Correlation coefficients among various operating parameters associated with pressure cycling and the E. coli inactivation efficiency.
\\n\\n
Dr. Pletser’s experience includes 30 years of working with the European Space Agency as a Senior Physicist/Engineer and coordinating their parabolic flight campaigns, and he is the Guinness World Record holder for the most number of aircraft flown (12) in parabolas, personally logging more than 7,300 parabolas.
\\n\\nSeeing the 5,000th book published makes us at the same time proud, happy, humble, and grateful. This is a great opportunity to stop and celebrate what we have done so far, but is also an opportunity to engage even more, grow, and succeed. It wouldn't be possible to get here without the synergy of team members’ hard work and authors and editors who devote time and their expertise into Open Access book publishing with us.
\\n\\nOver these years, we have gone from pioneering the scientific Open Access book publishing field to being the world’s largest Open Access book publisher. Nonetheless, our vision has remained the same: to meet the challenges of making relevant knowledge available to the worldwide community under the Open Access model.
\\n\\nWe are excited about the present, and we look forward to sharing many more successes in the future.
\\n\\nThank you all for being part of the journey. 5,000 times thank you!
\\n\\nNow with 5,000 titles available Open Access, which one will you read next?
\\n\\nRead, share and download for free: https://www.intechopen.com/books
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
Preparation of Space Experiments edited by international leading expert Dr. Vladimir Pletser, Director of Space Training Operations at Blue Abyss is the 5,000th Open Access book published by IntechOpen and our milestone publication!
\n\n"This book presents some of the current trends in space microgravity research. The eleven chapters introduce various facets of space research in physical sciences, human physiology and technology developed using the microgravity environment not only to improve our fundamental understanding in these domains but also to adapt this new knowledge for application on earth." says the editor. Listen what else Dr. Pletser has to say...
\n\n\n\nDr. Pletser’s experience includes 30 years of working with the European Space Agency as a Senior Physicist/Engineer and coordinating their parabolic flight campaigns, and he is the Guinness World Record holder for the most number of aircraft flown (12) in parabolas, personally logging more than 7,300 parabolas.
\n\nSeeing the 5,000th book published makes us at the same time proud, happy, humble, and grateful. This is a great opportunity to stop and celebrate what we have done so far, but is also an opportunity to engage even more, grow, and succeed. It wouldn't be possible to get here without the synergy of team members’ hard work and authors and editors who devote time and their expertise into Open Access book publishing with us.
\n\nOver these years, we have gone from pioneering the scientific Open Access book publishing field to being the world’s largest Open Access book publisher. Nonetheless, our vision has remained the same: to meet the challenges of making relevant knowledge available to the worldwide community under the Open Access model.
\n\nWe are excited about the present, and we look forward to sharing many more successes in the future.
\n\nThank you all for being part of the journey. 5,000 times thank you!
\n\nNow with 5,000 titles available Open Access, which one will you read next?
\n\nRead, share and download for free: https://www.intechopen.com/books
\n\n\n\n
\n'}],latestNews:[{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"},{slug:"intechopen-s-chapter-awarded-the-guenther-von-pannewitz-preis-2020-20200715",title:"IntechOpen's Chapter Awarded the Günther-von-Pannewitz-Preis 2020"}]},book:{item:{type:"book",id:"8292",leadTitle:null,fullTitle:"Oral Health by Using Probiotic Products",title:"Oral Health by Using Probiotic Products",subtitle:null,reviewType:"peer-reviewed",abstract:'One of the most prevalent and important health problems in the world is periodontal and plaque-related diseases for which antibiotic drugs with their associated side effects are used as treatment. With increasing resistance to antibiotics and a desire from the general public for "natural" therapies, there is a need to minimize antibiotic use and develop new treatments for oral diseases without antimicrobial agents. Probiotics are viable microorganisms that provide a health benefit to the host when administered in adequate amounts; studies show that probiotics have the potential to modify the oral microbiota and decrease the colony-forming unit counts of the oral pathogens being investigated to prevent or treat oral diseases, such as dental caries and the periodontal diseases. In addition, the identification of specific strains with probiotic activity is required for any oral infectious disease to determine the exact dose, the time of treatment, and the ideal vehicle.',isbn:"978-1-83968-140-0",printIsbn:"978-1-83968-139-4",pdfIsbn:"978-1-83968-141-7",doi:"10.5772/intechopen.78421",price:119,priceEur:129,priceUsd:155,slug:"oral-health-by-using-probiotic-products",numberOfPages:118,isOpenForSubmission:!1,isInWos:null,hash:"327e750e83634800ace02fe62607c21e",bookSignature:"Razzagh Mahmoudi",publishedDate:"December 11th 2019",coverURL:"https://cdn.intechopen.com/books/images_new/8292.jpg",numberOfDownloads:2616,numberOfWosCitations:0,numberOfCrossrefCitations:2,numberOfDimensionsCitations:4,hasAltmetrics:1,numberOfTotalCitations:6,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"July 12th 2018",dateEndSecondStepPublish:"August 2nd 2018",dateEndThirdStepPublish:"October 1st 2018",dateEndFourthStepPublish:"December 20th 2018",dateEndFifthStepPublish:"February 18th 2019",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,editors:[{id:"245925",title:"Dr.",name:"Razzagh",middleName:null,surname:"Mahmoudi",slug:"razzagh-mahmoudi",fullName:"Razzagh Mahmoudi",profilePictureURL:"https://mts.intechopen.com/storage/users/245925/images/system/245925.jpg",biography:"Razzagh Mahmoudi, DVM, PhD, is an associate professor of Food Hygiene and Safety at Department of Food Safety and Hygiene, Qazvin University of Medical Sciences, Iran. He was Educational Deputy of the Faculty of Public Health from 2016 to 2019 (member of Founding Board at Medical Microbiology Research Center, Qazvin University of Medical Sciences, Iran). He is Editorial Board member of about 5 international journals. His specializations are in molecular food microbiology, functional foods, probiotics and prebiotics, medicinal plants, food chemistry, dairy and meat technology, food and human nutrition. His research field includes molecular food microbiology, natural preservative from medicinal plant and biological source, production of new functional foods, application of natural preservative in dairy and meat products, and innovative pharmacological and nutritional research in new drug production and food production. He published around 180 papers (ISI, Scopus, Pubmed, CAB, CAS, ISC etc), 1 book chapter and 80 abstracts in national and international congresses.",institutionString:"Qazvin University of Medical Sciences",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"895",title:"Medical Microbiology",slug:"medical-microbiology"}],chapters:[{id:"69279",title:"Introductory Chapter: Oral Health by Using Probiotic Products",doi:"10.5772/intechopen.89355",slug:"introductory-chapter-oral-health-by-using-probiotic-products",totalDownloads:205,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Razzagh Mahmoudi, Sara Moosazad and Katayoon Aghaei",downloadPdfUrl:"/chapter/pdf-download/69279",previewPdfUrl:"/chapter/pdf-preview/69279",authors:[{id:"245925",title:"Dr.",name:"Razzagh",surname:"Mahmoudi",slug:"razzagh-mahmoudi",fullName:"Razzagh Mahmoudi"}],corrections:null},{id:"68058",title:"Therapeutic Potential of Probiotics and Prebiotics",doi:"10.5772/intechopen.86762",slug:"therapeutic-potential-of-probiotics-and-prebiotics",totalDownloads:780,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Nabila Gulzar, Iqra Muqaddas Saleem, Saima Rafiq and Muhammad Nadeem",downloadPdfUrl:"/chapter/pdf-download/68058",previewPdfUrl:"/chapter/pdf-preview/68058",authors:[{id:"235261",title:"Dr.",name:"Muhammad",surname:"Nadeem",slug:"muhammad-nadeem",fullName:"Muhammad Nadeem"},{id:"268484",title:"Dr.",name:"Nabila",surname:"Gulzar",slug:"nabila-gulzar",fullName:"Nabila Gulzar"},{id:"278785",title:"Ms.",name:"Iqra",surname:"Muqaddas",slug:"iqra-muqaddas",fullName:"Iqra Muqaddas"},{id:"278786",title:"Dr.",name:"Saima",surname:"Rafiq",slug:"saima-rafiq",fullName:"Saima Rafiq"}],corrections:null},{id:"67675",title:"Gut-Brain Axis: Probiotic, Bacillus subtilis, Prevents Aggression via the Modification of the Central Serotonergic System",doi:"10.5772/intechopen.86775",slug:"gut-brain-axis-probiotic-em-bacillus-subtilis-em-prevents-aggression-via-the-modification-of-the-cen",totalDownloads:452,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Heng-Wei Cheng, Sha Jiang and Jiaying Hu",downloadPdfUrl:"/chapter/pdf-download/67675",previewPdfUrl:"/chapter/pdf-preview/67675",authors:[{id:"68434",title:"Dr.",name:null,surname:"Cheng",slug:"cheng",fullName:"Cheng"},{id:"270234",title:"Prof.",name:"Sha",surname:"Jiang",slug:"sha-jiang",fullName:"Sha Jiang"},{id:"283995",title:"Dr.",name:"Jiaying",surname:"Hu",slug:"jiaying-hu",fullName:"Jiaying Hu"}],corrections:null},{id:"67656",title:"Oral Health by Using Probiotic Products",doi:"10.5772/intechopen.86714",slug:"oral-health-by-using-probiotic-products",totalDownloads:331,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Razzagh Mahmoudi, Sara Moosazad and Katayoon Aghaei",downloadPdfUrl:"/chapter/pdf-download/67656",previewPdfUrl:"/chapter/pdf-preview/67656",authors:[{id:"245925",title:"Dr.",name:"Razzagh",surname:"Mahmoudi",slug:"razzagh-mahmoudi",fullName:"Razzagh Mahmoudi"}],corrections:null},{id:"67420",title:"Metabolite Multiprobiotic Formulas for Microbial Health",doi:"10.5772/intechopen.86449",slug:"metabolite-multiprobiotic-formulas-for-microbial-health",totalDownloads:332,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Mikhail V. Lakhtin, Vladimir M. Lakhtin, Vladimir A. Aleshkin and Stanislav S. Afanasiev",downloadPdfUrl:"/chapter/pdf-download/67420",previewPdfUrl:"/chapter/pdf-preview/67420",authors:[{id:"150430",title:"Prof.",name:"Vladimir",surname:"Lakhtin",slug:"vladimir-lakhtin",fullName:"Vladimir Lakhtin"},{id:"150462",title:"Prof.",name:"Stanislav",surname:"Afanasiev",slug:"stanislav-afanasiev",fullName:"Stanislav Afanasiev"},{id:"150463",title:"Prof.",name:"Vladimir",surname:"Aleshkin",slug:"vladimir-aleshkin",fullName:"Vladimir Aleshkin"},{id:"271355",title:"Dr.",name:"Mikhail",surname:"Lakhtin",slug:"mikhail-lakhtin",fullName:"Mikhail Lakhtin"}],corrections:null},{id:"67537",title:"Gut Microbiota and Obesity: Prebiotic and Probiotic Effects",doi:"10.5772/intechopen.86672",slug:"gut-microbiota-and-obesity-prebiotic-and-probiotic-effects",totalDownloads:516,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Silvana Cisternas León, Paula Carrasco Vergara, Alejandra Cruz Neira, Ricardo Muñoz Maldonado, Carolina Díaz Araneda and Marcia Rivas Zuñiga",downloadPdfUrl:"/chapter/pdf-download/67537",previewPdfUrl:"/chapter/pdf-preview/67537",authors:[{id:"223462",title:"MSc.",name:"Silvana",surname:"Cisternas",slug:"silvana-cisternas",fullName:"Silvana Cisternas"},{id:"274374",title:"MSc.",name:"Alejandra",surname:"Cruz",slug:"alejandra-cruz",fullName:"Alejandra Cruz"},{id:"274375",title:"MSc.",name:"Carolina",surname:"Díaz",slug:"carolina-diaz",fullName:"Carolina Díaz"},{id:"274376",title:"MSc.",name:"Ricardo",surname:"Muñoz",slug:"ricardo-munoz",fullName:"Ricardo Muñoz"},{id:"274377",title:"Prof.",name:"Marcia",surname:"Rivas",slug:"marcia-rivas",fullName:"Marcia Rivas"},{id:"274379",title:"MSc.",name:"Paula",surname:"Carrasco",slug:"paula-carrasco",fullName:"Paula Carrasco"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"548",title:"Antibiotic Resistant Bacteria",subtitle:"A Continuous Challenge in the New Millennium",isOpenForSubmission:!1,hash:"f8a58b7ebbb9cd01db5c16fbf9f80b44",slug:"antibiotic-resistant-bacteria-a-continuous-challenge-in-the-new-millennium",bookSignature:"Marina Pana",coverURL:"https://cdn.intechopen.com/books/images_new/548.jpg",editedByType:"Edited by",editors:[{id:"77349",title:"Dr.",name:"Marina",surname:"Pana",slug:"marina-pana",fullName:"Marina Pana"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5197",title:"Microbial Biofilms",subtitle:"Importance and Applications",isOpenForSubmission:!1,hash:"51bccaa7388a26d55298525fd28dd8f1",slug:"microbial-biofilms-importance-and-applications",bookSignature:"Dharumadurai Dhanasekaran and Nooruddin Thajuddin",coverURL:"https://cdn.intechopen.com/books/images_new/5197.jpg",editedByType:"Edited by",editors:[{id:"48914",title:"Dr.",name:"Dharumadurai",surname:"Dhanasekaran",slug:"dharumadurai-dhanasekaran",fullName:"Dharumadurai Dhanasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5193",title:"Probiotics and Prebiotics in Human Nutrition and Health",subtitle:null,isOpenForSubmission:!1,hash:"facfb45c80773cd5151d8f53b902be39",slug:"probiotics-and-prebiotics-in-human-nutrition-and-health",bookSignature:"Venketeshwer Rao and Leticia G. Rao",coverURL:"https://cdn.intechopen.com/books/images_new/5193.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5853",title:"Mycobacterium",subtitle:"Research and Development",isOpenForSubmission:!1,hash:"073e7ca9fbfdd31da5499271f17ecdf2",slug:"mycobacterium-research-and-development",bookSignature:"Wellman Ribón",coverURL:"https://cdn.intechopen.com/books/images_new/5853.jpg",editedByType:"Edited by",editors:[{id:"88491",title:"Dr.",name:"Wellman",surname:"Ribón",slug:"wellman-ribon",fullName:"Wellman Ribón"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8019",title:"Alginates",subtitle:"Recent Uses of This Natural Polymer",isOpenForSubmission:!1,hash:"61ea5c1aef462684a3b2215631b7dbf2",slug:"alginates-recent-uses-of-this-natural-polymer",bookSignature:"Leonel Pereira",coverURL:"https://cdn.intechopen.com/books/images_new/8019.jpg",editedByType:"Edited by",editors:[{id:"279788",title:"Dr.",name:"Leonel",surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7534",title:"Role of Microbes in Human Health and Diseases",subtitle:null,isOpenForSubmission:!1,hash:"ad71073664357a1e5e73eb81f08be582",slug:"role-of-microbes-in-human-health-and-diseases",bookSignature:"Nar Singh Chauhan",coverURL:"https://cdn.intechopen.com/books/images_new/7534.jpg",editedByType:"Edited by",editors:[{id:"216883",title:"Prof.",name:"Nar Singh",surname:"Chauhan",slug:"nar-singh-chauhan",fullName:"Nar Singh Chauhan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5162",title:"The Gut Microbiome",subtitle:"Implications for Human Disease",isOpenForSubmission:!1,hash:"f21c4722be61a42e7e6ed30cb898b9ad",slug:"the-gut-microbiome-implications-for-human-disease",bookSignature:"Gyula Mozsik",coverURL:"https://cdn.intechopen.com/books/images_new/5162.jpg",editedByType:"Edited by",editors:[{id:"58390",title:"Dr.",name:"Gyula",surname:"Mozsik",slug:"gyula-mozsik",fullName:"Gyula Mozsik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"71364",slug:"erratum-the-mechanism-of-misalignment-of-saw-cutting-crack-of-concrete-pavement",title:"Erratum - The Mechanism of Misalignment of Saw Cutting Crack of Concrete Pavement",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/71364.pdf",downloadPdfUrl:"/chapter/pdf-download/71364",previewPdfUrl:"/chapter/pdf-preview/71364",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/71364",risUrl:"/chapter/ris/71364",chapter:{id:"71109",slug:"the-mechanism-of-misalignment-of-saw-cutting-crack-of-concrete-pavement",signatures:"Chatarina Niken",dateSubmitted:"October 18th 2019",dateReviewed:"January 11th 2020",datePrePublished:"February 14th 2020",datePublished:"September 23rd 2020",book:{id:"7615",title:"Fracture Mechanics Applications",subtitle:null,fullTitle:"Fracture Mechanics Applications",slug:"fracture-mechanics-applications",publishedDate:"September 23rd 2020",bookSignature:"Hayri Baytan Ozmen and H. Ersen Balcioglu",coverURL:"https://cdn.intechopen.com/books/images_new/7615.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"198122",title:"Dr.",name:"Hayri Baytan",middleName:null,surname:"Ozmen",slug:"hayri-baytan-ozmen",fullName:"Hayri Baytan Ozmen"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"313776",title:"Dr.",name:"Chatarina",middleName:null,surname:"Niken",fullName:"Chatarina Niken",slug:"chatarina-niken",email:"chatarinaniken@yahoo.com",position:null,institution:null}]}},chapter:{id:"71109",slug:"the-mechanism-of-misalignment-of-saw-cutting-crack-of-concrete-pavement",signatures:"Chatarina Niken",dateSubmitted:"October 18th 2019",dateReviewed:"January 11th 2020",datePrePublished:"February 14th 2020",datePublished:"September 23rd 2020",book:{id:"7615",title:"Fracture Mechanics Applications",subtitle:null,fullTitle:"Fracture Mechanics Applications",slug:"fracture-mechanics-applications",publishedDate:"September 23rd 2020",bookSignature:"Hayri Baytan Ozmen and H. Ersen Balcioglu",coverURL:"https://cdn.intechopen.com/books/images_new/7615.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"198122",title:"Dr.",name:"Hayri Baytan",middleName:null,surname:"Ozmen",slug:"hayri-baytan-ozmen",fullName:"Hayri Baytan Ozmen"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"313776",title:"Dr.",name:"Chatarina",middleName:null,surname:"Niken",fullName:"Chatarina Niken",slug:"chatarina-niken",email:"chatarinaniken@yahoo.com",position:null,institution:null}]},book:{id:"7615",title:"Fracture Mechanics Applications",subtitle:null,fullTitle:"Fracture Mechanics Applications",slug:"fracture-mechanics-applications",publishedDate:"September 23rd 2020",bookSignature:"Hayri Baytan Ozmen and H. Ersen Balcioglu",coverURL:"https://cdn.intechopen.com/books/images_new/7615.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"198122",title:"Dr.",name:"Hayri Baytan",middleName:null,surname:"Ozmen",slug:"hayri-baytan-ozmen",fullName:"Hayri Baytan Ozmen"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"10100",leadTitle:null,title:"Evo-Devo",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tEvolutionary and developmental biology is focused on the investigation and the elucidation of the molecular mechanisms underlying embryonic development from one generation to the other. It started quite early with Darwin and Mendel, but soon it became apparent that it is a complicated network of interacting genes after stimuli from molecules, our microbiome, other organisms or species and the environment that we live in. However, in recent years the accumulation of big data in the fields of genomics, medical records and other relevant datasets has rendered the study of evo-devo impossible without the aid from advanced and highly sophisticated computational models, which aim to mine and fuse information from diverse disciplines in the realm of evolution and developmental biology.
\r\n\tThis book aims to address the new developments in the rapidly evolving field of evo-devo in the post genomics era. All recent biological and medical breakthroughs in the evo-devo field are welcomed. Finally, review articles encompassing recent advances, development current and future trends are also more than welcomed.
For more than a century, chlorination has been the most common method used worldwide for drinking water disinfection. Chlorine and chlorine-based compounds are widely used for the control of waterborne pathogens because of their high oxidizing potential, low cost, and residual disinfectant properties that prevent microbial recontamination. Unfortunately, the chemical reaction between chlorine and organic compounds in water generates carcinogenic agents such as trihalomethanes and halogenic acetic acids [1, 2]. Furthermore, some resistant microorganisms may only be inactivated with very high chlorine doses, which can exacerbate the formation of disinfection by-products (DBPs) [3]. Presently, growing concerns about the potential hazards associated with DBPs have boosted efforts to develop chlorination alternatives. Ozonation is effective at inhibiting a variety of pathogens; however, its disadvantages include the high cost and the potential formation of DBPs such as bromate in seawater [4, 5]. Other water treatment methods such as ultraviolet (UV) radiation, ultrasound, cavitation, or heat application can be used for the inactivation of organisms. Although these methods do not produce DBPs or other problematic chemical residues, they require substantial energy consumption and have high operational costs [5]. Besides, the efficiency of UV disinfection is greatly dependent on water quality because the activity of UV light is substantially decreased by turbidity or organic matter present in water [5].
Sterilization by using pressurized CO2 has been an active research field for decades [6, 7]. CO2 has been used extensively to sterilize dried food and liquid products via a nonthermal sterilization method [8] because of its effectiveness in inactivating microbes, nontoxicity, and low cost [9]. Prior research on high-pressure CO2 treatments has investigated the effects of several factors such as pressure, temperature, type of microorganisms, agitation speed, decompression rate, and pressure cycling on the inactivation capacity of this method [6, 8, 10–15]. Most studies have reported that high-pressure operating conditions (4–50 MPa) are required to inactivate significant numbers of pathogens [7, 9]. Subsequently, certain concerns involving high-pressure operations (i.e., the need for heavy-duty pressure equipment, high initial investment costs, energy consumption concerns, and pressure control and management issues) have hampered the implementation of high pressurized CO2 preservation technology at a large scale within the food industry.
In recent years, pressurized CO2 has shown great potential as a sustainable disinfection technology in water and wastewater treatment applications [16–22] largely because this method does not generate DBPs [9, 22]. Kobayashi et al. [16, 17] employed CO2 microbubbles in the treatment of drinking water and succeeded in inhibiting Escherichia coli within 13.3 min. However, the pressure (10 MPa) and temperature (35–55°C) requirements for effective inactivation [16, 17] are still high from a practical standpoint. Our research group has developed a novel method that uses low-pressure CO2 treatments (0.2–1.0 MPa) based on technology that produces high amounts of dissolved gas in water to inactive bacteria and bacteriophages in freshwater [19–21] and seawater [23, 24]. Cheng et al. [19] suggested that the sudden discharge and resulting reduction of pressure could cause cells to rupture via a mechanical mechanism, and further, that this would be lethal to cells at high levels of dissolved CO2 at 0.3–0.6 MPa and room temperature. Vo et al. [20, 21] demonstrated that acidified water and cellular lipid extraction caused by pressurized CO2 at 0.7 MPa and room temperature were major factors for efficient disinfection within a treatment time of 25 min.
Previous research has shown that pressure cycling is a potential means to improve bacterial inactivation during pressurized CO2 treatments [8–10, 13, 15]; nevertheless, the inactivation mechanism is still unknown for this process. Pressure cycling is defined as a repetitive procedure that involves the decompression and compression of CO2 [9, 10]. Evidence so far suggests that the decompression process may lead to mechanically induced explosive cell ruptures [14], while the compression process may intensify the mass transfer of CO2 across cell membranes [11–13]. In previous works, the pressure cycling procedure has been conducted with high-pressure operations (8–550 MPa) and with CO2 discharges between each cycle of decompression and compression [8, 10, 13, 15]. Despite the good bactericidal performance of pressurized CO2 technology enhanced by pressure cycling [11–13, 15], the high pressure and CO2 release requirements are drawbacks owing to the costly and complex operating procedures. Presently, it is not clear whether pressure cycling with low-pressure CO2 treatments (<1.0 MPa) will enhance the bactericidal activity. Therefore, in this study, we examined the effect of pressure cycling on the bactericidal performance of CO2 at low pressures and with no release of CO2 between each cycle of raised/lowered pressure.
This study investigated the use of pressurized CO2 at less than 1.0 MPa for seawater disinfection applications such as ballast water treatment. Comparisons of E. coli inactivation caused by pressurized CO2 and pressurized air were evaluated in both natural seawater and artificial seawater. The inactivation performance of pressurized CO2 against E. coli was examined for various conditions of pressure, temperature, flow rates, and working volume ratios (WVRs). In particular, the influence of pressure cycling on E. coli inactivation was evaluated. Changes in cell morphology after pressurized CO2 treatment were assessed by scanning electron microscopy (SEM). The research objective was to evaluate the bactericidal effectiveness of pressurized CO2 for disinfecting water, with the goal of addressing the abovementioned emerging problems associated with water disinfection technology.
For pressurized CO2 methods in the field of food preservation, the interaction efficiency between CO2 and pathogens in the foodstuffs is probably limited at low pressures and ambient temperatures, and consequently, high-pressure (4–50 MPa) or ultra-high-pressure (200–700 MPa) conditions are vital for sufficient inactivation. However, to be more attractive in terms of its economic feasibility, pressurized CO2 technology needs to be implemented at lower pressures. In this study, we employed the use of a liquid-film-forming apparatus, which enabled improvements in the interaction efficiency but with lower pressures (<1 MPa) for the water disinfection purposes.
The experimental apparatus for disinfection was a stainless steel chamber with an internal volume of 10 L and pressure tolerance up to 1.0 MPa. The device was designed with a solid stream nozzle and shield to enable vigorous agitation of the influent in such a way that produced liquid films along with fine bubbles (Figures 1–3). The device was supplemented with CO2 pressure prior to the treatments. Sample water was then pumped into the device at high speed through a small nozzle and directed onto the shield. The highly pressurized fluid stream thus collided with the bubble-generating shield. Subsequently, numerous gas bubbles, which were generated from inside the shield, were entrained by the ascending bubbles and overcame the shield; these bubbles then floated into the main chamber (outside the shield). Hence, CO2 transfers took place both within the interior and exterior sides of the thin liquid films. The presence of numerous small bubbles also enhanced the contact area between gas and water and facilitated CO2 dissolution into water. We hypothesized that the available interfacial contact area between CO2 and the cell suspension was greatly multiplied in this setup and that the CO2 transfer efficiency was high. Despite the lower pressures used, the high contact efficiency promoted by this apparatus enabled ample penetration of CO2 into the cell membranes of E. coli.
Apparatus for forming highly dissolved gas in water.
Representative pictures of liquid film formation with various nozzle diameters at a normal pressure in the pipeline.
Pictures of an untreated sample and a CO2-treated sample (the latter contains many small bubbles).
Stock cultures of E. coli (ATCC 11303) were propagated in Luria-Bertani (LB) broth (Wako Chemical Co., Ltd., Osaka, Japan) containing 30 g L−1 sodium chloride and incubated for 24 h at 37°C by using a reciprocal shaker set to rotate at 150 rpm. The initial enumeration was approximately 109–1010 CFU mL−1. The permanent stock was maintained in 20% glycerol at −80°C.
The E. coli inoculum for each disinfection experiment was prepared by inoculating 100 μL of bacterial glycerol stock into 100 mL of LB broth containing 30 g L−1 sodium chloride. The culture was then incubated for 20 h at 37°C with continuous shaking at 150 rpm. Cells were harvested and washed three times with a 0.9% (w/v) saline solution followed by centrifugation (10 min at 8000 g at room temperature) in a CF15D2 centrifuge (Hitachi, Japan). The pellet was re-suspended in 100 mL saline solution.
E. coli were enumerated by using the plate count technique. Briefly, the samples were diluted into a series of 10-fold dilutions by using autoclaved artificial seawater at 3.4% salinity, and 100 μL of either a diluted or an undiluted sample was plated on LB agar (Wako). For samples with a low number of viable cells, 1 mL of the undiluted sample was poured into agar maintained at 45°C. Colonies growing on each plate were counted after incubating the plates overnight at 37°C. Each sample was analyzed in triplicate.
The artificial seawater was prepared by adding artificial sea salt (GEX Inc., Osaka, Japan) to distilled water to obtain a final salinity of 3.4%, as measured with a salinity meter (YK-31SA, Lutron Electronic Enterprice Co., Ltd., Taiwan). As for the preparation of filtered natural seawater, natural seawater (pH = 8.3, salinity 3.3%) was first filtered through a glass fiber filter (GA-100, Advantec, Toyo); then, the seawater was filtered through a membrane filter with a pore size of 0.45 μm (Millipore, Ireland). For all experiments, prepared E. coli cultures were added into the artificial/filtered seawater to obtain a bacterial concentration of 5–6 log10 CFU mL−1. The solution was stirred for 30 min to acclimatize the bacteria before starting the experiments. For each batch mode operation, 12 L of samples were prepared, of which 4–5 L were used to restart the system. The pH and temperature of samples were measured with a pH meter (Horiba D-51, Japan).
Disinfection experiments were conducted in batch mode (Figure 4). Sample water, as the influent, was pumped in one shot into the device. Following the first influx of water, pressurized CO2 was also injected into the main chamber. System pressure was adjusted by a gas pressure regulator and gas exhaust valve. The fluid was then circulated by pumping inside the system for 25 min. A pump was used to apply a higher pressure than that inside the main chamber to accelerate gas solubilization in water. During the treatment period, the outer wall of the device was kept in contact with cool water by using a water jacket to maintain the initial temperature of the sample at ±1.0°C. The treated water was then collected from a bottom valve of the device.
Setup of the water treatment apparatus.
To investigate the effects of pressure and temperature, 7 L of sample were pumped into the main chamber by using a 0.2 kW pump (Iwaya-WPT-202), and the fluid was circulated inside the system at a flow rate of 14 L min−1 (hydraulic retention time, HRT = 0.5 min). The pump was used to apply 0.12 MPa higher pressure than that inside the main chamber. The sensitivity of bacteria to pressurized CO2 treatments under different conditions was determined by varying the CO2 pressure (0.2–0.9 MPa) and seawater temperature (11–28°C) for a 25-min treatment period [23]. Each experiment was conducted in triplicate.
In previous works, the pressure cycling procedure was conducted with high-pressure operations (8–550 MPa) and with CO2 discharges between each cycle of decompression and compression [8, 10, 13, 15]. However, such high pressure and CO2 release are undesirable from an economic standpoint. In order to overcome the above disadvantages, in the present study, we employed a process involving pressure cycling for E. coli inactivation but used lower pressures (<1 MPa) and no discharge of CO2 between each cycle of raised and lowered pressure.
To investigate the effect of pressure cycling, two pumps (0.20 kW, Iwaya-WPT-202, Japan; 0.75 kW, 32 mm × 32 mm SUP-324 M, Toshiba, Japan) and nozzles with various sizes (15 mm height × 4–8 mm diameter) were used to change the flow rate and pressure power of the input (a treatment without a nozzle was also used, whereby the diameter of the pipeline inlet was 15 mm). Pumping pressure and system pressure were measured by pressure gages. The pressure difference ΔP = pumping pressure (MPa) − pressure inside the main chamber (MPa). The water flow rate was measured by a flow meter (GPI, Nippon Flow Cell Co., Ltd., Japan). The recycle number was calculated in relation to the treatment time and HRT, wherein HRT = sample volume/flow rate.
The WVR is defined as the ratio between the sample volume and apparatus volume. To examine the effect of WVR, different sample volumes (5, 6, 7, and 8 L) were used to vary the sample volume ratios (50, 60, 70, and 80%). The experiment was conducted with the following two flow rate levels: 14 and 25 L min−1. The water level was measured by using a gauge to evaluate the effect of WVR on the bubble-generating shield inside the main chamber. The HRT and recycle number were calculated as described in Section 3.4.2.
Changes in cell morphology after pressurized CO2 treatment were assessed by using SEM. The pellets of E. coli were immobilized with 2.5% glutaraldehyde in phosphate buffered saline (PBS) for 3 h at 4°C and then rinsed with PBS three times. Next, the samples were soaked in 1.0% osmium tetroxide in cacodylate buffer for 90 min and then washed three times with cacodylate buffer for removal of the fixative. After fixation, the cells were dehydrated by consecutive soaking in increasing concentrations of ethanol solutions (50, 70, 80, 90, 95, and 100%), and this was followed by an ethanol/t-butyl alcohol (v/v = 1:1) treatment for 30 min. The prepared cells were then soaked in t-butyl alcohol two times for 1 h, freeze-dried for 2 h, and sputter coated with gold-palladium. Finally, the cells were examined by using a scanning electron microscope (QuantaTM 3D, FEI Co., USA) at 20 kV [23].
The statistical analysis was done by using the statistical computer program R (version 3.2.2, available at
where yi represents the predicted responses, xi is a parameter, β0 is the model intercept, and βi is the linear coefficient.
Bactericidal effects of pressurized CO2 in comparison with pressurized air against E. coli in seawater were investigated at three pressure conditions (0.3, 0.7, and 0.9 MPa) and at 20 ± 1°C (Figure 5). In general, the disinfection efficiency of the pressurized CO2 treatment was not different between filtered seawater and artificial seawater. At every operating pressure, the E. coli inactivation efficiency of pressurized CO2 was always higher than that of pressurized air. Approximately 5.4–5.7 log reductions of the E. coli load were achieved within 10–25 min by the pressurized CO2 treatment (this involved complete inactivation of bacterial cells), whereas only 0.4–0.9 log reductions were achieved after 25 min by the pressurized air treatment; these tests involved pressures of 0.3–0.9 MPa (Figure 5a).
Effect of pressurized CO2 and pressurized air on (a) E. coli inactivation and (b) the pH of seawater (SW). Operating conditions: 0.3–0.9 MPa, 20 ± 1°C, and a working volume ratio (WVR) of 70%. Asterisks (*) and (**) indicate that the E. coli load was completely inactivated after 25 and 10 min, respectively.
Pressurized CO2 reduced the pH of both filtered seawater and artificial seawater to around 5.0 after the first few minutes of exposure time, whereas the pH of pressurized air-treated seawater remained around 8.3 during the treatment period (Figure 5b). It has been hypothesized that the decrease in pH caused by pressurized CO2 is probably a major factor driving the bacterial inactivation process [12, 20, 21, 25]. However, Dang et al. [24] demonstrated that the low pH alone is not the main cause of the bactericidal activity. Perhaps with the concomitant presence of pressure and dissolved CO2, the low pH prompted the E. coli cells to become more permeable, thereby stimulating the process of CO2 penetration into the cells [24].
E. coli was disinfected in various pressure conditions (0.2–0.9 MPa) at 20°C (Figure 6). In general, E. coli inactivation significantly increased with increasing pressure, and higher pressures required shorter exposure times to achieve the same log reduction. For example, a treatment application period of 25 min was required to reduce the E. coli load by approximately 5.0 log with pressure applications of 0.2–0.4 MPa, whereas pressure applications of 0.5 and 0.6 MPa resulted in a reduction of the treatment period to 20 and 15 min, respectively. The treatment period was further reduced to 10 min with pressure applications of 0.7–0.9 MPa. However, the increased pressure application from 0.7 to 0.9 MPa did not result in significant increase in the rate of bacterial inactivation. These data indicated that the optimal CO2 pressure for inactivating E. coli was in the range of 0.7–0.9 MPa, and hence, 0.7 MPa was chosen as the optimal pressure condition for effective bactericidal activity [23].
Effect of pressure on E. coli inactivation during the pressurized CO2 treatment at 20 ± 1.0°C and a working volume ratio (WVR) of 70% [23]. Asterisks (*) indicate that no colonies were detected.
The disinfection efficiency of pressurized CO2 substantially increased with increasing temperatures (11–28°C) at 0.7 MPa (Figure 7). The E. coli load was reduced by more than 5.0 log within 25 min of treatment at 11°C, whereas only 20, 12, and 10 min of pressurized CO2 treatment at 15, 18, and 20–28°C, respectively, were required to reduce the E. coli load to a similar extent [23]. Taken together, these findings suggest that E. coli inactivation by pressurized CO2 could be efficiently conducted at low-pressure (0.7 MPa) and ambient temperature conditions. On the other hand, after disinfection and decompression, the pressurized CO2-treated samples were placed at normal conditions to assess the viability of the remaining bacteria. After the 5-d holding period, the number of E. coli in the treated samples had not increased, i.e., no regrowth of bacteria was observed.
Inactivation of E. coli in seawater at various temperatures by using the pressurized CO2 treatment at 0.7 MPa and a working volume ratio (WVR) of 70% [23]. Asterisks (*) indicate that no colonies were detected.
CO2 is lipo-hydrophilic in nature, and it can easily penetrate into the phospholipid bilayer of cell membranes [26]. Thus, the increase in CO2 pressure and temperature may stimulate the diffusion of CO2 into cells and may increase the fluidity of cell membranes [11, 27]. In the present study, the solubility of CO2 into seawater was considerably improved by using the liquid-film-forming apparatus. Hence, we speculate that simultaneous effects of pressure, temperature, and high efficiency of contact with this apparatus may have stimulated the process of CO2 penetration into E. coli cells, thereby accelerating the efficiency of the pressurized CO2 treatment [23].
The effect of pressure cycling on E. coli inactivation was investigated by using various nozzle diameters (4–8 mm) (a treatment without a nozzle was also tested, where the diameter of the pipeline inlet was 15 mm) and two pump powers (0.20 and 0.75 kW) to change both the flow rate and ∆P of the input. The disinfection experiments were conducted under 0.7 MPa of pressurized CO2 at 20 ± 1°C with a WVR of 70% for a duration of 25 min (Figure 8). In general, larger nozzle diameters led to higher flow rates (Figure 8c) and faster fluid recycling in the treatment system (Figure 8d). In contrast, increases in the nozzle diameter reduced the pressure difference ΔP (Figure 8c). Furthermore, at the same nozzle diameter, stronger pumping powers improved not only the flow rate but also the pressure difference ΔP of the input (Figure 8c). At every nozzle diameter, operation of the pump with 0.75 kW of power (Figure 8b) yielded greater inactivation efficiencies than those with 0.20 kW of power (Figure 8a).
Effect of pressure cycling on the inactivation of E. coli in seawater. Effect of (a) 0.20 kW pump power and (b) 0.75 kW pump power along with various nozzle diameters on the inactivation with pressurized CO2. Influence of different pump powers and nozzle diameters on the (c) flow rate and pressure difference ΔP, and (d) the circulation number. Operating conditions: 0.7 MPa, 20 ± 1°C, and a working volume ratio (WVR) of 70% within a duration of 25 min. Asterisks (*) indicate that no colonies were detected.
It is hypothesized that pressure cycling enhances the inactivation efficiency by facilitating the mass transfer of CO2 into bacterial cell membranes [9, 10]. Thus, an increase in water flow rate can be expected to improve the E. coli inactivation. However, our results show that the E. coli inactivation efficiency did not increase with higher flow rates or faster recirculation. When 0.20 kW of pumping power was used (Figure 8a), the length of treatment periods required for complete inactivation of the E. coli load by more than 5.0 log increased with the greater nozzle sizes (i.e., 10 min with the 4-mm nozzle, 15 min with the 5–6-mm nozzles, and 20 min with the 7-mm nozzle, which corresponded to flow rates of 14, 17–19, and 19 L min−1, respectively). Furthermore, the reduction in E. coli load was only 3.0 log after 25 min when the device was operated without a nozzle (flow rate = 20 L min−1). A similar finding was found when the pump was operated at 0.75 kW of power (Figure 8b); at the higher power, more than a 5.0 log reduction was achieved within 5 min with the 5-mm nozzle (flow rate = 21 L min−1), whereas only a 4.0 log reduction was obtained after 25 min in the treatment lacking a nozzle (flow rate = 26 L min−1). These results indicate that the bactericidal performance of pressurized CO2 associated with pressure cycling can probably not be attributed to the flow rate alone.
On the other hand, the disinfection efficiency substantially increased with the higher ΔP (Figure 8). A 5.4 log reduction in E. coli load was achieved within 5 min by the treatment with a ΔP of 0.25 MPa, whereas only a 3.0 log reduction was attained after 25 min by the treatment with a ΔP of 0.05 MPa. When operating the device with the same pump power, as noted above, a larger nozzle diameter resulted in higher water flow rates but weaker ∆P values. Hence, the reduction of ΔP may be considered as a key reason for the phenomenon of low inactivation efficiency at high flow rates. This suggests that the disinfection effect of pressure cycling might be influenced by not only by the frequency of circulation but also by the ΔP.
Noticeably, at the same ΔP value, a faster frequency of circulation substantially augmented the E. coli inactivation efficiency (Figure 8). For instance, at the same ΔP of 0.12 MPa (generated by a 5-mm nozzle and 0.20 kW pump, and a 7-mm nozzle and 0.75 kW pump), the periods required for complete inactivation of E. coli were reduced from 15 to 5 min when the frequency of pressure cycling was raised from 67 cycles/25 min to 92 cycles/25 min, respectively. A similar association between the disinfection efficiency and frequency of pressure cycling was found at ΔP = 0.10 MPa (generated by a 6-mm nozzle and 0.20 kW pump and a 8-mm nozzle and 0.75 kW pump); the associated treatment periods were 15 and 10 min for the recycle numbers corresponding to 71 cycles/25 min and 95 cycles/25 min, respectively. These results affirm the effect of pressure cycling on E. coli inactivation during pressurized CO2 treatment.
Table 1 summarizes the coefficients of correlation for the inactivation efficiency and parameters associated with pressure cycling, including the nozzle diameter (x1), pressure difference ΔP (x2), flow rate (x3), and recycle number (x4). Based on the Pearson matrix correlation results, E. coli inactivation efficiencies were correlated with ΔP values (r = 0.63, p < 0.0001) and recycle numbers (r = 0.66, p < 0.0001). The flow rate showed a weak correlation with the inactivation efficiency (r = 0.09, p = 0.3). Meanwhile, an inverse correlation (r = −0.35, p = 0.0004) was found between the nozzle diameter and disinfection efficiency. These data indicate that operations with a high flow rate, high ∆P value, large recycle number, and small nozzle diameter will yield greater inactivation efficiencies.
Factor | Symbol code | Unit | r | t-statistic | p-value |
---|---|---|---|---|---|
Nozzle diameter | x1 | mm | −0.35 | −3.64 | 0.0004* |
Pressure difference ∆P | x2 | Pa | 0.63 | 8.08 | 1.69e-12* |
Flow rate | x3 | L min−1 | 0.09 | 1.05 | 0.30 |
Recycle number | x4 | cycles | 0.66 | 8.73 | 6.928e-14* |
Correlation coefficients among various operating parameters associated with pressure cycling and the E. coli inactivation efficiency.
*p < 0.05 (significant at the 95% confidence level); df = 98.
Regression coefficients, t-values, and p-values were analyzed for the four factors as shown in Table 2. The outcome of the multicollinearity regression model analysis (R2 = 0.77, p < 0.001) suggests that the model can explain 77% of the inactivation efficiency of E. coli. With bootstrap analysis, the results of multivariate regression analyses were validated. The variables of x1, x2, x3, and x4 that were found to be associated with pressure cycling in the original analyses were significantly associated with pressure cycling in approximately 8, 28, 3, and 37%, respectively, of the 1000 iterations of the multivariate analyses. Taken together, these findings suggest that the frequency of recirculation (x4) and the ∆P magnitude of the input (x2) were key factors that drove the effectiveness pressure cycling.
Source | Coefficient | t-statistic | p-value |
---|---|---|---|
Intercept | −0.63 | −0.99 | 0.33 |
x1 | −0.13 | −3.59 | 0.0005* |
x2 | 0.01 | 7.32 | 7.8e-11* |
x3 | 0.10 | 3.40 | 0.001* |
x4 | 0.05 | 11.29 | <2e-16* |
Regression results showing the influence of operating parameters associated with pressure cycling on the inactivation efficiency (at 20 ± 1°C, system pressure = 0.7 MPa, and working volume ratio (WVR) = 70%).
*Significant at the 95% confidence level; multiple R2 = 0.77; adjusted R2 = 0.76.
F-statistic = 78.77 with 4 and 95 degrees of freedom, p < 2.2e-16.
Although the use of small nozzle diameters was associated with effective inactivation, operating conditions at high ΔP values and low flow rates may be more complex and of lesser economical interest. The highest inactivation efficiency was observed when 5–7 mm nozzle diameters and the 0.75 kW pump were used (Figure 8b). Since a large processing capacity is of great commercial interest, the 7 mm nozzle and 0.75 kW pump were used for subsequent experiments.
The effect of WVR was investigated at four ratios (50, 60, 70, and 80%) by applying a pressure of 0.7 MPa at a temperature of 20 ± 1°C and two flow rates (14 and 25 L min−1) for 25 min (Figure 9). As shown in Figure 9c, decreasing WVR from 80 to 50% resulted in a decrease in the water level (22–11 cm) and a faster frequency of pressure cycling. In regard to pressure cycling, the circulation number increased from 44 to 72 cycles with the flow rate of 14 L min−1, and from 78 to 125 cycles with the flow rate of 25 L min−1.
Effect of the working volume ratio (WVR) on the inactivation of E. coli in seawater by pressurized CO2 at 0.7 MPa and 20 ± 1°C with (a) a flow rate of 14 L min−1 [23] and (b) a flow rate of 25 L min−1. (c) Influence of the WVR on the circulation number and water level in the main chamber. Asterisks (*) indicate that no colonies were detected.
E. coli inactivation efficacy of pressurized CO2 significantly increased with decreases in the WVR (Figure 9). Besides, at every WVR, operations with a high flow rate greatly enhanced the disinfection efficiency. When operating the device with a flow rate of 14 L min−1, an approximate 5.7 log reduction of E. coli was achieved within 15 min at 80% WVR, whereas only 5 min was required at 50% WVR to reduce the E. coli load to a similar extent (Figure 9a; [23]). A similar tendency was found in the case of the 25 L min−1 flow rate (Figure 9b). The durations required for complete inactivation of E. coli were 10 min at 80%, 5 min at 60–70%, and 3 min at 50%.
Pressure cycling boosts the inactivation efficiency by providing a driving force for CO2 transfer efficiency [9–13]. Recall that at the same flow rate and ΔP, a decrease in WVR increased the frequency of pressure cycling. Hence, it is hypothesized that a smaller WVR may have stimulated the CO2 transfer across cell membranes and thus improved the bactericidal performance of pressurized CO2 [11, 28, 29]. In this study, the low inactivation efficiency with a large WVR (i.e., 80%) may be related to the high water level (20–22 cm; Figure 9c), which led to submergence of the shield inside the device; this may have in turn decreased bubble formation via shield interactions [23, 24]. In contrast, the operations with smaller WVRs helped not only to promote a greater efficiency for CO2 bubble generation but also increased the speed of the pressure cycling. Consequently, CO2 supported by the high pressure and high efficiency of interactions in the apparatus easily penetrated into the cell membranes, thereby accelerating the E. coli inactivation efficiency.
Regarding the effect of WVR in pressure cycling treatments, Pearson regression tests showed that E. coli inactivation efficiency was strongly correlated with the recycle number (r = 0.95, p < 0.001). The regression coefficient, t-value, and p-value were analyzed with regard to the recycle number at various WVRs and flow rates (Table 3). According to the regression analysis, the experimental results fit the linear model shown in the following equation:
Coefficients | Estimate | Standard error | t-statistic | p-value | R2 |
---|---|---|---|---|---|
Intercept | 0.736 | 0.195 | 3.77 | 0.0009* | |
x4 | 0.285 | 0.019 | 15.30 | 7.2e-14* | 0.91 |
Regression results showing the influence of pressure cycling on the inactivation efficiency (at 20 ± 1°C, system pressure = 0.7 MPa, ΔP = 0.12 MPa, flow rate = 14 to 25 L min−1, and initial bacterial concentration = 5–6 log10 CFU mL−1).
*95% confidence level.
Here, x4 is the recycle number (cycles), and Y is reduction ratio (−log N/N0) of E. coli caused by pressurized CO2.
As shown in Table 3, the t values of the regression model were positive and significant (p < 0.05), thus indicating that the model result was significant. The outcome of the linear regression model analysis (R2 = 0.91, p < 0.001) suggests that 91% of the variation in the E. coli inactivation efficiency was explained by the frequency of pressure cycling (ΔP = 0.12 MPa, flow rate = 14–25 L min−1). Predicted values of E. coli reduction ratios were calculated based on Eq. (2), and the data are summarized in Table 4 along with the experimental results. The predicted values were fairly similar to the experimental results, thus suggesting that the model could adequately describe the strong relationship between pressure cycling and bactericidal activity (p < 0.05). Taken together, these findings affirm that at the same ΔP, faster pressure cycling can achieve a greater E. coli inactivation efficiency.
Flow rate, L min−1 | HRT, min | Variables | Responses Y: Reduction ratio, −log(Nt/N0) | ||
---|---|---|---|---|---|
WVR, % | x4, cycles | Experimental | Predicted | ||
25a | 0.20 | 50 | 15c | 5.2 ± 0.2 | 5.0* |
25a | 0.24 | 60 | 21d | 5.5 ± 0.0 | 6.4* |
25a | 0.28 | 70 | 18d | 5.3 ± 0.2 | 5.8* |
14b | 0.36 | 50 | 14d | 5.7 ± 0.1 | 4.7* |
14b | 0.43 | 60 | 19e | 5.7 ± 0.0 | 6.1* |
14b | 0.50 | 70 | 20f | 5.7 ± 0.2 | 6.5* |
Validation of model regression for the inactivation efficiency responses to pressure cycling as a function of various working volume ratios (WVRs) and flow rates (at 20 ± 1°C, system pressure = 0.7 MPa, ΔP = 0.12 MPa, and initial bacterial concentration = 5–6 log10 CFU mL−1).
*Predicted values calculated based on Eq. (2).
a, bGenerated by a 7-mm nozzle and 0.75 kW pump, and a 5-mm nozzle and 0.20 kW pump, respectively.
c, d, e, fExposure times were 3, 5, 8, and 10 min, respectively, when bacteria were completely inactivated.
HRT, hydraulic retention time
Dillow et al. [13] reported that an increase of pressure cycling from 3 to 6 cycles using supercritical CO2 (at 20.5 MPa and 34°C) within 0.6 h increased the inactivation from 3 to 9 log reductions. Silva et al. [10] found that an 8.0 log reduction could be achieved with pressure cycling (5 cycles/140 min) and supercritical CO2 at 8 MPa, whereas a 5.0 log reduction was observed with 1 cycle/28 min and 8 MPa. However, high pressure and CO2 discharge are not interesting from both economic and practical viewpoints. As demonstrated in the present study where CO2 discharge was eliminated during the treatment process, pressure cycling at a low pressure (0.7 MPa) is a promising method to enhance the bactericidal activity of pressurized CO2.
Comparative SEM images of untreated samples and samples treated with pressurized CO2 (0.7 MPa and 20°C for a duration of 25 min) revealed changes in the morphology of E. coli cells (Figure 10). The E. coli cells treated with pressurized CO2 presented several small vesicles on the cell surface, and some treated cells appeared to be lysed (Figure 10b); in contrast, the untreated E. coli cells did not have such structures on the surface (Figure 10a) [23]. These results suggest that the pressurized CO2-treated E. coli cells may have been disrupted [19, 20, 23], and that intracellular substance may have leaked out, possibly because of the alterations in cell permeability [20, 23, 30]. The findings also affirm the excellent bactericidal performance of the pressurized CO2 treatment.
Representative scanning electron microscopy (SEM) images of E. coli cells that were (a) untreated and (b) treated by pressurized CO2 at 0.7 MPa and 20°C for a duration of 25 min [23].
Pressurized CO2 treatments can be used to eliminate E. coli from seawater. In this study, the inactivation efficiency was substantially enhanced by pressure cycling, which was conducted at a low pressure (0.7 MPa) and without CO2 release during the treatment period. Bactericidal performance of pressure cycling was concomitantly influenced by two key factors involving the frequency of recirculation and ΔP (p < 0.001). At the same ΔP, an increase in the frequency of pressure cycling significantly improved the E. coli inactivation efficiency (p < 0.001). Additionally, the sensitivity of E. coli to pressurized CO2 treatments substantially increased with increased pressures (0.2–0.9 MPa) and temperatures (11–28°C). Under identical treatment conditions (0.7 MPa, 20°C, 25 L min−1, and 50% WVR), more than 5.0 log reductions in the load of E. coli were achieved after treatments for 3 min by using pressure cycling (ΔP = 0.12 MPa, 15 cycles). Overall, these findings suggest that pressurized CO2 technology would be feasible for water disinfection applications such as those used in ballast water treatment.
This study was supported by the Ministry of Education and Training of Vietnam under the Ph.D. Program No. 911, Yamaguchi University (Japan), and the Takahashi Industrial and Economic Research Foundation.
Today, information has become the main component of what we produce, do, buy, and consume. Having an economic value in almost all products and services that meet the needs of today’s societies, it has been now obligatory for individuals and organizations to obtain information technologies and to actively use them in both work and social life domains. Hence, in the current information age, where information is seen as power, this situation has made it imperative for organizations to become increasingly information-based and to benefit from information technologies in many processes and activities.
The intensive use of information technologies in many functions and processes has also required some changes in organizations [1]. This is due to the fact that information technologies, unlike traditional technologies, do not only change the technical fields but also affect the communication channels, decision-making functions and mechanisms, control, etc. [2]. Consequently, one of the most striking developments is on organizational structures that are becoming increasingly flattened and horizontal. Relatedly, information technologies have begun to take over the role of middle management, which supports decision-making processes of senior management and has reduced the importance of this level [3, 4, 5]. Similarly, while information technologies enable managers to obtain faster, more accurate, and more information [6, 7, 8], it also provides lower-level managers with more information about the general situation of the organization, the nature of current problems, and important organizational matters [9, 10, 11, 12].
Moreover, information technologies also have an important potential in determining whether organizations have a mechanical or an organic structure [13]. Within the mechanical organizational structures, people do not have much autonomy, and behaviors expected from employees are being careful and obedience to upper authority and respect for traditions. In such organizations, predictability, consistency, and stability are desirable phenomena. In contrast, people in organic structures have more freedom in shaping and controlling their activities, and being enthusiastic, creative, and taking risks have important places among the desired behaviors [14].
Accordingly, information technologies begin to influence the cultural values of the organization over time, through these transformations they create on organizational structures, processes, and operations. In other words, the fact that organizational structures are mechanical or organic causes the formation of diverse cultural values in organizations [15]. Therefore, the desired cultural values in mechanical organizations are quite different from those in organic structures [1, 16, 17]. In this context, this chapter deals with the influences of information technologies on cultural characteristics of organizations along with the reflections of the use of these technologies on organizational structures and their functioning.
When we look at studies on the relations between organizational culture and information technologies, we generally see the studies on the effects of culture on technology adaptation or use [18, 19, 20, 21], as well as on the effects of certain specific information technologies and applications (e.g., e-mail use, group support practices, etc.) on some aspects of any organizational culture [22, 23, 24, 25, 26, 27, 28, 29, 30, 31]. However, the number of studies that consider the use of information technologies as a “whole” and that address “why” and “how” its effects on organizational culture occurred is still limited. And so, this chapter aims to examine and discuss the overall effects of the usage and intensity of information technologies established in organizations on the cultural life within.
In this context, the chapter plan is as follows: Firstly, the basic concepts related to information and information technologies are included. Emphasis is placed on the meaning differences between knowledge and information, and their connections to information technologies are tried to be explained briefly. Secondly, the effects of information technologies on organizational structure are given particular attention. The reason for this is that as a system of values, beliefs, assumptions, and practices [32], organizational culture encompasses many features closely related to structures of organizations. Thirdly, possible links between organizational structure and organizational culture are included. Fourthly, important theoretical approaches and studies on the relationships between information technologies and organizational culture are provided. Finally, by deepening a bit more and by emphasizing key points, some important arguments are discussed.
In the literature, the concepts of information and knowledge are sometimes expressed by a single term, “information.” However, although the concepts of knowledge and information are intertwined, they are two different concepts that have different meanings and describe different phenomena. The reason for this is that knowledge is also included in the concept of information as it is transformed into a commodity when it begins to be processed, stored, and shared by information technologies.
Becoming the basic elements of today’s economic, social, and cultural systems, information is obtained in a certain hierarchy. The images are at the beginning of the process, and the process is completed with a hierarchical staging in the form of data, information, and knowledge, respectively [33]. Image is located in the first step of the process. Humans copy the picture of any object and event they previously perceived by sensory organs. When faced with a similar phenomenon in the later stages of life, these pictures in the mind are redesigned. We call these pictures of realities occurring in the human mind as images [33]. The next stage, the data, contains symbols that represent events and their properties. For this reason, data are expressed as figures and/or facts without content and interpretation [34]. Information that constitutes the next stage of the process and is mixed with knowledge and used interchangeably is expressed as a reporting of one system’s own status to another system [33]. In information, associated data are combined for a specific purpose. Therefore, we can explain information as meaningful data [35]. Knowledge, on the other hand, is defined as personalized information that allows people to fully and accurately grasp what is happening around them and manifests itself in the form of thoughts, insights, intuition, ideas, lessons learned, practices, and experiences [36]. According to Kautz and Thaysen [37] who stated that knowledge is found only in the people’s minds, knowledge is, therefore, a subjective formation. In other words, knowledge is the form of information enriched with interpretation, analysis, and context [38]. However, here, it should be emphasized again by highlighting a very important issue that knowledge is also accepted as information when this knowledge begins to be processed, stored, shared, and used over information technologies. Therefore, after this, when talking about information, one should consider not only the information created by the data brought together in a meaningful way but also the knowledge shared and used over information technologies.
On the other hand, information technologies, used as the most important tool of generating value today, are defined as the technologies that enable processes such as recording and storing data, producing information through certain operational processes, and accessing, storing, and transmitting this produced information effectively and efficiently [39, 40, 41, 42, 43, 44, 45, 46]. The term information technologies is used to cover computer and electronic communication technologies, as they are now inseparably intertwined in literature and everyday use and are generally used in this way [47]. In this context, data processing systems, management information systems (MIS), office automation systems, executive support systems, expert systems, intranet and extranet, electronic mail (e-mail), group applications (groupware), database management systems, decision support systems, artificial intelligence, and telecommunication systems can be given as examples of information technologies [33, 48, 49].
Towards the end of the twentieth century, the rapid changes with the impact of developments in information technologies led to the emergence of customer satisfaction-based, learning, knowledge-based, and constantly changing organizations [50]. The fact that organizations have become considerably information-based and benefit from information technologies intensively in their activities and processes has made also the changes in their organizational structures mandatory [1]. Accordingly, the effects of information technologies on organizational structure will be summarized under the subtitles of differentiation, centralization, and standardization/formalization, which are the three main components of organizational structure [15].
Differentiation within an organization occurs in three ways: Specialization/division of labor, horizontal and vertical differentiation, and hierarchy and size [15]. Specialization refers to the amount of different expertise or types of work [51, 52]. Specialization generally increases the number of subunits and makes it harder to understand the larger structure that people contribute to with their skills and expertise [53]. Information technologies have the potential to reduce this tendency by providing more access to information and experts at this point. In this way, access to information resources provides synergy [54].
Vertical and horizontal differentiation refers to the amount of hierarchical levels in an organization [55]. Information technologies, with the support of problem solving and decision-making, lead to the emergence of more flattened organizational structures as they require fewer levels within the hierarchy [56]. Since information technologies give employees in lower positions more autonomy to harmonize their activities, this can allow them to find and try better methods while performing their work. In this context, we can increasingly see that organizational structures have become horizontal and strengthened and that virtual organizations have begun to emerge as the most cost-effective structure [17].
In terms of hierarchy and size, Heinze and Stuart [4] argue that the mid-level management staff is unnecessary, increases bureaucracy, reduces efficiency, and has no function in organizations any more. Since most of the tasks performed by mid-level executives can be fulfilled by computers, both less costly and faster, information technology has begun to take over the role of mid-level management, which supports the decision-making process of senior management [5]. Sharing the same opinion, Fulk and DeSanctis [57] also stated that the largely witnessed situation in modern organizational designs is the reduction of intermediate-level managers and administrative support.
Centralization points to the extent to which decision-making power within an organization is scattered or centered [58]. Due to increasing local and global competition, many companies have started to leave their strategic decision-making task further down the organization to benefit from the expert people with more precise and timely local knowledge [10]. Information technologies affect these efforts directly in two ways. Firstly, information technologies increase local knowledge by contributing to obtaining closer information about market trends, opportunities, and customers. Secondly, information technologies can create synergies for organizations because, thanks to information technologies, communication and coordination between distributed decision makers, central planners, and senior managers can be realized more effectively and efficiently [59].
However, whether information technologies will lead to centralization or decentralization is a very controversial question. Regarding centralization, it enables managers to acquire faster, more accurate, and more information, reduces uncertainty, and allows them to make decisions that they cannot make before [6, 7, 8]. Conversely, by the use of other forms of information technologies (e.g., electronic bulletin boards), decentralization provides more information to lower- and mid-level managers about the general situation of the organization and the nature of current matters and problems [9, 10, 11, 12]. Raymond et al. [60] argued that because information technologies facilitate the use and transmission of information by all levels and units in the organization, it enables top management, which is the decision authority, to be disabled in certain areas and the decentralization of control. Thach and Woodman [61] maintained that this is due to the fact that as a result of sharing information at lower levels with the help of information technologies, this power of senior management has decreased to a certain extent, and the knowledge and participation of the staff in organizational matters have increased.
The literature shows that information technologies allow both centralization and decentralization. Researchers are in the agreement that information technologies make it possible for organizational managers to leave their decision-making power to a large part of the hierarchical levels without compromising the quality and timeliness of the decision [62, 63]. Keen [64] combined the concepts of centralization and decentralization and used the term “federated organization” in which organizations do not have to choose either because information technologies simultaneously allow centralization-decentralization [64, 65].
Formalization is the process of detailing how activities are coordinated for organizational purposes in order for employees and organizational units to respond routinely to recurring situations [51, 66]. Formalization involves rules, instructions, shared values, and norms [67]. In fact, formalization is based on the objective of more efficiency and less uncertainty [13].
Information technologies provide the ability to reduce the negative effects of formalization by facilitating the documenting and retrieving of information on organizational occurrences and endeavors that make behaviors and processes more consistent through formalization [63]. The more information technologies assist in reducing search times and preventing downtime, the more the administrative cost of formalization decreases and the productivity increases, which ultimately benefits the path to innovation [68].
Different organizational structures lead to the development of different cultural values [15]. The fact that the structure which an organization has established to control its activities and is defined as a formal system consisting of duties and authority relations is mechanical or organic causes the emergence of completely different cultural values, rules, and norms [69]. While mechanical structures are vertical, highly centralized, and almost everything in them are standardized, organic structures are horizontal, decentralized, and based on mutual adaptation [14]. People feel relatively less autonomous in vertical and centralized organizations, and being careful, obeying the upper authority, and respecting traditions are among the desired behaviors. Therefore, in a mechanical organizational structure, there are cultural values where predictability and stability are important [69]. In contrast, in horizontal and decentralized organizations, people can freely choose their own activities and control them. Creativity, courage, and risk-taking are given importance as desired behaviors. Therefore, organic structures contribute to the formation of cultures that value innovation and flexibility [15].
Organizational structure is also important for the development of cultural values that support integration and coordination. In a structure with stable task and role relations, sharing of rules and norms is more since there will be no communication problems and the information flow will be fast [70]. In organizations where the sharing of cultural values, norms, and rules is at a high level, the level of performance also increases [15]. Particularly in team or matrix structures where face-to-face communication is intense, the sharing of these cultural values and common reactions to the problems develop more rapidly [9].
Whether an organization is centralized or not causes different cultural values to emerge. In decentralized structures, authority is divided into subordinate levels, and an environment is created for the formation of cultural values in which creativity and innovation are rewarded [13]. Employees are allowed to use the organization’s resources and work in projects that they want, by spending some of their time in these projects, thus contributing to the production of innovative and creative products and services [15]. The structures of such organizations constitute the cultural values that give their employees the message “as long as it is in the interest of the organization, it is okay to do things in an innovative and the way you want.”
Conversely, in some organizations, it may be more important for employees not to decide on their own and all activities to be followed and controlled by their superiors. In such cases, a centralized structure is preferred to create cultural values that will ensure accountability and obedience [71]. Through norms and rules, all employees are expected to behave honestly and consistently and inform their superiors about wrongs or mistakes, because this is the only acceptable form of behavior within these structures [72].
Since working on the factors that determine the consequences of the adoption and use of information technologies, researchers have focused on people’s beliefs, values, assumptions, and codes of conduct. As a result, they have given names to this research field such as “socio-technical systems,” “social system,” “social structure,” and most recently “culture” [73]. For example, Markus and Robey [23] using “social elements” and Barley [26] using “social system” or “social structure” tried to explain this phenomenon. When examined more closely, it is seen that the details that these authors emphasize while depicting the case are the assumptions, beliefs, and values that exist in common among the group members, and this corresponds to the definition of organizational culture.
Research examining the relationships between information technologies and values, beliefs, and norms belonging to a particular group has gone through certain stages and used rich and complex research models to explain the relationships in each of these stages [74]. In the first studies on information technology applications, it has been suggested that information technologies cause changes in various organizational phenomena including structural features and thus have certain effects on organizations [74]. For instance, in some studies on adoption of groupware software, several researchers have used this deterministic approach to describe how groupware use affects communication and collaboration among employees and their productivity [27, 28]. These studies assume that certain results will certainly emerge after the adoption of information technologies, without considering the motives or activities that shape the use of information technologies by managers and employees. Like much more deterministic studies, these authors often assumed that information technologies would have predetermined influences on the adoption of information technologies, regardless of the environment in which information technologies were applied, how they were applied, and the users’ specific behaviors and particular purposes.
The second group of views concerning the relationships between organizational culture and information technologies includes the fact that information technologies are seen as a tool that can be used for any change that managers desire to make in organizational practices [22]. In studies in this approach, researchers believe that there is a wide range of possibilities to identify changes in organizational culture, structure, processes, and performance [22, 75]. Researchers from this tradition presume that with the right choice of information technologies and appropriate system design, managers can achieve whatever goals they desire.
These works were mostly adopted in the 1980s and reflect a perspective that managers think can manipulate organizational culture in the way they want. Often called “management and control,” “a functional or instrumental approach” to organizational culture, this methodology has caused serious debate in the literature [76]. This approach attributes great powers to the management level in this regard, which conflicts with anthropologists’ views that culture cannot be consciously controlled and goes much deeper to understand it [76]. Robey and Azevido [77] also do not accept the rational thought on the assumption that culture can be manipulated directly in this way.
Studies with this rational perspective in the information technology literature assume that managers can use information technologies as a leverage to make changes in the norms of behavior, strategy, structure, and performance among members within the organization. For example, in studies on group support systems (GSS), we find managers’ beliefs that they can use collaborative technologies to create a more cooperative organizational culture. This perspective was not accepted by Karsten [78] and some experimental research on GSS [30, 79]. Organizational necessity is no longer accepted, as it is viewed by information technology researchers as an overly simple approach [23, 80].
Researchers who take another approach suggest that information technologies and organizational culture can interact with each other to produce various results [22, 23]. These results can be in the form of adoption and effective use of information technologies (if there is a harmony between organizational culture and information technologies) or user reluctance, refusal, or sabotage (if no fit). Researchers who have been working on information systems since the 1980s have focused on understanding information technology features and functionality that cause effective or problematic information technology applications and the interaction between users’ values, assumptions, and other elements of organizational culture. In this regard, Romm et al. [81] argued that many forms of information technologies comprise cultural assumptions embedded within themselves and these assumptions may conflict with existing values of a particular organization. The authors argued that these embedded assumptions present information technologies as a “cultural boundary” and that a cultural analysis should be made to predict compliance or incompatibility. The authors in this approach warn managers to think of organizational culture as a binding limitation in information technology applications. In a warning by Pliskin et al. [76], managers are advised not to try to change the culture of the organization. Regarding this issue, Orlikowski [30] cites Lotus Notes (a group software) application at Alpha Corporation, a consultancy company. In this example, this system, which was established by the CEO of the company only with the benefits to be obtained, did not create the expected effects, became unsuccessful, and disappointed due to reasons such as no cultural analysis and inadequate training. Employees responded to the use of Notes with resistance and refrained from using it. The reason for this was that the employees in this organization, which had a competitive culture where information was seen as a power, avoided sharing information with others. As a result, this incompatibility between the collaborative culture that Notes had in itself and the competitive culture of the organization in question had failed this application of information technologies.
In a different approach, it is stated that information technologies and culture are not fixed and they are more flexible in terms of change [23, 75]. Managers in this approach may set specific goals for the use of information technologies, but actual results of the use of information technologies are not deterministic, and results cannot be predicted or controlled even under the best conditions [23]. The effects of information technologies are not deterministic because technology has interpretable flexibility considering that it can have different meanings for different employees. Similar technology can be interpreted in a different way by distinct people, based on certain assumptions, beliefs, and values. Robey and coauthors [24, 25], for instance, showed that it would be an empty attempt for organizational managers to try to intentionally manipulate the effects of these technologies, since there are many ways that diverse employees can configure a particular technology in different social environments.
Gopal and Prasad [31] also achieved similar results in their work on group support system (GSS), claiming that for researchers seeking fixed laws or regulations on how information technologies affect user behaviors, this would be an impossible goal to pursue. Conversely, the results of using information technologies depend on the symbolic meanings that information technologies have for a particular user. This work of Gopal and Prasad [31] expresses similar results with the work of Barley [26] and Robey and Sahay [25]. The authors stated that the symbolic meanings of certain technologies for users affect their perceptions of information technologies and their specific behaviors.
In the light of the above-mentioned approaches, arguments, and important studies in the literature, it will be useful to discuss some important points by deepening a little more and by emphasizing the key features related to the concepts of information, information technologies, and organizational culture.
First, organizational culture is a complex phenomenon that develops and changes in a historical process [32, 82, 83]. Thus, although it might seem like a plain and simple concept, organizational culture includes many subdimensions and processes. When considered as a complex pattern of these interactions of many factors with each other, it is also a difficult process to identify the direct and indirect effects of information technologies on organizational culture within this cluster of relationships and interactions. Moreover, culture is not a phenomenon that changes and develops in a short time and is therefore open to manipulations of managers. On the contrary, from this point of view, it is not possible to easily achieve control over cultural changes, and it is necessary to go much deeper [76]. So, it is not rational to expect that the rapid developments and changes in information technologies will cause changes in cultural characteristics at the same speed. In this sense, it could be inaccurate to seek direct relationships between two phenomena in question, whose rates of change are quite different.
Second, for cultural changes, there must also be changes in the basic assumptions, beliefs, and values on which the culture is built [84]. It would be misleading to expect little or intensive use of information technologies to cause changes in these rooted assumptions. For the desired changes in these basic assumptions, beliefs, and values, it is necessary to design the structure accordingly, to recruit employees who are qualified for the targeted culture, and to set ethical values and property rights to employees in accordance with this culture [15]. In this sense, information technologies may only catalyze the contribution of organizational structure to organizational culture.
Third, there are many and different types of hardware and software that fall under the scope of information technologies. It is not logical to accept all of them as homogeneous technologies in all aspects (with the same functions and features, similar usage areas, standard conditions they are applied, similar intentions, and behaviors of all users), and it can be, therefore, misleading to carry out research under a single “IT” concept from this perspective. The reason for this is that, as stated in the sections above, cultural features of each information technology application or product embedded in it might be different. The interactions between the cultural characteristics of the environment in which information technologies are applied and the unique cultural contents of information technologies may cause different results on the culture of the organization.
Fourth, contrary to what is believed, some of cultural features that we anticipate to support information technology applications and products may be interpreted otherwise by diverse people contingent on different assumptions, beliefs, and values. In fact, Robey et al. [24, 25] showed that managers cannot control the effects of these technologies, since different users can configure a particular technology in numerous ways in different social environments. Also, Gopal and Prasad [31] argued that this would be an impossible achievement for researchers looking for fixed laws or regulations on how information technologies affect user behaviors.
Fifth, information technologies were defined above as technologies that enable processing, storage, and sharing of information. The key concept in this definition is “knowledge-based” information and not the technology itself. Therefore, what makes information technologies essential and important is the information itself. According to the definition of knowledge, the most significant characteristic that differentiates it from information is its being a product of the human mind [37]. Because knowledge is the interpretation of information and expresses the value produced from it, qualifying information technologies as good-bad, useful-useless, and necessary-unnecessary can be a meaningless evaluation. So, the basic thing that creates value-added for organizations is not the technology used but the information itself, which is processed, stored, and shared on this technology. In this context, even if it is the latest, most advanced, and most expensive technology in the world, if the organization does not have a qualified human resource capable of producing knowledge that will create value-added, an appropriate organizational structure and culture that will activate this creative potential, and a management approach, all investments in these technologies will also be wasted.
This chapter has aimed to examine the impacts of information technologies on organizations’ cultures, and for this purpose, a special emphasis is given to the concept of “organizational structure” within the theoretical framework presented above. The most important reason for this is that relevant literature shows that organizational culture and organizational structure are in a very close relationship. Indeed, when the question items in the Denison organizational culture scale [85], which is the most frequently used in the literature, are examined, it is possible to see that most of these items point to many features of organizational structure concerning centralization, formalization, and differentiation dimensions. Therefore, it is a very rational approach to expect that information technologies can have direct and indirect effects on organizational cultures based on the influences of information technologies on structures of organizations. However, it should be underlined that different and controversial approaches and findings in the literature mentioned above on the relations between information technologies and organizational culture generate question marks in the minds as well.
In this regard, it is already quite difficult to draw a clear picture of the impacts of information technologies on cultural characteristics of organizations. The number of studies on the subject in the literature is still very limited. Accordingly, it is necessary to underline the great need for interdisciplinary studies in this field. But still, this study argues that the main factor that determines the actual impact and value of information technologies, which have become an integral part of human life in today’s world, is the information itself rather than technology, and it should be kept in mind that information technologies can only function as a means or tool in this knowledge-based social, economic, and cultural life. In other words, the determinant of the benefits, meaning, and importance of information technologies might be the conditions created by organizational factors such as cultural environment and organizational structure where knowledge is created, developed, and used and human resources have become the most important capital element and source of wealth.
The author declares no conflict of interest.
The Internet has irrevocably changed the dynamics of scholarly communication and publishing. Consequently, we find it necessary to indicate, unambiguously, our definition of what we consider to be a published scientific work.
",metaTitle:"Prior Publication Policy",metaDescription:"Prior Publication Policy",metaKeywords:null,canonicalURL:"/page/prior-publication-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"A significant number of working papers, early drafts, and similar work in progress are openly shared online between members of the scientific community. It has become common to announce one’s own research on a personal website or a blog to gather comments and suggestions from other researchers. Such works and online postings are, indeed, published in the sense that they are made publicly available. However, this does not mean that if submitted for publication by IntechOpen they are not original works. We differentiate between reviewed and non-reviewed works when determining whether a work is original and has been published in a scholarly sense or not.
\\n\\nThe significance of Peer Review cannot be overstated when it comes to defining, in our terms, what constitutes a published scientific work. Peer Review is widely considered to be the cornerstone of modern publishing processes and the key value-adding contribution to a scholarly manuscript that a publisher can make.
\\n\\nOther than the issue of originality, research misconduct is another major issue that all publishers have to address. IntechOpen’s Retraction & Correction Policy and various publication ethics guidelines identify both redundant publication and (self)plagiarism to fall within the definition of research misconduct, thus constituting grounds for rejection or the issue of a Retraction if the work has already been published.
\\n\\nIn order to facilitate the tracking of a manuscript’s publishing history and its development from its earliest draft to the manuscript submitted, we encourage Authors to disclose any instances of a manuscript’s prior publication, whether it be through a conference presentation, a newspaper article, a working paper publicly available in a repository or a blog post.
\\n\\nA note to the Academic Editor containing detailed information about a submitted manuscript’s previous public availability is the preferred means of reporting prior publication. This helps us determine if there are any earlier versions of a manuscript that should be disclosed to our readers or if any of those earlier versions should be cited and listed in a manuscript’s references.
\\n\\nSome basic information about the editorial treatment of different varieties of prior publication is laid out below:
\\n\\n1. CONFERENCE PAPERS & PRESENTATIONS
\\n\\nGiven that conference papers and presentations generally pass through some sort of peer or editorial review, we consider them to be published in the accepted scholarly sense, particularly if they are published as a part of conference proceedings.
\\n\\nAll submitted manuscripts originating from a previously published conference paper must contain at least 50% of new original content to be accepted for review and considered for publication.
\\n\\nAuthors are required to report any links their manuscript might have with their earlier conference papers and presentations in a note to the Academic Editor, as well as in the manuscript itself. Additionally, Authors should obtain any necessary permissions from the publisher of their conference paper if copyright transfer occurred during the publishing process. Failure to do so may prevent Us from publishing an otherwise worthy work.
\\n\\n2. NEWSPAPER & MAGAZINE ARTICLES
\\n\\nNewspaper and magazine articles usually do not pass through any extensive peer or editorial review and we do not consider them to be published in the scholarly sense. Articles appearing in newspapers and magazines rarely possess the depth and structure characteristic of scholarly articles.
\\n\\nSubmitted manuscripts stemming from a previous newspaper or magazine article will be accepted for review and considered for publication. However, Authors are strongly advised to report any such publication in an accompanying note to the External Editor.
\\n\\nAs with the conference papers and presentations, Authors should obtain any necessary permissions from the newspaper or magazine that published the work, and indicate that they have done so in a note to the External Editor.
\\n\\n3. GREY LITERATURE
\\n\\nWhite papers, working papers, technical reports and all other forms of papers which fall within the scope of the ‘Luxembourg definition’ of grey literature do not pass through any extensive peer or editorial review and we do not consider them to be published in the scholarly sense.
\\n\\nAlthough such papers are regularly made publicly available via personal websites and institutional repositories, their general purpose is to gather comments and feedback from Authors’ colleagues in order to further improve a manuscript intended for future publication.
\\n\\nWhen submitting their work, Authors are required to disclose the existence of any publicly available earlier drafts in a note to the Academic Editor. In cases where earlier drafts of the submitted version of the manuscript are publicly available, any overlap between the versions will generally not be considered an instance of self-plagiarism.
\\n\\n4. SOCIAL MEDIA, BLOG & MESSAGE BOARD POSTINGS
\\n\\nWe feel that social media, blogs and message boards are generally used with the same intention as grey literature, to formulate ideas for a manuscript and gather early feedback from like-minded researchers in order to improve a particular piece of work before submitting it for publication. Therefore, we do not consider such internet postings to be publication in the scholarly sense.
\\n\\nNevertheless, Authors are encouraged to disclose the existence of any internet postings in which they outline and describe their research or posted passages of their manuscripts in a note to the Academic Editor. Please note that we will not strictly enforce this request in the same way that we would instructions we consider to be part of our conditions of acceptance for publication. We understand that it may be difficult to keep track of all one’s internet postings in which the researcher´s current work might be mentioned.
\\n\\nIn cases where there is any overlap between the Author´s submitted manuscript and related internet postings, we will generally not consider it to be an instance of self-plagiarism. This also holds true for any co-Author as well.
\\n\\nFor more information on this policy please contact permissions@intechopen.com.
\\n\\nPolicy last updated: 2017-03-20
\\n"}]'},components:[{type:"htmlEditorComponent",content:'A significant number of working papers, early drafts, and similar work in progress are openly shared online between members of the scientific community. It has become common to announce one’s own research on a personal website or a blog to gather comments and suggestions from other researchers. Such works and online postings are, indeed, published in the sense that they are made publicly available. However, this does not mean that if submitted for publication by IntechOpen they are not original works. We differentiate between reviewed and non-reviewed works when determining whether a work is original and has been published in a scholarly sense or not.
\n\nThe significance of Peer Review cannot be overstated when it comes to defining, in our terms, what constitutes a published scientific work. Peer Review is widely considered to be the cornerstone of modern publishing processes and the key value-adding contribution to a scholarly manuscript that a publisher can make.
\n\nOther than the issue of originality, research misconduct is another major issue that all publishers have to address. IntechOpen’s Retraction & Correction Policy and various publication ethics guidelines identify both redundant publication and (self)plagiarism to fall within the definition of research misconduct, thus constituting grounds for rejection or the issue of a Retraction if the work has already been published.
\n\nIn order to facilitate the tracking of a manuscript’s publishing history and its development from its earliest draft to the manuscript submitted, we encourage Authors to disclose any instances of a manuscript’s prior publication, whether it be through a conference presentation, a newspaper article, a working paper publicly available in a repository or a blog post.
\n\nA note to the Academic Editor containing detailed information about a submitted manuscript’s previous public availability is the preferred means of reporting prior publication. This helps us determine if there are any earlier versions of a manuscript that should be disclosed to our readers or if any of those earlier versions should be cited and listed in a manuscript’s references.
\n\nSome basic information about the editorial treatment of different varieties of prior publication is laid out below:
\n\n1. CONFERENCE PAPERS & PRESENTATIONS
\n\nGiven that conference papers and presentations generally pass through some sort of peer or editorial review, we consider them to be published in the accepted scholarly sense, particularly if they are published as a part of conference proceedings.
\n\nAll submitted manuscripts originating from a previously published conference paper must contain at least 50% of new original content to be accepted for review and considered for publication.
\n\nAuthors are required to report any links their manuscript might have with their earlier conference papers and presentations in a note to the Academic Editor, as well as in the manuscript itself. Additionally, Authors should obtain any necessary permissions from the publisher of their conference paper if copyright transfer occurred during the publishing process. Failure to do so may prevent Us from publishing an otherwise worthy work.
\n\n2. NEWSPAPER & MAGAZINE ARTICLES
\n\nNewspaper and magazine articles usually do not pass through any extensive peer or editorial review and we do not consider them to be published in the scholarly sense. Articles appearing in newspapers and magazines rarely possess the depth and structure characteristic of scholarly articles.
\n\nSubmitted manuscripts stemming from a previous newspaper or magazine article will be accepted for review and considered for publication. However, Authors are strongly advised to report any such publication in an accompanying note to the External Editor.
\n\nAs with the conference papers and presentations, Authors should obtain any necessary permissions from the newspaper or magazine that published the work, and indicate that they have done so in a note to the External Editor.
\n\n3. GREY LITERATURE
\n\nWhite papers, working papers, technical reports and all other forms of papers which fall within the scope of the ‘Luxembourg definition’ of grey literature do not pass through any extensive peer or editorial review and we do not consider them to be published in the scholarly sense.
\n\nAlthough such papers are regularly made publicly available via personal websites and institutional repositories, their general purpose is to gather comments and feedback from Authors’ colleagues in order to further improve a manuscript intended for future publication.
\n\nWhen submitting their work, Authors are required to disclose the existence of any publicly available earlier drafts in a note to the Academic Editor. In cases where earlier drafts of the submitted version of the manuscript are publicly available, any overlap between the versions will generally not be considered an instance of self-plagiarism.
\n\n4. SOCIAL MEDIA, BLOG & MESSAGE BOARD POSTINGS
\n\nWe feel that social media, blogs and message boards are generally used with the same intention as grey literature, to formulate ideas for a manuscript and gather early feedback from like-minded researchers in order to improve a particular piece of work before submitting it for publication. Therefore, we do not consider such internet postings to be publication in the scholarly sense.
\n\nNevertheless, Authors are encouraged to disclose the existence of any internet postings in which they outline and describe their research or posted passages of their manuscripts in a note to the Academic Editor. Please note that we will not strictly enforce this request in the same way that we would instructions we consider to be part of our conditions of acceptance for publication. We understand that it may be difficult to keep track of all one’s internet postings in which the researcher´s current work might be mentioned.
\n\nIn cases where there is any overlap between the Author´s submitted manuscript and related internet postings, we will generally not consider it to be an instance of self-plagiarism. This also holds true for any co-Author as well.
\n\nFor more information on this policy please contact permissions@intechopen.com.
\n\nPolicy last updated: 2017-03-20
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5698},{group:"region",caption:"Middle and South America",value:2,count:5172},{group:"region",caption:"Africa",value:3,count:1689},{group:"region",caption:"Asia",value:4,count:10243},{group:"region",caption:"Australia and Oceania",value:5,count:888},{group:"region",caption:"Europe",value:6,count:15647}],offset:12,limit:12,total:117315},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateendthirdsteppublish"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:18},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:11},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:62},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5141},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editedByType:"Edited by",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8063",title:"Food Security in Africa",subtitle:null,isOpenForSubmission:!1,hash:"8cbf3d662b104d19db2efc9d59249efc",slug:"food-security-in-africa",bookSignature:"Barakat Mahmoud",coverURL:"https://cdn.intechopen.com/books/images_new/8063.jpg",editedByType:"Edited by",editors:[{id:"92016",title:"Dr.",name:"Barakat",middleName:null,surname:"Mahmoud",slug:"barakat-mahmoud",fullName:"Barakat Mahmoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10118",title:"Plant Stress Physiology",subtitle:null,isOpenForSubmission:!1,hash:"c68b09d2d2634fc719ae3b9a64a27839",slug:"plant-stress-physiology",bookSignature:"Akbar Hossain",coverURL:"https://cdn.intechopen.com/books/images_new/10118.jpg",editedByType:"Edited by",editors:[{id:"280755",title:"Dr.",name:"Akbar",middleName:null,surname:"Hossain",slug:"akbar-hossain",fullName:"Akbar Hossain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editedByType:"Edited by",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editedByType:"Edited by",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"152",title:"Structural Biology",slug:"structural-biology",parent:{title:"Immunology and Microbiology",slug:"immunology-and-microbiology"},numberOfBooks:7,numberOfAuthorsAndEditors:174,numberOfWosCitations:33,numberOfCrossrefCitations:28,numberOfDimensionsCitations:67,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"structural-biology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9742",title:"Ubiquitin",subtitle:"Proteasome Pathway",isOpenForSubmission:!1,hash:"af6880d3a5571da1377ac8f6373b9e82",slug:"ubiquitin-proteasome-pathway",bookSignature:"Xianquan Zhan",coverURL:"https://cdn.intechopen.com/books/images_new/9742.jpg",editedByType:"Edited by",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9352",title:"Proteoforms",subtitle:"Concept and Applications in Medical Sciences",isOpenForSubmission:!1,hash:"0f0288da2d32c0c0fcda6be0d4d45d67",slug:"proteoforms-concept-and-applications-in-medical-sciences",bookSignature:"Xianquan Zhan",coverURL:"https://cdn.intechopen.com/books/images_new/9352.jpg",editedByType:"Edited by",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8301",title:"Ubiquitin Proteasome System",subtitle:"Current Insights into Mechanism Cellular Regulation and Disease",isOpenForSubmission:!1,hash:"ec9eada73dbddb8b41315a3b089302b4",slug:"ubiquitin-proteasome-system-current-insights-into-mechanism-cellular-regulation-and-disease",bookSignature:"Matthew Summers",coverURL:"https://cdn.intechopen.com/books/images_new/8301.jpg",editedByType:"Edited by",editors:[{id:"204371",title:"Associate Prof.",name:"Matthew",middleName:null,surname:"Summers",slug:"matthew-summers",fullName:"Matthew Summers"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5989",title:"Ubiquitination Governing DNA Repair",subtitle:"Implications in Health and Disease",isOpenForSubmission:!1,hash:"d9892e3c8d2c928119619d7425c9e371",slug:"ubiquitination-governing-dna-repair-implications-in-health-and-disease",bookSignature:"Effrossyni Boutou and Horst-Werner Stürzbecher",coverURL:"https://cdn.intechopen.com/books/images_new/5989.jpg",editedByType:"Edited by",editors:[{id:"58579",title:"Dr.",name:"Effrossyni",middleName:null,surname:"Boutou",slug:"effrossyni-boutou",fullName:"Effrossyni Boutou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6649",title:"Peripheral Membrane Proteins",subtitle:null,isOpenForSubmission:!1,hash:"dd98f01959b3ba6cc9483c03e75b9e0a",slug:"peripheral-membrane-proteins",bookSignature:"Shihori Tanabe",coverURL:"https://cdn.intechopen.com/books/images_new/6649.jpg",editedByType:"Edited by",editors:[{id:"48635",title:"Dr.",name:"Shihori",middleName:null,surname:"Tanabe",slug:"shihori-tanabe",fullName:"Shihori Tanabe"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6635",title:"Protein-Protein Interaction Assays",subtitle:null,isOpenForSubmission:!1,hash:"1bed553d74f0565c89758a7159647634",slug:"protein-protein-interaction-assays",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/6635.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman",slug:"mahmood-ur-rahman",fullName:"Mahmood-Ur- Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"780",title:"Proteomics",subtitle:"Human Diseases and Protein Functions",isOpenForSubmission:!1,hash:"a90c4e5b369d27036134a3c66ce1cb26",slug:"proteomics-human-diseases-and-protein-functions",bookSignature:"Tsz-Kwong Man and Ricardo J. Flores",coverURL:"https://cdn.intechopen.com/books/images_new/780.jpg",editedByType:"Edited by",editors:[{id:"35047",title:"Prof.",name:"Tsz Kwong",middleName:null,surname:"Man",slug:"tsz-kwong-man",fullName:"Tsz Kwong Man"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:7,mostCitedChapters:[{id:"28196",doi:"10.5772/31776",title:"Exploring the Role of Biomarkers for the Diagnosis and Management of Traumatic Brain Injury Patients",slug:"exploring-the-role-of-biomarkers-for-the-diagnosis-and-management-of-traumatic-brain-injury-patients",totalDownloads:2430,totalCrossrefCites:5,totalDimensionsCites:18,book:{slug:"proteomics-human-diseases-and-protein-functions",title:"Proteomics",fullTitle:"Proteomics - Human Diseases and Protein Functions"},signatures:"Linda Papa",authors:[{id:"88648",title:"Dr.",name:"Linda",middleName:null,surname:"Papa",slug:"linda-papa",fullName:"Linda Papa"}]},{id:"28199",doi:"10.5772/31082",title:"F0F1 ATP Synthase: A Fascinating Challenge for Proteomics",slug:"f0f1-atp-synthase-a-fascinating-challenge-for-proteomics",totalDownloads:4925,totalCrossrefCites:2,totalDimensionsCites:7,book:{slug:"proteomics-human-diseases-and-protein-functions",title:"Proteomics",fullTitle:"Proteomics - Human Diseases and Protein Functions"},signatures:"Federica Dabbeni-Sala, Amit Kumar Rai and Giovanna Lippe",authors:[{id:"85523",title:"Prof.",name:"Giovanna",middleName:null,surname:"Lippe",slug:"giovanna-lippe",fullName:"Giovanna Lippe"},{id:"149272",title:"Dr.",name:"Federica",middleName:null,surname:"Dabbeni-Sala",slug:"federica-dabbeni-sala",fullName:"Federica Dabbeni-Sala"},{id:"149273",title:"Dr.",name:"Amit",middleName:null,surname:"Kumar Rai",slug:"amit-kumar-rai",fullName:"Amit Kumar Rai"}]},{id:"66145",doi:"10.5772/intechopen.83426",title:"New Insights into the Mechanisms Underlying NEDD8 Structural and Functional Specificities",slug:"new-insights-into-the-mechanisms-underlying-nedd8-structural-and-functional-specificities",totalDownloads:410,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"ubiquitin-proteasome-system-current-insights-into-mechanism-cellular-regulation-and-disease",title:"Ubiquitin Proteasome System",fullTitle:"Ubiquitin Proteasome System - Current Insights into Mechanism Cellular Regulation and Disease"},signatures:"Elena Santonico",authors:[{id:"271923",title:"Dr.",name:"Elena",middleName:null,surname:"Santonico",slug:"elena-santonico",fullName:"Elena Santonico"}]}],mostDownloadedChaptersLast30Days:[{id:"65109",title:"Ubiquitin Signaling in Regulation of the Start of the Cell Cycle",slug:"ubiquitin-signaling-in-regulation-of-the-start-of-the-cell-cycle",totalDownloads:818,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"ubiquitin-proteasome-system-current-insights-into-mechanism-cellular-regulation-and-disease",title:"Ubiquitin Proteasome System",fullTitle:"Ubiquitin Proteasome System - Current Insights into Mechanism Cellular Regulation and Disease"},signatures:"Michael James Emanuele and Taylor Paige Enrico",authors:[{id:"264977",title:"Dr.",name:"Michael",middleName:null,surname:"Emanuele",slug:"michael-emanuele",fullName:"Michael Emanuele"},{id:"282200",title:"Ms.",name:"Taylor",middleName:null,surname:"Enrico",slug:"taylor-enrico",fullName:"Taylor Enrico"}]},{id:"65025",title:"E3 Ubiquitin Ligases in Cancer and Their Pharmacological Targeting",slug:"e3-ubiquitin-ligases-in-cancer-and-their-pharmacological-targeting",totalDownloads:981,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"ubiquitin-proteasome-system-current-insights-into-mechanism-cellular-regulation-and-disease",title:"Ubiquitin Proteasome System",fullTitle:"Ubiquitin Proteasome System - Current Insights into Mechanism Cellular Regulation and Disease"},signatures:"Joseph Y. Ong and Jorge Z. Torres",authors:[{id:"186645",title:"Dr.",name:"Jorge",middleName:null,surname:"Torres",slug:"jorge-torres",fullName:"Jorge Torres"},{id:"264944",title:"Mr.",name:"Joseph",middleName:null,surname:"Ong",slug:"joseph-ong",fullName:"Joseph Ong"}]},{id:"28201",title:"Identification of the Novel Plasminogen Receptor, Plg-RKT",slug:"identification-of-the-novel-plasminogen-receptor-plg-rkt",totalDownloads:1924,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"proteomics-human-diseases-and-protein-functions",title:"Proteomics",fullTitle:"Proteomics - Human Diseases and Protein Functions"},signatures:"Lindsey A. Miles, Nicholas M. Andronicos, Emily I. Chen, Nagyung Baik, Hongdong Bai, Caitlin M. Parmer, Shahrzad Lighvani, Samir Nangia, William B. Kiosses, Mark P. Kamps, John R. Yates III and Robert J. Parmer",authors:[{id:"85634",title:"Dr.",name:"Lindsey A.",middleName:null,surname:"Miles",slug:"lindsey-a.-miles",fullName:"Lindsey A. Miles"},{id:"85772",title:"Dr.",name:"Nicholas M.",middleName:null,surname:"Andronicos",slug:"nicholas-m.-andronicos",fullName:"Nicholas M. Andronicos"},{id:"85773",title:"Dr.",name:"Emily I.",middleName:null,surname:"Chen",slug:"emily-i.-chen",fullName:"Emily I. Chen"},{id:"85775",title:"MSc.",name:"Nagyung",middleName:null,surname:"Baik",slug:"nagyung-baik",fullName:"Nagyung Baik"},{id:"85776",title:"Dr.",name:"Hongdong",middleName:null,surname:"Bai",slug:"hongdong-bai",fullName:"Hongdong Bai"},{id:"85777",title:"Ms.",name:"Caitlin M.",middleName:null,surname:"Parmer",slug:"caitlin-m.-parmer",fullName:"Caitlin M. Parmer"},{id:"85778",title:"Dr.",name:"William B.",middleName:null,surname:"Kiosses",slug:"william-b.-kiosses",fullName:"William B. Kiosses"},{id:"85780",title:"Dr.",name:"John R.",middleName:null,surname:"Yates, III",slug:"john-r.-yates-iii",fullName:"John R. Yates, III"},{id:"85781",title:"Dr.",name:"Robert J.",middleName:null,surname:"Parmer",slug:"robert-j.-parmer",fullName:"Robert J. Parmer"},{id:"123594",title:"Dr.",name:"Samir",middleName:null,surname:"Nangia",slug:"samir-nangia",fullName:"Samir Nangia"},{id:"123595",title:"Dr.",name:"Shahrzad",middleName:null,surname:"Lighvani",slug:"shahrzad-lighvani",fullName:"Shahrzad Lighvani"}]},{id:"28197",title:"Comparative Proteomics: An Approach to Elucidating the Function of a Novel Gene Called BRE",slug:"comparative-proteomics-an-approach-to-elucidating-the-function-of-a-novel-gene-called-bre",totalDownloads:2721,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"proteomics-human-diseases-and-protein-functions",title:"Proteomics",fullTitle:"Proteomics - Human Diseases and Protein Functions"},signatures:"Kenneth Ka Ho Lee, Mei KuenTang, John Yeuk-Hon Chan, Yiu Loon Chui, Elve Chen, Yao Yao, Olivia Miu Yung Ngan and Henry Siu Sum Lee",authors:[{id:"78620",title:"Prof.",name:"Kenneth Ka Ho",middleName:null,surname:"Lee",slug:"kenneth-ka-ho-lee",fullName:"Kenneth Ka Ho Lee"},{id:"86004",title:"Dr.",name:"Mei Kuen",middleName:null,surname:"Tang",slug:"mei-kuen-tang",fullName:"Mei Kuen Tang"},{id:"86006",title:"Prof.",name:"John Yeuk-Hon",middleName:null,surname:"Chan",slug:"john-yeuk-hon-chan",fullName:"John Yeuk-Hon Chan"},{id:"86008",title:"Prof.",name:"Yiu Loon",middleName:null,surname:"Chui",slug:"yiu-loon-chui",fullName:"Yiu Loon Chui"},{id:"86009",title:"MSc.",name:"Yao",middleName:null,surname:"Yao",slug:"yao-yao",fullName:"Yao Yao"},{id:"87139",title:"MSc.",name:"Elve",middleName:null,surname:"Chen",slug:"elve-chen",fullName:"Elve Chen"},{id:"125793",title:"Ms.",name:"Olivia Miu Yung",middleName:null,surname:"Ngan",slug:"olivia-miu-yung-ngan",fullName:"Olivia Miu Yung Ngan"},{id:"127882",title:"Mr.",name:"Henry Siu Sum",middleName:null,surname:"Lee",slug:"henry-siu-sum-lee",fullName:"Henry Siu Sum Lee"}]},{id:"71497",title:"Branching and Mixing: New Signals of the Ubiquitin Signaling System",slug:"branching-and-mixing-new-signals-of-the-ubiquitin-signaling-system",totalDownloads:167,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"ubiquitin-proteasome-pathway",title:"Ubiquitin",fullTitle:"Ubiquitin - Proteasome Pathway"},signatures:"Daniel Perez-Hernandez, Marta L. Mendes and Gunnar Dittmar",authors:null},{id:"28199",title:"F0F1 ATP Synthase: A Fascinating Challenge for Proteomics",slug:"f0f1-atp-synthase-a-fascinating-challenge-for-proteomics",totalDownloads:4925,totalCrossrefCites:2,totalDimensionsCites:7,book:{slug:"proteomics-human-diseases-and-protein-functions",title:"Proteomics",fullTitle:"Proteomics - Human Diseases and Protein Functions"},signatures:"Federica Dabbeni-Sala, Amit Kumar Rai and Giovanna Lippe",authors:[{id:"85523",title:"Prof.",name:"Giovanna",middleName:null,surname:"Lippe",slug:"giovanna-lippe",fullName:"Giovanna Lippe"},{id:"149272",title:"Dr.",name:"Federica",middleName:null,surname:"Dabbeni-Sala",slug:"federica-dabbeni-sala",fullName:"Federica Dabbeni-Sala"},{id:"149273",title:"Dr.",name:"Amit",middleName:null,surname:"Kumar Rai",slug:"amit-kumar-rai",fullName:"Amit Kumar Rai"}]},{id:"28194",title:"Urinary Exosomes for Protein Biomarker Research",slug:"urinary-exosomes-for-protein-biomarker-research",totalDownloads:5224,totalCrossrefCites:0,totalDimensionsCites:4,book:{slug:"proteomics-human-diseases-and-protein-functions",title:"Proteomics",fullTitle:"Proteomics - Human Diseases and Protein Functions"},signatures:"Delfin Albert Amal Raj, Immacolata Fiume, Giovambattista Capasso and Gabriella Pocsfalvi",authors:[{id:"80823",title:"Dr.",name:"Gabriella",middleName:null,surname:"Pocsfalvi",slug:"gabriella-pocsfalvi",fullName:"Gabriella Pocsfalvi"},{id:"86316",title:"MSc.",name:"Delfin",middleName:null,surname:"Albert Amal Raj",slug:"delfin-albert-amal-raj",fullName:"Delfin Albert Amal Raj"},{id:"86317",title:"Mrs.",name:"Immacolata",middleName:null,surname:"Fiume",slug:"immacolata-fiume",fullName:"Immacolata Fiume"},{id:"86318",title:"Prof.",name:"Giovambattista",middleName:null,surname:"Capasso",slug:"giovambattista-capasso",fullName:"Giovambattista Capasso"}]},{id:"61472",title:"Introductory Chapter: Protein-Protein Interactions and Assays",slug:"introductory-chapter-protein-protein-interactions-and-assays",totalDownloads:1152,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"protein-protein-interaction-assays",title:"Protein-Protein Interaction Assays",fullTitle:"Protein-Protein Interaction Assays"},signatures:"Munazza Ijaz, Mahmood-ur-Rahman Ansari and Muhammad Iqbal",authors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman",slug:"mahmood-ur-rahman",fullName:"Mahmood-Ur- Rahman"},{id:"252871",title:"Ms.",name:"Munazza",middleName:null,surname:"Ijaz",slug:"munazza-ijaz",fullName:"Munazza Ijaz"},{id:"252872",title:"Dr.",name:"Muhammad",middleName:null,surname:"Iqbal",slug:"muhammad-iqbal",fullName:"Muhammad Iqbal"}]},{id:"28208",title:"Mitochondrial Proteomics: From Structure to Function",slug:"mitochondrial-proteomics-from-structure-to-function",totalDownloads:2689,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"proteomics-human-diseases-and-protein-functions",title:"Proteomics",fullTitle:"Proteomics - Human Diseases and Protein Functions"},signatures:"Bernardo A. Petriz, Jeeser A. Almeida, Mirna S. Freire, Luiz A. O. Rocha, Taia M. B. Rezende and Octavio L. Franco",authors:[{id:"79096",title:"Prof.",name:"Octavio",middleName:null,surname:"Franco",slug:"octavio-franco",fullName:"Octavio Franco"},{id:"85216",title:"Ms.",name:"Bernardo",middleName:null,surname:"Petriz",slug:"bernardo-petriz",fullName:"Bernardo Petriz"},{id:"85218",title:"Ms.",name:"Mirna",middleName:null,surname:"Freire",slug:"mirna-freire",fullName:"Mirna Freire"},{id:"85220",title:"Dr.",name:"Jeeser",middleName:null,surname:"Almeida",slug:"jeeser-almeida",fullName:"Jeeser Almeida"},{id:"85221",title:"Prof.",name:"Luiz",middleName:null,surname:"Rocha",slug:"luiz-rocha",fullName:"Luiz Rocha"},{id:"85577",title:"Dr.",name:"Taia",middleName:null,surname:"Rezende",slug:"taia-rezende",fullName:"Taia Rezende"}]},{id:"58366",title:"Ubiquitylation and SUMOylation: An Orchestrated Regulation During DNA Damage Repair",slug:"ubiquitylation-and-sumoylation-an-orchestrated-regulation-during-dna-damage-repair",totalDownloads:448,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"ubiquitination-governing-dna-repair-implications-in-health-and-disease",title:"Ubiquitination Governing DNA Repair",fullTitle:"Ubiquitination Governing DNA Repair - Implications in Health and Disease"},signatures:"Sara Espinoza-Corona, Ma Luisa Bazán-Tejeda, Ulises Omar García-\nLepe and Rosa Ma Bermúdez-Cruz",authors:[{id:"205238",title:"Dr.",name:"Rosa",middleName:null,surname:"Bermudez",slug:"rosa-bermudez",fullName:"Rosa Bermudez"},{id:"207883",title:"MSc.",name:"Sara",middleName:null,surname:"Espinoza-Corona",slug:"sara-espinoza-corona",fullName:"Sara Espinoza-Corona"},{id:"207884",title:"Dr.",name:"Maria Luisa",middleName:null,surname:"Bazan-Tejeda",slug:"maria-luisa-bazan-tejeda",fullName:"Maria Luisa Bazan-Tejeda"},{id:"207885",title:"BSc.",name:"Ulises Omar",middleName:null,surname:"Garcia-Lepe",slug:"ulises-omar-garcia-lepe",fullName:"Ulises Omar Garcia-Lepe"}]}],onlineFirstChaptersFilter:{topicSlug:"structural-biology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"book.detail",path:"/books/oral-health-by-using-probiotic-products",hash:"",query:{},params:{book:"oral-health-by-using-probiotic-products"},fullPath:"/books/oral-health-by-using-probiotic-products",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()