-m.-travieso-gonzalez",fullName:"Carlos M. Travieso-Gonzalez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9173",title:"Moving Broadband Mobile Communications Forward - Intelligent Technologies for 5G and Beyond",subtitle:null,isOpenForSubmission:!0,hash:"650198e6e9da2a9a52d8e67b63ccd832",slug:null,bookSignature:"Dr. Abdelfatteh Haidine",coverURL:"https://cdn.intechopen.com/books/images_new/9173.jpg",editedByType:null,editors:[{id:"187242",title:"Dr.",name:"Abdelfatteh",surname:"Haidine",slug:"abdelfatteh-haidine",fullName:"Abdelfatteh Haidine"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9174",title:"Product Design",subtitle:null,isOpenForSubmission:!0,hash:"3510bacbbf4d365e97510bf962652de1",slug:null,bookSignature:"Prof. Catalin Alexandru, Dr. Codruta Jaliu and Dr. Mihai Comsit",coverURL:"https://cdn.intechopen.com/books/images_new/9174.jpg",editedByType:null,editors:[{id:"2767",title:"Prof.",name:"Catalin",surname:"Alexandru",slug:"catalin-alexandru",fullName:"Catalin Alexandru"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9175",title:"Electronic Test Equipment",subtitle:null,isOpenForSubmission:!0,hash:"5182fd53f93f6a080ea6b3b626949656",slug:null,bookSignature:"Dr. Zdravko Stanimirović and Dr. Ivanka Stanimirović",coverURL:"https://cdn.intechopen.com/books/images_new/9175.jpg",editedByType:null,editors:[{id:"3421",title:"Dr.",name:"Zdravko",surname:"Stanimirović",slug:"zdravko-stanimirovic",fullName:"Zdravko Stanimirović"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9179",title:"Environmental Technology",subtitle:null,isOpenForSubmission:!0,hash:"a73e0e26206427758bda9485aa3f49ab",slug:null,bookSignature:"Dr. Murat Eyvaz, Dr. Ercan Gürbulak and Prof. Ebubekir Yüksel",coverURL:"https://cdn.intechopen.com/books/images_new/9179.jpg",editedByType:null,editors:[{id:"170083",title:"Dr.",name:"Murat",surname:"Eyvaz",slug:"murat-eyvaz",fullName:"Murat Eyvaz"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9889",title:"Low-temperature Technologies",subtitle:null,isOpenForSubmission:!0,hash:"626a4014a52270ca4f96e9725d639887",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/9889.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9895",title:"Electronic Nose and Electronic Tongue",subtitle:null,isOpenForSubmission:!0,hash:"4aa2c914c61467ea6c38046a56c24c4b",slug:null,bookSignature:"Dr. Chatchawal Wongchoosuk and Dr. Kriengkri Timsorn",coverURL:"https://cdn.intechopen.com/books/images_new/9895.jpg",editedByType:null,editors:[{id:"34521",title:"Dr.",name:"Chatchawal",surname:"Wongchoosuk",slug:"chatchawal-wongchoosuk",fullName:"Chatchawal Wongchoosuk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9915",title:"Scientometrics",subtitle:null,isOpenForSubmission:!0,hash:"f0d545147926979456e6d0564ab60552",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/9915.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9917",title:"New Frontiers in Wearable Technologies",subtitle:null,isOpenForSubmission:!0,hash:"20f07b48960c9e77c8b043adb00b555e",slug:null,bookSignature:"Dr. Nawaz Mohamudally",coverURL:"https://cdn.intechopen.com/books/images_new/9917.jpg",editedByType:null,editors:[{id:"119486",title:"Dr.",name:"Nawaz",surname:"Mohamudally",slug:"nawaz-mohamudally",fullName:"Nawaz Mohamudally"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9922",title:"Home Automation",subtitle:null,isOpenForSubmission:!0,hash:"1cd3259fe2cd701175487daebb7b6ed7",slug:null,bookSignature:"Dr. Adel El-Shahat",coverURL:"https://cdn.intechopen.com/books/images_new/9922.jpg",editedByType:null,editors:[{id:"193331",title:"Dr.",name:"Adel",surname:"El-Shahat",slug:"adel-el-shahat",fullName:"Adel El-Shahat"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10089",title:"Microwave Heating",subtitle:null,isOpenForSubmission:!0,hash:"d8e66302378f11958f6d93fb114f9dc8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10089.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10090",title:"Altimetry",subtitle:null,isOpenForSubmission:!0,hash:"fe0278e410b32fe87c33e6e930c70c3c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10090.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:35},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:36},{group:"topic",caption:"Business, Management and Economics",value:7,count:10},{group:"topic",caption:"Chemistry",value:8,count:30},{group:"topic",caption:"Computer and Information Science",value:9,count:25},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:70},{group:"topic",caption:"Environmental Sciences",value:12,count:13},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:38},{group:"topic",caption:"Mathematics",value:15,count:14},{group:"topic",caption:"Medicine",value:16,count:137},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:7},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:8},{group:"topic",caption:"Physics",value:20,count:20},{group:"topic",caption:"Psychology",value:21,count:2},{group:"topic",caption:"Robotics",value:22,count:6},{group:"topic",caption:"Social Sciences",value:23,count:13},{group:"topic",caption:"Technology",value:24,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4},{group:"topic",caption:"Insectology",value:39,count:1},{group:"topic",caption:"Genesiology",value:300,count:1},{group:"topic",caption:"Machine Learning and Data Mining",value:521,count:1},{group:"topic",caption:"Intelligent System",value:535,count:1}],offset:12,limit:12,total:14},popularBooks:{featuredBooks:[{type:"book",id:"7640",title:"Perspective of Carbon Nanotubes",subtitle:null,isOpenForSubmission:!1,hash:"8b85a9957fad5206369eadf0c1ffa27d",slug:"perspective-of-carbon-nanotubes",bookSignature:"Hosam El-Din Saleh and Said Moawad Mohamed El-Sheikh",coverURL:"https://cdn.intechopen.com/books/images_new/7640.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam El-Din",middleName:"M.",surname:"Saleh",slug:"hosam-el-din-saleh",fullName:"Hosam El-Din Saleh"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7583",title:"Advanced Computational Fluid Dynamics for Emerging Engineering Processes",subtitle:"Eulerian vs. Lagrangian",isOpenForSubmission:!1,hash:"896509fa2e7e659811bffd0f9779ca9d",slug:"advanced-computational-fluid-dynamics-for-emerging-engineering-processes-eulerian-vs-lagrangian",bookSignature:"Albert S. Kim",coverURL:"https://cdn.intechopen.com/books/images_new/7583.jpg",editors:[{id:"21045",title:"Prof.",name:"Albert S.",middleName:null,surname:"Kim",slug:"albert-s.-kim",fullName:"Albert S. Kim"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7839",title:"Malaria",subtitle:null,isOpenForSubmission:!1,hash:"91cde4582ead884cb0f355a19b67cd56",slug:"malaria",bookSignature:"Fyson H. Kasenga",coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7698",title:"Educational Psychology",subtitle:"Between Certitudes and Uncertainties",isOpenForSubmission:!1,hash:"740943e2d029253e777150e98ebe2f0d",slug:"educational-psychology-between-certitudes-and-uncertainties",bookSignature:"Victori?a Trif",coverURL:"https://cdn.intechopen.com/books/images_new/7698.jpg",editors:[{id:"201656",title:"Ph.D.",name:"Victorița",middleName:null,surname:"Trif",slug:"victorita-trif",fullName:"Victorița Trif"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7000",title:"Legume Crops",subtitle:"Characterization and Breeding for Improved Food Security",isOpenForSubmission:!1,hash:"4d0f73bf883bbb984cc2feef1259a9a7",slug:"legume-crops-characterization-and-breeding-for-improved-food-security",bookSignature:"Mohamed Ahmed El-Esawi",coverURL:"https://cdn.intechopen.com/books/images_new/7000.jpg",editors:[{id:"191770",title:"Dr.",name:"Mohamed A.",middleName:null,surname:"El-Esawi",slug:"mohamed-a.-el-esawi",fullName:"Mohamed A. El-Esawi"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7093",title:"Pneumothorax",subtitle:null,isOpenForSubmission:!1,hash:"0b1fdb8bb0448f48c2f234753898f3f8",slug:"pneumothorax",bookSignature:"Khalid Amer",coverURL:"https://cdn.intechopen.com/books/images_new/7093.jpg",editors:[{id:"63412",title:"Dr.",name:"Khalid",middleName:null,surname:"Amer",slug:"khalid-amer",fullName:"Khalid Amer"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7612",title:"Electrospinning and Electrospraying",subtitle:"Techniques and Applications",isOpenForSubmission:!1,hash:"77e9708250507395a4bea2c17d012982",slug:"electrospinning-and-electrospraying-techniques-and-applications",bookSignature:"Sajjad Haider and Adnan Haider",coverURL:"https://cdn.intechopen.com/books/images_new/7612.jpg",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8323",title:"Traditional and Complementary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"60eadb1783d9bba245687adf284d4871",slug:"traditional-and-complementary-medicine",bookSignature:"Cengiz Mordeniz",coverURL:"https://cdn.intechopen.com/books/images_new/8323.jpg",editors:[{id:"214664",title:"Associate Prof.",name:"Cengiz",middleName:null,surname:"Mordeniz",slug:"cengiz-mordeniz",fullName:"Cengiz Mordeniz"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7646",title:"Scientometrics Recent Advances",subtitle:null,isOpenForSubmission:!1,hash:"86bbdd04d7e80be14283d44969d1cc32",slug:"scientometrics-recent-advances",bookSignature:"Suad Kunosic and Enver Zerem",coverURL:"https://cdn.intechopen.com/books/images_new/7646.jpg",editors:[{id:"88678",title:"Prof.",name:"Suad",middleName:null,surname:"Kunosic",slug:"suad-kunosic",fullName:"Suad Kunosic"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8516",title:"Metacognition in Learning",subtitle:null,isOpenForSubmission:!1,hash:"5fa6eaad7b509b8b7ec5124d79e5f605",slug:"metacognition-in-learning",bookSignature:"Nosisi Feza",coverURL:"https://cdn.intechopen.com/books/images_new/8516.jpg",editors:[{id:"261665",title:"Prof.",name:"Nosisi",middleName:"N.",surname:"Feza",slug:"nosisi-feza",fullName:"Nosisi Feza"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7404",title:"Hysteresis of Composites",subtitle:null,isOpenForSubmission:!1,hash:"8540fa2378dbb92e50411cfebfb853a6",slug:"hysteresis-of-composites",bookSignature:"Li Longbiao",coverURL:"https://cdn.intechopen.com/books/images_new/7404.jpg",editors:[{id:"260011",title:"Dr.",name:"Li",middleName:null,surname:"Longbiao",slug:"li-longbiao",fullName:"Li Longbiao"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7878",title:"Advances in Extracorporeal Membrane Oxygenation",subtitle:"Volume 3",isOpenForSubmission:!1,hash:"f95bf990273d08098a00f9a1c2403cbe",slug:"advances-in-extracorporeal-membrane-oxygenation-volume-3",bookSignature:"Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/7878.jpg",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4407},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7640",title:"Perspective of Carbon Nanotubes",subtitle:null,isOpenForSubmission:!1,hash:"8b85a9957fad5206369eadf0c1ffa27d",slug:"perspective-of-carbon-nanotubes",bookSignature:"Hosam El-Din Saleh and Said Moawad Mohamed El-Sheikh",coverURL:"https://cdn.intechopen.com/books/images_new/7640.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam El-Din",middleName:"M.",surname:"Saleh",slug:"hosam-el-din-saleh",fullName:"Hosam El-Din Saleh"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7583",title:"Advanced Computational Fluid Dynamics for Emerging Engineering Processes",subtitle:"Eulerian vs. Lagrangian",isOpenForSubmission:!1,hash:"896509fa2e7e659811bffd0f9779ca9d",slug:"advanced-computational-fluid-dynamics-for-emerging-engineering-processes-eulerian-vs-lagrangian",bookSignature:"Albert S. Kim",coverURL:"https://cdn.intechopen.com/books/images_new/7583.jpg",editors:[{id:"21045",title:"Prof.",name:"Albert S.",middleName:null,surname:"Kim",slug:"albert-s.-kim",fullName:"Albert S. Kim"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7839",title:"Malaria",subtitle:null,isOpenForSubmission:!1,hash:"91cde4582ead884cb0f355a19b67cd56",slug:"malaria",bookSignature:"Fyson H. Kasenga",coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7698",title:"Educational Psychology",subtitle:"Between Certitudes and Uncertainties",isOpenForSubmission:!1,hash:"740943e2d029253e777150e98ebe2f0d",slug:"educational-psychology-between-certitudes-and-uncertainties",bookSignature:"Victori?a Trif",coverURL:"https://cdn.intechopen.com/books/images_new/7698.jpg",editors:[{id:"201656",title:"Ph.D.",name:"Victorița",middleName:null,surname:"Trif",slug:"victorita-trif",fullName:"Victorița Trif"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7000",title:"Legume Crops",subtitle:"Characterization and Breeding for Improved Food Security",isOpenForSubmission:!1,hash:"4d0f73bf883bbb984cc2feef1259a9a7",slug:"legume-crops-characterization-and-breeding-for-improved-food-security",bookSignature:"Mohamed Ahmed El-Esawi",coverURL:"https://cdn.intechopen.com/books/images_new/7000.jpg",editors:[{id:"191770",title:"Dr.",name:"Mohamed A.",middleName:null,surname:"El-Esawi",slug:"mohamed-a.-el-esawi",fullName:"Mohamed A. El-Esawi"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7093",title:"Pneumothorax",subtitle:null,isOpenForSubmission:!1,hash:"0b1fdb8bb0448f48c2f234753898f3f8",slug:"pneumothorax",bookSignature:"Khalid Amer",coverURL:"https://cdn.intechopen.com/books/images_new/7093.jpg",editors:[{id:"63412",title:"Dr.",name:"Khalid",middleName:null,surname:"Amer",slug:"khalid-amer",fullName:"Khalid Amer"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7612",title:"Electrospinning and Electrospraying",subtitle:"Techniques and Applications",isOpenForSubmission:!1,hash:"77e9708250507395a4bea2c17d012982",slug:"electrospinning-and-electrospraying-techniques-and-applications",bookSignature:"Sajjad Haider and Adnan Haider",coverURL:"https://cdn.intechopen.com/books/images_new/7612.jpg",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8323",title:"Traditional and Complementary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"60eadb1783d9bba245687adf284d4871",slug:"traditional-and-complementary-medicine",bookSignature:"Cengiz Mordeniz",coverURL:"https://cdn.intechopen.com/books/images_new/8323.jpg",editors:[{id:"214664",title:"Associate Prof.",name:"Cengiz",middleName:null,surname:"Mordeniz",slug:"cengiz-mordeniz",fullName:"Cengiz Mordeniz"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7646",title:"Scientometrics Recent Advances",subtitle:null,isOpenForSubmission:!1,hash:"86bbdd04d7e80be14283d44969d1cc32",slug:"scientometrics-recent-advances",bookSignature:"Suad Kunosic and Enver Zerem",coverURL:"https://cdn.intechopen.com/books/images_new/7646.jpg",editors:[{id:"88678",title:"Prof.",name:"Suad",middleName:null,surname:"Kunosic",slug:"suad-kunosic",fullName:"Suad Kunosic"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8516",title:"Metacognition in Learning",subtitle:null,isOpenForSubmission:!1,hash:"5fa6eaad7b509b8b7ec5124d79e5f605",slug:"metacognition-in-learning",bookSignature:"Nosisi Feza",coverURL:"https://cdn.intechopen.com/books/images_new/8516.jpg",editors:[{id:"261665",title:"Prof.",name:"Nosisi",middleName:"N.",surname:"Feza",slug:"nosisi-feza",fullName:"Nosisi Feza"}],productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7698",title:"Educational Psychology",subtitle:"Between Certitudes and Uncertainties",isOpenForSubmission:!1,hash:"740943e2d029253e777150e98ebe2f0d",slug:"educational-psychology-between-certitudes-and-uncertainties",bookSignature:"Victori?a Trif",coverURL:"https://cdn.intechopen.com/books/images_new/7698.jpg",editedByType:"Edited by",editors:[{id:"201656",title:"Ph.D.",name:"Victorița",middleName:null,surname:"Trif",slug:"victorita-trif",fullName:"Victorița Trif"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8747",title:"Asphalt and Asphalt Mixtures",subtitle:null,isOpenForSubmission:!1,hash:"6083f7c9881029f1e033a1e512af7e20",slug:"asphalt-and-asphalt-mixtures",bookSignature:"Haitao Zhang",coverURL:"https://cdn.intechopen.com/books/images_new/8747.jpg",editedByType:"Edited by",editors:[{id:"260604",title:"Prof.",name:"Haitao",middleName:null,surname:"Zhang",slug:"haitao-zhang",fullName:"Haitao Zhang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8516",title:"Metacognition in Learning",subtitle:null,isOpenForSubmission:!1,hash:"5fa6eaad7b509b8b7ec5124d79e5f605",slug:"metacognition-in-learning",bookSignature:"Nosisi Feza",coverURL:"https://cdn.intechopen.com/books/images_new/8516.jpg",editedByType:"Edited by",editors:[{id:"261665",title:"Prof.",name:"Nosisi",middleName:"N.",surname:"Feza",slug:"nosisi-feza",fullName:"Nosisi Feza"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7000",title:"Legume Crops",subtitle:"Characterization and Breeding for Improved Food Security",isOpenForSubmission:!1,hash:"4d0f73bf883bbb984cc2feef1259a9a7",slug:"legume-crops-characterization-and-breeding-for-improved-food-security",bookSignature:"Mohamed Ahmed El-Esawi",coverURL:"https://cdn.intechopen.com/books/images_new/7000.jpg",editedByType:"Edited by",editors:[{id:"191770",title:"Dr.",name:"Mohamed A.",middleName:null,surname:"El-Esawi",slug:"mohamed-a.-el-esawi",fullName:"Mohamed A. El-Esawi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8292",title:"Oral Health by Using Probiotic Products",subtitle:null,isOpenForSubmission:!1,hash:"327e750e83634800ace02fe62607c21e",slug:"oral-health-by-using-probiotic-products",bookSignature:"Razzagh Mahmoudi",coverURL:"https://cdn.intechopen.com/books/images_new/8292.jpg",editedByType:"Edited by",editors:[{id:"245925",title:"Dr.",name:"Razzagh",middleName:null,surname:"Mahmoudi",slug:"razzagh-mahmoudi",fullName:"Razzagh Mahmoudi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8323",title:"Traditional and Complementary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"60eadb1783d9bba245687adf284d4871",slug:"traditional-and-complementary-medicine",bookSignature:"Cengiz Mordeniz",coverURL:"https://cdn.intechopen.com/books/images_new/8323.jpg",editedByType:"Edited by",editors:[{id:"214664",title:"Associate Prof.",name:"Cengiz",middleName:null,surname:"Mordeniz",slug:"cengiz-mordeniz",fullName:"Cengiz Mordeniz"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8347",title:"Computer Architecture in Industrial, Biomechanical and Biomedical Engineering",subtitle:null,isOpenForSubmission:!1,hash:"3d7024a8d7d8afed093c9c79ec31f15a",slug:"computer-architecture-in-industrial-biomechanical-and-biomedical-engineering",bookSignature:"Lulu Wang and Liandong Yu",coverURL:"https://cdn.intechopen.com/books/images_new/8347.jpg",editedByType:"Edited by",editors:[{id:"257388",title:"Dr.",name:"Lulu",middleName:null,surname:"Wang",slug:"lulu-wang",fullName:"Lulu Wang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7583",title:"Advanced Computational Fluid Dynamics for Emerging Engineering Processes",subtitle:"Eulerian vs. Lagrangian",isOpenForSubmission:!1,hash:"896509fa2e7e659811bffd0f9779ca9d",slug:"advanced-computational-fluid-dynamics-for-emerging-engineering-processes-eulerian-vs-lagrangian",bookSignature:"Albert S. Kim",coverURL:"https://cdn.intechopen.com/books/images_new/7583.jpg",editedByType:"Edited by",editors:[{id:"21045",title:"Prof.",name:"Albert S.",middleName:null,surname:"Kim",slug:"albert-s.-kim",fullName:"Albert S. Kim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7839",title:"Malaria",subtitle:null,isOpenForSubmission:!1,hash:"91cde4582ead884cb0f355a19b67cd56",slug:"malaria",bookSignature:"Fyson H. Kasenga",coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",editedByType:"Edited by",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7093",title:"Pneumothorax",subtitle:null,isOpenForSubmission:!1,hash:"0b1fdb8bb0448f48c2f234753898f3f8",slug:"pneumothorax",bookSignature:"Khalid Amer",coverURL:"https://cdn.intechopen.com/books/images_new/7093.jpg",editedByType:"Edited by",editors:[{id:"63412",title:"Dr.",name:"Khalid",middleName:null,surname:"Amer",slug:"khalid-amer",fullName:"Khalid Amer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1132",title:"Health Care",slug:"medicine-public-health-health-care",parent:{title:"Public Health",slug:"medicine-public-health"},numberOfBooks:11,numberOfAuthorsAndEditors:167,numberOfWosCitations:8,numberOfCrossrefCitations:12,numberOfDimensionsCitations:32,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"medicine-public-health-health-care",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7846",title:"Universal Health Coverage",subtitle:null,isOpenForSubmission:!1,hash:"03f74e6a4e925b7368b87e813bc29e1f",slug:"universal-health-coverage",bookSignature:"Aida Isabel Tavares",coverURL:"https://cdn.intechopen.com/books/images_new/7846.jpg",editedByType:"Edited by",editors:[{id:"196819",title:"Prof.",name:"Aida Isabel",middleName:null,surname:"Tavares",slug:"aida-isabel-tavares",fullName:"Aida Isabel Tavares"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8583",title:"Psychology of Health",subtitle:"Biopsychosocial Approach",isOpenForSubmission:!1,hash:"d355e49f356bbd1ee90c228c0eef2d86",slug:"psychology-of-health-biopsychosocial-approach",bookSignature:"Simon George Taukeni",coverURL:"https://cdn.intechopen.com/books/images_new/8583.jpg",editedByType:"Edited by",editors:[{id:"202046",title:"Dr.",name:"Simon George",middleName:null,surname:"Taukeni",slug:"simon-george-taukeni",fullName:"Simon George Taukeni"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7939",title:"Smoking",subtitle:"Prevention, Cessation and Health Effects",isOpenForSubmission:!1,hash:"2f432ec1f53e4a20071a2ec2678daa4c",slug:"smoking-prevention-cessation-and-health-effects",bookSignature:"Li Ping Wong and Victor Hoe",coverURL:"https://cdn.intechopen.com/books/images_new/7939.jpg",editedByType:"Edited by",editors:[{id:"197959",title:"Dr.",name:"Li Ping",middleName:null,surname:"Wong",slug:"li-ping-wong",fullName:"Li Ping Wong"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7909",title:"Palliative Care",subtitle:null,isOpenForSubmission:!1,hash:"da90fe956f441df4a9455d9abd02d28b",slug:"palliative-care",bookSignature:"Mukadder Mollaoğlu",coverURL:"https://cdn.intechopen.com/books/images_new/7909.jpg",editedByType:"Edited by",editors:[{id:"43900",title:"Prof.",name:"Mukadder",middleName:null,surname:"Mollaoğlu",slug:"mukadder-mollaoglu",fullName:"Mukadder Mollaoğlu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7447",title:"Vignettes in Patient Safety",subtitle:"Volume 4",isOpenForSubmission:!1,hash:"88d9ec0c55c5e7e973a35eafa413ded2",slug:"vignettes-in-patient-safety-volume-4",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/7447.jpg",editedByType:"Edited by",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6654",title:"Weight Loss",subtitle:null,isOpenForSubmission:!1,hash:"a7b1748cdbd8e86c1cac93238b57242e",slug:"weight-loss",bookSignature:"Ignacio Jáuregui Lobera",coverURL:"https://cdn.intechopen.com/books/images_new/6654.jpg",editedByType:"Edited by",editors:[{id:"55769",title:"Prof.",name:"Ignacio",middleName:null,surname:"Jáuregui Lobera",slug:"ignacio-jauregui-lobera",fullName:"Ignacio Jáuregui Lobera"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5929",title:"Clinical Trials in Vulnerable Populations",subtitle:null,isOpenForSubmission:!1,hash:"2214220e9dc00491251c8fdc23d3847a",slug:"clinical-trials-in-vulnerable-populations",bookSignature:"Milica Prostran",coverURL:"https://cdn.intechopen.com/books/images_new/5929.jpg",editedByType:"Edited by",editors:[{id:"43919",title:"Prof.",name:"Milica",middleName:null,surname:"Prostran",slug:"milica-prostran",fullName:"Milica Prostran"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6254",title:"Fractal Analysis",subtitle:"Applications in Health Sciences and Social Sciences",isOpenForSubmission:!1,hash:"770eb45a87f613d3df9b51efc7079ed3",slug:"fractal-analysis-applications-in-health-sciences-and-social-sciences",bookSignature:"Fernando Brambila",coverURL:"https://cdn.intechopen.com/books/images_new/6254.jpg",editedByType:"Edited by",editors:[{id:"60921",title:"Dr.",name:"Fernando",middleName:null,surname:"Brambila",slug:"fernando-brambila",fullName:"Fernando Brambila"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5785",title:"Teaching and Learning in Nursing",subtitle:null,isOpenForSubmission:!1,hash:"9bf55bd1257e7753f3719a64ef05d91e",slug:"teaching-and-learning-in-nursing",bookSignature:"Majda Pajnkihar, Dominika Vrbnjak and Gregor Stiglic",coverURL:"https://cdn.intechopen.com/books/images_new/5785.jpg",editedByType:"Edited by",editors:[{id:"195122",title:"Dr.",name:"Gregor",middleName:null,surname:"Stiglic",slug:"gregor-stiglic",fullName:"Gregor Stiglic"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5466",title:"Patient Centered Medicine",subtitle:null,isOpenForSubmission:!1,hash:"bade2265c3b5a9f7b5dffb5f512ed244",slug:"patient-centered-medicine",bookSignature:"Omur Sayligil",coverURL:"https://cdn.intechopen.com/books/images_new/5466.jpg",editedByType:"Edited by",editors:[{id:"179771",title:"Prof.",name:"Omur",middleName:null,surname:"Sayligil",slug:"omur-sayligil",fullName:"Omur Sayligil"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1673",title:"Evidence Based Medicine",subtitle:"Closer to Patients or Scientists?",isOpenForSubmission:!1,hash:"d767dfe22c65317eab3fd9ff465cb877",slug:"evidence-based-medicine-closer-to-patients-or-scientists-",bookSignature:"Nikolaos M. Sitaras",coverURL:"https://cdn.intechopen.com/books/images_new/1673.jpg",editedByType:"Edited by",editors:[{id:"108463",title:"Prof.",name:"Nikolaos",middleName:null,surname:"Sitaras",slug:"nikolaos-sitaras",fullName:"Nikolaos Sitaras"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:11,mostCitedChapters:[{id:"35208",doi:"10.5772/38238",title:"Evidence Based Information Prescription (IPs) in Developing Countries",slug:"evidence-based-information-prescription-ips-in-developing-countries-",totalDownloads:1200,totalCrossrefCites:1,totalDimensionsCites:5,book:{slug:"evidence-based-medicine-closer-to-patients-or-scientists-",title:"Evidence Based Medicine",fullTitle:"Evidence Based Medicine - Closer to Patients or Scientists?"},signatures:"Vahideh Zarea Gavgani",authors:[{id:"116172",title:"Dr.",name:"Vahideh",middleName:"Zarea",surname:"Gavgani",slug:"vahideh-gavgani",fullName:"Vahideh Gavgani"}]},{id:"35205",doi:"10.5772/38081",title:"Twenty Lessons to Incorporate EBM Concept and Practices into Medical Education",slug:"evidence-based-postgraduate-medical-education-and-teachers-training",totalDownloads:996,totalCrossrefCites:0,totalDimensionsCites:5,book:{slug:"evidence-based-medicine-closer-to-patients-or-scientists-",title:"Evidence Based Medicine",fullTitle:"Evidence Based Medicine - Closer to Patients or Scientists?"},signatures:"Madhur Dev Bhattarai",authors:[{id:"115484",title:"Prof.",name:"Madhur",middleName:"Dev",surname:"Bhattarai",slug:"madhur-bhattarai",fullName:"Madhur Bhattarai"}]},{id:"56593",doi:"10.5772/intechopen.70188",title:"Training Programs for Improving Communication about Medical Research and Clinical Trials: A Systematic Review",slug:"training-programs-for-improving-communication-about-medical-research-and-clinical-trials-a-systemati",totalDownloads:183,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"clinical-trials-in-vulnerable-populations",title:"Clinical Trials in Vulnerable Populations",fullTitle:"Clinical Trials in Vulnerable Populations"},signatures:"Aurora Occa and Susan E. Morgan",authors:[{id:"204637",title:"Prof.",name:"Susan",middleName:null,surname:"Morgan",slug:"susan-morgan",fullName:"Susan Morgan"},{id:"204638",title:"Ms.",name:"Aurora",middleName:null,surname:"Occa",slug:"aurora-occa",fullName:"Aurora Occa"}]}],mostDownloadedChaptersLast30Days:[{id:"66183",title:"Introductory Chapter: Bio-Psychosocial Model of Health",slug:"introductory-chapter-bio-psychosocial-model-of-health",totalDownloads:661,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"psychology-of-health-biopsychosocial-approach",title:"Psychology of Health",fullTitle:"Psychology of Health - Biopsychosocial Approach"},signatures:"Simon George Taukeni",authors:[{id:"202046",title:"Dr.",name:"Simon George",middleName:null,surname:"Taukeni",slug:"simon-george-taukeni",fullName:"Simon George Taukeni"}]},{id:"67470",title:"Healthcare Coverage and Affordability in Nigeria: An Alternative Model to Equitable Healthcare Delivery",slug:"healthcare-coverage-and-affordability-in-nigeria-an-alternative-model-to-equitable-healthcare-delive",totalDownloads:451,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"universal-health-coverage",title:"Universal Health Coverage",fullTitle:"Universal Health Coverage"},signatures:"Alex E. Asakitikpi",authors:[{id:"290324",title:"Associate Prof.",name:"Alex",middleName:null,surname:"Asakitikpi",slug:"alex-asakitikpi",fullName:"Alex Asakitikpi"}]},{id:"65572",title:"Dangers of Peripheral Intravenous Catheterization: The Forgotten Tourniquet and Other Patient Safety Considerations",slug:"dangers-of-peripheral-intravenous-catheterization-the-forgotten-tourniquet-and-other-patient-safety-",totalDownloads:722,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"vignettes-in-patient-safety-volume-4",title:"Vignettes in Patient Safety",fullTitle:"Vignettes in Patient Safety - Volume 4"},signatures:"Parampreet Kaur, Claire Rickard, Gregory S. Domer and Kevin R. Glover",authors:[{id:"265790",title:"Dr.",name:"Parampreet",middleName:null,surname:"Kaur",slug:"parampreet-kaur",fullName:"Parampreet Kaur"}]},{id:"54200",title:"Assessment of Clinical Nursing Competencies: Literature Review",slug:"assessment-of-clinical-nursing-competencies-literature-review",totalDownloads:2382,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"teaching-and-learning-in-nursing",title:"Teaching and Learning in Nursing",fullTitle:"Teaching and Learning in Nursing"},signatures:"Nataša Mlinar Reljić, Mateja Lorber, Dominika Vrbnjak, Brian\nSharvin and Maja Strauss",authors:[{id:"195121",title:"Ms.",name:"Dominika",middleName:null,surname:"Vrbnjak",slug:"dominika-vrbnjak",fullName:"Dominika Vrbnjak"},{id:"195207",title:"Dr.",name:"Lorber",middleName:null,surname:"Mateja",slug:"lorber-mateja",fullName:"Lorber Mateja"},{id:"195315",title:"BSc.",name:"Maja",middleName:null,surname:"Strauss",slug:"maja-strauss",fullName:"Maja Strauss"},{id:"195804",title:"Ms.",name:"Nataša",middleName:null,surname:"Mlinar Reljić",slug:"natasa-mlinar-reljic",fullName:"Nataša Mlinar Reljić"},{id:"195973",title:"Dr.",name:"Brian",middleName:null,surname:"Sharvin",slug:"brian-sharvin",fullName:"Brian Sharvin"}]},{id:"63530",title:"The Role of Exercise in Reducing PTSD and Negative Emotional States",slug:"the-role-of-exercise-in-reducing-ptsd-and-negative-emotional-states",totalDownloads:559,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"psychology-of-health-biopsychosocial-approach",title:"Psychology of Health",fullTitle:"Psychology of Health - Biopsychosocial Approach"},signatures:"Robert Motta",authors:null},{id:"59840",title:"Men’s Body Image: The Effects of an Unhealthy Body Image on Psychological, Behavioral, and Cognitive Health",slug:"men-s-body-image-the-effects-of-an-unhealthy-body-image-on-psychological-behavioral-and-cognitive-he",totalDownloads:389,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"weight-loss",title:"Weight Loss",fullTitle:"Weight Loss"},signatures:"Amanda Baker and Céline Blanchard",authors:[{id:"240648",title:"Ph.D.",name:"Amanda",middleName:null,surname:"Baker",slug:"amanda-baker",fullName:"Amanda Baker"},{id:"241375",title:"Prof.",name:"Céline",middleName:null,surname:"Blanchard",slug:"celine-blanchard",fullName:"Céline Blanchard"}]},{id:"65999",title:"The Quality of Life of the Patients Under Palliative Care: The Features of Appropriate Assessment Tools and the Impact of Early Integration of Palliative Care",slug:"the-quality-of-life-of-the-patients-under-palliative-care-the-features-of-appropriate-assessment-too",totalDownloads:195,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"palliative-care",title:"Palliative Care",fullTitle:"Palliative Care"},signatures:"Thomas Antony Thaniyath",authors:null},{id:"68032",title:"Provider Payment Mechanisms: Effective Policy Tools for Achieving Universal and Sustainable Healthcare Coverage",slug:"provider-payment-mechanisms-effective-policy-tools-for-achieving-universal-and-sustainable-healthcar",totalDownloads:121,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"universal-health-coverage",title:"Universal Health Coverage",fullTitle:"Universal Health Coverage"},signatures:"Abualbishr Alshreef",authors:[{id:"294851",title:"Ph.D. Student",name:"Abualbishr",middleName:null,surname:"Alshreef",slug:"abualbishr-alshreef",fullName:"Abualbishr Alshreef"}]},{id:"54279",title:"Attitudes of Nursing Students Towards Learning Communication Skills",slug:"attitudes-of-nursing-students-towards-learning-communication-skills",totalDownloads:1077,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"teaching-and-learning-in-nursing",title:"Teaching and Learning in Nursing",fullTitle:"Teaching and Learning in Nursing"},signatures:"Klavdija Čuček Trifkovič, Mateja Lorber, Margaret Denny, Suzanne\nDenieffe and Vida Gönc",authors:[{id:"195207",title:"Dr.",name:"Lorber",middleName:null,surname:"Mateja",slug:"lorber-mateja",fullName:"Lorber Mateja"},{id:"195203",title:"Dr.",name:"Klavdija",middleName:null,surname:"Čuček Trifkovič",slug:"klavdija-cucek-trifkovic",fullName:"Klavdija Čuček Trifkovič"},{id:"195205",title:"MSc.",name:"Vida",middleName:null,surname:"Gönc",slug:"vida-gonc",fullName:"Vida Gönc"},{id:"200253",title:"Dr.",name:"Margaret",middleName:null,surname:"Denny",slug:"margaret-denny",fullName:"Margaret Denny"},{id:"204100",title:"Dr.",name:"Suzanne",middleName:null,surname:"Denieffe",slug:"suzanne-denieffe",fullName:"Suzanne Denieffe"}]},{id:"53290",title:"Updated Landscape of the Tumor Microenvironment and Targeting Strategies in an Era of Precision Medicine",slug:"updated-landscape-of-the-tumor-microenvironment-and-targeting-strategies-in-an-era-of-precision-medi",totalDownloads:781,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"patient-centered-medicine",title:"Patient Centered Medicine",fullTitle:"Patient Centered Medicine"},signatures:"Yu Sun and Paul Chiao",authors:[{id:"178894",title:"Prof.",name:"Yu",middleName:null,surname:"Sun",slug:"yu-sun",fullName:"Yu Sun"}]}],onlineFirstChaptersFilter:{topicSlug:"medicine-public-health-health-care",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10080",title:"Vortex Dynamics",subtitle:null,isOpenForSubmission:!0,hash:"ea97962e99b3e0ebc9b46b48ba5bea14",slug:null,bookSignature:"Dr. Zambri Harun",coverURL:"https://cdn.intechopen.com/books/images_new/10080.jpg",editedByType:null,editors:[{id:"243152",title:"Dr.",name:"Zambri",middleName:null,surname:"Harun",slug:"zambri-harun",fullName:"Zambri Harun"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8903",title:"Carbon Based Material for Environmental Protection and Remediation",subtitle:null,isOpenForSubmission:!0,hash:"19da699b370f320eca63ef2ba02f745d",slug:null,bookSignature:"Dr. Mattia Bartoli and Dr. Marco Frediani",coverURL:"https://cdn.intechopen.com/books/images_new/8903.jpg",editedByType:null,editors:[{id:"188999",title:"Dr.",name:"Mattia",middleName:null,surname:"Bartoli",slug:"mattia-bartoli",fullName:"Mattia Bartoli"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8771",title:"Raman Scattering",subtitle:null,isOpenForSubmission:!0,hash:"1354b3097eaa5b27d9d4bd29d3150b27",slug:null,bookSignature:"Dr. Samir Kumar and Dr. Prabhat Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/8771.jpg",editedByType:null,editors:[{id:"296661",title:"Dr.",name:"Samir",middleName:null,surname:"Kumar",slug:"samir-kumar",fullName:"Samir Kumar"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10073",title:"Recent Advances in Nanophotonics-Fundamentals and Applications",subtitle:null,isOpenForSubmission:!0,hash:"aceca7dfc807140870a89d42c5537d7c",slug:null,bookSignature:"Dr. Mojtaba Kahrizi and Ms. Parsoua Abedini Sohi",coverURL:"https://cdn.intechopen.com/books/images_new/10073.jpg",editedByType:null,editors:[{id:"113045",title:"Dr.",name:"Mojtaba",middleName:null,surname:"Kahrizi",slug:"mojtaba-kahrizi",fullName:"Mojtaba Kahrizi"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10132",title:"Applied Computational Near-surface Geophysics - From Integral and Derivative Formulas to MATLAB Codes",subtitle:null,isOpenForSubmission:!0,hash:"38cdbbb671df620b36ee96af1d9a3a90",slug:null,bookSignature:"Dr. Afshin Aghayan",coverURL:"https://cdn.intechopen.com/books/images_new/10132.jpg",editedByType:null,editors:[{id:"311030",title:"Dr.",name:"Afshin",middleName:null,surname:"Aghayan",slug:"afshin-aghayan",fullName:"Afshin Aghayan"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10110",title:"Advances and Technologies in Building Construction and Structural Analysis",subtitle:null,isOpenForSubmission:!0,hash:"df2ad14bc5588577e8bf0b7ebcdafd9d",slug:null,bookSignature:"Dr. Ali Kaboli and Dr. Sara Shirowzhan",coverURL:"https://cdn.intechopen.com/books/images_new/10110.jpg",editedByType:null,editors:[{id:"309192",title:"Dr.",name:"Ali",middleName:null,surname:"Kaboli",slug:"ali-kaboli",fullName:"Ali Kaboli"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10175",title:"Ethics in Emerging Technologies",subtitle:null,isOpenForSubmission:!0,hash:"9c92da249676e35e2f7476182aa94e84",slug:null,bookSignature:"Prof. Ali Hessami",coverURL:"https://cdn.intechopen.com/books/images_new/10175.jpg",editedByType:null,editors:[{id:"108303",title:"Prof.",name:"Ali",middleName:null,surname:"Hessami",slug:"ali-hessami",fullName:"Ali Hessami"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9284",title:"Computational Aeroacoustics",subtitle:null,isOpenForSubmission:!0,hash:"7019c5e5985faef7dc384c87dca5c8ef",slug:null,bookSignature:"Prof. Ramesh K. Agarwal",coverURL:"https://cdn.intechopen.com/books/images_new/9284.jpg",editedByType:null,editors:[{id:"38519",title:"Prof.",name:"Ramesh K.",middleName:null,surname:"Agarwal",slug:"ramesh-k.-agarwal",fullName:"Ramesh K. Agarwal"}],productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:16},humansInSpaceProgram:{},teamHumansInSpaceProgram:{},route:{name:"chapter.detail",path:"/books/thyroid-and-parathyroid-diseases-new-insights-into-some-old-and-some-new-issues/new-tecnologies-n-thyroid-sugery",hash:"",query:{},params:{book:"thyroid-and-parathyroid-diseases-new-insights-into-some-old-and-some-new-issues",chapter:"new-tecnologies-n-thyroid-sugery"},fullPath:"/books/thyroid-and-parathyroid-diseases-new-insights-into-some-old-and-some-new-issues/new-tecnologies-n-thyroid-sugery",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()