Surface area, pore size and volume of calcined seashells and eggshells biomaterials.
\\n\\n
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
Barely three months into the new year and we are happy to announce a monumental milestone reached - 150 million downloads.
\n\nThis achievement solidifies IntechOpen’s place as a pioneer in Open Access publishing and the home to some of the most relevant scientific research available through Open Access.
\n\nWe are so proud to have worked with so many bright minds throughout the years who have helped us spread knowledge through the power of Open Access and we look forward to continuing to support some of the greatest thinkers of our day.
\n\nThank you for making IntechOpen your place of learning, sharing, and discovery, and here’s to 150 million more!
\n\n\n\n\n'}],latestNews:[{slug:"intechopen-signs-new-contract-with-cepiec-china-for-distribution-of-open-access-books-20210319",title:"IntechOpen Signs New Contract with CEPIEC, China for Distribution of Open Access Books"},{slug:"150-million-downloads-and-counting-20210316",title:"150 Million Downloads and Counting"},{slug:"intechopen-secures-indefinite-content-preservation-with-clockss-20210309",title:"IntechOpen Secures Indefinite Content Preservation with CLOCKSS"},{slug:"intechopen-expands-to-all-global-amazon-channels-with-full-catalog-of-books-20210308",title:"IntechOpen Expands to All Global Amazon Channels with Full Catalog of Books"},{slug:"stanford-university-identifies-top-2-scientists-over-1-000-are-intechopen-authors-and-editors-20210122",title:"Stanford University Identifies Top 2% Scientists, Over 1,000 are IntechOpen Authors and Editors"},{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"}]},book:{item:{type:"book",id:"6265",leadTitle:null,fullTitle:"Automation in Agriculture - Securing Food Supplies for Future Generations",title:"Automation in Agriculture",subtitle:"Securing Food Supplies for Future Generations",reviewType:"peer-reviewed",abstract:"According to Prof. D. Despommier, by the year 2050, nearly 80% of the earth's population will reside in urban centers. Furthermore, the human population will increase by about 3 billion people during the interim. New land will be needed to grow enough food to feed them. At present, throughout the world, over 80% of the land that is suitable for raising crops is in use. What can be done to avoid this impending disaster? One possible solution is indoor farming. However, not all crops can easily be moved in an indoor environment. Nevertheless, to secure the food supply, it is necessary to increase the automation level in agriculture significantly. This book intends to provide the reader with a comprehensive overview of the impact of the Fourth Industrial Revolution and automation examples in agriculture.",isbn:"978-953-51-3874-7",printIsbn:"978-953-51-3873-0",pdfIsbn:"978-953-51-4075-7",doi:"10.5772/intechopen.69016",price:119,priceEur:129,priceUsd:155,slug:"automation-in-agriculture-securing-food-supplies-for-future-generations",numberOfPages:198,isOpenForSubmission:!1,isInWos:1,hash:"397d9aa9d63ecac6048c1c2274f35704",bookSignature:"Stephan Hussmann",publishedDate:"March 14th 2018",coverURL:"https://cdn.intechopen.com/books/images_new/6265.jpg",numberOfDownloads:11868,numberOfWosCitations:17,numberOfCrossrefCitations:21,numberOfDimensionsCitations:30,hasAltmetrics:1,numberOfTotalCitations:68,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 22nd 2017",dateEndSecondStepPublish:"June 12th 2017",dateEndThirdStepPublish:"November 24th 2017",dateEndFourthStepPublish:"December 24th 2017",dateEndFifthStepPublish:"February 24th 2018",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,editors:[{id:"6250",title:"Prof. Dr.-Ing.",name:"Stephan",middleName:null,surname:"Hussmann",slug:"stephan-hussmann",fullName:"Stephan Hussmann",profilePictureURL:"https://mts.intechopen.com/storage/users/6250/images/5350_n.jpg",biography:"Stephan Hussmann received his M.E. and Ph.D. degrees from the University of Siegen, Siegen, Germany, in 1995 and 2000, respectively. From 1996 to 2000, he was a Research Associate with the Center for Sensor Systems (ZESS), University of Siegen, and a Development Engineer with Aicoss GmbH, Siegen. From 2001 to 2003, he was a Lecturer in the Department of Electrical and Computer Engineering, University of Auckland, Auckland, New Zealand. Since the end of 2004, he has been a Professor at the Faculty of Engineering, West Coast University of Applied Sciences (FHW), Heide, Germany, in the area of microprocessor technology and electronic systems. He has widely consulted with the industry and has more than 80 publications, which include book chapters, international patents, and refereed journal and conference proceedings papers. His research interests include low-cost multi-sensor system design, real-time 2D/3D image processing, embedded systems design, machine vision and agricultural automation.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"26",title:"Agricultural Engineering",slug:"agricultural-and-biological-sciences-agricultural-engineering"}],chapters:[{id:"57703",title:"The Fourth Industrial Revolution and Precision Agriculture",doi:"10.5772/intechopen.71582",slug:"the-fourth-industrial-revolution-and-precision-agriculture",totalDownloads:2206,totalCrossrefCites:10,totalDimensionsCites:15,signatures:"Jehoon Sung",downloadPdfUrl:"/chapter/pdf-download/57703",previewPdfUrl:"/chapter/pdf-preview/57703",authors:[{id:"210240",title:"Dr.",name:"Jehoon",surname:"Sung",slug:"jehoon-sung",fullName:"Jehoon Sung"}],corrections:null},{id:"58805",title:"The German Vision of Industry 4.0 Applied in Organic Farming",doi:"10.5772/intechopen.72708",slug:"the-german-vision-of-industry-4-0-applied-in-organic-farming",totalDownloads:1061,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"F. J. Knoll and V. Czymmek",downloadPdfUrl:"/chapter/pdf-download/58805",previewPdfUrl:"/chapter/pdf-preview/58805",authors:[{id:"211093",title:"M.Sc.",name:"Florian Johannes",surname:"Knoll",slug:"florian-johannes-knoll",fullName:"Florian Johannes Knoll"},{id:"221049",title:"BSc.",name:"Vitali",surname:"Czymmek",slug:"vitali-czymmek",fullName:"Vitali Czymmek"}],corrections:null},{id:"57628",title:"Trends of Engineering Systems Evolution and Agricultural Technology",doi:"10.5772/intechopen.71481",slug:"trends-of-engineering-systems-evolution-and-agricultural-technology",totalDownloads:1016,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Ivan Mašín and Michal Petrů",downloadPdfUrl:"/chapter/pdf-download/57628",previewPdfUrl:"/chapter/pdf-preview/57628",authors:[{id:"219437",title:"Associate Prof.",name:"Ivan",surname:"Mašín",slug:"ivan-masin",fullName:"Ivan Mašín"}],corrections:null},{id:"59242",title:"Review of Variable-Rate Sprayer Applications Based on Real- Time Sensor Technologies",doi:"10.5772/intechopen.73622",slug:"review-of-variable-rate-sprayer-applications-based-on-real-time-sensor-technologies",totalDownloads:1344,totalCrossrefCites:4,totalDimensionsCites:4,signatures:"Zhihong Zhang, Xiaoyang Wang, Qinghui Lai and Zhaoguo Zhang",downloadPdfUrl:"/chapter/pdf-download/59242",previewPdfUrl:"/chapter/pdf-preview/59242",authors:[{id:"227982",title:"Dr.",name:"Zhihong",surname:"Zhang",slug:"zhihong-zhang",fullName:"Zhihong Zhang"},{id:"239622",title:"Mr.",name:"Xiaoyang",surname:"Wang",slug:"xiaoyang-wang",fullName:"Xiaoyang Wang"},{id:"239624",title:"Prof.",name:"Qinghui",surname:"Lai",slug:"qinghui-lai",fullName:"Qinghui Lai"},{id:"239625",title:"Prof.",name:"Zhaoguo",surname:"Zhang",slug:"zhaoguo-zhang",fullName:"Zhaoguo Zhang"}],corrections:null},{id:"59402",title:"Robotic Harvesting of Fruiting Vegetables: A Simulation Approach in V-REP, ROS and MATLAB",doi:"10.5772/intechopen.73861",slug:"robotic-harvesting-of-fruiting-vegetables-a-simulation-approach-in-v-rep-ros-and-matlab",totalDownloads:1936,totalCrossrefCites:3,totalDimensionsCites:3,signatures:"Redmond R. Shamshiri, Ibrahim A. Hameed, Manoj Karkee and\nCornelia Weltzien",downloadPdfUrl:"/chapter/pdf-download/59402",previewPdfUrl:"/chapter/pdf-preview/59402",authors:[{id:"182449",title:"Prof.",name:"Ibrahim",surname:"A. Hameed",slug:"ibrahim-a.-hameed",fullName:"Ibrahim A. Hameed"},{id:"203413",title:"Dr.",name:"Redmond Ramin",surname:"Shamshiri",slug:"redmond-ramin-shamshiri",fullName:"Redmond Ramin Shamshiri"},{id:"241193",title:"Dr.",name:"Manoj",surname:"Karkee",slug:"manoj-karkee",fullName:"Manoj Karkee"},{id:"241194",title:"Dr.",name:"Cornelia",surname:"Weltzien",slug:"cornelia-weltzien",fullName:"Cornelia Weltzien"}],corrections:null},{id:"57562",title:"Ubiquitous Environment Control System: An Internet-of- Things–Based Decentralized Autonomous Measurement and Control System for a Greenhouse Environment",doi:"10.5772/intechopen.71661",slug:"ubiquitous-environment-control-system-an-internet-of-things-based-decentralized-autonomous-measureme",totalDownloads:990,totalCrossrefCites:2,totalDimensionsCites:3,signatures:"Takehiko Hoshi, Ken-Ichiro Yasuba, Hideto Kurosaki and Takashi\nOkayasu",downloadPdfUrl:"/chapter/pdf-download/57562",previewPdfUrl:"/chapter/pdf-preview/57562",authors:[{id:"218987",title:"Associate Prof.",name:"Takashi",surname:"Okayasu",slug:"takashi-okayasu",fullName:"Takashi Okayasu"},{id:"219897",title:"Prof.",name:"Takehiko",surname:"Hoshi",slug:"takehiko-hoshi",fullName:"Takehiko Hoshi"},{id:"223961",title:"Prof.",name:"Ken-Ichiro",surname:"Yasuba",slug:"ken-ichiro-yasuba",fullName:"Ken-Ichiro Yasuba"},{id:"223962",title:"Dr.",name:"Hideto",surname:"Kurosaki",slug:"hideto-kurosaki",fullName:"Hideto Kurosaki"}],corrections:null},{id:"58274",title:"Machine Vision Systems – A Tool for Automatic Color Analysis in Agriculture",doi:"10.5772/intechopen.71935",slug:"machine-vision-systems-a-tool-for-automatic-color-analysis-in-agriculture",totalDownloads:1017,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Ernesto Martínez Sandoval, Miguel Enrique Martínez Rosas, Jesús\nRaúl Martínez Sandoval, Manuel Moises Miranda Velasco and\nHumberto Cervantes De Ávila",downloadPdfUrl:"/chapter/pdf-download/58274",previewPdfUrl:"/chapter/pdf-preview/58274",authors:[{id:"214034",title:"Dr.",name:"Jesús",surname:"Martinez",slug:"jesus-martinez",fullName:"Jesús Martinez"},{id:"214039",title:"Mr.",name:"Ernesto",surname:"Martinez",slug:"ernesto-martinez",fullName:"Ernesto Martinez"},{id:"214040",title:"Dr.",name:"Miguel",surname:"Martinez",slug:"miguel-martinez",fullName:"Miguel Martinez"},{id:"214104",title:"Dr.",name:"Humberto",surname:"Cervantes",slug:"humberto-cervantes",fullName:"Humberto Cervantes"},{id:"214267",title:"Dr.",name:"Manuel",surname:"Miranda",slug:"manuel-miranda",fullName:"Manuel Miranda"}],corrections:null},{id:"58855",title:"Automation of Integrated System for Grain Beverages Processing",doi:"10.5772/intechopen.73248",slug:"automation-of-integrated-system-for-grain-beverages-processing",totalDownloads:766,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Gana Ibrahim Mohammed, Ephraim Micheal and Agidi Gbabo",downloadPdfUrl:"/chapter/pdf-download/58855",previewPdfUrl:"/chapter/pdf-preview/58855",authors:[{id:"194441",title:"Dr.",name:"Gbabo",surname:"Agidi",slug:"gbabo-agidi",fullName:"Gbabo Agidi"},{id:"229407",title:"Dr.",name:"Ibrahim",surname:"Gana",slug:"ibrahim-gana",fullName:"Ibrahim Gana"}],corrections:null},{id:"59129",title:"The Effect of Vermicompost and Other Fertilizers on the Growth and Productivity of Pepper Plants in Guyana",doi:"10.5772/intechopen.73262",slug:"the-effect-of-vermicompost-and-other-fertilizers-on-the-growth-and-productivity-of-pepper-plants-in-",totalDownloads:1533,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Vasnie Ganeshnauth, Sirpaul Jaikishun, Abdullah A Ansari and\nOudho Homenauth",downloadPdfUrl:"/chapter/pdf-download/59129",previewPdfUrl:"/chapter/pdf-preview/59129",authors:[{id:"206474",title:"Prof.",name:"Abdullah",surname:"Ansari",slug:"abdullah-ansari",fullName:"Abdullah Ansari"},{id:"206476",title:"Mr.",name:"Sirpaul",surname:"Jaikishun",slug:"sirpaul-jaikishun",fullName:"Sirpaul Jaikishun"},{id:"210300",title:"Ms.",name:"Vasnie",surname:"Ganaeshnauth",slug:"vasnie-ganaeshnauth",fullName:"Vasnie Ganaeshnauth"},{id:"210301",title:"Dr.",name:"Oudho",surname:"Homenauth",slug:"oudho-homenauth",fullName:"Oudho Homenauth"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"66069",slug:"erratum-fractal-geometry-an-attractive-choice-for-miniaturized-planar-microwave-filter-design",title:"Erratum - Fractal Geometry: An Attractive Choice for Miniaturized Planar Microwave Filter Design",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/66069.pdf",downloadPdfUrl:"/chapter/pdf-download/66069",previewPdfUrl:"/chapter/pdf-preview/66069",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/66069",risUrl:"/chapter/ris/66069",chapter:{id:"64430",slug:"fractal-geometry-an-attractive-choice-for-miniaturized-planar-microwave-filter-design",signatures:"Hadi T. Ziboon and Jawad K. Ali",dateSubmitted:"June 5th 2018",dateReviewed:"September 6th 2018",datePrePublished:"December 31st 2018",datePublished:"April 3rd 2019",book:{id:"7293",title:"Fractal Analysis",subtitle:null,fullTitle:"Fractal Analysis",slug:"fractal-analysis",publishedDate:"April 3rd 2019",bookSignature:"Sid-Ali Ouadfeul",coverURL:"https://cdn.intechopen.com/books/images_new/7293.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"103826",title:"Dr.",name:"Sid-Ali",middleName:null,surname:"Ouadfeul",slug:"sid-ali-ouadfeul",fullName:"Sid-Ali Ouadfeul"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"261659",title:"Prof.",name:"Jawad",middleName:null,surname:"Ali",fullName:"Jawad Ali",slug:"jawad-ali",email:"jawadkali@theiet.org",position:null,institution:null},{id:"262048",title:"Dr.",name:"Hadi",middleName:null,surname:"Ziboon",fullName:"Hadi Ziboon",slug:"hadi-ziboon",email:"haditarishziboon@yahoo.co.uk",position:null,institution:null}]}},chapter:{id:"64430",slug:"fractal-geometry-an-attractive-choice-for-miniaturized-planar-microwave-filter-design",signatures:"Hadi T. Ziboon and Jawad K. Ali",dateSubmitted:"June 5th 2018",dateReviewed:"September 6th 2018",datePrePublished:"December 31st 2018",datePublished:"April 3rd 2019",book:{id:"7293",title:"Fractal Analysis",subtitle:null,fullTitle:"Fractal Analysis",slug:"fractal-analysis",publishedDate:"April 3rd 2019",bookSignature:"Sid-Ali Ouadfeul",coverURL:"https://cdn.intechopen.com/books/images_new/7293.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"103826",title:"Dr.",name:"Sid-Ali",middleName:null,surname:"Ouadfeul",slug:"sid-ali-ouadfeul",fullName:"Sid-Ali Ouadfeul"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"261659",title:"Prof.",name:"Jawad",middleName:null,surname:"Ali",fullName:"Jawad Ali",slug:"jawad-ali",email:"jawadkali@theiet.org",position:null,institution:null},{id:"262048",title:"Dr.",name:"Hadi",middleName:null,surname:"Ziboon",fullName:"Hadi Ziboon",slug:"hadi-ziboon",email:"haditarishziboon@yahoo.co.uk",position:null,institution:null}]},book:{id:"7293",title:"Fractal Analysis",subtitle:null,fullTitle:"Fractal Analysis",slug:"fractal-analysis",publishedDate:"April 3rd 2019",bookSignature:"Sid-Ali Ouadfeul",coverURL:"https://cdn.intechopen.com/books/images_new/7293.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"103826",title:"Dr.",name:"Sid-Ali",middleName:null,surname:"Ouadfeul",slug:"sid-ali-ouadfeul",fullName:"Sid-Ali Ouadfeul"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"10659",leadTitle:null,title:"Search and Rescue Robotics",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tThe book will concern recent advances in mobile robotics technologies dedicated to search and rescue missions including unmanned aerial, ground and maritime platforms. The sensors, commercial ones, and new developments improving human detection, map building and other crucial autonomous mobile robots’ capabilities will be presented.
\r\n\r\n\tFurthermore, data fusion and algorithms for robust localization and mapping in harsh environments will be elaborated. Also an important aspect related with the sharing of the on-line map building results and augmented vision/3D data by modern AI techniques with first responders will be concerned, and consequently the aspect of improving the global awareness of the current situation. The topic is closely related to the integration of the multi domain multi robot system with Command and Control, therefore the book will address recent technologies capable of providing interoperable functionalities. Major issue of the adaptation of the R&D results of mobile robotics is to reduce the cognitive load of human operator that is supposed to control mobile robot within the context of risky mission and overall existing stress factors, therefore the modern AI technologies augmenting raw robotic data information for improving the human-robot collaboration will be concerned.
\r\n\r\n\tFinally, the topic is also strongly related to rarely discussed training technologies that reduce the time of new robotic technologies deployments. The book will be devoted to realistic scenarios and even pragmatic affordable solutions that are necessary in delivering mobile robotic solutions to first responders.
",isbn:"978-1-83969-197-3",printIsbn:"978-1-83969-196-6",pdfIsbn:"978-1-83969-198-0",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"b629899b814461c43bbb721b04b4370a",bookSignature:"Dr. Janusz Bȩdkowski and Dr. Karol Majek",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10659.jpg",keywords:"Robotic Platforms, Search and Rescue Missions, Sensors, Data Fusion, Localisation and Mapping, Command Control, Intelligence, Modern AI, Deep Learning, Training Tools, Simulations, Augmented Reality",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 1st 2021",dateEndSecondStepPublish:"April 28th 2021",dateEndThirdStepPublish:"June 27th 2021",dateEndFourthStepPublish:"September 15th 2021",dateEndFifthStepPublish:"November 14th 2021",remainingDaysToSecondStep:"17 days",secondStepPassed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:"Dr. Bȩdkowski is a researcher in continent-scale Simultaneous Localization and Mapping Technologies, actively involved in European ELROB, ENRICH, and other mobile robotics activities focused on realistic scenarios. He is a holder of two registered patents related to autonomous mobile robot mapping and surveying.",coeditorOneBiosketch:"Dr. Majek has successfully participated in several mobile robotics competitions including DARPA VRC, ELROB, Eurathlon, Udacity Challenge, Self-Racing Cars, F1/10. His research is nowadays focused on solving vision problems with deep neural networks.",coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"63695",title:"Dr.",name:"Janusz",middleName:null,surname:"Bȩdkowski",slug:"janusz-bdkowski",fullName:"Janusz Bȩdkowski",profilePictureURL:"https://mts.intechopen.com/storage/users/63695/images/system/63695.jpg",biography:"Janusz Bedkowski, Ph.D., D.Sc. in Automation and Robotics, is an adjunct professor at the Institute of Fundamental Technological Research Polish Academy of Sciences. From 2006 to 2018, he collaborated with Industrial Research Institute for Automation and Measurements, Warsaw, Poland, concerning multi robotic inspection-intervention systems development and integration. He was granted a postdoctoral scholarship in the Royal Military Academy (RMA), Brussels, Belgium, funded by Center for Advanced Studies, Warsaw University of Technology. His research interests are: inspection intervention robot systems, semantic mapping including 3D cloud of points and video processing, 6D SLAM, mobile robot operator training with AR techniques and GPGPU computing. From 2017 he is involved in development of the continent scale Simultaneous Localization and Mapping Technologies for autonomous cars in TomTom. He commercialized robotic 3D mapping technologies within the MANDALA company (www.mandalarobotics.com). He is actively working on multi domain robotic search and rescue R&D projects.",institutionString:"Institute of Fundamental Technological Research Polish Academy of Sciences",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:null}],coeditorOne:{id:"343616",title:"Dr.",name:"Karol",middleName:null,surname:"Majek",slug:"karol-majek",fullName:"Karol Majek",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000033JBlxQAG/Profile_Picture_1607502328790",biography:'Karol Majek holds a Ph.D. in Automation and Robotics. Since 2011 he has successfully participated in several mobile robotics competitions including DARPA VRC, ELROB, Eurathlon, Udacity Challenge, Self-Racing Cars, F1/10. From 2013 to 2015 he was involved in the Institute of Mathematical Machines in robotic research projects funded by the EU. In 2016-2017 he was a mentor in the Self-Driving Car Nanodegree by Udacity. In 2018 he received a research grant in the TensorFlow Research Cloud program and in 2019 he defended Ph.D. thesis at Poznań University of Technology: "Automatic selection of deep neural network parameters in mobile robotics". From 2018 to 2020 he was working on accelerating perception of inspection robots using deep neural networks for object detection at Research and Academic Computer Network - National Research Institute (NASK PIB). He is focused on solving vision problems with deep neural networks. His research interests are: object detection, semantic segmentation, panoptic segmentation, deep neural network inference on low power devices.',institutionString:"Research and Academic Computer Network NASK",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"22",title:"Robotics",slug:"physical-sciences-engineering-and-technology-robotics"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"247865",firstName:"Jasna",lastName:"Bozic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/247865/images/7225_n.jpg",email:"jasna.b@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1880",title:"Mobile Robots",subtitle:"Control Architectures, Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training",isOpenForSubmission:!1,hash:"5c978b99bcfc519f4f27256ae5b2e212",slug:"mobile-robots-control-architectures-bio-interfacing-navigation-multi-robot-motion-planning-and-operator-training",bookSignature:"Janusz Będkowski",coverURL:"https://cdn.intechopen.com/books/images_new/1880.jpg",editedByType:"Edited by",editors:[{id:"63695",title:"Dr.",name:"Janusz",surname:"Bȩdkowski",slug:"janusz-bdkowski",fullName:"Janusz Bȩdkowski"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"73805",title:"Storm Surge Risk Assessment for Non-Life Insurance",doi:"10.5772/intechopen.94157",slug:"storm-surge-risk-assessment-for-non-life-insurance",body:'This section introduces the natural disaster model and background of development in the insurance industry focusing on Japanese topics.
In 2016, the Japanese government revised the basic disaster management plan of Japan. According to the updated plan, Japanese government encourages the transfer of flood risk to non-life insurance because future flood risk will increase due to climate change [1]. Globally, economic losses and insurance losses due to natural disasters are on the rise, and the number of wind and flood damage that directly causes insurance losses is increasing significantly [2]. In Japan, on average, over 140 billion yen has been paid annually for insurance due to wind and flood damage since 1991 [3]. With the background of such government trends and increase of wind and flood risk, the risk transfer to non-life insurance has become more critical.
Non-life insurance companies measure the amount of natural disaster risk for their own risk management [4]. Therefore, it is important to properly evaluate the amount of risk. Storm surge damage with strong wind damage accompanying typhoons can be serious when the typhoon is highly intensified, and if damages of wind and storm surge occur at the same time, it may be a peak risk for non-life insurance companies [5]. The Ministry of Land, Infrastructure, Transport and Tourism’s Port Bureau published “Guidelines for Storm surge Risk Reduction Policies on Offshore Areas of Ports” in 2018 [6]. Over 80% of the harbor areas in the three major bays of Japan (Tokyo Bay, Ise Bay, and Osaka Bay) are offshore areas of levee, and this guideline has promoted taking measures against storm surges on the areas. Even on the coasts of the three major bays, where the population and assets are particularly concentrated, small storm surges may cause floodwaters and damage many assets.
A major Japanese non-life insurance company has adopted 99.5% Value at Risk as the maximum risk amount that can be directly used for management decision-making [4]. In the natural disaster model that measures the risk amount with a low exceedance probability, hazards and economic loss are evaluated based on a probabilistic approach [7].
The history of the introduction of the natural disaster model in the insurance industry is following [8]. Around the 1960s, manual mapping was used for risk management until then, but information technology and Geographic Information System (GIS) have gradually advanced, and the technical base has been established. With regard to data and theory, scientific measurements of natural disasters have made rapid progress since the first half of the 20th century, and studies have been published that theorize the source and frequency of events by the 1970s. A computer-based model (a natural disaster model) for measuring a potential catastrophe was developed by fusing these technological bases, data and theory. Because of Hurricane Andrew in 1992, nine insurance companies could not pay perfectly for insurance claims, and necessity of the natural disaster model had been increased as a basis for decision making in many insurance companies and reinsurance companies. Along with the growing needs of the insurance industry, vendors of natural disaster models has grown and developed.
The natural disaster model used in the insurance industry consists of three modules: hazard module, vulnerability module, and financial module (Figure 1) [9]. In the natural disaster model, the hazard module first calculates wind speed, inundation depth, etc., then the vulnerability module converts the information into the damage ratio of the target object such as a house, and finally the financial module calculates the insurance loss considering insurance contract conditions. Natural disaster models continue to be important in insurance industry decision-making [10].
Components of natural disaster model (based on InterRisk Research Institute & Consulting, Inc. [
In underwriting, which examines insurance risks, the spatial distribution of inundation depth for each return period may be used [11]. However, the hazard map released by the Japanese government is a result based on the assumed scenario and is not sufficient to utilize it for the purpose of underwriting. Also, the expected annual loss calculated by the natural disaster model is used as a reference when insurance is priced [12].
From the above, the basic requirements to be satisfied by the natural disaster model from the perspective of non-life insurance are as follows.
To be able to predict low-frequency loss.
To be able to calculate the expected annual loss.
To be able to create a low-frequency inundation depth map that is used for underwriting.
This Chapter aims to discuss how to select the existing storm surge risk assessment procedures for non-life insurance. In order to discuss this point, review of the procedures including the latest methods with low calculation load and high calculation accuracy are introduced.
In this section, previous research and efforts related to storm surge risk assessment are described.
As a storm surge hazard study, Suzuki [13] conducted flood simulation over the whole of Japan, estimated the loss along the coast from the results, and developed loss function which is the relationship between water level at the representative point and the economic loss in the coastal area. The characteristics of this study are that the target area is wide and that large-scale storm surges due to climate change are also incorporated. However, since flood calculation is performed by a simple flood model, there is a issue in the accuracy of flood analysis, and no probabilistic discussion has been made in this study. Examples of publication on probabilistic storm surge damage estimation are following. Tsujita et al. [14] probabilistically calculated storm surge loss in the three major bays in Japan by using stochastic typhoon model. The stochastic typhoon model used in this study statistically processes past typhoon information and calculates the assumed typhoon that will occur in one year for 1000 patterns, so it does not consider future climate. The random variables are typhoon parameters (central pressure, location of typhoon, moving speed). This approach is common to the calculation of insurance purposes, which analyzes natural disaster risk in the coming year in many patterns and uses it for risk management and insurance premium setting. Exceedance probability used for risk management in non-life insurance companies is low. If the calculation period set long, the number of evaluation typhoons will increase and the calculation results will be stable and the uncertainty will decrease. The issue is that there is no discussion about the calculation period that was carried out. In addition, this study did not incorporate levees explicitly in the storm surge simulation, and no discussion on astronomical tide level setting. Similarly, Jiang et al. [15] probabilistically evaluated the current and future climate storm surge losses in the inner part of Ise Bay and showed the relationship between the annual exceedance probability and the storm surge loss. As for the present and future climates, a virtual typhoon for 25 ensembles of 200 years is used to evaluate the loss.
In the previous research mentioned above, it is common that firstly storm surge flood is calculated and secondly the loss is calculated from the inundation depth and the damage function which convert inundation depth into damage rate of the targeted assets. On the other hand, there is not enough discussion about uncertainty. In the process of calculating the storm surge loss, there are many parameters such as astronomical tide level, wind velocity/pressure distribution formula, maximum wind velocity radius, damage function, etc., and it is important to evaluate their effect on the estimated loss. Another issue is that there is no discussion about whether the calculation period is sufficient for the important return period.
A representative example of storm surge risk assessment efforts is the HUZUS-MH (Hazards U.S. Multi-Hazard) [16] developed by the Federal Emergency Management Agency (FEMA). This is software that estimates the damage caused by earthquakes, hurricanes, and floods in the United States, and displays damage of buildings and infrastructure due to past hazards. In addition, for the flood insurance program in the United States, FEMA has created a storm surge risk map with annual exceedance probability of 10, 2, 1, 0.2% in the United States, and has evaluated storm surge risk by various methods [17]. As a method, extreme value analysis, EST (Empirical Simulation Technique), and JPM (Joint Probability Method) have been studied. EST is a method of estimating the occurrence probability of the water level based on the observed tide level at a certain point by Probability distribution and constructing an artificial event set by the bootstrap method. JPM captures characteristics of hurricanes from observation information, constructs possible hurricanes from probability distributions of central pressure, moving speed and so on, and performs storm surge numerical calculation for all of them. While EST depends on limited observation data, JPM can comprehensively consider hurricanes etc. that may occur, and in recent years, JPM approach has been recognized as suitable for stochastic evaluation [17].
Similarly, in the natural disaster model of the insurance industry and probabilistic storm surge risk assessment in academic research, the method of calculating storm surges using assumed typhoons that capture past typhoon characteristics like JPM for a long term such as 1 year × 10,000 patterns has become common (eg AIRWORLDWIDE [18], Risk Management Solutions [19], Tsujita et al. [14]). That is, for example, when analyzing typhoons stochastically in Japan, it is assumed that a total of about 30,000 typhoons will land for 10,000 years because about 3 typhoons land in one year in average. However, it has been pointed out that the issue is that the computational cost is high because JPM calculates storm surges for all possible typhoons [17].
In order to reduce the calculation load of storm surge simulation, Jiang et al. [15] limited the typhoons that numerically calculate storm surge under the following three conditions.
Typhoons that pass within 100 km of the bay
Typhoons with a minimum central pressure of 950 hPa or less
Typhoons with a typhoon speed of 20 km/h or more when landing
Through this process, typhoons that can flood are extracted. However, when considering variations in astronomical tide levels, it is not sufficient to evaluate storm surge risk because storm surge risk also depends on astronomical tide level, and it is necessary to use the total water level considering tides. In addition, the discussion on how much small and medium-scale storm surge damage can be extracted and uncertainty of annual expected loss of storm surge are insufficient in this paper.
In the US, FEMA has developed and is currently using JPM-OS (Joint Probability Method – Optimal Sampling), which is a method that reduces the calculation load of JPM (Johnson et al. [20]). Here, JPM-OS is briefly described. First, JPM-OS performs storm surge inundation analysis only on representative events selected from the numerous typhoon events. Then, the results are interpolated to estimate the inundation depth of the event for which no flood analysis has been performed. Although it is possible to reduce the calculation load by one digit compared to JPM [17], the problem is that uncertainty arises during interpolation. In order to reduce the uncertainty, research is underway on JPM-OS interpolation methods (eg Yang et al. [21]). Yang et al. compared the calculation results of the inundation depth for different JPM-OS interpolation method for each return period in Florida, USA. The RMSE of each method was 0.16 to 0.82 m when the inundation depth at each point was compared with the calculation result by JPM for each interpolation method for the return period of 50, 100, and 500 years. It was shown that an error occurs between the interpolated result and the numerical calculation result regardless of whether the return period is long or short.
As another approach, Hisamatsu et al. [5] selected a typhoon that can be inundated by a simple formula for typhoons of the stochastic typhoon model, and calculated the storm surge inundation only for the selected typhoon using a numerical model. Procedure by Hisamatsu et al. is described in Figure 2. This method aims at both reduction of calculation load and preservation of calculation accuracy by extracting floodable typhoons. Additionally, fluctuation of astronomical tide can be considered. The brief results of applying this procedure to the Tokyo Bay, Japan are shown in Section 3.
Procedure of stochastic storm surge proposed by Hisamatsu et al. (based on Hisamatsu et al. [
There are various storm surge models all over the world, but here some of them are introduced.
As a method for numerical analysis of storm surge hazards, a lot of studies have shown that considering wave set-up improves reproducibility. Kim et al. [22] developed a SuWAT (Surge-Wave-Tide coupled model), which is a model that considers wave set-up. SuWAT is a two-way coupled model that considers the interaction between tidal, storm surge and wave. The SuWAT model, composed of depth-integrated nonlinear shallow water equations and a simulated-waves near-shore (SWAN) model, can simultaneously run an arbitrary number of nested domains by using the message passing interface (MPI). Mase et al. [23] simulated typhoon Vera 1959 using SuWAT, and showed that the reproducibility of the storm surge is greatly improved if wave set-up is incorporated explicitly. Since SuWAT has been used by a lot of research especially in Japan and other Asian regions (eg Hisamatsu et al. [5]), this model has been adopted to natural disaster model of the insurance industry as numerical simulation model for storm surge [24].
In flood calculation, models that improve the calculation speed have been used. For example, Ramirez et al. [25] used LISFLOOD-FP [26] for flood calculation, which is dynamic and has a small calculation load. Inundation calculation load of storm surge was further reduced by using the flood model with the results of the storm surge model as boundary conditions (eg. Tsujita et al. [14]).
Some existing research on the damage function, which estimates the damage of assets from the inundation depth, are presented.
Regarding the relationship between tsunami inundation depth and its damage, as a representative of the tsunami damage caused by the 2011 Great East Japan Earthquake, the fragility curves expressing the probability of occurrence for each degree of damage have been published (eg Suppasri et al. [27], Aránguiz et al. [28]). These fragility curves are functions that calculate the occurrence probability
However, since this fragility curve does not show the damage ratio of assets, it is not possible to directly calculate the loss from the hazard intensity of the tsunami. Dias et al. [29] presented a method of converting the fragility curves into damage function. In other words, the tsunami fragility curves that have been accumulated so far can be converted into a tsunami damage function that can directly calculate the asset damage ratio
The storm surge damage function of HAZUS in the United States is frequently used to estimate the storm surge damage amount, which converts the storm surge inundation depth into asset damage rate (eg, Johnson et al. [20], Lin et al. [30]). The damage function installed in HAZUS was developed by US Army Corps of Engineers through post-flood research and interviews with experts [31, 32]. In addition, Kar and Hodgson [33] theoretically constructed a storm surge damage function.
In Japan, damage functions in Manual of Economic Survey for Water Management published by Ministry of Land, Infrastructure, Transport and Tourism (MLIT), Japan is widely used (eg Hisamatsu et al. [5], Tsujita et al. [14], Jiang et al. [15]). The reason is that there is no other storm surge damage function for Japanese assets. This was constructed based on the survey conducted in 1993 to 1996, and the issue is that the information of the material and equipment of the house, etc. surveyed deviates from present. Therefore, some study described relationships between inundation depth and damage ratio based on survey and simulation as following. Suzuki et al. developed flood damage function by hearing-based survey [34]. And Hisamatsu et al. developed flood damage function using the result of flood simulation and insurance data [35]. Unfortunately, small number of studies on damage functions is conducted. However, it is possible to accumulate storm surge damage functions based on the approach described above for actual events.
The shape of the damage function is roughly divided into two types, a step function and a continuous function. Kar and Hodgson [33] and the MLIT are the former, while US Army Corps of Engineers [32], Suzuki et al. [34] and Hisamatsu et al. [35] are the latter. In other cases, such as Tsujita et al. [14], the step function of the MLIT is regressed and converted into a continuous function and is used for damage estimation. In the case of the step function, since the damage function is constructed by setting the damage of modeled building according to the inundation depth, the function that the damage increases when the water level reaches the floor or ceiling of the modeled building. However, the structures of buildings that are actually damaged vary, damage ratio at the same inundation depth differs depending on the building. Therefore, the damage functions of US Army Corps of Engineers [32] and Suzuki et al. [34], which were constructed based on the disaster survey, is a continuous damage function because it covers buildings with various structures.
The storm surge risk assessment procedure described in Figure 2 was applied to the Tokyo Bay where assets are concentrated in Japan in order to whether the calculation accuracy can be maintained by reducing the calculation load is considered.
As a stochastic typhoon model, global stochastic typhoon model (GSTM) developed by Nakajo et al. [36] is used for evaluation. Typhoons created by the GSTM is extracted around Tokyo Bay (Figure 3), and top 1000 typhoons are used as input data of numerical model SuWAT following proposed procedure. Prior to apply SuWAT, reproductivity of the model is validated by calculating time series storm surge levels of Typhoon Irma along the Tokyo Bay coast. The astronomical tide level was calculated by using the harmonic constants to estimate the time series tide level at the Tokyo tidal station for 100 years from January 2000 to December 2099. The astronomical tide level for each typhoon was set by randomly extracting from this histogram of calculated astronomical tide levels. From above calculation, storm surge inundation depth distributions due to 1000 typhoons are obtained. Example of the results is shown in Figure 4.
Area where typhoon is extracted (Hisamatsu et al. [
Example of simulation result.
In addition, economic loss is estimated by using the inundation depth calculated and damage functions by MLIT. Targeted assets are houses and business establishments and loss calculation consider number of floors. By using calculated loss amount, exceedance probability curve is created as described in Figure 5.
Annual exceedance probability curve.
From the above calculations, it was confirmed that the insurance requirements shown in Section 1 are satisfied by applying suggested procedure. However, it is necessary to consider whether or not calculation accuracy can be maintained by reducing the calculation load following the procedure. Here, consideration conducted by Hisamatsu et al. [37] is introduced.
The storm surge loss introduced in this section was estimated by extracting typhoons from the stochastic typhoon model based on the top 1000 water levels by the storm surge empirical formula. The maximum water level by the storm surge empirical formula used in the extraction process is different from the numerical model result. Therefore, the ranking of the maximum water level in the Tokyo Bay differs between the numerical model and the empirical formula. It is important to check whether the number of events extracted by empirical formula was sufficient for insurance purposes, in order to confirm the usefulness of the proposed procedure. Figure 6 shows the estimated loss by rank for each number of extracted typhoons. The horizontal axis shows the number of typhoons extracted from the top of the total water level based on the empirical formula, in other words, number of typhoons used for the analysis, and confirms how many typhoons the loss amount of the target order will converge. In the analysis based on 1000 typhoons, the losses in the top 50 and above were almost converged. It was suggested that 1000 typhoons based on the proposed procedure are generally sufficient to obtain low-frequency damage amounts for the purpose of insurance. In addition, it was confirmed that the infrequent water levels in Chiba, Yokohama, and Yokosuka would converge with 1000 typhoons extracted in the same way.
Estimated loss by rank for each number of extracted typhoons (based on Hisamatsu et al. [
According to discuss the annual expected loss amount, it was confirmed that the annual expected loss amount not being fully converged. It was found that the reason was the creation of the asset amount distribution. Since the amount of assets is created from statistical information, the resolution is coarser than that of storm surge numerical analysis. Because the statistical information is distributed according to the resolution of the numerical analysis, it is distributed to the place where the asset originally does not exist and the loss amount is calculated. On the other hand, the places where the number of floods was extremely high in the numerical calculation of storm surges are waterside areas where no assets actually exist. As a result of estimating the loss amount ignoring the loss at these areas, it was confirmed that the expected annual loss amount has converged. Therefore, if the asset amount distribution can be corrected more realistic this problem will be solved. It also suggests that asset allocation is very important for risk assessment.
In this chapter, the efforts of storm surge risk assessment in the non-life insurance industry are introduced based on the author’s experience. In the insurance industry, probabilistic storm surge risk assessment is required for risk management and underwriting, and a lot of analysis is required. Therefore, how to reduce the calculation load without degrading the calculation accuracy is being discussed. In this chapter, author introduced a previous study on reducing computational load. In particular, an example in which the procedure of numerically calculating only typhoons that can cause floods was applied to Tokyo Bay is introduced.
This procedure is useful in two ways. The first point is to significantly reduce the calculation load. The procedure aims at both the reduction of the calculation load and the reduction of the calculation error compared to other methods. By applying the procedure, it was found that for Tokyo Bay, the number of typhoons to be calculated can be reduced from about 90,000 to 1000 and the calculation accuracy can be maintained. By utilizing this procedure, the cost of storm surge risk assessment can be reduced, and the reduction of insurance rate may be possible, so that taking out insurance and transferring risks to ensure a safer life for more people are expected. In addition, even if the stochastic typhoon model is updated, the risk can be quickly evaluated based on the latest knowledge considering climate change and reflected in the risk management of the insurance company. The second point is that the loss amount can be evaluated more appropriately by considering the variation of the astronomical tide level. The uncertainty associated with risk assessment for insurance purposes can be recognized and reduced by varying the astronomical tide level.
In the insurance industry, the procedure applied to the Tokyo Bay in this chapter and the method like JPM-OS should be used separately. First, the characteristics of the evaluation target site should be considered. Since the procedure applied to the Tokyo Bay analyzes storm surges for all typhoons that may flood, it has a great effect on reducing computational load in areas where flooding is unlikely to occur, such as the Tokyo Bay. However, when targeting areas with high flooding frequency, such as Southeast Asia, the number of typhoons that can be flooded will be huge, and the effect of reducing computational load cannot be expected. Therefore, it is necessary to judge the risk assessment by JPM-OS allowing the calculation accuracy in such areas with high flood frequency. Next, requirements to be evaluated should be considered. It is necessary to analyze a lot of typhoons, especially when obtaining the expected annual loss. The distribution of inundation depths for each return period used for underwriting and the loss for the representative return period required for risk management target at low-frequency risks, so it is not necessary to analyze all typhoons of stochastic typhoon model. In this case, if the method applied to the Tokyo Bay in this chapter is used to calculate until the hazard and loss amount in the representative return period converge, it is possible to reduce the calculation load and evaluate with high accuracy.
The author sincere thanks Professor Shigeru Tabeta and Assistant professor Katsunori Mizuno of The University of Tokyo for their considerable guidance. Special thanks are due the members of MS&AD InterRisk Research and Consulting, Inc. for their comments and supports.
The authors declare no conflict of interest.
The combustion of fossil fuels such as coal, oil and natural gas for energy generate a large amount of carbon dioxide (CO2) emission, causing global warming and climate change. Presently, legislation such as the Paris Agreement of 2015, provided a framework on dealing with greenhouse-gas-emissions (GHG) mitigation, and it is anticipated across the industrialised world to cut down the amount of CO2emissions and limit global warming to less than 2°C [1]. Additionally, the demand for energy is expected to increase by 50% in 2030, and also oil and gas are considered the principal feedstock of about 90% of chemicals produced worldwide, and it is forecasted that petrochemical industries will become the largest driver for global oil consumption by 2050 [2]. In this light, it is therefore important to mitigate the environmental impact of burning carbon-based fuels, in which potential progress has already been made in CO2 capture, utilisation and storage (CCUS) technologies [3]. The CCUS is considered a means to deliver low carbon energy, decarbonising industries, and facilitates the net removal of CO2 from the atmosphere. The stages involved include CO2 capture, transport of the captured CO2, utilisation and secure storage of the captured CO2.
Carbon dioxide capture will play a significant role as fossil fuel will continue to meet world energy needs during this transition to sustainable low-carbon energy system [4]. It has also been reported that this transition phase will linger for a long time, providing sufficient time for the development and commercialisation of renewable energy systems. The transportation sector especially logistics operations majorly depend on fossil fuels, resulting in large carbon footprint on the environment. Based on World Bank data, the shift into low-carbon energy such as renewable energy in logistics operations prove to minimise carbon emission and other greenhouse gases, create sustainable environment as well as improve economic performance [5, 6]. In 2018, the global CO2 emissions increased to 37.1 Gt which is forecasted to rise by about 10% in 2040, majorly due to the combustion of fossil fuels from industrial processes and transportation sector [7]. Hence, the impact of carbon emissions from logistics operations on the environment, global warming, climate change and health can be reduced remarkably by adopting renewable energy and green vehicles [6]. Therefore, government policy and legislations such as the Paris Agreement of 2015 are necessary to drive research and development into low-carbon energy and environmental sustainability. As a result of these policies, renewable energy and carbon capture technologies are being developed, and their implementation is expected to improve environmental quality and sustainability [5, 8, 9]. Unlike fossil fuels, renewable energies promote eco-friendly environment. Hence, CCUS technologies will enable the use of fossil fuels in a cleaner way when integrated with power plants to mitigate global warming and climate change effects. CO2 has found utilisation in the following areas mineralisation, biological utilisation, food and beverages, energy storage media, chemicals, enhanced oil recovery, coal bed methane and hydraulic fracturing processes [7]. However, public awareness and acceptance of CCUS is still low in spite of the attention shown by the scientific communities, industries and governments. Findings by Tcvetkov et al. [10] show that most studies on CCUS are dedicated to carbon dioxide storage in geological formation with less attention on capture and transportation. Hence, this study focuses on carbon dioxide capture using natural and renewable biomaterials such as eggshells and seashells.
The essence of carbon capture is to separate carbon dioxide from other gases produced as a result of the combustion of fossil fuels for power generation and industrial processes. Figure 1 shows the three main approaches to accomplish this, which are pre-combustion capture, post-combustion capture and oxy-fuel combustion methods.
Three common carbon dioxide capture approaches for coal fired power plant.
Before now, the capture of carbon dioxide is commonly achieved in the industry through absorption using liquid solvents such as selexol, rectisol, and mono-ethanol-amine, MEA [11]. The absorption process involves the use of two columns, namely the absorber and the stripper. This makes the process cost intensive in addition to corrosion issues. Consequently, a large amount of energy is needed to absorb CO2 [12]. On the other hand, physical adsorption via solid adsorption processes can selectively separate carbon dioxide from flue gas mixture. The advantages of adsorption include high selectivity, operation simplicity, low-cost, ease of regeneration, and low corrosiveness of adsorbent compared with solvent processes [11, 12].
The carbon dioxide adsorption approaches rely on the ability of the adsorbing material to preferentially adsorb CO2 over other gases. This is achieved through a packed bed system of the adsorbent materials. The adsorbent materials will continue to absorb CO2 until it is saturated, which is its adsorptive capacity. At this point, the packed bed undergoes desorption either through pressure swing adsorption (PSA) or temperature swing adsorption (TSA), which causes the release of the adsorbed CO2 to the point where the adsorbent material is at equilibrium [12, 13]. The commonly used adsorbent materials include zeolites, activated carbon, microporous/mesoporous silica, carbonates, carbon molecular sieves and metal organic frameworks. These materials possess adequate surface area and pore network structures that are highly microporous to accommodate and capture CO2 [12, 13]. The adsorbent materials are evaluated on the basis of adsorption capacity, preferential adsorption affinity for carbon dioxide over gases from flue gas stream, adsorption and desorption kinetics, low-cost, tolerance of impurities, mechanical strength, multicycle durability and regeneration of stability [13]. Additionally, the porous structure of the adsorbent material is engineered to improve mass transport by reducing diffusional resistance, and the microstructure and morphological texture must demonstrate the capacity to hold captured CO2 during multi cycling between the absorption and regeneration steps [13, 14]. However, since the process is based on gas-solid interaction, operational conditions such as gas flow rate, temperature and vibration could cause disintegration of adsorbent material due to crushing and abrasion, and consequently collapse pore network structures. It is also rare to find a single adsorbent material that maximises all the above highlighted attributes. Therefore, this review explores the use of other materials such as eggshell and seashell rich in calcium carbonate through reactive adsorption, which involves carbonation – calcination of CaO/CaCO3 for carbon dioxide capture.
Alkaline earth metal oxides have demonstrated a strong affinity for acidic gas such as carbon dioxide and sulphur oxides. These metal oxides, particularly calcium oxide (CaO), are effective for the removal of CO2 via carbonation at moderate temperatures of less than 700°C [11]. Hence, calcium oxide has proven a good sorbent material for carbon dioxide capture. With regards to availability and cost, an excellent source of CaO is calcium carbonate (CaCO3). The most widely natural source of CaCO3 includes dolomite and limestone. However, these natural resources are non-renewable, energy intensive to exploit, their mining cause damage to the environment as well as landscape. More also, CaO sorbent derived from natural limestone decreases in its reactivity over a number of cycles of reaction with CO2 [15]. As a result of this, attention has been shifted to renewable sources such as eggshells, seashells and snail shells. These waste biomaterials provide sustainable source of calcium carbonate (CaCO3) in the range of 90–96% [16]. Calcined eggshell and seashells such as oyster shell are rich in lime (CaO) and can be combined with post-combustion and pre-combustion systems to separate CO2 through cyclic carbonation of CaO (calcined eggshell/seashell) to CaCO3, and subsequently the calcination of CaCO3 to release pure CO2 and regenerate back to CaO, as shown in Figure 2 [15, 17, 18, 19]. This reversible reaction between CaO and CO2 is a promising approach of removing CO2 from flue gas from power plants, producing a pure stream of CO2 ready for geological sequestration [15, 19]. To achieve this objective, the material should exhibit sufficient reactivity and thermal stability. Eggshell and seashell are a low-cost and abundant alternative to synthetic calcium carbonate and lime sorbents.
Carbonation – calcination process in calcium looping cycle application for carbon capture.
The poultry and seafood industries generate millions of tonnes of waste shells annually, which are disposed of in landfills. These biomaterials are rich in calcium carbonate, and subsequently, a large source of calcium oxide. The discarded eggshells and seashells after consumption of their food content, the heap waste shell is a habitat for microbes which causes environmental and air pollution due to emission of intensive odour especially during microbial decomposition [16]. These waste shell biomaterials can be recycled and used as a source of calcium oxide material for carbon dioxide capture purposes. Remarkable costs can be saved when these waste shells biomaterials are re-used, with emphasises on economic and sustainable environmental benefits of recycling instead of disposing. However, the carbon dioxide capture capacity of synthesised calcium oxide sorbents from eggshell and seashells decreases, as cycles of carbonation and calcination increases because of sintering over time [17]. To remedy this, it is important to generate more porous surface structure in the biomaterials through pre-treatment and regeneration processes.
The major solid mineral component of eggshells and seashells is calcium carbonate in the range of 92–96% and minor trace elements such as silica, alumina, phosphorous, magnesium, sodium, potassium, zinc, manganese, iron, and copper. A detail composition of eggshell and seashells has been reported elsewhere [16]. The physical properties of some calcined eggshells and seashells biomaterials such as surface area, pore volume and pore diameter are shown in Table 1. These waste shells biomaterials exhibit the type-IV isotherm which an attribute of mesoporous texture morphology characterised with a network of micropores. The pore size re-affirms their microstructure characteristics to accommodate captured CO2. During calcination, the specific surface area and pore volume of the crushed eggshells and seashells biomaterials increases, as the calcination temperature increases. This is because of the evolution of porosity within the material as a result of the release of CO2 from CaCO3, leading to the formation of CaO [16, 20]. However, at a temperature greater than 900°C, the surface area and pore volume decreased due to prolonged thermal effect, resulting in sintering [16, 20].
Parameter | Mussel shell | Oyster shell | Chicken eggshell | Ostrich eggshell |
---|---|---|---|---|
Surface area (m2/g) | 89.91 | 24.00 | 54.60 | 71.00 |
Pore volume (cm3/g) | 0.130 | 0.04 | 0.015 | 0.022 |
Pore size (nm) | 3.5 | 6.6 | 0.54 | 0.61 |
Reference | [21] | [22] |
Surface area, pore size and volume of calcined seashells and eggshells biomaterials.
Figure 3 shows the X-Ray Diffraction (XRD) patterns of uncalcined (natural) and calcined (thermally treated) eggshell (quail) and seashell (oyster shell). The major component visible on the XRD pattern of the natural crushed shells is CaCO3and a small amount of Ca(OH)2. Both the quail eggshell and the oyster shell share identical diffraction patterns for both the natural and calcined forms.
XRD pattern of shells natural and calcined: (a) quail eggshell (*CaCO3, natural + CaO, calcined at 900°C) [
This suggests a similar mineralogical identity. After calcination (thermal treatment process), the diffraction lines attributed to rhombohedral phase for CaCO3 disappeared, with new diffraction patterns arising around 2θ = 32.3°, 37.4°, 53.7°, 63.9°, and 67.3° assigned to cubic phase for lime (CaO) appeared (Figure 3). It is worthy to note that the quail eggshell exhibited a crystallite size of 315 nm (CaCO3), while its calcined counterpart showed a size of 240 nm, CaO [23]. This crystallite size decrease can be ascribed to the exothermic natures of the calcination process. However, the lower intensity peaks for calcined eggshell and oyster shell could be related to the reduction in the crystallite size [21, 23]. Hence, the changes in the XRD pattern as a result of calcination are because of the release of carbon dioxide from the decomposition of CaCO3 into CaO.
The associated complexity and high cost for the production of carbon dioxide capture adsorbent materials such as activated carbon or zeolite has shifted attention to exploiting and developing cheap and renewable materials such as eggshells and seashells biomaterials. Figure 4 shows the procedure involved in the preparation of sorbent material from eggshells and seashells. The waste eggshells and seashells first undergo pre-treatment, which begins with acetic acid treatment with a concentration in the range of 1–10 molar to remove dirt, membrane layer, fibrous matters, proteins and other impurities as well as improve pore structure of the biomaterial [24]. Exposing the waste shells to acetic acid promotes the detachment of protein-collagen membrane depending on the extent, concentration and duration. At the end of this process, the sample is filtered and rinsed with distilled or deionised water. The separated eggshell or seashell is dried at 100–200°C for 5 h [16]. The dried biomaterials are crushed and then sieved into different particle size ranges depending on the application. The particles are calcined; the calcination process involves heat treatment to decompose the major component CaCO3 into CaO. The temperature of calcination could range from 500 to 1000°C depending on the application. It has been reported that at 900°C, the CaCO3 undergoes complete conversion into CaO [21]. The material produced after calcination is the sorbent material, which is placed in a desiccator to curtail the chances of coming in contact with humidity and carbon dioxide in the air.
Adsorbent material preparation procedure from eggshell and seashells.
In the pre-treatment phase, the reaction of acetic acid with CaCO3 results in the formation of calcium acetate, which has a larger molar volume than CaCO3 and CaO [25]. The acetic acid treatment helps to expand and improve particle pore structure. As a result of the expanded and enhanced pore network structure, improve performance is achieved over multiple carbonation-calcination reaction (CCR) cycles [24, 26, 27]. Hence, the increased porosity within the microstructure of the synthesised CaO sorbent biomaterial from eggshell or seashells leads to increased reactivity over time.
The continuing reliance on fossil fuels such as coal, natural gas and crude oil emits greenhouse gas (GHG) especially carbon dioxide (CO2), a major contributor to global warming. The application of physical and chemical absorption using solvents such as selexol, rectisol, and mono-ethanol-amine (MEA) to remove carbon dioxide from flue gas streams is limited by low-temperature, cost and energy-intensive to regenerate [11]. Produced CaO sorbent material from eggshells or seashells through the method outlined in Figure 4, has proven a good candidate for carbon dioxide capture from flue gas stream of power plants. This is owing to their affinity to carbonate in the presence of CO2; resulting in the formation of CaCO3 which is regenerated back to CaO via calcinations while pure CO2 is released for sequestration in the process as shown in Figure 5.
Schematic of the eggshell or seashell carbonation – calcination processes for carbon dioxide capture.
Unlike the adsorption process for CO2 capture using activated carbon or zeolite adsorbent materials, eggshells and seashells biomaterials are low-cost and offer exclusive environmental and economic benefits. Additionally, eggshell or seashell-derived CaO sorbent are abundant, renewable, simple to prepare and also possesses excellent thermal stability. The mechanism of CO2 capture by these biomaterials comprises of a series of carbonation-calcination reactions (CCR): calcium oxide (CaO) derived from eggshell or seashell reacts with CO2 in the flue gas stream, leading to calcium carbonate (CaCO3), which then undergoes calcination resulting in the release of a pure CO2 stream for sequestration, and at the same time is regenerated into CaO as shown in Figure 5 [24]. The pilot-scale demonstration of the concept has been reported for eggshell and oyster shell in the literature [24, 26, 27, 28, 29]. The reactions are summarised as follows: carbonation (CaO + CO2 → CaCO3) of the eggshell-derived CaO through reaction with CO2 forms calcium carbonate (CaCO3), while the calcination process (CaCO3 → CaO + CO2), regenerates the CaO bio-composite material, and liberate pure stream of CO2 for sequestration. Sacia et al. [27] investigated CaO sorbents derived from chicken eggshell for CO2 from coal-fired power plants. In the work, they discovered that the pre-treatment of the eggshell with acetic acid enhanced and expanded the derived-sorbent material pore structure and surface area, which favoured CO2 diffusion as mass transport is improved.
Figure 6 shows the effect of acetic acid concentration and treatment time on CO2 capture over multiple cycles. It is clear that the acetic acid treated eggshell outperformed the untreated counterpart. On the other hand, derived CaO from eggshell treated with a low concentration of acetic acid exhibited better reactivity and CO2 capture capacity than that treated with higher concentration. This can be attributed to the improved reactivity and porous surface structure within the biomaterials when treated with an optimised concentration of acetic acid [24, 26, 27].
Effect of acetic acid and treatment time on weight per cent CO2 capture using chicken eggshell [
Figure 6 also demonstrates that subjecting the eggshell or seashell to a higher strength acetic acid solution or for a longer treatment time could affect the pore structure, strength and stability of the derived CaO sorbent biomaterial. This is consistent with the result of the investigation reported by Sacia [17], on the use of eggshell for CO2 capture. Hence, the observed decrease in the reactivity and CO2 capture capacity under this condition. More also, the data shows that the derived sorbent from eggshell or seashell cannot be continuously regenerated over multiple cycles, as a result, fresh sorbent would be added as make-up during the process to sustain capture capacity (Figure 6). Depending on the acetic pre-treatment time, it has been reported that the CO2 capture ranges from 70 to 80% in the first cycle, and gradually drop to about 40% in the fifth cycle [27].
Figure 7 shows simulated thermogravimetric analyser (TGA) results to prove CO2 capture capacity of eggshell-derived sorbent using a typical flue gas stream (10% CO2 for 60 min cycles at 700°C). The weight of the sample indicates reactivity, while the weight increase signifies carbonation due to CO2 capture; the decrease represents the calcination process because of CO2 liberation. It is clear that the CO2 capture performance and reactivity gradually diminishes for multicycles over time.
Weight vs. time of eggshell-derived adsorbent for CO2 capture using TGA [
The reactivity and CO2 capture capacity of the eggshell or seashell derived CaO sorbent decline over time, so regeneration of sorbents in-situ is pivotal to maintaining CO2 capture. The regeneration can be carried out using deionised water and acetic acid solutions [27]. The effect of regeneration of the eggshell derived CaO sorbent on CO2 capture is shown in Figure 8. It is clear that regeneration with acetic acid is more effective than with water. Sacia [17] ascribed this observation to two factors. First, the use of acetic acid resulted in calcium acetate, which exhibited a higher molar volume than only Ca(OH)2 formed when water is used. Also, the combination of water and acetic acid allows for a surface structure rearrangement due to the solubility of calcium acetate in water. It has been found that the use of 2 M acetic acid offers the best performance after multiple cycle regeneration in terms of reactivity and CO2 capture [17, 24]. It can be observed that over three regenerations, all of the sorbent showed similar results trend.
Conversion vs. regenerations of eggshell derived CaO sorbent treated with a 1 M acetic acid for 30 min [
In the investigation of Sacia et al. [27], it was found that regeneration restored the reactivity of the eggshell-derived CaO sorbent, and subsequently, CO2 capture capacity in the range of 70–80% was achieved. The CO2 capture capacity increased on average after successive regeneration, as can be seen in Figure 8. This suggests that periodic regeneration can effectively increase the reactivity of the spent eggshell or seashell-derived CaO sorbent. In another study by Banerjee et al. [30], it was reported that after four successive regenerations over multi-cycles usage, the carbon dioxide capture capacity of the eggshell-derived sorbent material decreased from 6824 mg CO2/g to 1608 mg CO2/g an average compared to the fresh material. This indicates that the eggshell-derived CaO sorbent biomaterial could hold about eight times its own weight of CO2 from flue gas. Furthermore, Ma and Teng [31] investigated and reported the carbonation – calcination loop of CaO/CaCO3 process for CO2 capture using CaO derived sorbent from oyster shells. Though compared to reagent grade CaO from CaCO3, the oyster shell derived CaO possess bigger crystallite size and lower specific surface area. It was reported that at 740°C carbonation temperature, the oyster shell-derived CaO sorbent in cyclic carbonation exhibited superior performance to the reagent-grade CaO obtained from CaCO3. Therefore, utilising this waste biomaterial in CO2 capture encourages the reuse of materials in the industries, which will reduce the risk, cost and energy associated with mining limestone and dolomite for CaCO3 and CaO, and subsequently offers economic and environmental benefits. However, these benefits will be significant if the system is scaled-up to industrial standards.
There are large tonnes of eggshells and seashells discarded in landfill annually from poultry and food industries. Most of the seashells and eggshells are piled up on the seashore and thus would cause risks to water resources and public health. The applications of these biomaterials in construction such as concrete and cement production, catalyst manufacture, adsorbent for wastewater treatment, source of calcium in animal feed, manufacture of hydroxyapatite biomaterial, and additive in plastic manufacture has been explored extensively in the literature. These biomaterials contain about 96% calcium carbonate mineralogical component from which calcium oxide can be produced through thermal treatment. The carbonation – calcination loop of CaO/CaCO3 process has been investigated for CO2 capture potentials. Herein, the application of eggshell and seashell derived-CaO sorbent in the capture of carbon dioxide from flue gas is reviewed. The utilisation of this waste shell offers economic as well as environmental benefits because they are abundant, renewable and cheap. The CaO sorbent derived from eggshell and seashell has demonstrated the potential for carbon dioxide capture. It was also found that pre-treatment and regeneration provide means of restoring reactivity and CO2 capture capacity over multicyclic usage. Although this ensured sustainability and sorbent recyclability, the performance decreases ten cycles after regeneration. The future outlook will be to improve the carbon dioxide capture capacity and thermal stability of these biomaterials over multicycles operations.
If you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links.
",metaTitle:"List of Institutions by Country",metaDescription:"If you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links. However, if your research is financed through any of the below-mentioned funders, please consult their Open Access policies or grant ‘terms and conditions’ to explore ways to cover your publication costs (also accessible by clicking on the link in their title).",metaKeywords:null,canonicalURL:"open-access-funding-institutions-list",contentRaw:'[{"type":"htmlEditorComponent","content":"Book Chapters and Monographs
\\n\\nBook Chapters
\\n\\nMonographs Only
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\nMonographs Only
\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nCSIC affiliated authors can also take advantage of a central Open Access fund (amounting to 10,000 EUR) to cover up to 50% of the rest of the OAPF until it expires. Effective for chapters accepted from January 1, 2020.
\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\n\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nThe Claremont Colleges are pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 15% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nThe University of Massachusetts, Amherst is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nThe University of Surrey is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nMonographs Only
\\n\\n\\n\\nImportant: You must be a member or grantee of the above listed institutions in order to apply for their Open Access publication funds.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Book Chapters and Monographs
\n\n\n\nBook Chapters
\n\nMonographs Only
\n\n\n\nBook Chapters and Monographs
\n\nMonographs Only
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\n\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nCSIC affiliated authors can also take advantage of a central Open Access fund (amounting to 10,000 EUR) to cover up to 50% of the rest of the OAPF until it expires. Effective for chapters accepted from January 1, 2020.
\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\n\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\nThe Claremont Colleges are pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 15% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nThe University of Massachusetts, Amherst is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nThe University of Surrey is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nMonographs Only
\n\n\n\nImportant: You must be a member or grantee of the above listed institutions in order to apply for their Open Access publication funds.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5816},{group:"region",caption:"Middle and South America",value:2,count:5281},{group:"region",caption:"Africa",value:3,count:1754},{group:"region",caption:"Asia",value:4,count:10511},{group:"region",caption:"Australia and Oceania",value:5,count:906},{group:"region",caption:"Europe",value:6,count:15913}],offset:12,limit:12,total:119060},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"10567",title:"Uncertainty Management in Engineering - Topics in Pollution Prevention and Controls",subtitle:null,isOpenForSubmission:!0,hash:"4990db602d31f1848c590dbfe97b6409",slug:null,bookSignature:"Prof. Rehab O. Abdel Rahman and Dr. Yung-Tse Hung",coverURL:"https://cdn.intechopen.com/books/images_new/10567.jpg",editedByType:null,editors:[{id:"92718",title:"Prof.",name:"Rehab",surname:"Abdel Rahman",slug:"rehab-abdel-rahman",fullName:"Rehab Abdel Rahman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8977",title:"Protein Kinase - New Opportunities, Challenges and Future Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"6d200cc031706a565b554fdb1c478901",slug:null,bookSignature:"Dr. Rajesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",editedByType:null,editors:[{id:"329385",title:"Dr.",name:"Rajesh",surname:"Singh",slug:"rajesh-singh",fullName:"Rajesh Singh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10582",title:"Chemical Vapor Deposition",subtitle:null,isOpenForSubmission:!0,hash:"f9177ff0e61198735fb86a81303259d0",slug:null,bookSignature:"Dr. Sadia Ameen, Dr. M. Shaheer Akhtar and Prof. Hyung-Shik Shin",coverURL:"https://cdn.intechopen.com/books/images_new/10582.jpg",editedByType:null,editors:[{id:"52613",title:"Dr.",name:"Sadia",surname:"Ameen",slug:"sadia-ameen",fullName:"Sadia Ameen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10814",title:"Anxiety, Uncertainty, and Resilience During the Pandemic Period - Anthropological and Psychological Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"2db4d2a6638d2c66f7a5741d0f8fe4ae",slug:null,bookSignature:"Prof. Fabio Gabrielli and Dr. Floriana Irtelli",coverURL:"https://cdn.intechopen.com/books/images_new/10814.jpg",editedByType:null,editors:[{id:"259407",title:"Prof.",name:"Fabio",surname:"Gabrielli",slug:"fabio-gabrielli",fullName:"Fabio Gabrielli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10519",title:"Middleware Architecture",subtitle:null,isOpenForSubmission:!0,hash:"c326d436ae0f4c508849d2336dbdfb48",slug:null,bookSignature:"Dr. Mehdia Ajana El Khaddar",coverURL:"https://cdn.intechopen.com/books/images_new/10519.jpg",editedByType:null,editors:[{id:"26677",title:"Dr.",name:"Mehdia",surname:"Ajana El Khaddar",slug:"mehdia-ajana-el-khaddar",fullName:"Mehdia Ajana El Khaddar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10504",title:"Crystallization",subtitle:null,isOpenForSubmission:!0,hash:"3478d05926950f475f4ad2825d340963",slug:null,bookSignature:"Dr. Youssef Ben Smida and Dr. Riadh Marzouki",coverURL:"https://cdn.intechopen.com/books/images_new/10504.jpg",editedByType:null,editors:[{id:"311698",title:"Dr.",name:"Youssef",surname:"Ben Smida",slug:"youssef-ben-smida",fullName:"Youssef Ben Smida"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9816",title:"Idiopathic Pulmonary Fibrosis",subtitle:null,isOpenForSubmission:!0,hash:"365bb9762ba33db2d07e677690af1772",slug:null,bookSignature:"Dr. Salim Surani and Dr. Venkat Rajasurya",coverURL:"https://cdn.intechopen.com/books/images_new/9816.jpg",editedByType:null,editors:[{id:"15654",title:"Dr.",name:"Salim",surname:"Surani",slug:"salim-surani",fullName:"Salim Surani"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10789",title:"Cervical Cancer - A Global Public Health Treatise",subtitle:null,isOpenForSubmission:!0,hash:"3f7a79875d0d0ae71479de8c60276913",slug:null,bookSignature:"Dr. Rajamanickam Rajkumar",coverURL:"https://cdn.intechopen.com/books/images_new/10789.jpg",editedByType:null,editors:[{id:"120109",title:"Dr.",name:"Rajamanickam",surname:"Rajkumar",slug:"rajamanickam-rajkumar",fullName:"Rajamanickam Rajkumar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10568",title:"Hysteresis in Engineering",subtitle:null,isOpenForSubmission:!0,hash:"6482387993b3cebffafe856a916c44ce",slug:null,bookSignature:"Dr. Giuseppe Viola",coverURL:"https://cdn.intechopen.com/books/images_new/10568.jpg",editedByType:null,editors:[{id:"173586",title:"Dr.",name:"Giuseppe",surname:"Viola",slug:"giuseppe-viola",fullName:"Giuseppe Viola"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10668",title:"Sustainable Concrete",subtitle:null,isOpenForSubmission:!0,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:null,bookSignature:"Prof. Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",editedByType:null,editors:[{id:"144691",title:"Prof.",name:"Hosam",surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10557",title:"Elaeis guineensis",subtitle:null,isOpenForSubmission:!0,hash:"79500ab1930271876b4e0575e2ed3966",slug:null,bookSignature:"Dr. Hesam Kamyab",coverURL:"https://cdn.intechopen.com/books/images_new/10557.jpg",editedByType:null,editors:[{id:"225957",title:"Dr.",name:"Hesam",surname:"Kamyab",slug:"hesam-kamyab",fullName:"Hesam Kamyab"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10648",title:"Vibrios",subtitle:null,isOpenForSubmission:!0,hash:"863c86c37b8a066ed95397fd9a114a71",slug:null,bookSignature:"Dr. Lixing Huang and Dr. Jie Li",coverURL:"https://cdn.intechopen.com/books/images_new/10648.jpg",editedByType:null,editors:[{id:"333148",title:"Dr.",name:"Lixing",surname:"Huang",slug:"lixing-huang",fullName:"Lixing Huang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:25},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:7},{group:"topic",caption:"Business, Management and Economics",value:7,count:3},{group:"topic",caption:"Chemistry",value:8,count:11},{group:"topic",caption:"Computer and Information Science",value:9,count:9},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:9},{group:"topic",caption:"Engineering",value:11,count:25},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:7},{group:"topic",caption:"Mathematics",value:15,count:2},{group:"topic",caption:"Medicine",value:16,count:44},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:169},popularBooks:{featuredBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8445",title:"Dam Engineering",subtitle:"Recent Advances in Design and Analysis",isOpenForSubmission:!1,hash:"a7e4d2ecbc65d78fa7582e0d2e143906",slug:"dam-engineering-recent-advances-in-design-and-analysis",bookSignature:"Zhongzhi Fu and Erich Bauer",coverURL:"https://cdn.intechopen.com/books/images_new/8445.jpg",editors:[{id:"249577",title:"Dr.",name:"Zhongzhi",middleName:null,surname:"Fu",slug:"zhongzhi-fu",fullName:"Zhongzhi Fu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8937",title:"Soil Moisture Importance",subtitle:null,isOpenForSubmission:!1,hash:"3951728ace7f135451d66b72e9908b47",slug:"soil-moisture-importance",bookSignature:"Ram Swaroop Meena and Rahul Datta",coverURL:"https://cdn.intechopen.com/books/images_new/8937.jpg",editors:[{id:"313528",title:"Associate Prof.",name:"Ram Swaroop",middleName:null,surname:"Meena",slug:"ram-swaroop-meena",fullName:"Ram Swaroop Meena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7031",title:"Liver Pathology",subtitle:null,isOpenForSubmission:!1,hash:"631321b0565459ed0175917f1c8c727f",slug:"liver-pathology",bookSignature:"Vijay Gayam and Omer Engin",coverURL:"https://cdn.intechopen.com/books/images_new/7031.jpg",editors:[{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8158",title:"Veganism",subtitle:"a Fashion Trend or Food as a Medicine",isOpenForSubmission:!1,hash:"d8e51fc25a379e5b92a270addbb4351d",slug:"veganism-a-fashion-trend-or-food-as-a-medicine",bookSignature:"Miljana Z. Jovandaric",coverURL:"https://cdn.intechopen.com/books/images_new/8158.jpg",editors:[{id:"268043",title:"Dr.",name:"Miljana Z.",middleName:"Z",surname:"Jovandaric",slug:"miljana-z.-jovandaric",fullName:"Miljana Z. Jovandaric"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5315},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8445",title:"Dam Engineering",subtitle:"Recent Advances in Design and Analysis",isOpenForSubmission:!1,hash:"a7e4d2ecbc65d78fa7582e0d2e143906",slug:"dam-engineering-recent-advances-in-design-and-analysis",bookSignature:"Zhongzhi Fu and Erich Bauer",coverURL:"https://cdn.intechopen.com/books/images_new/8445.jpg",editors:[{id:"249577",title:"Dr.",name:"Zhongzhi",middleName:null,surname:"Fu",slug:"zhongzhi-fu",fullName:"Zhongzhi Fu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8937",title:"Soil Moisture Importance",subtitle:null,isOpenForSubmission:!1,hash:"3951728ace7f135451d66b72e9908b47",slug:"soil-moisture-importance",bookSignature:"Ram Swaroop Meena and Rahul Datta",coverURL:"https://cdn.intechopen.com/books/images_new/8937.jpg",editors:[{id:"313528",title:"Associate Prof.",name:"Ram Swaroop",middleName:null,surname:"Meena",slug:"ram-swaroop-meena",fullName:"Ram Swaroop Meena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7031",title:"Liver Pathology",subtitle:null,isOpenForSubmission:!1,hash:"631321b0565459ed0175917f1c8c727f",slug:"liver-pathology",bookSignature:"Vijay Gayam and Omer Engin",coverURL:"https://cdn.intechopen.com/books/images_new/7031.jpg",editors:[{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editedByType:"Edited by",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editedByType:"Edited by",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9536",title:"Education at the Intersection of Globalization and Technology",subtitle:null,isOpenForSubmission:!1,hash:"0cf6891060eb438d975d250e8b127ed6",slug:"education-at-the-intersection-of-globalization-and-technology",bookSignature:"Sharon Waller, Lee Waller, Vongai Mpofu and Mercy Kurebwa",coverURL:"https://cdn.intechopen.com/books/images_new/9536.jpg",editedByType:"Edited by",editors:[{id:"263302",title:"Dr.",name:"Sharon",middleName:null,surname:"Waller",slug:"sharon-waller",fullName:"Sharon Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editedByType:"Edited by",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editedByType:"Edited by",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9524",title:"Organ Donation and Transplantation",subtitle:null,isOpenForSubmission:!1,hash:"6ef47e03cd4e6476946fc28ca51de825",slug:"organ-donation-and-transplantation",bookSignature:"Vassil Mihaylov",coverURL:"https://cdn.intechopen.com/books/images_new/9524.jpg",editedByType:"Edited by",editors:[{id:"313113",title:"Associate Prof.",name:"Vassil",middleName:null,surname:"Mihaylov",slug:"vassil-mihaylov",fullName:"Vassil Mihaylov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9280",title:"Underwater Work",subtitle:null,isOpenForSubmission:!1,hash:"647b4270d937deae4a82f5702d1959ec",slug:"underwater-work",bookSignature:"Sérgio António Neves Lousada",coverURL:"https://cdn.intechopen.com/books/images_new/9280.jpg",editedByType:"Edited by",editors:[{id:"248645",title:"Dr.",name:"Sérgio António",middleName:null,surname:"Neves Lousada",slug:"sergio-antonio-neves-lousada",fullName:"Sérgio António Neves Lousada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editedByType:"Edited by",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8158",title:"Veganism",subtitle:"a Fashion Trend or Food as a Medicine",isOpenForSubmission:!1,hash:"d8e51fc25a379e5b92a270addbb4351d",slug:"veganism-a-fashion-trend-or-food-as-a-medicine",bookSignature:"Miljana Z. Jovandaric",coverURL:"https://cdn.intechopen.com/books/images_new/8158.jpg",editedByType:"Edited by",editors:[{id:"268043",title:"Dr.",name:"Miljana Z.",middleName:"Z",surname:"Jovandaric",slug:"miljana-z.-jovandaric",fullName:"Miljana Z. Jovandaric"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"255",title:"Kinematics",slug:"kinematics",parent:{title:"Robotics",slug:"physical-sciences-engineering-and-technology-robotics"},numberOfBooks:8,numberOfAuthorsAndEditors:189,numberOfWosCitations:375,numberOfCrossrefCitations:301,numberOfDimensionsCitations:556,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"kinematics",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"6135",title:"Kinematics",subtitle:null,isOpenForSubmission:!1,hash:"64adad9c40c91ce89d9056f769b6cf52",slug:"kinematics",bookSignature:"Efren Gorrostieta Hurtado",coverURL:"https://cdn.intechopen.com/books/images_new/6135.jpg",editedByType:"Edited by",editors:[{id:"38850",title:"Dr.",name:"Efren",middleName:null,surname:"Gorrostieta Hurtado",slug:"efren-gorrostieta-hurtado",fullName:"Efren Gorrostieta Hurtado"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5245",title:"Recent Advances in Robotic Systems",subtitle:null,isOpenForSubmission:!1,hash:"f42dd7ed81a8b4ec4dd63428cc4b1904",slug:"recent-advances-in-robotic-systems",bookSignature:"Guanghui Wang",coverURL:"https://cdn.intechopen.com/books/images_new/5245.jpg",editedByType:"Edited by",editors:[{id:"178603",title:"Dr.",name:"Guanghui",middleName:null,surname:"Wang",slug:"guanghui-wang",fullName:"Guanghui Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5146",title:"New Trends in 3D Printing",subtitle:null,isOpenForSubmission:!1,hash:"5037ec6d42efc126863049b42879e7b9",slug:"new-trends-in-3d-printing",bookSignature:"Igor V Shishkovsky",coverURL:"https://cdn.intechopen.com/books/images_new/5146.jpg",editedByType:"Edited by",editors:[{id:"174257",title:"Prof.",name:"Igor",middleName:null,surname:"Shishkovsky",slug:"igor-shishkovsky",fullName:"Igor Shishkovsky"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1876",title:"Serial and Parallel Robot Manipulators",subtitle:"Kinematics, Dynamics, Control and Optimization",isOpenForSubmission:!1,hash:"ccdd21118a081fb3fada9ceddafa4192",slug:"serial-and-parallel-robot-manipulators-kinematics-dynamics-control-and-optimization",bookSignature:"Serdar Kucuk",coverURL:"https://cdn.intechopen.com/books/images_new/1876.jpg",editedByType:"Edited by",editors:[{id:"5424",title:"Dr.",name:"Serdar",middleName:null,surname:"Küçük",slug:"serdar-kucuk",fullName:"Serdar Küçük"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1880",title:"Mobile Robots",subtitle:"Control Architectures, Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training",isOpenForSubmission:!1,hash:"5c978b99bcfc519f4f27256ae5b2e212",slug:"mobile-robots-control-architectures-bio-interfacing-navigation-multi-robot-motion-planning-and-operator-training",bookSignature:"Janusz Będkowski",coverURL:"https://cdn.intechopen.com/books/images_new/1880.jpg",editedByType:"Edited by",editors:[{id:"63695",title:"Dr.",name:"Janusz",middleName:null,surname:"Bȩdkowski",slug:"janusz-bdkowski",fullName:"Janusz Bȩdkowski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3637",title:"Cutting Edge Robotics 2010",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"cutting-edge-robotics-2010",bookSignature:"Vedran Kordic",coverURL:"https://cdn.intechopen.com/books/images_new/3637.jpg",editedByType:"Edited by",editors:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3701",title:"Motion Control",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"motion-control",bookSignature:"Federico Casolo",coverURL:"https://cdn.intechopen.com/books/images_new/3701.jpg",editedByType:"Edited by",editors:[{id:"3413",title:"dr.eng.",name:"Federico",middleName:null,surname:"Casolo",slug:"federico-casolo",fullName:"Federico Casolo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3797",title:"Industrial Robotics",subtitle:"Programming, Simulation and Applications",isOpenForSubmission:!1,hash:"1e417b44016323de5c12e77210148af6",slug:"industrial_robotics_programming_simulation_and_applications",bookSignature:"Low Kin Huat",coverURL:"https://cdn.intechopen.com/books/images_new/3797.jpg",editedByType:"Edited by",editors:[{id:"134111",title:"Dr.",name:"Kin Huat",middleName:null,surname:"Low",slug:"kin-huat-low",fullName:"Kin Huat Low"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:8,mostCitedChapters:[{id:"12200",doi:"10.5772/10312",title:"Emotion Recognition through Physiological Signals for Human-Machine Communication",slug:"emotion-recognition-through-physiological-signals-for-human-machine-communication",totalDownloads:4714,totalCrossrefCites:25,totalDimensionsCites:53,book:{slug:"cutting-edge-robotics-2010",title:"Cutting Edge Robotics 2010",fullTitle:"Cutting Edge Robotics 2010"},signatures:"Choubeila Maaoui and Alain Pruski",authors:null},{id:"259",doi:"10.5772/4895",title:"Accuracy and Calibration Issues of Industrial Manipulators",slug:"accuracy_and_calibration_issues_of_industrial_manipulators",totalDownloads:6160,totalCrossrefCites:16,totalDimensionsCites:33,book:{slug:"industrial_robotics_programming_simulation_and_applications",title:"Industrial Robotics",fullTitle:"Industrial Robotics: Programming, Simulation and Applications"},signatures:"Mohamed Abderrahim, Alla Khamis, Santiago Garrido and Luis Moreno",authors:null},{id:"50676",doi:"10.5772/63337",title:"Metal Powder Additive Manufacturing",slug:"metal-powder-additive-manufacturing",totalDownloads:4326,totalCrossrefCites:17,totalDimensionsCites:31,book:{slug:"new-trends-in-3d-printing",title:"New Trends in 3D Printing",fullTitle:"New Trends in 3D Printing"},signatures:"Anatoliy Popovich and Vadim Sufiiarov",authors:[{id:"179005",title:"Ph.D.",name:"Vadim",middleName:null,surname:"Sufiiarov",slug:"vadim-sufiiarov",fullName:"Vadim Sufiiarov"},{id:"179594",title:"Prof.",name:"Anatoliy",middleName:null,surname:"Popovich",slug:"anatoliy-popovich",fullName:"Anatoliy Popovich"}]}],mostDownloadedChaptersLast30Days:[{id:"51224",title:"Series Elastic Actuator: Design, Analysis and Comparison",slug:"series-elastic-actuator-design-analysis-and-comparison",totalDownloads:2700,totalCrossrefCites:2,totalDimensionsCites:5,book:{slug:"recent-advances-in-robotic-systems",title:"Recent Advances in Robotic Systems",fullTitle:"Recent Advances in Robotic Systems"},signatures:"Arnaldo Gomes Leal Junior, Rafhael Milanezi de Andrade and\nAntônio Bento Filho",authors:[{id:"182082",title:"Dr.",name:"Rafhael",middleName:"Milanezi De",surname:"Andrade",slug:"rafhael-andrade",fullName:"Rafhael Andrade"},{id:"185372",title:"Dr.",name:"Antônio",middleName:null,surname:"Bento Filho",slug:"antonio-bento-filho",fullName:"Antônio Bento Filho"},{id:"185373",title:"MSc.",name:"Arnaldo",middleName:null,surname:"Gomes Leal Junior",slug:"arnaldo-gomes-leal-junior",fullName:"Arnaldo Gomes Leal Junior"}]},{id:"50812",title:"Fish-Like Robot Encapsulated by a Plastic Film",slug:"fish-like-robot-encapsulated-by-a-plastic-film",totalDownloads:1136,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"recent-advances-in-robotic-systems",title:"Recent Advances in Robotic Systems",fullTitle:"Recent Advances in Robotic Systems"},signatures:"Mizuho Shibata",authors:[{id:"180106",title:"Dr.",name:"Mizuho",middleName:null,surname:"Shibata",slug:"mizuho-shibata",fullName:"Mizuho Shibata"}]},{id:"57937",title:"The Inertia Value Transformation in Maritime Applications",slug:"the-inertia-value-transformation-in-maritime-applications",totalDownloads:951,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"kinematics",title:"Kinematics",fullTitle:"Kinematics"},signatures:"Holger Korte, Sven Stuppe, Jan-Hendrik Wesuls and Tsutomu\nTakagi",authors:[{id:"209578",title:"Prof.",name:"Holger",middleName:null,surname:"Korte",slug:"holger-korte",fullName:"Holger Korte"},{id:"209580",title:"Mr.",name:"Sven",middleName:null,surname:"Stuppe",slug:"sven-stuppe",fullName:"Sven Stuppe"},{id:"209581",title:"Mr.",name:"Jan-Hendrik",middleName:null,surname:"Wesuls",slug:"jan-hendrik-wesuls",fullName:"Jan-Hendrik Wesuls"},{id:"209584",title:"Prof.",name:"Tsutomu",middleName:null,surname:"Takagi",slug:"tsutomu-takagi",fullName:"Tsutomu Takagi"}]},{id:"50821",title:"Laser-Assisted 3D Printing of Functional Graded Structures from Polymer Covered Nanocomposites: A Self-Review",slug:"laser-assisted-3d-printing-of-functional-graded-structures-from-polymer-covered-nanocomposites-a-sel",totalDownloads:2084,totalCrossrefCites:5,totalDimensionsCites:7,book:{slug:"new-trends-in-3d-printing",title:"New Trends in 3D Printing",fullTitle:"New Trends in 3D Printing"},signatures:"Igor Volyanskii and Igor V. Shishkovsky",authors:[{id:"178616",title:"Prof.",name:"Igor",middleName:"V.",surname:"Shishkovsky",slug:"igor-shishkovsky",fullName:"Igor Shishkovsky"}]},{id:"57452",title:"Kinematic Performance Measures and Optimization of Parallel Kinematics Manipulators: A Brief Review",slug:"kinematic-performance-measures-and-optimization-of-parallel-kinematics-manipulators-a-brief-review",totalDownloads:1122,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"kinematics",title:"Kinematics",fullTitle:"Kinematics"},signatures:"Abdur Rosyid, Bashar El-Khasawneh and Anas Alazzam",authors:[{id:"209597",title:"Dr.",name:"Bashar",middleName:null,surname:"El-Khasawneh",slug:"bashar-el-khasawneh",fullName:"Bashar El-Khasawneh"},{id:"217882",title:"Mr.",name:"Abdur",middleName:null,surname:"Rosyid",slug:"abdur-rosyid",fullName:"Abdur Rosyid"},{id:"217884",title:"Dr.",name:"Anas",middleName:null,surname:"Alazzam",slug:"anas-alazzam",fullName:"Anas Alazzam"}]},{id:"57578",title:"Kinematic and Biodynamic Model of the Long Jump Technique",slug:"kinematic-and-biodynamic-model-of-the-long-jump-technique",totalDownloads:1279,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"kinematics",title:"Kinematics",fullTitle:"Kinematics"},signatures:"Milan Čoh, Milan Žvan and Otmar Kugovnik",authors:[{id:"208530",title:"Ph.D.",name:"Milan",middleName:null,surname:"Čoh",slug:"milan-coh",fullName:"Milan Čoh"}]},{id:"57605",title:"Optimization Approach for Inverse Kinematic Solution",slug:"optimization-approach-for-inverse-kinematic-solution",totalDownloads:1069,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"kinematics",title:"Kinematics",fullTitle:"Kinematics"},signatures:"Panchanand Jha and Bibhuti Bhusan Biswal",authors:[{id:"209316",title:"Dr.",name:"Panchanand",middleName:null,surname:"Jha",slug:"panchanand-jha",fullName:"Panchanand Jha"},{id:"209681",title:"Dr.",name:"Bibhuti Bhusan",middleName:null,surname:"Biswal",slug:"bibhuti-bhusan-biswal",fullName:"Bibhuti Bhusan Biswal"}]},{id:"50565",title:"Additive Manufacturing of Casting Tools Using Powder-Binder- Jetting Technology",slug:"additive-manufacturing-of-casting-tools-using-powder-binder-jetting-technology",totalDownloads:1717,totalCrossrefCites:5,totalDimensionsCites:6,book:{slug:"new-trends-in-3d-printing",title:"New Trends in 3D Printing",fullTitle:"New Trends in 3D Printing"},signatures:"Daniel Günther and Florian Mögele",authors:[{id:"178321",title:"Dr.",name:"Daniel",middleName:null,surname:"Guenther",slug:"daniel-guenther",fullName:"Daniel Guenther"},{id:"184991",title:"Dr.",name:"Florian",middleName:null,surname:"Moegele",slug:"florian-moegele",fullName:"Florian Moegele"}]},{id:"51343",title:"Color 3D Printing: Theory, Method, and Application",slug:"color-3d-printing-theory-method-and-application",totalDownloads:1854,totalCrossrefCites:2,totalDimensionsCites:5,book:{slug:"new-trends-in-3d-printing",title:"New Trends in 3D Printing",fullTitle:"New Trends in 3D Printing"},signatures:"Guangxue Chen, Chen Chen, Zhaohui Yu, Hao Yin, Liuxi He and\nJiangping Yuan",authors:[{id:"179066",title:"Prof.",name:"Guangxue",middleName:null,surname:"Chen",slug:"guangxue-chen",fullName:"Guangxue Chen"},{id:"179662",title:"Dr.",name:"Hao",middleName:null,surname:"Yin",slug:"hao-yin",fullName:"Hao Yin"},{id:"179663",title:"Dr.",name:"Chen",middleName:null,surname:"Chen",slug:"chen-chen",fullName:"Chen Chen"},{id:"179665",title:"MSc.",name:"Liuxi",middleName:null,surname:"He",slug:"liuxi-he",fullName:"Liuxi He"},{id:"179666",title:"MSc.",name:"Jiangping",middleName:null,surname:"Yuan",slug:"jiangping-yuan",fullName:"Jiangping Yuan"}]},{id:"51155",title:"Dynamic Optimized Bandwidth Management for Teleoperation of Collaborative Robots",slug:"dynamic-optimized-bandwidth-management-for-teleoperation-of-collaborative-robots",totalDownloads:1079,totalCrossrefCites:1,totalDimensionsCites:0,book:{slug:"recent-advances-in-robotic-systems",title:"Recent Advances in Robotic Systems",fullTitle:"Recent Advances in Robotic Systems"},signatures:"Chadi Mansour, Mohamad El Hariri, Imad H. Elhajj, Elie Shammas\nand Daniel Asmar",authors:[{id:"184287",title:"Dr.",name:"Mohamad",middleName:null,surname:"El Hariri",slug:"mohamad-el-hariri",fullName:"Mohamad El Hariri"}]}],onlineFirstChaptersFilter:{topicSlug:"kinematics",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"chapter.detail",path:"/books/coastal-environments/storm-surge-risk-assessment-for-non-life-insurance",hash:"",query:{},params:{book:"coastal-environments",chapter:"storm-surge-risk-assessment-for-non-life-insurance"},fullPath:"/books/coastal-environments/storm-surge-risk-assessment-for-non-life-insurance",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()