A summary of ZnO sol-gel precursors, substrates, deposition methods, sintering conditions, and post-processing environments and thicknesses. Thicknesses were evaluated by SEM, ellipsometry, and profilometry techniques [20, 21].
\r\n\tIt is a relatively simple process and a standard tool in any industry. Because of the versatility of the titration techniques, nearly all aspects of society depend on various forms of titration to analyze key chemical compounds.
\r\n\tThe aims of this book is to provide the reader with an up-to-date coverage of experimental and theoretical aspects related to titration techniques used in environmental, pharmaceutical, biomedical and food sciences.
Printing electrically functional inks has emerged as an important research topic to drive device technologies into the future. It has some advantages compared to conventional fabrication techniques in terms of low cost and applicability for flexible devices. This is promising for wearable, implantable, patch-like, and textile-integrated electronics, advancing the device field. With the right ink and substrate, it would be possible to achieve lightweight, flexible, transparent devices with a good electrical performance, which will revolutionize our daily lives.
\nUntil recently, organic inks have monopolized printing technology because of their printability, flexibility, and electronic functionality. However, developing printable inorganic inks would allow for higher performance—like conventional devices—at a much lower cost than conventional fabrications, such as atomic layer deposition (ALD), pulsed laser deposition (PLD), chemical vapor deposition (CVD), physical vapor deposition (PVD), molecular beam epitaxy (MBE), and sputtering. In addition, printing techniques allow for deposition at low temperatures and at specified locations, a controllability of both parameters that no other deposition techniques can claim. These advantages make printing much easier and more compatible with flexible substrates, as some polymers cannot withstand the high processing temperatures of some deposition techniques or the harsh chemicals and UV radiation in the photolithography necessary to construct a functional device.
\nSome facile printing technologies are inkjet (IJP) and aerosol jet printing(AJP). Inkjet printing (IJP) is very quick and a simple drop-on-demand or continuous stream technique with micrometer precision [1, 2]. Aerosol jet printing (AJP) is favored as a clean and precise technique, using a continuous stream to print features down to 10 μm [3]. Nonetheless, both techniques are new and exciting ways to fabricate electronic devices. Both AJP and IJP techniques are currently used to print a wide variety of organic and inorganic inks for use as flexible photodetectors, transistors, and other circuit board components [4, 5, 6, 7, 8, 9, 10]. ZnO is an exciting material for electronics due to its direct wide bandgap (3.2 eV at 298 K), strong UV absorption, and electrical tunability. Many researchers have successfully fabricated ZnO devices at low cost and relatively low temperature by way of printing sol-gel precursor and other nanoparticle-based inks [11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. In addition, the authors of this chapter have successfully fabricated ZnO transparent conductive oxides (TCOs) using a simple sol-gel, spin coating technique [21]. Research efforts utilizing sol-gel-derived ZnO thin films for device applications have greatly increased, recently [22, 23, 24]. Through these methods, the resultant ZnO material properties can be tuned by introducing group III metal ions during the precursor sol synthesis. In this chapter, we present the use of a sol-gel technique to develop ZnO printed electronics.
\nTo understand the applications of ZnO sol-gel precursors, we employ spin coating, IJP, and AJP deposition with thermal and photonic sintering to synthesize and tune ZnO thin films. Extrinsic shallow donors, such as Al3+, In3+, and Ga3+, have similar ionic radius to that of Zn2+ and thus can easily replace it with little effect on the lattice structure [20, 25, 26, 27, 28, 29]. These donors are introduced during the precursor solutions’ synthesis and various atmospheric post-processing heat treatments are applied to introduce, eliminate, or passivate intrinsic defects that greatly alter the electrical conductivity of the films. The ZnO thin film properties are studied by scanning electron microscopy (SEM), X-ray diffraction (XRD), ultraviolet-visible range (UV-VIS) absorbance, Van der Pauw and Hall effect measurements, and positron annihilation spectroscopy (PAS).
\nTo make a ZnO sol-gel precursor, we dissolve zinc acetate (99.99%) in 2-methoxyethanol (99.8%)—using ethanolamine (99%) as a stabilizer—to obtain a 0.75 M solution, with zinc acetate and ethanolamine at a 1:1 molar ratio. To dope ZnO thin films, aluminum(III) nitrate nonahydrate (99.997%), gallium(III) nitrate hydrate (99.9998%), and indium(III) acetate hydrate (99.99%) metal salts were implemented to replace some zinc acetate in the mixture to obtain a doping level of 1% in solution while keeping the 1:1 molar ratio with ethanolamine and the molarity at 0.75 M. Undoped ZnO, aluminum-doped ZnO (AZO), gallium-doped ZnO (GZO), and indium-gallium-codoped ZnO (IGZO) precursor solutions were prepared in an open-air environment, then covered with plastic paraffin film, heated to 60°C, and magnetically stirred for 2 h to obtain a transparent homogenous solution and then left to cool before deposition (Figure 1).
\nSynthesis procedure for ZnO, AZO, GZO, and IGZO precursor solutions.
Quartz, cyclic olefin copolymer (TOPAS), polyethylene terephthalate (PET), and polyimide (Kapton) substrates were selected based on their transparency and/or flexibility. Before ZnO deposition, substrates were cleaned and etched to improve substrate/solution compatibility. Quartz substrates were treated in piranha baths to clean residual contaminants from the substrate and induce a surface charge. The substrate was placed in a 3:1 H2SO4:H2O2 bath at 80°C for 15 min, rinsed with deionized water, placed in a 3:1 NH4OH:H2O2 bath at 80°C for 15 min, rinsed with deionized water again, and placed in an oven at about 100°C to dry. Before IJP and AJP, quartz, TOPAS, PET, and Kapton substrates were prepared by swabbing with acetone and isopropanol, drying with a nitrogen gun, and applying atmospheric plasma treatment from a corona discharge wand with the transformer set at 200 W at a standoff distance of 5 mm from the ground electrode.
\nOnce the sol-gel precursors and substrates have been prepared, ZnO thin films were deposited using spin coating, IJP, and AJP. Table 1 summarizes ZnO sol-gel precursors, substrates, deposition methods, sintering conditions, and post-processing environments and thicknesses.
\nSample | \nSubstrate | \nDeposition method | \nSintering conditions | \nThickness (nm) | \n
---|---|---|---|---|
GZO | \nQuartz | \nSpin coating | \n400°C, 60 min, air | \n800 | \n
GZO | \nQuartz | \nSpin coating | \n400°C, 60 min, air | \n808 | \n
AZO | \nQuartz | \nSpin coating | \n400°C, 60 min, air | \n515 | \n
ZnO0 | \nQuartz | \nSpin coating | \n400°C, 60 min, air | \n600 | \n
ZnO0 | \nQuartz | \nSpin coating | \n400°C, 60 min, air | \n173 | \n
ZnO1 | \nTOPAS | \nInkjet printing | \n170°C, 60 min, air | \n~600 | \n
ZnO2 | \nKapton | \nInkjet printing | \n300°C, 20 min, air | \n~600 | \n
ZnO3 | \nTOPAS | \nInkjet printing | \nXenon, 180 bursts, N2 | \n~600 | \n
ZnO3 | \nKapton | \nInkjet printing | \nXenon, 180 bursts, N2 | \n~600 | \n
ZnO3 | \nPET | \nInkjet printing | \nXenon, 180 bursts, N2 | \n~600 | \n
ZnO4 | \nTOPAS | \nInkjet printing | \n150°C, 30 min, air | \n~600 | \n
ZnO4 | \nKapton | \nInkjet printing | \n150°C, 30 min, air | \n~600 | \n
ZnO5 | \nKapton | \nInkjet printing | \n400°C, 60 min, air | \n~600 | \n
ZnO6 | \nKapton | \nAerosol jet printing | \n200°C, 60 min, air | \n~400 | \n
ZnO7 | \nKapton | \nAerosol jet printing | \n300°C, 60 min, air | \n~400 | \n
ZnO8 | \nKapton | \nAerosol jet printing | \n400°C, 60 min, air | \n~400 | \n
IGZO1 | \nQuartz | \nInkjet printing | \n400°C, 60 min, air | \n~600 | \n
IGZO2 | \nKapton | \nInkjet printing | \n400°C, 60 min, air | \n~600 | \n
IGZO3 | \nKapton | \nAerosol jet printing | \n400°C, 60 min, air | \n~400 | \n
A Laurell Technologies Corporation spin coater was used to spin a quartz substrate at 500 rpm. Then, 40–50 drops of precursor solution were dispensed, before the substrate/solution was accelerated to 3000 rpm and left spinning for 30 s to obtain a gel-like thin layer. Next, the gel film was placed in an oven to dry at 150°C for 10 min. The spin coating and drying processes were repeated to obtain the desired number of layers (10–16 layers total). Finally, the films were annealed in ambient air at 400°C for 60 min, to obtain a ZnO wurtzite structure. ZnO, AZO, and GZO films were fabricated using this spin coating technique. To tune the electronic properties, several samples were further annealed in the following flowing gas conditions: (1) forming gas of 95% N2 and 5% H2 at 400°C for 60 min, (2) H2 flow at 400°C for 60 min, and (3) Zn-rich environment in Ar at 400°C for 60 min. The Zn-rich environment was created with Zn powder (99.999%) and Zn foil (99.994%, 0.1 mm thick). Thin films and Zn powder were wrapped tightly in Zn foil, while an Ar gas flow was used to prevent oxidation of the ZnO.
\nA Dimatix inkjet printer printed 7 mm × 7 mm squares of ZnO and IGZO sol-gel precursors onto various substrates for a total of 12 layers. The jet and platen temperatures were set to 39°C, and the droplet overlap was set to at least 50%. The droplet size was between 50 and 100 μm, depending on the substrate. The resultant gels were dried at 150°C for 10–30 min (until visibly dry) to remove any residual solvent. Here, processing techniques were limited by the thermal expansion coefficient of the substrates. Post-print sintering was carried out using thermal and photonic sintering methods. Thermal sintering took place in ambient atmosphere on a hot plate at temperatures between 170 and 400°C for 20–60 min. Photonic sintering was carried out in a N2-rich atmosphere using a xenon arc lamp placed 4.445 cm above the substrate platen, set at 2 kV with 6-ms pulse width for a total of 180 bursts.
\nAn Optomec aerosol jet printer printed similar 7 mm × 7 mm squares of ZnO sol-gel precursors onto Kapton substrates for a total of six layers. A 200-μm nozzle was used at a speed of 3 mm/s. The line width of the aerosol spray was about 75 μm, so a 50-μm serpentine pattern was selected to achieve ~33% overlap. The resultant gels were dried at 90°C for 30 min (until visibly dry), then subject to thermal sintering in ambient atmosphere on a hot plate at 200°, 300°, and 400°C for 60 min.
\nSpin-coated AZO thin films that were post-processed in H2 and Zn were imaged by SEM. Low-magnification surface images show worm-like structures (Figure 2), while a higher magnification shows round particles with an average particle size of 20 nm (Figure 3). Platinum was then deposited on the film surface by a focused ion beam and a trench was milled through the sample to obtain a high-resolution cross-sectional image (Figure 4). It can be seen that the film is deposited as distinct individual layers (each layer is ~40 nm thick). The images also reveal non-uniform thickness, with ~25% variation across the film and indicate that it is difficult to obtain uniform thickness using sol-gel methods. These images represent the first high-resolution cross-sectional images for sol-gel films. They illustrate that the distinct individual layers and the non-uniformity in thickness are inherent of the spin coating method, but they may be reduced by further annealing. This non-uniform layering leads to interference in UV-VIS transmission spectra, a well-known feature in sol-gel films.
\nLow-magnification SEM surface image for AZO film deposited by spin coating and post-processed in H2 and Zn environments, consecutively [21].
Film crystallinity was studied using a Rigaku X-ray diffractometer to determine the ZnO crystal phase (hkl values) and average grain size. XRD patterns for spin-coated AZO films indicate polycrystalline thin films, with peaks corresponding to the (100), (002), and (101) planes (Figure 5). These diffraction patterns match the ZnO hexagonal wurtzite structure, without any secondary phase impurities in the films. Furthermore, we can see a change in polycrystallinity based on post-processing in H2 and Zn environments. When processed in H2, films become less polycrystalline, while processing in Zn leads to the opposite effect.
\nHigh-magnification SEM surface image for AZO film deposited by spin coating and post-processed in H2 and Zn environments, consecutively [21].
XRD patterns for IJP ZnO films (Figure 6) reveal that ZnO phases form at temperatures as low as 150°C, with more peaks appearing at increased sintering temperature. Although there is a lack of ZnO phase formation for ZnO4 on Kapton and an impurity phase for ZnO3 on TOPAS, the results demonstrate that ZnO thin films can be successfully fabricated by inkjet printing and thermal and photonic sintering processes.
\nHigh-magnification cross-sectional SEM image of AZO films deposited by spin coating and post-processed in H2 and Zn environments, consecutively [21].
XRD measurements for AZO films annealed in various atmospheres [21].
XRD patterns for AJP ZnO reveal amorphous nature at 200°C and an increasing polycrystallinity with the sintering temperature. In addition, increasing the sintering temperature increases the average grain size, which is consistent with previous reports [30, 31]. XRD patterns for AJP IGZO XRD show a ~50% increase in grain size due to the low doping concentration of In3+ and Ga3+, with a minimal effect on the polycrystalline structure. Table 2 presents the average grain sizes of the aforementioned thin films. The grain size D was calculated for each 2θ peak using the Scherrer equation:
where λ = 1.54 Å is the X-ray wavelength, β is the full width at half maximum (FWHM) of the corresponding peak, and θ is the Bragg angle.
\nSample | \nSintering conditions | \nAverage grain size (Å) | \nEstimated standard deviation | \n
---|---|---|---|
ZnO6 | \n200°C, 60 min, air | \n32.33 | \n6.04 | \n
ZnO7 | \n300°C, 60 min, air | \n239.17 | \n36.25 | \n
ZnO8 | \n400°C, 60 min, air | \n500.32 | \n119.91 | \n
IGZO3 | \n400°C, 60 min, air | \n736.84 | \n27.85 | \n
ZnO, AZO, GZO, and IGZO sol-gel precursors are viable options to achieve a ZnO wurtzite structure at low sintering temperatures. Films are generally inhomogeneous in thickness and amorphous or polycrystalline in nature, with grain size and polycrystallinity increasing with the sintering temperature. A low doping concentration does not inhibit ZnO wurtzite formation, but the incorporation of In3+ and Ga3+ dopants effectively increases the average grain size. Furthermore, post-processing in H2 and Zn environments can change the polycrystallinity of the films.
\nA dual-beam Perkin Elmer UV-VIS spectrometer was used to record the transmission and absorbance spectra of spin-coated and printed ZnO films. A blank substrate was placed in line with that reference beam, while the sample spectra were recorded.
\nTransmission measurements for spin-coated ZnO0 and AZO show the band edge near 380 nm with a high visible range transparency (Figure 8). The individual layering, as observed from SEMs, leads to interference effects in the spectra, which can be reduced by a greater H2 concentration during annealing and lead to improved transparency (Figure 8a). This can be explained by a decrease in polycrystallinity observed in XRD analysis. However, the opposite effect occurs after annealing in a Zn environment (Figure 8b), which is due to the increase in polycrystallinity.
\nXRD spectra for IJP films on Kapton and TOPAS substrates sintered by hot plate and xenon arc lamp [20].
Printed ZnO and IGZO films also show a band edge near 380 nm from optical absorbance measurements (Figure 9a). The bandgap is near 3.2 eV for all printed films, as calculated by the Tauc method (Figure 9b). AJP IGZO films are more transparent than IJP films due to better overall print quality. Figure 10 compares the IJP and AJP techniques, as seen by the naked eye. It is clear that AJP films are more transparent because of less light scattering from surface roughness and striations in the IJP films.
\nXRD spectra for AJP ZnO films on Kapton sintered at 200°C, 300°C, and 400°C and AJP IGZO films on Kapton sintered at 400°C [20].
UV-VIS transmission measurements for: (a) AZO films before and after hydrogen treatment at different pressures and (b) ZnO0 before and after Zn treatment [21].
These results established that the sol-gel precursor method can produce films with good visible range transparency in spin coating and printing techniques. Interference in the visible range absorbance can be reduced by the post-processing conditions. Here, AJP yields a better print quality than IJP and offers similar visible range transparency to spin coating.
\nAt 300 K, the resistivity was obtained via van der Pauw measurements using an MMR Hall effect system. All spin-coated and printed ZnO, AZO, GZO, and IGZO films show high electrical resistivity after the initial sintering. All spin-coated films were too resistive to initially measure, and the printed films measured resistivity >104 Ω cm. However, post-processing of spin-coated GZO, AZO, and ZnO0 in H2 and Zn environments induced a large conductivity. Van der Pauw and Hall effect measurements for ZnO, AZO, GZO, and IGZO films are summarized in Table 3.
\nSample | \nPost-processing conditions | \nResistivity (Ω cm) | \nMobility (cm2 V−1 s−1) | \nCarrier concentration (cm−3) | \n
---|---|---|---|---|
GZO | \n400°C, 60 min, H2 | \n1.03 × 101 | \n<1 | \n1.43 × 1019 | \n
GZO | \n400°C, 60 min, H2 & 400°C, 60 min, Zn | \n1.97 × 10−1 | \n<1 | \n1.44 × 1020 | \n
AZO | \n400°C, 60 min, H2 & 400°C, 240 min, Zn | \n1.71 × 10−2 | \n<1 | \n3.01 × 1021 | \n
ZnO0 | \n400°C, 60 min, H2/N2 & 400°C, 180 min, Zn | \n1.83 × 10−1 | \n2.94 × 101 | \n1.16 × 1018 | \n
ZnO0 | \n400°C, 60 min, Zn | \n1.08 × 102 | \n<1 | \n1.86 × 1017 | \n
ZnO5 | \n— | \n4.59 × 105 | \n— | \n— | \n
IGZO2 | \n— | \n3.06 × 104 | \n— | \n— | \n
ZnO6 | \n— | \n1.02 × 105 | \n— | \n— | \n
ZnO7 | \n— | \n8.36 × 104 | \n— | \n— | \n
ZnO8 | \n— | \n2.25 × 105 | \n— | \n— | \n
AZO thin films annealed in both H2 and Zn offer the lowest electrical resistivity (1.71 × 10−2 Ω cm) and the highest carrier concentration (3.01 × 1021). We emphasize that the electrical conductivity results only after the post-processing steps. The large decrease in resistivity is attributed to the passivation of defect states, which will be discussed further in the PAS section of this chapter. The low resistivity coupled with the high visible range transparency offers solution-processed ZnO as a viable option of TCO in printed electronics.
\nIn3+ and Ga3+ dopants were also investigated through electrical measurements by comparing printed IGZO2 and ZnO5 thin films. Both use IJP deposition on Kapton substrates and have a thickness of 600 nm. Unsurprisingly, IGZO2 has a lower resistivity (3.06 × 104 Ω cm) than ZnO5 (4.59 × 105 Ω cm). It is well understood that In3+ and Ga3+ increase conductivity in ZnO, an effect studied in other In- and Ga-doped sol-gel ZnO [32, 33].
\nThe lowest resistivity for AJP ZnO is in the thin film that was annealed at 300°C. The overall resistivity of ZnO depends on its structural properties, which are affected by the oxygen concentration in the film. At higher sintering temperatures, resistivity increases with annealing temperature [34, 35]. However, at temperatures below 300°C, we see the opposite effect [36]. While increasing the sintering temperature, we are removing more solvent, forming a ZnO structure, and increasing the grain size, which creates more pathways for conduction. As we further increase temperature, the grain size continues to increase—as seen in XRD—but more oxygen is being introduced to the ZnO. Increasing the grain size is expected to decrease the resistivity [37], while introducing more oxygen may increase the resistivity [38], resulting in a local minimum in the resistivity as a function of sintering temperature.
\nIn general, doping, sintering, and post-processing all play a vital role in the conductivity of sol-gel ZnO films because of their effects on the ZnO lattice structure and defect formation. First, shallow donors can increase the free carriers in the conduction band. Second, the solvent must be completely evaporated, and the grain boundary concentration and adsorbed oxygen must be minimized to increase the mobility and carrier concentration, respectively. And lastly, post-processing techniques can be utilized to further improve the polycrystallinity and passivate defect charge states.
\nThe MMR Hall effect system was equipped with a 365-nm light-emitting diode (LED), positioned 1.8 cm from the sample stage, to measure the resistivity as a function of light intensity. After dark measurements were taken, the LED light intensity was increased in steps up to 24 mW (~4.4 × 1016 photons·cm−2 s−1), allowing the light and temperature to stabilize for at least 1 min prior to each measurement. Although light from the LED produces localized heating, the temperature was maintained at 300 K using a Joule-Thompson refrigerator located directly beneath the sample stage, operating in combination with a heating element. Photoconductivity was observed in IJP ZnO5; IJP IGZO2; and AJP ZnO6, ZnO7, and ZnO8 (Figure 11).
\n(a) UV-VIS absorbance spectra for IJP and AJP ZnO and IGZO films sintered by different methods, exhibiting a band edge near 380 nm and (b) Tauc plots of direct-bandgap transitions for each spectrum with linear fits extrapolated to (αhv)2 = 0 for bandgap determination [20].
Upon initial UV LED illumination at 0.98 mW (~4.4 × 1016 photons·cm−2 s−1), there is a sharp decrease in resistivity. We credit this to ZnO absorbing light and promoting an electron from the valence band to the conduction band because the incident UV photons are of greater energy (~3.4 eV) than the ZnO bandgap (~3.2 eV). The photoresponse is due to oxygen chemisorption, where light illumination causes oxygen desorption and the release of trapped electrons to the conduction band [39]. Here, the greatest conductive response is seen at the greatest sintering temperature in AJP ZnO. This may be because larger grains desorb more oxygen when illuminated. In addition, the larger grain size would allow for better electron mobility.
\nWith increased light intensity, IJP ZnO thin films quickly saturate, as there is no more oxygen to desorb. But, AJP ZnO—which has a greater photoconductive response—does not saturate at higher light intensity. As the intensity increases, photogenerated holes can be produced and then trapped at charged boundary states, while excess electrons can be promoted to the conduction band, increasing the free carrier concentration. In addition to the effect of the grain boundary, the charge state of defects may also undergo a change upon illumination and lead to an increase or a decrease in electron scattering affecting electron mobility. For instance, a change in the charge state of defects could increase electron scattering, decreasing the electron mobility and compromising the conductivity. Both the carrier concentration and electron mobility strongly affect the transport properties of ZnO films, and different photo-induced processes could lead to the observed non-linear behavior with increasing light intensity.
\nIt is impossible to understand the effect of annealing on the transport properties without investigating the presence of point defects in the films. PAS is a well-established technique for measurements of cation vacancies, which strongly influence the transport properties [40, 41, 42, 43, 44]. In fact, many works have applied PAS and identified Zn vacancies in ZnO films and bulk single crystals [39, 40, 41]. The sensitivity of PAS to open volume defects such as vacancies can be understood as follows. The lack of positive ion cores at vacancies forms an attractive potential that traps positrons leading to characteristic changes in the measured positron annihilation parameters. Therefore, PAS is a very useful tool to further improve the development of sol-gel ZnO film. Here, depth-resolved Doppler broadening of PAS measurements was applied to elucidate the aforementioned effect of annealing on the electrical properties of ZnO films. The measurements were carried out on AZO films before and after annealing in forming gas (5% H2, 95% N2). Figure 12a and b shows S and W parameters, respectively, for the films as a function of incident positron energy and mean implantation depth. The S and W parameters represent the annihilation fraction of positrons with valence and core electrons, respectively, and they provide an indication about defect density [45, 46, 47]. The S parameter was obtained from the annihilation peak by dividing the counts in the central peak by the total counts in the peak, while the W parameter was obtained by dividing the counts in the wings of the peak by the total counts in the peak. Trapped positrons at defects are more likely to annihilate with low-momentum valence electrons causing an increase in S parameter and a decrease in W parameter [45, 46, 47]. In Figure 12a and b, an increase in S parameter and a decrease in W parameter at low positron energy (0–5 keV) are due to positron annihilation at the surface of the films. The figures show a significant decrease in S parameter and an increase in W parameter after H2 processing, which can be interpreted as follows. A Zn vacancy has a negative charge state and is therefore an effective trapping center for positrons, while an O vacancy or interstitial defects cannot trap positrons. Therefore, a decrease in S parameter and an increase in W parameter after H2-annealing are a clear indication for the reduction or passivation of Zn vacancy-related defects. Annealing in forming gas cannot eliminate Zn vacancies; however, hydrogen can partially or completely fill Zn vacancies modifying their negative charge state, which prevents positron trapping. Similarly, Zn interstitials can fill Zn vacancies decreasing positron trapping
Comparison of ZnO thin films printed by IJP (left, ZnO2) and AJP (right, ZnO7) sintered at 300°C. The printed silver pads and indium contacts were applied to the corners for Hall effect measurements. Image taken by a Samsung Galaxy S6 [20].
Resistivity measurements of printed ZnO films as a function of light intensity (365-nm LED) [20].
Depth-resolved PAS for AZO before and after forming gas post-processing: (a) S parameter as a function of positron beam energy and mean positron implantation depth and (b) W parameter as a function of positron beam energy and mean positron implantation depth [21].
S-parameter versus W-parameter plot for bulk ZnO single crystal and AZO before and after processing in forming gas. The three points lie on a straight line, indicating one dominant defect type [21].
In conclusion, ZnO films were deposited on various substrates using a simple sol-gel precursor method. This precursor has proven compatible spin coating, IJP, and AJP techniques to fabricate TCOs and photodetectors. SEM measurements reveal surface roughness and non-uniformity that are inherent to the sol-gel process. However, these drawbacks can be overcome to optimize the UV-VIS and electrical properties. XRD analysis shows polycrystallinity that can be tuned by sintering temperature and processing atmosphere. The post-processing step and the addition of In3+ and Ga3+ have both shown to enhance the electrical conductivity of ZnO either through the suppression of acceptor vacancies or the addition of shallow donors. Resistive ZnO thin films also exhibited an overall photoconductive response of 106. PAS was executed to study the role of hydrogen passivation of cation vacancies in the electrical properties of sol-gel ZnO thin films and to illustrate its need for the development of conductive sol-gel ZnO films. Overall, this work demonstrates the compatibility of sol-gel ZnO with printed electronics and other devices and presents fundamental research to understand the structural, optical, and electrical properties of the material system.
\nThe authors would like to thank the following collaborators for their contributive efforts: Wolfgang Anwand and Andreas Wagner at the Institute of Radiation Physics; Pooneh Saadatkia, Erik Flesburg, and Micah Haseman at Bowling Green State University; and Emily M. Heckman, Eric Kreit, Roberto S. Aga, Brett Wenner, Kevin Leedy, Steve Tetlak, David C. Look, Jeff Allen, and Monica Allen at the Air Force Research Laboratories at Wright-Patterson Air Force Base and Eglin Air Force Base.
\nFunding for this work was provided by multiple AFRL and DAGSI projects.
\nThe authors declare that they have no conflicts of interest.
Food safety has become a global public health concern affecting both mostly developing countries and developed countries. In addition, foodborne diseases negatively impact the economy, trade, and industries of affected countries. For example, melamine has been detected in infant formula (milk powder) in China, leading to more than 290,000 infants suffering from severe health problems such as urinary tract stones [1]. Early and accurate detection of food safety is therefore very important for preventing, controlling, and mitigating the impact of potential outbreaks. Many analytic methods, including chromatography methods such as gas chromatography (GC) [2], high performance liquid chromatography (HPLC) [3], gas chromatography-mass spectrometer (GC-MS) [4], and liquid chromatography-mass spectrometer (LC-MS) [5], and immunological detection, such as enzyme linked immunosorbent assay (ELISA) [6] and lateral flow immunoassay [7], have been employed for food safety detection. Although those traditional methods are relatively sensitive and specific, they are expensive, laborious, and time-consuming and require well-trained personnel [8, 9], which make them incompatible for developing countries and areas are lacking equipped facilities and specialists. It is therefore urgent to develop rapid, accurate, sensitive, and online technologies for food safety detection.
\nModern electrochemistry provides powerful analytical techniques for sensors, with the advantages of instrumental simplicity, low cost, and miniaturization, work on-site, and the ability to measure pollutants in complex matrices with minimal sample preparation [10]. Electrochemical sensors and methods are developed as suitable tools for different applications, including bioprocess control, agriculture, and military, and, in particular, for food quality control. Voltammetric techniques, such as cyclic voltammetry (CV) [10], linear sweep voltammetry (LSV) [11], differential pulse voltammetry (DPV) [12], and square wave voltammetry (SWV) [13], have been widely used in food analysis. Among these voltammetric techniques, DPV and SWV are commonly used, as low detection limits and multiplex analysis can be achieved with the two methods. These two techniques involve potential waveforms and their respective current response are shown in Figure 1A. The waveform of DPV consists of pulses of constant amplitude superimposed on a staircase waveform. This method has the highest sensitivity in electrochemistry because the charging current can be ignored against faradaic current, and their ratio is obtained as large. Moreover, SWV consists of symmetrical square-wave pulses superimposed on a staircase waveform. During each square wave cycle, the current is sampled twice, just before the end of each forward and each backward pulse followed by subtraction of the currents. The peak current heights (values) obtained by the two methods are directly proportional to the concentrations of the analyte. Amperometry is another important electrochemical analysis method in which the potential of the working electrode is constant and the resulting current from faradic processes occurring at the electrode is monitored with a function of time. In this method, the current is integrated over relatively longer time intervals, so it gives an improved signal to noise ratio [14].
\nPotential waveforms and their respective current response for (A) differential pulse voltammetry (DPV) and (B) square wave voltammetry (SWV).
Electrochemical sensors can be used as food safety monitoring tools in the assessment of biological/ecological quality or for the chemical monitoring of both inorganic and organic pollutants. In this chapter we provide an overview of electrochemical sensor systems for food safety applications, and in the following sections, we describe the various electrochemical sensors that have been developed for food safety detection.
\nHeavy metals (HMs) are currently defined as metals with a specific gravity greater than 5 g cm−3, which are considered as a serious source for polluting the biosphere throughout the world and causing many healthy and physiological diseases due to their prolonged half-life, non-biodegradability, and potential of accumulation in different parts of the human body [15, 16]. Heavy metals like cadmium, lead, arsenic, chromium, and mercury are considered as hazardous elements even at low concentrations [17, 18, 19]. Therefore, sensitive and selective determination of toxic heavy metals with cost-effective and convenient procedures is of paramount importance.
\nDue to the speed of detection, low cost, high sensitivity, and easy adaptability for in situ measurement [20], electrochemical sensors have attracted great interest in the detection of heavy metal ions for food safety.
\nFor many years, anodic stripping voltammetry (ASV) at the mercury and its modified electrode was extensively applied to the determination of trace metal ions for the extensive cathodic potential range [21, 22]. However, the disposal of the mercury-containing device and the incorrect handling can lead to the formation of mercury vapors that are toxic and represent a significant health and environmental hazard [23]. Therefore, various mercury-free electrodes have been developed in the past few decades. For example, a nanostructured bismuth film electrode (nsBiFE) has been prepared for ASV detection of multiple heavy metals, in which the detection limits of 0.4 and 0.1 μg L−1 are obtained for Cd2+ and Pb2, respectively [24]. Similar to bismuth, antimony nanoparticles have also been proven to be highly sensitive and reliable for tracing analysis of heavy metals [25]. To take into real application, more and more electrochemical sensors based on screen-printed carbon electrode (SPCE) have been fabricated for trace heavy metal detection in food safety as it is inexpensive, portable, and easy for mass production [26, 27].
\nAddition of inedible substances and abuse of food additives are the prominent problems affecting food safety [28]. Typical illegal additives include melamine, clenbuterol, and Sudan I. These illegal actions may pose great threat to human health. For the detection of these chemicals, various nanomaterial-based biosensors have been developed. Various approaches aiming at analyzing specific chemical contaminants and illegal additives have been developed [29, 30, 31]. Li et al. developed a gold nanoparticles (AuNPs)-decorated reduced graphene oxide (RGO) modified electrode for detection of Sudan I in food samples including chili powder and ketchup sauce, demonstrating satisfactory sensitivity, selectivity, and recovery [11]. A sensitive and selective electrochemical sensor based on MIL-53@XC-72 nanohybrid modified glassy carbon electrode (GCE) was also fabricated to determine melamine with a linear range from 0.04 to 10 μM and detection limit of 0.005 μM (S/N = 3) [32]. In addition, the sensor displayed excellent reproducibility, high stability, selectivity, and good recoveries for the determination of melamine in liquid milk. The synergistic effect of nitrogen-doped graphene (NGR) and nitrogen-doped carbon nanotubes (NCNTs) has also been investigated and applied to prepare an electrochemical sensor for simultaneous and sensitive determination of caffeine and vanillin [33]. Electrochemical sensors have also been developed for many other food additives, such as sunset yellow [34, 35].
\nPesticides, including fungicides, herbicides, and insecticides, are widely used in most food production to control pests that would otherwise destroy or reduce food production [36]. In the area of agriculture, the usage of insecticides, herbicides, molluscicides, and fungicides has an increasing importance. However, many pesticides are toxic and can cause many health problems when consumed by animals and humans, such as bone marrow disorders, carcinogenicity, infertility, cytogenic effects, neurological diseases, and immunological and respiratory problems. Hence, pesticide residue detection is very important for food safety [37].
\nTo date, many methods have been applied to determine pesticide residues in food samples. Electrochemical methods provide the elucidation of processes and mechanisms of redox reaction of pesticides and their residues [38]. They are sensitive, reliable, and fast. They can be easily miniaturized and integrated with other analytical methods [39, 40]. A magneto-actuated enzyme-free electrochemical sensor based on magnetic molecularly imprinted polymer was developed, and it showed outstanding analytical performance for the detection of methyl parathion in fish, with a limit of detection of as low as 1.22 × 10−6 mg L−1 and recovery values ranging from 89.4 to 94.7% [41]. Da Silva and coworkers [42] developed an acetylcholinesterase (AChE) biosensor for rapid detection of carbaryl in tomato samples by using electrode modified with reduced graphene oxide (rGO). The electrochemical response increased as the concentration of acetylthiocholine chloride increased, while the response decreased in the presence of AChE inhibitor OPs with a linear response to the inhibition of the thiocholine oxidation process for carbaryl concentrations from 10 to 50 nmol L−1 and 0.2 to 1.0 mol L−1. Compared with AChE, organophosphorus hydrolase (OPH) enzymes catalyze the hydrolysis of organophosphorus pesticides (OPs) with a high turnover rate, can potentially be reused, and are, therefore, suitable for continuous monitoring of OPs [43, 44].
\nVeterinary drugs mainly include antimicrobial drugs, antiparasitic drugs, and growth promoters, which are extensively used for treatment and prevention of diseases in animals, promotion of animal growth, and feed efficiency [45]. But the possible presence of veterinary drugs in animal-derived foods is one of the key issues for food safety, which arouses great public concern. So it is very important to develop quick and accurate methods to detect veterinary drug residues in animal-derived food, and their quantity must be less than the maximum residue limits (MRL) defined in many countries on the basis of food safety [46].
\nElectrochemical sensors have drawn considerable attention in many fields such as food safety, disease diagnosis, and environmental monitoring [47, 48]. Lin et al. [49] developed a hybrid CNT-modified electrode for simultaneous determination of toxic ractopamine and salbutamol in pork samples. Conzuelo et al. developed a novel strategy to construct disposable amperometric affinity biosensors by recombinant bacterial penicillin-binding protein (PBP) tagged by an N-terminal hexahistidine tail that was immobilized onto Co2+-tetradentate nitrilotriacetic acid (NTA)-modified screen-printed carbon electrodes (SPCEs) for the specific detection and quantification of β-lactam antibiotic residues in milk, which was accomplished by means of a direct competitive assay using a tracer with horseradish peroxidase (HRP) for the enzymatic labeling [50]. The sensor showed limits of detection with the low part-per-billion level for the antibiotics tested in untreated milk samples and a good selectivity against other antibiotic residues frequently detected in milk and dairy products. In addition, Wang et al. proposed a simple, rapid, and highly sensitive homogeneous electrochemical strategy for the detection of ampicillin based on target-initiated T7 exonuclease-assisted signal amplification. This biosensor showed a low detection limit of 4.0 pM toward ampicillin with an excellent selectivity, which has been successfully applied to assay antibiotic in milk. Importantly, the sensor system could avoid the tedious and time-consuming steps of electrode modification, making the experimental processes much simpler and more convenient, which has great potential for the simple, easy, and convenient detection of antibiotic residues in food safety field [51].
\nMycotoxins are fungal secondary metabolites that have toxic effects on humans and animals. Generally, mycotoxins can be easily found in agriculture crops, dairy products, including milk and cheese, and alcohols [52]. Mycotoxins enter human or animal bodies through consumption of contaminated animals or industrial food products. Crops and food products that are highly susceptible to mycotoxin contamination include alcoholic beverages, wheat, corn, barley, sugarcane, cottonseed, peanuts, rice, sugar beets, sorghum, and hard cheese [53].
\nMany review articles have focused on mycotoxin detection using different transduction methods [54, 55]. However, only a few review articles have reported on the use of nanomaterials for the electrochemical (EC) sensing of mycotoxins [56]. The present review summarizes the recent developments of nanomaterial-based EC biosensors for mycotoxin detection. It describes the importance of mycotoxin detection and the current progress and necessity of POC analysis of food toxins [56]. Finally, it illustrates the role in mycotoxin detection of EC sensors based on carbon and graphene metal nanoparticles (NPs) combined with different recognition elements, such as aptamers, antibodies, and molecularly imprinted polymers (MIPs) [57, 58]. These sensors exhibited additional analytical merits such as a shortened analysis time with simplified analytical procedures and portability. As such, EC sensors are now acknowledged as promising options for the trace-level identification of mycotoxins in food processing and manufacturing industries.
\nMicrobial pathogens include bacteria, viruses, and protozoa, and failure to detect them can have severe impacts on public health and safety. In the food or water services industries, legislation developed by the appropriate associated regulatory bodies to monitor and control the presence of these microorganisms is vital. Rapid and cost-efficient detection methods, with high-throughput capacity, are essential to implement effective monitoring systems to protect human health [59]. In 2012, the Environmental Protection Agency (EPA) released new Recreational Water Quality Criteria recommendations for protecting human health in waters designated for primary contact recreation [60]. Guner et al. developed an electrochemical sensor for the detection of E. coli using a pencil graphite electrode that was modified with multiwalled CNT (MWCNT), chitosan, polypyrrole (PPy), and AuNPs. Anti-E. coli monoclonal antibody was immobilized on the hybrid bionanocomposite, and the detection range was from 3 × 101 to 3 × 107 CFU/mL of E. coli [61]. Gao et al. describe a novel electrochemical biosensor based on mouse monoclonal antibody immobilized on self-assembled monolayers (SAM)-modified gold (Au) electrodes for the detection of Listeria monocytogenes (LM) and the detection range is from 102 to 106 CFU/mL. More importantly, this biosensor could apply to detect LM in milk without sample pretreatment, which is a straightforward and reliable method for analysis of LM with a simple operation and sensitivity at a low cost [62]. SPCEs were modified with iron/gold core/shell nanoparticles (Fe@Au) conjugated with anti-salmonella antibodies to develop an electrochemical biosensor for Salmonella detection. The biosensor was performed by square-wave anodic stripping voltammetry through the use of CdS nanocrystals and its calibration curve was established between 1 × 101 and 1 × 106 cells/mL with the detection limit of 13 cells/mL. The developed method showed that it is possible to determine the bacteria in milk at low concentrations and is suitable for the rapid (less than 1 h) and sensitive detection of S. typhimurium in real samples. Therefore, the developed methodology could contribute to the improvement of the quality control of food samples [63].
\nFood safety is undoubtedly one of the major global concerns. In this chapter, we summarize some representative electrochemical sensors toward food contaminants such as heavy metals, illegal additives, pesticide residues, veterinary drug residues, biological toxins, and foodborne pathogen. These electrochemical sensors for food safety detection continue to show many advantages including rapid response, field applicability, high sensitivity, high selectivity, and online analysis. Moreover, electrochemical sensors are much cheaper and easier to be miniaturized, which may play a key role on quality control in food processing, improving product quality and safety. However, the stability of the electrochemical sensors is still a challenging problem. Recently, we have developed an electrochemical instrument and a number of electrochemical sensors for the detection of heavy metal ions with excellent sensitivity and reproducibility. The instrument and sensors are being commercialized with satisfactory user feedback.
\nIntechOpen aims to ensure that original material is published while at the same time giving significant freedom to our Authors. To that end we maintain a flexible Copyright Policy guaranteeing that there is no transfer of copyright to the publisher and Authors retain exclusive copyright to their Work.
',metaTitle:"Publication Agreement - Chapters",metaDescription:"IN TECH aims to guarantee that original material is published while at the same time giving significant freedom to our authors. For that matter, we uphold a flexible copyright policy meaning that there is no transfer of copyright to the publisher and authors retain exclusive copyright to their work.\n\nWhen submitting a manuscript the Corresponding Author is required to accept the terms and conditions set forth in our Publication Agreement as follows:",metaKeywords:null,canonicalURL:"/page/publication-agreement-chapters",contentRaw:'[{"type":"htmlEditorComponent","content":"The Corresponding Author (acting on behalf of all Authors) and INTECHOPEN LIMITED, incorporated and registered in England and Wales with company number 11086078 and a registered office at 5 Princes Gate Court, London, United Kingdom, SW7 2QJ conclude the following Agreement regarding the publication of a Book Chapter:
\\n\\n1. DEFINITIONS
\\n\\nCorresponding Author: The Author of the Chapter who serves as a Signatory to this Agreement. The Corresponding Author acts on behalf of any other Co-Author.
\\n\\nCo-Author: All other Authors of the Chapter besides the Corresponding Author.
\\n\\nIntechOpen: IntechOpen Ltd., the Publisher of the Book.
\\n\\nBook: The publication as a collection of chapters compiled by IntechOpen including the Chapter. Chapter: The original literary work created by Corresponding Author and any Co-Author that is the subject of this Agreement.
\\n\\n2. CORRESPONDING AUTHOR'S GRANT OF RIGHTS
\\n\\n2.1 Subject to the following Article, the Corresponding Author grants and shall ensure that each Co-Author grants, to IntechOpen, during the full term of copyright and any extensions or renewals of that term the following:
\\n\\nThe aforementioned licenses shall survive the expiry or termination of this Agreement for any reason.
\\n\\n2.2 The Corresponding Author (on their own behalf and on behalf of any Co-Author) reserves the following rights to the Chapter but agrees not to exercise them in such a way as to adversely affect IntechOpen's ability to utilize the full benefit of this Publication Agreement: (i) reprographic rights worldwide, other than those which subsist in the typographical arrangement of the Chapter as published by IntechOpen; and (ii) public lending rights arising under the Public Lending Right Act 1979, as amended from time to time, and any similar rights arising in any part of the world.
\\n\\nThe Corresponding Author confirms that they (and any Co-Author) are and will remain a member of any applicable licensing and collecting society and any successor to that body responsible for administering royalties for the reprographic reproduction of copyright works.
\\n\\nSubject to the license granted above, copyright in the Chapter and all versions of it created during IntechOpen's editing process (including the published version) is retained by the Corresponding Author and any Co-Author.
\\n\\nSubject to the license granted above, the Corresponding Author and any Co-Author retains patent, trademark and other intellectual property rights to the Chapter.
\\n\\n2.3 All rights granted to IntechOpen in this Article are assignable, sublicensable or otherwise transferrable to third parties without the Corresponding Author's or any Co-Author’s specific approval.
\\n\\n2.4 The Corresponding Author (on their own behalf and on behalf of each Co-Author) will not assert any rights under the Copyright, Designs and Patents Act 1988 to object to derogatory treatment of the Chapter as a consequence of IntechOpen's changes to the Chapter arising from translation of it, corrections and edits for house style, removal of problematic material and other reasonable edits.
\\n\\n3. CORRESPONDING AUTHOR'S DUTIES
\\n\\n3.1 When distributing or re-publishing the Chapter, the Corresponding Author agrees to credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen. The Corresponding Author warrants that each Co-Author will also credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen, when they are distributing or re-publishing the Chapter.
\\n\\n3.2 When submitting the Chapter, the Corresponding Author agrees to:
\\n\\nThe Corresponding Author will be held responsible for the payment of the Open Access Publishing Fees.
\\n\\nAll payments shall be due 30 days from the date of the issued invoice. The Corresponding Author or the payer on the Corresponding Author's and Co-Authors' behalf will bear all banking and similar charges incurred.
\\n\\n3.3 The Corresponding Author shall obtain in writing all consents necessary for the reproduction of any material in which a third-party right exists, including quotations, photographs and illustrations, in all editions of the Chapter worldwide for the full term of the above licenses, and shall provide to IntechOpen upon request the original copies of such consents for inspection (at IntechOpen's option) or photocopies of such consents.
\\n\\nThe Corresponding Author shall obtain written informed consent for publication from people who might recognize themselves or be identified by others (e.g. from case reports or photographs).
\\n\\n3.4 The Corresponding Author and any Co-Author shall respect confidentiality rights during and after the termination of this Agreement. The information contained in all correspondence and documents as part of the publishing activity between IntechOpen and the Corresponding Author and any Co-Author are confidential and are intended only for the recipient. The contents may not be disclosed publicly and are not intended for unauthorized use or distribution. Any use, disclosure, copying, or distribution is prohibited and may be unlawful.
\\n\\n4. CORRESPONDING AUTHOR'S WARRANTY
\\n\\n4.1 The Corresponding Author represents and warrants that the Chapter does not and will not breach any applicable law or the rights of any third party and, specifically, that the Chapter contains no matter that is defamatory or that infringes any literary or proprietary rights, intellectual property rights, or any rights of privacy. The Corresponding Author warrants and represents that: (i) the Chapter is the original work of themselves and any Co-Author and is not copied wholly or substantially from any other work or material or any other source; (ii) the Chapter has not been formally published in any other peer-reviewed journal or in a book or edited collection, and is not under consideration for any such publication; (iii) they themselves and any Co-Author are qualifying persons under section 154 of the Copyright, Designs and Patents Act 1988; (iv) they themselves and any Co-Author have not assigned and will not during the term of this Publication Agreement purport to assign any of the rights granted to IntechOpen under this Publication Agreement; and (v) the rights granted by this Publication Agreement are free from any security interest, option, mortgage, charge or lien.
\\n\\nThe Corresponding Author also warrants and represents that: (i) they have the full power to enter into this Publication Agreement on their own behalf and on behalf of each Co-Author; and (ii) they have the necessary rights and/or title in and to the Chapter to grant IntechOpen, on behalf of themselves and any Co-Author, the rights and licenses expressed to be granted in this Publication Agreement. If the Chapter was prepared jointly by the Corresponding Author and any Co-Author, the Corresponding Author warrants and represents that: (i) each Co-Author agrees to the submission, license and publication of the Chapter on the terms of this Publication Agreement; and (ii) they have the authority to enter into this Publication Agreement on behalf of and bind each Co-Author. The Corresponding Author shall: (i) ensure each Co-Author complies with all relevant provisions of this Publication Agreement, including those relating to confidentiality, performance and standards, as if a party to this Publication Agreement; and (ii) remain primarily liable for all acts and/or omissions of each such Co-Author.
\\n\\nThe Corresponding Author agrees to indemnify and hold IntechOpen harmless against all liabilities, costs, expenses, damages and losses and all reasonable legal costs and expenses suffered or incurred by IntechOpen arising out of or in connection with any breach of the aforementioned representations and warranties. This indemnity shall not cover IntechOpen to the extent that a claim under it results from IntechOpen's negligence or willful misconduct.
\\n\\n4.2 Nothing in this Publication Agreement shall have the effect of excluding or limiting any liability for death or personal injury caused by negligence or any other liability that cannot be excluded or limited by applicable law.
\\n\\n5. TERMINATION
\\n\\n5.1 IntechOpen has a right to terminate this Publication Agreement for quality, program, technical or other reasons with immediate effect, including without limitation (i) if the Corresponding Author or any Co-Author commits a material breach of this Publication Agreement; (ii) if the Corresponding Author or any Co-Author (being an individual) is the subject of a bankruptcy petition, application or order; or (iii) if the Corresponding Author or any Co-Author (being a company) commences negotiations with all or any class of its creditors with a view to rescheduling any of its debts, or makes a proposal for or enters into any compromise or arrangement with any of its creditors.
\\n\\nIn case of termination, IntechOpen will notify the Corresponding Author, in writing, of the decision.
\\n\\n6. INTECHOPEN’S DUTIES AND RIGHTS
\\n\\n6.1 Unless prevented from doing so by events outside its reasonable control, IntechOpen, in its discretion, agrees to publish the Chapter attributing it to the Corresponding Author and any Co-Author.
\\n\\n6.2 IntechOpen has the right to use the Corresponding Author’s and any Co-Author’s names and likeness in connection with scientific dissemination, retrieval, archiving, web hosting and promotion and marketing of the Chapter and has the right to contact the Corresponding Author and any Co-Author until the Chapter is publicly available on any platform owned and/or operated by IntechOpen.
\\n\\n6.3 IntechOpen is granted the authority to enforce the rights from this Publication Agreement, on behalf of the Corresponding Author and any Co-Author, against third parties (for example in cases of plagiarism or copyright infringements). In respect of any such infringement or suspected infringement of the copyright in the Chapter, IntechOpen shall have absolute discretion in addressing any such infringement which is likely to affect IntechOpen's rights under this Publication Agreement, including issuing and conducting proceedings against the suspected infringer.
\\n\\n7. MISCELLANEOUS
\\n\\n7.1 Further Assurance: The Corresponding Author shall and will ensure that any relevant third party (including any Co-Author) shall, execute and deliver whatever further documents or deeds and perform such acts as IntechOpen reasonably requires from time to time for the purpose of giving IntechOpen the full benefit of the provisions of this Publication Agreement.
\\n\\n7.2 Third Party Rights: A person who is not a party to this Publication Agreement may not enforce any of its provisions under the Contracts (Rights of Third Parties) Act 1999.
\\n\\n7.3 Entire Agreement: This Publication Agreement constitutes the entire agreement between the parties in relation to its subject matter. It replaces and extinguishes all prior agreements, draft agreements, arrangements, collateral warranties, collateral contracts, statements, assurances, representations and undertakings of any nature made by or on behalf of the parties, whether oral or written, in relation to that subject matter. Each party acknowledges that in entering into this Publication Agreement it has not relied upon any oral or written statements, collateral or other warranties, assurances, representations or undertakings which were made by or on behalf of the other party in relation to the subject matter of this Publication Agreement at any time before its signature (together "Pre-Contractual Statements"), other than those which are set out in this Publication Agreement. Each party hereby waives all rights and remedies which might otherwise be available to it in relation to such Pre-Contractual Statements. Nothing in this clause shall exclude or restrict the liability of either party arising out of its pre-contract fraudulent misrepresentation or fraudulent concealment.
\\n\\n7.4 Waiver: No failure or delay by a party to exercise any right or remedy provided under this Publication Agreement or by law shall constitute a waiver of that or any other right or remedy, nor shall it preclude or restrict the further exercise of that or any other right or remedy. No single or partial exercise of such right or remedy shall preclude or restrict the further exercise of that or any other right or remedy.
\\n\\n7.5 Variation: No variation of this Publication Agreement shall be effective unless it is in writing and signed by the parties (or their duly authorized representatives).
\\n\\n7.6 Severance: If any provision or part-provision of this Publication Agreement is or becomes invalid, illegal or unenforceable, it shall be deemed modified to the minimum extent necessary to make it valid, legal and enforceable. If such modification is not possible, the relevant provision or part-provision shall be deemed deleted.
\\n\\nAny modification to or deletion of a provision or part-provision under this clause shall not affect the validity and enforceability of the rest of this Publication Agreement.
\\n\\n7.7 No partnership: Nothing in this Publication Agreement is intended to, or shall be deemed to, establish or create any partnership or joint venture or the relationship of principal and agent or employer and employee between IntechOpen and the Corresponding Author or any Co-Author, nor authorize any party to make or enter into any commitments for or on behalf of any other party.
\\n\\n7.8 Governing law: This Publication Agreement and any dispute or claim (including non-contractual disputes or claims) arising out of or in connection with it or its subject matter or formation shall be governed by and construed in accordance with the law of England and Wales. The parties submit to the exclusive jurisdiction of the English courts to settle any dispute or claim arising out of or in connection with this Publication Agreement (including any non-contractual disputes or claims).
\\n\\nLast updated: 2020-11-27
\\n\\n\\n\\n
\\n"}]'},components:[{type:"htmlEditorComponent",content:"
The Corresponding Author (acting on behalf of all Authors) and INTECHOPEN LIMITED, incorporated and registered in England and Wales with company number 11086078 and a registered office at 5 Princes Gate Court, London, United Kingdom, SW7 2QJ conclude the following Agreement regarding the publication of a Book Chapter:
\n\n1. DEFINITIONS
\n\nCorresponding Author: The Author of the Chapter who serves as a Signatory to this Agreement. The Corresponding Author acts on behalf of any other Co-Author.
\n\nCo-Author: All other Authors of the Chapter besides the Corresponding Author.
\n\nIntechOpen: IntechOpen Ltd., the Publisher of the Book.
\n\nBook: The publication as a collection of chapters compiled by IntechOpen including the Chapter. Chapter: The original literary work created by Corresponding Author and any Co-Author that is the subject of this Agreement.
\n\n2. CORRESPONDING AUTHOR'S GRANT OF RIGHTS
\n\n2.1 Subject to the following Article, the Corresponding Author grants and shall ensure that each Co-Author grants, to IntechOpen, during the full term of copyright and any extensions or renewals of that term the following:
\n\nThe aforementioned licenses shall survive the expiry or termination of this Agreement for any reason.
\n\n2.2 The Corresponding Author (on their own behalf and on behalf of any Co-Author) reserves the following rights to the Chapter but agrees not to exercise them in such a way as to adversely affect IntechOpen's ability to utilize the full benefit of this Publication Agreement: (i) reprographic rights worldwide, other than those which subsist in the typographical arrangement of the Chapter as published by IntechOpen; and (ii) public lending rights arising under the Public Lending Right Act 1979, as amended from time to time, and any similar rights arising in any part of the world.
\n\nThe Corresponding Author confirms that they (and any Co-Author) are and will remain a member of any applicable licensing and collecting society and any successor to that body responsible for administering royalties for the reprographic reproduction of copyright works.
\n\nSubject to the license granted above, copyright in the Chapter and all versions of it created during IntechOpen's editing process (including the published version) is retained by the Corresponding Author and any Co-Author.
\n\nSubject to the license granted above, the Corresponding Author and any Co-Author retains patent, trademark and other intellectual property rights to the Chapter.
\n\n2.3 All rights granted to IntechOpen in this Article are assignable, sublicensable or otherwise transferrable to third parties without the Corresponding Author's or any Co-Author’s specific approval.
\n\n2.4 The Corresponding Author (on their own behalf and on behalf of each Co-Author) will not assert any rights under the Copyright, Designs and Patents Act 1988 to object to derogatory treatment of the Chapter as a consequence of IntechOpen's changes to the Chapter arising from translation of it, corrections and edits for house style, removal of problematic material and other reasonable edits.
\n\n3. CORRESPONDING AUTHOR'S DUTIES
\n\n3.1 When distributing or re-publishing the Chapter, the Corresponding Author agrees to credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen. The Corresponding Author warrants that each Co-Author will also credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen, when they are distributing or re-publishing the Chapter.
\n\n3.2 When submitting the Chapter, the Corresponding Author agrees to:
\n\nThe Corresponding Author will be held responsible for the payment of the Open Access Publishing Fees.
\n\nAll payments shall be due 30 days from the date of the issued invoice. The Corresponding Author or the payer on the Corresponding Author's and Co-Authors' behalf will bear all banking and similar charges incurred.
\n\n3.3 The Corresponding Author shall obtain in writing all consents necessary for the reproduction of any material in which a third-party right exists, including quotations, photographs and illustrations, in all editions of the Chapter worldwide for the full term of the above licenses, and shall provide to IntechOpen upon request the original copies of such consents for inspection (at IntechOpen's option) or photocopies of such consents.
\n\nThe Corresponding Author shall obtain written informed consent for publication from people who might recognize themselves or be identified by others (e.g. from case reports or photographs).
\n\n3.4 The Corresponding Author and any Co-Author shall respect confidentiality rights during and after the termination of this Agreement. The information contained in all correspondence and documents as part of the publishing activity between IntechOpen and the Corresponding Author and any Co-Author are confidential and are intended only for the recipient. The contents may not be disclosed publicly and are not intended for unauthorized use or distribution. Any use, disclosure, copying, or distribution is prohibited and may be unlawful.
\n\n4. CORRESPONDING AUTHOR'S WARRANTY
\n\n4.1 The Corresponding Author represents and warrants that the Chapter does not and will not breach any applicable law or the rights of any third party and, specifically, that the Chapter contains no matter that is defamatory or that infringes any literary or proprietary rights, intellectual property rights, or any rights of privacy. The Corresponding Author warrants and represents that: (i) the Chapter is the original work of themselves and any Co-Author and is not copied wholly or substantially from any other work or material or any other source; (ii) the Chapter has not been formally published in any other peer-reviewed journal or in a book or edited collection, and is not under consideration for any such publication; (iii) they themselves and any Co-Author are qualifying persons under section 154 of the Copyright, Designs and Patents Act 1988; (iv) they themselves and any Co-Author have not assigned and will not during the term of this Publication Agreement purport to assign any of the rights granted to IntechOpen under this Publication Agreement; and (v) the rights granted by this Publication Agreement are free from any security interest, option, mortgage, charge or lien.
\n\nThe Corresponding Author also warrants and represents that: (i) they have the full power to enter into this Publication Agreement on their own behalf and on behalf of each Co-Author; and (ii) they have the necessary rights and/or title in and to the Chapter to grant IntechOpen, on behalf of themselves and any Co-Author, the rights and licenses expressed to be granted in this Publication Agreement. If the Chapter was prepared jointly by the Corresponding Author and any Co-Author, the Corresponding Author warrants and represents that: (i) each Co-Author agrees to the submission, license and publication of the Chapter on the terms of this Publication Agreement; and (ii) they have the authority to enter into this Publication Agreement on behalf of and bind each Co-Author. The Corresponding Author shall: (i) ensure each Co-Author complies with all relevant provisions of this Publication Agreement, including those relating to confidentiality, performance and standards, as if a party to this Publication Agreement; and (ii) remain primarily liable for all acts and/or omissions of each such Co-Author.
\n\nThe Corresponding Author agrees to indemnify and hold IntechOpen harmless against all liabilities, costs, expenses, damages and losses and all reasonable legal costs and expenses suffered or incurred by IntechOpen arising out of or in connection with any breach of the aforementioned representations and warranties. This indemnity shall not cover IntechOpen to the extent that a claim under it results from IntechOpen's negligence or willful misconduct.
\n\n4.2 Nothing in this Publication Agreement shall have the effect of excluding or limiting any liability for death or personal injury caused by negligence or any other liability that cannot be excluded or limited by applicable law.
\n\n5. TERMINATION
\n\n5.1 IntechOpen has a right to terminate this Publication Agreement for quality, program, technical or other reasons with immediate effect, including without limitation (i) if the Corresponding Author or any Co-Author commits a material breach of this Publication Agreement; (ii) if the Corresponding Author or any Co-Author (being an individual) is the subject of a bankruptcy petition, application or order; or (iii) if the Corresponding Author or any Co-Author (being a company) commences negotiations with all or any class of its creditors with a view to rescheduling any of its debts, or makes a proposal for or enters into any compromise or arrangement with any of its creditors.
\n\nIn case of termination, IntechOpen will notify the Corresponding Author, in writing, of the decision.
\n\n6. INTECHOPEN’S DUTIES AND RIGHTS
\n\n6.1 Unless prevented from doing so by events outside its reasonable control, IntechOpen, in its discretion, agrees to publish the Chapter attributing it to the Corresponding Author and any Co-Author.
\n\n6.2 IntechOpen has the right to use the Corresponding Author’s and any Co-Author’s names and likeness in connection with scientific dissemination, retrieval, archiving, web hosting and promotion and marketing of the Chapter and has the right to contact the Corresponding Author and any Co-Author until the Chapter is publicly available on any platform owned and/or operated by IntechOpen.
\n\n6.3 IntechOpen is granted the authority to enforce the rights from this Publication Agreement, on behalf of the Corresponding Author and any Co-Author, against third parties (for example in cases of plagiarism or copyright infringements). In respect of any such infringement or suspected infringement of the copyright in the Chapter, IntechOpen shall have absolute discretion in addressing any such infringement which is likely to affect IntechOpen's rights under this Publication Agreement, including issuing and conducting proceedings against the suspected infringer.
\n\n7. MISCELLANEOUS
\n\n7.1 Further Assurance: The Corresponding Author shall and will ensure that any relevant third party (including any Co-Author) shall, execute and deliver whatever further documents or deeds and perform such acts as IntechOpen reasonably requires from time to time for the purpose of giving IntechOpen the full benefit of the provisions of this Publication Agreement.
\n\n7.2 Third Party Rights: A person who is not a party to this Publication Agreement may not enforce any of its provisions under the Contracts (Rights of Third Parties) Act 1999.
\n\n7.3 Entire Agreement: This Publication Agreement constitutes the entire agreement between the parties in relation to its subject matter. It replaces and extinguishes all prior agreements, draft agreements, arrangements, collateral warranties, collateral contracts, statements, assurances, representations and undertakings of any nature made by or on behalf of the parties, whether oral or written, in relation to that subject matter. Each party acknowledges that in entering into this Publication Agreement it has not relied upon any oral or written statements, collateral or other warranties, assurances, representations or undertakings which were made by or on behalf of the other party in relation to the subject matter of this Publication Agreement at any time before its signature (together "Pre-Contractual Statements"), other than those which are set out in this Publication Agreement. Each party hereby waives all rights and remedies which might otherwise be available to it in relation to such Pre-Contractual Statements. Nothing in this clause shall exclude or restrict the liability of either party arising out of its pre-contract fraudulent misrepresentation or fraudulent concealment.
\n\n7.4 Waiver: No failure or delay by a party to exercise any right or remedy provided under this Publication Agreement or by law shall constitute a waiver of that or any other right or remedy, nor shall it preclude or restrict the further exercise of that or any other right or remedy. No single or partial exercise of such right or remedy shall preclude or restrict the further exercise of that or any other right or remedy.
\n\n7.5 Variation: No variation of this Publication Agreement shall be effective unless it is in writing and signed by the parties (or their duly authorized representatives).
\n\n7.6 Severance: If any provision or part-provision of this Publication Agreement is or becomes invalid, illegal or unenforceable, it shall be deemed modified to the minimum extent necessary to make it valid, legal and enforceable. If such modification is not possible, the relevant provision or part-provision shall be deemed deleted.
\n\nAny modification to or deletion of a provision or part-provision under this clause shall not affect the validity and enforceability of the rest of this Publication Agreement.
\n\n7.7 No partnership: Nothing in this Publication Agreement is intended to, or shall be deemed to, establish or create any partnership or joint venture or the relationship of principal and agent or employer and employee between IntechOpen and the Corresponding Author or any Co-Author, nor authorize any party to make or enter into any commitments for or on behalf of any other party.
\n\n7.8 Governing law: This Publication Agreement and any dispute or claim (including non-contractual disputes or claims) arising out of or in connection with it or its subject matter or formation shall be governed by and construed in accordance with the law of England and Wales. The parties submit to the exclusive jurisdiction of the English courts to settle any dispute or claim arising out of or in connection with this Publication Agreement (including any non-contractual disputes or claims).
\n\nLast updated: 2020-11-27
\n\n\n\n
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5681},{group:"region",caption:"Middle and South America",value:2,count:5161},{group:"region",caption:"Africa",value:3,count:1683},{group:"region",caption:"Asia",value:4,count:10200},{group:"region",caption:"Australia and Oceania",value:5,count:886},{group:"region",caption:"Europe",value:6,count:15610}],offset:12,limit:12,total:117096},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateendthirdsteppublish"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:18},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:14},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:63},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5126},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Health",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-health",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editedByType:"Edited by",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9523",title:"Oral and Maxillofacial Surgery",subtitle:null,isOpenForSubmission:!1,hash:"5eb6ec2db961a6c8965d11180a58d5c1",slug:"oral-and-maxillofacial-surgery",bookSignature:"Gokul Sridharan",coverURL:"https://cdn.intechopen.com/books/images_new/9523.jpg",editedByType:"Edited by",editors:[{id:"82453",title:"Dr.",name:"Gokul",middleName:null,surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editedByType:"Edited by",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9018",title:"Some RNA Viruses",subtitle:null,isOpenForSubmission:!1,hash:"a5cae846dbe3692495fc4add2f60fd84",slug:"some-rna-viruses",bookSignature:"Yogendra Shah and Eltayb Abuelzein",coverURL:"https://cdn.intechopen.com/books/images_new/9018.jpg",editedByType:"Edited by",editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",middleName:null,surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editedByType:"Edited by",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9585",title:"Advances in Complex Valvular Disease",subtitle:null,isOpenForSubmission:!1,hash:"ef64f11e211621ecfe69c46e60e7ca3d",slug:"advances-in-complex-valvular-disease",bookSignature:"Michael S. Firstenberg and Imran Khan",coverURL:"https://cdn.intechopen.com/books/images_new/9585.jpg",editedByType:"Edited by",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10150",title:"Smart Manufacturing",subtitle:"When Artificial Intelligence Meets the Internet of Things",isOpenForSubmission:!1,hash:"87004a19de13702d042f8ff96d454698",slug:"smart-manufacturing-when-artificial-intelligence-meets-the-internet-of-things",bookSignature:"Tan Yen Kheng",coverURL:"https://cdn.intechopen.com/books/images_new/10150.jpg",editedByType:"Edited by",editors:[{id:"78857",title:"Dr.",name:"Tan Yen",middleName:null,surname:"Kheng",slug:"tan-yen-kheng",fullName:"Tan Yen Kheng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9386",title:"Direct Numerical Simulations",subtitle:"An Introduction and Applications",isOpenForSubmission:!1,hash:"158a3a0fdba295d21ff23326f5a072d5",slug:"direct-numerical-simulations-an-introduction-and-applications",bookSignature:"Srinivasa Rao",coverURL:"https://cdn.intechopen.com/books/images_new/9386.jpg",editedByType:"Edited by",editors:[{id:"6897",title:"Dr.",name:"Srinivasa",middleName:"P",surname:"Rao",slug:"srinivasa-rao",fullName:"Srinivasa Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editedByType:"Edited by",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editedByType:"Edited by",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"387",title:"Biotechnology",slug:"biochemistry-genetics-and-molecular-biology-bromatology-biotechnology",parent:{title:"Bromatology",slug:"biochemistry-genetics-and-molecular-biology-bromatology"},numberOfBooks:1,numberOfAuthorsAndEditors:61,numberOfWosCitations:131,numberOfCrossrefCitations:49,numberOfDimensionsCitations:142,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"biochemistry-genetics-and-molecular-biology-bromatology-biotechnology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"1484",title:"Soybean",subtitle:"Molecular Aspects of Breeding",isOpenForSubmission:!1,hash:"3bd8fd078e7df24f2eed6dc7bc226475",slug:"soybean-molecular-aspects-of-breeding",bookSignature:"Aleksandra Sudaric",coverURL:"https://cdn.intechopen.com/books/images_new/1484.jpg",editedByType:"Edited by",editors:[{id:"21485",title:"Dr.",name:"Aleksandra",middleName:null,surname:"Sudarić",slug:"aleksandra-sudaric",fullName:"Aleksandra Sudarić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,mostCitedChapters:[{id:"14941",doi:"10.5772/14407",title:"Evolution of Soybean Aphid Biotypes: Understanding and Managing Virulence to Host-Plant Resistance",slug:"evolution-of-soybean-aphid-biotypes-understanding-and-managing-virulence-to-host-plant-resistance",totalDownloads:2932,totalCrossrefCites:2,totalDimensionsCites:33,book:{slug:"soybean-molecular-aspects-of-breeding",title:"Soybean",fullTitle:"Soybean - Molecular Aspects of Breeding"},signatures:"Andrew P. Michel, Omprakash Mittapalli and M. A. Rouf Mian",authors:[{id:"17721",title:"Dr.",name:"Andrew P.",middleName:null,surname:"Michel",slug:"andrew-p.-michel",fullName:"Andrew P. Michel"},{id:"22017",title:"Dr.",name:"Omprakash",middleName:null,surname:"Mittapalli",slug:"omprakash-mittapalli",fullName:"Omprakash Mittapalli"},{id:"22018",title:"Dr.",name:"M. A. Rouf",middleName:null,surname:"Mian",slug:"m.-a.-rouf-mian",fullName:"M. A. Rouf Mian"}]},{id:"14938",doi:"10.5772/15688",title:"Phomopsis Seed Decay of Soybean",slug:"phomopsis-seed-decay-of-soybean",totalDownloads:4206,totalCrossrefCites:6,totalDimensionsCites:16,book:{slug:"soybean-molecular-aspects-of-breeding",title:"Soybean",fullTitle:"Soybean - Molecular Aspects of Breeding"},signatures:"Shuxian Li",authors:[{id:"21619",title:"Dr.",name:"Shuxian",middleName:null,surname:"Li",slug:"shuxian-li",fullName:"Shuxian Li"}]},{id:"14933",doi:"10.5772/14533",title:"Breeding for Promiscuous Soybeans at IITA",slug:"breeding-for-promiscuous-soybeans-at-iita",totalDownloads:3237,totalCrossrefCites:5,totalDimensionsCites:14,book:{slug:"soybean-molecular-aspects-of-breeding",title:"Soybean",fullTitle:"Soybean - Molecular Aspects of Breeding"},signatures:"Hailu Tefera",authors:[{id:"18065",title:"Dr.",name:"Hailu",middleName:null,surname:"Tefera",slug:"hailu-tefera",fullName:"Hailu Tefera"}]}],mostDownloadedChaptersLast30Days:[{id:"14938",title:"Phomopsis Seed Decay of Soybean",slug:"phomopsis-seed-decay-of-soybean",totalDownloads:4206,totalCrossrefCites:6,totalDimensionsCites:16,book:{slug:"soybean-molecular-aspects-of-breeding",title:"Soybean",fullTitle:"Soybean - Molecular Aspects of Breeding"},signatures:"Shuxian Li",authors:[{id:"21619",title:"Dr.",name:"Shuxian",middleName:null,surname:"Li",slug:"shuxian-li",fullName:"Shuxian Li"}]},{id:"14939",title:"Soybean Rust: Five Years of Research",slug:"soybean-rust-five-years-of-research",totalDownloads:2875,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"soybean-molecular-aspects-of-breeding",title:"Soybean",fullTitle:"Soybean - Molecular Aspects of Breeding"},signatures:"Arianne Tremblay",authors:[{id:"19754",title:"Dr.",name:"Arianne",middleName:null,surname:"Tremblay",slug:"arianne-tremblay",fullName:"Arianne Tremblay"}]},{id:"14931",title:"Integration of Major QTLs of Important Agronomic Traits in Soybean",slug:"integration-of-major-qtls-of-important-agronomic-traits-in-soybean",totalDownloads:2881,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"soybean-molecular-aspects-of-breeding",title:"Soybean",fullTitle:"Soybean - Molecular Aspects of Breeding"},signatures:"Guohua Hu, Qingshan Chen, Chunyan Liu, Hongwei Jiang, Jialin Wang and Zhaoming Qi",authors:[{id:"17679",title:"Dr.",name:"Guo-Hua",middleName:null,surname:"Hu",slug:"guo-hua-hu",fullName:"Guo-Hua Hu"},{id:"17680",title:"PhD.",name:"Jialin",middleName:null,surname:"Wang",slug:"jialin-wang",fullName:"Jialin Wang"},{id:"21219",title:"Dr.",name:"Qingshan",middleName:null,surname:"Chen",slug:"qingshan-chen",fullName:"Qingshan Chen"},{id:"21220",title:"Dr.",name:"Chunyan",middleName:null,surname:"Liu",slug:"chunyan-liu",fullName:"Chunyan Liu"},{id:"21221",title:"PhD.",name:"Hongwei",middleName:null,surname:"Jiang",slug:"hongwei-jiang",fullName:"Hongwei Jiang"},{id:"21222",title:"Dr.",name:"Rongsheng",middleName:null,surname:"Zhu",slug:"rongsheng-zhu",fullName:"Rongsheng Zhu"},{id:"21223",title:"Mr.",name:"Zhenbang",middleName:null,surname:"Hu",slug:"zhenbang-hu",fullName:"Zhenbang Hu"},{id:"21224",title:"Dr.",name:"Zhaoming",middleName:null,surname:"Qi",slug:"zhaoming-qi",fullName:"Zhaoming Qi"}]},{id:"14941",title:"Evolution of Soybean Aphid Biotypes: Understanding and Managing Virulence to Host-Plant Resistance",slug:"evolution-of-soybean-aphid-biotypes-understanding-and-managing-virulence-to-host-plant-resistance",totalDownloads:2932,totalCrossrefCites:2,totalDimensionsCites:33,book:{slug:"soybean-molecular-aspects-of-breeding",title:"Soybean",fullTitle:"Soybean - Molecular Aspects of Breeding"},signatures:"Andrew P. Michel, Omprakash Mittapalli and M. A. Rouf Mian",authors:[{id:"17721",title:"Dr.",name:"Andrew P.",middleName:null,surname:"Michel",slug:"andrew-p.-michel",fullName:"Andrew P. Michel"},{id:"22017",title:"Dr.",name:"Omprakash",middleName:null,surname:"Mittapalli",slug:"omprakash-mittapalli",fullName:"Omprakash Mittapalli"},{id:"22018",title:"Dr.",name:"M. A. Rouf",middleName:null,surname:"Mian",slug:"m.-a.-rouf-mian",fullName:"M. A. Rouf Mian"}]},{id:"14927",title:"Protein Expression Systems: Why Soybean Seeds?",slug:"protein-expression-systems-why-soybean-seeds-",totalDownloads:2202,totalCrossrefCites:3,totalDimensionsCites:7,book:{slug:"soybean-molecular-aspects-of-breeding",title:"Soybean",fullTitle:"Soybean - Molecular Aspects of Breeding"},signatures:"Kenneth Bost and Kenneth Piller",authors:[{id:"19743",title:"Dr.",name:"Kenneth J.",middleName:null,surname:"Piller",slug:"kenneth-j.-piller",fullName:"Kenneth J. Piller"},{id:"20579",title:"Dr.",name:"Kenneth L.",middleName:null,surname:"Bost",slug:"kenneth-l.-bost",fullName:"Kenneth L. Bost"}]},{id:"14928",title:"Optimizing Recombinant Protein Expression in Soybean",slug:"optimizing-recombinant-protein-expression-in-soybean",totalDownloads:2766,totalCrossrefCites:1,totalDimensionsCites:4,book:{slug:"soybean-molecular-aspects-of-breeding",title:"Soybean",fullTitle:"Soybean - Molecular Aspects of Breeding"},signatures:"Laura C. Hudson, Kenneth L. Bost and Kenneth J. Piller",authors:[{id:"19743",title:"Dr.",name:"Kenneth J.",middleName:null,surname:"Piller",slug:"kenneth-j.-piller",fullName:"Kenneth J. Piller"},{id:"20579",title:"Dr.",name:"Kenneth L.",middleName:null,surname:"Bost",slug:"kenneth-l.-bost",fullName:"Kenneth L. Bost"},{id:"22101",title:"Dr.",name:"Laura C.",middleName:null,surname:"Hudson",slug:"laura-c.-hudson",fullName:"Laura C. Hudson"}]},{id:"14932",title:"A Versatile Soybean Recombinant Inbred Line Population Segregating for Low Linolenic Acid and Lipoxygenase Nulls - Molecular Characterization and Utility for Soymilk and Bioproduct Production",slug:"a-versatile-soybean-recombinant-inbred-line-population-segregating-for-low-linolenic-acid-and-lipoxy",totalDownloads:1977,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"soybean-molecular-aspects-of-breeding",title:"Soybean",fullTitle:"Soybean - Molecular Aspects of Breeding"},signatures:"Yarmilla Reinprecht, Shun-Yan Luk-Labey and K. Peter Pauls",authors:[{id:"21285",title:"Dr.",name:"Karl Peter",middleName:null,surname:"Pauls",slug:"karl-peter-pauls",fullName:"Karl Peter Pauls"},{id:"21286",title:"Dr.",name:"Yarmilla",middleName:null,surname:"Reinprecht",slug:"yarmilla-reinprecht",fullName:"Yarmilla Reinprecht"}]},{id:"14945",title:"Spectral Characteristics of Soybean during the Vegetative Cycle Using Landsat 5/TM Images in The Western Paraná, Brazil",slug:"spectral-characteristics-of-soybean-during-the-vegetative-cycle-using-landsat-5-tm-images-in-the-wes",totalDownloads:2128,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"soybean-molecular-aspects-of-breeding",title:"Soybean",fullTitle:"Soybean - Molecular Aspects of Breeding"},signatures:"Erivelto Mercante, Rubens A. C. Lamparelli, Miguel A. Uribe-Opazo and Jansle Viera Rocha",authors:[{id:"17800",title:"Dr.",name:"Erivelto",middleName:null,surname:"Mercante",slug:"erivelto-mercante",fullName:"Erivelto Mercante"},{id:"17931",title:"Dr.",name:"Rubens A. C.",middleName:null,surname:"Lamparelli",slug:"rubens-a.-c.-lamparelli",fullName:"Rubens A. C. Lamparelli"},{id:"17932",title:"Dr.",name:"Miguel Angel",middleName:null,surname:"Uribe-Opazo",slug:"miguel-angel-uribe-opazo",fullName:"Miguel Angel Uribe-Opazo"},{id:"17933",title:"Dr.",name:"Jansle Viera",middleName:null,surname:"Rocha",slug:"jansle-viera-rocha",fullName:"Jansle Viera Rocha"}]},{id:"14935",title:"Proteomics Approach for Identifying Abiotic Stress Responsive Proteins in Soybean",slug:"proteomics-approach-for-identifying-abiotic-stress-responsive-proteins-in-soybean",totalDownloads:4116,totalCrossrefCites:4,totalDimensionsCites:13,book:{slug:"soybean-molecular-aspects-of-breeding",title:"Soybean",fullTitle:"Soybean - Molecular Aspects of Breeding"},signatures:"Mohammad-Zaman Nouri, Mahmoud Toorchi and Setsuko Komatsu",authors:[{id:"21116",title:"Dr.",name:"Setsuko",middleName:null,surname:"Komatsu",slug:"setsuko-komatsu",fullName:"Setsuko Komatsu"},{id:"21118",title:"Mr.",name:"Mohammad-Zaman",middleName:null,surname:"Nouri",slug:"mohammad-zaman-nouri",fullName:"Mohammad-Zaman Nouri"},{id:"21119",title:"Dr.",name:"Mahmoud",middleName:null,surname:"Toorchi",slug:"mahmoud-toorchi",fullName:"Mahmoud Toorchi"}]},{id:"14929",title:"Virus-Induced Gene Silencing of Endogenous Genes and Promotion of Flowering in Soybean by Apple latent spherical virus-Based Vectors",slug:"virus-induced-gene-silencing-of-endogenous-genes-and-promotion-of-flowering-in-soybean-by-apple-late",totalDownloads:2744,totalCrossrefCites:4,totalDimensionsCites:10,book:{slug:"soybean-molecular-aspects-of-breeding",title:"Soybean",fullTitle:"Soybean - Molecular Aspects of Breeding"},signatures:"Noriko Yamagishi and Nobuyuki Yoshikawa",authors:[{id:"18191",title:"Dr.",name:"Nobuyuki",middleName:null,surname:"Yoshikawa",slug:"nobuyuki-yoshikawa",fullName:"Nobuyuki Yoshikawa"},{id:"21453",title:"Dr.",name:"Noriko",middleName:null,surname:"Yamagishi",slug:"noriko-yamagishi",fullName:"Noriko Yamagishi"}]}],onlineFirstChaptersFilter:{topicSlug:"biochemistry-genetics-and-molecular-biology-bromatology-biotechnology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"chapter.detail",path:"/books/sol-gel-method-design-and-synthesis-of-new-materials-with-interesting-physical-chemical-and-biological-properties/synthesis-of-conductive-sol-gel-zno-films-and-development-of-zno-printed-electronics",hash:"",query:{},params:{book:"sol-gel-method-design-and-synthesis-of-new-materials-with-interesting-physical-chemical-and-biological-properties",chapter:"synthesis-of-conductive-sol-gel-zno-films-and-development-of-zno-printed-electronics"},fullPath:"/books/sol-gel-method-design-and-synthesis-of-new-materials-with-interesting-physical-chemical-and-biological-properties/synthesis-of-conductive-sol-gel-zno-films-and-development-of-zno-printed-electronics",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()