Chemical structure of chlorophyll.
\r\n\tIn recent decades, numerous studies have been carried out on eukaryotic microorganisms viz., fungi, protozoa and algae to unravel the disease mechanisms caused by them and also their potential use in genetic engineering. The current book will accumulate the latest findings related to eukaryotic microorganisms in order to guide the future research and to uplift this area of microbiology for potential applications in medical and agricultural sciences.
",isbn:null,printIsbn:"979-953-307-X-X",pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"111dd972fdc98d1968c9f854910f7188",bookSignature:"Dr. Asghar Ali Kamboh",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/8963.jpg",keywords:"Mycology, Protozoology, Phycology, Gut eukaryotic microbiota, Antifungal / Antiprotozoal agents, Manipulating the Genes of Eukaryotes, Use of Eukaryotes in genetic engineering",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"August 27th 2019",dateEndSecondStepPublish:"September 17th 2019",dateEndThirdStepPublish:"November 16th 2019",dateEndFourthStepPublish:"February 4th 2020",dateEndFifthStepPublish:"April 4th 2020",remainingDaysToSecondStep:"2 years",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"225390",title:"Dr.",name:"Asghar Ali",middleName:null,surname:"Kamboh",slug:"asghar-ali-kamboh",fullName:"Asghar Ali Kamboh",profilePictureURL:"https://mts.intechopen.com/storage/users/225390/images/system/225390.jpeg",biography:"Dr. Asghar Ali Kamboh was born in Mehrabpur, Sindh, Pakistan in 1979. He completed his studies in Veterinary Medicine and Masters in Veterinary Microbiology in 2003 and 2007 respectively, with distinguished grades. In 2009, he was awarded an oversees scholarship by the Government of Pakistan and proceeded to China for doctoral studies. Currently, he is working as an Associate Professor and Chairperson of the Department of Veterinary Microbiology, Sindh Agriculture University, Tandojam. He has published more than 80 research and review articles in national and international peer reviewed journals. He has supervised/co-supervised more than 30 M.Phil students. He is also the author of many books and book chapters. In addition, he is an editor/editorial board member of many scholarly journals in the area of animal health and production.",institutionString:"Sindh Agriculture University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Sindh Agriculture University",institutionURL:null,country:{name:"Pakistan"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"13",title:"Immunology and Microbiology",slug:"immunology-and-microbiology"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"305835",firstName:"Ketrin",lastName:"Polesak",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/305835/images/9351_n.png",email:"ketrin@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"8470",title:"Poultry",subtitle:"An Advanced Learning",isOpenForSubmission:!1,hash:"88f09746e2b424573c8dc0bd927e9dbb",slug:"poultry-an-advanced-learning",bookSignature:"Asghar Ali Kamboh",coverURL:"https://cdn.intechopen.com/books/images_new/8470.jpg",editedByType:"Edited by",editors:[{id:"225390",title:"Dr.",name:"Asghar Ali",surname:"Kamboh",slug:"asghar-ali-kamboh",fullName:"Asghar Ali Kamboh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"24611",title:"The Brachio-Brachial Arteriovenous Fistula",doi:"10.5772/22608",slug:"the-brachio-brachial-arteriovenous-fistula",body:null,keywords:null,chapterPDFUrl:"https://cdn.intechopen.com/pdfs/24611.pdf",chapterXML:null,downloadPdfUrl:"/chapter/pdf-download/24611",previewPdfUrl:"/chapter/pdf-preview/24611",totalDownloads:9195,totalViews:189,totalCrossrefCites:0,totalDimensionsCites:4,hasAltmetrics:0,dateSubmitted:"November 21st 2010",dateReviewed:"May 22nd 2011",datePrePublished:null,datePublished:"December 7th 2011",dateFinished:null,readingETA:"0",abstract:null,reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/24611",risUrl:"/chapter/ris/24611",book:{slug:"technical-problems-in-patients-on-hemodialysis"},signatures:"Lucian Florin Dorobanţu, Ovidiu Ştiru, Cristian Bulescu, Şerban Bubenek and Vlad Anton Iliescu",authors:[{id:"48397",title:"Dr.",name:"Lucian Florin",middleName:null,surname:"Dorobantu",fullName:"Lucian Florin Dorobantu",slug:"lucian-florin-dorobantu",email:"ludorobantu@gmail.com",position:null,institution:null},{id:"110315",title:"Dr.",name:"Ovidiu",middleName:null,surname:"Stiru",fullName:"Ovidiu Stiru",slug:"ovidiu-stiru",email:"ovidiu_stiru@yahoo.com",position:null,institution:null},{id:"110317",title:"Dr.",name:"Cristian",middleName:null,surname:"Bulescu",fullName:"Cristian Bulescu",slug:"cristian-bulescu",email:"cristianbulescu@yahoo.com",position:null,institution:null},{id:"110318",title:"Dr.",name:"Serban",middleName:null,surname:"Bubenek",fullName:"Serban Bubenek",slug:"serban-bubenek",email:"jilted_psycho@yahoo.com",position:null,institution:null},{id:"110319",title:"Prof.",name:"Vlad Anton",middleName:null,surname:"Iliescu",fullName:"Vlad Anton Iliescu",slug:"vlad-anton-iliescu",email:"cristianbulescu@gmail.com",position:null,institution:null}],sections:null,chapterReferences:null,footnotes:null,contributors:null,corrections:null},book:{id:"1377",title:"Technical Problems in Patients on Hemodialysis",subtitle:null,fullTitle:"Technical Problems in Patients on Hemodialysis",slug:"technical-problems-in-patients-on-hemodialysis",publishedDate:"December 7th 2011",bookSignature:"Maria Goretti Penido",coverURL:"https://cdn.intechopen.com/books/images_new/1377.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:null,printIsbn:"978-953-307-403-0",pdfIsbn:"978-953-51-6597-2",editors:[{id:"75822",title:"Prof.",name:"Maria Goretti",middleName:"Moreira Guimaraes",surname:"Penido",slug:"maria-goretti-penido",fullName:"Maria Goretti Penido"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"24609",title:"Bedside Linear Regression Equations to Estimate Equilibrated Blood Urea",slug:"bedside-linear-regression-equations-to-estimate-equilibrated-blood-urea",totalDownloads:1503,totalCrossrefCites:0,signatures:"Elmer A. Fernández, Mónica Balzarini and Rodolfo Valtuille",authors:[{id:"50757",title:"Prof.",name:"Elmer",middleName:"Andres",surname:"Fernandez",fullName:"Elmer Fernandez",slug:"elmer-fernandez"},{id:"59434",title:"Prof.",name:"Monica",middleName:null,surname:"Balzarini",fullName:"Monica Balzarini",slug:"monica-balzarini"},{id:"59435",title:"Prof.",name:"Rodolfo",middleName:"Amilcar",surname:"Valtuille",fullName:"Rodolfo Valtuille",slug:"rodolfo-valtuille"}]},{id:"24610",title:"Hemodialysis Access: The Fistula",slug:"hemodialysis-access-the-fistula",totalDownloads:11282,totalCrossrefCites:2,signatures:"Mary Hammes",authors:[{id:"44541",title:"Dr.",name:"Mary",middleName:null,surname:"Hammes",fullName:"Mary Hammes",slug:"mary-hammes"}]},{id:"24611",title:"The Brachio-Brachial Arteriovenous Fistula",slug:"the-brachio-brachial-arteriovenous-fistula",totalDownloads:9195,totalCrossrefCites:0,signatures:"Lucian Florin Dorobanţu, Ovidiu Ştiru, Cristian Bulescu, Şerban Bubenek and Vlad Anton Iliescu",authors:[{id:"48397",title:"Dr.",name:"Lucian Florin",middleName:null,surname:"Dorobantu",fullName:"Lucian Florin Dorobantu",slug:"lucian-florin-dorobantu"},{id:"110315",title:"Dr.",name:"Ovidiu",middleName:null,surname:"Stiru",fullName:"Ovidiu Stiru",slug:"ovidiu-stiru"},{id:"110317",title:"Dr.",name:"Cristian",middleName:null,surname:"Bulescu",fullName:"Cristian Bulescu",slug:"cristian-bulescu"},{id:"110318",title:"Dr.",name:"Serban",middleName:null,surname:"Bubenek",fullName:"Serban Bubenek",slug:"serban-bubenek"},{id:"110319",title:"Prof.",name:"Vlad Anton",middleName:null,surname:"Iliescu",fullName:"Vlad Anton Iliescu",slug:"vlad-anton-iliescu"}]},{id:"24612",title:"Vascular Access for Hemodialysis",slug:"vascular-access-for-hemodialysis",totalDownloads:7824,totalCrossrefCites:2,signatures:"Konstantinos Pantelias and Eirini Grapsa",authors:[{id:"49421",title:"Prof.",name:"Eirini",middleName:null,surname:"Grapsa",fullName:"Eirini Grapsa",slug:"eirini-grapsa"},{id:"52276",title:"Dr.",name:"Konstantinos",middleName:null,surname:"Pantelias",fullName:"Konstantinos Pantelias",slug:"konstantinos-pantelias"}]},{id:"24613",title:"Subjective Well-Being Measures of Hemodialysis Patients",slug:"subjective-well-being-measures-of-hemodialysis-patients",totalDownloads:2668,totalCrossrefCites:0,signatures:"Paulo Roberto Santos",authors:[{id:"46690",title:"Ph.D.",name:"Paulo",middleName:"Roberto",surname:"Santos",fullName:"Paulo Santos",slug:"paulo-santos"}]},{id:"24614",title:"Hemodialysis Access Infections, Epidemiology, Pathogenesis and Prevention",slug:"hemodialysis-access-infections-epidemiology-pathogenesis-and-prevention",totalDownloads:4818,totalCrossrefCites:0,signatures:"Nirosha D. Gunatillake, Elizabeth M. Jarvis and David W. Johnson",authors:[{id:"50425",title:"Prof.",name:"David",middleName:null,surname:"Johnson",fullName:"David Johnson",slug:"david-johnson"},{id:"50700",title:"Dr.",name:"Nirosha",middleName:null,surname:"Gunatillake",fullName:"Nirosha Gunatillake",slug:"nirosha-gunatillake"},{id:"50701",title:"Dr.",name:"Elizabeth",middleName:null,surname:"Jarvis",fullName:"Elizabeth Jarvis",slug:"elizabeth-jarvis"}]},{id:"24615",title:"Acute and Chronic Catheter in Hemodialysis",slug:"acute-and-chronic-catheter-in-hemodialysis",totalDownloads:5380,totalCrossrefCites:1,signatures:"Andrew S. H. Lai and Kar Neng Lai",authors:[{id:"52922",title:"Prof.",name:"Kar Neng",middleName:null,surname:"Lai",fullName:"Kar Neng Lai",slug:"kar-neng-lai"},{id:"52998",title:"Dr.",name:"Andrew S.H.",middleName:null,surname:"Lai",fullName:"Andrew S.H. Lai",slug:"andrew-s.h.-lai"}]},{id:"24616",title:"Complex Wounds in Patients Receiving Hemodialysis",slug:"complex-wounds-in-patients-receiving-hemodialysis",totalDownloads:4844,totalCrossrefCites:0,signatures:"Masaki Fujioka",authors:[{id:"53197",title:"Prof.",name:"Masaki",middleName:null,surname:"Fujioka",fullName:"Masaki Fujioka",slug:"masaki-fujioka"}]},{id:"24617",title:"Specifications of the Quality of Granulated Activated Charcoal Used in Water Systems Treatment in Hemodialysis Centers in Brazil",slug:"specifications-of-the-quality-of-granulated-activated-charcoal-used-in-water-systems-treatment-in-he",totalDownloads:3139,totalCrossrefCites:0,signatures:"Eden Cavalcanti Albuquerque Júnior, Marcos Antonio de Souza Barros, Manoel O. Mendez, Aparecido R. Coutinho and Telma T. Franco",authors:[{id:"54345",title:"PhD.",name:"Eden",middleName:"Cavalcanti",surname:"Albuquerque Jr",fullName:"Eden Albuquerque Jr",slug:"eden-albuquerque-jr"},{id:"61500",title:"Prof.",name:"Manoel",middleName:null,surname:"Orlando A. Mendez",fullName:"Manoel Orlando A. Mendez",slug:"manoel-orlando-a.-mendez"},{id:"61501",title:"Prof.",name:"Aparecido",middleName:null,surname:"Reis Coutinho",fullName:"Aparecido Reis Coutinho",slug:"aparecido-reis-coutinho"},{id:"61502",title:"Prof.",name:"Telma",middleName:null,surname:"Teixeira Franco",fullName:"Telma Teixeira Franco",slug:"telma-teixeira-franco"},{id:"93680",title:"BSc.",name:"Marcos Antonio",middleName:null,surname:"Barros",fullName:"Marcos Antonio Barros",slug:"marcos-antonio-barros"}]},{id:"24618",title:"Bioimpedance Measurement in the Kidney Disease Patient",slug:"bioimpedance-measurement-in-the-kidney-disease-patient",totalDownloads:3808,totalCrossrefCites:0,signatures:"Joëlle Cridlig, Mustapha Nadi and Michèle Kessler",authors:[{id:"62297",title:"Prof.",name:"Mustapha",middleName:null,surname:"Nadi",fullName:"Mustapha Nadi",slug:"mustapha-nadi"},{id:"62827",title:"Dr.",name:"Joëlle",middleName:null,surname:"J. Cridlig",fullName:"Joëlle J. Cridlig",slug:"joelle-j.-cridlig"},{id:"62828",title:"Ms.",name:"Michčle",middleName:null,surname:"Kessler",fullName:"Michčle Kessler",slug:"michcle-kessler"}]},{id:"24619",title:"Management of Fluid Status in Haemodialysis Patients: The Roles of Technology and Dietary Advice",slug:"management-of-fluid-status-in-haemodialysis-patients-the-roles-of-technology-and-dietary-advice",totalDownloads:9158,totalCrossrefCites:5,signatures:"Elizabeth Lindley, Lynne Aspinall, Claire Gardiner and Elizabeth Garthwaite",authors:[{id:"62467",title:"Dr.",name:"Elizabeth",middleName:null,surname:"Lindley",fullName:"Elizabeth Lindley",slug:"elizabeth-lindley"},{id:"103006",title:"Ms.",name:"Claire",middleName:null,surname:"Gardiner",fullName:"Claire Gardiner",slug:"claire-gardiner"},{id:"103008",title:"Ms.",name:"Lynne",middleName:null,surname:"Aspinall",fullName:"Lynne Aspinall",slug:"lynne-aspinall"},{id:"103009",title:"Dr.",name:"Elizabeth",middleName:null,surname:"Garthwaite",fullName:"Elizabeth Garthwaite",slug:"elizabeth-garthwaite"}]},{id:"24620",title:"Cell-Free Nucleic Acids as Biomarkers of Biocompatibility in Dialytic Process",slug:"cell-free-nucleic-acids-as-biomarkers-of-biocompatibility-in-dialytic-process",totalDownloads:1783,totalCrossrefCites:1,signatures:"Marie Korabečná and Aleš Hořínek",authors:[{id:"55927",title:"Dr.",name:"Marie",middleName:null,surname:"Korabecna",fullName:"Marie Korabecna",slug:"marie-korabecna"},{id:"57157",title:"Dr.",name:"Ales",middleName:null,surname:"Horinek",fullName:"Ales Horinek",slug:"ales-horinek"}]},{id:"24621",title:"Measuring System of Urea in Blood by Application in Recirculation for Hemodialysis Treatment",slug:"measuring-system-of-urea-in-blood-by-application-in-recirculation-for-hemodialysis-treatment",totalDownloads:4612,totalCrossrefCites:1,signatures:"G.A. Martinez",authors:[{id:"59796",title:"Dr.",name:"Gustavo Adolfo",middleName:null,surname:"Martinez Chavez",fullName:"Gustavo Adolfo Martinez Chavez",slug:"gustavo-adolfo-martinez-chavez"}]},{id:"24622",title:"Acetate Free Biofiltration with Potassium Profiled Dialysate (AFB-K)",slug:"acetate-free-biofiltration-with-potassium-profiled-dialysate-afb-k-",totalDownloads:2684,totalCrossrefCites:0,signatures:"R.I. Muñoz, I. Gallardo and J. Montenegro",authors:[{id:"43950",title:"Dr.",name:"Jesús",middleName:null,surname:"Montenegro",fullName:"Jesús Montenegro",slug:"jesus-montenegro"}]},{id:"24623",title:"Blood Volume Regulation",slug:"blood-volume-regulation",totalDownloads:2537,totalCrossrefCites:1,signatures:"Roland E. Winkler, Fabio Grandi and Antonio Santoro",authors:[{id:"43902",title:"Dr.",name:"Roland",middleName:"E.",surname:"Winkler, M.B.A.",fullName:"Roland Winkler, M.B.A.",slug:"roland-winkler-m.b.a."},{id:"50721",title:"Dr",name:"Fabio",middleName:null,surname:"Grandi",fullName:"Fabio Grandi",slug:"fabio-grandi"},{id:"50722",title:"Prof.",name:"Antonio",middleName:null,surname:"Santoro",fullName:"Antonio Santoro",slug:"antonio-santoro"}]},{id:"24624",title:"Acute Complications of Hemodialysis",slug:"acute-complications-of-hemodialysis",totalDownloads:23922,totalCrossrefCites:2,signatures:"Gülsüm Özkan and Şükrü Ulusoy",authors:[{id:"48454",title:"Dr.",name:"Gülsüm",middleName:null,surname:"Özkan",fullName:"Gülsüm Özkan",slug:"gulsum-ozkan"},{id:"51497",title:"Prof.",name:"Şükrü",middleName:null,surname:"Ulusoy",fullName:"Şükrü Ulusoy",slug:"sukru-ulusoy"}]},{id:"24625",title:"Review of the Effectiveness of Cellulose- and Polysulfone-Based Vitamin E-Bonded Dialysis Membranes",slug:"review-of-the-effectiveness-of-cellulose-and-polysulfone-based-vitamin-e-bonded-dialysis-membranes",totalDownloads:2457,totalCrossrefCites:2,signatures:"Masaharu Aritomi and Francesco Galli",authors:[{id:"54429",title:"Dr.",name:"Masaharu",middleName:null,surname:"Aritomi",fullName:"Masaharu Aritomi",slug:"masaharu-aritomi"},{id:"76370",title:"Prof.",name:"Francesco",middleName:null,surname:"Galli",fullName:"Francesco Galli",slug:"francesco-galli"}]}]},relatedBooks:[{type:"book",id:"1375",title:"Hemodialysis",subtitle:"Different Aspects",isOpenForSubmission:!1,hash:"3989e961b6cf011ae00f297f1f47eb0d",slug:"hemodialysis-different-aspects",bookSignature:"Maria Goretti Penido",coverURL:"https://cdn.intechopen.com/books/images_new/1375.jpg",editedByType:"Edited by",editors:[{id:"75822",title:"Prof.",name:"Maria Goretti",surname:"Penido",slug:"maria-goretti-penido",fullName:"Maria Goretti Penido"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"23791",title:"Acute Renal Failure Induced by Adenovirus After Stem Cell Transplantation",slug:"acute-renal-failure-induced-by-adenovirus-after-stem-cell-transplantation",signatures:"Takashi Abe, Shinichi Nishi, Tatsuo Furukawa, Yoichi Ajioka, Masayoshi Masuko and Ichiro Fuse",authors:[{id:"45800",title:"Dr.",name:"Takashi",middleName:null,surname:"Abe",fullName:"Takashi Abe",slug:"takashi-abe"},{id:"58768",title:"Dr.",name:"Tatsuo",middleName:null,surname:"Furukawa",fullName:"Tatsuo Furukawa",slug:"tatsuo-furukawa"},{id:"58769",title:"Dr.",name:"Masayoshi",middleName:null,surname:"Masuko",fullName:"Masayoshi Masuko",slug:"masayoshi-masuko"},{id:"58770",title:"Dr.",name:"Ichiro",middleName:null,surname:"Fuse",fullName:"Ichiro Fuse",slug:"ichiro-fuse"},{id:"95076",title:"Prof.",name:"Shinichi",middleName:null,surname:"Nishi",fullName:"Shinichi Nishi",slug:"shinichi-nishi"},{id:"105463",title:"Prof.",name:"Yoichi",middleName:null,surname:"Ajioka",fullName:"Yoichi Ajioka",slug:"yoichi-ajioka"}]},{id:"23792",title:"Plasma Total Nitric Oxide and Endothelial Constitutive Nitric Oxide Synthase (ecNOS) Inron 4 Gene Polymorphism: A Study in Children with Chronic Kidney Disease",slug:"plasma-total-nitric-oxide-and-endothelial-constitutive-nitric-oxide-synthase-ecnos-inron-4-gene-poly",signatures:"Manal F. Elshamaa, Samar Sabry, Ahmed Badr, Eman A. Elghoroury, Soulaf Kamel and Gamila Elsaied",authors:[{id:"44521",title:"Dr.",name:"Manal",middleName:null,surname:"Elshamaa",fullName:"Manal Elshamaa",slug:"manal-elshamaa"},{id:"56773",title:"Dr.",name:"Samar",middleName:null,surname:"Sabry",fullName:"Samar Sabry",slug:"samar-sabry"},{id:"56775",title:"Prof.",name:"Eman",middleName:null,surname:"Elghoroury",fullName:"Eman Elghoroury",slug:"eman-elghoroury"},{id:"56779",title:"Dr.",name:"Solaf",middleName:null,surname:"Kamel",fullName:"Solaf Kamel",slug:"solaf-kamel"},{id:"56992",title:"Dr.",name:"Gamila",middleName:null,surname:"Elsaied",fullName:"Gamila Elsaied",slug:"gamila-elsaied"},{id:"62823",title:"Dr.",name:"Ahmed",middleName:null,surname:"Badr",fullName:"Ahmed Badr",slug:"ahmed-badr"}]},{id:"23793",title:"Renal Cell Carcinoma in Dialysis Patients with End Stage Renal Disease: Focus on Surgery and Pathology",slug:"renal-cell-carcinoma-in-dialysis-patients-with-end-stage-renal-disease-focus-on-surgery-and-patholog",signatures:"Hitoshi Masuda, Kazunori Kihara, Yasuhisa Fujii, Fumitaka Koga, Kazutaka Saito, Mizuaki Sakura, Yohei Okada and Satoru Kawakami",authors:[{id:"49521",title:"Dr.",name:"Hitoshi",middleName:null,surname:"Masuda",fullName:"Hitoshi Masuda",slug:"hitoshi-masuda"},{id:"59441",title:"Dr.",name:"Yohei",middleName:null,surname:"Okada",fullName:"Yohei Okada",slug:"yohei-okada"},{id:"59442",title:"Dr.",name:"Mizuaki",middleName:null,surname:"Sakura",fullName:"Mizuaki Sakura",slug:"mizuaki-sakura"},{id:"59443",title:"Prof.",name:"Kazunori",middleName:null,surname:"Kihara",fullName:"Kazunori Kihara",slug:"kazunori-kihara"},{id:"103091",title:"Dr.",name:"Yasuhisa",middleName:null,surname:"Fujii",fullName:"Yasuhisa Fujii",slug:"yasuhisa-fujii"},{id:"103104",title:"Dr.",name:"Fumitaka",middleName:null,surname:"Koga",fullName:"Fumitaka Koga",slug:"fumitaka-koga"},{id:"103106",title:"Dr.",name:"Kazutaka",middleName:null,surname:"Saito",fullName:"Kazutaka Saito",slug:"kazutaka-saito"},{id:"103108",title:"Dr.",name:"Satoru",middleName:null,surname:"Kawakami",fullName:"Satoru Kawakami",slug:"satoru-kawakami"}]},{id:"23794",title:"Methylene Blue and Dialysis-Related Hypotension",slug:"methylene-blue-and-dialysis-related-hypotension",signatures:"Wisler J. R. and Stawicki S. P. A.",authors:[{id:"44943",title:"Prof.",name:"Stanislaw P. A.",middleName:null,surname:"Stawicki",fullName:"Stanislaw P. A. Stawicki",slug:"stanislaw-p.-a.-stawicki"},{id:"59801",title:"Prof.",name:"Johathan",middleName:null,surname:"Wisler",fullName:"Johathan Wisler",slug:"johathan-wisler"}]},{id:"23795",title:"Identification of Hemodialysis Patients’ Physical and Psychosocial Problems Using the International Classification of Functioning, Disability and Health (ICF)",slug:"identification-of-hemodialysis-patients-physical-and-psychosocial-problems-using-the-international-c",signatures:"Hideyo Tsutsui, Teruhiko Koike and Yoshiharu Oshida",authors:[{id:"50860",title:"Dr.",name:"Hideyo",middleName:null,surname:"Tsutsui",fullName:"Hideyo Tsutsui",slug:"hideyo-tsutsui"},{id:"58821",title:"Prof.",name:"Teruhiko",middleName:null,surname:"Koike",fullName:"Teruhiko Koike",slug:"teruhiko-koike"},{id:"58822",title:"Prof.",name:"Yoshiharu",middleName:null,surname:"Oshida",fullName:"Yoshiharu Oshida",slug:"yoshiharu-oshida"}]},{id:"23796",title:"Selenium (Se), Blood Glutathione Peroxidases and DNA Damage in Chronic Kidney Disease Patients on Hemodialysis and After Kidney Transplantation - The Effect of Se Supplementation",slug:"selenium-se-blood-glutathione-peroxidases-and-dna-damage-in-chronic-kidney-disease-patients-on-hemod",signatures:"Bronislaw A. Zachara",authors:[{id:"47879",title:"Prof.",name:"Bronislaw",middleName:null,surname:"Zachara",fullName:"Bronislaw Zachara",slug:"bronislaw-zachara"}]},{id:"23797",title:"A Systematic Review of the Effect of Vitamin C Infusion and Vitamin E-Coated Membrane on Hemodialysis-Induced Oxidative Stress",slug:"a-systematic-review-of-the-effect-of-vitamin-c-infusion-and-vitamin-e-coated-membrane-on-hemodialysi",signatures:"Malecka-Massalska Teresa, Wladysiuk Magdalena and Ksiazek Andrzej",authors:[{id:"48125",title:"Dr.",name:"Teresa",middleName:"Jadwiga",surname:"Malecka-Massalska",fullName:"Teresa Malecka-Massalska",slug:"teresa-malecka-massalska"},{id:"57912",title:"Prof.",name:"Andrzej",middleName:null,surname:"Ksiazek",fullName:"Andrzej Ksiazek",slug:"andrzej-ksiazek"},{id:"57913",title:"Mrs",name:"Magdalena",middleName:null,surname:"Wladysiuk",fullName:"Magdalena Wladysiuk",slug:"magdalena-wladysiuk"}]},{id:"23798",title:"The Role of Ultrasonographic Monitoring for Hip Joint Changes in Patients with Chronic Renal Failure",slug:"the-role-of-ultrasonographic-monitoring-for-hip-joint-changes-in-patients-with-chronic-renal-failure",signatures:"Damir Matoković, Miroslav Hašpl, Petar Petrić, Sanja Škorvaga, Vlado Drkulec and Goran Šantak",authors:[{id:"52779",title:"PhD.",name:"Damir",middleName:null,surname:"Matokovic",fullName:"Damir Matokovic",slug:"damir-matokovic"},{id:"53124",title:"Prof.",name:"Miroslav",middleName:null,surname:"Haspl",fullName:"Miroslav Haspl",slug:"miroslav-haspl"},{id:"53125",title:"Mr",name:"Petar",middleName:null,surname:"Petric",fullName:"Petar Petric",slug:"petar-petric"},{id:"53126",title:"Ms",name:"Sanja",middleName:null,surname:"Skovraga",fullName:"Sanja Skovraga",slug:"sanja-skovraga"},{id:"53127",title:"MSc",name:"Vlado",middleName:null,surname:"Drkulec",fullName:"Vlado Drkulec",slug:"vlado-drkulec"}]},{id:"23799",title:"Modulation of Iron Metabolism and Hepcidin Release by HFE Mutations in Chronic Hemodialysis Patients: Pathophysiological and Therapeutic Implications",slug:"modulation-of-iron-metabolism-and-hepcidin-release-by-hfe-mutations-in-chronic-hemodialysis-patients",signatures:"Elena Canavesi and Luca Valenti",authors:[{id:"48991",title:"Dr.",name:"Luca",middleName:null,surname:"Valenti",fullName:"Luca Valenti",slug:"luca-valenti"},{id:"58719",title:"Dr.",name:"Elena",middleName:null,surname:"Canavesi",fullName:"Elena Canavesi",slug:"elena-canavesi"}]},{id:"23800",title:"Micronutrient Metabolism in Hemodialysis Patients",slug:"micronutrient-metabolism-in-hemodialysis-patients",signatures:"Chih-Hung Guo, Chia-Liang Wang and Pei-Chung Chen",authors:[{id:"49194",title:"Prof.",name:"Chih-Hung",middleName:null,surname:"Guo",fullName:"Chih-Hung Guo",slug:"chih-hung-guo"},{id:"59628",title:"Prof.",name:"Pei-Chung",middleName:null,surname:"Chen",fullName:"Pei-Chung Chen",slug:"pei-chung-chen"},{id:"59629",title:"Dr.",name:"Chia-Liang",middleName:null,surname:"Wang",fullName:"Chia-Liang Wang",slug:"chia-liang-wang"}]},{id:"23801",title:"Differences in Erythrocyte Index and Hyporesponsiveness to Erythropoiesis in Hemodialysis Patients Treated with Different Erythropoiesis-Stimulating Agents",slug:"differences-in-erythrocyte-index-and-hyporesponsiveness-to-erythropoiesis-in-hemodialysis-patients-t",signatures:"Osamu Saito, Yoichi Furusawa, Kousuke Okuda and Eiji Kusano",authors:[{id:"55474",title:"Dr.",name:"Osamu",middleName:null,surname:"Saito",fullName:"Osamu Saito",slug:"osamu-saito"}]},{id:"23802",title:"Focal Dental Diagnostic in Patients with Replaced Renal Function-One New Method in Dentistry",slug:"focal-dental-diagnostic-in-patients-with-replaced-renal-function-one-new-method-in-dentistry",signatures:"Maria Dencheva, Angelina Kisselova, Assya Krasteva, Tsvetelina Georgieva, Iliyana Stoeva and Teodora Bolyarova",authors:[{id:"32422",title:"Dr.",name:"Asya",middleName:"Zaharieva",surname:"Krasteva",fullName:"Asya Krasteva",slug:"asya-krasteva"},{id:"48928",title:"Prof.",name:"Angelina",middleName:null,surname:"Kisselova",fullName:"Angelina Kisselova",slug:"angelina-kisselova"},{id:"49455",title:"Dr.",name:"Maria",middleName:"Stoyanova",surname:"Dencheva-Garova",fullName:"Maria Dencheva-Garova",slug:"maria-dencheva-garova"},{id:"50207",title:"Dr.",name:"Tzvetelina",middleName:null,surname:"Georgieva",fullName:"Tzvetelina Georgieva",slug:"tzvetelina-georgieva"},{id:"57228",title:"Dr.",name:"Iliana",middleName:null,surname:"Stoeva",fullName:"Iliana Stoeva",slug:"iliana-stoeva"},{id:"94198",title:"Dr.",name:"Teodora",middleName:null,surname:"Bolyarova",fullName:"Teodora Bolyarova",slug:"teodora-bolyarova"}]},{id:"23803",title:"Renal Aspects and Enzyme Replacement Therapy of Fabry Disease",slug:"renal-aspects-and-enzyme-replacement-therapy-of-fabry-disease",signatures:"Ane Cláudia Fernandes Nunes, Elvino José Guardão Barros, Virgílio Pimentel Delgado and Alvimar Gonçalves Delgado",authors:[{id:"55270",title:"Prof.",name:"Ane C.F.",middleName:null,surname:"Nunes",fullName:"Ane C.F. Nunes",slug:"ane-c.f.-nunes"},{id:"55283",title:"Prof.",name:"Elvino",middleName:"J G",surname:"Barros",fullName:"Elvino Barros",slug:"elvino-barros"},{id:"55284",title:"Prof.",name:"Alvimar",middleName:null,surname:"Delgado",fullName:"Alvimar Delgado",slug:"alvimar-delgado"},{id:"90025",title:"Dr.",name:"Virgilio Pimentel",middleName:null,surname:"Delgado",fullName:"Virgilio Pimentel Delgado",slug:"virgilio-pimentel-delgado"}]},{id:"23804",title:"Chronic Inflammation and S100A12/ Receptor for Advanced Glycation Endproducts Axis: A Novel Risk Factor for Cardiovascular Disease in Patients with Chronic Kidney Disease?",slug:"chronic-inflammation-and-s100a12-receptor-for-advanced-glycation-endproducts-axis-a-novel-risk-facto",signatures:"Yasukiyo Mori, Yayoi Shiotsu, Eiko Matsuoka, Hiroshi Kado, Ryo Ishida and Hiroaki Matsubara",authors:[{id:"54967",title:"Dr.",name:"Yasukiyo",middleName:null,surname:"Mori",fullName:"Yasukiyo Mori",slug:"yasukiyo-mori"},{id:"58806",title:"Dr.",name:"Yayoi",middleName:null,surname:"Shiotsu",fullName:"Yayoi Shiotsu",slug:"yayoi-shiotsu"},{id:"58807",title:"Dr.",name:"Eiko",middleName:null,surname:"Matsuoka",fullName:"Eiko Matsuoka",slug:"eiko-matsuoka"},{id:"95105",title:"Dr.",name:"Hiroshi",middleName:null,surname:"Kado",fullName:"Hiroshi Kado",slug:"hiroshi-kado"},{id:"95106",title:"Dr.",name:"Ryo",middleName:null,surname:"Ishida",fullName:"Ryo Ishida",slug:"ryo-ishida"},{id:"95107",title:"Prof.",name:"Hiroaki",middleName:null,surname:"Matsubara",fullName:"Hiroaki Matsubara",slug:"hiroaki-matsubara"}]},{id:"23805",title:"Choice of Renal Replacement Therapy and Role of Haemodialysis in the Intensive Care Unit",slug:"choice-of-renal-replacement-therapy-and-role-of-haemodialysis-in-the-intensive-care-unit",signatures:"Marlies Ostermann",authors:[{id:"39346",title:"Dr.",name:"Marlies",middleName:null,surname:"Ostermann",fullName:"Marlies Ostermann",slug:"marlies-ostermann"}]},{id:"23806",title:"Dry Weight and Measurements Methods",slug:"dry-weight-and-measurements-methods",signatures:"Fansan Zhu and Nathan W. Levin",authors:[{id:"54177",title:"Dr.",name:"Fansan",middleName:null,surname:"Zhu",fullName:"Fansan Zhu",slug:"fansan-zhu"},{id:"58545",title:"Dr.",name:"Nathan W.",middleName:null,surname:"Levin",fullName:"Nathan W. Levin",slug:"nathan-w.-levin"}]},{id:"23807",title:"Current Status of Synthetic and Biological Grafts for Hemodialysis",slug:"current-status-of-synthetic-and-biological-grafts-for-hemodialysis",signatures:"Purav P. Patel, Maria Altieri, Tarun R. Jindal, Steven R. Guy, Edward M. Falta, Eric A. Elster, Frank P. Hurst, Anton N. Sidawy and Rahul M. Jindal",authors:[{id:"44948",title:"Dr.",name:"Rahul",middleName:null,surname:"Jindal",fullName:"Rahul Jindal",slug:"rahul-jindal"}]}]}]},onlineFirst:{chapter:{type:"chapter",id:"73619",title:"Microalgae: The Multifaceted Biomass of the 21st Century",doi:"10.5772/intechopen.94090",slug:"microalgae-the-multifaceted-biomass-of-the-21st-century",body:'Algae represent a highly diverse consortium of polyphyletic, thallophytic, photosynthetic, and cryptogamic organisms.
The microalga Chlamydomonas reinhardtii’s cell structure [
Schematic of a prokaryotic cell with an indication of some of the methods used to probe cellular activity or growth [
Algae have six types of life cycles viz. haplontic, diplontic, isomorphic, heteromorphic, haplobiontic, and diplobiontic cycles; the exposition of these algal life cycles is discussed elsewhere [3]. The microscopic algae are the microphytes or microalgae and are typically found in freshwater and marine ecosystems at the benthic depths and in the water column. They are reported to be the chief converters of water and carbon dioxide to biomass and oxygen (see Eq. (1)) as they receive radiation from sunlight, and are therefore referred to as primary producers. Microalgae exist either individually, or in chains or groups; and depending on the species, their sizes are typically 3–30 μm, while the cyanobacteria are as small as 0.2–2 μm [2].
Aside from producing oxygen and availing themselves as food for a large number of aquatic animals, algae are a good resource base for fine chemicals, crude oil, food supplement for humans, and some pharmaceutical products and finished goods [3].
Pigments are chemical compounds that reflect and transmit only certain wavelengths of visible light. This makes them appear as the colors perceived. More important than their reflection of light is the ability of pigments to absorb light of certain wavelengths. A photosynthetic pigment (accessory pigment; chloroplast pigment; antenna pigment) is a pigment that is present in chloroplasts of algae and other photosynthetic organisms and captures the light energy necessary for photosynthesis. The reaction of each pigment is associated with only a narrow range of the spectrum, and it is necessary to produce several kinds of pigments with different colors to capture more of the sun’s energy. Five important pigments found in algae are (i) chlorophyll (ii) xanthophyll (iii) fucoxanthin (iv) phycocyanin and (v) phycoerythrin [6].
Algae and plants have chloroplasts in which the light-capturing chlorophyll is located, while in cyanobacteria the main light-capturing complex protein molecular assemblies are the phycobilisomes, which are located on the surface of thylakoid membranes [7]. Both chlorophyll and phycobilisomes absorb light most strongly between the high-frequency, high-energy wavelengths of 450 and 495 nm, which happen to be the blue region of the electromagnetic spectrum. Also, the photosynthetic pigments absorb the low-frequency, low-energy wavelengths between 620 and 750 nm, which is the red region of the electromagnetic spectrum. The chlorophyll pigment comes in different forms, and the structure of each type of Chlorophyll pigment is anchored on a chlorin ring with a magnesium ion at the centre. The side chain of each chlorophyll pigment type is different and they are so identified (see Figure 3 and Tables 1 and 2). [7, 8].
Chlorophyll - a porphyrin ring structure attached to a protein backbone. The porphyrin is built up of pyrrole molecules – 5 membered aromatic rings which are made of four carbons and one nitrogen atom. This ring system acts as a polydentate ligand and has a magnesium cation at its Centre [
Chlorophyll | ||||
---|---|---|---|---|
a | b | c1 | c2 | |
Molecular Formula | C55H72O5N4Mg | C55H70O6N4Mg | C35H30O5N4Mg | C35H28O5N4Mg |
C2 group | -CH3 | -CH3 | -CH3 | -CH3 |
C3 group | -CH=CH2 | -CH=CH2 | -CH=CH2 | -CH=CH3 |
C7 group | -CH3 | -CHO | -CH3 | -CH3 |
C8 group | -CH2CH3 | -CH2CH3 | -CH2CH3 | -CH2CH3 |
C17 group | -CH2CH2COO-Phytyl | -CH2CH2COO-Phytyl | -CH=CHCOOH | -CH=CHCOOH |
C17-C18 bond | Single (chlorin) | Single (chlorin) | Double (porphyrin) | Double (porphyrin) |
Occurrence | Universal | Plants | Algae | Algae |
Chemical structure of chlorophyll.
Chlorophyll | ||
---|---|---|
d | f | |
Molecular formula | C54H70O6N4Mg | C55H70O6N4Mg |
C2 group | -CH3 | -CHO |
C3 group | -CHO | -CH=CH2 |
C7 group | -CH3 | -CH3 |
C8 group | -CH2CH3 | -CH2CH3 |
C17 group | −CH2CH2COO − Phytyl | −CH2CH2COO − Phytyl |
C17-C18 bond | Single (Chlorin) | Single (chlorin) |
Occurrence | Cyanobacteria | Cyanobacteria |
Chlorophyll structural formulae.
Chlorophyll a with the molecular formula C55H72O5N4Mg is the most common type of Chlorophyll. It is a green pigment with a chlorin ring having magnesium at the centre (see Figure 3). Chlorin is a tetrapyrrole pigment, which is partially hydrogenated porphyrin. The ring-shaped molecule is stable with electrons freely migrating around it to establish resonance structures [9]. It also has side chains and a hydrocarbon trail and contains only –CH3 groups as side chains. The long hydrophobic tail anchors the molecule to other hydrophobic proteins on the surface of the thylakoid membrane. The chemical structural layout of chlorophyll shows a porphyrin ring attached to a protein backbone (see Figure 3). By substituting functional groups at positions C2, C3, C7, C8, and the C17-C18 bond, one can identify the structure of the desired chlorophyll (see Tables 1 and 2). Chlorophyll captures and absorbs blue, violet, and red light from the spectrum to transmit or reflect green, which is the color that the green algae exhibit [9, 10]. Oxygenic photosynthesis uses chlorophyll a to furnish electrons in the electron-transport chain. Photosystems I and II harbor many pigments that help to capture light energy. A unique pair of pigment molecules are located at the reaction site of each photosystem. For photosystem I the unique pair is referred to as P700, while for photosystem II it is identified as P680. These reaction sites receive resonance energy released from chlorophyll a to sustain the redox reactions [10].
Chlorophyll b is found only in the green algae and in plants, and it absorbs most effectively at 470 nm (blue) but also at 430 nm and 640 nm. Molecular formula - C55H70O6N4Mg. It is an accessory photosynthetic pigment. The molecular structure consists of a chlorin ring with Mg centre. It also has side chains and a phytol tail. Pyrrole ring II contains an aldehyde group (− CHO). Chlorophyll b absorbs energy that chlorophyll a does not absorb. It has a light-harvesting antenna in Photosystem I [11].
Xanthophyll is one of the two major groups of the carotenoids group. Generally, it is a C40 terpenoid compound formed by condensation of isoprene units. Xanthophyll, with the formula C40H56O2, contains oxygen atoms in the form of hydroxyl groups or as epoxides. Xanthophyll acts as an accessory light-harvesting pigment. They have a critical structural and functional role in the photosynthesis of algae and plants. They also serve to absorb and dissipate excess light energy or work as antioxidants. Xanthophyll may be involved in inhibiting lipid peroxidation [12].
Fucoxanthin, with the formula C42H58O6, is a xanthophyll carotenoid, being an accessory pigment that drives limited photosynthetic reactions in brown algae (phaeophytes) and other stramenopiles. It renders the brown or olive-green color to these seaweeds. Fucoxanthin captures the red light of the spectrum for photosynthetic activities. Some edible brown algae produce this pigment in abundance, and typical candidates in this category include
Phycocyanin is a protein-pigment complex found in cyanobacteria as an accessory pigment to phycobilisomes. As a phycobiliprotein, phycocyanin is identified by the color it bears as blue phycocyanin. Depending on the cyanobacterial species, this can be phycocyanin, showing maximum absorbance at 620 nm and identified as C-PC, and allophycocyanin with maximum absorbance at 650 nm and identified as A-PC. From the red microalgae, phycocyanin is identified as R-PC [13]. The molecular structure of phycocyanin changes with the pH of the medium, exhibiting the (αβ)3 trimeric structure at pH 7. However, at the pH range of 5–6, the much more available phycocyanin, C-PC, assumes the hexameric structural conformation (αβ)6. Phycocyanin boosts the human and animal immune systems and protects against certain diseases. It exhibits hepatoprotection, cytoprotection, and neuroprotection. Persons undergoing chemotherapy and radiation for cancer are placed on Phycocyanin from spirulina as a dietary supplement to ease negative symptoms during treatment as well as rejuvenate post-treatment. Phycocyanin is used in the food industry as a food additive [12, 14].
Phycoerythrin is an accessory pigment to the main chlorophyll pigment complex found in red algae and cryptophytes; it is part of a covalently bonded phycobilin chromophore in the family of phycobilins, typical of which is phycoerythrobilin, the phycoerythrin acceptor chromophore. Phycoerythrin is made up of (αβ) monomers aggregates. Except for phycoerythrin 545 (PE545), these monomer aggregates are assembled into (αβ)3 trimers or (αβ)6 hexamers with 3 or 32 symmetry and enclosing central channel [13, 14]. In red algae, they are attached to the stroma of thylakoid membranes of chloroplasts, whereas in cryptophytes, phycobilisomes are reduced and housed inside the lumen of thylakoids. Phycoerythrin captures light energy from the electromagnetic radiation and directs it to the reaction site through the phycobiliproteins, phycocyanin, and through A-PC. Each trimer and hexamer in the phycobilisome (PBS) has a minimum of one linker protein at the central channel. The α and β chains in B-phycoerythrin (B-PE) and R-phycoerythrin (R-PE) from the red algae also have γ sub-units conferring both link and light-capturing capabilities due to the presence of chromophores [14] (Figure 4).
The structure of the pigments: (a) xanthophyll (b) Fucoxanthin (c) Phycocyanin and (d) Phycoerythrin [
The chloroplast of algal cell contains the water-soluble phycobilin pigments and while the same phycobilin pigments are found in the phycocyanin and phycoerythrin of Cyanobacteria and the red algae, the Rhodophyta. The algal chlorophyll has a structural difference from Bacteriochlorophylls (Bchl) of cyanobacteria, the latter having one of the porphyrin rings saturated, and absorbing longer wavelengths of light as opposed to chlorophylls.
The colors of pigments are the reflections of the electromagnetic spectrum from the pigments. A portion of the pigment molecule causes the formation of the color perceived, and this moiety is referred to as
In general, chromophores comprise four pyrrole rings; identified as (i) open-chain pyrroles with no transition metal involved – typically, carotenoids, phycobilins, and phytochromes, (ii) pyrroles arranged as a porphyrin ring with a central transition metal atom – typically, chlorophylls and bacteriochlorophylls (C55H74MgN4O6). Chlorophyll absorbs all other visible components of light except green, which is the color the human eye sees of plants in their leaves. Various chlorophylls and accessory pigments (as discussed in sections 2.1–2.5) have characteristic
Relative absorbance of photosynthetic pigments as a function of the wavelength of light [
The Calvin cycle [
The dark reactions of photosynthesis occur in the stroma of the chloroplast and are referred to as the Calvin cycle. Although the Calvin cycle does not utilize light and can happen during the daytime or at night, they employ products of the light-dependent reactions to propagate. Products of the light-dependent reaction are ATP and reduced NADP; the energized electrons from the light-dependent reactions provide the energy to produce carbohydrates from carbon dioxide molecules.
The first reaction in the Calvin cycle: Carbon fixation.
The Calvin Cycle first produces phosphoglyceric acid (PGA), which is phosphorylated, using the energy carriers ATP and NADPH generated by the photosystems I and II, to produce 12 molecules of phosphoglyceraldehyde (PGAL). Two molecules of PGAL are ejected from the cycle in the form of a glucose molecule. The other ten molecules of PGAL are converted to 6 RuBP molecules, using the inherent energy in ATP and the cycle continues [19, 20].
The summary of the reactions in the Calvin cycle (see Eq. (2))
Light has properties of both waves and particles, from the quantum mechanics point of view [20]. The particulate behavior of light presents light as a stream of particles of energy, known as photons, which interact with electrons to cause the energy contained in the light to disappear and then reappear as the kinetic energy of the ejected electrons plus a work function.
where
By definition,
where
Thus for sunlight with a wavelength of 650 nm (650 × 10−9 m), the energy is computed in Eq. (6).
If all this were to be used for synthesizing ATP from ADP and
Chlorophylls b, c, d, and e are accessory pigments with xanthophylls, and carotenoids in algae and protistans, Pigments that are not accessory to chlorophyll absorb light energy at wavelengths that do not stimulate chlorophyll. Light energy absorbed by accessory pigments is channeled to the reaction site and is converted into chemical energy. The ability to absorb some energy from the longer, more penetrating wavelengths probably conferred an advantage to the benthic photosynthetic algae. Depending upon turbidity of the water, the shorter, high energy wavelengths penetrate very little in the euphotic zone (below 5 meters) in seawater [7, 8]. Chlorophyll molecules being the main producers of pigments are bound to proteins of the photosynthetic membranes and capture the sunlight in oxygenic plants, and convert light energy into chemical energy. This is facilitated by pigment-protein complexes known as Photosystem I (PSI) and Photosystem II (PSII) reaction sites [9]. In PS II water is
Photo-isomerization of all-trans to 13-cis retinal in bR [
The most common chlorophylls are chlorophyll a, chlorophyll b, and chlorophyll c1, and chlorophyll c2. Each pigment registers a maximum signal at a particular wavelength of maximum absorption (
Photosynthesis – Irradiance curve.
The saturation irradiance (
Microalgae is a promising renewable resource for biofuels, and optimization and control of the biomass growth production have gained economic and commercial interests. Algae do not compete with traditional food crops for space and resources [3]. Microalgae are highly diverse and differences within and between both species and populations lead to significant differences in biogeography and the environment. The macromolecular composition of the microalgae is of interest for understanding nutrient competition within microalgal communities, food web interactions, and developing algal systems for the development of biofuels, nutraceuticals, and mariculture [4]. Production of microalgae-derived metabolites requires processes for culturing the algae, recovery of the biomass, and further downstream processing to purify the metabolite. The cost of producing microalgal bioactive agents has to be weighed as the downstream recovery of the microalgal products can be substantially more expensive than the culturing of the microalgae [3]. Depending on their origin, algae are referred to as terrestrial algae, snow algae, seaweeds, and phytoplankton. Ubiquitous in marine, freshwater, and terrestrial habitats and possessing broad biochemical diversity, which is the basis for many biotechnological and industrial applications [4].
Hatcheries are used to produce a range of microalgae biomass, which are used in a variety of ways for commercial purposes. Studies have adduced the success of a microalgae hatchery system to the following factors: (i) the dimensions of the container/bioreactor where microalgae are cultured, (ii) exposure to illumination, and (iii) concentration of microalgal cells within the reactor [23, 24]. Photosynthesis is one of the basic biochemical transformations of photosynthetic micro-organisms that convert solar energy into chemical energy. Many microalgae are autotrophs, which use photosynthesis to produce food. Some heterotrophic microalgae can grow in the dark by utilizing organic carbon. Some microalgae grow by combining both autotrophy and heterotrophy into a hybrid cultivation mode called mixotrophy [5, 6]. Diatoms and dinoflagellates are the two types of microalgae. Diatoms can be spheres, triangles, elliptical or stars. Many dinoflagellates have two flagella for their movement through the water. Both diatoms and dinoflagellates contain oils in their cells, helping them to swim. Both diatoms and dinoflagellates can grow very quickly and cause algal blooms [4].
There are two main advantages of culturing microalgae using the open pond system. Firstly, an open pond system is easier to build and operate. Secondly, open ponds are cheaper than closed bioreactors because closed bioreactors require parts that are expensive to acquire. However, where the temperature is the growth or lipid accumulation limiting factor, using open pond systems may decrease the productivity of certain commercially important strains such as
Algae raceway pond: The microalgae culture broth is constantly kept in motion with a powered paddle wheel [
Many photobioreactors have been suggested for commercial production of algal biomass. However, only a few of them are suitable for practical application because of poor gas mass transfer. The vertical tubular photobioreactor provides a greater surface area for the interaction of light and the algal cells, increasing the time of gas mass transfer in the culture broth, and the efficient uptake of nutrients. Most times, commercial cultivation of microalgae in vertical reactor systems and reactors of other configurations is not economically viable in batch mode, due to the time taken to load, unload, and clean the reactor systems. The vertical tubular reactor can be made of alveolar panels, polyethylene sleeves, or glass tubes and supported on steel frames (see Figure 11). The low productivity characterizing this reactor system is overcome when the surface area to volume ratio is increased. The O2 gas mass transfer is aided by bubbling air through the culture broth [23].
Vertical tubular photobioreactors for culturing microalgae [
This is an outdoor microalgal cultivation system, which has tubes laid on the ground to form a network of loops (see Figure 12(b)). A pump is used to mix the microalgal suspended culture, which raises the culture vertically periodically into a photobioreactor. Pulsed mixing at intervals produces better results than continuous mixing.
Horizontal tubular photobioreactor of different orientations [
This is an outdoor microalgal cultivation technique for the production of biomass and metabolites under a highly controlled environment. By this technique, the air is moved within the system to circulate the medium in which microalgae is growing. The culture is grown in transparent tubes that lie horizontally on the ground and are connected by a network of pipes (see Figure 13). Air is passed through the tube such that air escapes from the end that rests inside the reactor that contains the culture and creates an effect like stirring [28]. Other configurations of the airlift reactor are an improvement over this design. The external-loop ALR is a promising configuration for breakthrough scale-up
Different types of airlift photobioreactor [
Different microalgae strains acclimate in different environments, evolving their metabolic pathways to stimulate and propagate growth. However, the extent of growth depends on the composition of the culture media which can be enhanced by either inorganic or organic carbon metabolism or both. Other co-factors such as nutrient availability, pH, chemical oxygen demand (COD), and temperature also influence growth, and the accumulation of metabolites in microalgae (see Table 3) [29].
Metabolic mode | Energy source | Carbon source | Light availability | Metabolism availability |
---|---|---|---|---|
Photo-autotrophic | Light | Inorganic | Obligatory | Fixed |
Heterotrophic | Organic | Organic | Not required | Switch between sources |
Photoheterotrophic | Light | Organic | Obligatory | Switch between sources |
Mixotrophic | Light & organic | Inorganic & organic | Not obligatory | Simultaneous utilization |
Microalgal metabolic requirements.
The photosynthetic CO2-fixation in microalgae suffices to possess a greater ability to fix CO2. Photo trophy refers to an autotrophic mode of metabolism in which organisms can harness light energy with the help of photosynthetic pigments and convert it to chemical bond energy in the form of ATP (photophosphorylation).
Autotrophy is the ability of PMOs to use inorganic carbon in the form of CO2 as the sole source of carbon to synthesize organic compounds necessary to build cell components. This is also referred to as carbon-autotrophy to distinguish the ability of some organisms to use molecular nitrogen as the sole source of nitrogen. Such organisms are referred to as nitrogen autotrophs. However, autotrophy as used in this chapter is carbon autotrophy. This is a property that is present primarily, in plants, algae, and phototrophic bacteria including cyanobacteria [30].
Aside from these organisms, all of which are photosynthetic, several groups of non-photosynthetic bacteria can grow using CO2 as the sole source of carbon by their ability to oxidize inorganic compounds. Such organisms are chemoautotrophic or chemolithotrophic [31].
CO2 is the end-product of aerobic respiration, a process that releases the energy of respiratory substrates. Carbon dioxide is, therefore, poor in energy content. In autotrophic metabolism, this energy-poor compound is used to build organic molecules which are much richer in energy content. Therefore, It is noted that the conversion of CO2 to organic compounds requires the input of energy from an external source. The ultimate source in the case of photosynthesis is radiant energy and in the case of chemolithotrophy is the oxidation energy of inorganic chemical compounds. In either case, the immediate source of energy for driving the endergonic reaction involved in the conversion of CO2 to organic compounds is ATP [32].
In photosynthesis, ATP is generated with the help of photosynthetic pigments through a process known as photophosphorylation. In chemoautotrophy, the energy of oxidation of inorganic compounds is channelized into the respiratory chain for ATP synthesis by oxidative phosphorylation.
Thus, autotrophic metabolism consists of two sets of reactions viz. (1) the ATP and the reducing force are generated and, (2) they are used for the reduction of CO2 to organic compounds.
The reactions in (1) are different in phototrophic and non-phototrophic autotrophs. But the reactions in (2) are common between the two groups. In the majority of autotrophs, the reactions involved in the reduction of CO2 proceed via a cyclic pathway, known as the reductive pentose phosphate pathway or, more commonly, as the Calvin-Benson cycle, or simply the Calvin cycle, although other pathways are also known to operate in some organisms, both in the phototrophic green plants and bacteria. The reduction of CO2 to yield organic compounds is commonly known as CO2-fixation [32, 33].
The supply of sufficient light for massive growth is the main goal and a limiting factor for microalgal cultivation. To ignore the requirement for illumination and present the possibility of high cell concentration, points at heterotrophic cultivation as a promising, efficient, and sustainable strategy for certain microalgae to produce metabolites of value by using carbon substances as the sole carbon and energy source. The optimized preliminary cell culturing of microalgae species is an important stage in culturing microalgae biomass at the commercial scale. The growth environment during the culturing process can be [32] either autotrophic (inorganic carbon) or heterotrophic (organic carbon) depending upon the nature of cells and their growth tendencies. Heterotrophic and mixotrophic microalgae are more capable of growing much faster with higher cellular oil accumulation as compared to autotrophic microalgae species. However, heterotrophic microalgae require organic carbon sources like glycerol, glucose, or acetate as a sole source of carbon for growth, which is responsible for about 80% of the costs of culture media [33]. The metabolism of respiration is applied to produce energy. The respiration rates, intimately geared to the growth and division, are determined by the oxidization of organic substrates of the given microalgae [32]. Glucose provides the organic carbon needed and it is preferred because of its high energy density compared to other sources. The oxidative assimilation of glucose employs either the Embden–Meyerhof–Parnas (EMP) pathway or the pentose phosphate (PP) pathway depending on the cycle position. During the dark cycle, PMOs assimilate and metabolize glucose via the PP pathway. However, during the daytime cycle, glycolysis in the cytosol is via the EMP pathway [34]. The growth rate, lipid content, and the ATP of microalgae under the heterotrophic metabolic strategy are higher compared to those under the photoautotrophic metabolic strategy but depend mainly on the PMO’s species and strain used. The PMO’s growth is steady and rapid in a nutrient-rich culture media using a high level of system control, to achieve biomass production of 50–100 g L−1 in heterotrophy which is higher than that achieved in photoautotrophy [35].
Heterotrophic metabolism eliminates the two main problems associated with autotrophic metabolism viz. (i) it allows the use of practically any vessel as a bioreactor, and (ii) low energy and high yield, as major outcomes, giving a significant reduction in costs for the process. Cost-effectiveness and relative simplicity of operations and daily maintenance are the main attractions of the heterotrophic growth approach. A significant benefit is that it is possible to obtain, heterotrophically, high densities of microalgae cells that provides an economically feasible method for large scale, mass production cultivation [34].
Heterotrophy has its drawbacks viz. (1) The microalgae species and strains that can grow by the heterotrophic strategy are limited; (2) Increasing energy expenses and costs by adding organic carbon substrate; (3) Contamination and competition with local microorganisms; (4) Inhibition of growth by excess organic substrate; and (5) Inability to produce light-induced metabolites [35]. Nonetheless, heterotrophic cultures are gaining increasing application for producing a wide variety of microalgal metabolites from bench experiments to commercial scale.
Mixotrophic cultivation of microalgae strategies provides both carbon dioxide and organic carbon simultaneously and both chemoheterotrophic and photoautotrophic metabolisms operate concurrently. Microalgae biomass produced by this approach has high density and contains high-value lipids, proteins, carbohydrates, and pigments; and the product range is very versatile [7, 8, 9, 10]. These products range from high-value nutraceuticals, food supplements, and cosmetics to the lower value commodities biofuels, food, fertilizer, and application in wastewater treatment [10, 11, 12].
Microalgal biomass contains considerable amounts of bioactive molecules such as carotenoids (astaxanthins, β-carotenes, and xanthophylls), omega-3 fatty acids, polysaccharides, and proteins, which can be used in several applications as colorants, pharmaceuticals, food, food additives, and feed and as bioplastics.
Microalgae produce carotenoids and all known xanthophylls found in terrestrial plants (e.g., zeaxanthin, lutein, antheraxanthin). Astaxanthin is a carotenoid pigment that occurs in microalgae, trout, yeast, and shrimp, among other sea creatures. It is found in abundance in Pacific salmon and the fish appears pinkish due to the presence of astaxanthin. Astaxanthin is an antioxidant; it is said to have many health benefits. Carotenoids as accessory pigments, capture light energy during photosynthesis and promote photoprotection. Stains of
Lutein, a xanthophyll, is one of the many known naturally occurring carotenoids. Lutein is synthesized only by plants and is found in large quantities in green leafy vegetables like kale, spinach, yellow carrots, and in dietary supplements. The lutein-rich microalgae
Microalgae are the dominant sources of polyunsaturated fatty acids in the marine food chain.
The acetyl-CoA condensation to fatty acyls is one of the methods by which biohydrocarbons are produced in-situ biotic organisms. The second biohydrocarbon production pathway is the isopentenyl pyrophosphate (IPP) condensation to higher isoprenoids, which is responsible for the diverse isoprene derivatives, many of which are suitable for fuels or fuel additives due to their desirable cetane and pour point and other fuel properties [3]. The low-to-zero-oxygen content of isoprenoids results in energy densities similar to the alkanes in current diesel fuels and diversity of ring structures affords lower cloud points [46, 47]. Additionally, it has been found that slight modifications to enzymes involved in the final steps of higher isoprenoid synthesis can result in subtle product variants with distinct thermochemical and thermophysical properties [47]. The precursors for the majority of these compounds are metabolic intermediates in photosynthetic microorganisms (PMOs). Genetic engineering of microalgae and cyanobacteria would be required to enhance the productivity of PMOs [3].
Triglycerides are lipids or waxes, formed by biochemically combining glycerol and fatty acids in the ratio of 1: 3 respectively. This combination may be a simple type or a mixed type. Triglycerides in which the glycerol backbone is attached to three molecules of the same fatty acid are referred to as simple triglycerides. Typical in this category is tripalmitin, C3H5(OCOC15H31)3. Only a few of the glycerides occurring in nature are of the simple type; most are mixed triglycerides (see Figure 14) [48]. Based on saturation and unsaturation of the attached fatty acids, triglycerides can be classified as saturated, monounsaturated, and polyunsaturated. In saturated triglycerides, all the fatty acids are saturated. Saturated fats abound in many animal products such as butter, cheese, cream, and fatty meats, ice cream, and whole milk. In monounsaturated triglycerides most of the fatty acids are monounsaturated. Vegetable oils such as canola oil, olive oil, peanut oil, and sesame oil have high levels of monounsaturated fats and polyunsaturated triglycerides. Omega-3 and omega-6 fatty acids are polyunsaturated.
The structure of triglyceride showing the simple and mixed types.
Microalgae are a promising renewable resource for green production of triacylglycerols (TAGs), which can be used as a biofuel feedstock. Nitrogen starvation is the most effective strategy to induce TAG biosynthesis in microalgae [48]. One of the best microalgae for lipid production is
Phospholipids are made up of four components viz. fatty acids, a platform to which the fatty acids are attached, phosphate, and an alcohol attached to the phosphate. Phospholipids may be built on either glycerol or sphingosine framework. Phospholipids built on glycerol framework are called phosphoglycerides (or glycerophospholipids). A phosphoglyceride consists of a glycerol molecule, two fatty acids, a phosphate, and choline, which is an alcohol. Phosphoglycerides are the most abundant phospholipid molecules found in cell membranes. The phospholipids built on sphingosine framework are referred to as sphingolipids or glycolipids, depending on the number of glucose or galactose molecules they contain; and lipoproteins, which are complexes of cholesterol, triglycerides, and proteins that transport lipids in the aqueous environment of the bloodstream. These are complex lipids. The algae contain three major phospholipids, phosphatidylglycerol (PG), phosphatidylethanolamine (PE), and phosphatidylcholine (PC). Phospholipids are synthesized by both prokaryotic and eukaryotic organisms. They are the major component of most eukaryotic cell membranes, which play a fundamental role in compartmentalizing the biochemistry of life [52]. The hydroxyl groups at positions C-1 and C-2 in phosphoglycerides are esterified to the carboxyl groups of the two fatty acid chains. The hydroxyl group at position C-3 hydroxyl group of the glycerol backbone is esterified to phosphoric acid. At this extent of conversion, the product is phosphatidic acid, which is the simplest phosphoglyceride. Phosphatidic acid now serves as the backbone on which most phosphoglycerides are derived having moieties such as serine, ethanolamine, choline, glycerol, and the inositol. Consequently, we have phosphatidylserine, phosphatidylethanolamine, phosphatidylcholine, phosphatidylglycerol, and phosphatidylinositol respectively (see Figure 15) [52].
Sphingolipids and phospholipids: The classification of sphingolipids is based on the group attached to the sphingosine (LCB) backbone (a). Sphingomyelin (b) and ceramides (c-e) differ in fatty acid length, unsaturation, and in the type of attached head group and hydroxylation. Phospholipids with glycerol framework: (f) phosphatidylethanolamine, (g) phosphatidylcholine [
Metabolites from both microalgae and cyanobacteria have attended to both human and animal health and food needs and these microorganisms have become attractive resources for bioactive natural products that have wide applications in pharmaceutical, food, and chemical industries. Algae-derived bioactive substrates are employed for drug screening, given their tremendous structural diversity and biological availability. Microalgae biomass has a wide range of physiological and biochemical characteristics and contains 50–70% protein compared to 50% in meat, and 15–17% in wheat, with 30% lipids, more than 40% glycerol, 8–14% carotene, and a reasonably high levels of vitamins B1, B2, B3, B6, B12, E, K, D, and others [54, 55, 56].
Microalgae that have been cultivated on commercial scales and are available include
Abiotic, Biotic, and process-related factors influence the growth of algae. Some of the abiotic factors are illumination and luminous intensity, daytime to night-time ratio, the temperature of the culture medium, nutrient availability, O2, and CO2 mass transfer, pH value, the hydraulic retention time (HRT), salinity, and presence of growth-inhibiting chemical agents [30]. Some of the biotic factors are the presence of pathogens (bacteria, fungi, viruses) and the presence of more than one algae strains. Each algae strain has a different capacity to assimilate nutrients, and in mixed cultures, there is competition for the available nutrients in the media, which may afferent the growth of some strains [36]. Process related factors that may influence algal growth are hydrodynamics of the culture broth, which is influenced by the choice of the bioreactor, the initial algal cell concentration in the reactor, and the related frequency of harvesting algal biomass [57, 58].
There is a major difference between microalgae and cyanobacteria in terms of their cell structure and this work has presented unmistakable evidence that microalgae have a nucleus and chloroplast, and their makeup includes their full identity in a two-stranded DNA. On the other hand, cyanobacteria are identified by one-stranded DNA and do not have a nucleus and neither a chloroplast. However, Microalgae and cyanobacteria do photosynthesize to produce their food.
It is seen from research as discussed in this chapter that value products aimed to meet pharmaceutical and food needs are obtainable by continuous availability of nutrients to the microalgae in the culture media. It is also seen that to accumulate lipid in the order of triglycerides for biodiesel production, microalgae must experience nutrients deficiency in the culture media at the stationary stage of growth.
The hydrodynamics of the microalgal culture broth depends on the choice of bioreactor for a particular cultivation activity and contributes to the algal growth factor.
The versatility of the microalgal biomass is expressed in the diversity of metabolites produced by manipulation of the growth factors in favor of the desired product. Also, the choice of the strain will drive towards the targeted product.
The authors appreciate the Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, Durban for providing the platform for scientific investigations.
The authors have declared that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this chapter.
General requirements for Open Access to Horizon 2020 research project outputs are found within Guidelines on Open Access to Scientific Publication and Research Data in Horizon 2020. The guidelines, in their simplest form, state that if you are a Horizon 2020 recipient, you must ensure open access to your scientific publications by enabling them to be downloaded, printed and read online. Additionally, said publications must be peer reviewed.
',metaTitle:"Horizon 2020 Compliance",metaDescription:"General requirements for Open Access to Horizon 2020 research project outputs are found within Guidelines on Open Access to Scientific Publication and Research Data in Horizon 2020. The guidelines, in their simplest form, state that if you are a Horizon 2020 recipient, you must ensure open access to your scientific publications by enabling them to be downloaded, printed and read online. Additionally, said publications must be peer reviewed. ",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"Publishing with IntechOpen means that your scientific publications already meet these basic requirements. It also means that through our utilization of open licensing, our publications are also able to be copied, shared, searched, linked, crawled, and mined for text and data, optimizing our authors' compliance as suggested by the European Commission.
\\n\\nMetadata for all publications is also automatically deposited in IntechOpen's OAI repository, making them available through the Open Access Infrastructure for Research in Europe's (OpenAIRE) search interface further establishing our compliance.
\\n\\nIn other words, publishing with IntechOpen guarantees compliance.
\\n\\nRead more about Open Access in Horizon 2020 here.
\\n\\nWhich scientific publication to choose?
\\n\\nWhen choosing a publication, Horizon 2020 grant recipients are encouraged to provide open access to various types of scientific publications including monographs, edited books and conference proceedings.
\\n\\nIntechOpen publishes all of the aforementioned formats in compliance with the requirements and criteria established by the European Commission for the Horizon 2020 Program.
\\n\\nAuthors requiring additional information are welcome to send their inquiries to funders@intechopen.com
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Publishing with IntechOpen means that your scientific publications already meet these basic requirements. It also means that through our utilization of open licensing, our publications are also able to be copied, shared, searched, linked, crawled, and mined for text and data, optimizing our authors' compliance as suggested by the European Commission.
\n\nMetadata for all publications is also automatically deposited in IntechOpen's OAI repository, making them available through the Open Access Infrastructure for Research in Europe's (OpenAIRE) search interface further establishing our compliance.
\n\nIn other words, publishing with IntechOpen guarantees compliance.
\n\nRead more about Open Access in Horizon 2020 here.
\n\nWhich scientific publication to choose?
\n\nWhen choosing a publication, Horizon 2020 grant recipients are encouraged to provide open access to various types of scientific publications including monographs, edited books and conference proceedings.
\n\nIntechOpen publishes all of the aforementioned formats in compliance with the requirements and criteria established by the European Commission for the Horizon 2020 Program.
\n\nAuthors requiring additional information are welcome to send their inquiries to funders@intechopen.com
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5820},{group:"region",caption:"Middle and South America",value:2,count:5289},{group:"region",caption:"Africa",value:3,count:1761},{group:"region",caption:"Asia",value:4,count:10546},{group:"region",caption:"Australia and Oceania",value:5,count:909},{group:"region",caption:"Europe",value:6,count:15932}],offset:12,limit:12,total:119318},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"ebgfFaeGuveeFgfcChcyvfu"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:28},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:9},{group:"topic",caption:"Business, Management and Economics",value:7,count:3},{group:"topic",caption:"Chemistry",value:8,count:11},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:10},{group:"topic",caption:"Engineering",value:11,count:25},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:7},{group:"topic",caption:"Mathematics",value:15,count:3},{group:"topic",caption:"Medicine",value:16,count:48},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:{id:"206443",title:"Prof.",name:"Asma",middleName:null,surname:"Salman",slug:"asma-salman",fullName:"Asma Salman",profilePictureURL:"https://mts.intechopen.com/storage/users/206443/images/system/206443.png",biography:"Professor Asma Salman is a blockchain developer and Professor of Finance at the American University in the Emirates, UAE. An Honorary Global Advisor at the Global Academy of Finance and Management, USA, she completed her MBA in Finance and Accounting and earned a Ph.D. in Finance from an AACSB member, AMBA accredited, School of Management at Harbin Institute of Technology, China. Her research credentials include a one-year residency at the Brunel Business School, Brunel University, UK. Prof. Salman also served as the Dubai Cohort supervisor for DBA students under the Nottingham Business School, UK, for seven years and is currently a Ph.D. supervisor at the University of Northampton, UK, where she is a visiting fellow. She also served on the Board of Etihad Airlines during 2019–2020. One of her recent articles on “Bitcoin and Blockchain” gained wide visibility and she is an active speaker on Fintech, blockchain, and crypto events around the GCC. She holds various professional certifications including Chartered Fintech Professional (USA), Certified Financial Manager (USA), Women in Leadership and Management in Higher Education, (UK), and Taxation GCC VAT Compliance, (UK). She recently won an award for “Blockchain Trainer of the Year” from Berkeley Middle East. Other recognitions include the Women Leadership Impact Award by H.E First Lady of Armenia, Research Excellence Award, and the Global Inspirational Women Leadership Award by H.H Sheikh Juma Bin Maktoum Juma Al Maktoum.",institutionString:"American University in the Emirates",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University in the Emirates",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"22b87a09bd6df065d78c175235d367c8",slug:"biomedical-signal-and-image-processing",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editedByType:"Edited by",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9021",title:"Novel Perspectives of Stem Cell Manufacturing and Therapies",subtitle:null,isOpenForSubmission:!1,hash:"522c6db871783d2a11c17b83f1fd4e18",slug:"novel-perspectives-of-stem-cell-manufacturing-and-therapies",bookSignature:"Diana Kitala and Ana Colette Maurício",coverURL:"https://cdn.intechopen.com/books/images_new/9021.jpg",editedByType:"Edited by",editors:[{id:"203598",title:"Ph.D.",name:"Diana",middleName:null,surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editedByType:"Edited by",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editedByType:"Edited by",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editedByType:"Edited by",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:{id:"206443",title:"Prof.",name:"Asma",middleName:null,surname:"Salman",slug:"asma-salman",fullName:"Asma Salman",profilePictureURL:"https://mts.intechopen.com/storage/users/206443/images/system/206443.png",biography:"Professor Asma Salman is a blockchain developer and Professor of Finance at the American University in the Emirates, UAE. An Honorary Global Advisor at the Global Academy of Finance and Management, USA, she completed her MBA in Finance and Accounting and earned a Ph.D. in Finance from an AACSB member, AMBA accredited, School of Management at Harbin Institute of Technology, China. Her research credentials include a one-year residency at the Brunel Business School, Brunel University, UK. Prof. Salman also served as the Dubai Cohort supervisor for DBA students under the Nottingham Business School, UK, for seven years and is currently a Ph.D. supervisor at the University of Northampton, UK, where she is a visiting fellow. She also served on the Board of Etihad Airlines during 2019–2020. One of her recent articles on “Bitcoin and Blockchain” gained wide visibility and she is an active speaker on Fintech, blockchain, and crypto events around the GCC. She holds various professional certifications including Chartered Fintech Professional (USA), Certified Financial Manager (USA), Women in Leadership and Management in Higher Education, (UK), and Taxation GCC VAT Compliance, (UK). She recently won an award for “Blockchain Trainer of the Year” from Berkeley Middle East. Other recognitions include the Women Leadership Impact Award by H.E First Lady of Armenia, Research Excellence Award, and the Global Inspirational Women Leadership Award by H.H Sheikh Juma Bin Maktoum Juma Al Maktoum.",institutionString:"American University in the Emirates",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University in the Emirates",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editedByType:"Edited by",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"22b87a09bd6df065d78c175235d367c8",slug:"biomedical-signal-and-image-processing",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",editedByType:"Edited by",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editedByType:"Edited by",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editedByType:"Edited by",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"20",title:"Physics",slug:"physics",parent:{title:"Physical Sciences, Engineering and Technology",slug:"physical-sciences-engineering-and-technology"},numberOfBooks:143,numberOfAuthorsAndEditors:3401,numberOfWosCitations:3946,numberOfCrossrefCitations:1614,numberOfDimensionsCitations:3509,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"physics ",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9984",title:"Geophysics and Ocean Waves Studies",subtitle:null,isOpenForSubmission:!1,hash:"271d086381f9ba04162b0dc7cd57755f",slug:"geophysics-and-ocean-waves-studies",bookSignature:"Khalid S. Essa, Marcello Di Risio, Daniele Celli and Davide Pasquali",coverURL:"https://cdn.intechopen.com/books/images_new/9984.jpg",editedByType:"Edited by",editors:[{id:"102766",title:"Prof.",name:"Khalid S.",middleName:null,surname:"Essa",slug:"khalid-s.-essa",fullName:"Khalid S. Essa"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10042",title:"Noise and Environment",subtitle:null,isOpenForSubmission:!1,hash:"11e8fca2f0f623d87dfbc3cf2b185e0d",slug:"noise-and-environment",bookSignature:"Daniela Siano and Alice Elizabeth González",coverURL:"https://cdn.intechopen.com/books/images_new/10042.jpg",editedByType:"Edited by",editors:[{id:"9960",title:"Dr.",name:"Daniela",middleName:null,surname:"Siano",slug:"daniela-siano",fullName:"Daniela Siano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10075",title:"Nonlinear Optics",subtitle:"From Solitons to Similaritons",isOpenForSubmission:!1,hash:"b034b2a060292c8511359aec0db1002c",slug:"nonlinear-optics-from-solitons-to-similaritons",bookSignature:"İlkay Bakırtaş and Nalan Antar",coverURL:"https://cdn.intechopen.com/books/images_new/10075.jpg",editedByType:"Edited by",editors:[{id:"186388",title:"Prof.",name:"İlkay",middleName:null,surname:"Bakırtaş",slug:"ilkay-bakirtas",fullName:"İlkay Bakırtaş"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editedByType:"Edited by",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10074",title:"Recent Techniques and Applications in Ionizing Radiation Research",subtitle:null,isOpenForSubmission:!1,hash:"129deeec2186f6392f154ed41f64477a",slug:"recent-techniques-and-applications-in-ionizing-radiation-research",bookSignature:"Ahmed M. Maghraby and Basim Almayyahi",coverURL:"https://cdn.intechopen.com/books/images_new/10074.jpg",editedByType:"Edited by",editors:[{id:"102209",title:"Dr.",name:"Ahmed M.",middleName:null,surname:"Maghraby",slug:"ahmed-m.-maghraby",fullName:"Ahmed M. Maghraby"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8679",title:"Inverse Heat Conduction and Heat Exchangers",subtitle:null,isOpenForSubmission:!1,hash:"a994b17ac471c6d414d63c74a7ab74de",slug:"inverse-heat-conduction-and-heat-exchangers",bookSignature:"Suvanjan Bhattacharya, Mohammad Moghimi Ardekani, Ranjib Biswas and R. C. Mehta",coverURL:"https://cdn.intechopen.com/books/images_new/8679.jpg",editedByType:"Edited by",editors:[{id:"233630",title:"Dr.",name:"Suvanjan",middleName:null,surname:"Bhattacharyya",slug:"suvanjan-bhattacharyya",fullName:"Suvanjan Bhattacharyya"}],equalEditorOne:{id:"56358",title:"Dr.",name:"R. C.",middleName:null,surname:"Mehta",slug:"r.-c.-mehta",fullName:"R. C. Mehta",profilePictureURL:"https://mts.intechopen.com/storage/users/56358/images/system/56358.jpeg",biography:"R. C. Mehta obtained his Ph.D. from the Indian Institute of Technology, Madras. He has worked as the Head of Aerodynamics\nDivision of Vikram Sarabhai Space Centre/Indian Space Research\nOrganization. He has participated in the design of launch and\nreentry vehicles. He has served as a Senior Fellow in the School\nof Mechanical and Aerospace Engineering at Nanyang Technological University, Singapore. He is the recipient of the Life Time\nAchievement Award from the Flow Physics Society of India. He is a senior member\nof AIAA. He has published over 120 papers in peer-reviewed national and international journals. He has published five chapters and co-authored two books. He is a\nreviewer for many international journals. He is presently Dean in the Noorul Islam\nCentre for Higher Education, Kumaracoil, India.",institutionString:"Noorul Islam University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"5",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Noorul Islam University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8490",title:"Selected Topics in Plasma Physics",subtitle:null,isOpenForSubmission:!1,hash:"0fe936bfad77ae70ad96c46de8b7730d",slug:"selected-topics-in-plasma-physics",bookSignature:"Sukhmander Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8490.jpg",editedByType:"Edited by",editors:[{id:"282807",title:"Dr.",name:"Sukhmander",middleName:null,surname:"Singh",slug:"sukhmander-singh",fullName:"Sukhmander Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9211",title:"Single Photon Manipulation",subtitle:null,isOpenForSubmission:!1,hash:"567ddcc14b68fa14e54df3bce2f51acc",slug:"single-photon-manipulation",bookSignature:"Keyu Xia",coverURL:"https://cdn.intechopen.com/books/images_new/9211.jpg",editedByType:"Edited by",editors:[{id:"210723",title:"Prof.",name:"Keyu",middleName:null,surname:"Xia",slug:"keyu-xia",fullName:"Keyu Xia"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10076",title:"Quantum Mechanics",subtitle:null,isOpenForSubmission:!1,hash:"78f2b316d6bb97464dbbf9b683164aff",slug:"quantum-mechanics",bookSignature:"Paul Bracken",coverURL:"https://cdn.intechopen.com/books/images_new/10076.jpg",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7965",title:"Liquid Crystals and Display Technology",subtitle:null,isOpenForSubmission:!1,hash:"eb83772cea6200bdd685b8a1b93ee35d",slug:"liquid-crystals-and-display-technology",bookSignature:"Morteza Sasani Ghamsari and Irina Carlescu",coverURL:"https://cdn.intechopen.com/books/images_new/7965.jpg",editedByType:"Edited by",editors:[{id:"64949",title:"Prof.",name:"Morteza",middleName:null,surname:"Sasani Ghamsari",slug:"morteza-sasani-ghamsari",fullName:"Morteza Sasani Ghamsari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9276",title:"Computational Fluid Dynamics Simulations",subtitle:null,isOpenForSubmission:!1,hash:"03a2501c6fc0ac90a8b328850b712da7",slug:"computational-fluid-dynamics-simulations",bookSignature:"Guozhao Ji and Jiujiang Zhu",coverURL:"https://cdn.intechopen.com/books/images_new/9276.jpg",editedByType:"Edited by",editors:[{id:"190139",title:"Dr.",name:"Guozhao",middleName:null,surname:"Ji",slug:"guozhao-ji",fullName:"Guozhao Ji"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10162",title:"A Diffusion Hydrodynamic Model",subtitle:null,isOpenForSubmission:!1,hash:"a8c90b653db4fa7a59132d39cca185d8",slug:"a-diffusion-hydrodynamic-model",bookSignature:"Theodore V. Hromadka II, Chung-Cheng Yen and Prasada Rao",coverURL:"https://cdn.intechopen.com/books/images_new/10162.jpg",editedByType:"Authored by",editors:[{id:"181008",title:"Dr.",name:"Theodore V.",middleName:"V.",surname:"Hromadka II",slug:"theodore-v.-hromadka-ii",fullName:"Theodore V. Hromadka II"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"4",chapterContentType:"compact",authoredCaption:"Authored by"}}],booksByTopicTotal:143,mostCitedChapters:[{id:"32842",doi:"10.5772/34901",title:"Sterilization by Gamma Irradiation",slug:"sterilization-by-gamma-irradiation",totalDownloads:73518,totalCrossrefCites:29,totalDimensionsCites:58,book:{slug:"gamma-radiation",title:"Gamma Radiation",fullTitle:"Gamma Radiation"},signatures:"Kátia Aparecida da Silva Aquino",authors:[{id:"102109",title:"Dr.",name:"Katia",middleName:"Aparecida Da S.",surname:"Aquino",slug:"katia-aquino",fullName:"Katia Aquino"}]},{id:"49652",doi:"10.5772/61720",title:"Sample Preparations for Scanning Electron Microscopy – Life Sciences",slug:"sample-preparations-for-scanning-electron-microscopy-life-sciences",totalDownloads:8115,totalCrossrefCites:25,totalDimensionsCites:54,book:{slug:"modern-electron-microscopy-in-physical-and-life-sciences",title:"Modern Electron Microscopy in Physical and Life Sciences",fullTitle:"Modern Electron Microscopy in Physical and Life Sciences"},signatures:"Mogana Das Murtey and Patchamuthu Ramasamy",authors:[{id:"176330",title:"Dr.",name:"Mogana",middleName:"Das",surname:"Murtey",slug:"mogana-murtey",fullName:"Mogana Murtey"},{id:"181159",title:"Mr.",name:"Patchamuthu",middleName:null,surname:"Ramasamy",slug:"patchamuthu-ramasamy",fullName:"Patchamuthu Ramasamy"}]},{id:"26791",doi:"10.5772/28067",title:"Optical Vortices in a Fiber: Mode Division Multiplexing and Multimode Self-Imaging",slug:"optical-vortices-in-a-fiber-mode-division-multiplexing-and-multimode-self-reproducing",totalDownloads:3952,totalCrossrefCites:18,totalDimensionsCites:39,book:{slug:"recent-progress-in-optical-fiber-research",title:"Recent Progress in Optical Fiber Research",fullTitle:"Recent Progress in Optical Fiber Research"},signatures:"S.N. Khonina, N.L. Kazanskiy and V.A. Soifer",authors:[{id:"72613",title:"Prof.",name:"Svetlana",middleName:null,surname:"Khonina",slug:"svetlana-khonina",fullName:"Svetlana Khonina"}]}],mostDownloadedChaptersLast30Days:[{id:"71926",title:"An Overview of Polymer-Dispersed Liquid Crystals Composite Films and Their Applications",slug:"an-overview-of-polymer-dispersed-liquid-crystals-composite-films-and-their-applications",totalDownloads:561,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"liquid-crystals-and-display-technology",title:"Liquid Crystals and Display Technology",fullTitle:"Liquid Crystals and Display Technology"},signatures:"Anuja Katariya Jain and Rajendra R. Deshmukh",authors:[{id:"34437",title:"Dr.",name:"Rajendrasing",middleName:"Rajesing",surname:"Deshmukh",slug:"rajendrasing-deshmukh",fullName:"Rajendrasing Deshmukh"},{id:"318245",title:"Dr.",name:"Anuja",middleName:null,surname:"Katariya-Jain",slug:"anuja-katariya-jain",fullName:"Anuja Katariya-Jain"}]},{id:"72824",title:"Applications of Diffusion Hydrodynamic Model",slug:"applications-of-diffusion-hydrodynamic-model",totalDownloads:312,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"a-diffusion-hydrodynamic-model",title:"A Diffusion Hydrodynamic Model",fullTitle:"A Diffusion Hydrodynamic Model"},signatures:"Theodore V. Hromadka II and Chung-Cheng Yen",authors:[{id:"181008",title:"Dr.",name:"Theodore V.",middleName:"V.",surname:"Hromadka II",slug:"theodore-v.-hromadka-ii",fullName:"Theodore V. Hromadka II"}]},{id:"49537",title:"Electron Diffraction",slug:"electron-diffraction",totalDownloads:8488,totalCrossrefCites:6,totalDimensionsCites:22,book:{slug:"modern-electron-microscopy-in-physical-and-life-sciences",title:"Modern Electron Microscopy in Physical and Life Sciences",fullTitle:"Modern Electron Microscopy in Physical and Life Sciences"},signatures:"Mohsen Asadi Asadabad and Mohammad Jafari Eskandari",authors:[{id:"176352",title:"Dr.",name:"Mohsen",middleName:null,surname:"Asadi Asadabad",slug:"mohsen-asadi-asadabad",fullName:"Mohsen Asadi Asadabad"},{id:"177600",title:"Dr.",name:"Mohammad",middleName:null,surname:"Jafari Eskandari",slug:"mohammad-jafari-eskandari",fullName:"Mohammad Jafari Eskandari"}]},{id:"32842",title:"Sterilization by Gamma Irradiation",slug:"sterilization-by-gamma-irradiation",totalDownloads:73518,totalCrossrefCites:29,totalDimensionsCites:58,book:{slug:"gamma-radiation",title:"Gamma Radiation",fullTitle:"Gamma Radiation"},signatures:"Kátia Aparecida da Silva Aquino",authors:[{id:"102109",title:"Dr.",name:"Katia",middleName:"Aparecida Da S.",surname:"Aquino",slug:"katia-aquino",fullName:"Katia Aquino"}]},{id:"71638",title:"Plasma Antennas",slug:"plasma-antennas",totalDownloads:300,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"selected-topics-in-plasma-physics",title:"Selected Topics in Plasma Physics",fullTitle:"Selected Topics in Plasma Physics"},signatures:"Theodore Anderson",authors:null},{id:"50866",title:"Effects of Different Laser Pulse Regimes (Nanosecond, Picosecond and Femtosecond) on the Ablation of Materials for Production of Nanoparticles in Liquid Solution",slug:"effects-of-different-laser-pulse-regimes-nanosecond-picosecond-and-femtosecond-on-the-ablation-of-ma",totalDownloads:4902,totalCrossrefCites:5,totalDimensionsCites:17,book:{slug:"high-energy-and-short-pulse-lasers",title:"High Energy and Short Pulse Lasers",fullTitle:"High Energy and Short Pulse Lasers"},signatures:"Abubaker Hassan Hamad",authors:[{id:"183494",title:"Dr.",name:"Abubaker",middleName:"Hassan",surname:"Hamad",slug:"abubaker-hamad",fullName:"Abubaker Hamad"}]},{id:"68746",title:"Optically Clear Adhesives for OLED",slug:"optically-clear-adhesives-for-oled",totalDownloads:1490,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"luminescence-oled-technology-and-applications",title:"Luminescence",fullTitle:"Luminescence - OLED Technology and Applications"},signatures:"Joel T. Abrahamson, Hollis Z. Beagi, Fay Salmon and Christopher J. Campbell",authors:null},{id:"59379",title:"Graphene, Transition Metal Dichalcogenides, and Perovskite Photodetectors",slug:"graphene-transition-metal-dichalcogenides-and-perovskite-photodetectors",totalDownloads:1643,totalCrossrefCites:4,totalDimensionsCites:4,book:{slug:"two-dimensional-materials-for-photodetector",title:"Two-dimensional Materials for Photodetector",fullTitle:"Two-dimensional Materials for Photodetector"},signatures:"Zhi Yang, Jinjuan Dou and Minqiang Wang",authors:[{id:"225612",title:"Dr.",name:"Zhi",middleName:null,surname:"Yang",slug:"zhi-yang",fullName:"Zhi Yang"},{id:"238944",title:"MSc.",name:"Jinjuan",middleName:null,surname:"Dou",slug:"jinjuan-dou",fullName:"Jinjuan Dou"},{id:"238946",title:"Prof.",name:"Minqiang",middleName:null,surname:"Wang",slug:"minqiang-wang",fullName:"Minqiang Wang"}]},{id:"70578",title:"Gallium-68: Radiolabeling of Radiopharmaceuticals for PET Imaging - A Lot to Consider",slug:"gallium-68-radiolabeling-of-radiopharmaceuticals-for-pet-imaging-a-lot-to-consider",totalDownloads:717,totalCrossrefCites:3,totalDimensionsCites:3,book:{slug:"medical-isotopes",title:"Medical Isotopes",fullTitle:"Medical Isotopes"},signatures:"Michael Meisenheimer, Yury Saenko and Elisabeth Eppard",authors:null},{id:"58452",title:"Transition Metal Dichalcogenide Photodetectors",slug:"transition-metal-dichalcogenide-photodetectors",totalDownloads:1545,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"two-dimensional-materials-for-photodetector",title:"Two-dimensional Materials for Photodetector",fullTitle:"Two-dimensional Materials for Photodetector"},signatures:"Inturu Omkaram, Young Ki Hong and Sunkook Kim",authors:[{id:"210186",title:"Dr.",name:"Inturu",middleName:null,surname:"Omkaram",slug:"inturu-omkaram",fullName:"Inturu Omkaram"}]}],onlineFirstChaptersFilter:{topicSlug:"physics ",limit:3,offset:0},onlineFirstChaptersCollection:[{id:"76308",title:"Quarks Mixing in Chiral Symmetries",slug:"quarks-mixing-in-chiral-symmetries",totalDownloads:0,totalDimensionsCites:null,doi:"10.5772/intechopen.95233",book:{title:"Quantum Chromodynamic"},signatures:"Zbigniew Szadkowski"},{id:"76271",title:"Double Pole Method in QCD Sum Rules for Vector Mesons",slug:"double-pole-method-in-qcd-sum-rules-for-vector-mesons",totalDownloads:3,totalDimensionsCites:0,doi:"10.5772/intechopen.97421",book:{title:"Quantum Chromodynamic"},signatures:"Mikael Souto Maior de Sousa and Rômulo Rodrigues da Silva"},{id:"76259",title:"Paramagnetic Transitions Ions as Structural Modifiers in Ferroelectrics",slug:"paramagnetic-transitions-ions-as-structural-modifiers-in-ferroelectrics",totalDownloads:1,totalDimensionsCites:0,doi:"10.5772/intechopen.95983",book:{title:"Paramagnetism - Fundamentals, New Perspectives and Applications"},signatures:"Veronica Lucero Villegas Rueda"}],onlineFirstChaptersTotal:35},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"chapter.detail",path:"/books/technical-problems-in-patients-on-hemodialysis/the-brachio-brachial-arteriovenous-fistula",hash:"",query:{},params:{book:"technical-problems-in-patients-on-hemodialysis",chapter:"the-brachio-brachial-arteriovenous-fistula"},fullPath:"/books/technical-problems-in-patients-on-hemodialysis/the-brachio-brachial-arteriovenous-fistula",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()