Biopolymers for composites
\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"intechopen-partners-with-ehs-for-digital-advertising-representation-20210416",title:"IntechOpen Partners with EHS for Digital Advertising Representation"},{slug:"intechopen-signs-new-contract-with-cepiec-china-for-distribution-of-open-access-books-20210319",title:"IntechOpen Signs New Contract with CEPIEC, China for Distribution of Open Access Books"},{slug:"150-million-downloads-and-counting-20210316",title:"150 Million Downloads and Counting"},{slug:"intechopen-secures-indefinite-content-preservation-with-clockss-20210309",title:"IntechOpen Secures Indefinite Content Preservation with CLOCKSS"},{slug:"intechopen-expands-to-all-global-amazon-channels-with-full-catalog-of-books-20210308",title:"IntechOpen Expands to All Global Amazon Channels with Full Catalog of Books"},{slug:"stanford-university-identifies-top-2-scientists-over-1-000-are-intechopen-authors-and-editors-20210122",title:"Stanford University Identifies Top 2% Scientists, Over 1,000 are IntechOpen Authors and Editors"},{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"}]},book:{item:{type:"book",id:"7480",leadTitle:null,fullTitle:"Neurochemical Basis of Brain Function and Dysfunction",title:"Neurochemical Basis of Brain Function and Dysfunction",subtitle:null,reviewType:"peer-reviewed",abstract:"Neurochemistry is a vitally important academic discipline that contributes to our understanding of molecular, cellular, and medical neurobiology. As a field, neurochemistry focuses on the role of the chemical entities that build the nervous system, the function of neurons and glial cells in health and disease, aspects of cell metabolism and neurotransmission, and degenerative processes and aging of the nervous system. Accordingly, this book contains chapters on a variety of topics related to the neurochemical basis of brain function and dysfunction. The volume is organized into four chapters: I. The Chemical Basis of Neural Function and Dysfunction; II. Synaptic Transmission and Amino Acid Neurotransmitters; III. Trends of Protein Aggregation in Neurodegenerative Diseases; IV. Targeting the NO/cGMP/CREB Phosphorylation Signaling Pathway in Alzheimer's Disease. Chapters contain comprehensive reviews of these different areas written by experts in their respective fields. This book is a valuable resource for neurochemists and other scientists alike. In addition, it contributes to the training of current and future neurochemists and, hopefully, will lead us on the path to curing some of the biggest challenges in human health.",isbn:"978-1-83880-000-0",printIsbn:"978-1-78985-999-7",pdfIsbn:"978-1-83880-025-3",doi:"10.5772/intechopen.75850",price:100,priceEur:109,priceUsd:129,slug:"neurochemical-basis-of-brain-function-and-dysfunction",numberOfPages:78,isOpenForSubmission:!1,isInWos:null,hash:"262be213941c1aaa0dd80896713f5e1f",bookSignature:"Thomas Heinbockel and Antonei B. Csoka",publishedDate:"October 23rd 2019",coverURL:"https://cdn.intechopen.com/books/images_new/7480.jpg",numberOfDownloads:2868,numberOfWosCitations:0,numberOfCrossrefCitations:6,numberOfDimensionsCitations:11,hasAltmetrics:0,numberOfTotalCitations:17,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 15th 2018",dateEndSecondStepPublish:"September 25th 2018",dateEndThirdStepPublish:"November 24th 2018",dateEndFourthStepPublish:"February 12th 2019",dateEndFifthStepPublish:"April 13th 2019",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,editors:[{id:"70569",title:"Dr.",name:"Thomas",middleName:null,surname:"Heinbockel",slug:"thomas-heinbockel",fullName:"Thomas Heinbockel",profilePictureURL:"https://mts.intechopen.com/storage/users/70569/images/system/70569.jfif",biography:"Thomas Heinbockel, Ph.D., is a Professor and Interim Chair in the Department of Anatomy, Howard University College of Medicine, Washington, DC. Dr. Heinbockel’s laboratory engages in multidisciplinary research to elucidate organizational principles of neural systems in the brain, specifically the limbic and olfactory system. His research has been directed at understanding brain mechanisms of information processing and their relation to neurological and neuropsychiatric disorders. His laboratory also works on translational projects, specifically, the development of novel anti-epileptic drugs and pharmacotherapeutic treatment options for drug addiction. His laboratory analyzes drug actions at the epi- and genetic level using next-generation sequencing technology. The goal of his studies is to conduct innovative basic and applied research on fundamental biological mechanisms involved in disease conditions (Covid-19, HIV). Dr. Heinbockel studied biology at the Philipps-University, Marburg, Germany. His studies of the brain started during his M.S. thesis work at the Max-Planck-Institute for Behavioral Physiology, Starnberg/Seewiesen, Germany. Subsequently, he completed a Ph.D. in Neuroscience at the University of Arizona, Tucson, Arizona, USA. After graduating, he worked as a Research Associate at the Institute of Physiology, Otto-von-Guericke-University School of Medicine, Magdeburg, Germany. Prior to his arrival at Howard University, Dr. Heinbockel held joint research faculty appointments in the Department of Anatomy & Neurobiology and the Department of Physiology at the University of Maryland School of Medicine, Baltimore, Maryland, USA. He still maintains an adjunct appointment in these departments.",institutionString:"Howard University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"10",totalChapterViews:"0",totalEditedBooks:"7",institution:{name:"Howard University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"245650",title:"Dr.",name:"Antonei B.",middleName:null,surname:"Csoka",slug:"antonei-b.-csoka",fullName:"Antonei B. Csoka",profilePictureURL:"https://mts.intechopen.com/storage/users/245650/images/6867_n.jpg",biography:"Antonei B. Csoka, Ph.D. is an Assistant Professor in the Department of Anatomy at Howard University, Washington DC, where he directs the Epigenetics Laboratory. Dr. Csoka received his B.S. in Genetics from the University of Newcastle, U.K., his M.S. in Molecular Pathology from the University of Leicester, U.K., and his Ph.D. in Cell and Molecular Biology from the University of Debrecen, Hungary. He performed postdoctoral research at the University of California, San Francisco, where he cloned the human hyaluronidase genes. At Brown University, he was a member of a team that identified the causative gene for Hutchinson-Gilford Progeria Syndrome (Progeria), a disease with many features of 'accelerated aging.” At Howard, Dr. Csoka is studying the role of cellular senescence in human aging and the role of epigenetics in pharmacology and neuroscience.",institutionString:"Department of Anatomy, Howard University College of Medicine",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Howard University",institutionURL:null,country:{name:"United States of America"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1174",title:"Neurochemistry",slug:"neurochemistry"}],chapters:[{id:"68776",title:"Introductory Chapter: The Chemical Basis of Neural Function and Dysfunction",doi:"10.5772/intechopen.89072",slug:"introductory-chapter-the-chemical-basis-of-neural-function-and-dysfunction",totalDownloads:435,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Thomas Heinbockel and Antonei B. Csoka",downloadPdfUrl:"/chapter/pdf-download/68776",previewPdfUrl:"/chapter/pdf-preview/68776",authors:[{id:"70569",title:"Dr.",name:"Thomas",surname:"Heinbockel",slug:"thomas-heinbockel",fullName:"Thomas Heinbockel"},{id:"245650",title:"Dr.",name:"Antonei B.",surname:"Csoka",slug:"antonei-b.-csoka",fullName:"Antonei B. Csoka"}],corrections:null},{id:"68712",title:"Synaptic Transmission and Amino Acid Neurotransmitters",doi:"10.5772/intechopen.82121",slug:"synaptic-transmission-and-amino-acid-neurotransmitters",totalDownloads:580,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Manorama Patri",downloadPdfUrl:"/chapter/pdf-download/68712",previewPdfUrl:"/chapter/pdf-preview/68712",authors:[{id:"196763",title:"Dr.",name:"Manorama",surname:"Patri",slug:"manorama-patri",fullName:"Manorama Patri"}],corrections:null},{id:"64031",title:"Trends of Protein Aggregation in Neurodegenerative Diseases",doi:"10.5772/intechopen.81224",slug:"trends-of-protein-aggregation-in-neurodegenerative-diseases",totalDownloads:1028,totalCrossrefCites:5,totalDimensionsCites:8,signatures:"Abdulbaki Agbas",downloadPdfUrl:"/chapter/pdf-download/64031",previewPdfUrl:"/chapter/pdf-preview/64031",authors:[{id:"250609",title:"Prof.",name:"Abdulbaki",surname:"Agbas",slug:"abdulbaki-agbas",fullName:"Abdulbaki Agbas"}],corrections:null},{id:"63793",title:"Targeting the NO/cGMP/CREB Phosphorylation Signaling Pathway in Alzheimer’s Disease",doi:"10.5772/intechopen.81029",slug:"targeting-the-no-cgmp-creb-phosphorylation-signaling-pathway-in-alzheimer-s-disease",totalDownloads:825,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Jole Fiorito, Shi-Xian Deng, Donald W. Landry and Ottavio Arancio",downloadPdfUrl:"/chapter/pdf-download/63793",previewPdfUrl:"/chapter/pdf-preview/63793",authors:[{id:"251352",title:"Dr.",name:"Jole",surname:"Fiorito",slug:"jole-fiorito",fullName:"Jole Fiorito"},{id:"251705",title:"Prof.",name:"Ottavio",surname:"Arancio",slug:"ottavio-arancio",fullName:"Ottavio Arancio"},{id:"261323",title:"Dr.",name:"Shi-Xian",surname:"Deng",slug:"shi-xian-deng",fullName:"Shi-Xian Deng"},{id:"261324",title:"Dr.",name:"Donald W.",surname:"Landry",slug:"donald-w.-landry",fullName:"Donald W. Landry"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"3846",title:"Neurochemistry",subtitle:null,isOpenForSubmission:!1,hash:"671f065e6c1035adb042edc442626b8a",slug:"neurochemistry",bookSignature:"Thomas Heinbockel",coverURL:"https://cdn.intechopen.com/books/images_new/3846.jpg",editedByType:"Edited by",editors:[{id:"70569",title:"Dr.",name:"Thomas",surname:"Heinbockel",slug:"thomas-heinbockel",fullName:"Thomas Heinbockel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1657",title:"Neuroscience",subtitle:null,isOpenForSubmission:!1,hash:"e9a76a5d4740bdeefa66bb4cd6162964",slug:"neuroscience",bookSignature:"Thomas Heinbockel",coverURL:"https://cdn.intechopen.com/books/images_new/1657.jpg",editedByType:"Edited by",editors:[{id:"70569",title:"Dr.",name:"Thomas",surname:"Heinbockel",slug:"thomas-heinbockel",fullName:"Thomas Heinbockel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7329",title:"Histology",subtitle:null,isOpenForSubmission:!1,hash:"9af2e2fd8f28c4d1b8b9510c3d73e1ec",slug:"histology",bookSignature:"Thomas Heinbockel and Vonnie D.C. Shields",coverURL:"https://cdn.intechopen.com/books/images_new/7329.jpg",editedByType:"Edited by",editors:[{id:"70569",title:"Dr.",name:"Thomas",surname:"Heinbockel",slug:"thomas-heinbockel",fullName:"Thomas Heinbockel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6089",title:"Sensory Nervous System",subtitle:null,isOpenForSubmission:!1,hash:"87928c04aaa3d4dc4117bd9bb6b599e7",slug:"sensory-nervous-system",bookSignature:"Thomas Heinbockel",coverURL:"https://cdn.intechopen.com/books/images_new/6089.jpg",editedByType:"Edited by",editors:[{id:"70569",title:"Dr.",name:"Thomas",surname:"Heinbockel",slug:"thomas-heinbockel",fullName:"Thomas Heinbockel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5521",title:"Synaptic Plasticity",subtitle:null,isOpenForSubmission:!1,hash:"9eea3c7f926cd466ddd14ab777b663d8",slug:"synaptic-plasticity",bookSignature:"Thomas Heinbockel",coverURL:"https://cdn.intechopen.com/books/images_new/5521.jpg",editedByType:"Edited by",editors:[{id:"70569",title:"Dr.",name:"Thomas",surname:"Heinbockel",slug:"thomas-heinbockel",fullName:"Thomas Heinbockel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8732",title:"Sino-Nasal and Olfactory System Disorders",subtitle:null,isOpenForSubmission:!1,hash:"2170e4de59f7b95f9fad8d3dc343aae0",slug:"sino-nasal-and-olfactory-system-disorders",bookSignature:"Thomas Heinbockel and Balwant Singh Gendeh",coverURL:"https://cdn.intechopen.com/books/images_new/8732.jpg",editedByType:"Edited by",editors:[{id:"70569",title:"Dr.",name:"Thomas",surname:"Heinbockel",slug:"thomas-heinbockel",fullName:"Thomas Heinbockel"}],equalEditorOne:{id:"67669",title:null,name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh",profilePictureURL:"https://mts.intechopen.com/storage/users/67669/images/system/67669.png",biography:"Dr. Balwant Singh Gendeh is a senior consultant ENT surgeon with sub-specialty interest in rhinology (allergy, sinonasal diseases, endoscopic sinus, anterior and ventral skull base surgery, and functional and cosmetic nasal surgery). He was an ENT registrar at the Royal Infirmary, Middlesbrough, United Kingdom in 1993 and subsequently a JW Fulbright scholar at the University of Pittsburgh, USA in 1997. During his Fulbright experience, he also worked at the Hospital of the University of Pennsylvania (HUP), Philadelphia and St Joseph’s Hospital, Chicago, USA with sub-specialty interest in rhinology and aesthetic nasal surgery. Dr. BS Gendeh retired as a consultant ENT surgeon at the National University of Malaysia Medical Center (UKMMC) in 2014, and is presently a Visiting Professor at the Department of Otorhinolaryngology-Head and Neck Surgery at UKMMC and is a resident ENT consultant at Pantai Hospital Kuala Lumpur since 2014. Due to his vast contribution to the academia in research and clinical publication, he was elected as a Diploma of Fellowship Academy of Medicine Malaysia (FAMM) in October 2000, International Fellow of the American Academy of Otolaryngology Head and Neck Surgery in April 2004, Fellow of the Academy of Sciences Malaysia (FASc) in April 2016 and as Fellow of Malaysian Scientific Association (FMSA) in September 2017. He has written 95 scientific papers in peer-reviewed journals with more than 478 citations, HI of 13 and editor of 8 books and 7 book chapters.",institutionString:"Pantai Hospital Kuala Lumpur",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"5",totalChapterViews:"0",totalEditedBooks:"3",institution:null},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5780",title:"Serotonin",subtitle:"A Chemical Messenger Between All Types of Living Cells",isOpenForSubmission:!1,hash:"5fe2c461c95b4ee2d886e30b89d71723",slug:"serotonin-a-chemical-messenger-between-all-types-of-living-cells",bookSignature:"Kaneez Fatima Shad",coverURL:"https://cdn.intechopen.com/books/images_new/5780.jpg",editedByType:"Edited by",editors:[{id:"31988",title:"Prof.",name:"Kaneez",surname:"Fatima Shad",slug:"kaneez-fatima-shad",fullName:"Kaneez Fatima Shad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7040",title:"Recent Advances in Cannabinoid Research",subtitle:null,isOpenForSubmission:!1,hash:"b85fe0e356faddc5ff53928dd5c3a142",slug:"recent-advances-in-cannabinoid-research",bookSignature:"Willard J Costain and Robert B Laprairie",coverURL:"https://cdn.intechopen.com/books/images_new/7040.jpg",editedByType:"Edited by",editors:[{id:"89884",title:"Dr.",name:"Willard James",surname:"Costain",slug:"willard-james-costain",fullName:"Willard James Costain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"74443",slug:"corrigendum-to-fruit-flies-diptera-tephritoidea-biology-host-plants-natural-enemies-and-the-implicat",title:"Corrigendum to: Fruit Flies (Diptera: Tephritoidea): Biology, Host Plants, Natural Enemies, and the Implications to Their Natural Control",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/74443.pdf",downloadPdfUrl:"/chapter/pdf-download/74443",previewPdfUrl:"/chapter/pdf-preview/74443",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/74443",risUrl:"/chapter/ris/74443",chapter:{id:"29609",slug:"fruit-flies-diptera-tephritoidea-biology-host-plants-natural-enemies-and-the-implications-to-their-n",signatures:"M. A. Uchoa",dateSubmitted:"March 31st 2011",dateReviewed:"September 21st 2011",datePrePublished:null,datePublished:"February 24th 2012",book:{id:"874",title:"Integrated Pest Management and Pest Control",subtitle:"Current and Future Tactics",fullTitle:"Integrated Pest Management and Pest Control - Current and Future Tactics",slug:"integrated-pest-management-and-pest-control-current-and-future-tactics",publishedDate:"February 24th 2012",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/874.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"14863",title:"Dr.",name:"Sonia",middleName:null,surname:"Soloneski",slug:"sonia-soloneski",fullName:"Sonia Soloneski"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"87919",title:"Dr.",name:"Manoel",middleName:null,surname:"Uchoa",fullName:"Manoel Uchoa",slug:"manoel-uchoa",email:"uchoa.manoel@gmail.com",position:null,institution:{name:"Universidade Federal da Grande Dourados",institutionURL:null,country:{name:"Brazil"}}}]}},chapter:{id:"29609",slug:"fruit-flies-diptera-tephritoidea-biology-host-plants-natural-enemies-and-the-implications-to-their-n",signatures:"M. A. Uchoa",dateSubmitted:"March 31st 2011",dateReviewed:"September 21st 2011",datePrePublished:null,datePublished:"February 24th 2012",book:{id:"874",title:"Integrated Pest Management and Pest Control",subtitle:"Current and Future Tactics",fullTitle:"Integrated Pest Management and Pest Control - Current and Future Tactics",slug:"integrated-pest-management-and-pest-control-current-and-future-tactics",publishedDate:"February 24th 2012",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/874.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"14863",title:"Dr.",name:"Sonia",middleName:null,surname:"Soloneski",slug:"sonia-soloneski",fullName:"Sonia Soloneski"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"87919",title:"Dr.",name:"Manoel",middleName:null,surname:"Uchoa",fullName:"Manoel Uchoa",slug:"manoel-uchoa",email:"uchoa.manoel@gmail.com",position:null,institution:{name:"Universidade Federal da Grande Dourados",institutionURL:null,country:{name:"Brazil"}}}]},book:{id:"874",title:"Integrated Pest Management and Pest Control",subtitle:"Current and Future Tactics",fullTitle:"Integrated Pest Management and Pest Control - Current and Future Tactics",slug:"integrated-pest-management-and-pest-control-current-and-future-tactics",publishedDate:"February 24th 2012",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/874.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"14863",title:"Dr.",name:"Sonia",middleName:null,surname:"Soloneski",slug:"sonia-soloneski",fullName:"Sonia Soloneski"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"5963",leadTitle:null,title:"Functional Food",subtitle:"Improve Health through Adequate Food",reviewType:"peer-reviewed",abstract:"In recent years, the concern of society about how food influences the health status of people has increased. Consumers are increasingly aware that food can prevent the development of certain diseases, so in recent years, the food industry is developing new, healthier products taking into account aspects such as trans fats, lower caloric intake, less salt, etc. However, there are bioactive compounds that can improve the beneficial effect of these foods and go beyond the nutritional value. This book provides information on impact of bioactive ingredients (vitamins, antioxidants, compounds of the pulses, etc.) on nutrition through food, how functional foods can prevent disease, and tools to evaluate the effects of bioactive ingredients, functional foods, and diet.",isbn:"978-953-51-3440-4",printIsbn:"978-953-51-3439-8",pdfIsbn:"978-953-51-4718-3",doi:"10.5772/66263",price:139,priceEur:155,priceUsd:179,slug:"functional-food-improve-health-through-adequate-food",numberOfPages:318,isOpenForSubmission:!1,hash:"a7e56600bbbb1d3ed63d334cc575dc14",bookSignature:"Maria Chavarri Hueda",publishedDate:"August 2nd 2017",coverURL:"https://cdn.intechopen.com/books/images_new/5963.jpg",keywords:null,numberOfDownloads:27303,numberOfWosCitations:63,numberOfCrossrefCitations:65,numberOfDimensionsCitations:110,numberOfTotalCitations:238,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"November 8th 2016",dateEndSecondStepPublish:"November 29th 2016",dateEndThirdStepPublish:"February 25th 2017",dateEndFourthStepPublish:"May 26th 2017",dateEndFifthStepPublish:"July 25th 2017",remainingDaysToSecondStep:"4 years",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:"Edited by",kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"150285",title:"Dr.",name:"María",middleName:null,surname:"Chávarri Hueda",slug:"maria-chavarri-hueda",fullName:"María Chávarri Hueda",profilePictureURL:"https://mts.intechopen.com/storage/users/150285/images/system/150285.jpeg",biography:"Maria Chávarri Hueda has received her MS degree in Biological Sciences from Universidad de Navarra, Spain, in 1997. She obtained her PhD degree from Nutrition and Food Science Area, Department of Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country. Chávarri has experience in biotechnology and food science, acting on the following subjects: bioactive molecules and functional activity, probiotics, and nutritional status. She worked on the “Influence of the lipid source of the diet on various aspects of hepatic metabolism of triglycerides and cholesterol.” Over the last few decades, Chávarri worked as a senior researcher at TECNALIA R&I, Technological Development Center, in food and health area, and she has focused her studies on bioactive molecules of food and plant origin and their functional activities, as well as to deepen her knowledge on probiotics, with the objective of developing functional foods.",institutionString:"TECNALIA Research & Innovation",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:null}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1130",title:"Euthenics",slug:"euthenics"}],chapters:[{id:"56173",title:"Antioxidant Compounds Recovered from Food Wastes",slug:"antioxidant-compounds-recovered-from-food-wastes",totalDownloads:2164,totalCrossrefCites:6,authors:[{id:"83458",title:"Dr.",name:"Dumitrita",surname:"Rugina",slug:"dumitrita-rugina",fullName:"Dumitrita Rugina"},{id:"182893",title:"Dr.",name:"Oana Lelia",surname:"Pop",slug:"oana-lelia-pop",fullName:"Oana Lelia Pop"},{id:"191241",title:"Ph.D.",name:"Sonia A.",surname:"Socaci",slug:"sonia-a.-socaci",fullName:"Sonia A. Socaci"},{id:"191607",title:"Ph.D.",name:"Anca C.",surname:"Fărcaş",slug:"anca-c.-farcas",fullName:"Anca C. Fărcaş"},{id:"192098",title:"Prof.",name:"Maria",surname:"Tofana",slug:"maria-tofana",fullName:"Maria Tofana"},{id:"202954",title:"Associate Prof.",name:"Zorita",surname:"Diaconeasa",slug:"zorita-diaconeasa",fullName:"Zorita Diaconeasa"},{id:"202955",title:"Dr.",name:"Adriana",surname:"Paucean",slug:"adriana-paucean",fullName:"Adriana Paucean"},{id:"206132",title:"Prof.",name:"Adela",surname:"Pintea",slug:"adela-pintea",fullName:"Adela Pintea"}]},{id:"55271",title:"Polyphenols: Food Sources and Health Benefits",slug:"polyphenols-food-sources-and-health-benefits",totalDownloads:1633,totalCrossrefCites:6,authors:[{id:"190981",title:"Associate Prof.",name:"Greta",surname:"Krešić",slug:"greta-kresic",fullName:"Greta Krešić"},{id:"202696",title:"MSc.",name:"Nikolina",surname:"Mrduljaš",slug:"nikolina-mrduljas",fullName:"Nikolina Mrduljaš"},{id:"205908",title:"Prof.",name:"Tea",surname:"Bilušić",slug:"tea-bilusic",fullName:"Tea Bilušić"}]},{id:"55722",title:"Folic and Folate Acid",slug:"folic-and-folate-acid",totalDownloads:1429,totalCrossrefCites:1,authors:[{id:"75055",title:"Prof.",name:"Hiroko",surname:"Watanabe",slug:"hiroko-watanabe",fullName:"Hiroko Watanabe"},{id:"206631",title:"MSc.",name:"Tomoko",surname:"Miyake",slug:"tomoko-miyake",fullName:"Tomoko Miyake"}]},{id:"55492",title:"New Advances about the Effect of Vitamins on Human Health: Vitamins Supplements and Nutritional Aspects",slug:"new-advances-about-the-effect-of-vitamins-on-human-health-vitamins-supplements-and-nutritional-aspec",totalDownloads:2717,totalCrossrefCites:1,authors:[{id:"165627",title:"Dr.",name:"Rosa María",surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa"},{id:"205891",title:"MSc.",name:"Noelia",surname:"García Uribe",slug:"noelia-garcia-uribe",fullName:"Noelia García Uribe"},{id:"205892",title:"Dr.",name:"Manuel",surname:"Reig García-Galbis",slug:"manuel-reig-garcia-galbis",fullName:"Manuel Reig García-Galbis"}]},{id:"55507",title:"Fermented Pulse-Based Food Products in Developing Nations as Functional Foods and Ingredients",slug:"fermented-pulse-based-food-products-in-developing-nations-as-functional-foods-and-ingredients",totalDownloads:1646,totalCrossrefCites:4,authors:[{id:"60387",title:"Prof.",name:"Patrick Berka",surname:"Njobeh",slug:"patrick-berka-njobeh",fullName:"Patrick Berka Njobeh"},{id:"201370",title:"Dr.",name:"Oluwafemi",surname:"Adebo",slug:"oluwafemi-adebo",fullName:"Oluwafemi Adebo"},{id:"201371",title:"Dr.",name:"Eugenie",surname:"Kayitesi",slug:"eugenie-kayitesi",fullName:"Eugenie Kayitesi"},{id:"201372",title:"MSc.",name:"Janet",surname:"Adebiyi",slug:"janet-adebiyi",fullName:"Janet Adebiyi"},{id:"201373",title:"Dr.",name:"Sefater",surname:"Gbashi",slug:"sefater-gbashi",fullName:"Sefater Gbashi"},{id:"201376",title:"Dr.",name:"Judith",surname:"Phoku",slug:"judith-phoku",fullName:"Judith Phoku"}]},{id:"55808",title:"The Role of Legumes in Human Nutrition",slug:"the-role-of-legumes-in-human-nutrition",totalDownloads:4006,totalCrossrefCites:26,authors:[{id:"201151",title:"Ph.D. Student",name:"Yvonne",surname:"Maphosa",slug:"yvonne-maphosa",fullName:"Yvonne Maphosa"}]},{id:"55300",title:"Effect of Bioactive Nutriments in Health and Disease: The Role of Epigenetic Modifications",slug:"effect-of-bioactive-nutriments-in-health-and-disease-the-role-of-epigenetic-modifications",totalDownloads:1201,totalCrossrefCites:0,authors:[{id:"103258",title:"Dr.",name:"Pablo",surname:"Bautista",slug:"pablo-bautista",fullName:"Pablo Bautista"},{id:"202834",title:"Dr.",name:"Lorena",surname:"González",slug:"lorena-gonzalez",fullName:"Lorena González"},{id:"205614",title:"BSc.",name:"Berenice",surname:"González-Esparza",slug:"berenice-gonzalez-esparza",fullName:"Berenice González-Esparza"},{id:"205615",title:"BSc.",name:"Camila",surname:"Del Castillo-Rosas",slug:"camila-del-castillo-rosas",fullName:"Camila Del Castillo-Rosas"}]},{id:"55410",title:"Functional and Biological Potential of Bioactive Compounds in Foods for the Dietary Treatment of Type 2 Diabetes Mellitus",slug:"functional-and-biological-potential-of-bioactive-compounds-in-foods-for-the-dietary-treatment-of-typ",totalDownloads:1782,totalCrossrefCites:5,authors:[{id:"201057",title:"Dr.",name:"Maira",surname:"Segura Campos",slug:"maira-segura-campos",fullName:"Maira Segura Campos"}]},{id:"55567",title:"Meat Product Reformulation: Nutritional Benefits and Effects on Human Health",slug:"meat-product-reformulation-nutritional-benefits-and-effects-on-human-health",totalDownloads:1291,totalCrossrefCites:1,authors:[{id:"150208",title:"Dr.",name:"Gabriel - Danut",surname:"Mocanu",slug:"gabriel-danut-mocanu",fullName:"Gabriel - Danut Mocanu"},{id:"150936",title:"Prof.",name:"Elisabeta",surname:"Botez",slug:"elisabeta-botez",fullName:"Elisabeta Botez"},{id:"177240",title:"Dr.",name:"Ioana Otilia",surname:"Ghinea",slug:"ioana-otilia-ghinea",fullName:"Ioana Otilia Ghinea"},{id:"202904",title:"Dr.",name:"Oana-Viorela",surname:"Nistor",slug:"oana-viorela-nistor",fullName:"Oana-Viorela Nistor"},{id:"202905",title:"Dr.",name:"Georgeta Doina",surname:"Andronoiu",slug:"georgeta-doina-andronoiu",fullName:"Georgeta Doina Andronoiu"}]},{id:"55649",title:"Liposomes as Matrices to Hold Bioactive Compounds for Drinkable Foods: Their Ability to Improve Health and Future Prospects",slug:"liposomes-as-matrices-to-hold-bioactive-compounds-for-drinkable-foods-their-ability-to-improve-healt",totalDownloads:1232,totalCrossrefCites:3,authors:[{id:"203036",title:"Dr.",name:"Silvia Del Valle",surname:"Alonso",slug:"silvia-del-valle-alonso",fullName:"Silvia Del Valle Alonso"},{id:"203038",title:"Prof.",name:"Marina",surname:"Marsanasco",slug:"marina-marsanasco",fullName:"Marina Marsanasco"},{id:"203039",title:"Dr.",name:"Nadia S.",surname:"Chiaramoni",slug:"nadia-s.-chiaramoni",fullName:"Nadia S. Chiaramoni"}]},{id:"55573",title:"Food Metabolomics: A New Frontier in Food Analysis and its Application to Understanding Fermented Foods",slug:"food-metabolomics-a-new-frontier-in-food-analysis-and-its-application-to-understanding-fermented-foo",totalDownloads:1745,totalCrossrefCites:6,authors:[{id:"60387",title:"Prof.",name:"Patrick Berka",surname:"Njobeh",slug:"patrick-berka-njobeh",fullName:"Patrick Berka Njobeh"},{id:"201370",title:"Dr.",name:"Oluwafemi",surname:"Adebo",slug:"oluwafemi-adebo",fullName:"Oluwafemi Adebo"},{id:"201371",title:"Dr.",name:"Eugenie",surname:"Kayitesi",slug:"eugenie-kayitesi",fullName:"Eugenie Kayitesi"},{id:"201372",title:"MSc.",name:"Janet",surname:"Adebiyi",slug:"janet-adebiyi",fullName:"Janet Adebiyi"},{id:"201373",title:"Dr.",name:"Sefater",surname:"Gbashi",slug:"sefater-gbashi",fullName:"Sefater Gbashi"}]},{id:"55684",title:"Models to Evaluate the Prebiotic Potential of Foods",slug:"models-to-evaluate-the-prebiotic-potential-of-foods",totalDownloads:1622,totalCrossrefCites:4,authors:[{id:"200932",title:"Ph.D.",name:"Jailane",surname:"De Souza Aquino",slug:"jailane-de-souza-aquino",fullName:"Jailane De Souza Aquino"},{id:"202942",title:"MSc.",name:"Francisca Nayara",surname:"Menezes",slug:"francisca-nayara-menezes",fullName:"Francisca Nayara Menezes"},{id:"202943",title:"Ph.D. Student",name:"Kamila",surname:"Batista",slug:"kamila-batista",fullName:"Kamila Batista"},{id:"202944",title:"Ms.",name:"Priscilla",surname:"Lins",slug:"priscilla-lins",fullName:"Priscilla Lins"},{id:"202945",title:"Ms.",name:"Jessyca",surname:"Gomes",slug:"jessyca-gomes",fullName:"Jessyca Gomes"},{id:"202946",title:"Ms.",name:"Laiane",surname:"Da Silva",slug:"laiane-da-silva",fullName:"Laiane Da Silva"}]},{id:"56204",title:"Leveraging Bioactives to Support Human Health through the Lifecycle: Scientific Evidence and Regulatory Considerations",slug:"leveraging-bioactives-to-support-human-health-through-the-lifecycle-scientific-evidence-and-regulato",totalDownloads:1045,totalCrossrefCites:0,authors:[{id:"201953",title:"Dr.",name:"Deshanie",surname:"Rai",slug:"deshanie-rai",fullName:"Deshanie Rai"},{id:"202095",title:"Dr.",name:"Gyan",surname:"Rai",slug:"gyan-rai",fullName:"Gyan Rai"}]},{id:"56224",title:"Diet Quality Indices for Nutrition Assessment: Types and Applications",slug:"diet-quality-indices-for-nutrition-assessment-types-and-applications",totalDownloads:3799,totalCrossrefCites:2,authors:[{id:"82252",title:"Dr.",name:"Fernando",surname:"Pérez-Rodríguez",slug:"fernando-perez-rodriguez",fullName:"Fernando Pérez-Rodríguez"},{id:"207713",title:"MSc.",name:"Maria Luisa",surname:"Poyatos-Guerrero",slug:"maria-luisa-poyatos-guerrero",fullName:"Maria Luisa Poyatos-Guerrero"}]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"194667",firstName:"Marijana",lastName:"Francetic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/194667/images/4752_n.jpg",email:"marijana@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"8311",title:"Nutraceuticals",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"51994c7d3887b9ecd6926b4967a4fdfb",slug:"nutraceuticals-past-present-and-future",bookSignature:"María Chávarri Hueda",coverURL:"https://cdn.intechopen.com/books/images_new/8311.jpg",editedByType:"Edited by",editors:[{id:"150285",title:"Dr.",name:"María",surname:"Chávarri Hueda",slug:"maria-chavarri-hueda",fullName:"María Chávarri Hueda"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1419",title:"Nutrition, Well-Being and Health",subtitle:null,isOpenForSubmission:!1,hash:"cb4a765eccac4539851ea572efb58806",slug:"nutrition-well-being-and-health",bookSignature:"Jaouad Bouayed and Torsten Bohn",coverURL:"https://cdn.intechopen.com/books/images_new/1419.jpg",editedByType:"Edited by",editors:[{id:"34084",title:"Dr.",name:"Jaouad",surname:"Bouayed",slug:"jaouad-bouayed",fullName:"Jaouad Bouayed"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5176",title:"Nutritional Deficiency",subtitle:null,isOpenForSubmission:!1,hash:"a2e20dabc8ed6fbaef3686be8c6fce99",slug:"nutritional-deficiency",bookSignature:"Pınar Erkekoglu and Belma Kocer-Gumusel",coverURL:"https://cdn.intechopen.com/books/images_new/5176.jpg",editedByType:"Edited by",editors:[{id:"109978",title:"Prof.",name:"Pınar",surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6013",title:"Well-being and Quality of Life",subtitle:"Medical Perspective",isOpenForSubmission:!1,hash:"8ce9412b0c4cf7532a3ed3269e5a8ebf",slug:"well-being-and-quality-of-life-medical-perspective",bookSignature:"Mukadder Mollaoglu",coverURL:"https://cdn.intechopen.com/books/images_new/6013.jpg",editedByType:"Edited by",editors:[{id:"43900",title:"Prof.",name:"Mukadder",surname:"Mollaoğlu",slug:"mukadder-mollaoglu",fullName:"Mukadder Mollaoğlu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"38859",title:"Vermiculite: Structural Properties and Examples of the Use",doi:"10.5772/51237",slug:"vermiculite-structural-properties-and-examples-of-the-use",body:'The effort to clarify the meanings of the terms ‘clay’, ‘clays’, and ‘clay minerals‘ was the subject of the joint nomenclature committees (JNCs) of the Association Internationale pour l’Etude des Argiles (AIPEA) and the Clay Minerals Society (CMS). The JNCs have proposed the term a class of hydrated phyllosilicates forming the fine-grained fraction of rocks, sediments, and soils and have defined ‘clay’ as ‘‘a naturally occurring material composed primarily of fine-grained minerals, which is generally plastic at appropriate water contents and will harden when dried or fired’’ [1]. According to this definition synthetic clays and clay-like materials are not regarded as clay even though they may be fine grained, and display the attributes of plasticity and hardening on drying and firing.
For phyllosilicates, the terms ‘‘planes’’, ‘‘sheet’’ and ‘‘layer’’ refer to specific parts of the structure, with atomic arrangements that increase in thickness and they cannot be used interchangeably [2,3].
A ‘
A ‘
A ‘
A ‘
Guggenheim et al [4] give the revised classification scheme for planar hydrous phyllosilicates [5].
The phyllosilicates are divided by layer type, and within the layer type, and by groups based on charge p.f.u. Further subdivisions by subgroups is based on dioctahedral or trioctahedral character, and finally by species based on chemical composition. Two types of layers, depending on the component sheets are a ‘1:1 layer’ consisting of one tetrahedral sheet and one octahedral sheet, and a ‘2:1 layer’ containing an octahedral sheet between two opposing tetrahedral sheets.
The structure of 2:1 phyllosilicates is composed of tetrahedral (T) and octahedral (O) sheets (Fig. 1). According to the AIPEA Nomenclature Committee [4], tetrahedral sheet is composed of continuous two-dimensional corner-sharing tetrahedra [TO4]4- involving three basal oxygens and the apical oxygen. The tetrahedral sheet has a composition of [T4O10]4- where T = Si4+, Al3+, Fe3+. The apical oxygens form a corner of the octahedral coordination unit around larger octahedral cations. The octahedral sheet consists of two planes of closely packed O2-, OH- anions of octahedra with the central cations Mg2+ or Al3+. The smallest structural unit contains three octahedral sites. The
Smectites are 2:1 phyllosilicates with a total (negative) layer charge between 0.2 and 0.6 p.f.u.. The octahedral sheet may either be dominantly occupied by trivalent cations (dioctahedral smectites) or divalent cations (trioctahedral smectites).
Model of the structure of vermiculite from Brazil; (with courtesy of dr. Jonáš Tokarský).
Vermiculites are generally trioctahedral and are termed (according to the joint nomenclature committees AIPEA and CMS) on the basis of a negative layer charge, which is between 0.6 to 0.9 p.f.u. [4,7,8]. The negative layer charge of vermiculites results from the substitution of Si4+ by trivalent cations in tetrahedral positions [9,10]. Vermiculites were mostly formed by removal of potassium from biotite, phlogopite or muscovite [5,6] and therefore vermiculite chemistry from this perspective is closely linked to that of mica. The thickness of the structural unit (2:1 layer and interlayer space) is about 1.4 nm, depending on the water interlamellar layers and the interlayer cations. Bailey [9] and Lagaly [10] described a method to determine the layer charge based on the measurement of basal spacings after exchange with alkylammonium cations of varying chain lengths. Alkylammonium ions in the interlayer spaces of vermiculite acquire distinct arrangements: monolayer and two-layer (bilayer) structures with the alkyl chains parallel to the surface, pseudotrimolecular layers and paraffin type structures. Vermiculites have paraffin-type interlayers if the layer charge is at least 0.75 p.f.u.
The identification of trioctahedral and dioctahedral vermiculites is based on the position of reflection (060) on their XRD patterns. Dioctahedral vermiculites show an interlayer space value
Vermiculite structures contain water interlamellar layers which are subjected to the hydration and dehydration processes [19-26]. The hydration properties are controlled by the interlayer cations Mg2+ and minor amounts of Ca2+, Na+, and K+. The cation radius and charge influence the degree of hydration state in the interlayer and the stacking layer sequences [9,15,19,22,28]. The hydration state of vermiculite was defined by the number of water layers in the interlayer space. The basal space of Mg-vermiculite was declared 0.902 nm for zero-water layer, 1.150 nm for one-water layer and 1.440 nm for two water layer hydration state [29].
Ordering in vermiculite layered structure occurs when the pseudohexagonal cavities (made of six-membered tetrahedra rings) are facing each other in adjacent tetrahedral layers. In most cases the vermiculites have various possible layer-stacking sequences and therefore the regular arrangement of the layers in vermiculites occurs rarely [30-33].
Criteria for defining
The structure of vermiculite is called semi-ordered when the transition from a layer to the next layer can be obtained in two or more different ways. For semi-ordered stacks the reciprocal space cannot be described by a set of
The structural formula of vermiculites is often reported on the basis of the structure unit (half unit-cell content). The general formula can be written as:
X4 (Y2-3 ) O10 (OH)2 M.
where M is exchangeable (Mg2+, Ca2+, Ba2+, Na+, K+) cations positioned in the interlayer space, that compensate negative layer charge, Y is octahedral Mg2+,Fe2+ or Fe3+, Al3+, and X is tetrahedral Si, Al.
The half unit cell compositions of vermiculites given in literature are listed below for comparison.
(Si2.86 Al1.14)(Mg2.83Al0.15Fe3+0.02 )O10(OH)2 Mg0.41 3.72 H2O (Llano), [9]
(Si2.72 Al1.28)(Mg2.36Al0.16Fe 0.58)O10(OH)2 Mg0.32 4.32 H2O (Kenya), [19]
(Si2.72 Al1.28)(Mg2.59Fe2+0.03 Al0.06Fe3+0.24 Ti0.08)O10(OH)2 Mg0.39 Ca0.02 4.7 H2O (Santa Olalla, Spain), [15]
(Si2.64Al1.36)(Mg2.48 Fe2+0.04 Al0.14 Fe3+0.32Ti0.01Mn0.01)O10(OH)2 Mg0.44 (Santa Olalla, Spain), [35]
(Si2.69Al1.31)(Mg2.48Fe3+0.324Fe2+0.036Al0.14 Ti0.01 Mn0.01)O10(OH)2Mg0.39, (Santa Olalla, Spain), [57]
(Si2.83Al1.17) (Mg2.01Al0.2Fe2+0.16 Fe3+0.40 Ti0.14)O10(OH)2Mg0.235 (Ojen, Spain), [35]
(Si2.83Al1.17)(Mg2.01Fe3+0.4Fe2+0.16Al0.2Ti0.12) O10(OH)2Mg0.275 (Ojen, Spain), [57]
(Si2.64 Al1.36)(Mg2.38Fe2+0.02Al0.06Fe3+0.51Ti0.03)O10(OH)2 Mg0.35 Ca0.01Na0.01 4.9 H2O (Letovice, Czech Republic), [28].
(Si3.02Al0.98) (Mg2.27Al0.12Fe3+\n\t\t\t\t0.28 Fe2+0.05Ti0.07)O10(OH)2Ca0.09Na0.21K0.50 (West China), [36].
(Si3.02Al0.79Ti0.05Fe3+0.14)(Mg2.50Fe2+0.38Fe3+0.09)O10(OH,F)2Ba0.29K0.14Ca0.08 (Palabora, South Africa), [37].
(Si3.43 Al0.57)(Al0.26 Fe0.32 Mg2.34) O10(OH)2 Ca0.064Na0.016K0.047 ( Brazil), [38].
Natural vermiculite flakes are characterized by high values of aspect ratio. In clay science,
Exfoliated vermiculite can be produced either by a thermal or a chemical treatment. Heating a particle of vermiculite rapidly above about 200 °C results in the transformation of the interlayer water into steam.
Preparation of submicron-sized vermiculites is usually accomplished by applying
Progressive amorphization and agglomeration of vermiculite particles takes place when grinding time increases [48].
Vermiculite can be also delaminated using the mechanical shearing force [49,50].
Balek et al.[51] found that vermiculite from Santa Olalla after grinding for 2 min increased specific surface area from 1 m2g-1 to 39 m2g-1. Prolongation of grinding time to 10 min led to the formation of amorphous phase and the surface area decrease to 20 m2g-1. The thermogravimetry measurement recorded different thermal behavior of original and milled vermiculite samples. Original vermiculite showed two dehydration steps after heating up to 250ºC and one dehydroxylation step at 900ºC. The grounded sample showed no such steps but dehydration was observed as continuous mass loss from 50 to 350ºC and dehydroxylation was completed at 800ºC.
The particle size reduction by sonication may be accompanied by a change of the redox state and the layer charge of the material. Sonication in a 1:1 mixture (volume ratio) of water and hydrogen peroxide (30% H2O2) is a soft method for particle size reduction of phyllosilicate minerals like vermiculites [57]. The oxidation state of the iron in the high-charge vermiculite from Santa Olalla and the low-charge vermiculite from Ojén was found different. In spite that the chemical composition of vermiculites is similar (see unit half cell composition formulas), the layer charge is different 0.78 and 0.52 p.f.u. for the Santa Olalla and Ojén vermiculite, respectively. Both of the original vermiculites had the specific surface area 1 m2g-1. The area in Ojén-vermiculite increased to 51 m2g-1 after eight cycles of sonication in water and after the same numer of sonication cycles in an aqueous 15% H2O2 to 54 m2g-1. The surface area of the Santa Olalla vermiculite after six cycles of sonication was smaller and decreased to the 36 m2g-1 after sonication in hydrogen peroxide and 38 m2g-1 in water. In both vermiculites, one cycle of sonication provided by half greater value increase in the surface area in water in comparison with sonication in hydrogen peroxide. This difference disappeared after three cycles of sonication. Authors stated that delamination by sonication plays a significant role in particle size reduction and in the increase of the surface areas only after a short time. The pH during sonication in water 6.5 increased after three cycles to 7.5–8 and in hydrogen peroxide from 3.7 to 6.5. After sonication no structural change in Santa Olalla vermiculite was observed in comparison with the Ojén-vermiculite. Whereas the ratio Fe3+/Fetotal was found almost constant in the Santa Olalla vermiculite, it increased from 0.79 to 0.85 in case of the Ojén sample together with a decrease of the layer charge.
Kehal et al. [62] modified vermiculite from Palabora by the combination of the thermal shock (700°C), chemical exfoliation (80°C in the presence of H2O2) and ultrasonic treatments (20 kHz, H2O or H2O2) to improve the adsorption of boron. Authors found that only 1 h treatment of vermiculite in ultrasound and 35 wt.% H2O2 produced small particles of drastically decreased density from 1.026 g cm−3 for raw vermiculite to about 0.23 g cm−3. Furthermore, it was found by acido–basic titrations, that breaking of the particles by 20 kHz sonication induced the generation of OH groups on the edges of the layers which acted as active adsorption sites.
The negative surface charge that results from the ion substitution or from the site vacancies at the tetrahedral and/or octahedral sheets predetermined the use of layered 2:1 phyllosilicates as substrates for the growth of metallic nanoparticles. Uncompensated charges occur at the broken edges of the clay mineral layers, predominantly at the hydroxyl groups. The cations like Al3+ or Fe3+, which typically occupy the octahedral positions, remain at the crystal edges, i.e. at the Lewis acid sites, where they coordinate water molecules. The exchangeable cations between the layers (at the Brønsted acid sites) compensate the negative charge and may be easily exchanged by other metal cations [63,64]. The reduction of the metal cations on the clay minerals matrix initiates the growth of nanoparticles preferably on the surface, because the interlamellar space of clay minerals limits the particle growth [65-70].
The metal nanoparticles are investigated in the function of biosensors, label for cell and cancer therapeutics. The silver nanoparticles have shown to be a promising antiviral material. The strong toxicity of several silver compounds to a wide range of microorganisms is well known. Silver acts as catalyst of the oxidation of the microorganisms, which leads to the disruption of electron transfer in bacteria [71,72]. Silver offers sufficiently small repulsion to oxygen, thus only a small amount of thermal energy is required to move the atomic oxygen readily through its crystal lattice [73]. Monovalent silver ions have a high affinity to sulfhydryl (–S–H) groups in bacteria cells. The resulting stable –S–Ag bonds inhibit the hydrogen transfer and prevent the respiration and the electron transfer. After exposing silver containing molecular oxygen to aqueous media, the molecular oxygen reacts quickly with sulfhydryl (–S–H) groups on the surface of bacteria and replaces hydrogen [74]. Silver nanoparticles exhibit cytoprotectivity towards HIV-1 infected cells [75]. The biological distribution as well as the potential toxicity of silver nanoparticles on the montmorillonite substrate was studied using Swiss mice [76]. The animal study demonstrated that the Ag-montmorillonite was nontoxic, showed no immune response, exhibited increased blood half-life and neurotransmission. Based on the study authors noted that Ag-montmorillonite enables diverse applications in life sciences such as drug development, protein detection and gene delivery for any organs, lungs and brain in particular.
The catalytic activity of silver particles depends on their size, shape and the size distribution as well as chemical–physical environment [77, 78].
Silver nanoparticles, size about 2 nm, were usually prepared by chemical reduction from silver nitrate under ultraviolet irradiation [79]. Another method employed reduction with sodium borohydride [80]. During this reaction, irregular silver nanoparticles with the size between 1.5 and 2.5 nm nucleate first. This rapid nucleation was followed by the growth of these nuclei into aggregates of circular particles with the size of approximately 12–16 nm. Several approaches have been investigated to prepare silver nanoparticles with well-defined size and morphology. The available free-network spaces between hydrogel networks helped to grow and to stabilize the nanoparticles [81-86].
The antibacterial activity of silver-montmorillonite and copper-montmorillonite studied Magaňa et al. [87]. The authors stated that the overall antibacterial effect was related to the surface characteristics of the sample and to the quantity of silver. Similarly, the antibacterial behaviour of silver grown attached to copper-palygorskite characterized Zhao et al. [88]. Valášková et al. [89] have prepared and characterized Ag nanoparticles on vermiculite and compared them with Ag nanoparticles on montmorillonite. The antibacterial activity of both nanocomposite types was tested on two bacteria strains. The Gram negative (G-) strain was represented with two bacteria
TEM images of silver nanoparticles on montmorillonite (a) and vermiculite substrates (b). HRTEM images of nanoparticles grew together (c) and microstructure of the Ag nanoparticles (d); (with courtesy of dr. Valter Klemm)
Nanocrystalline particles of silver reduced from the solution of silver nitrate on the clay mineral substrates were characterized using TEM and HRTEM. Transmission electron microscopy (TEM) revealed silver nanoparticles grown on the surface of both clay minerals of the mean size between 40 and 50 nm. Small Ag particles were substantially smaller than 20 nm. Furthermore, TEM/HRTEM found essential differences in the size distribution of the Ag particles grown on the surface of the montmorillonite and on the surface of the vermiculite. On montmorillonite, all Ag particles grew with a similar size and were well distributed on the surface (Fig. 2a). Huge Ag particles with the size much larger than 50 nm were observed only on the edges of the montmorillonite flakes. The size of the Ag particles grown on the surface of vermiculite was very heterogeneous (Fig. 2b). Some of nanoparticles were agglomerated or grew together (Fig. 2c). A lot of small particles contained smaller domains with high defect density. Microstructure of the Ag nanoparticles showed crystallites disorientation with a lot of defects, especially different planar defects (Fig. 2d).
Based on the results of the microstructure analysis of silver nanoparticles and clay mineral substrates authors [36, 70] assumed the manner of growth of nanoparticles on the surface of vermiculite and montmorillonite.
The particle growth process began after the previous docking of silver (precipitated from the solution of AgNO3) on the clay mineral surface. During their further growth, the Ag nanoparticles separated the clay mineral crystallites into several domains. Single nanocrystalline particles of Ag grow next to each other and then growing to larger nanoparticles with many microstructure defects. Still, the atomic ordering of the Ag nanoparticles at the silver/clay mineral interface is controlled by the local orientation of the clay mineral matrix. During the further growth, larger Ag nanoparticles re-crystallize by reducing the energy of their internal defects through the rearrangement and through the conservation or formation of the low-energy boundaries (as it was observed by HRTEM).
Differences between silver nanoparticles on the vermiculite and montmorillonite substrates authors confronted with the different sources of negative layer charge. When at dioctahedral montmorillonite negative layer charge results from an octahedral substitution of magnesium for iron and the substitution of Si4+ in tetrahedra is negligible [90] the trioctahedral vermiculite has a negative charge resulting mainly from the substitution of trivalent cations for Si4+ in tetrahedra [9]. Further it was found that montmorillonite and vermiculite after treatment with the silver nitrate solution released the Na+, K+, Ca2+ and Mg2+ cations from the interlayer space of both clay minerals and from the octahedral positions in the montmorillonite. Such structural change allowed the Ag+ to be incorporated in the host structure of the clay minerals through their surface and edges. The total amount of silver on vermiculite was higher than on the montmorillonite. The size distribution of the Ag nanoparticles was much more homogeneous on the montmorillonite substrate than on the vermiculite. The lower negative layer charge of montmorillonite results from the substitution of cations, which are located at the octahedral positions, is responsible for a uniform size of the Ag nanoparticles. The Ag particles with the size much larger than 50 nm were only on the edges. The negative layer charge of vermiculite as a consequence of the charge on tetrahedra can hold higher content of silver than montmorillonite.
Both sample series of silver/vermiculites and silver/montmorillonites, showed good inhibitory action against the Gram negative bacteria strains. The higher content of silver reduced on vermiculite predestines silver/vermiculite to be stronger antibacterial agent than silver/montmorillonite.
Nanocomposites have at least one ultrafine phase dimension, typically in the range of 1–100 nm, and exhibit other properties with comparison to the micro- and macro-composites. The clay–polymer nanocomposite could be considered as “one-nano-dimensional” because the clay filler has one dimension at the nanometer scale [91]. The high aspect ratio of layered silicate nanoparticles is ideal to modify the properties of the polymer, but the hydrophilic nature of silicate surfaces impedes their homogeneous dispersion in the organic polymer phase [92]. On the other hand it was found that polymers can interact with the external surface of clay minerals and also penetrate into the nano- structural spaces, holes and tunnels [93].
The polymer nanocomposites exhibit new and sometimes improved properties that are not displayed by the individual phases or by their conventional composite counterparts. Significant improvement of mechanical properties, thermal stability, resistance to solvent swelling and suppression of flammability have been achieved with the only up to 5 wt.% exfoliated layered silicates nanoparticles in polymer matrix [94-97]. The development of clay–polymer nanocomposites at low clay loadings (3–7 wt %) as advanced structural materials brings significant improvements in mechanical strength and stiffness, enhanced gas barrier behavior, reduced linear thermal expansion coefficients, and increased solvent resistance in comparison with pristine polymers.
The hydrophilic clay minerals are commonly treated with ammonium cations with long alkyl chains to improve the compatibility between the silicate layers and the polymer matrix. The methods used for the preparation of clay–polymer nanocomposites, include solvent intercalation, in situ polymerization, and melt-compounding [98-102]. Both solvent intercalation and in situ polymerization allow polymer chains to enter into the galleries of silicate clays. Melt blending is more attractive because the nanocomposites can be processed by conventional methods such as extrusion and injection molding. The influences of the addition of various types of clays on the non-isothermal crystallization process of thermoplastics have been studied by several researchers. Fornes and Paul [103] found that depending on the dispersion of clays in thermoplastic matrices the clay nanofillers can either promote or retard the crystallization of polymers and observed that the degree of crystallinity of nanocomposites showed a strong dependence on the cooling rates.
Polyethylene (PE) is one of the most widely used polyolefins. The molecular structure is generally simply written by the formula (CH2)n, where n is very large. The PE specimen may contain chains of different lengths [104]. Low-density PE (LDPE) contains many statistically placed paraffinic branches. The defects in the arrangement of chains reduce the structure crystallinity [105]. When mixing PE with hydrophilic clay minerals the additives can play a role of a polymeric surfactant, or they may act as a compatibilizer when mixed with organophilized clay minerals. The polar additives or charge of carriers introduce dipole moments in PE [106-109].
Clay mineral vermiculite (VER) was used as the clay mineral nanofiller into polymer matrix and was intercalated with the maleic anhydride into polyamide [110], polyethylene [109], and polypropylene [89, 111]. It should be noted that nanocomposites of polypropylene with nanofiller of VER were prepared without any compatibilizer by solid-state shear compounding (S3C) using pan-mill equipment [112]. Vermiculite particles were only partly intercalated with polypropylene and exfoliated in PP matrix (Shao et al., 2006).
Organovermiculite nanofiller octadecylamine/vermiculite (ODA/VER) was exfoliated in polypropylene (PP) [89]. The organovermiculite nanofillers were prepared in three ways. Sample 1 was original VER (Fig. 3a) intercalated using melt intercalation with octadecylamine (ODA). Sample 2 was VER milled in jet mill and intercalated with ODA (Fig. 3b). Sample 3 was VER exfoliated using an oxidizing agent potassium persulfate [61] and subsequently intercalated with ODA.
The thermal compounding of the organovermiculites (4 wt. %) with maleated PP caused the partial deintercalation of organovermiculites. As the jet milled original VER flakes have corrugated edges [113] in PP remained intercalated only in their central parts. The frayed edges and small particles showed somewhat higher interlayer distances and the penetration of polymeric segments from the softened polymer matrix was possible. The sample 2 was very well dispersed within PP matrix. The layered vermiculite structure after exfoliation with potassium persulfate was destroyed [61] and therefore intercalation of ODA molecules into the interlayer was limited (sample 3). On the X-ray diffraction patterns of composite sample 2 in PP authors identified new reflection of the orthorhombic γ-PP in addition to the α-PP. According to the literature it is known that the formation of γ-PP in α-PP takes place when the VER particles reduce the PP chain mobility within the narrow space surrounded by the dispersed clay mineral particles [114].
SEM images of original particle VER (a) and jet milled VER intercalated with ODA (sample 2). Bar shows 10 µm.
Thermal stability of PP and PP/VER nanocomposites was evaluated by thermogravimetric analysis (Fig. 4).
TG and DTA of ODA/VER nanofillers in PP.
The thermal resistance of the nanocomposites was evaluated by comparing temperatures at the certain weight loss points. Decomposition of pure PP started at 247°C. The degradation point characterized by onset temperature followed the sequence: sample 3 (286°C) → sample 2 (273°C) → sample 1 (267°C).
At 5 % mass loss, the dispersed exfoliated organovermiculite nanofillers sample 2 showed about 51°C, and sample 3 (weekly exfoliated in PP) even about 65°C higher thermal resistance than pure PP.
This agrees with observations of Gilman [112], who reported that intercalated clay mineral particles in polymer matrix make composite a much more resistant to temperatures than exfoliated particles.
Depending on the structure of dispersed clay-filler in the polymeric matrix, the composites can be classified as intercalated or exfoliated nanocomposites. Polymer nanocomposites can be prepared by two main processes, that is, in situ polymerization and melt compounding.
Use of nano-sized filler particles to form polymer composites has attracted much attention in recent years because of the potential performance advantages that could create new technological opportunities. Potential benefits include increased mechanical strength, decreased gas permeability, superior flame-resistance, and even enhanced transparency when dispersed nanoclay plates suppress polymer crystallization [119-123].
The key issue is to obtain an effective dispersion and exfoliation of the platelets into the polymer matrix to yield well-aligned, high-aspect ratio particles for mechanical reinforcement or a tortuous diffusion pathway for improved barrier properties [124]. In situ polymerization process consists of intercalation of monomer as precursor species, followed by their polymerization inside the interlayer of clay mineral. Numerous nanocomposite materials were prepared by method with clay having inorganic metallic interlayer cation, which can promote formation of monomer radical inducing its polymerization, or modifying agent for nonpolar polymers. Both thermosets and thermoplastics have been incorporated into nanocomposites.
Simulation techniques become an integral part of experimental techniques, since the information about the spatial arrangement of molecules within the interlayer is hard to obtain without the aid of computer simulation. It offers a range of modeling and simulation methods, covering the length range from the subatomic quantum scale, through the molecular level, to the micrometer scale. Methods to model the behavior of systems on each of these scales are combined with analytical instrument simulation and statistical correlation techniques, allowing detailed study of structure, properties, and processes. Molecular modeling using empirical force field represents a way to preliminary estimation of the host-guest complementarity and prediction of structure and properties for nanomaterial design in molecular nanotechnology.
The group of vermiculite–polymeric nanocomposites, where vermiculite or its silicate layers in the final composite stage is altering properties of full system, represents economically and technologically unpretentious materials. Vermiculite here enters the composite system unmodified; it means that it keeps its original characteristics. Usually, polymer and/or layered silicate nanocomposites are synthesized from polymeric macromolecules directly or from monomers followed by in situ polymerization to intercalate into and then enlarge the interlayer of the used clay.
The struggle to prepare nanocomposites is affected by many factors such as the blending or reaction time, temperature and the affinity between the host and the matrix. Moreover, the intercalated nanocomposites instead of the exfoliated nanocomposites are commonly gained in most cases. Generally, dispersion as well as delamination of vermiculite in polymer matrices is observed using electron microscopy and XRD techniques.
Three main approaches have been used in the preparation of clay–polymer composites: (1) melt blending, (2) solution blending, and (3) in situ polymerization. However, homogeneity at nanoscale level may not be fully achieved using these methods. One way of approaching this problem is complete delamination of the clay particles to give colloidal dispersions of single layers in a suitable solvent and restacking the layers in presence of guest species.
Utilization of vermiculite in nanocomposite is not as extensive as for montmorillonite. Most of the applications limits low swell ability of vermiculite compare to montmorillonite. However, several main streams of applications were introduced.
The conventional superabsorbents are based on expensive fully petroleum-based polymers. Their production consumes lots of petroleum and their usage can also cause a nonnegligible environment problem. New types of superabsorbents by introducing naturally available raw materials as additives were desired. The incorporation of clays reduces production cost, and also improves the properties (such as swelling ability, gel strength, mechanical, and thermal stability) of superabsorbents and accelerates the generation of new materials for special applications. The properties of traditional superabsorbent could be enhanced by incorporating vermiculite [125]. It is expected that organomodification of vermiculite can further improve dispersion and performance of the resultant nanocomposite. The superabsorbent nanocomposites were prepared from natural guar gum and organovermiculite by solution polymerization and analyses indicated that organovermiculite was exfoliated during polymerization and uniformly dispersed in the polymeric matrix [126].
In the superabsorbent field recently, much attention has been paid especially to layered silicate as favorable compound of absorbent composites.
Simple mixing technique of vermiculite into polymer matrix could be applied in case of preparation of
As the
Mixing dilution of
However, it is very difficult to prepare an entirely exfoliated nanocomposite using natural vermiculite as nanofiller by conventional techniques. Therefore, vermiculite has been successfully delaminated with acid treatment and used to mix with engineering polymer directly to synthesize polymer–vermiculite nanocomposites [129, 130]. Acid delaminated vermiculite was successfully utilized for preparation of PVA nanocomposite. The properties of composite significantly depend on the preparation procedure for the reason that chemical reactions and physical interactions involved. Two steps preparation, delamination with hydrochloric acid and then addition to the PVA solution using various mixing times. The positive effect of the vermiculite content on the thermal behavior of the PVA–vermiculite blends was observed [131].
The utility of the
Nanocomposites poly(4-vinylpyridine(VP)) (PVP) and poly(N-vinyl-2-pyrrolidinone(NVP)) (PNVP) both combined with vermiculite have been synthesized by the intercalative redox polymerization of monomer in the gallery of Cu2+ ion-exchanged vermiculite (Cu2+ serves as polymerization agent). The formation of a single filament of the PVP polymer in the vermiculite gallery is confirmed by the increase in gallery spacing of 0.47 nm as indicated by XRD analysis. XRD analysis following intercalative polymerization of PNVP indicates the presence of two prominent peaks with the corresponding basal spacing
The nanocomposites consisting of the emeraldine salt of polyaniline (PANI) and layered vermiculite were synthesized to improve
An increased understanding, on the micro- and nanolevel, of polymers at surfaces and in confined geometries assists in the development and improvement of new technologies. Of special interest is to understand the nature of the glass transition – not fully solved problem of condensed matter physics. By confining molecules in very small spaces (e.g., clay gallery), the existence or not of a length scale associated with molecular motions responsible for the glass transition can be established. The increment of its relaxation strength in the clay has been related to the 2D geometry of the confinement. These polymers have a dipole moment component parallel to the chain and, therefore, the total dipole vector is proportional to the end-to-end vector and so the overall chain dynamics can be measured by dielectric spectroscopy.
Vermiculite was selected for study the molecular dynamics of oligomeric poly(propylene glycol (PG)) (PPG) liquids (Mw = 1200, 2000, and 4000 g mol–1). The thickness of the liquid layers was 0.55 nm in the case of PG and 0.37 nm for 7-PG and PPG. The PG oligomers form a flat monolayer in vermiculite gallery with their methyl groups pointing in the direction of the clay surfaces. In contrast, the monomers are probable orientated either perpendicular to the clay layers or parallel to the layers, but with the methyl groups pointing toward a clay surface. The dynamics generally become slower with increasing chain length but the dynamics of the 7-mers was established to be faster than for the single monomers. A possible explanation for the fact may be that the OH end groups of the monomers are linked together forming a network, and, as a result, slow down the diffusion at temperatures low enough to keep the network structure intact [135]. The PPG confined in Na-vermiculite has been studied by broadband dielectric spectroscopy. In addition to the temperature dependence of the main (α-) relaxation process and the related high-temperature translational or segmental diffusion, the normal mode relaxation process was studied for all samples in both bulk and confinement. For the normal mode process the relaxation rate and the temperature dependence of the relaxation time in the clay is drastically shifted to lower frequencies compared to that of the bulk material. The α-process relaxation time is only slightly affected by the confinement.
The fact that interactions of PPG with the clay surfaces are very weak was implied based on similar temperature dependence of the relaxation time the α-relaxation in both bulk and confinement [136]. Relaxation process corresponds to the molecular motions of translational character and that it is almost unaffected by the present true 2D confinement, in contrast to the dielectrically active normal mode of PPG which is substantially slower in the confinement. Thus, there is no indication, for none of the confined liquids, that the OH-end groups should form strong hydrogen bonds to the clay surfaces. In fact, the rather small effect of the present confinement on the diffusive dynamics and the main relaxation time suggest that the surface interactions are considerably weaker than in many other model systems [135].
Recently,
In situ ring-opening polymerization of the
X-ray diffraction (XRD) analysis confirmed that the main peaks of PPy/VMT nanocomposites are similar to the SAM–VMT particles, which reveal that the crystal structure of SAM–VMT is well maintained after the coating process under polymerization conditions and exhibit semi-crystalline behavior. Thermogravimetric analysis showed that the thermal stability of PPy/VMT nanocomposites was enhanced and these can be attributed to the retardation effect of amine-functionalized VMT as barriers for the degradation of PPy. The morphology of PPy/VMT nanocomposites showed the layered structure and encapsulated morphology. The composites possess high electrical conductivity at room temperature, weakly temperature dependence of the conductivity.
Intercalated nanocomposites comprised of poly(propylene carbonate) (PPC) and organo-vermiculite (OVMT) was
Polymer | Type | Utilization |
Poly(lactic acid) (PLA) | aliphatic polyester | Fracture fixation, interference screws, suture anchors, meniscus repair |
poly(glycolic acid) (PLG) | aliphatic polyester | non-woven fibrous fabrics;suture anchors, meniscus repair, medical devices, drug delivery |
poly(ε-caprolactone) (PCL) | aliphatic polyester | Suture coating, dental orthopaedic implants, bone tissue implantant |
poly(hydroxylbutyrate) (PHB) | Polyester | material for waste management strategies; biocompatibility in the medical devices |
Biopolymers for composites
Many advantages and disadvantages characterize these two different classes of biomaterials. Synthetic polymers have relatively good mechanical strength and their shape and degradation rate can be easily modified, but their surfaces are hydrophobic and lack of cell-recognition signals. Naturally derived polymers have the potential advantage of biological recognition that may positively support cell adhesion and function, but they have poor mechanical properties. Many of them are also limited in supply and can therefore be costly [142].
During the last decade, significant attention has been focused on biodegradable polymers. Among all these polymers, poly(lactic acid) (PLA) is one of the most promising because it is thermoplastic, biocompatible and has a high strength, a high modulus, and good processability [143]. PLA also has been revealed an inefficient crystallization process for both the lower crystallization rate and crystallinity as compared with other polymers [144-147].
To maximize therapeutic activity while minimizing negative side effects is the main driven force for the continuous development of new controlled drug delivery systems. Because the release of drugs in drug-intercalated layered materials is potentially controllable (Fig.5), these new materials have a great potential as a delivery host in the pharmaceutical field. Calcium clay has been used extensively in the treatment of pain, open wounds, colitis, diarrhea, hemorrhoids, stomach ulcers, intestinal problems, acne, anemia, and a variety of other health issues.
Schema of drugs delivery.
Chitosan is the deacetylated product of chitin, a natural polymer found in the cell wall of fungi and microorganisms. The active groups in the chitosan structure are the free amine groups, located in the C2 position of the glucose residue in the polysaccharide chain, and the hydroxyl groups [148]. The chitosan/vermiculite nanocomposites have been successfully prepared with different modified vermiculite, which was treated by acid, sodium and CTAB cations. The modification and the nano-scale dispersion of the modified vermiculites were confirmed.
Financial support of the Czech Grant Agency (projects GA ČR 210/11/2215) and the IT4Innovations Centre of Excellence (project reg. no. cz.1.05/1.1.00/02.0070) are gratefully acknowledged.
Recently, a solid lubrication known as Magnéli phases was reported in the application of oxide materials with “easy” crystallographic shear phases, and numerous related research activities have been carried out to investigate the function mechanism of Magnéli phases. Molybdenum, tungsten, and vanadium as the additional elements were initially incorporated into transition metal nitride (TMN)-based hard films, since the molybdenum oxide, tungsten oxide, and vanadium oxide are common Magnéli phases and exhibit the excellent lubricating property. The TMN matrix as the hard phase with a columnar structure could retain the strength and bearing capacity during the wear test. Both the environment heat and friction heat induce the complex tribo-chemistry reaction and the formation of Magnéli phases. The binary molybdenum nitride, the scientists have already attached importance to tungsten nitride and vanadium nitride film in solid lubricating films in recent years. In this part, the high-temperature self-lubricating property of TMN-based hard films was discussed.
The crystal structure of the molybdenum nitride film shows a little influence on the deposition parameters such as nitrogen partial pressure, substrate temperature, and target power. A single fcc-Mo2N phase is usually investigated in the molybdenum nitride film deposited using magnetron sputtering system.
Hardness of the molybdenum nitride film is ~26 GPa. The film exhibits the excellent friction property at high temperature at the expense of wear resistance property. Tribo-film MoO3 is considered as the main factor attributing to the relatively low friction coefficient. MoO3 is composed of double layers of distorted edge-sharing MoO6 octahedra parallel to (010) planes. The MoO3 has low shear strength because weak van der Waals forces hold the successive layers together. The counterpart is easy to wear away the MoO3 under the wear test.
The crystal structure of the tungsten nitride film depends on the deposition parameters significantly. Tungsten nitride films could present a variety of phases such as cubic W2N and hexagonal WN with large nitrogen to tungsten ratios, and the film consisting of a single phase of fcc-W2N exhibits the highest hardness and lowest friction coefficient. The tungsten or nitrogen vacancies in the binary tungsten nitride films are a common phenomenon [1, 2]. The vacancies in the films could enhance the mechanical properties. The hardness of fcc-W2N film is ~30 GPa, whose value is higher than that of molybdenum nitride and vanadium nitride films. Binary tungsten nitride film also exhibits the excellent friction property at the expense of wear resistance property. During the wear test, WO3 could easily form induced by the counterpart at high temperature, and it could play an excellent lubricating role. WO3 is described as crystallographic shear structure in normal as a type of typical Magnéli phases. Reeswinkel et al. [3] expounded the structure of WO3 by the calculation results according to the density functional theory. The results show that there are three different types of W-O bonds co-exist in WO3 owing to the distorted octahedron WO6 and the shifted W cation in the WO3. It is showed that these three types of W-O bonds represent extraordinary lubrication properties.
The crystal structure of vanadium nitride film is also influenced by the deposition parameters significantly. The vanadium nitride-based film is seldom applied in the cutting tools on account of the relative low value of hardness and poor thermal stability of the vanadium nitride film. Vanadium oxide phases could lubricate the film during the wear test at high temperature, and VnO2n + 1 was defined as Magnéli phase because of its excellent lubricant properties. The increase in temperature was reported to induce the change of VO2 to V2O5 [4]. Erdemir [5] establishes the relationship between the phase lubricity of oxide and its ionization potential based on the principle of crystal chemistry. Based on this principle, oxides with high ionic potential values will show a low coefficient of friction. Because the ionic potential of V2O5 (10.2) is higher than that of VO2 (6.8) [6], the V2O5 shows a better lubricant property than that of VO2.
In view of the poor thermal stability and high wear rate, V-N, W-N, and Mo-N-based films are comparatively less applied in cutting tool field. As reported [7, 8], alloying metallic/nonmetallic elements into metal nitride matrix to deposit ternary, quaternary, and multicomponent hard films could combine the benefits of individual components. Therefore, the incorporation of some additional elements into the V-N, W-N, and Mo-N film could be an efficient method to improve the thermal stability and wear resistance property.
Addition of Al into transition metal nitride thin films has been regarded as an effective method to improve the hardness, crystalline orientation, wear resistance, oxidation resistance, and thermal stability of the materials [9, 10]. AlN alloys are usually considered as a superior oxidation resistant due to the formation of Al2O3 layers, which prevent oxygen diffusion toward the coating interior. In addition, Al and Al alloys exhibit low wear resistance although they are used in a wide range of automobile and aerospace industries [11]. Yang et al. [12] prepared Mo1-x Alx N thin films on stainless steel coins, alumina sheet, and silicon wafer substrates by using dc reactive magnetron sputtering technique and studied the effect of N2 and Al content (0.06–0.33) on the coating properties including structural, hardness, and oxidation resistance. The maximum hardness of 29 GPa was found at x = 0.06, and by further increasing of Al content, a decrease in hardness was detected owning to the weakness of fine grain strengthening. The oxidation resistance temperature increased gradually by increasing the concentration of Al. Our group [13] fabricated Mo-Al-N thin films with various Al contents (3.7–18.3 at.%) on stainless steel (06Cr19Ni10) and Si (100) wafer substrate by using reactive magnetron sputtering and studied the effect of Al content on microstructure, mechanical oxidation resistance, and tribological properties of the films. The result showed that the oxidation resistance of MoAlN thin films increased by increasing the Al content, while hardness and young modulus first increased and then started decreasing by increasing the Al content. The highest values of hardness and elastic modulus were 32.6 and 494 GPa, respectively, at 3.7 at.% Al. The film showed the lowest average friction coefficient and wear at the range between 4.1 and 9.5 at.% of Al content. Besides this, we also add the Al into the vanadium nitride film using the magnetron sputtering. The influence of Al content on the micro-structure, oxidation resistance, mechanical, and tribological properties of V-Al-N films were investigated. The crystal structure of V-Al-N film is always a single face-centered cubic structure no matter what the aluminum content is. When the content of aluminum was lower than 4.7 at.%, the hardness of the film represented an obvious increase. At the same time, the friction coefficient and wear rate showed a decrease at room temperature. The elevated Al content increases the oxidation resistance while reducing the fracture toughness. The high temperature tribological properties of the film at 4.7 at.% aluminum, which showed the highest hardness, lowest friction coefficient, and wear rate were investigated. The increase in temperature caused a change in the wear mechanism and a phase transition of the tribo-film vanadium oxides. The friction coefficient first increases to 0.7 at 300°C and decreases to 0.28 at 700°C with the wear rate gradually increases. As a result, the film at 4.7 at.% Al represented the most suitable properties in cutting tool application.
Based on above investigation, the addition of Al into the Mo2N, VN matrix to the formation of the substitutional solid solution could enhance the mechanical properties. Besides this, the addition of Al also could improve the oxidation resistance temperature. The oxidation behavior of the films containing Al is mainly controlled by the Al content in the films. Al3+ diffuses outward to the surface of the films with the inward diffusion of oxygen will form Al2O3 layer during the oxidation process. Al2O3 phase is stable over a wide temperature range and easy to be formed. At low temperature ranging from 400 to 600°C, amorphous Al2O3 is formed [9]. The amorphous Al2O3 layer on the surface of the films is more effective to prevent the diffusion of oxygen into the films. However, the further increase in temperature induces the Al2O3 from amorphous to crystalline. Compared with the amorphous Al2O3, oxygen is easily diffused internally due to the grain boundary [10, 13, 14] of the crystalline oxide layer, while Al2O3 and MoO3 grow rapidly. The oxidation diffusion mechanism is transferred from atomic diffuse to mass transfer. At the same time, the exchange of Al caused an increase in Al-N covalent bonds in the films, which represents excellent thermal stability property. The addition of Al could improve the wear resistance property of the films due to the enhancement of thermal stability and the decrease in the Magnéli elements in the films.
Silicon is another additional element to improve the mechanical, thermal stability, and wear resistance properties of the films. Limited solid solubility of Si in the TMN matrix induces the formation of amorphous Si3N4 phase. Figure 1 shows the TEM image of the W-Si-N composite film with a Si content of 23.5 at.%. As shown in the figure, the nanograins of fcc-W2N are embedded into the amorphous phases. The amorphous Si3N4 exhibits an excellent thermal stability property, and its oxidation resistance temperature is above 1200°C. Therefore, the addition of Si into the TMN matrix could increase the oxidation resistance temperature. The nanograins of tungsten nitride are wrapped up by the amorphous phase. This microstructure could provide better protection for tungsten nitride against oxidation and prolong the service life during the wear test.
HRTEM image of W-Si-N film with a Si content of 23.5 at %.
Some other additional elements such as titanium and niobium also could improve the wear resistance properties of molybdenum nitride, tungsten nitride, and vanadium niride-based films [15, 16, 17]. For instance, the incorporation of titanium into the tungsten nitride matrix could form a solid solution of (W1−xTix)2−yNy and exhibited a single face-centered cubic (fcc) W2N structure. Both the sub-stoichiometric nitrogen content and solid solution strengthening could enhance the mechanical properties. The incorporation of titanium also drops the wear rate at room temperature significantly. This could be attributed to the increase of hardness to elastic modulus ratio, elastic recovery, and hardness. Besides this, the addition of titanium into the tungsten nitride matrix decreases the tungsten content in the film, and this finally induces the decrease in the content of Magnéli phase on the wear track surface. The decrease in the poor wear resistance Magnéli phase also attributes to the decline of wear rate. Tungsten titanium nitride film exhibits the higher working temperature than the binary W2N film.
The molybdenum, tungsten, and vanadium Magnéli elements have been widely incorporated into some traditional TMN-based films to improve the high-temperature self-lubricating property. For instance, V was incorporated into the Nb-Si-N matrix, and the Nb-V-Si-N composite films were synthesized using the magnetron sputtering to improve the high-temperature tribological properties. The results show that the incorporation of V into the matrix could form the substitutional solid solution of (Nb, V)N. Figure 2 shows the HRTEM image of the Nb-V-Si-N film with a vanadium content of 3.7 at.%. The amorphous Si3N4 phases enclose the substitutional solid solution. This microstructure could provide better protection for Nb-V-N against oxidation at the high temperature environment. The solution of V could improve the mechanical properties such as the hardness and toughness. Figure 3 illustrates the friction coefficient and wear rate of the films at different testing temperatures. The incorporation of V into the film could improve the friction property at elevated temperatures at the expense of wear resistance property due to the Magnéli phase with weakly bonded lattice planes.
HRTEM image and its corresponding SAED pattern of Nb-V-Si-N film at 3.7 at.% vanadium.
Friction coefficient and wear rate of Nb-V-Si-N films as a function of vanadium content.
Molybdenum can also bring positive influence to high-temperature friction performance of the film. We add molybdenum into the classic titanium nitride film in order to improve its tribological properties. The result shows that the Ti-Mo-N film exhibits a single face-centered cubic structure, as same as binary TiN film. With the increase of molybdenum content, the Mo2N phase appears in the film because of the precipitated molybdenum. Figure 4 illustrates the SAED pattern of the Ti-Mo-N film at 46.0 at.% Mo. Calculated the data given in Figure 4, it can be seen that the selected electron diffraction pattern matches fcc-Mo2N. The composite film represents the highest hardness and the lowest friction coefficient in room temperature at 46.0 at.% Mo. Figure 5 shows the average friction coefficient and wear rate of Ti-Mo-N films at 46.0 at.% Mo under different testing temperatures. Figure 6 shows the relative mass fraction of Ti-Mo-N, MoO3, and TiO2 on the wear tracks of Ti-Mo-N films at testing temperatures. When the texting temperature is higher than 400°C, the Magnéli phase MoO3 and oxidized phase TiO2 appeared contributes to the decrease of average friction coefficient, and the relative mass fraction of the friction phase in the film wear marks increases gradually with the increase of ambient temperature, which can lubricate the wear marks and friction pairs and make the interaction between them tend to ease, so the average friction coefficient of the film decreases gradually with the increase of ambient temperature. However, the MoO3 layers are only combined by van der Waals force. MoO3 is very diffusive and easy to be worn by counterpart during the wear test, so MoO3 is not wear-resistant although it can decrease the friction coefficient.
The SAED patterns of Ti-Mo-N films with 46.0 at % Mo content.
The average friction coefficient and wear rate of Ti-Mo-N films at different temperatures.
The relative mass fraction of Ti-Mo-N, MoO3, and TiO2 on the wear tracks of Ti-Mo-N films at testing temperatures.
In addition, there are similar conclusions in Ti-W-N composite film. TiN incorporating tungsten can form the substitutional solid solution of (Ti, W) N as well and precipitate W2N when the content of tungsten reaches a specific value. Figure 7 illustrates the friction coefficient and wear rate of Ti-W-N composite films at 35.29 at.% W under different temperatures. When the temperature rises to 400°C, the friction coefficient decreases sharply because the TiWN composite film is oxidized, and the oxidation phases of Ti and W are formed on the surface of the film, which means TiO2 and WO3. WO3 with layered structure plays a role in the lubricant under the high-temperature friction. When the content of WO3 increases, the coefficient of friction decreases. WO3 has a melting point of about 730°C, and when the temperature continues to rise to 800°C, the melted WO3 has better lubricating properties than the dry friction, which leads to the further decrease of friction coefficient. Beside this, the friction coefficient will keep a low value due to the constant formation of liquid WO3 during the friction process.
The friction coefficient and wear rate of Ti-W-N composite films at different temperatures.
The Magnéli phase exhibits the excellent lubricating properties at high temperatures; however, it could be worn away easily by the counterpart during the wear test due to its weakly bonded lattice planes.
Addition of aluminum and silicon into the TMN-based films containing Magnéli elements could improve the thermal stability and decrease in the content of Magnéli phase on the wear track surface. It could enhance the wear resistance property to some extent.
These Terms and Conditions outline the rules and regulations pertaining to the use of IntechOpen’s website www.intechopen.com and all the subdomains owned by IntechOpen located at 5 Princes Gate Court, London, SW7 2QJ, United Kingdom.
',metaTitle:"Terms and Conditions",metaDescription:"These terms and conditions outline the rules and regulations for the use of IntechOpen Website at https://intechopen.com and all its subdomains owned by Intech Limited located at 7th floor, 10 Lower Thames Street, London, EC3R 6AF, UK.",metaKeywords:null,canonicalURL:"/page/terms-and-conditions",contentRaw:'[{"type":"htmlEditorComponent","content":"By accessing the website at www.intechopen.com you are agreeing to be bound by these Terms of Service, all applicable laws and regulations, and agree that you are responsible for compliance with any applicable local laws. Use and/or access to this site is based on full agreement and compliance of these Terms. All materials contained on this website are protected by applicable copyright and trademark laws.
\\n\\nThe following terminology applies to these Terms and Conditions, Privacy Statement, Disclaimer Notice, and any or all Agreements:
\\n\\n“Client”, “Customer”, “You” and “Your” refers to you, the person accessing this website and accepting the Company’s Terms and Conditions;
\\n\\n“The Company”, “Ourselves”, “We”, “Our” and “Us”, refers to our Company, IntechOpen;
\\n\\n“Party”, “Parties”, or “Us”, refers to both the Client and ourselves, or either the Client or ourselves.
\\n\\nAll Terms refer to the offer, acceptance, and consideration of payment necessary to provide assistance to the Client in the most appropriate manner, whether by formal meetings of a fixed duration, or by any other agreed means, for the express purpose of meeting the Client’s needs in respect of provision of the Company’s stated services/products, and in accordance with, and subject to, the prevailing laws of the United Kingdom.
\\n\\nAny use of the above terminology, or other words in the singular, plural, capitalization and/or he/she or they, are taken as interchangeable.
\\n\\nUnless otherwise stated, IntechOpen and/or its licensors own the intellectual property rights for all materials on www.intechopen.com. All intellectual property rights are reserved. You may view, download, share, link and print pages from www.intechopen.com for your own personal use, subject to the restrictions set out in these Terms and Conditions.
\\n\\nWe employ the use of cookies. By using the IntechOpen website you consent to the use of cookies in accordance with IntechOpen’s Privacy Policy. Most modern day interactive websites use cookies to enable the retrieval of user details for each visit. On our site, cookies are predominantly used to enable functionality and ease of use for those visiting the site.
\\n\\nIn no circumstances shall IntechOpen or its suppliers be liable for any damages (including, without limitation, damages for loss of data or profit, or due to business interruption) arising out of the use, or inability to use, the materials on IntechOpen's websites, even if IntechOpen or an IntechOpen authorized representative has been notified orally or in writing of the possibility of such damage. Some jurisdictions do not allow limitations on implied warranties, or limitations of liability for consequential or incidental damages; consequently, these limitations may not apply to you.
\\n\\nIntechopen.com website content and services are provided on an "AS IS" and an "AS AVAILABLE" basis. Material appearing on www.intechopen.com could include minor technical, typographical, or photographic errors. IntechOpen may make changes to any material contained on its website at any time without notice.
\\n\\nIntechOpen has no formal affiliation to any external sites that link to www.intechopen.com, unless otherwise specifically stated. As such, it is not responsible for content that appears on any such sites. The inclusion of any link to IntechOpen does not imply endorsement by IntechOpen. Use of any such linked website is done solely at the user's own discretion.
\\n\\nWe reserve the right of ownership over our entire website www.intechopen.com, and all contents. By using our services, you agree to remove all links to our website immediately upon request. We also reserve the right to amend these Terms and Conditions and our linking policy at any time. By continuing to link to our website, you agree to be bound to, and abide by, these linking Terms and Conditions.
\\n\\nIf you find any link on our website, or any linked website, objectionable for any reason, please Contact Us. We will consider all requests to remove links but will have no obligation to do so.
\\n\\nWithout prior approval and express written permission, you may not create frames around our web pages or use other techniques that alter in any way the visual presentation or appearance of our website.
\\n\\nIntechOpen may revise its Terms of Service for its website at any time without notice. By using this website, you are agreeing to be bound by the current version of all Terms at the time of use.
\\n\\nThese Terms and Conditions are governed by and construed in accordance with the laws of the United Kingdom and you irrevocably submit to the exclusive jurisdiction of the courts in London, United Kingdom.
\\n\\nCroatian version of Terms and Conditions available here
\\n"}]'},components:[{type:"htmlEditorComponent",content:'By accessing the website at www.intechopen.com you are agreeing to be bound by these Terms of Service, all applicable laws and regulations, and agree that you are responsible for compliance with any applicable local laws. Use and/or access to this site is based on full agreement and compliance of these Terms. All materials contained on this website are protected by applicable copyright and trademark laws.
\n\nThe following terminology applies to these Terms and Conditions, Privacy Statement, Disclaimer Notice, and any or all Agreements:
\n\n“Client”, “Customer”, “You” and “Your” refers to you, the person accessing this website and accepting the Company’s Terms and Conditions;
\n\n“The Company”, “Ourselves”, “We”, “Our” and “Us”, refers to our Company, IntechOpen;
\n\n“Party”, “Parties”, or “Us”, refers to both the Client and ourselves, or either the Client or ourselves.
\n\nAll Terms refer to the offer, acceptance, and consideration of payment necessary to provide assistance to the Client in the most appropriate manner, whether by formal meetings of a fixed duration, or by any other agreed means, for the express purpose of meeting the Client’s needs in respect of provision of the Company’s stated services/products, and in accordance with, and subject to, the prevailing laws of the United Kingdom.
\n\nAny use of the above terminology, or other words in the singular, plural, capitalization and/or he/she or they, are taken as interchangeable.
\n\nUnless otherwise stated, IntechOpen and/or its licensors own the intellectual property rights for all materials on www.intechopen.com. All intellectual property rights are reserved. You may view, download, share, link and print pages from www.intechopen.com for your own personal use, subject to the restrictions set out in these Terms and Conditions.
\n\nWe employ the use of cookies. By using the IntechOpen website you consent to the use of cookies in accordance with IntechOpen’s Privacy Policy. Most modern day interactive websites use cookies to enable the retrieval of user details for each visit. On our site, cookies are predominantly used to enable functionality and ease of use for those visiting the site.
\n\nIn no circumstances shall IntechOpen or its suppliers be liable for any damages (including, without limitation, damages for loss of data or profit, or due to business interruption) arising out of the use, or inability to use, the materials on IntechOpen's websites, even if IntechOpen or an IntechOpen authorized representative has been notified orally or in writing of the possibility of such damage. Some jurisdictions do not allow limitations on implied warranties, or limitations of liability for consequential or incidental damages; consequently, these limitations may not apply to you.
\n\nIntechopen.com website content and services are provided on an "AS IS" and an "AS AVAILABLE" basis. Material appearing on www.intechopen.com could include minor technical, typographical, or photographic errors. IntechOpen may make changes to any material contained on its website at any time without notice.
\n\nIntechOpen has no formal affiliation to any external sites that link to www.intechopen.com, unless otherwise specifically stated. As such, it is not responsible for content that appears on any such sites. The inclusion of any link to IntechOpen does not imply endorsement by IntechOpen. Use of any such linked website is done solely at the user's own discretion.
\n\nWe reserve the right of ownership over our entire website www.intechopen.com, and all contents. By using our services, you agree to remove all links to our website immediately upon request. We also reserve the right to amend these Terms and Conditions and our linking policy at any time. By continuing to link to our website, you agree to be bound to, and abide by, these linking Terms and Conditions.
\n\nIf you find any link on our website, or any linked website, objectionable for any reason, please Contact Us. We will consider all requests to remove links but will have no obligation to do so.
\n\nWithout prior approval and express written permission, you may not create frames around our web pages or use other techniques that alter in any way the visual presentation or appearance of our website.
\n\nIntechOpen may revise its Terms of Service for its website at any time without notice. By using this website, you are agreeing to be bound by the current version of all Terms at the time of use.
\n\nThese Terms and Conditions are governed by and construed in accordance with the laws of the United Kingdom and you irrevocably submit to the exclusive jurisdiction of the courts in London, United Kingdom.
\n\nCroatian version of Terms and Conditions available here
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5820},{group:"region",caption:"Middle and South America",value:2,count:5289},{group:"region",caption:"Africa",value:3,count:1761},{group:"region",caption:"Asia",value:4,count:10546},{group:"region",caption:"Australia and Oceania",value:5,count:909},{group:"region",caption:"Europe",value:6,count:15932}],offset:12,limit:12,total:119318},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"20"},books:[{type:"book",id:"10672",title:"Nonlinear Optics",subtitle:null,isOpenForSubmission:!0,hash:"cfe87b713a8bee22c19361b86b03d506",slug:null,bookSignature:"Dr. Boris I. Lembrikov",coverURL:"https://cdn.intechopen.com/books/images_new/10672.jpg",editedByType:null,editors:[{id:"2359",title:"Dr.",name:"Boris",surname:"Lembrikov",slug:"boris-lembrikov",fullName:"Boris Lembrikov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10674",title:"Topics on Quantum Information Science",subtitle:null,isOpenForSubmission:!0,hash:"d7481712cff0157cd8f849cba865727d",slug:null,bookSignature:"Prof. Sergio Curilef and Dr. Angel Ricardo Plastino",coverURL:"https://cdn.intechopen.com/books/images_new/10674.jpg",editedByType:null,editors:[{id:"125424",title:"Prof.",name:"Sergio",surname:"Curilef",slug:"sergio-curilef",fullName:"Sergio Curilef"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10852",title:"Electromagnetic Compatibility",subtitle:null,isOpenForSubmission:!0,hash:"f5d2cce3a2adbd5d108d3301ee97025b",slug:null,bookSignature:"Dr. Ahmed Kishk",coverURL:"https://cdn.intechopen.com/books/images_new/10852.jpg",editedByType:null,editors:[{id:"150146",title:"Dr.",name:"Ahmed",surname:"Kishk",slug:"ahmed-kishk",fullName:"Ahmed Kishk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10921",title:"Plasma Science and Technology",subtitle:null,isOpenForSubmission:!0,hash:"c45670ef4b081fd9eebaf911b2b4627b",slug:null,bookSignature:"Dr. Aamir Shahzad",coverURL:"https://cdn.intechopen.com/books/images_new/10921.jpg",editedByType:null,editors:[{id:"288354",title:"Dr.",name:"Aamir",surname:"Shahzad",slug:"aamir-shahzad",fullName:"Aamir Shahzad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10956",title:"Pulsed Lasers",subtitle:null,isOpenForSubmission:!0,hash:"88bd906b149fc3d1c5d6fdbd9916826c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10956.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:28},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:9},{group:"topic",caption:"Business, Management and Economics",value:7,count:3},{group:"topic",caption:"Chemistry",value:8,count:11},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:10},{group:"topic",caption:"Engineering",value:11,count:25},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:7},{group:"topic",caption:"Mathematics",value:15,count:3},{group:"topic",caption:"Medicine",value:16,count:48},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:5},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:{id:"206443",title:"Prof.",name:"Asma",middleName:null,surname:"Salman",slug:"asma-salman",fullName:"Asma Salman",profilePictureURL:"https://mts.intechopen.com/storage/users/206443/images/system/206443.png",biography:"Professor Asma Salman is a blockchain developer and Professor of Finance at the American University in the Emirates, UAE. An Honorary Global Advisor at the Global Academy of Finance and Management, USA, she completed her MBA in Finance and Accounting and earned a Ph.D. in Finance from an AACSB member, AMBA accredited, School of Management at Harbin Institute of Technology, China. Her research credentials include a one-year residency at the Brunel Business School, Brunel University, UK. Prof. Salman also served as the Dubai Cohort supervisor for DBA students under the Nottingham Business School, UK, for seven years and is currently a Ph.D. supervisor at the University of Northampton, UK, where she is a visiting fellow. She also served on the Board of Etihad Airlines during 2019–2020. One of her recent articles on “Bitcoin and Blockchain” gained wide visibility and she is an active speaker on Fintech, blockchain, and crypto events around the GCC. She holds various professional certifications including Chartered Fintech Professional (USA), Certified Financial Manager (USA), Women in Leadership and Management in Higher Education, (UK), and Taxation GCC VAT Compliance, (UK). She recently won an award for “Blockchain Trainer of the Year” from Berkeley Middle East. Other recognitions include the Women Leadership Impact Award by H.E First Lady of Armenia, Research Excellence Award, and the Global Inspirational Women Leadership Award by H.H Sheikh Juma Bin Maktoum Juma Al Maktoum.",institutionString:"American University in the Emirates",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University in the Emirates",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"22b87a09bd6df065d78c175235d367c8",slug:"biomedical-signal-and-image-processing",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editedByType:"Edited by",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9021",title:"Novel Perspectives of Stem Cell Manufacturing and Therapies",subtitle:null,isOpenForSubmission:!1,hash:"522c6db871783d2a11c17b83f1fd4e18",slug:"novel-perspectives-of-stem-cell-manufacturing-and-therapies",bookSignature:"Diana Kitala and Ana Colette Maurício",coverURL:"https://cdn.intechopen.com/books/images_new/9021.jpg",editedByType:"Edited by",editors:[{id:"203598",title:"Ph.D.",name:"Diana",middleName:null,surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editedByType:"Edited by",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editedByType:"Edited by",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editedByType:"Edited by",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:{id:"206443",title:"Prof.",name:"Asma",middleName:null,surname:"Salman",slug:"asma-salman",fullName:"Asma Salman",profilePictureURL:"https://mts.intechopen.com/storage/users/206443/images/system/206443.png",biography:"Professor Asma Salman is a blockchain developer and Professor of Finance at the American University in the Emirates, UAE. An Honorary Global Advisor at the Global Academy of Finance and Management, USA, she completed her MBA in Finance and Accounting and earned a Ph.D. in Finance from an AACSB member, AMBA accredited, School of Management at Harbin Institute of Technology, China. Her research credentials include a one-year residency at the Brunel Business School, Brunel University, UK. Prof. Salman also served as the Dubai Cohort supervisor for DBA students under the Nottingham Business School, UK, for seven years and is currently a Ph.D. supervisor at the University of Northampton, UK, where she is a visiting fellow. She also served on the Board of Etihad Airlines during 2019–2020. One of her recent articles on “Bitcoin and Blockchain” gained wide visibility and she is an active speaker on Fintech, blockchain, and crypto events around the GCC. She holds various professional certifications including Chartered Fintech Professional (USA), Certified Financial Manager (USA), Women in Leadership and Management in Higher Education, (UK), and Taxation GCC VAT Compliance, (UK). She recently won an award for “Blockchain Trainer of the Year” from Berkeley Middle East. Other recognitions include the Women Leadership Impact Award by H.E First Lady of Armenia, Research Excellence Award, and the Global Inspirational Women Leadership Award by H.H Sheikh Juma Bin Maktoum Juma Al Maktoum.",institutionString:"American University in the Emirates",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University in the Emirates",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editedByType:"Edited by",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"22b87a09bd6df065d78c175235d367c8",slug:"biomedical-signal-and-image-processing",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",editedByType:"Edited by",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editedByType:"Edited by",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editedByType:"Edited by",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"674",title:"Soil Biology",slug:"soil-biology",parent:{title:"Soil Science",slug:"earth-and-planetary-sciences-soil-science"},numberOfBooks:2,numberOfAuthorsAndEditors:76,numberOfWosCitations:67,numberOfCrossrefCitations:32,numberOfDimensionsCitations:69,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"soil-biology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"6559",title:"Earthworms",subtitle:"The Ecological Engineers of Soil",isOpenForSubmission:!1,hash:"0780208898e98441ccea18ea373c0708",slug:"earthworms-the-ecological-engineers-of-soil",bookSignature:"Sajal Ray",coverURL:"https://cdn.intechopen.com/books/images_new/6559.jpg",editedByType:"Edited by",editors:[{id:"173697",title:"Prof.",name:"Sajal",middleName:null,surname:"Ray",slug:"sajal-ray",fullName:"Sajal Ray"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1398",title:"Principles, Application and Assessment in Soil Science",subtitle:null,isOpenForSubmission:!1,hash:"70c304305ba2727cc51774a1bc517e18",slug:"principles-application-and-assessment-in-soil-science",bookSignature:"E. Burcu Özkaraova Güngör",coverURL:"https://cdn.intechopen.com/books/images_new/1398.jpg",editedByType:"Edited by",editors:[{id:"74046",title:"Dr.",name:"Burcu E.",middleName:null,surname:"Ozkaraova Gungor",slug:"burcu-e.-ozkaraova-gungor",fullName:"Burcu E. Ozkaraova Gungor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,mostCitedChapters:[{id:"24769",doi:"10.5772/29490",title:"Classification and Management of Highly Weathered Soils in Malaysia for Production of Plantation Crops",slug:"classification-and-management-of-highly-weathered-soils-in-malaysia-for-production-of-plantation-cro",totalDownloads:3891,totalCrossrefCites:8,totalDimensionsCites:10,book:{slug:"principles-application-and-assessment-in-soil-science",title:"Principles, Application and Assessment in Soil Science",fullTitle:"Principles, Application and Assessment in Soil Science"},signatures:"J. Shamshuddin and Noordin Wan Daud",authors:[{id:"78120",title:"Prof.",name:"Jusop",middleName:null,surname:"Shamshuddin",slug:"jusop-shamshuddin",fullName:"Jusop Shamshuddin"},{id:"123882",title:"Dr.",name:"Noordin",middleName:null,surname:"Wan Daud",slug:"noordin-wan-daud",fullName:"Noordin Wan Daud"}]},{id:"24781",doi:"10.5772/29627",title:"Updated Brazilian’s Georeferenced Soil Database – An Improvement for International Scientific Information Exchanging",slug:"updated-brazilian-s-georeferenced-soil-database-an-improvement-for-international-scientific-informat",totalDownloads:3402,totalCrossrefCites:4,totalDimensionsCites:10,book:{slug:"principles-application-and-assessment-in-soil-science",title:"Principles, Application and Assessment in Soil Science",fullTitle:"Principles, Application and Assessment in Soil Science"},signatures:"Marcelo Muniz Benedetti, Nilton Curi, Gerd Sparovek, Amaury de Carvalho Filho and Sérgio Henrique Godinho Silva",authors:[{id:"32937",title:"Prof.",name:"Gerd",middleName:null,surname:"Sparovek",slug:"gerd-sparovek",fullName:"Gerd Sparovek"},{id:"78632",title:"Dr.",name:"Marcelo",middleName:null,surname:"Muniz Benedetti",slug:"marcelo-muniz-benedetti",fullName:"Marcelo Muniz Benedetti"},{id:"130228",title:"Dr.",name:"Nilton",middleName:null,surname:"Curi",slug:"nilton-curi",fullName:"Nilton Curi"},{id:"130483",title:"Dr.",name:"Amaury",middleName:null,surname:"De Carvalho Filho",slug:"amaury-de-carvalho-filho",fullName:"Amaury De Carvalho Filho"}]},{id:"24772",doi:"10.5772/31064",title:"Long-Term Effects of Residue Management on Soil Fertility in Mediterranean Olive Grove: Simulating Carbon Sequestration with RothC Model",slug:"long-term-effects-of-residue-management-on-soil-fertility-in-mediterranean-olive-grove-simulating-ca",totalDownloads:2241,totalCrossrefCites:0,totalDimensionsCites:9,book:{slug:"principles-application-and-assessment-in-soil-science",title:"Principles, Application and Assessment in Soil Science",fullTitle:"Principles, Application and Assessment in Soil Science"},signatures:"O.M. Nieto, J. Castro and E. Fernández",authors:[{id:"85434",title:"PhD.",name:"Olga M",middleName:null,surname:"Nieto",slug:"olga-m-nieto",fullName:"Olga M Nieto"},{id:"85444",title:"Dr.",name:"Juan",middleName:null,surname:"Castro",slug:"juan-castro",fullName:"Juan Castro"},{id:"85447",title:"Dr.",name:"Emilia",middleName:null,surname:"Fernandez",slug:"emilia-fernandez",fullName:"Emilia Fernandez"}]}],mostDownloadedChaptersLast30Days:[{id:"60445",title:"Earthworms and Vermicomposting",slug:"earthworms-and-vermicomposting",totalDownloads:1547,totalCrossrefCites:4,totalDimensionsCites:4,book:{slug:"earthworms-the-ecological-engineers-of-soil",title:"Earthworms",fullTitle:"Earthworms - The Ecological Engineers of Soil"},signatures:"Jorge Domínguez",authors:[{id:"97521",title:"Dr.",name:"Jorge",middleName:null,surname:"Domínguez",slug:"jorge-dominguez",fullName:"Jorge Domínguez"}]},{id:"60450",title:"Environmental Influence of Soil toward Effective Vermicomposting",slug:"environmental-influence-of-soil-toward-effective-vermicomposting",totalDownloads:1244,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"earthworms-the-ecological-engineers-of-soil",title:"Earthworms",fullTitle:"Earthworms - The Ecological Engineers of Soil"},signatures:"Jaswinder Singh, Sharanpreet Singh, Adarsh Pal Vig and Arvinder\nKaur",authors:[{id:"229104",title:"Dr.",name:"Jaswinder",middleName:null,surname:"Singh",slug:"jaswinder-singh",fullName:"Jaswinder Singh"},{id:"240576",title:"Dr.",name:"Adarsh",middleName:"Pal",surname:"Vig",slug:"adarsh-vig",fullName:"Adarsh Vig"},{id:"240577",title:"Dr.",name:"Arvinder",middleName:null,surname:"Kaur",slug:"arvinder-kaur",fullName:"Arvinder Kaur"},{id:"240578",title:"Mr.",name:"Sharanpreet",middleName:null,surname:"Singh",slug:"sharanpreet-singh",fullName:"Sharanpreet Singh"}]},{id:"24780",title:"Statistical Methods for the Analysis of Soil Spatial and Temporal Variability",slug:"statistical-methods-for-the-analysis-of-soil-spatial-and-temporal-variability",totalDownloads:4921,totalCrossrefCites:2,totalDimensionsCites:5,book:{slug:"principles-application-and-assessment-in-soil-science",title:"Principles, Application and Assessment in Soil Science",fullTitle:"Principles, Application and Assessment in Soil Science"},signatures:"Ahmed Douaik, Marc van Meirvenne and Tibor Tóth",authors:[{id:"75877",title:"Dr",name:"Ahmed",middleName:null,surname:"Douaik",slug:"ahmed-douaik",fullName:"Ahmed Douaik"},{id:"123286",title:"Prof.",name:"Marc",middleName:null,surname:"Van Meirvenne",slug:"marc-van-meirvenne",fullName:"Marc Van Meirvenne"},{id:"123287",title:"Prof.",name:"Tibor",middleName:null,surname:"Tóth",slug:"tibor-toth",fullName:"Tibor Tóth"}]},{id:"59413",title:"Earthworms and Nematodes: The Ecological and Functional Interactions",slug:"earthworms-and-nematodes-the-ecological-and-functional-interactions",totalDownloads:818,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"earthworms-the-ecological-engineers-of-soil",title:"Earthworms",fullTitle:"Earthworms - The Ecological Engineers of Soil"},signatures:"Jair Alves Dionísio, Wilian Carlo Demetrio and Arlei Maceda",authors:[{id:"225679",title:"Dr.",name:"Jair",middleName:"Alves",surname:"Dionisio",slug:"jair-dionisio",fullName:"Jair Dionisio"},{id:"225686",title:"MSc.",name:"Arlei",middleName:null,surname:"Maceda",slug:"arlei-maceda",fullName:"Arlei Maceda"},{id:"225688",title:"Dr.",name:"Wilian",middleName:null,surname:"Demetrio",slug:"wilian-demetrio",fullName:"Wilian Demetrio"}]},{id:"24776",title:"Multiscaling Analysis of Soil Drop Roughness",slug:"multiscaling-analysis-of-soil-drop-roughness",totalDownloads:2479,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"principles-application-and-assessment-in-soil-science",title:"Principles, Application and Assessment in Soil Science",fullTitle:"Principles, Application and Assessment in Soil Science"},signatures:"R. García Moreno, M.C. Díaz Álvarez, A. Saa Requejo and J.L. Valencia Delfa",authors:[{id:"77912",title:"Dr.",name:"Rosario",middleName:null,surname:"Garcia Moreno",slug:"rosario-garcia-moreno",fullName:"Rosario Garcia Moreno"}]},{id:"61487",title:"Introductory Chapter: Earthworms - The Ecological Engineers of Soil",slug:"introductory-chapter-earthworms-the-ecological-engineers-of-soil",totalDownloads:635,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"earthworms-the-ecological-engineers-of-soil",title:"Earthworms",fullTitle:"Earthworms - The Ecological Engineers of Soil"},signatures:"Sajal Ray",authors:[{id:"173697",title:"Prof.",name:"Sajal",middleName:null,surname:"Ray",slug:"sajal-ray",fullName:"Sajal Ray"}]},{id:"24778",title:"Soil-Landscape Modelling – Reference Soil Group Probability Prediction in Southern Ecuador",slug:"soil-landscape-modelling-reference-soil-group-probability-prediction-in-southern-ecuador",totalDownloads:2028,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"principles-application-and-assessment-in-soil-science",title:"Principles, Application and Assessment in Soil Science",fullTitle:"Principles, Application and Assessment in Soil Science"},signatures:"Mareike Ließ, Bruno Glaser and Bernd Huwe",authors:[{id:"77992",title:"Dr.",name:"Mareike",middleName:null,surname:"Liess",slug:"mareike-liess",fullName:"Mareike Liess"},{id:"84418",title:"Prof.",name:"Bruno",middleName:null,surname:"Glaser",slug:"bruno-glaser",fullName:"Bruno Glaser"},{id:"84419",title:"Prof.",name:"Bernd",middleName:null,surname:"Huwe",slug:"bernd-huwe",fullName:"Bernd Huwe"}]},{id:"61906",title:"Exploration of Earthworms of India through Online Digital Library",slug:"exploration-of-earthworms-of-india-through-online-digital-library",totalDownloads:688,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"earthworms-the-ecological-engineers-of-soil",title:"Earthworms",fullTitle:"Earthworms - The Ecological Engineers of Soil"},signatures:"Samrendra Singh Thakur and Shweta Yadav",authors:[{id:"227681",title:"Dr.",name:"Shweta",middleName:null,surname:"Yadav",slug:"shweta-yadav",fullName:"Shweta Yadav"}]},{id:"61055",title:"Abundance and Diversity of Earthworms in Managed and Non- Managed Fallow Lands of Calakmul Reserve of Campeche, Mexico",slug:"abundance-and-diversity-of-earthworms-in-managed-and-non-managed-fallow-lands-of-calakmul-reserve-of",totalDownloads:460,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"earthworms-the-ecological-engineers-of-soil",title:"Earthworms",fullTitle:"Earthworms - The Ecological Engineers of Soil"},signatures:"Esperanza Huerta Lwanga, Lucero Sánchez-del Cid, Ligia Esparza-\nOlguín, Eduardo Martinez-Romero, Ben de Jong and Susana\nOchoa-Gaona",authors:[{id:"229081",title:"Dr.",name:"Esperanza",middleName:null,surname:"Huerta Lwanga",slug:"esperanza-huerta-lwanga",fullName:"Esperanza Huerta Lwanga"}]},{id:"24782",title:"Mineral Nitrogen as a Universal Soil Test to Predict Plant N Requirements and Ground Water Pollution – Case Study for Poland",slug:"mineral-nitrogen-as-a-universal-soil-test-to-predict-plant-n-requirements-and-ground-water-pollution",totalDownloads:1596,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"principles-application-and-assessment-in-soil-science",title:"Principles, Application and Assessment in Soil Science",fullTitle:"Principles, Application and Assessment in Soil Science"},signatures:"Agnieszka Rutkowska and Mariusz Fotyma",authors:[{id:"77653",title:"Dr.",name:"Agnieszka",middleName:null,surname:"Rutkowska",slug:"agnieszka-rutkowska",fullName:"Agnieszka Rutkowska"},{id:"131785",title:"Prof.",name:"Mariusz",middleName:null,surname:"Fotyma",slug:"mariusz-fotyma",fullName:"Mariusz Fotyma"}]}],onlineFirstChaptersFilter:{topicSlug:"soil-biology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},route:{name:"chapter.detail",path:"/books/clay-minerals-in-nature-their-characterization-modification-and-application/vermiculite-structural-properties-and-examples-of-the-use",hash:"",query:{},params:{book:"clay-minerals-in-nature-their-characterization-modification-and-application",chapter:"vermiculite-structural-properties-and-examples-of-the-use"},fullPath:"/books/clay-minerals-in-nature-their-characterization-modification-and-application/vermiculite-structural-properties-and-examples-of-the-use",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()