\r\n\t
",isbn:"978-1-83969-206-2",printIsbn:"978-1-83969-205-5",pdfIsbn:"978-1-83969-207-9",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"555c180ed3eefc77d38259cc57bd8dfe",bookSignature:"Dr. Svetlana P. Chapoval",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10324.jpg",keywords:"Th2 Response, Th2 Cytokines, Asthma Classification, Differences in Diagnostics, FDA-Approved Treatments, Occupational Asthma, Exercise-Provoked Asthma, Medication-Induced Asthma, Th2-Independent Asthma, Asthma and COPD, Future Perspectives, Asthma Research",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 26th 2020",dateEndSecondStepPublish:"December 22nd 2020",dateEndThirdStepPublish:"February 26th 2021",dateEndFourthStepPublish:"May 17th 2021",dateEndFifthStepPublish:"July 16th 2021",remainingDaysToSecondStep:"2 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Assistant Professor at the University of Maryland School of Medicine, well-recognized for her work on HLA Class II-restricted allergen T cell epitopes, VEGF-induced lung DC modifications, and her recent discoveries on neuroimmune semaphorins 4A and 4D contributions to allergic airway inflammation and to Treg cell phenotype and function. She has served and continues to serve as a reviewer for over 20 peer-reviewed scientific journals.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"70021",title:"Dr.",name:"Svetlana P.",middleName:null,surname:"Chapoval",slug:"svetlana-p.-chapoval",fullName:"Svetlana P. Chapoval",profilePictureURL:"https://mts.intechopen.com/storage/users/70021/images/system/70021.png",biography:"Dr. Svetlana Chapoval completed her medical training in 1985 at Russian State Medical University and PhD training in 1994 at Gamaleya Scientific Research Institute of Epidemiology and Microbiology. She then completed her postdoctoral fellowship in Immunology at Mayo Clinic in 2002. From 2002 to 2005 Dr. Chapoval was an Associate Research Scientists in the Department of Pulmonary and Critical Care Medicine at Yale University. She joined the Center for Vascular and Inflammatory Diseases and the Program in Oncology of the University of Maryland Marlene and Stewart Greenebaum Cancer Center at University of Maryland School of Medicine in 2006 as an Assistant Professor. Dr. Chapoval’s research is focused on cellular and molecular mechanisms of lung chronic inflammatory diseases, asthma in particular, and novel molecules for disease immunotherapy. She is well-recognized for her work on HLA Class II-restricted allergen T cell epitopes, VEGF-induced lung DC modifications, and her recent discoveries on neuroimmune semaphorins 4A and 4D contributions to allergic airway inflammation and to Treg cell phenotype and function. Dr. Chapoval has served and continue to serve as a reviewer for 20+ peer-reviewed scientific journals. In 2015, she completed a 4-year term as an Associate Editor for a renowned journal.",institutionString:"University of Maryland",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"University of Maryland, Baltimore",institutionURL:null,country:{name:"United States of America"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"280415",firstName:"Josip",lastName:"Knapic",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/280415/images/8050_n.jpg",email:"josip@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copy-editing and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"7248",title:"Dendritic Cells",subtitle:null,isOpenForSubmission:!1,hash:"ce3caba88847e8b12beb992e7a63e1dc",slug:"dendritic-cells",bookSignature:"Svetlana P. Chapoval",coverURL:"https://cdn.intechopen.com/books/images_new/7248.jpg",editedByType:"Edited by",editors:[{id:"70021",title:"Dr.",name:"Svetlana P.",surname:"Chapoval",slug:"svetlana-p.-chapoval",fullName:"Svetlana P. Chapoval"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"73031",title:"Introductory Chapter: Financial Crises",doi:"10.5772/intechopen.93415",slug:"introductory-chapter-financial-crises",body:'This book aims to present a collection of research papers which are related, in one way or another, to financial crises. The work contained herein ranges from topics such as the sources, origins and political and institutional dynamics of the global financial crisis we had during 2007/09 (GFC) to the liberalisation of economies, macroeconomic development, and the behaviour of interest and exchange rates during periods of political turmoil. Naturally, given its importance and far-reached economic, political and social effects across the globe, the majority of the chapters that will follow are related to the GFC. However, the timing of writing the introduction to this book is such that I strongly believe that the effects (and potential effects) on the financial system and banks of another crisis—a very different one—need to be addressed; I am referring of course to the ongoing economic crisis caused by the COVID-19 pandemic. As such, the prime aim of this chapter is to discuss the effects of this latter crisis on the global economy and the financial sector, in particular, and in doing so provide a ‘bridge’ between what is discussed in the chapters that follow and what is actually happening around us at this time.
The chapter unfolds as follows: Section 2 discusses the effect of the pandemic on the world economy and the financial system; Section 3 deals with the banking system; and Section 4 concludes.
There is little doubt that the COVID-19 pandemic has caused an extraordinary human and health crisis. The measures taken by governments all over the world necessary to contain the virus have resulted in an economic downturn whose severity and length are still quite uncertain. Initially, the pandemic was seen as a China/Asian regional shock; however, very quickly, it became apparent that the virus was ‘travelling’ quickly and that the shock would indeed be a global one. It is now clear that the last time the world economy suffered such a shock was after the demise of Lehman Brothers in September 2008. Under this ‘prism’, Baldwin and Tomiura [1] point out that the GFC could provide a broad perspective on the range of likely outcomes this time around; more specifically, the authors refer to what came to be known as the ‘great trade collapse’, which was the steepest fall in world trade since the Great Depression (see Figure 1).
Quarter-on-quarter growth, world imports volume, 1965–2019 Q3. Source: Baldwin and Tomiura, elaboration on WTO online data (www.WTO.org).
As far as global economic growth is concerned, recent IMF estimates [2] indicate a decline of 3% for 2020, which incidentally is worse than the one experienced during the GFC. At the same time, the timing and—importantly—the shape of a potential future recovery remain uncertain. Within this context, Mann [3] argues that this crisis will probably be a U-shaped one (rather than a V-shaped one), on the grounds of what happened as a result of other epidemics. Having said that, however, we need to stress out that, from an economic perspective (and not only), COVID-19 is different from other pandemics (Asian Flu, Hong-Kong Flu, Avian Flu, SARS, MERS, and Ebola Virus Disease), in the sense that they either ‘hit’ nations that were not so dominant economically or the number of registered cases was much smaller; we should not forget that the current pandemic has greatly affected the G7 plus China, among several other countries.
Given the above developments on world trade and economic growth, unavoidably the global financial system has also felt a dramatic impact with the asset prices falling sharply; actually, according to the IMF [2] (see Figure 2), several stock markets across the world experienced declines of 30% plus at the worst point of the sell-off (we should note that most of them have recovered since then). Moreover, worrying signs were also observed in important short-term funding markets, including that for US dollars, as well as other credit markets, with spreads rising substantially. The strain experienced by financial markets may also be seen through the volatility ‘lenses’, where spikes in volatility reached levels not seen since the GFC, reflecting the uncertainties caused by COVID-19 (see Figure 3).
Asset market performance as of April 9, 2020 (measured in percentage points and basis points). Source: IMF, global financial stability overview, April 2020.
Volatility indexes (measured in percentage points). Source: IMF, global financial stability overview, April 2020.
Within the above framework, and given the need to stabilise the global financial system so as to support the real economy, as is often the case, central banks had to take bold action. To do this, they had to re-activate ‘weapons’ used during the course of the GFC in order to contain the upward pressures on the cost of credit and make sure that firms and households would have access to credit (at a reasonable price); effectively, central banks stepped in as ‘buyers of the last resort’ of risky assets, such as bonds issued by firms, including high-yield ones. Moreover, central banks in advanced economies cut interest rates to historically low levels (see Figure 4) while substantial interest rate cuts were also observed in emerging markets. Finally, central banks have also provided liquidity to the financial system through Open Market Operations (OPM). These actions have certainly helped to ‘calm’ markets, some of which have substantially recovered lately; however, despite this, it should be noted that investor sentiment is still fragile.
Actual and expected policy rates. Source: IMF, global financial stability overview, April 2020.
Putting all the above together, the deterioration of the global economic outlook has dramatically changed the 1-year ahead projections of global economic growth; actually, according to the IMF [2], it has shifted it massively to the left (there is a 5% probability that it will fall below −7.4%; same as referring to an event that is expected to happen once every 20 years). It is quite possible that, as so often happens at times of financial crises, emerging markets are hit the hardest, since investors tend to withdraw their capital and look for so-called ‘safe-haven’ assets (Figure 5 below ‘speaks for itself’).
Cumulative non-resident portfolio flows to emerging markets (% of GDP). Source: IMF, global financial stability overview, April 2020.
From a historical point of view, some of the most striking examples of contagion in the financial sector have involved international banks; recall for example the GFC and the euro area crises, or the crisis in South East Asia in the late nineties, among many others1. According to Beck [5], this time banks are not likely to be a major ‘channel’ of transmission, due to the fact that adherence to stricter regulatory requirements in recent time has meant that their capital buffers are much stronger now, and the system—as a whole—is presumably safer. In particular, the author argues that in the case of European banks even under a scenario of an 8.3% decline in GDP over 3 years, banks would still be in good shape. Furthermore, the coordinated and substantial action by central banks in providing ample liquidity to banks in several countries has further ‘insulated’ the banking system, at least for now.
Nonetheless, others such as Cecchetti and Schoenholtz [6] appear to be more concerned in case there is a confidence crisis, which in turn might result in ‘bank runs’ that are, by definition, contagious; as the authors put it The news about a run on a specific bank alerts everyone to the fact that there may be other ‘lemons’ among the universe of banks, turning a run into a panic. As such, it is of paramount importance that people are well informed about the ‘linkage’ between the economic and the medical effects of the pandemic, so as not to over-react without reason; effectively, what we should be looking for are honest and transparent governments. Cochrane [7] ‘paints’ an even bleaker picture pointing out that ‘shutting the economy down’ could cause large financial problems related for example to companies that will have to continue paying their debts and bills and people that will have to pay rent or make mortgage payments; all this could lead to a wave of bankruptcies and insolvencies.
Eventually, how things will turn out for banks will depend, to a great extent, on how the situation evolves going forward; for example, if the global spread of COVID-19 requires imposing tougher containment measures, these are likely to lead to an even more severe economic downturn. Such a development would probably unveil crucial vulnerabilities of the financial system; for instance, investment managers are likely to face substantial capital outflows and thus will be forced to sell assets in falling markets thus accentuating the downward prices ‘spiral’. At the same time, companies are more likely to face distress, with default rates rising; recall for instance what happened to Flybe, the UK airline, which struggled to meet its obligations and went into administration in early March, 2020. Events like this are likely to harm credit markets, especially their riskier parts (e.g. non-investment grade bonds).
If such a scenario was to unfold, despite the fact that banks have more capital and liquidity than in the past, it is plausible that their resilience might eventually be tested. Declines in asset prices are likely to result in losses in the investment portfolios of banks (especially with respect to risky assets), while rising bond yields for highly indebted governments might just remind us of the sovereign-financial sector nexus, which provided so much pain in the course of the euro area crisis. In addition, the longer the pause in economic activity, the more likely it is that the banking sector will register credit losses on their lending portfolios to companies and households, especially the more vulnerable ones (e.g. think of energy companies and falling oil prices or a shutdown factory that nonetheless still has to pay its workers and debt). Finally, lower bank profitability would imply—by default—that banks will have less income (and potentially reserves) against which to write-off losses resulting from the above.
Actually, looking at the market reaction of bank stock prices during the unfolding of the pandemic, we observe large declines, which indicate investor concern regarding the prospects of the sector. Interestingly, Figure 6 seems to suggest that bank capitalisations fell more in 2020 than during the GFC in several parts of the world.
Decline in bank market capitalisation. Source: IMF, global financial stability overview, April 2020.
Given the above, financial regulators and supervisory authorities have taken some bold steps (in addition to those of central banks discussed in Section 2), which may be summarised as follows: (a) some countries have allowed banks to operate below their normal liquidity requirements and to utilise their capital conservation buffers2; (b) some countries have also adjusted (temporarily) their supervisory priorities and eased regulatory requirements (e.g. delay of stress-tests and flexibility in the treatment of non-performing loans); (c) restriction of bank dividend payouts. It is worth noting that similar measures have been taken to support other non-bank financial sector firms such as insurance companies and asset managers; for example, in the case of the latter, we have seen measures such as bans on short sales.
Last time around, in the course of the GFC, world leaders moved together to provide a common, coordinated response to the crisis; it was probably not perfect, but eventually it worked. Today, global leaders are facing a similar, if not greater and more complex, challenge, and their ‘measures’ will be assessed by their ability to deal with this global threat. Obviously, priority should be given to the public health aspects of the virus and in containing as much as possible the pandemic.
Regarding the financial system, it is quite possible that COVID-19 could have important repercussions for banks and other financial institutions. On a positive note, these repercussions do not seem likely to be imminent, as banks are stronger this time around. This means that adequate preparation by the regulatory authorities is possible, without of course any room for complacency, as markets can react quickly, unpredictably and in a contagious manner. Within this context, according to Beck [5], regulatory authorities should focus on (and prepare for) the following: (1) possible operational disruptions in the financial system, (2) strengthening confidence in financial markets by clearly signalling that they stand ready to intervene (they have shown this intention to a great extent so far), and (3) preparing for possible interventions in and resolution of failing banks.
Beyond any doubt, the aforementioned and in particular the role of central banks will be very crucial to maintain stability in global financial markets and make sure that credit flows to the real economy. But we need to remember that this crisis is not only about liquidity, it is also about solvency; after all, large segments of the economies of many countries have come to a standstill. As such, fiscal policy also has a vital role to play, where along with monetary and other policies; they should provide a ‘cushion’ against the impact of the pandemic, paving the way for an economic recovery later on.
To conclude then, there are currently several questions of economic nature that are seeking answers, for example, how far will the economic damage go? How bad will things eventually get? What will be the extent of economic contagion? And, importantly, what can policy-makers do to alleviate it? And will it work? Unfortunately, we do not have answers to these questions, only time accompanied by good research will provide them. For sure, however, the crisis caused by COVID-19 will rightfully take its own place in the long list of economic and financial crisis, some of which are discussed in this book, and is likely to make interesting reading for future market analysts and policy-makers.
Since the turn of the twentieth century, the air temperature has risen, expected to proceed to rise as a result of climatic variability. These rises in temperatures may trigger high-temperature stress (HTS): serious damage to plants [1, 2]. As a result, food and feed security have become a crucial challenge under current prevailing agro-climatic conditions [3, 4, 5]. Climate modeling has indicated that high temperature during the day and night is threatening global agriculture production system [6]. The result is that maize crop yield is reduced globally [7, 8]. Maize is one of the important crops being cultivated globally with a wide range of uses, and it is an important food crop in the world [9, 10, 11], it has been primarily aimed for increasing yield, quality, and stability under different environments [12, 13, 14, 15]. Maize is an important component of human food, animal feed, and biofuel industries [5]. It ranks top among cereal crops globally and becomes raw material of numerous food and feed industries. Among growth limiting factors, heat stress has a major effect on maize growth and nutrient composition at different developmental stages. Since several abiotic stresses occur simultaneously, such as drought stress and heat stress, the development of improved breeding procedures is essential for increasing the maize productivity and quality [16]. There is a crucial need for further research to develop maize genotypes tolerant to high temperature and drought stress.
Various physiological and biochemical processes govern plant growth and yield. Stomatal conductance, for example, regulates water loss as transpiration as well as an influx of CO2 for its fixation in the Calvin cycle. Several researchers had suggested that the stomatal conductance is an important indirect heat-tolerant selection criterion in crops [17]. Similarly, osmoprotectants and chaperone proteins got an important part in the adaptive reaction of maize to heat stress and combined stresses. Moreover, leaf senescence-related proteins enhance maize tolerance to combined heat and drought stress [18]. Introgression of these traits in locally acclimated maize hybrids through potential donor hybrids helps in developing maize hybrids tolerant to heat and drought stress. Moreover, identification of donor genotypes possessing favorable traits is important in heat stress breeding programs [19]. Therefore, the present review aimed to evaluate the updates on the effect of heat stress on different plant developmental stages, some physiological and biochemical traits, yield and yield traits of maize. Moreover, this review included updates on various strategies used to improve crop tolerance against heat stress including, conventional breeding strategies, management practices, shotgun approaches, and molecular biology-based strategies. Given the critical analysis of success and limitations for improving maize crop productivity under heat stress, future directions for research are also suggested.
Temperature above 350C for a prolonged period is considered unfavorable for crop growth and development and, particularly 400C during flowering and grain filling have severe negative impacts on grain yield [5]. Plants under heat stress exhibited significantly reduced stomatal conductance resulting in a reduced rate of photosynthesis. Excessive heat also causes a reduction in net photosynthesis, leaf area, reduced biomass accumulation and seed weight [20]. However, heat-tolerant maize varieties that produced the highest metabolites are not usually high yielding varieties. The heat-tolerant maize varieties are usually characterized by the reduced plant height, leaves plant−1, and leaf area index ultimately reduced the yield. Therefore, several factors should be put into consideration when selecting for heat tolerance in maize. At the cellular level, HTS triggers the appearance of certain genes and increases the accumulation of certain metabolites that may enhance the heat enduring ability of plants [21]. Generally, remarkable genotypic variations in the stomatal conductance were observed [22, 23]. Stomatal conductance, which is a key trait of the photosynthetic leaf, was significantly influenced by abiotic stresses [24]. Delay canopy senescence due to various light interceptions by green leaf area has been reported to be necessary for high productivity of hybrid maize under normal watering and drought stress [16]. The impinging of high-intensity light to plants can lead to permanent damage to membrane structure [20]. The cell membrane is considered the first physiologically sensitive structure to the high temperature and becomes functionally inactive at heat stress [25]. Membrane function and cell wall stretch have inverse relation [26, 27]. Continuous damage in the biological membrane may downregulate the mobility of water, ions, and soluble organic solid molecules within plant cell membranes; hence carbon of production, transport, and accumulation may be affected by these factors. Membrane stability could be used as an assessment of high-temperature tolerance of plants. It is the most appropriate and convenient test; leakages of electrolytes at a high temperature can be measured by this test [28].
Soil plant analyses development (SPAD) value and grain yield have a significant relationship after anthesis, but no positive association has been noticed during the middle and later grain-filling stages [29, 30]. During HTS, the chlorophyll biosynthesis gene gets downregulated [31]. Experimental observation has suggested that the differences among net photosynthetic ratio after exposure to high temperatures were related to the conversion of the chlorophyll “a” into chlorophyll b ratio; due to low chlorophyll “a” and rapid leaf senescence, the photosynthetic rate is negatively affected [32]. HTS induces several metabolic events at the cellular and subcellular levels. The heat stress influences the production of ROS and oxidative stress as well [33, 34, 35]. The antioxidative defense system includes both enzymatic and nonenzymatic antioxidants that are shown to participate in response to the development of oxidative stress influenced by heat stress [21].
Scientists showed that rather extreme heat intensity could cause serious tissue damage as well as mortality may arise in a matter of minutes and could ultimately be due to a massive collapse of cell organization [36]. Damages can occur just after deep-term exposures at moderate to maximum heat stress. Informal and gradual damages caused by high temperatures include chlorophyll and mitochondrial destruction of enzymatic activity, protein catabolism impairment, protein deterioration, and cell turgidity looseness [37]. As can be seen in studies, with either the introduction of heat-shocked proteins, plants and animals react to high-temperature pressure [38, 39]. These are intended to avoid species from the harmful impacts of heat stress as well as other sources of pressure [40]. A simple reaction to high-temperature stress is a reduction in regular cellular metabolism. This drop is especially marked at 45°C. The fall in the natural production of protein also goes hand in hand with increased expression and transcription of a fresh set of molecules identified as heat-shock proteins (HSPs) [41]. Previous studies demonstrated that in Zea mays, high-temperature stress reduced the protein production and changes the chemical structure of these proteins [42]. Heat stress at the reproduction phase negatively affects the physiology of plants like flower initiation, source-sink relationship, and falling of pods, which ultimately decreases the number of seeds [43]. High-temperature stress is most crucial for the physiological traits of crop plants. High temperature reduced the number of ears, number of kernels, chlorophyll efficiency, firing of leaf, and blasting of the tassel [44]. Climatic stress like high-temperature stress severely reduces the growth and yield of several crops belongs to Leguminosae (Fabaceae). Heat stress severely reduced the physiological growth development and production of Vigna radiata. Heat stress reduced dry matter production and other yield attributes [45].
HTS hampers the plant growth; particularly germination and seedling emergence are more sensitive [46]. Stressful environment severely reduces the germination and early seedling growth in several crop plants [47, 48]. However, seeds of sensitive crops exposed to 24 and 48 h moderate heat stress exhibited a higher germination rate. Such an increase in seed germination rate due to short-term exposure to moderate heat stress was attributed to the altered expression of gibberellin and abscisic acid biosynthesis genes [49]. The seedling stage is generally considered as the most sensitive stage to stress in maize development [50]. However, the detrimental impact of water deficit stress on the initial phase of growth and seedling establishment of maize plants cannot be underestimated [51, 52, 53].
The appropriate sowing date is important for seed germination and seedling establishment to physiological maturity. The heat-tolerant maize varieties germinated earlier than the non-drought tolerant maize varieties under the critical level of watering. During germination, HTS is associated with an impaired emergency, and a reduced plant stand and plant density [54]. Biochemical components such as soluble sugar and proline increased with increased stress, while starch content and relative water content reduced with increased water deficit [55]. Fluctuations in mean daily temperature (either it is maximum or minimum) disturb seed germination ability [56]. High-temperature stress is the main cause of the reduction in plant yield due to poor germination. [57, 58] studied the impact of high temperature on various developmental phases, especially at seedling emergence in various crop genotypes. Critical periods of stress in maize include seedling establishment stages, rapid growth period, pollination and grain-filling stage. It is proven that in the maize plant with the implementation of stress, not only the leaf area is reduced, but also its growth rate is affected and the appearance of each leaf is delayed [59].
HTS at the grain-filling stage in spring maize is the main obstacle [60]. Temperature beyond 40°C, mainly during flowering and grain filling has a severe impact on plant grain productivity [5]. Grain filling is highly sensitive to drought and heat, due to the involvement of the array of diverse enzymes and transporters, located in the leaves and seeds [45]. During HTS, the stability of the thylakoid membrane structure is reduced, resulting in degrading chlorophyll, which reduces light energy absorption, transfer, and photosynthetic carbon assimilation, and ultimately photosynthesis is reduced. Inhibited photosynthesis decreases the supply of photosynthates to the grain, leading to a serious reduction of kernel weight and grain yield [60, 61, 62]. Delay in the development of reproductive organs might be the result of the reduced cell division and cell elongation processes due to reduced supply of photosynthates and carbohydrate metabolism during the active vegetative growth stages [63].
A projection based on the increased daily maximum temperatures concluded that to increase the maize yields by 12% for the period 2016–2035, improved technologies would be needed [64]. Maize plant can face moderate to high temperature, but temperature above 35°C for a long duration is considered unfavorable for crop growth and development, and temperature beyond 40°C, mainly during flowering and grain filling will have a severe impact on plant grain productivity [5]. Meanwhile, early season temperature increases have induced the maize reproductive period to start earlier, developing the risk of water and heat stress. Declines in time to maturation of maize shown of independence of effects to availability of water, the potential of yield which becoming increasingly limited by warming itself [65]. Irrigation regimes were the major determinant of grain yield during the grain-filling stage in maize while significant differences in the number of kernels per row were obtained among irrigation regimes [66]. A large difference in grain yield is caused due to HTS, which is shown in Figure 1. Tissue injuries inversely influence the photosynthetic rate during heat stress, which can cause leaf damaging and increase the rate of leaf senescence that largely results in decreasing photosynthetic efficiency [44]. Reduced chlorophyll content, including grain yields and oxidative damages, possibly had a direct correlation under heat stress [5, 67]. Previous research studies indicate that high temperature has a severe effect on the cob growth rate as well as biomass partitioning [68]. Many factors including duration of pollen viability, increased kernel abortion rate, lower the rate of cell division in storage tissue (endosperm), decrease in starch synthesis, downregulate the sink capacity of developing kernel, increased rate of sugar accumulation, kernel development, and less/higher enzyme activities could be responsible for the reduction in kernel per row under heat stress [44, 67]. Stress environment leads to a severe reduction in yield of crop plants probably by disrupting leaf gas exchange properties, which not only limit the size of the source and sink tissues, but the phloem loading, assimilate translocation, and dry matter partitioning are also impaired [46]. Unsuccessful fertilization reduces the seed size and increases flower abortion rate owing to high temperature and it has negative effects on plant reproductive phase [69, 70]. Temperature range 0–35oC, is considered suitable for leaf growth, the temperature range 35–40oC has an inverse relation with leaf growth. Temperature beyond 35-40oC is responsible for lower net photosynthetic rate, which further leads to protein aggregation, enzyme inactivation, inhibition of protein synthesis leading to the degradation of protein synthesis [69, 71]. Eventually, an increase in temperature beyond its critical value leads to generating a heat stress that harms the morphological growth, grain yield, and yield-related attributes of two maize cultivars “Xida 319” and “Xida 889” [72].
Differences in total leaf collars, cumulative leaf area, and grain yield of three corn hybrids grown under normal Ames, Iowa temperatures and normal +4°C temperatures.
Temperatures higher than 35°C negatively affect maize grain quality. Grain quality, which is governed by factors including the duration and rate of grain filling and the availability of assimilates, is negatively influenced under water deficit conditions. Similar negative effects of stress were reported on the grain weight of wheat [15, 73, 74, 75]. Variations in flour quality in a hard-grained crop could be related to changes in protein composition due to heat stress during the grain-filling stage [76]. As per the findings of Mousavi et al. [77], heat stress at the flowering stage greatly reduced the starch content due to the reduction in the photosynthetic activities leading to an increase in the grain protein ratio. Usually, maize quality properties are affected by genotypes, environmental factors, and their interactions (Figure 2). Therefore, growth and development of maize are dramatically affected by heat stress leading to reduced grain weight with low starch, crude oil, and protein contents [30]. Grain filling is the most environmentally sensitive phase in maize, which strongly affects grain development quantitatively and qualitatively [7, 15]. Oury and Godin [78] reported a negative correlation between protein contents and grain weight in maize under stress conditions. Association analysis revealed that cob length, thousand-grain weight, and protein contents had a significant relationship with grain yield of maize [79].
Quality of maize is influenced by genotype, environment, and their interaction.
In the previous study, the starch content in waxy maize grain was decreased, whereas protein content was increased, resulting in the change of grain quality [80]. However, the activities of enzymes involved in the synthesis of starch and protein are still lacking [81]. The qualitative and quantitative characteristics of grain productivity are mainly influenced by the environmental fluctuation and these changes inversely influence the development and maturing of seed that affect the seed-filling process and deposition of reserves [80]. Generally, high impinging of light affects negatively in plant productivity by causing premature senescence, decreased seed-filling duration, and enhancing remobilization of photosynthates from source to sink [82]. These factors combined, mainly lowers plant biomass and productivity, and finally lowers the assimilate production and mobilization of the reserve to different developing crops [83]. Generally, it is predicted that gene controlling cell division gets downregulated due to water stress, which could be responsible for the decreased cell number in cotyledons along with endosperm. However, further research is required to find out the actual mechanisms controlling these events. Probably due to low enzyme efficiency or high km carbohydrate gene gets downregulated in developing seedling, resulting in limited availability of sucrose, finally producing reduced seed size [45]. The time of seed filling reduced in pea, soybean, and white lupin, resulting in smaller grains [84]. Heat stress during grain filling markedly decreased starch accumulation in wheat [85] and rice [86].
High-temperature stress decreases the protein concentration in the wheat seeds during seed formation stage [76]. Carbon and nitrogen transmission in the seed is improved with the maximum temperature but C transfer is reduced by the daily temperature fluctuations [87]. Temperature variability effects are more visible on the size of seed than seed N contents [87]. Size of seed and protein concentration in the seed are inversely proportional to each other [88]. High-temperature stress reduces seed production, which ultimately declines the seed protein contents [89]. Protein accumulation in the seeds depends upon high-temperature stress [89]. When high-temperature stress occurs at the seed-filling stage it declines the seed protein contents [89]. When wheat crops are exposed to the high-temperature, glutenin protein production is decreased while gliadins protein production remains stable [90]. Seed protein contents of various crops are decreased after imposing the high-temperature stress, but various amino acid concentrations become low [91]. Heat stress damaged the protective layer of seed and food storage tissues of seed, which is why the quality of seed was deteriorated (Figure 3).
Quality of maize is deteriorated due to heat stress.
Enhancement of the antioxidant defense system is an important strategy to scavenge ROS by antioxidant enzymes [92]. Similar to antioxidant defense, phytohormones such as auxin (indole acetic acid, IAA), cytokinins (CKs), abscisic acid (ABA), ethylene (ET), gibberellins (GAs), salicylic acid (SA), brassinosteroids (BRs), and jasmonates (JAs) have key roles in coordinating various signal transduction pathways during the abiotic-stress response [93]. Many studies have shown that altering cultural practices, such as planting rate [94], planting date [95, 96], the phenological variation of crop cultivars [60, 95] soil management [97], nutrient management [60], and irrigation [60] can positively or negatively modify maize yield response to climate change.
Advancing or delaying the sowing date may be a potent, farmer-friendly and biologically viable strategy to avoid HTS. Earlier findings reported that earlier sowing dates and longer season varieties have overcome the negative effects of climate warming on spring maize yield [95]. Similarly, other findings reported by [98] showed that by changing sowing date from late April to late May, the mean daily temperature decreased 1.7 and 4.3°C whereas the diurnal temperature increased 4.3 and 3.1°C during grain-filling middle stage (16-45 days after silking) and grain-filling late stage (45 days after silking to maturity), respectively.
High air temperatures during the crop growing season can reduce harvestable yields. However, crop varieties with improved heat tolerance traits as well as crop management strategies at the farm scale are thus needed for climate change mitigation. Therefore, to mitigate the negative impact of increased growing season temperatures on crop growth and yield, especially in low latitude regions, heat-tolerant crop varieties, as well as modified farm management practices are needed, especially in the areas when irrigation is needed for crop production and irrigation water depends on the underground aquifers [99]. They also observed that applied irrigation at nighttime through subsurface drip reduced the root-zone soil temperature, which helped plant for improving plant growth and yield of corn. Optimizing irrigation has the potential to improve the water use efficiency of maize leading to enhanced heat tolerance [60]. Soil drought stress and atmospheric high temperature in the vegetative growth period could delay the process of growth of spring maize and shorten the reproductive stage, but those get improved when the soil moisture content in the maize field is maintained 65% field capacity by drip irrigation [100].
Plant growth hormones and exogenous chemicals (e.g., ABA and CaCl2) play important roles in strengthening heat tolerance in maize under HTS [60]. Exogenous ABA induces maize to produce HSPs, strengthening PSII heat tolerance [101]. An exogenous CaCl2 increases the maize cell membrane antioxidant capacity to improve heat tolerance [102]. Phytohormones such as auxin (IAA), cytokinins (CKs), abscisic acid (ABA), ethylene (ET), gibberellins (GAs), salicylic acid (SA), brassinosteroids (BRs), and jasmonates (JAs) have key roles in coordinating various signal transduction pathways during the abiotic-stress response [93].
Auxin or indole-3-acetic acid (Aux/IAA) acts as a chemical messenger to communicate cell activities when crops face different environmental stresses, including salinity, drought, waterlogging, extreme temperatures (heat, chilling, and freezing), heavy metals, light (intense and weak), and radiation (UV-A/B) [92, 103, 104]. Cytokinin (CK) is one of them, which functions solely and or with other hormones to mediate different mechanisms within plants in response to environmental fluctuations. During heat stress, protein denaturation and metabolic imbalance are occurred due to the excessive production of ROS. While to survive against heat stress, plants stimulate heat-shock proteins as a protective measure to prevent protein denaturation [105]. For example, the upregulation of heat-shock proteins in tobacco and bentgrass was recorded due to the enhancement of the antioxidant activity as a result of higher CK in plant cells [106]. Besides this, external application of CK inhibits the damage in photosynthesis under heat stress in maize, rice, and passion fruit [107, 108]. Salicylic acid (SA) is a naturally occurring phenolic compound [109] which plays a crucial part in the regulation of growth and development of the plants, and also a defensive mechanism to survive against abiotic stresses [110]. Similar to SA, abscisic acid (ABA) plays a vital role in plants’ physiological adjustments such as against abiotic stresses [111, 112] along with increasing seedling growth, endogenous levels of ABA, and reduced oxidative damage to plants due to heat stress. Similarly, Hasanuzzaman et al. [21] observed that ABA is a signaling molecule and also enhance the number of other signaling molecules such as nitric oxide for thermos-tolerance. Similar to other phytohormones, gibberellic acid (GAs) also interacts with other phytohormones in numerous developmental and stimulus-response processes in plants. GAs have been reported to alleviate the adverse effects of abiotic stress in plants, including rice as reported by Yamaguchi [113]. Brassinosteroids (BRs) is a new group of phytohormones, present in almost every part of the plants [114]. Similar to other phytohormones, BRs have shown tremendous potential against the abiotic stress-induced oxidative stress [103] including high temperature [115].
Inadequate and imbalanced nutrients and impaired soil fertility are associated with mineral-nutrient deficiencies and toxicities [116, 117, 118]. Adequate nutrition is essential for the integrity of plant structure and key physiological processes. For example, nitrogen (N) and magnesium are a structural part of chlorophyll and these are needed for photosynthesis. Nitrogen plays a very crucial role in temperature stress tolerance. At higher temperatures, the intensity of light is also very high. So, high light intensity, as a function of high temperature, which affects the uptake of mineral nutrients, ultimately influences the plant growth negatively. Since N plays a major role in the utilization of absorbed light energy and photosynthetic carbon metabolism [119, 120]. Whereas phosphorus is needed for energy production and storage; it is a structural part of nucleic acids and potassium is needed for osmotic regulation and activation of enzymes [117, 118]. Maize physiological function decreases under abiotic stress but can be compensated by nutritional management, for example, adequate potassium fertilizer improves cell membrane stability, turgor pressure, water potential in maize under water-deficit conditions [60]. Thus, a strategy to improve heat tolerance in maize at the grain-filling stage is to regulate nutrition.
Selection criteria have been proposed in traditional breeding to facilitate the detection of heat-tolerant maize variety. As different varieties respond differently to HTS, breeding heat-tolerant varieties is an effective strategy to improve heat tolerance at the spring maize grain-filling stage [60]. Screening of various cultivars was done to screen the warmness of the plant canopy, stomata behavior of upper most leaf (flag leaf), and photosynthesizing efficiency that are closely related to each other for the production maximum grain production under high-temperature stress conditions [121, 122, 123].
Under HT conditions, plants exhibit various mechanisms for surviving, which include long-term evolutionary phenological and morphological adaptations and short-term avoidance or acclimation mechanisms such as changing the leaf orientation, transpirational cooling, or alteration of membrane lipid compositions [92]. Also, high-temperature stress can be avoided by crop management practices such as selecting proper sowing methods, choice of sowing date, cultivars, irrigation methods, etc. It was discussed that combined hotter and drier climate change scenarios cause a greater maize yield reduction than hotter only scenarios. The incorporating drought and heat tolerance into maize germplasm has the potential to offset predicted yield losses and sustain maize productivity under climate change [19].
Tao and Zhao [60] reported that superoxide dismutase (SOD) increased and malonic dialdehyde (MDA) decreased in maize ear leaf for enhancing the stability of cell membrane, which helps to improve photosynthesis for good grain-filling characteristics (long quickly increase period and high mean rate of grain filling). It also produced high kernel weight under HTS [124, 125] leading to reporting of new origins of genetic engineering which exhibited leakage of electrolytes and MSI are the two basic parameters to screen the temperature stress-tolerant cultivars of various crops [126]. Electrical ions were gathered from the affected plants and were washed out with pure water to measure the membrane stability index MSI [127]. Seed production ability and stability index of the membrane were closely related to each other [3]. Mitochondrial tetrazolium is a very useful indicator of HTS sensitivity. Leaves’ tissues were dipped in triphenyl tetrazolium chloride chemical mixture during HTS. The spectrographic technique was used to quantify the related rates of triphenyl tetrazolium chloride reduction to formazan and tissues viability [128]. Heat tolerance (HT) of the crop is generally defined as the ability of the plant to grow and produce an economic yield under HS. This is a highly specific trait, and closely related to the species, even different organs and tissues of the same plant, may vary significantly in this respect. Plants have evolved various mechanisms for thriving under higher prevailing temperatures. They include short-term avoidance/acclimation mechanism or long-term evolutionary adaptations [92]. Many alternative traits related to heat resistance in Zea mays have been identified, including leaf kinetics, net photosynthesis rate (Pn), leaf anatomy at seedling stage [129] anther emergence [130], pollen grain viability [131], etc. However, the utility of those traits in stress breeding is not well established to date. Furthermore, most of the research focused on the heat stress on temperate maize, whereas only limited information is available on tropical maize [42].
One of the ways to deal with the adverse effects of heat stress may involve exploring some molecules that have the potential to protect the plants from the harmful effects of HT. In recent decades, exogenous application of protectants such as osmoprotectants, phytohormones, signaling molecules, trace elements, etc., have shown a beneficial effect on plants grown under HTS and these protectants have growth-promoting and antioxidant capacity [21, 92]. Exogenous applications of several phytohormones were found to be effective in mitigating heat stress in plants. Accumulation of osmolytes such as proline (Pro), glycine betaine (GB), and trehalose (Tre) is a well-known adaptive mechanism in plants against abiotic stress conditions including HT [92]. Supplementation with Pro and GB considerably reduced the H2O2 production, improved the accumulation of soluble sugars, and protected the developing tissues from heat stress effects. At the field level, managing or manipulating cultural practices, such as the timing and methods for sowing, irrigation management, and selection of cultivars and species, can also considerably decrease the adverse effects of HT stress. In recent decades, exogenous applications of protectants such as osmoprotectants, phytohormones, signaling molecules, trace elements, etc., have shown beneficial effects on plants growing under HT, due to the growth-promoting and antioxidant activities of these compounds [21, 92].
The genetic analytical study depends upon the genetic markers. Information about genetic reproduction aids to identify potential gene markers [132]. To mitigate the harmful effects of high-temperature several gene markers like a random polymorphic amplifier, AFLP (amplifier fragmentation length polymorphism), as well as sequenced simple repeats SSR, were used to increase the crop production under heat-stress [133, 134]. During genetic breeding, the SNP marker was used because of its genetic sequence in legumes to identify resistant genotypes against heat stress [135]. QTL chromosome numbers and their origin were very useful to mitigate the effects of heat stress [132]. Different molecular markers are studied in population genomics across the environment in many individuals to find out novel variation patterns and help to find if the genes have functions in significant ecological traits. Genome-wide association study (GWAS) is a powerful tool for understanding the complete set of genetic variants in different crop cultivars to recognize allelic variant linked with any specific [136]. GWASs generally highlight linkage among SNPs single nucleotide polymorphism marker and traits and based on GWAS design, genotyping tools, statistical models for examination, and results in interpretation [137].
Heat stress disturbed the crop metabolic activities by changing tissue balance. Heat stress directly produced toxic substances in plant tissues call ROS due to which plant suffers from oxidative stress. Moreover, to reduce oxidative damage resulting from heat-induced oxidative stress, plants have developed different adaptive mechanisms, via the biosynthesis of enzymatic and non-enzymatic antioxidants and the sequestering of other materials in crop tissues. Enhancement of antioxidant defense system is an important strategy to scavenge ROS by antioxidant enzymes such as ascorbate peroxidase (APX), ascorbate reductase (AR), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPX), and superoxide dismutase (SOD) and with non-enzymatic antioxidants such as ascorbate (AsA), glutathione (GSH), carotenoids, flavanones, and anthocyanins [92]. Furthermore, adaptation to temperature changes, at the molecular level, was accompanied by the degradation of the normal proteins and the synthesis of HSPs involved in the mechanism of defense in plants. Seed germination is the most critical growth stage of the whole plant life cycle because it is the first step to carry out whole-plant growth and development, but heat stress is the main reducing factor of seedling emergence in semiarid areas [138, 139].
Heat stress and unprecedented climate changes have become a major challenge for sustainable crop production globally. Plant growth, development, and productivity get compromised due to heat stress. Elucidating maize hybrid for temperature tolerance could be an indispensable step toward a balanced yield. Tolerance and avoidance of stress could be an easy way to boost crop production under a changing climate; for example photosynthetic rate can be improved by targeting candidate traits and candidate genes involved in photosynthesis at a molecular level. It could lead to high assimilates production, more transportation of sugar to grain; finally, it decreases grain-filling rate, improves kernel size, and could be very useful to improve plant productivity. Heat-insensitive maize hybrids can be developed by gene editing CRISPER-CAS9 system through targeting a gene that is responsible for heat sensitivity. The base of further research should be focused on spring maize crops. Field experiments regarding the sowing date are essential by analyzing the impact of meteorological factors on maize growth and grain yield. Application of osmoprotectants, nanotechnology, and the use of sustainable agriculture agents have become necessary for further research. Further, interdisciplinary studies that include agronomy, animal sciences, and climate modeling are warranted to assess the impact of the feeding of both the HTS-tolerant maize varieties and those grown under heat stress on animal health and production. This review could encourage such interdisciplinary approaches to develop maize hybrids with high nutritional values and are not prone to drastic yield reductions owing to fluctuations in agro-climatic factors (especially temperature) and the outcome may lead to sustainable maize production in the tropics under changing climate.
The authors declare no conflicts of interest.
We hereby declare that the book chapter does not have any material which has been accepted to publish any journal or publisher, and also has no copy of any material in previously published, except where due permission and reference is made in the text.
IntechOpen books are indexed by the following abstracting and indexing services:
",metaTitle:"Indexing and Abstracting",metaDescription:"IntechOpen was built by scientists, for scientists. We understand the community we serve, but to bring an even better service to the table for IntechOpen Authors and Academic Editors, we partnered with the leading companies and associations in the industry and beyond.",metaKeywords:null,canonicalURL:"/page/indexing-and-abstracting",contentRaw:'[{"type":"htmlEditorComponent","content":"Clarivate Web Of Science - Book Citation Index
\\n\\nCroatian Library (digital NSK)
\\n\\nOCLC (Online Computer Library Center) - WorldCat® Digital Collection Gateway
\\n\\n\\n\\n
\\n"}]'},components:[{type:"htmlEditorComponent",content:'
Clarivate Web Of Science - Book Citation Index
\n\nCroatian Library (digital NSK)
\n\nOCLC (Online Computer Library Center) - WorldCat® Digital Collection Gateway
\n\n\n\n
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5227},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10367},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15790}],offset:12,limit:12,total:118189},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"6"},books:[{type:"book",id:"8977",title:"Protein Kinase - New Opportunities, Challenges and Future Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"6d200cc031706a565b554fdb1c478901",slug:null,bookSignature:"Dr. Rajesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",editedByType:null,editors:[{id:"329385",title:"Dr.",name:"Rajesh",surname:"Singh",slug:"rajesh-singh",fullName:"Rajesh Singh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9659",title:"Fibroblasts - Advances in Cancer, Autoimmunity and Inflammation",subtitle:null,isOpenForSubmission:!0,hash:"926fa6446f6befbd363fc74971a56de2",slug:null,bookSignature:"Ph.D. Mojca Frank Bertoncelj and Ms. Katja Lakota",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",editedByType:null,editors:[{id:"328755",title:"Ph.D.",name:"Mojca",surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10797",title:"Cell Culture",subtitle:null,isOpenForSubmission:!0,hash:"2c628f4757f9639a4450728d839a7842",slug:null,bookSignature:"Prof. Xianquan Zhan",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",editedByType:null,editors:[{id:"223233",title:"Prof.",name:"Xianquan",surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10800",title:"Ligase",subtitle:null,isOpenForSubmission:!0,hash:"1f10ff112edb1fec24379dac85ef3b5b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10800.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10801",title:"Uric Acid",subtitle:null,isOpenForSubmission:!0,hash:"d947ab87019e69ab11aa597edbacc018",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10837",title:"Peroxisomes",subtitle:null,isOpenForSubmission:!0,hash:"0014b09d4b35bb4d7f52ca0b3641cda1",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10838",title:"Ion Channels",subtitle:null,isOpenForSubmission:!0,hash:"048017b227b3bdfd0d33a49bac63c915",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10840",title:"Benzimidazole",subtitle:null,isOpenForSubmission:!0,hash:"9fe810233f92a9c454c624aec634316f",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,isOpenForSubmission:!0,hash:"64617cf21bf1e47170bb2bcf31b1fc37",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:14},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:3},{group:"topic",caption:"Business, Management and Economics",value:7,count:1},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:2},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Social Sciences",value:23,count:2},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:9},popularBooks:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9668",title:"Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging",subtitle:null,isOpenForSubmission:!1,hash:"c5484276a314628acf21ec1bdc3a86b9",slug:"chemistry-and-biochemistry-of-winemaking-wine-stabilization-and-aging",bookSignature:"Fernanda Cosme, Fernando M. Nunes and Luís Filipe-Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/9668.jpg",editors:[{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9660",title:"Inland Waters",subtitle:"Dynamics and Ecology",isOpenForSubmission:!1,hash:"975c26819ceb11a926793bc2adc62bd6",slug:"inland-waters-dynamics-and-ecology",bookSignature:"Adam Devlin, Jiayi Pan and Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/9660.jpg",editors:[{id:"280757",title:"Dr.",name:"Adam",middleName:"Thomas",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9122",title:"Cosmetic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"207026ca4a4125e17038e770d00ee152",slug:"cosmetic-surgery",bookSignature:"Yueh-Bih Tang",coverURL:"https://cdn.intechopen.com/books/images_new/9122.jpg",editors:[{id:"202122",title:"Prof.",name:"Yueh-Bih",middleName:null,surname:"Tang",slug:"yueh-bih-tang",fullName:"Yueh-Bih Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9043",title:"Parenting",subtitle:"Studies by an Ecocultural and Transactional Perspective",isOpenForSubmission:!1,hash:"6d21066c7438e459e4c6fb13217a5c8c",slug:"parenting-studies-by-an-ecocultural-and-transactional-perspective",bookSignature:"Loredana Benedetto and Massimo Ingrassia",coverURL:"https://cdn.intechopen.com/books/images_new/9043.jpg",editors:[{id:"193200",title:"Prof.",name:"Loredana",middleName:null,surname:"Benedetto",slug:"loredana-benedetto",fullName:"Loredana Benedetto"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5229},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9668",title:"Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging",subtitle:null,isOpenForSubmission:!1,hash:"c5484276a314628acf21ec1bdc3a86b9",slug:"chemistry-and-biochemistry-of-winemaking-wine-stabilization-and-aging",bookSignature:"Fernanda Cosme, Fernando M. Nunes and Luís Filipe-Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/9668.jpg",editors:[{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9660",title:"Inland Waters",subtitle:"Dynamics and Ecology",isOpenForSubmission:!1,hash:"975c26819ceb11a926793bc2adc62bd6",slug:"inland-waters-dynamics-and-ecology",bookSignature:"Adam Devlin, Jiayi Pan and Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/9660.jpg",editors:[{id:"280757",title:"Dr.",name:"Adam",middleName:"Thomas",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9122",title:"Cosmetic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"207026ca4a4125e17038e770d00ee152",slug:"cosmetic-surgery",bookSignature:"Yueh-Bih Tang",coverURL:"https://cdn.intechopen.com/books/images_new/9122.jpg",editors:[{id:"202122",title:"Prof.",name:"Yueh-Bih",middleName:null,surname:"Tang",slug:"yueh-bih-tang",fullName:"Yueh-Bih Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8098",title:"Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"d251652996624d932ef7b8ed62cf7cfc",slug:"resources-of-water",bookSignature:"Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq",coverURL:"https://cdn.intechopen.com/books/images_new/8098.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",middleName:null,surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editedByType:"Edited by",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editedByType:"Edited by",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8415",title:"Extremophilic Microbes and Metabolites",subtitle:"Diversity, Bioprospecting and Biotechnological Applications",isOpenForSubmission:!1,hash:"93e0321bc93b89ff73730157738f8f97",slug:"extremophilic-microbes-and-metabolites-diversity-bioprospecting-and-biotechnological-applications",bookSignature:"Afef Najjari, Ameur Cherif, Haïtham Sghaier and Hadda Imene Ouzari",coverURL:"https://cdn.intechopen.com/books/images_new/8415.jpg",editedByType:"Edited by",editors:[{id:"196823",title:"Dr.",name:"Afef",middleName:null,surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1318",title:"Virtual Learning",slug:"virtual-learning",parent:{title:"Education",slug:"social-sciences-education"},numberOfBooks:4,numberOfAuthorsAndEditors:95,numberOfWosCitations:24,numberOfCrossrefCitations:33,numberOfDimensionsCitations:59,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"virtual-learning",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editedByType:"Edited by",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7601",title:"Game Design and Intelligent Interaction",subtitle:null,isOpenForSubmission:!1,hash:"aef7c5d14fb716604538b9f7e1a3f2ef",slug:"game-design-and-intelligent-interaction",bookSignature:"Ioannis Deliyannis",coverURL:"https://cdn.intechopen.com/books/images_new/7601.jpg",editedByType:"Edited by",editors:[{id:"103622",title:"Dr.",name:"Ioannis",middleName:null,surname:"Deliyannis",slug:"ioannis-deliyannis",fullName:"Ioannis Deliyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6220",title:"Open and Equal Access for Learning in School Management",subtitle:null,isOpenForSubmission:!1,hash:"a1e919de72d78288c473f399c12ee984",slug:"open-and-equal-access-for-learning-in-school-management",bookSignature:"Fahriye Altınay",coverURL:"https://cdn.intechopen.com/books/images_new/6220.jpg",editedByType:"Edited by",editors:[{id:"189778",title:"Dr.",name:"Fahriye",middleName:null,surname:"Altınay",slug:"fahriye-altinay",fullName:"Fahriye Altınay"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6543",title:"State of the Art Virtual Reality and Augmented Reality Knowhow",subtitle:null,isOpenForSubmission:!1,hash:"287d44bcf4ef446e6e077ec9f1ec501e",slug:"state-of-the-art-virtual-reality-and-augmented-reality-knowhow",bookSignature:"Nawaz Mohamudally",coverURL:"https://cdn.intechopen.com/books/images_new/6543.jpg",editedByType:"Edited by",editors:[{id:"119486",title:"Dr.",name:"Nawaz",middleName:null,surname:"Mohamudally",slug:"nawaz-mohamudally",fullName:"Nawaz Mohamudally"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:4,mostCitedChapters:[{id:"59705",doi:"10.5772/intechopen.74943",title:"Augmented Reality Trends in Education between 2016 and 2017 Years",slug:"augmented-reality-trends-in-education-between-2016-and-2017-years",totalDownloads:1636,totalCrossrefCites:14,totalDimensionsCites:17,book:{slug:"state-of-the-art-virtual-reality-and-augmented-reality-knowhow",title:"State of the Art Virtual Reality and Augmented Reality Knowhow",fullTitle:"State of the Art Virtual Reality and Augmented Reality Knowhow"},signatures:"Rabia M. Yilmaz",authors:[{id:"225838",title:"Dr.",name:"Rabia",middleName:null,surname:"Yilmaz",slug:"rabia-yilmaz",fullName:"Rabia Yilmaz"}]},{id:"59468",doi:"10.5772/intechopen.74344",title:"Virtual and Augmented Reality: New Frontiers for Clinical Psychology",slug:"virtual-and-augmented-reality-new-frontiers-for-clinical-psychology",totalDownloads:1554,totalCrossrefCites:5,totalDimensionsCites:10,book:{slug:"state-of-the-art-virtual-reality-and-augmented-reality-knowhow",title:"State of the Art Virtual Reality and Augmented Reality Knowhow",fullTitle:"State of the Art Virtual Reality and Augmented Reality Knowhow"},signatures:"Sara Ventura, Rosa M. Baños and Cristina Botella",authors:[{id:"106036",title:"Dr.",name:"Rosa Maria",middleName:null,surname:"Baños",slug:"rosa-maria-banos",fullName:"Rosa Maria Baños"},{id:"227763",title:"Ph.D. Student",name:"Sara",middleName:null,surname:"Ventura",slug:"sara-ventura",fullName:"Sara Ventura"},{id:"229056",title:"Dr.",name:"Cristina",middleName:null,surname:"Botella",slug:"cristina-botella",fullName:"Cristina Botella"}]},{id:"60066",doi:"10.5772/intechopen.75172",title:"Waveguide-Type Head-Mounted Display System for AR Application",slug:"waveguide-type-head-mounted-display-system-for-ar-application",totalDownloads:1365,totalCrossrefCites:2,totalDimensionsCites:7,book:{slug:"state-of-the-art-virtual-reality-and-augmented-reality-knowhow",title:"State of the Art Virtual Reality and Augmented Reality Knowhow",fullTitle:"State of the Art Virtual Reality and Augmented Reality Knowhow"},signatures:"Munkh-Uchral Erdenebat, Young-Tae Lim, Ki-Chul Kwon,\nNyamsuren Darkhanbaatar and Nam Kim",authors:[{id:"36088",title:"Prof.",name:"Nam",middleName:null,surname:"Kim",slug:"nam-kim",fullName:"Nam Kim"},{id:"231071",title:"Dr.",name:"Munkh-Uchral",middleName:null,surname:"Erdenebat",slug:"munkh-uchral-erdenebat",fullName:"Munkh-Uchral Erdenebat"},{id:"231073",title:"Dr.",name:"Young-Tae",middleName:null,surname:"Lim",slug:"young-tae-lim",fullName:"Young-Tae Lim"},{id:"231075",title:"Dr.",name:"Ki-Chul",middleName:null,surname:"Kwon",slug:"ki-chul-kwon",fullName:"Ki-Chul Kwon"},{id:"249440",title:"Ms.",name:"Nyamsuren",middleName:null,surname:"Darkhanbaatar",slug:"nyamsuren-darkhanbaatar",fullName:"Nyamsuren Darkhanbaatar"}]}],mostDownloadedChaptersLast30Days:[{id:"59705",title:"Augmented Reality Trends in Education between 2016 and 2017 Years",slug:"augmented-reality-trends-in-education-between-2016-and-2017-years",totalDownloads:1641,totalCrossrefCites:14,totalDimensionsCites:17,book:{slug:"state-of-the-art-virtual-reality-and-augmented-reality-knowhow",title:"State of the Art Virtual Reality and Augmented Reality Knowhow",fullTitle:"State of the Art Virtual Reality and Augmented Reality Knowhow"},signatures:"Rabia M. Yilmaz",authors:[{id:"225838",title:"Dr.",name:"Rabia",middleName:null,surname:"Yilmaz",slug:"rabia-yilmaz",fullName:"Rabia Yilmaz"}]},{id:"59468",title:"Virtual and Augmented Reality: New Frontiers for Clinical Psychology",slug:"virtual-and-augmented-reality-new-frontiers-for-clinical-psychology",totalDownloads:1560,totalCrossrefCites:5,totalDimensionsCites:10,book:{slug:"state-of-the-art-virtual-reality-and-augmented-reality-knowhow",title:"State of the Art Virtual Reality and Augmented Reality Knowhow",fullTitle:"State of the Art Virtual Reality and Augmented Reality Knowhow"},signatures:"Sara Ventura, Rosa M. Baños and Cristina Botella",authors:[{id:"106036",title:"Dr.",name:"Rosa Maria",middleName:null,surname:"Baños",slug:"rosa-maria-banos",fullName:"Rosa Maria Baños"},{id:"227763",title:"Ph.D. Student",name:"Sara",middleName:null,surname:"Ventura",slug:"sara-ventura",fullName:"Sara Ventura"},{id:"229056",title:"Dr.",name:"Cristina",middleName:null,surname:"Botella",slug:"cristina-botella",fullName:"Cristina Botella"}]},{id:"71717",title:"Introductory Chapter: Virtual Reality",slug:"introductory-chapter-virtual-reality",totalDownloads:137,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"virtual-reality-and-its-application-in-education",title:"Virtual Reality and Its Application in Education",fullTitle:"Virtual Reality and Its Application in Education"},signatures:"Dragan Cvetković",authors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}]},{id:"60996",title:"Introductory Chapter: Enhancing Augmented Reality User Experience (AR-UX) with Design Thinking",slug:"introductory-chapter-enhancing-augmented-reality-user-experience-ar-ux-with-design-thinking",totalDownloads:816,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"state-of-the-art-virtual-reality-and-augmented-reality-knowhow",title:"State of the Art Virtual Reality and Augmented Reality Knowhow",fullTitle:"State of the Art Virtual Reality and Augmented Reality Knowhow"},signatures:"Nawaz Mohamudally",authors:[{id:"119486",title:"Dr.",name:"Nawaz",middleName:null,surname:"Mohamudally",slug:"nawaz-mohamudally",fullName:"Nawaz Mohamudally"}]},{id:"59408",title:"Enhancing BIM Methodology with VR Technology",slug:"enhancing-bim-methodology-with-vr-technology",totalDownloads:2545,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"state-of-the-art-virtual-reality-and-augmented-reality-knowhow",title:"State of the Art Virtual Reality and Augmented Reality Knowhow",fullTitle:"State of the Art Virtual Reality and Augmented Reality Knowhow"},signatures:"Alcínia Zita Sampaio",authors:[{id:"13640",title:"Prof.",name:"Alcínia Zita",middleName:"Almeida",surname:"Sampaio",slug:"alcinia-zita-sampaio",fullName:"Alcínia Zita Sampaio"}]},{id:"59816",title:"Augmented Reality and Virtual Reality: Initial Successes in Diagnostic Radiology",slug:"augmented-reality-and-virtual-reality-initial-successes-in-diagnostic-radiology",totalDownloads:1223,totalCrossrefCites:2,totalDimensionsCites:5,book:{slug:"state-of-the-art-virtual-reality-and-augmented-reality-knowhow",title:"State of the Art Virtual Reality and Augmented Reality Knowhow",fullTitle:"State of the Art Virtual Reality and Augmented Reality Knowhow"},signatures:"David B. Douglas, Demetri Venets, Cliff Wilke, David Gibson, Lance\nLiotta, Emanuel Petricoin, Buddy Beck and Robert Douglas",authors:[{id:"86918",title:"Dr.",name:"Emanuel",middleName:null,surname:"Petricoin",slug:"emanuel-petricoin",fullName:"Emanuel Petricoin"},{id:"122098",title:"Dr.",name:"Lance",middleName:null,surname:"Liotta",slug:"lance-liotta",fullName:"Lance Liotta"},{id:"225961",title:"Dr.",name:"David",middleName:null,surname:"Douglas",slug:"david-douglas",fullName:"David Douglas"},{id:"240843",title:"Dr.",name:"Demetri",middleName:null,surname:"Venets",slug:"demetri-venets",fullName:"Demetri Venets"},{id:"240844",title:"MSc.",name:"Cliff",middleName:null,surname:"Wilke",slug:"cliff-wilke",fullName:"Cliff Wilke"},{id:"240846",title:"MSc.",name:"David",middleName:null,surname:"Gibson",slug:"david-gibson",fullName:"David Gibson"},{id:"240847",title:"Mr.",name:"Buddy",middleName:null,surname:"Beck",slug:"buddy-beck",fullName:"Buddy Beck"},{id:"240848",title:"Dr.",name:"Robert",middleName:null,surname:"Douglas",slug:"robert-douglas",fullName:"Robert Douglas"}]},{id:"58929",title:"Instructional Developments and Progress for Open and Equal Access for Learning",slug:"instructional-developments-and-progress-for-open-and-equal-access-for-learning",totalDownloads:791,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"open-and-equal-access-for-learning-in-school-management",title:"Open and Equal Access for Learning in School Management",fullTitle:"Open and Equal Access for Learning in School Management"},signatures:"Gonca Telli Yamamoto, Mürşide Özgeldi and Deniz Altun",authors:[{id:"209643",title:"Prof.",name:"Gonca",middleName:null,surname:"Telli Yamamoto",slug:"gonca-telli-yamamoto",fullName:"Gonca Telli Yamamoto"},{id:"209647",title:"Dr.",name:"Mürşide",middleName:null,surname:"Özgeldi",slug:"murside-ozgeldi",fullName:"Mürşide Özgeldi"},{id:"218099",title:"Mr.",name:"Deniz",middleName:null,surname:"Altun",slug:"deniz-altun",fullName:"Deniz Altun"}]},{id:"60066",title:"Waveguide-Type Head-Mounted Display System for AR Application",slug:"waveguide-type-head-mounted-display-system-for-ar-application",totalDownloads:1373,totalCrossrefCites:2,totalDimensionsCites:7,book:{slug:"state-of-the-art-virtual-reality-and-augmented-reality-knowhow",title:"State of the Art Virtual Reality and Augmented Reality Knowhow",fullTitle:"State of the Art Virtual Reality and Augmented Reality Knowhow"},signatures:"Munkh-Uchral Erdenebat, Young-Tae Lim, Ki-Chul Kwon,\nNyamsuren Darkhanbaatar and Nam Kim",authors:[{id:"36088",title:"Prof.",name:"Nam",middleName:null,surname:"Kim",slug:"nam-kim",fullName:"Nam Kim"},{id:"231071",title:"Dr.",name:"Munkh-Uchral",middleName:null,surname:"Erdenebat",slug:"munkh-uchral-erdenebat",fullName:"Munkh-Uchral Erdenebat"},{id:"231073",title:"Dr.",name:"Young-Tae",middleName:null,surname:"Lim",slug:"young-tae-lim",fullName:"Young-Tae Lim"},{id:"231075",title:"Dr.",name:"Ki-Chul",middleName:null,surname:"Kwon",slug:"ki-chul-kwon",fullName:"Ki-Chul Kwon"},{id:"249440",title:"Ms.",name:"Nyamsuren",middleName:null,surname:"Darkhanbaatar",slug:"nyamsuren-darkhanbaatar",fullName:"Nyamsuren Darkhanbaatar"}]},{id:"61026",title:"How to Create Suitable Augmented Reality Application to Teach Social Skills for Children with ASD",slug:"how-to-create-suitable-augmented-reality-application-to-teach-social-skills-for-children-with-asd",totalDownloads:896,totalCrossrefCites:2,totalDimensionsCites:6,book:{slug:"state-of-the-art-virtual-reality-and-augmented-reality-knowhow",title:"State of the Art Virtual Reality and Augmented Reality Knowhow",fullTitle:"State of the Art Virtual Reality and Augmented Reality Knowhow"},signatures:"I-Jui Lee, Ling-Yi Lin, Chien-Hsu Chen and Chi-Hsuan Chung",authors:[{id:"229636",title:"Dr.",name:"I-Jui",middleName:null,surname:"Lee",slug:"i-jui-lee",fullName:"I-Jui Lee"},{id:"250696",title:"Prof.",name:"Chien-Hsu",middleName:null,surname:"Chen",slug:"chien-hsu-chen",fullName:"Chien-Hsu Chen"}]},{id:"71084",title:"Digital Games in Primary Education",slug:"digital-games-in-primary-education",totalDownloads:317,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"game-design-and-intelligent-interaction",title:"Game Design and Intelligent Interaction",fullTitle:"Game Design and Intelligent Interaction"},signatures:"Dionysios Manesis",authors:[{id:"309277",title:"Dr.",name:"Dionysios",middleName:null,surname:"Manesis",slug:"dionysios-manesis",fullName:"Dionysios Manesis"}]}],onlineFirstChaptersFilter:{topicSlug:"virtual-learning",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"chapter.detail",path:"/books/financial-crises-a-selection-of-readings/introductory-chapter-financial-crises",hash:"",query:{},params:{book:"financial-crises-a-selection-of-readings",chapter:"introductory-chapter-financial-crises"},fullPath:"/books/financial-crises-a-selection-of-readings/introductory-chapter-financial-crises",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()