Physico-chemical properties of AFB1.
\r\n\tThere are different types of multiple pregnancies: fraternal twins, identical twins, triplets, and higher-order multiples. Symptoms of multiple pregnancies are larger uterus than expected for the date in pregnancy, increased morning sickness, increased appetite, and excessive weight gain. In this book, we will examine the clinical aspects of multiple pregnancies and management. Also, we will examine the management of cases of twins including antenatal care, delivery, and postpartum.
",isbn:"978-1-80356-198-1",printIsbn:"978-1-80356-197-4",pdfIsbn:"978-1-80356-199-8",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,hash:"70396c6f5f2928c422c1eaf6d33c6269",bookSignature:"Prof. Hassan S Abduljabbar",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11732.jpg",keywords:"Multiple Pregnancies, Twins, Physiology, Incidence, Epidemiology, Demographics, Predisposing Factors, Prenatal Diagnosis, Zygosity, Complications, Management of Birth, Antenatal Care",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 4th 2022",dateEndSecondStepPublish:"May 4th 2022",dateEndThirdStepPublish:"July 3rd 2022",dateEndFourthStepPublish:"September 21st 2022",dateEndFifthStepPublish:"November 20th 2022",remainingDaysToSecondStep:"16 days",secondStepPassed:!0,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Professor of Obstetrics and Gynecology at King Abdulaziz University, Saudi Arabia, consultant, clinician, researcher, editor, and referee of many international scientific medical journals. Dr. Abduljabbar is president of the Saudi Society of Obstetrics and Gynecology and the president of the Federation of Arab Gynecology Obstetrics Societies. He has published more than seventy-five scientific articles and edited several books.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"68175",title:"Prof.",name:"Hassan",middleName:"S",surname:"Abduljabbar",slug:"hassan-abduljabbar",fullName:"Hassan Abduljabbar",profilePictureURL:"https://mts.intechopen.com/storage/users/68175/images/system/68175.png",biography:"Hassan S. Abduljabbar, MD, FRCSC, American Board Diplomate, is a professor at the College of Medicine, King Abdulaziz\nUniversity, Saudi Arabia. He is also the president of the Saudi Society of Obstetrics and Gynecology and the Federation of Arab\nGynecology Obstetric Societies (FAGOS). He is a referee for\nmany international scientific journals. He is also an examiner for\ngraduate degrees as well as for the Saudi and Arab board exams.\nDr. Abduljabbar has published more than fifty articles and edited three books.",institutionString:"Dr. Erfan & Bagedo General Hospital",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"7",institution:{name:"King Abdulaziz University",institutionURL:null,country:{name:"Saudi Arabia"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"444312",firstName:"Sara",lastName:"Tikel",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/444312/images/20015_n.jpg",email:"sara.t@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"2013",title:"Steroids",subtitle:"Clinical Aspect",isOpenForSubmission:!1,hash:"31dfd32a77f71bc348d7922af48b8e62",slug:"steroids-clinical-aspect",bookSignature:"Hassan Abduljabbar",coverURL:"https://cdn.intechopen.com/books/images_new/2013.jpg",editedByType:"Edited by",editors:[{id:"68175",title:"Prof.",name:"Hassan",surname:"Abduljabbar",slug:"hassan-abduljabbar",fullName:"Hassan Abduljabbar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"814",title:"Steroids",subtitle:"Basic Science",isOpenForSubmission:!1,hash:"74304f5d822f8f45d4b48a0e00ebd375",slug:"steroids-basic-science",bookSignature:"Hassan Abduljabbar",coverURL:"https://cdn.intechopen.com/books/images_new/814.jpg",editedByType:"Edited by",editors:[{id:"68175",title:"Prof.",name:"Hassan",surname:"Abduljabbar",slug:"hassan-abduljabbar",fullName:"Hassan Abduljabbar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5937",title:"Obstetrics",subtitle:null,isOpenForSubmission:!1,hash:"092197b1191815505a23e7dd1c9edde6",slug:"obstetrics",bookSignature:"Hassan Salah Abduljabbar",coverURL:"https://cdn.intechopen.com/books/images_new/5937.jpg",editedByType:"Edited by",editors:[{id:"68175",title:"Prof.",name:"Hassan",surname:"Abduljabbar",slug:"hassan-abduljabbar",fullName:"Hassan Abduljabbar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10485",title:"Fibroids",subtitle:null,isOpenForSubmission:!1,hash:"64ad14b1aba83e47fb100fa63e21533e",slug:"fibroids",bookSignature:"Hassan Abduljabbar",coverURL:"https://cdn.intechopen.com/books/images_new/10485.jpg",editedByType:"Edited by",editors:[{id:"68175",title:"Prof.",name:"Hassan",surname:"Abduljabbar",slug:"hassan-abduljabbar",fullName:"Hassan Abduljabbar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7132",title:"Complications of Pregnancy",subtitle:null,isOpenForSubmission:!1,hash:"d2bdac8e99a71feab10bd0b9e1063bb9",slug:"complications-of-pregnancy",bookSignature:"Hassan Abduljabbar",coverURL:"https://cdn.intechopen.com/books/images_new/7132.jpg",editedByType:"Edited by",editors:[{id:"68175",title:"Prof.",name:"Hassan",surname:"Abduljabbar",slug:"hassan-abduljabbar",fullName:"Hassan Abduljabbar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10721",title:"Preeclampsia",subtitle:null,isOpenForSubmission:!1,hash:"eb38592b7a656d02dd6b28c34e43de32",slug:"preeclampsia",bookSignature:"Hassan Abduljabbar",coverURL:"https://cdn.intechopen.com/books/images_new/10721.jpg",editedByType:"Edited by",editors:[{id:"68175",title:"Prof.",name:"Hassan",surname:"Abduljabbar",slug:"hassan-abduljabbar",fullName:"Hassan Abduljabbar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7969",title:"Leiomyoma",subtitle:null,isOpenForSubmission:!1,hash:"659a9fef0f90168b2184c86af85d3a42",slug:"leiomyoma",bookSignature:"Hassan Abduljabbar",coverURL:"https://cdn.intechopen.com/books/images_new/7969.jpg",editedByType:"Edited by",editors:[{id:"68175",title:"Prof.",name:"Hassan",surname:"Abduljabbar",slug:"hassan-abduljabbar",fullName:"Hassan Abduljabbar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9500",title:"Recent Advances in Bone Tumours and Osteoarthritis",subtitle:null,isOpenForSubmission:!1,hash:"ea4ec0d6ee01b88e264178886e3210ed",slug:"recent-advances-in-bone-tumours-and-osteoarthritis",bookSignature:"Hiran Amarasekera",coverURL:"https://cdn.intechopen.com/books/images_new/9500.jpg",editedByType:"Edited by",editors:[{id:"67634",title:"Dr.",name:"Hiran",surname:"Amarasekera",slug:"hiran-amarasekera",fullName:"Hiran Amarasekera"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"69028",title:"Aflatoxin B1: Chemistry, Environmental and Diet Sources and Potential Exposure in Human in Kenya",doi:"10.5772/intechopen.88773",slug:"aflatoxin-b1-chemistry-environmental-and-diet-sources-and-potential-exposure-in-human-in-kenya",body:'\nThe aflatoxins were discovered in a toxic peanut meal after causing ‘turkey X’ disease, which killed large numbers of turkey poults, ducks, young pheasants and chicks in the UK in the early 1960s [1], and more than 100,000 young turkeys in poultry farms were killed [2]. The peanut meal was highly toxic, and the toxin-producing fungi was identified as
Structural elucidation of aflatoxins was accomplished and confirmed by total synthesis in 1963 [4]. There are four major aflatoxins B1, B2, G1 and G2 plus two additional toxic metabolic products M1 and M2 that are of significance as direct contaminants of foods and feeds and whose structures have been elucidated [3, 4]. These toxins have similar structures and form a unique group of highly oxygenated, naturally occurring heterocyclic compounds [5]. Their structures and molecular formulae are shown in Figure 1.
Chemical structures of aflatoxin B1 and other related aflatoxin metabolites [
Aflatoxins are just a subset of class of mycotoxins which are fungal metabolites rampant and invisible in the environment and have caused severe effects on food security and safety especially within sub-Saharan African (SSA) societies [9]. This class of mycotoxins include
Aflatoxin B1 (AFB1) is a secondary metabolite produced by
The important physico-chemical properties of AFB1 are shown in Table 1. It is odourless, tasteless and colourless. It is difficult to detect sensorically, and therefore it poses a real challenge to food handlers, consumers and regulators who are in a bid to control or eradicate it [15, 16, 17]. AFB1 exists as colourless to pale yellow crystals or white powder [18]. Aflatoxins are densely fluorescent; B refers to blue fluorescence, while G signifies green fluorescence. AFB1 exhibits a blue fluorescence with a fluorescence emission spectrum maximum of 425 nm and has UV maximum absorbance values at 223, 265 and 362 nm (in ethanol). It strongly absorbs UV light and is decomposed by it when dissolved in water or chloroform or when it is in form of solid films. AFBI has a Henry’s law constant value of 1.40 × 10−13 atm m3/mol at 25°C and a vapour pressure of 2.65 × 10−10 mmHg at 25°C. These properties would enable it to be less volatile and therefore has become very ubiquitous in the environment, becoming distributed in air, water and soil [15, 18]. It therefore can spread easily on the farm or in stores causing heavy damage to agricultural food crops and stored grains, respectively.
\nPhysico-chemical property | \n|
---|---|
IUPAC name | \n2,3,6a,9a-Tetrahydro-4-methoxycyclopenta[c] Furo[3′,2′:4,5]furo[2,3- | \n
MW | \n312.277 g/mol | \n
mp | \n268–269°C | \n
Physical state | \nColourless pale yellow crystalline to solid or white powder; odorless | \n
Specific Optical rotation | \n−558 °/D at 25°C (0.1 M in chloroform) or −480 °/D at 25°C (0.1 M in dimethyl formamide) | \n
Vapour pressure | \n2.65 × 10−10 mmHg at 25°C | \n
Water solubility | \n16.14 mg/l at 25°C; decreases at low temperature; generally soluble in water and polar solvents | \n
Stability | \nStable until melting point; decomposed by UV irradiation in water/chloroform | \n
Log Kow\n | \n1.23 | \n
BCF (fish) | \n3 | \n
Koc (soil) | \nRanges within 682–2.317 × 10−4\n | \n
Henry’s law constant | \n1.4 × 10−13 atm m3/mol at 25°C | \n
Fluorescence emission | \nDensely fluorescent blue (λmax = 450 nm) | \n
UV absorption | \nAbsorbs at 223, 265 and 362 nm | \n
Mass spectrum | \nIdentified by LC–MS; ionization ESI; precursor-type [M + H]+; m/z 313.071 | \n
Physico-chemical properties of AFB1.
The vapour pressure of AFB1 indicates that AFB1 will tend to exist solely in particulate phase in the atmosphere if released into air, according to a model of gas/particle partitioning of semivolatile organic compounds [19]. The particulate bound AFB1 will then tend to be removed from the atmosphere by wet and dry deposition. Since it absorbs UV light, it is susceptible to direct photolysis by sunlight. If released to soil, AFB1 is expected to have low mobility based on its Koc value which ranges from 682 to 2.3 × 104 and Freundlich adsorption coefficients, ranging from 17 to 238 mg/kg in different soil types. Volatilization from moist soils or water surfaces is not expected to be an important fate process based on its Henry’s law constant value of 1.4 × 10−13 atm-cm/mol. It is also not expected to volatilize much from dry soil surfaces based on its vapour pressure which is very low. The Koc of AFB1 indicates that it is expected to adsorb to soil and sediment. However, based on its Kow and BCF values, AFB1 would tend to have a relatively moderate potential for bioconcentration in aquatic organisms and animal adipose tissue. Perhaps this explains why it is rapidly absorbed in the stomach and intestines and why it is present in the blood, kidney and liver where it imparts its toxicity. In the water environment, AFB1 can undergo hydrolysis as it contains a cyclic ester functional group and the rates of hydrolysis are similar to those of non-cyclic esters, ranging from months to a year under normal environmental conditions (i.e. pH 5–9) [19]. However, ring strain and steric hindrance have been reported to prevent its ease of hydrolysis, and therefore the extent of hydrolysis is unexpectedly low [18]. AFB1 biodegradation in soil and water has been studied, and it has been found that biodegradation may not be a very important environmental fate process. For example, after incubation for 120 days in silt loam, clay loam and sandy loam soil types, respectively, only 8.1, 4.9 and 1.4% complete mineralization to CO2 was achieved [19]. Biodegradation in various soils with different pHs (ranging 5.8–7.3), organic carbon (OC) (ranging 0.46–2.82%) and cation exchange capacity (CEC) (ranging 11.7–18) showed very low concentrations of metabolites B2 and G2 after 1 day in a 20-day experiment, and the TLC results indicated that adsorption onto soil prevented AFB1 decomposition.
\nBiotransformation of aflatoxins has been studied and found to occur via four main routes [19, 20, 21, 22, 23]: (i) hydroxylation of carbon atom at junction of the two fused furan rings, aflatoxin B1 is converted into AFM1, and this occurs to some extent in the mammalian liver [19, 20]; (ii) oxidative o-demethylation of single aromatic methoxy-substituent gives aflatoxin P1 [19]; (iii) hydration of vinyl double bond would afford hemiacetals, and aflatoxin B1 has been converted to into hemiacetal AFB2A in pig, mouse and avian livers through this route [19, 22] and (iv) reduction of cyclopentenone ring, dihydroaflatoxicol, but this biotransformation seems to be confined to avian species and not mammals [19]. While the hydroxylated metabolite AFM1 is the product of metabolism of AFB1 and AFB2, G1 and G2 were established as dihydroxylated derivatives of B1 and B2, respectively. AFM1 is 4-hydroxy aflatoxin B1 and AFM2 is 4-hydroxy aflatoxin B2. The order of acute and chronic toxicity is B1 > FG1 > B2 > G2 [20].
\nExtensive studies on reactions of aflatoxins to various physico-chemical conditions and reagents have been conducted because of possible application of such reactions in detoxification of materials contaminated with aflatoxins [24]. In dry state, aflatoxins are heat stable up to melting point. However, in the presence of moisture and elevated temperatures, aflatoxins are destroyed to certain extents over a period of time. Such destructions of aflatoxins have been found to occur in oil seeds, meals and roasted peanuts or in aqueous solution at pH 7 [15, 16, 17]. It is postulated that such treatments can lead to the opening of the lactose ring, with possible destruction of decarboxylation, at elevated temperature [21]. In alkaline solution, hydrolysis of the lactose ring occurs, but this hydrolysis appears reversible, since it has also been shown that recyclization occurs following acidification of basic solutions containing aflatoxin [21, 24]. At a temperature of 100°C, lactose ring opening can occur, followed by a decarboxylation reaction [21]; and this reaction can further lead to a loss of the methoxy group from the aromatic ring [22]. In the presence of mineral acids, aflatoxins B1 and G1 are converted to aflatoxins B2A and G2A, respectively, due to acid-catalyzed insertion of water molecules across the double bonds in the furan ring, leading to hydroxylation (see Figure 1 chemical structures). In the presence of acetic and hydrochloric acids, the reaction of AFB1 and AFG1, respectively, gives the acetoxyl derivatives, with acetoxyl groups attached on the benzene rings [22]. Similar adducts of aflatoxins B1 and G1 are formed with methanoic acid-thionyl chloride, acetic acid-thionyl chloride and trifluoroacetic acid [22]. Reactions with oxidizing agents, such as sodium hypochlorite, potassium permanganate, chlorine, hydrogen peroxide, ozone and sodium perborate, change the aflatoxin molecule in some way as indicated by loss of fluorescences although the mechanisms of these reactions are still uncertain as the products remain unidentified in most cases [25]. Hydrogenation of aflatoxins B1 and G1 yields aflatoxins B2 and G2, respectively. If further reduced by 3 mol of hydrogen, aflatoxin B1 yields tetrahydroxyl aflatoxin, while reduction of aflatoxins B1 and B2 with sodium borohydride yields aflatoxins RB1 and RB2, respectively. The RB1 and RB2 arise because of the opening of the lactose ring followed by reduction of the acid group and the keto group in the cyclopentane ring. However, it should be noted that breakdown of aflatoxins by various means does not guarantee safety of the contaminated substance. At times this breakdown is reversible or may lead to another form of aflatoxin. Besides, reaction products have not been subjected to detailed examination, including length of time the reactions take place [25]. Researchers have just concluded that the decomposition is not complete based on trials with food samples [26].
\nIn general, the aflatoxins have been considered as difuranocoumarins, which are highly substituted coumarin derivatives containing a fused dihydrofurofuran moiety [1, 3, 4]. In particular, AFB1 is characterized by the fusion of a cyclopentenone ring to the lactone ring of the coumarin structure (Figure 1) and by strong fluorescence emission in the blue region (hence the designation B) when exposed to ultraviolet light [1, 3, 4]. Aflatoxins Bs strongly emit blue colour when they absorb UV light, and aflatoxins Gs strongly emit green colour when they absorb UV light. AFM1 is the principal hydroxylated metabolite of AFB1 and is produced upon the action of cytochrome P450 1A2 (CYP1A2) [27, 28]. It is strongly fluorescent, emitting blue-violet light. Specifically, AFB1 has similar chemical properties to other metabolites which include its slight solubility in water and polar organic solvents and less solubility in nonpolar solvents [23]. It has strong thermal stability, even at high temperature (>100°C), and this prevents it from being thermally degraded completely during food manufacturing, for example, when milk and dairy products are processed, since pasteurization and other thermal treatment methods alone are ineffective [29, 30]. Other chemical properties of AFB1, such as its instability to UV light or extreme pH conditions (<3 or >10) and reactivity of lactone moiety in the presence of ammonia or hypochlorite, have been useful in the development of methods for decontamination of feed and food [29, 30]. Several physical treatment methods like exposure to microwaves, gamma rays, X-rays and ultraviolet light have been investigated, but inconsistency of the results has discouraged their use, especially for heavily contaminated samples [31]. At present, ammoniation [32] and adsorption on clays or organic adsorbents [29] have commonly been used to achieve a good level of decontamination without disruption of the nutritional properties or safety of feed.
\nBiological methods of detoxification of mycotoxins are of two different types: the first being via enzymatic degradation and the second via sorption. In enzymatic biochemical processes, live microorganisms can biodegrade and mineralize the mycotoxins completely to CO2 or absorb them by attaching them to their cells by active interaction and accumulation and thereby reducing them from the media. Dead organisms can adsorb mycotoxins, and they can be used to make biofilters for fluid decontamination of products, where the aflatoxins are left on the filter and the products become subsequently decontaminated, or as probiotics to bind and remove mycotoxins from the human intestine [15, 33]. Enzymatic degradation can be complete mineralization to CO2, in which either extracellular or intracellular enzymes and various species of bacteria have been identified including
Various chemical treatment processes have been tried, including sodium hypochlorite (NaOCl), potassium permanganate (KMnO4), hydrogen peroxide (H2O2), sodium bicarbonate, sodium chloride and sodium borohydride (NaHBO3) a well-known reducing agent, to detoxify or decompose aflatoxins in various foods [16, 38, 39]. These reagents can be used, and, for example, formaldehyde and NH3 were found to neutralize AFB1, while NaSO4 was found to be less efficient in neutralizing AFB1 [38]. However, these reactions have to be optimized in terms of quantities needed and reaction time as well as temperature and pressure conditions required. Different cooking methods have also been tried to remove aflatoxins from foods [16, 17, 38, 40]. Normal cooking of rice was found to destroy only 49% AFB1 [16, 17]. In other experiments to study the reduction of aflatoxins in various products, boiling of maize in traditional cooking used in Kenya destroys 11–17.6% AFB1 and AFG2 [40], while in beer making 18–27% AFB1 still remain [38] and in bread making 25% still remain [26]. Kirui [39], in assessing the levels of aflatoxins that were left after various treatments following physico-chemical and traditional cooking methods for maize and maize products, found that boiling maize reduced total aflatoxin level from 83 to 7 ppb, dry decortication reduced the level from 51.3 to 9.6 ppb, boiling with Magadi soda (food softener) reduced the level from 59 to 13.4 ppb, solar irradiation (18 h) reduced the level from 60.8 to 13.7 ppb and UV irradiation (18 h) reduced the level from 81.7 to 61.4 ppb. He found that only dry decortication method, which involves boiling with Magadi soda followed by washing with water and boiling, respectively, reduced the levels significantly but not completely below the maximum limits. Alkali treatment with inorganic (e.g. boiling with NaCl) and organic bases were reported to be effective and economically feasible [17]. Occupational exposure to AFB1 has been reported to occur through inhalation and dermal contact at work places where commodities such as peanuts, grains, linseed oil or animal feeds are produced, stored or used. An average AFB1 exposure of 64 ng/d-kg body weight was reported for Danish workers in the animal feed production industry. General population may most likely be exposed to AFB1 via ingestion of contaminated food [18].
\nThe biosynthetic pathway of AFB1 has been explained by researchers. It is derived from both a dedicated fatty acid synthase (FAS) and a polyketide synthase (PKS) which occur in the mould, together known as norsolorinic acid synthases. The biosynthetic pathway has been described by Singh and Hsich [41], Yu et al. [42] and Dewick [43], among others, and, an outline of the method can be found in Wikipedia. The process begins with a FAS-aided synthesis of hexanoic acid, which is the starter unit for the iterative type I PKS. A PKS catalyzes addition of seven malonyl-CoA molecules to the hexanoic acid to form a C20 polyketide compound. The polyketide folds through a cyclization process induced by a PKS to form an anthraquinone norsolorinic acid, and a reductase enzyme then catalyzes the reduction of the ketone on the norsolorinic acid side chain to yield an intermediate, an averantin [41, 42, 43]. From here, various processes which are assisted with different enzymes including hydroxylases, dehydrogenases (for oxygenation and cyclization), CYP450 oxidases, esterases, reductases, methyl transferases and oxidoreductases occur, leading to different intermediates. The pathway for AFB1 biosynthesis is very complicated, and some of the enzymes and intermediates involved continue to be elucidated and characterized [43].
\nUnder favorable moulding conditions,
For research and other purposes, aflatoxins can be produced in small quantities by fermentation of
Several sampling and analytical methods which include thin-layer chromatography (TLC), high-performance liquid chromatography (HLPC), mass spectrometry and enzyme-linked immunosorbent assay (ELISA), among others, have been used to analyse aflatoxin B1 in various contaminated foods [49]. According to the Food and Agriculture Organization, the worldwide maximum tolerated levels of aflatoxin B1 were reported to be in the range of 1–20 μg/kg in human foods and 5–50 μg/kg in dietary cattle feeds in 2003 [50]. Apart from these limits, the WHO, EU, USFDA and Kenya Bureau of Standards (KEBS) have set international and national maximum limits for a specific aflatoxin metabolite (e.g. AFB1) level, as well as a total concentration which involves the summation of concentrations of all detected metabolites (AFB1, AFB2, AFG1, AFG2 and AFM1) in a sample. It is therefore important to optimize and interpret standard procedures for extraction, detection and quantitation of aflatoxins in a sample. A review of the methods that have been used is presented in the following paragraphs.
\nVarious researchers, including analysts, food specialists and health workers, have been involved in the analysis of aflatoxins including AFB1 in various materials including samples of human specimens, animal tissues, food, grains, cereals and legumes. Aflatoxins, AFB1 included, have been characterized by nuclear magnetic resonance (NMR) and liquid chromatography-mass spectrometry (LC–MS), and their mass spectral data are available in LC–MS libraries making it possible to screen samples rapidly. In addition, retention times and column flow-through patterns for aflatoxins combined with high-purity reference standards can be used in HPLC and other analytical techniques. Aflatoxins B1, B2, G1 and G2 have been determined quantitatively by HPLC with a fluorimetric detector using toluene as a mobile phase [51]. This method is applicable to food and feed extracts. Several AOAC official methods have been used to analyze AFB1 [1, 52]. These methods include ELISA, TLC and HPLC. TLC and fluorescence detection methods sometimes have reported high detection limits and are not used frequently nowadays for forensic purposes despite their popularity in the past. The methods for determination of aflatoxins in food samples and cereals for animal consumption can be validated as explained in the EC No. 882/2004 and EC No. 401/2006 methods, demonstrating their conformity with these methods, in terms of sensitivity, linearity, selectivity and precision [53].For mass spectral data, tandem mass spectrometry data containing a METLIN-tested metabolite database generated independently by the Scripps Center for Mass Spectrometry and Metabolics for identification of metabolites are available for reference in pdf. This product is available in Sigma-Aldrich. Other libraries are available for referencing including a Sigma-Aldrich database which presents HPLC Analysis of Aflatoxin Analogs on Ascentis® C18; a Sigma-Aldrich LC/MS/MS Analysis of μL Mycotoxins on Ascentis® Express Phenyl-Hexyl column and a Sigma-Aldrich UHPLC–MS/MS Analysis of μL Mycotoxins on Titan™ C18.
\nA high-performance liquid chromatographic method with online post-column photochemical derivatization and fluorimetric detection was used for simultaneous separation and quantitative determination of AFB1 and other metabolites in foodstuffs and feed material [53]. In one study, the chromatographic separation was accomplished by using a C18 column and analytes were eluted with an isocratic mobile phase consisting of water/methanol/acetonitrile [52]. In this method sample preparation requires simple extraction of aflatoxins with a mixture of water and methanol followed by a clean-up and a chromatographic separation step by immunoaffinity column and then detection [53]. Efficient analysis of aflatoxins B1, B2, G1 and G2 has also been achieved by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, using a UV-absorbing ionic liquid matrix with addition of NaCl to obtain matrix-free mass spectra, which enhances sensitivity via Na+ cationization [53]. Using ionic alpha-cyano-4-hydroxycinnamic acid (Et3N-alpha-CHCA) as the matrix, the matrix-free mass spectra in the m/z range of interest were acquired, and the B1, B2, G1 and G2 aflatoxins were readily detected with very low detection limits [53]. This technique is fast and requires minimal sample preparation (just mixing the liquid matrix with methanol extract), and no derivatization nor chromatographic separation is required. The method was reported to be suitable for rapid screening of aflatoxins including AFB1 in a wide array of major crops which are often subjected to huge world commercial trades such as peanuts, maize and rice, as well as to monitor bioterrorism threats by mycotoxin poisoning [53].
\nAnalysis of aflatoxins in clinical laboratory procedures is also often done routinely by analyzing AFB1 in blood and urine. This has been done by HPLC with various columns and a fluorescence detector as reported by Seo et al. [54]. Aflatoxin B1 recoveries ranged from 33 to 95%, for spiked human serum samples following extraction using hexane chloroform, chloroform extraction and clean-up with pentane on a silica gel column or acetone-ferric gel-chloroform extraction and clean-up with pentane on a silica gel column [55]. This reverse phase HPLC procedure was also used successfully for aflatoxins and metabolites in animal tissues, in a process involving trifluoroacetic acid-catalyzed conversion of aflatoxin B1 to a fluorescent derivative B2 [55]. Human urine and methanol extracted from the kidney, liver, brain tissues and sputum have been analysed using competitive ELISA methods with immunoaffinity columns and fluorometry, with concentrations for urine, sputum and tissue biopsies found to range from 1.0 to 5.0 ppb, with negative control patients showing no detectable mycotoxins in their fluids or tissues [56]. This study confirmed that AFB1 and other aflatoxins can be detected in body fluids and human tissues from patients exposed to mycotoxin-producing moulds in the environment and indicated which tissues or body fluids are most likely to give positive results. A procedure involving salting-out-assisted liquid/liquid extraction for multi-mycotoxin biomarkers and subsequent analysis using high-performance liquid chromatography-tandem mass spectrometry, for pig urine, has also been reported [53].
\nRadioimmunoassays that can detect levels as low as 0.27 pmol (0.06 ng) of AFB1 have been used to analyse crude extracts of corn and peanut butter with just traces of aflatoxins, and in these foodstuffs, as little as 1 μg aflatoxin/kg has been measured by this technique [57]. Detection limits for radioimmunoassay techniques vary ranging from 1 up to 5 μg/kg in various matrices including corn, peanut butter, cottonseed products, groundnuts and groundnut products and other cereals [1].
\nRecently, a comprehensive technique involving detection and quantification of aflatoxins using an AflaTest method has been described by William and George [58] and Orony et al. [59]. In this method, the presence of aflatoxins was tested in a screening step by TLC using the solvents hexane, petroleum ether, chloroform, acetone and toluene (10:10:60:10:10), and fluorescent spots were checked under UV light [59]. An AflaTest affinity column is an immunoaffinity column bound with specific antibodies of aflatoxin. When a sample is passed through, the aflatoxins become bound to the antibodies in the column [58]. A volume of 1 ml of the extract was diluted with distilled water and mixed well before filtering through a glass microfiber filter, and an aliquot of the filtrate was pipetted and passed through the AflaTest affinity column [59]. The column was cleaned twice with distilled water to remove the immunoaffinity impurities, and then aflatoxins were eluted from the column with HPLC-grade methanol and collected in a cuvette. A known volume of a developer solution (bromine solution in distilled water (5:45 vol/vol)) was added to the eluate, and then aflatoxin content was determined in the mixture using a fluorometer after a short period of 1 min. The fluorometer can have an inbuilt aflatoxin calibration standard, and it detects the intensity of the fluorescence which is determined by the amount of total aflatoxin present in the sample, and then a digital read out is obtained [59]. The limit of detection of the aflatoxins in this method was very low, about 0.05 μg/kg. Samples analysed using this method included fresh, smoked and grilled fish.
\nWasike [60] used an ELISA method, which is recommended by the FAO for rapid screening of agricultural produce such as grains and involves several steps including the following:
Nduti et al. [26] recently analysed aflatoxin B1 in cereals and other agricultural produce including sun-dried grains of maize and millet, maize flour and millet flour samples by PCR, a modified procedure similar to the ELISA methods reported by other researchers [50, 58, 59, 61]. The samples were transported immediately after sampling in cool boxes to an ISO 1705 accredited by Kenya Bureau of Standards laboratory and stored at −20°C until analysis was started. After grinding in a blender, known masses were weighed into disinfected beakers for extraction with a known volume of 70% methanol (in deionized water) by stirring. This was followed by filtering into a disinfected conical flask using Whatman filter paper No. 1. The residue on the filter paper was discarded and the filtrate preserved in the beaker for analysis. For analysis of aflatoxins, a known volume of a conjugate was introduced into the microwells using a micropipette, and then small aliquots of the filtrate were added [26]. A sample of 20 ppb of aflatoxin was put into one of the microwells as a control. After, 100 μl of the sample plus conjugate mixture was transferred to antibody-coated microwells and the mixtures incubated for 15 min. The method of Leszczynka et al. [61] was modified by using a specific conjugate mixture, thus eliminating the need for wells pre-washed with phosphate buffer solution (PBS). The PBS cleans the unbound proteins but also reduces sensitivity at the enzyme reaction site [62]. After incubation, the contents of the microwells were discarded and the microwells washed at least five times with distilled water to remove the nontoxin reactants [26]. After draining the water, an aliquot of the substrate solution was put into each of the microwells before incubation for another 5 min. The free and peroxidise-combined aflatoxins compete for the sites with mouse antibodies that are immobilized on the plates. The reaction in this process results in a colour change from a clear to a blue colouration, whose intensity indicates the aflatoxin content. A deeper colour indicates more reaction and binding with the substrate and less aflatoxin concentration in the sample. To stop the reaction, an acidic stop solution was added, which resulted in colour changes from blue to yellow, depending on the aflatoxin levels [26]. The resultant solutions in the microwells were fed into a microtiter plate PCR reader where the optical density of each microwell was read using a 450 nm filter, and the amount of total aflatoxin present in each sample was determined quantitatively online and recorded on a computer [26].
\nThe maximum levels (MLs) are established in various countries in Europe and the USA using various standard ELISA-based procedures [63]. For aflatoxin B1, the 5121AFB method and its kit provide a competitive enzyme immunoassay based on antibodies directed against anti-aflatoxin B1 [63]. The kit includes 96 wells 12 × 8 break-apart. The conjugate is aflatoxin-horseradish peroxidase. Rapid sample preparation procedures for cereals, rice, eggs, nut, honey, mashed fruits edible oils and feed are included in the kit manual. Antibody cross-reactivity includes aflatoxin B1 (100%), aflatoxin B2 (20%), aflatoxin G1 (17%) and aflatoxin G2 (4%). These standard procedures involve conjugate and standard/sample being pipetted into the wells and incubated for 1 h at 37°C. After washing, the ready-to-use substrate is added and incubated for 30 min at 20–25°C. The reaction is stopped and the absorbance read in a UV spectrophotometer at 450 nm. A EuroProxima software converts the measured optical density into concentration of the metabolite in the starting material. The assay limits of detections (LOD) (in ppb), calculated as Xn + 3SD as determined under optimal conditions, are cereals (0.5), rice (0.4), eggs (0.2), nuts (0.75), honey (0.2), mashed fruits (0.6), edible oils (1.0) and feed (1.0). The calibration standard concentrations ranged within 0, 0.0157, 0.0313, 0.0625, 0.125, 0.25 and 0.5 ng/ml [63].
\nDirect evidence for human exposure to AFs by ingestion or another route has been found in a number of countries by identifying AFs or their metabolites in human biological samples [46, 64]. Thus, it is becoming a significantly important issue for health of adults and people who are directly exposed to food contaminated with AFs [46, 64, 65]. Analyses of human specimen samples have to be done sometimes both for forensic and research purposes. In one analytical procedure [56], 100 mg of kidney sample was added to 1 ml tubes containing 1 ml 50% methanol before incubation for 5 min, until it completely dissolved. After, the suspensions were centrifuged at 10,000 rpm for 10 min and the upper layers (800 μl) collected into 2 ml glass tubes, before taking 5 μl for analysis using a UHPLC Q-Orbitrap, with triplicate measurements for each aliquot. Metabolites were separated in a UHPLC system (Dionex UltiMate 3000) equipped with a Waters column (Acquity BEH C18 1.7 μm, 2.1 × 50 mm) incubated at 40°C. The mobile phases were made up of water containing 0.1% formic acid and 2 mM ammonium formate (solvent a) and acetonitrile (solvent b), as explained [56]. The Q Exactive instrument, equipped with thermoelectrospray ionization in positive and negative switching modes, was utilized to detect the aflatoxins in the above samples, and the system was calibrated and controlled by a software (Xcalibur 3.1 and Q Exactive Tune) [56]. The UHPLC Q-Orbitrap analysis can produce large amounts of raw data using TraceFinder software [56]. In addition, kidney tissue was isolated and fixed in 4% paraformaldehyde for 48 h, before paraffin embedding and sectioning using a microtome (Leica, Germany); and the sections were stained, and the histopathology was assessed under a light microscope (Olympus, Japan), with photographs being taken at 200× magnification, for confirmation of aflatoxin exposure [56]. Blood samples were centrifuged to collect serum (15 min at 3000 rpm and 4°C) for measurement of biochemical parameters, including creatinine, urea, uric acid, malondialdehyde, superoxide dismutase and total antioxidant capacity, which were undertaken using ELISA kits [56].
\nIn another analytical method for AFB1, ELISA, TLC and HPLC were validated and used for identification of aflatoxin B1 (AFB1) in contaminated fish feed, media and fish serum samples [46, 48, 66, 67, 68, 69, 122]. The analysis and identification of AFB1 was achieved using a DOA-ELISA test kit, followed by TLC with retention factors of 0.81, 0.79, 0.81 and 0.80 for AFB1-contaminated fish feed, media and serum samples, respectively, co-chromatographed with an AFB1 reference standard. HPLC results showed that the AFB1 levels in contaminated fish feed, media and serum samples were 2.6, 2.6 and 2.7 ng/ml, respectively. The concentrations of AFB1 were almost similar for all the three samples but slightly higher in the fish serum sample which had 2.7 ng/ml; and it was therefore concluded that because of its accuracy and sensitivity when compared with routine methods of AFB1 analysis, fish serum provides a sensitive specimen for AFB1 analysis in fish. This TLC-HPLC method was strongly recommended for monitoring AFB1 contamination in feed stuffs, especially in fisheries where the feed is under continuous exposure to moisture. The method is highly recommended in aquaculture and fisheries to screen the mycotoxins in fish feed as it gives a measure of bioaccumulation of these toxins in fish serum which can be correlated well with toxic effects on different environments like in vitro and in vivo to help in ensuring safety and measuring AFB1 tolerance. In one study [46], detailed methods for fermentation using an inoculated
Direct determination of urinary mycotoxins is a better approach to assess individual’s exposure than the indirect estimation from average dietary intakes [70]. In a study by Fouad et al. [70], a new analytical method was developed and validated for simultaneous analysis of aflatoxins including AFB1 in urine based on ELISA. Like other ELISA methods so far described, the phenomenon of fluorescence quenching of an antibody by a specific ligand was applied in developing the technique for detection of mycotoxins, such as aflatoxin B1, ochratoxin A and zearalenone where loss of absorbance corresponds to inverse of concentration of aflatoxins [71].
\nDetecting aflatoxicosis in humans and animals is difficult due to variations in clinical signs and the presence of other factors such as suppression of the immune system caused by an infectious disease [72]. Of the two techniques most often used to detect levels of aflatoxins in humans, the first one involves measurement of the metabolite in urine (which however is only present for 24 h after exposure), and the second one involves measuring the level of aflatoxin-contaminated nuts, an AFB-albumin compound in the blood serum, providing information on exposure over weeks or months [72]. These biomarker measurements are important in investigating outbreaks where aflatoxin contamination is suspected. A variety of methods for detection of aflatoxins in food and feed that are highly specific, useful and practical have so far been discussed and are available for different needs. Methods are therefore available for different needs, ranging from techniques/methods for regulatory control in official laboratories (such as high-performance liquid chromatography-mass spectrometry (HPLC–MS)) [73, 74] to rapid test kits for factories and grain silos such as enzyme-linked immunosorbent assay (ELISA) [50, 73]. Potential novel aflatoxin detection systems, based on emerging technologies, include dipstick kits, hyperspectral imaging, electronic noses, molecularly imprinted polymers and aptamer-based biosensors (small organic molecules that can bind specific target molecules). The latter technologies may have relevance in remote areas because of their stability, ease of production and use. Sampling procedures for aflatoxin monitoring in export and import produce are problematic because moulds and aflatoxins are not evenly distributed throughout bulk shipments and batches of stored grain, and appropriate sampling is critical to get a representative result. Protocols for sampling procedures have been developed, in particular in the context of regulatory control. For instance, in setting maximum levels for aflatoxins, the Codex Alimentarius Commission has specified the protocols to be used for peanuts, almonds, Brazil nuts, hazelnuts, dried figs and pistachios intended for further processing and for ready-to-eat products [75]. The FAO of the United Nations [50] has developed a mycotoxin sampling tool which is available online. Recommended sampling methods are difficult to achieve, especially for subsistence farmers in rural areas who do not produce enough grain to spare the quantities needed for accurate testing. Thus, there is a need to develop rapid, low-cost, low-technology and accurate detection methods for aflatoxins to improve surveillance and control in rural areas. Organizations, such as the Partnership for Aflatoxin Control in Africa and the World Food Programme, are addressing these issues. The World Food Programme has instituted a Purchase-for-Progress Programme to ensure grain quality by creating a blue box, which contains test kits for grain quality, including aflatoxins [76]. Some of the problems encountered in sampling in Kenya have been discussed [76].
\nThe main concern in aflatoxins exposure is that once they are formed, they are heat stable so that neither cooking nor freezing can destroy them completely and they therefore remain in food indefinitely and can cause sublethal effects in the body of humans and animals [15, 16, 17, 26, 29, 36, 38, 39]. When given a sample of food or a specimen such as human milk for a forensic test, it is possible to predict which particular aflatoxin is suspected depending on the type of food, feed or specimen. There is potential increase in consumers’ health risks if higher levels of aflatoxins are permitted for various crops and other products. For example, increasing the current MLs from 4 μg/kg total aflatoxin to say 8 or 10 μg/kg for nuts such as cashew nuts, almonds and hazelnuts would have minor effects on the estimated dietary exposure, on the risk of cancer and the calculated margin of exposure, but due to carcinogenicity and genotoxicity limits, the MLs should be kept very low. The development of new methods for detecting and quantifying traces of aflatoxins and their metabolites in various matrices in future will influence not only the MLs but also reduce their lethality following human exposure.
\nHighlights on how changes in temperature, humidity, rainfall and carbon dioxide production due to climate change impact on fungal behaviour and consequently mycotoxin production have been investigated by researchers in Europe. Climate change has been reported as a driver for emerging food and feed safety issues worldwide, and the expected impact on the presence of mycotoxins in food and feed is of great concern [77]. AFB1 has the highest acute and chronic toxicity of all mycotoxins; hence, the maximal concentration in agricultural food and feed products and their commodities is regulated worldwide [77]. In this regard, the methods of analysis and detection, the structures and characteristics of aflatoxins and modelling of their maximum levels in various produce are expected to change in the future with changes in climate
\nThe different species of
Improper farming practices have led to an increase in mould growth and aflatoxin contamination in crops and animals. Improper feeding habits such as feeding animals with spoilt maize, feeding mouldy human food to animals and blending of mouldy cattle feed with a fresh batch are some of the bad practices found in Kenya [26]. In common agricultural practice the rotten maize cobs are separated from the good maize cobs which are later shelled and milled. The rotten maize grains are used, by mixing one bag of clean grains and two bags of rotten grains, to make animal feeds [25]. This practice of dilution does not drastically reduce the amount of aflatoxin contamination in animal feeds, and hence, commercial feeds in Kenya have been found to be contaminated with aflatoxin B1 and milk with aflatoxin M1 [82]. The eastern part of Kenya has been found to have more cases of historical occurrences of aflatoxin contamination, while the central and western parts have shown increased risk of aflatoxin contamination [83]. Transferring of seeds, crops, animal feeds and animals from one region to another can also introduce
Aflatoxins often occur in crops in the field before harvest and are usually associated with drought stress [79]. Poor storage conditions, especially during rainy seasons, can increase concentration of aflatoxins in produce [26]. They occur mainly in hot and humid regions where high temperature and humidity are optimal for mould’s growth and toxin production [26]. The growth of fungi is caused by a number of factors which provide an ideal environment that promotes the growth [83]. The conditions that must all be prevailing for fungal growth to occur in Kenya include relative humidity above 70%, temperatures of over 30°C for a period of a few days to a week and stress to the affected plant, such as drought, flood or insect infestation. Furthermore, there must be high moisture content of crop (20% or higher) [24]. The prevailing climatic conditions in Kenya, which include drought, erratic rainfall, high temperatures ranging between 20 and 35°C and high humidity (40–89%), provide a favourable environment for growth of mould and production of aflatoxins [84]. Mould usually does not grow in properly dried and stored foods, and therefore efficient drying of commodities and maintenance of the dry state, or proper storage, are an effective measure against mould growth and production of mycotoxins [25]. Therefore, to minimize the health risk from mycotoxins, people are advised to inspect whole grains (especially corn, sorghum, wheat, rice), dried figs and nuts such as peanuts, pistachio, almond, walnut, coconut, Brazil nuts and hazelnuts, which are all regularly contaminated with aflatoxins for evidence of mould, and discard any that look mouldy, discoloured or shrivelled [11]. They are also required to avoid damage of grains before and during drying and in storage, as damaged grain is more prone to invasion of moulds and therefore mycotoxin contamination [24].
\nResearchers have reported on
Biodegradation and metabolism of AFB1 can also generate aflatoxin metabolites in animals, human and the environment. Aflatoxin M1 (AFM1) is a product of aflatoxin B1 (AFB1) metabolism and is found in milk in areas of high aflatoxin exposure [26]. Subsequently humans may be exposed to this aflatoxin through milk and milk products, including breast milk, especially in areas where poor-quality grain is used for animal feed. The principal hydroxylated AFB1 metabolite present in most milk of cows fed with a diet contaminated with AFB1 is aflatoxin M1. Aflatoxin M1 is usually excreted after 12 h in milk and urine when animal feed contaminated with aflatoxin is administered to the animals [22]. The hydroxylated metabolite is formed as a result of biotransformation of AFB1 and AFB2 by hepatic microsomal mixed-function oxidase (MFO) system. Improper farming practices described earlier have led to an increase in risk of contamination. Commercial feeds have been found to be contaminated with aflatoxin B1 and milk with aflatoxin M1 [82]. Metabolites B2 and G2 have also been produced and detected in soil through biodegradation processes [24]. Food crops can become contaminated both before and after harvesting [24]. Preharvest contamination with aflatoxins is mainly common to grains such as maize, millet, cottonseed, peanuts and tree nuts. Postharvest contamination can be found in a variety of other crops such as coffee, rice and spices. Improper storage under conditions that favour mould growth can lead to levels of contamination much higher than those found in the field [22]. Apart from grains, postharvest production of
While toxicity of aflatoxin metabolites are now well recognized, it is not often known that
Aflatoxins are very toxic to mammals with the LD50 (oral, rat) being 4.8 mg/kg body weight for AFB1 reported and also to domestic animals with AFB1 LD50 (oral) values of 0.5 (dogs), 0.62 (pigs), 2 (guinea pigs) and 6.3 mg/kg (chicken) [86, 87]. They are known human carcinogens, and there is sufficient evidence for carcinogenicity of AFB1 in animals and human based on in vivo and in vitro studies that have been done [86, 87]. AFB1 has also been shown to be a potent mutagen and covalently binds to DNA, RNA and proteins in the liver. It is activated in the liver cells and induces principally G to T mutations [88]. DNA damage response which acts as an antitumor mechanism against genotoxic agents has confirmed that AFB1 is genotoxic. Genotoxicity studies of AFB1 on human embryo and adult liver cells in vitro have demonstrated the order of toxicity as B1 > G1 > G2 > B2 [86, 87]. Although AFB1 is a potent liver carcinogen in animals, in epidemiological studies done in Africa, it has been difficult to ascribe the incidence of human liver cancers solely to AFB1 because of concurrent exposure to other potentially causative agents (e.g. liver parasitism, hepatitis B virus, other mycotoxins as well as other carcinogenic environmental and food contaminants) that may be enhancing factors for liver damage and replication [89]. However, AFB1 binding to DNA and consequent interference with host genomes have been established and confirmed by mechanistic and inhibition studies [90]. Previously, some epidemiological studies were conducted on cancer patients aimed at evaluating the effects of AFB1 and AFM1 exposure on cancer cells in order to verify the correlation between toxin exposure and cancer cell proliferation and invasion [64].
\nThe International Agency for Research on Cancer (IARC) has classified AFB1 and AFM1 as human carcinogens belonging to Group 1 and Group 2B, respectively, with formation of DNA adducts identified [25, 45]. Aflatoxins play a causative role in 5–28% of hepatocellular carcinoma (HCC) worldwide [91]. Marchese et al. [64] have recently reviewed the chemistry and metabolism of AFB1 and AFM1 and their involvement in cancer development. They summarized the activation pathways of AFB1 and AFM1 and stated that AFB1 epoxidation is the key step in the genotoxic process and thus in the carcinogenesis, whereby the high affinity of the epoxide intermediate for purine bases of DNA was shown to lead to formation of AFB1-N7-Gua adduct that promoted mutations in nucleotide sequence. AFB1 is mainly metabolized in the liver upon action of the microsomal mixed-function oxidase (MFO) enzymes belonging to the superfamily of CYP450. It is converted into the reactive 8,9-epoxide in a process mediated by these oxidases. The epoxide exists as two stereoisomers, exo and endo, with the former being the toxic species responsible for AFB1 genotoxicity [92]. The exo-8,9-epoxide has a high binding affinity towards DNA, forming the 8,9-dihydro-8-(N7-guanyl)-9-hydroxy-AFB1 (AFB1-N7-Gua) adduct, thus leading to DNA mutations [64]. Epoxide formation is also involved in other metabolic pathways, including (i) conjugation with glutathione (GSH) catalyzed by glutathione-S-transferase (GST) with subsequent excretion as AFB-mercapturate, a pathway which is vital for the detoxification of AFB1 as a carcinogen, even though a depletion of GHS was also reported to lead to high levels of reactive oxygen species (ROS) causing oxidative damage [93]; (ii) enzymatic and non-enzymatic conversion to AFB1-8,9-dihydrodiol, which can further be converted into a dialdehyde form, and an aflatoxin dialdehyde subsequently which can get excreted through urine as dialcohol upon action of aflatoxin aldehyde reductase (AFAR) or can bind proteins, like albumin [92] and (iii) binding to other macromolecules like proteins or RNA, causing inhibition of proteins, DNA and RNA synthesis and dysregulation of normal cellular functions [94]. Microsomal biotransformation of AFB1 also includes hydroxylation of the toxin, leading to the formation of more polar and less toxic metabolites, including mainly AFM1 and aflatoxin Q1 (AFQ1). Different studies tried to assess the role of the CYP450 enzymes which are responsible for detoxification and formation of carcinogenic metabolites. CYP1A2 and CYP3A4 strains were found to be capable of activating AFB1 and the most active isoenzymes of the CYP450 family to do this [28]. It has been reported that CYP3A4 is responsible for the formation of AFB1-exo-8,9-epoxide and trace amounts of AFQ1, whereas CYP1A2 leads to both exo- and endo-8,9-epoxide and eventually to the hydroxylated AFM1 metabolite [27]. The other two isoenzymes that use AFB1 as a substrate to a minor extent are CYP3A7, expressed in the human foetal liver, and CYP3A5 [27]. Other mechanisms of AFB1 toxicity include formation of intracellular reactive oxygen species which cause oxidative damage, resulting in AFB1 inducing cytotoxicity; and studies have demonstrated oxidative stress-induced toxic changes in the liver related to AFB1 toxicity [90, 95] oxidative stress-induced apoptosis through a mitochondrial signal pathway which has been reported [96]. AFB1 has caused oxidative and nitrosative hepatoxicity in rat and chick hepatocytes [90]. The predominant mutation caused by AFB1-N7-Gua adduct has been identified, and the sites of mutation and selectivity towards guanine bases have been elucidated [64]. These mutation studies have confirmed the links with a great number of epidemiological data on hepatocellular carcinoma (HCC) patients from regions of high aflatoxin exposure, strengthening the association between HCC incidence and aflatoxin exposure [97]. Research on human exposure to AFB1 through diet and analysis of liver and plasma metabolites have demonstrated hepatocarcinogenesis, with plasma concentrations showing that absorption and metabolism of AFB1 are rapid in human.
\nIt has been noted that AFM1 is primarily considered a detoxification product of AFB1 metabolism, showing only 10% of mutagenicity compared to its precursor [92], and its metabolic fate is similar to that of AFB1, with the difference that AFM1 presents a poorer substrate for epoxidation, thus explaining the differences in genotoxic potencies. It has also been reported that CYP450 activation is not required for AFM1 to exert cytotoxic effects [92]. Apart from the principal biotransformation pathway involving CYP450, other activation mechanisms have been reported for aflatoxins. In fact, epoxidation catalyzed by prostaglandin H (PGH) synthase has been described by Battista et al. [98], whereas Weng et al. [99] have recently reported a mechanism in which lipid peroxidase (LPO) is the main enzyme responsible for AFB1-induced carcinogenesis, triggered by production of cyclic-methyl-hydroxy-1 and N2-propano-dG (meth-OH-PdG) adduct and/or inhibition of DNA repair.
\n\n
Human intoxication by aflatoxins may occur via contact, ingestion and inhalation; and they can affect the liver, kidney, stomach and lungs, salivary glands, colon and skin [91]. Once ingestion of aflatoxin B1 has taken place, the gastrointestinal tract rapidly absorbs it with other aflatoxins, and the circulatory system transports them to the liver [100]. Approximately 1–3% of the ingested aflatoxins irreversibly bind to proteins and DNA bases to form adducts such as aflatoxin B1-lysine in albumin [101]. Disruption of protein and DNA bases in hepatocytes disrupts their functions and causes liver toxicity [101]. This results into chronic exposure which is defined as the ingestion of very small doses of aflatoxins in a long period of time [101]. Ingestion of higher doses of aflatoxins can result in what is called acute aflatoxicosis [100]. The order of potency for acute and chronic toxicity is B1 > G1 > B2 > G2 [20]. AFB1 may not itself be toxic, but it is metabolized to produce more toxic metabolites, and its subsequent metabolism determines both the acute and chronic toxicity.
\nBankole and Adebanjo [11] have defined aflatoxicosis as poisoning which results from ingestion of aflatoxins in contaminated foods in human and feeds in animals and manifests as chronic or acute aflatoxicosis. The term is therefore not restricted to human poisoning only but can be used to describe aflatoxin poisoning in other organisms including domestic animals, birds, fish and other organisms. Chronic aflatoxicosis results from ingestion of low to moderate levels of aflatoxins. Chronic dietary exposure to aflatoxins is a major factor for hepatocellular carcinoma [11]. Common subclinical symptoms are seen through impaired food conversion and slow rate of growth with or without production of an overt aflatoxin syndrome and liver cancer [11]. Ingestion of higher doses of aflatoxin can result in an acute aflatoxicosis which manifests as hepatotoxicity with symptoms of liver damage, hemorrhage and alteration of food digestion or, in severe cases, liver failure and death (which occurs in 25% of cases of acute poisoning) [81]. No animal species is resistant to the acute toxic effects of aflatoxins [11]. The biological effects of aflatoxin can be grouped into four general categories: acute and chronic liver damage, reduced growth rate, impairment of immunologic and innate defense mechanisms and carcinogenic and teratogenic effects, respectively, and different animal species respond differently. Aflatoxicosis can be influenced by environmental factors as well as by levels ingested, duration of exposure, age health, nutritional status and diet [81]. Aflatoxin B1 is a very potent carcinogen in many species including primates, birds, fish and rodents. In each species, the liver is the primary target organ of aflatoxin toxicity and carcinogenicity in acute injury [81].
\nEarly symptoms of hepatoxicity from aflatoxicosis can manifest as anorexia, malaise and low-grade fever, which can progress to potentially lethal acute hepatitis with vomiting, abdominal pain, hepatitis and death [25]. Symptoms of AFB1 also include yellow eyes, swollen legs, vomiting, abdominal pain and bleeding. The health impact of aflatoxin exposure in animals mainly depends on dosage and response to the epidemic, and low dosages produce nutritional interference and immunological suppression, while high doses lead to acute illness and death [81]. Aflatoxins have been detected in the blood of pregnant women, umbilical cord blood and breast milk in African countries, with significant seasonal variations [24]. Levels of aflatoxins detected in the umbilical cord blood at birth are among the highest levels ever recorded in human tissues and fluids [24], and therefore mother-to-child transfer impacts are expected to be significant. Aflatoxins have been suggested as an aetiological factor in encephalopathy and fatty tissue degeneration of viscera, similar to Reye syndrome, which is common in countries with a hot and humid climate [101], an indication that exposure can lead to symptoms such as memory loss and dementia. Aflatoxins have been found in blood during the acute phase of the disease and in the liver of affected children [24]. In recent studies, aflatoxins have been found in the brains and lungs of children who have died from kwashiorkor and those who had died from various other diseases [21].
\nOutbreaks of acute aflatoxicosis from highly contaminated food have been documented in Kenya, India and Thailand [104]. In April 2004, an outbreak of an acute hepatotoxicity was identified among people living in Makueni, Kitui, Machakos and Thika Counties, and epidemiological investigation determined that the outbreak was as a result of aflatoxin poisoning from ingestion of contaminated maize [105]. In July 2004, 317 cases and 150 deaths had occurred, making this one of the largest and most severe outbreaks of acute aflatoxicosis documented worldwide [106]. In 1981, an outbreak of aflatoxicosis from contaminated maize occurred in Makueni County and other parts of Kenya which reported 500 acute illnesses and 200 deaths [103]. In both 1981 and 2004, drought and food shortages were followed by unreasonable rains during harvest which probably favoured the growth of aflatoxigenic
Year | \nThose affected | \nNumbers affected | \nSources of toxin | \nObserved effects | \n
---|---|---|---|---|
1977 | \nPoultry and dogs | \nUnspecified | \nContaminated maize | \nDeath | \n
1981 | \nHuman | \n12 | \nContaminated maize | \nDeath | \n
1984/1985 | \nHuman | \nUnspecified | \nContaminated maize | \nDeath | \n
1988 | \nHuman | \n3 | \nContaminated maize | \nDeath and acute symptoms | \n
2001 | \nHuman | \n29 | \nContaminated maize | \n16 deaths and acute symptoms | \n
2002 | \nPoultry and dogs | \nLarge numbers | \nContaminated maize | \nDeath | \n
2003 | \nHuman | \n6 | \nContaminated maize | \n6 deaths | \n
2004 | \nHuman | \n331 (500*) | \nContaminated maize | \n125 deaths and acute symptoms | \n
2005 | \nHuman | \n75 | \nContaminated maize | \n32 deaths and acute symptoms | \n
2006 | \nHuman | \n20 | \nContaminated maize | \n10 deaths and acute symptoms | \n
2007 | \nHuman | \n4 | \nContaminated maize | \n2 deaths and acute symptoms | \n
2008 | \nHuman | \n5 | \nContaminated maize | \n2 deaths and acute symptoms | \n
2010 | \nHuman and dogs | \nUnspecified | \nContaminated maize | \nUnconfirmed dog deaths; drop in prices | \n
Dietary exposure varies greatly from country to country, and estimates of dietary exposure indicate clear differences between developed and developing countries [25]. In developed countries, mean aflatoxin dietary exposures are generally less than 1 ng/kg body weight per day, compared with some sub-Saharan African countries where mean exposure exceeds 100 ng/kg body weight [24]. The Center for Disease Control and Prevention [108] has estimated that 4.5 billion people are exposed to aflatoxins worldwide, with the risks varying from country to country. In other reports, aflatoxin exposure in Africa ranged from 10 to 180 ng/kg body weight/day, while exposures in Europe and North America ranged from 0 to 4 and from 0.26 to 1, respectively [108]. A study done in Kenya has shown that populations from all economic strata have aflatoxin exposure [22]. The level of aflatoxin B1—the most toxic of the aflatoxins—in blood serum in individuals was found to be similar across the rich and poor, with the highest burden among the middle wealth quintile [22]. Climate changes have been reported to play a major role and would likely lead to increased occurrences of aflatoxins and other mycotoxins (and possibly their increased co-occurrence) in Kenya and other countries [22]. It has been reported that the tropical and subtropical regions of the world including sub-Saharan Africa and parts of Southern Asia are highly likely to continue experiencing aflatoxin-related contamination issues due to high temperature and humidity conditions, particularly damp conditions during the rainy seasons, and drought being experienced in these countries as these conditions increase crop susceptibility to aflatoxin contamination [25]. In another study, it was found that there was a low awareness and understanding of the dangers of mycotoxins in food and certain practices among farmers in Kenya could therefore increase the risk for exposure [76]. Gender analysis revealed that groups having knowledge were not always responsible for risk mitigation [83]. In a study conducted in the major farming regions in Kenya, it was found that 67% of the urban smallholder dairy farmers had no knowledge that milk could be contaminated with aflatoxin M1 and none knew how they could mitigate against this exposure [24, 109].
\nBankole and Adebanjo [11] mapped Kenya into aflatoxicosis risky areas taking into consideration humidity, temperature, rainfall, dairy cattle density, feed resources, farming systems and consumption of maize and milk. The eastern parts of the country had more cases of historical occurrences of aflatoxin contamination, while the central and western parts showed increased risk of aflatoxin contamination [83]. In Kenya AFB1 and other metabolites have been analysed and detected in animal commercial feeds, grains, flour and cooked diets. Among researchers, aflatoxin analysis in human and cattle feed is one of the most common research topics especially by graduate students in the national universities, although research into its human health impacts has received less attention. In a study done in 2008, it was reported that most people in Kenya were exposed to low-level doses of a wide spectrum of fungal poisoning through regular consumption of cereals such as maize and cereal products [76]. For example, an average Kenyan eats maize products at the rate of 0.4 kg/person/day such that even the lowest amount of exposure can result in a cumulative exposure likely to cause health effects [76]. Maize is the staple food (accounting for more than 75% total cereal area) and is mainly grown by small holder farmers who together with their families account for 70% of the Kenyan population [76].
\nIn a survey done in 2001, samples of agricultural produce including grains and flour obtained from ordinary grocery stores, kiosks, supermarkets and open-air markets in Nairobi and other towns in Kenya were found to be contaminated with moulds that produce aflatoxins among other mycotoxins [26]. Recently, the mean concentration levels of aflatoxins in dry maize grains in Kenya, as analysed by ELISA method, range from 2.51 to 17.4 ppb (dry weight) in samples taken from Western, Nairobi and Eastern provinces of Kenya [26, 60, 110]. Analysis of sun-dried maize, millet, flour and fish samples from different regions in Kenya found that, in general, there are aflatoxins including AFB1 in these products, even though at lower concentrations compared with standard maximum allowed levels by the WHO, FAO, EU and KEBS [26, 39, 60, 109, 110]. Wasike [60] determined total aflatoxin levels in randomly sampled maize grains from Bungoma using ELISA method and found 2.51–3.56 ppb of total aflatoxins (based on dry weight) and concluded that there was no significant variation (p < 0.05) with site. He also reported lack of awareness among farmers on aflatoxins in the areas where samples were taken from and listed harvesting, drying, storage methods and prevailing rainy weather during harvesting as main factors that influenced the production of aflatoxins [60]. Okech [110] used solvent extraction and LC–MS to analyse branded (milled and packaged by commercial Millers) flour samples taken from supermarkets and unbranded (milled by traditional posho mills, packed in sacks and weighed according to customer needs in open markets) flour samples obtained from various open markets in Nairobi, Thika and Machakos. He found AFB1 in 67% of the unbranded flour samples with mean concentrations ranging from 1.07 to 8.89 ppb. About 33% of the samples from Kiambu showed aflatoxin levels with one sample having 8.89 ppb which was above the KEBS and Codex maximum level limit of 5 ppb, while 16.7% of the samples from Nairobi and Machakos had aflatoxins levels but were lower than the 5 ppb limit [110]. One sample of unbranded maize flour from Machakos contained AFG2 which was detected at a mean concentration of 6.02 ppb which was above the 5 ppb limit [110]. In terms of total aflatoxins, 22.2% of the samples of unbranded maize flour had aflatoxins but were below the 10 ppb KEBS and Codex maximum level limit [110]. There were no aflatoxins (all were below detection limit) in all samples of the branded flour samples which showed that commercial maize milling process in Kenya, which involves removal of unsuitable grains, dehulling, and removal of bran, lowers risks of aflatoxin exposure in human in Kenya [26, 110]. It was concluded that the levels of AFB1 were lower after commercial milling with concentrations in unbranded maize flour being much lower than corresponding dried grains [110]. Nduti et al. [26] analysed dried maize grains and flour samples taken from Western, Eastern and Nairobi regions of Kenya by ELISA and found significant variations (p < 0.05) in the three regions, with mean total aflatoxin level in grains ranging from 7.95 ± 1.57 ppb (Nairobi samples) to 22.54 ± 4.94 ppb (eastern samples), which were higher than the 10 ppb KEBS and Codex maximum limit and therefore a major source of concern. No significant difference in aflatoxins levels with site in flour was found, and the total aflatoxins levels were detected but were below the 10 ppb limit. Nduti et al. [26] found maize grains to be contaminated with aflatoxins (including AFB1) in samples from Nairobi and Eastern Kenya detecting aflatoxins in all samples with levels higher than the Codex and KEBS maximum limit of 10 ppb usage. The variations with site were insignificant (p > 0.005), and slight differences in mean concentration levels were attributed to differences in weather such as wind, temperature, insect damage of produce and storage and handling [26]. However, in maize flour which is the staple food for most of the population, the mean total level was slightly >5 ppb which was lower than the WHO level. In this study, aflatoxin contamination was confirmed by the presence of AFM1 in urine of the population [26, 35]. Nduti et al. [26] proposed that sorting, cleaning, bran removal and the use of chemical and biological agents to reduce the levels may have influenced lower concentrations in flour than maize grains. The results of Nduti et al. [26] suggested that cooked mixture of maize and beans (traditionally known as
Recently, Orony et al. [59] reported mean total aflatoxins ranging from 0.33 to 1.58 ppb (wet weight) in sun-dried dagaa fish (
There have been reported cases of aflatoxin outbreaks in Kenya which have led to severe poisoning in school children and adults fed on maize products, some of the products being donations by WHO food programmes for the school feeding programme [112, 113, 123]. These outbreaks of aflatoxin prevalence and aflatoxicosis have been blamed on the lack of regulations and control measures including lack of adherence to handling procedures such as drying period, maintaining required moisture levels, removal of damaged grains, lack of optimal ventilation and temperature during storage, prevention of insect damage which encourages moulding, failure by the national grain cereal companies to purchase the grains from farmers on time and failure to perform routine analysis of moisture and aflatoxin presence in the produce before milling [76]. It has been reported that the most critical interval of drying maize in Kenya is from when it starts drying up, down to approximately 20% moisture, and during this interval moulds occur more easily than any other period [26]. This period can be very long, ranging from 28 to 58 days, respectively, when traditional storage methods are adopted [26], during which, grains are subjected to extreme fluctuations in weather such as rainfall. In sub-Saharan Africa, weather is critical in addition to the prevalence of the S-strain of
In Kenya, researchers at the Kenya Agricultural and Livestock Research Organization developed and manufactured a product called Aflasafe KE01 to fight aflatoxins in 2016 although this product has not yet trickled down significantly to the small-scale farmer. Aflasafe KE01 consists of four friendly strains of
Human exposure from milk has been a major issue of concern [113, 115, 116]. This originates from feeding cows with contaminated feeds or encouraging unhygienic conditions during milking, handling and storage of milk. Dairy production is widely practised in Kenya, and it provides a source of income to farmers, animal feed industry workers and all other stakeholders within the value chain [116]. Dairy farming systems in Kenya have changed over the years from direct use of pastures and hay only to commercial type of animal feeding where cowshed feeding is achieved with grain-based concentrates and silage [103, 105]. This practice was adopted due to increased productivity and high demand for the product. Studies have shown that aflatoxin contamination occurs in commercial feeds in Kenya and that exposure of cattle to mycotoxins generally occurs through consumption of contaminated feeds [103, 105, 109, 117]. AFM1 is usually excreted after 12 h in milk and urine when animal feed contaminated with AFB1/AFB2 is administered to the animals [22]. Aflatoxin is highly toxic to livestock, and feed contamination has been linked to increased mortality in farm animals. When cows consume aflatoxin-contaminated feed, they biotransform approximately 3–6% of AFB1 and AFB2 in their liver by hepatic microsomal mixed-function oxidase enzyme system into hydroxylated metabolites AFM1 and AFM2 [118] which are secreted into milk. AFB1, AFM1 and AFM2 aflatoxins have been detected in cow milk in Kenya [105]. Although AFM1 is 1000 times less toxic compared to AFB1, the AFM1 levels are regulated, and milk containing above 0.5 ppb level of AFM1 is considered unfit for human consumption [117]. Many countries have therefore regulated levels of AFB1 in animal feed, and the EU maximum limit has been set to 5 ppb; and it is recommended that animals should consume less than 40 μg/day of AFB1 in order not to exceed the allowed limit of AFM1.
\nThe World Health Organization, in collaboration with the Food and Agriculture Organization, is responsible for assessing the risks to humans caused by mycotoxins through contamination in food and for recommending adequate maximum levels in food and feed. Risk assessments of mycotoxins in food done by the Joint FAO/WHO Expert Committee on Food Additives are used by governments and by the Codex Alimentarius Commission (the intergovernmental standard-setting body for food) to establish maximum levels in food and provide other risk management advice to control or prevent contamination [11]. The outcome of such health risk assessments can either be a maximum tolerable intake (exposure) level or other guidance to indicate the level of health concern (such as the margin of exposure), including advice on risk management measures to prevent and control contamination and on analytical methods and monitoring and control activities [25]. These tolerable daily intakes are used by governments and international risk managers, such as the Codex Alimentarius Commission, to establish maximum levels for mycotoxins in food [11]. The maximum levels for mycotoxins in food are very low due to their severe toxicity. For example, the maximum levels for total aflatoxins set by the Codex in various nuts, grains, dried figs and milk are in the range of 0.5–10 μg/kg [24]. The WHO encourages national authorities to monitor and ensure that levels of mycotoxins in foodstuff on their market are as low as possible and comply with the both national and international maximum levels, conditions and legislation [25].
\nDifferent countries and authorities worldwide have rules and regulations governing aflatoxin B1 in foods which include the maximum permissible levels and recommended levels for certain foods. The Kenya Bureau of Standards (KEBS) has adopted the broad Codex standard limits of 5 ppb (for single metabolite) and 10 ppb for total aflatoxins in food but does not have lower limits for sensitive foods such as milk. The US Food and Drug Administration (FDA) had given an action level (maximum permissible) of total aflatoxin (B1) in combination with B2, G1 and G2 in foods as 20 μg/kg above in which the commodity is withdrawn from the markets [59], except milk which has a maximum level of 0.5 ppb. The Food Standards Agency has set a legal limit of total aflatoxins in foods as 10 μg/kg. Higher levels of 100–300 μg/kg are tolerable for some animal feeds. The EU has set maximum permitted levels for aflatoxin B1 in nuts, dried fruits, cereals and spices ranging from 2 to 12 μg/kg, while the maximum permitted level for aflatoxin B1 in infant foods is set at 0.1 μg/kg [119]. The maximum permitted levels for aflatoxin B1 in animal feeds set by the EU range from 5 to 50 μg/kg, and these levels are much lower than those set in the USA [120]. The Joint FAO/WHO Expert Committee on Food Additives has set the maximum permitted total aflatoxin level of AFB1 in combination with the other aflatoxins (B2, G1 and G2) at 15 μg/kg in raw peanuts and 10 μg/kg in processed peanut, while the tolerance level of aflatoxin B1 alone is 5 μg/kg for dairy cattle feed [121, 124, 125]. Results from previous studies have however shown that it is difficult if not impossible to eradicate AFB1 in cereals once produced [26]. For that matter, consumers are left vulnerable to exposure, yet burning of contaminated cereals, one of the most feasible ways of containing the menace, has caused problem of food insecurity in the past.
\nAflatoxicosis cases are very common in Kenya, and the major cause is contaminated maize and maize flour. The total aflatoxin and AFB1 levels that have been obtained in maize grains and maize flour are indicating that commercial milling and packaging of maize flour reduce the levels of aflatoxins considerably. However, a large population in the rural and urban areas which still rely on maize flour from open markets, through donation or by traditional posho milling, could be more exposed to aflatoxins as these sources increase and fail to reduce the levels, respectively. More research is needed to identify and determine aflatoxin levels in other produce such as beans, peanuts, groundnuts and their processed products. The current KEBS regulation and maximum allowable limits, in terms of total or single metabolite, are adequate for monitoring and controlling aflatoxicosis menace; however, for export produce and for long-term control of aflatoxicosis in the country, the maximum allowable limits need to be reviewed and lowered. With improvements in analytical techniques which are capable of giving lower detection limits, maximum allowable limits can be lowered to almost zero tolerance to reduce aflatoxicosis and hepatocarcinogenesis in human in Kenya. Although a lot of research in Kenya has gone into identification and determination of aflatoxin levels in various human foods and animal feeds and their detoxification mechanisms, it is still not possible to directly link AFB1 exposure to liver cancer as less epidemiological and biomarker studies have been done in Kenya to confirm such linkage.
\nThe authors wish to thank the National Research Fund (NRF), Nairobi, Kenya, through a multidisciplinary TUK/MMUST/Maseno/PCPB research grant.
\nIn the trend toward minimally invasive surgery, operations for the cervical spine have followed a similar tendency. While microsurgery has been in the lexicon of neurosurgery for ages, one of the earliest uses of the term “minimally invasive” in spine surgery was used by Probst in 1989 to discuss lumbar microdiscectomy [1]. While the term “minimally invasive” has become somewhat of a generic moniker for many different approaches, its intent is to be less traumatic to the patient with lower complication rates.
In the cervical spine, midline sparing posterior procedures such as lateral [2] and far later posterior approaches have afforded the opportunity to use smaller incisions and even endoscopic [3] approaches. Anterior foraminotomy, a disc preserving approach, has also been proposed [4] with favorable results [5]. However, these approaches have given limited access to midline pathologies and offer little benefit for cases with central herniation or instability.
Anterior discectomy alone allows central pathology to be addressed with reasonable success but high reoperation rates [6]. The addition of fusion stabilizes the spine in addition to maintaining distraction and neural foramen patency. Interbody grafts were instrumental in providing this indirect decompression and additional stability. Fusion halts further disc degeneration, preserves sagittal balance, and eliminates segmental instability. Cervical fusion surgery, particularly anterior approaches has followed this minimally invasive trend and become more streamlined.
The anterior cervical discectomy and fusion (ACDF) was first reported in 1955 by Robinson and Smith [7], and this approach quickly became the dominant approach. While the competing Cloward technique [8] offered a high cancellous surface area for fusion, it had a high rate of graft collapse [9] and subsidence rates of up to 9.6% [10]. The shape of the graft provides some intrinsic stability but endplate preparation is more invasive requiring significantly more native bone removal which also predisposed patients to kyphosis [9, 11] at rates up to 9.6% [10]. Furthermore, higher complication rates include up to 4.8% of neurologic injuries [10].
The Smith-Robinson technique [12] is less invasive given that it is endplate sparing and causes minimal vertebral body destruction. It also provides better visualization of the decompression, particularly the uncovertebral joints. Arthrodesis by either technique has proven an effective treatment for cervical spondylosis and disc herniation [9, 13, 14, 15]. Anterior discectomy with fusion has been the prominent surgical treatment for symptomatic cervical spondylosis for over 60 years. Traditionally, bone dowels or spacers were harvested from autologous iliac crest contributing to hip pain rates of up to 39% [16]. This additional procedure has contributed to the relatively longer hospital stays of ACDF patients [17].
Allograft iliac crest provided a respite from further surgical trauma at a second site and was thus less invasive. However, fashioning an appropriate size graft added additional operating time on the back table. Pre-cut fibular strut grafts offered a more convenient and efficient option but are limited in terms of footprint size and have a high cortical to cancellous bone concentration. Machined structural allograft was the next iteration providing greater surface area of the graft and a higher percentage of cancellous bone contact, albeit at a greater cost.
Nonunion and graft subsidence still occurred and titanium plating developed as a more stable option [18]. The plate and four screw construct provided a solid fixation for arthrodesis to occur. With fusion rates of up to 100% [19], this technique became the gold standard for 20+ years. While the uniplate had some early adopters [20], high pseudofusion rates were reported [21].
With load-bearing limitations, limited allograft supply, and concerns over disease transmission from cadaveric bone, titanium cages had a simultaneous rise in popularity particularly in the lumbar spine. The imaging artifact and subsidence of titanium as well as its limited machining options increased the demand for synthetic polymers such as poly ether ether ketone (PEEK). In the cervical spine particularly, PEEK offered the ability to have a number of footprint options as well as height options for corpectomy and multilevel constructs.
The latest stage of cervical fusion has allowed titanium mini plates to incorporate with PEEK spacers as a stand-alone option with internal fixation (Figure 1). This integral plate allows for less bony exposure and potentially less issues with longus colli bleeding, recurrent laryngeal paresis, and sympathetic chain injury at lower levels. Furthermore, the zero- or low-profile interbody plate, as opposed to an on-lay plate, has been shown to have shorter surgical times and lower rates of dysphagia [22]. In addition, these implants have been shown to have lower rates of adjacent segment degeneration (ASD) [23, 24, 25]. However, these implants have been associated with increased rates of kyphosis [26, 27].
Cervical fusion devices showing zero-profile devicie at C5–6 and standard allograft and four screw plate at C6–7.
While the technological advances in arthrodesis have given rise to faster procedures and shorter stays, there has been a concordant rise in cost from zero-dollar autograft to modern-day single-level constructs costing $5–6 K a level. At a time when physician reimbursement is diminishing this rise in per case cost is concerning, although the cost–benefit may be worth it for reduced surgeon’s time.
Cervical fusion is known to alter spinal biomechanics by creating abnormal loads and affecting segmental motion at adjacent vertebrae [28, 29]. These changes may accelerate adjacent disc degeneration through the increased stress on the adjacent disc [29, 30, 31].
Multiple studies have documented evidence of adjacent segment level disease including radiographic findings of new anterior osteophyte formation or enlargement, increased narrowing of an interspace, new DDD, and calcification of the anterior longitudinal ligament [31]. Fusion has shown an increased rate of these compared to arthroplasty. Similarly, the rate of symptomatic disease along with the need for medical treatments related to such was also greater in the fusion cohort.
Multilevel fusion constructs demonstrate even greater stress [32]. These multilevel procedures had higher rates of reoperation, pseudoarthrosis, and complications [33, 34] compared to single-level constructs.
While the ACDF has been the gold standard for years, the well-known effects of motion loss and adjacent segment breakdown have been driving factors for cervical arthroplasty. One such mechanism is the neighboring intradiscal pressure. Fusion constructs produce greater neighboring intradiscal pressure [30] compared to arthroplasty which preserves physiologic intradiscal pressures at neighboring levels.
In essence, arthroplasty is itself less invasive than fusion because of maintained motion and reducing the need for adjacent level surgery. Like the ACDF, cervical arthroplasty has followed a similar trend toward less invasiveness with a more streamlined process and less procedural time. The nomenclature for this procedure has varied markedly to include: anterior cervical discectomy and arthroplasty (ACDA, and abbreviated ACA), artificial disc replacement (ADR), total disc replacement (TDR), cervical total disc replacement (cTDR), cervical disc replacement (CDR), and cervical disc arthroplasty (CDA).
An arthroplasty device must replicate the native disc as much as possible. Three primary considerations include: maintaining intervertebral spacing, allowing for motion with the segment, and maintaining stability with the bones neighboring the segment. The initial stability with screw fixation was the primary focus of early implants while more recent implants relied on press-fit, teeth, and/or keels as well as ligamentum taxis for initial stability. Long-term stability involves ingrowth of bone into porous endplates while at the same time allowing for revision.
The placement of an artificial disc should be done with limited disruption of surrounding anatomy. Arthroplasty by nature relies on the integrity of the neighboring facet joints and ligaments for stability. Likewise, the functioning arthroplasty device should not overload the facets nor unload them.
Replicating motion in all planes but also constraining motion means the device has to mirror physiologic tissue in terms of biomechanics. In addition to allowing loading, flexion/extension, rotation, and lateral bending, the arthroplasty device should optimally allow for translation as well (Figure 2). Ideally, the device would have some natural shock absorption for axial forces. This proved to be a limiting factor in early devices but more modern devices have incorporated this.
Flexion/extension views of the Centinel spine ProDisc-C at C5–6 show arthroplasty device flexing and extending with the spine.
The movement within the implant must be balanced by a stable bone-implant interface anchoring the implant. While a fusion allows for the remodeling of bone, arthroplasty is not afforded such long-term stability. The endplates must allow for a proper degree of bony on-growth while maintaining physiologic loads at this interface to reduce implant failure and endplate failure. The resilience of the implant over the patient’s life span is also an important factor. In the event of implant failure, the design should allow for minimal impact from this failure and ideally offer a radiographic cue to its existence.
Implant material is another factor that must be considered in normal usage. Materials should be chosen that are biocompatible, durable, minimize wear debris, and have a minimal inflammatory response. Additionally, materials should be selected that minimize diagnostic imaging artifact at the index level, but certainly preserving visualization of the adjacent segments is essential.
While fusion has been the gold standard for over sixty years, arthroplasty designs have been developing over a similar time frame. Dr. Ulf Fernstrom studied a spherical intercorporeal endoprosthesis, or simply a stainless-steel ball, placed in the disc space in the late 1950s. He implanted 191 of his “Fernstrom Balls” in the cervical and lumbar spines of 101 patients [35]. The procedure was later abandoned over high failure rates with subsidence, migration, and hypermobility. Methylmethacrylate [36] was used as an alternative to the steel ball but did not gain much traction in the spine world.
Arthroplasty progress was somewhat dormant for approximately 30 years until the stainless-steel ball and socket implants from Bristol/Cummins were developed [37]. These advanced into a ball and trough design that allowed for translational movement to become the commercially available Prestige line from Medtronic. Charite was approved in 2004 as the first FDA-approved commercial spinal arthroplasty device (lumbar spine). Prestige ST was approved in 2007 as the first cervical arthroplasty device. This steel on steel implant was simple but its stainless-steel construction caused significant artifact on MR imaging. Some patients reported clicking sounds from the saddle joint (personal experience). The esthetics and dysphagia of an on-lay plate (Prestige-ST) as well as time-consuming implant procedure with four screw fixation.
Prestige LP was first marketed OUS in 2004 and approved by FDA in 2014. It was a less invasive approach in terms of fixation. As named, the LP design relied on lower-profile press-fit rales and antimigration teeth for fixation. It also had a titanium plasma spray for additional fixation. The implant was also made with a titanium ceramic composite material that provided better imaging characteristics. Arthroplasty implants designed up to this point allowed motion but no elasticity. The elasticity component is key for load-damping properties.
Early arthroplasty devices like the Bristol and Prestige-ST had a prominent four screw construct with a locking mechanism. Subsequent revisions like the Prestige-LP had a lower profile as so named along with no need for screw fixation.
Similar to the trends toward less invasive, more modern implants have also followed the trend toward more physiologic motion. Early arthroplasty devices mirrored general orthopedic implants with two articulating surfaces. In this spine, these first-generation implants relied on metal articulations attached to the endplate above and below the index disc (Bristol and Prestige). The early Bristol disc was a ball and socket which allows lateral bending, rotation, and flexion/extension but not translation. Prestige was created with a trough on the lower articulating surface in order to allow anterior/posterior translation.
General orthopedic implants evolved to incorporate a plastic spacer in hopes of reducing metallic wear debris while also providing better wear characteristics and a minor degree of shock absorption. A high molecular weight polyethylene core was juxtaposed between the metal surfaces. These second-generation devices reduced some of the metal-on-metal concerns but still lacked elasticity like a native disc. The ProDisc returned to a ball and socket approach with the bottom half of the polyethylene core anchored to the inferior endplate. The subsequently released Secure-C preserved the superior ball and socket design but had a saddle design on the inferior endplate articulating surface. This allowed for translation.
The first generation of arthroplasty implants replicated conventional orthopedic implants with metal-on-metal articulating surfaces. These types of implants allow rotation, lateral bending, flexion and extension, and in some cases (Prestige-ST) anterolisthesis.
Implants with a polyethylene core have offered more physiologic movement and less concern over metallic deposition and blood levels. These second-generation implants like ProDisc offered a fixed core while the subsequently released Secure-C offered a sliding arthrodesis.
Keel base implants like the ProDisc and Secure-C had no additional fixation hardware relaying on press-fit, bony on-growth, and keel anchoring stability. Even within the keel-based implants, the Secure-C introduced a shorter, wider keel which required even less exposure in a cranial-caudal direction.
The Nuvasive PCM disc allowed similar translation while also incorporating an arrow-shaped row of teeth as the primary fixation modality. When Mobi-C was released, the mindset was to perform as little endplate preparation as needed. Mobi-C went a step further to offer a circumferentially mobile center of rotation and obtained FDA approval as a two-level implant in 2013 (Figure 3).
The Zimmer Mobi-C was the first arthroplasty device to gain FDA approval in the United States for two-level indications.
While Mobi-C provided even more range of motion, concerns arose regarding hypermobility [38, 39] of the joint and the inability to adequately visualize the mobile core. With a mobile core, there was now a superior and inferior articulating surface to be concerned with, especially in sheer force loading.
Third-generation implants have allowed for translation and compression forces that more closely resemble physiologic motion.
The Bryan cervical disc was under development as early as 1997 by Spinal Dynamics Corporation. This implant relied on the preservation of the natural vertebral concavities with convex titanium shells matching them. The convex portion of the implant has a rough porous coating for bony on-growth. The concave surface of the implant is surrounded by a flexible membrane and lubricant to reduce friction and prevent migration of wear debris. The inner polymer nucleus provides a full range of motion while also allowing for a full range of motion but without loading. The Bryan disc eliminated the need for chiseling of keels but required a complex endplate preparation rig and procedure to shape the vertebral endplates. Subsequent implants like M6 likewise require only a small amount of chiseling for stability.
The Orthotic M6 implant has additional design components that allow more physiologic motions and replicate the physiological phenomenon of progressive resistance to motion in all six degrees of freedom (Figure 4). This design enables the disc to move in all six degrees, with independent angular rotations (flexion-extension, lateral bending, and axial rotation) along with independent translational motions (anterior–posterior and medial-lateral translations), as well as axial compression. This unique compressive ability has been thought to reduce adjacent segment disease specifically.
The Orthofix M-6 implant allows for compressive axial loading.
The M6 is a complex, multi-component implant that contains an artificial nucleus made of Viscoelastic polymer (PCU) designed to simulate the native nucleus structure. It lies adjacent to but is not fixated to two inner titanium endplates. This core nucleus is retained circumferentially between the titanium endplates by a fiber annulus matrix.
This Ultra High Molecular Weight Polyethylene (UHMWPE) fiber matrix is designed to simulate the native annular structure and is wound in a specific pattern, with multiple redundant layers. The matrix is wound around the core and through slots in the two Ti6Al4V titanium alloy inner endplates. Surrounding the flexible portions of the implant is a jacket of viscoelastic polymer (PCU) designed to minimize tissue in-growth and debris migration.
The inner plates are welded to outer plates the surface of which includes low profile fins and are coated with titanium plasma spray (TPS).
Numerous IDE studies have shown the benefits of arthroplasty over fusion, particularly in the cervical spine. In addition to being motion sparing, arthroplasty’s perhaps greater value is in the reduction of adjacent segment breakdown. Several studies have shown lower rates of ASD in patients having undergone arthroplasty compared to their ACDF cohorts. The Secure-C study showed a 4x greater risk of having adjacent segment surgery in the ACDF group.
Lower rates of adjacent segment surgery, not only benefit patients could lower total health care costs. Ironically, this advantage has not been a motivating factor in insurance approval. The author spoke with the Medical Director of one major health insurance provider extolling the benefits of arthroplasty for a 24-year-old patient for whom a single-level ACDF was already approved. In an attempt to get authorization for an artificial disc at C5–6, I said, “I am fighting to get paid less for an operation that will potentially save the patient another surgery and in the end save you money on all accounts.” Their response was, “We don’t care. Our data shows most patients will change insurance carriers in the next five or six years and that doesn’t help us.” (Jason Highsmith, personal communication January 2009.)
Another potential benefit of this reduction of ASD is the ability to only operate on a symptomatic or freshly herniated level and leave other levels with some pathology untreated. In the past, there was a tendency to fuse everything that was abnormal, which of course exacerbates adjacent segment breakdown. This single-level approach for arthroplasty may lead to lower future costs.
ACDF patients had a higher reoperation rate at the index level in most of the IDE studies. Patients underwent a revision for nonunion as well as hardware revisions for screw pullout and plate fracture. One possible explanation is that most surgeons in the IDE study were highly skilled with ACDF procedures and took more time with the ACA procedure with better carpentry and decompression.
One explanation for this is that with arthroplasty there is only one active surface the articulating surface, whereas in ACDF there are two active surfaces of fusion to account for. Because of the need for additional decompression and resection of the uncovertebral joint, more care may be taken during ACA procedures.
Another positive factor for arthroplasty is certainly patient demand and satisfaction. The nomenclature of fusion is rarely a welcome term in clinical practice. At the same time, some patients with significant facet arthropathy or spondyloarthropathy come wanting disc replacement as the latest innovation regardless of their underlying pathology.
One limitation of the early studies was that the control group consisted of allograft spacers with a four-screw on-lay construct. While this was no doubt standard of care at the time these studies were initiated, and potentially still is, new options exist. Stand-alone devices with a cage and integrated plating are an easier construct to implant than a four screw on-lay plates.
While the clinical inclusion criteria for arthroplasty have been fairly stable over the last 20 years, the trend clinically has been more aggressive in indications. Initially, the ideal candidate was a less than 40-year-old patient with a solitary fresh disc, minimal adjacent segment disease, and little spondylosis. Now we are seeing older patients with more chronic disc issues, absent of facet pathology, undergoing arthroplasty. Based on my experience as a principal investigator for three IDE studies, we are seeing arthroplasty being offered to a broader spectrum of patients as surgeons become more comfortable with the procedure (Figures 5 and 6).
Sagittal T2 MRI of a 38-year-old woman with worsening neck pain and radiculopathy. Note multi-level cervical disc herniations with cord impingement. Given her age, nerve impingement, isolated soft tissue pathology, and failure of conservative care patient was an ideal candidate for three-level cervical arthroplasty.
Post-op lateral cervical spine x-ray demonstrating some restoration of lordosis and Orthofix M-6 arthroplasty devices at C3–4, C4–5, and C5–6.
Early in the Globus Secure-C study [40], we observed some heterotopic ossification in spite of oral NSAIDs. This led many surgeons to try additional measures to reduce this phenomenon. Several surgeons sealed the anterior edges of the adjoining bodies with bone wax, particularly where the anterior longitudinal ligament was denuded from the bone. Anecdotally, this appeared to reduce the incidence of HO.
In my experience, I’ve had a lower rate of autofusion by incorporating the same technique along the uncovertebral joints. The proximity of neighboring bone in this area after aggressive decompression puts it at risk for heterotopic bone formation. As such I seal the areas of decorticated bone with a thin layer of bone wax even into the joint.
Many devices have keels or teeth that provide initial fixation. I often “set” the implant into the neighboring bone by compressing the implant using the Caspar pins in compression. This helps reduce overdistraction of the facets as well.
When using a keel-based implant such as ProDisc, I recommend using the mill rather than chiseling. There have been case reports [41, 42] of fractures of the vertebral body using the chisel even in the low-profile Prestige-LP [43]. Similar findings have occurred in lumbar cases with ProDisc-L. [44] where there is no milling rig available. Concern over fractures like these should be even greater in multilevel cases [45]. Interestingly, all of these cases used the bone chisels to make the keel cut. While there is no data to support the use of the milling bit, it appears to be a less invasive option (Figure 7).
Long keels on the Centinel spine ProDisc-C illustrate the intervening vertebral body compromise in patients with short vertebral bodies.
A number of other implant designs have been proposed albeit with little clinical implementation. The hydrogel Prosthetic Disc Nucleus (PDN) is a hydrogel core in a polyethylene shell or jacket meant to only replace the nucleus in the lumbar spine while preserving the annulus fibrosis. This technique relied on the compressed core to be inserted and absorb fluid over the first four or five days allowing it to expand and restore disc height. In the trend toward minimally invasive, there is great potential to become percutaneous. While stem cells have proven useful in osteobiologics, there is still a great need for their development in cartilage and disc replacement. Clearly, the future lies in cellular-based disc repair and reconstruction but for now, that hope is elusive.
General requirements for Open Access to Horizon 2020 research project outputs are found within Guidelines on Open Access to Scientific Publication and Research Data in Horizon 2020. The guidelines, in their simplest form, state that if you are a Horizon 2020 recipient, you must ensure open access to your scientific publications by enabling them to be downloaded, printed and read online. Additionally, said publications must be peer reviewed.
',metaTitle:"Horizon 2020 Compliance",metaDescription:"General requirements for Open Access to Horizon 2020 research project outputs are found within Guidelines on Open Access to Scientific Publication and Research Data in Horizon 2020. The guidelines, in their simplest form, state that if you are a Horizon 2020 recipient, you must ensure open access to your scientific publications by enabling them to be downloaded, printed and read online. Additionally, said publications must be peer reviewed. ",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"Publishing with IntechOpen means that your scientific publications already meet these basic requirements. It also means that through our utilization of open licensing, our publications are also able to be copied, shared, searched, linked, crawled, and mined for text and data, optimizing our authors' compliance as suggested by the European Commission.
\\n\\nMetadata for all publications is also automatically deposited in IntechOpen's OAI repository, making them available through the Open Access Infrastructure for Research in Europe's (OpenAIRE) search interface further establishing our compliance.
\\n\\nIn other words, publishing with IntechOpen guarantees compliance.
\\n\\nRead more about Open Access in Horizon 2020 here.
\\n\\nWhich scientific publication to choose?
\\n\\nWhen choosing a publication, Horizon 2020 grant recipients are encouraged to provide open access to various types of scientific publications including monographs, edited books and conference proceedings.
\\n\\nIntechOpen publishes all of the aforementioned formats in compliance with the requirements and criteria established by the European Commission for the Horizon 2020 Program.
\\n\\nAuthors requiring additional information are welcome to send their inquiries to funders@intechopen.com
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Publishing with IntechOpen means that your scientific publications already meet these basic requirements. It also means that through our utilization of open licensing, our publications are also able to be copied, shared, searched, linked, crawled, and mined for text and data, optimizing our authors' compliance as suggested by the European Commission.
\n\nMetadata for all publications is also automatically deposited in IntechOpen's OAI repository, making them available through the Open Access Infrastructure for Research in Europe's (OpenAIRE) search interface further establishing our compliance.
\n\nIn other words, publishing with IntechOpen guarantees compliance.
\n\nRead more about Open Access in Horizon 2020 here.
\n\nWhich scientific publication to choose?
\n\nWhen choosing a publication, Horizon 2020 grant recipients are encouraged to provide open access to various types of scientific publications including monographs, edited books and conference proceedings.
\n\nIntechOpen publishes all of the aforementioned formats in compliance with the requirements and criteria established by the European Commission for the Horizon 2020 Program.
\n\nAuthors requiring additional information are welcome to send their inquiries to funders@intechopen.com
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[],filtersByRegion:[],offset:0,limit:12,total:null},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"8,9,11,14,15,17,20,22,24"},books:[{type:"book",id:"11555",title:"Ubiquitous and Pervasive Computing - New Trends and Opportunities",subtitle:null,isOpenForSubmission:!0,hash:"42b6f15e5d9044c3abd00c231efec806",slug:null,bookSignature:"Prof. Rodrigo da Rosa Righi",coverURL:"https://cdn.intechopen.com/books/images_new/11555.jpg",editedByType:null,editors:[{id:"69889",title:"Prof.",name:"Rodrigo",surname:"da Rosa Righi",slug:"rodrigo-da-rosa-righi",fullName:"Rodrigo da Rosa Righi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11551",title:"Blockchain",subtitle:null,isOpenForSubmission:!0,hash:"26f3d47bfbfd96e25e5b46001876cc48",slug:null,bookSignature:"Prof. Vardan Mkrttchian",coverURL:"https://cdn.intechopen.com/books/images_new/11551.jpg",editedByType:null,editors:[{id:"333134",title:"Prof.",name:"Vardan",surname:"Mkrttchian",slug:"vardan-mkrttchian",fullName:"Vardan Mkrttchian"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11458",title:"Human-Robot Interaction - Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"2003e3388833e911f610e0cd9788a5e7",slug:null,bookSignature:"Dr. Ramana Vinjamuri",coverURL:"https://cdn.intechopen.com/books/images_new/11458.jpg",editedByType:null,editors:[{id:"196746",title:"Dr.",name:"Ramana",surname:"Vinjamuri",slug:"ramana-vinjamuri",fullName:"Ramana Vinjamuri"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11506",title:"Antenna Arrays",subtitle:null,isOpenForSubmission:!0,hash:"1b378e33d6f6e73721ee0dacbbb89aa1",slug:null,bookSignature:"Prof. Hussain Al-Rizzo, Dr. Nijas Kunju and Dr. Aldebaro Klautau",coverURL:"https://cdn.intechopen.com/books/images_new/11506.jpg",editedByType:null,editors:[{id:"153384",title:"Prof.",name:"Hussain",surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11561",title:"Zeolite From Wastes - New Perspectives on Innovative Resources and Their Valorization Process",subtitle:null,isOpenForSubmission:!0,hash:"3ed0dfd842de9cd1143212415903e6ad",slug:null,bookSignature:"Dr. Claudia Belviso",coverURL:"https://cdn.intechopen.com/books/images_new/11561.jpg",editedByType:null,editors:[{id:"61457",title:"Dr.",name:"Claudia",surname:"Belviso",slug:"claudia-belviso",fullName:"Claudia Belviso"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11470",title:"Graphene - Recent Advances, Future Perspective and Applied Applications",subtitle:null,isOpenForSubmission:!0,hash:"409e022e3baf48795e816576a6ee66e3",slug:null,bookSignature:"Dr. Mujtaba Ikram, Dr. Asghari Maqsood and Dr. Aneeqa Bashir",coverURL:"https://cdn.intechopen.com/books/images_new/11470.jpg",editedByType:null,editors:[{id:"286820",title:"Dr.",name:"Mujtaba",surname:"Ikram",slug:"mujtaba-ikram",fullName:"Mujtaba Ikram"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11445",title:"Multi-Agent Technologies and Machine Learning",subtitle:null,isOpenForSubmission:!0,hash:"d980826615baa6e33456e2a79064c5e8",slug:null,bookSignature:"Prof. Igor Sheremet",coverURL:"https://cdn.intechopen.com/books/images_new/11445.jpg",editedByType:null,editors:[{id:"265237",title:"Prof.",name:"Igor",surname:"Sheremet",slug:"igor-sheremet",fullName:"Igor Sheremet"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11519",title:"Vibration Monitoring and Analysis - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"f0d2d82a5c1a49020abf39dc8aabd89d",slug:null,bookSignature:"Dr.Ing. Louay Yousuf",coverURL:"https://cdn.intechopen.com/books/images_new/11519.jpg",editedByType:null,editors:[{id:"322417",title:"Dr.Ing.",name:"Louay",surname:"Yousuf",slug:"louay-yousuf",fullName:"Louay Yousuf"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11525",title:"Wood Industry - Past, Present and Future Outlook",subtitle:null,isOpenForSubmission:!0,hash:"ccb74142053c89e0e572ac1c5d717a11",slug:null,bookSignature:"Prof. Guanben Du and Dr. Xiaojian Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/11525.jpg",editedByType:null,editors:[{id:"291315",title:"Prof.",name:"Guanben",surname:"Du",slug:"guanben-du",fullName:"Guanben Du"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11468",title:"High Entropy Alloys - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"3b4ef3ce01f8f9b113dc28ac847b8c0d",slug:null,bookSignature:"Prof. Yong A Zhang",coverURL:"https://cdn.intechopen.com/books/images_new/11468.jpg",editedByType:null,editors:[{id:"203937",title:"Prof.",name:"Yong",surname:"Zhang",slug:"yong-zhang",fullName:"Yong Zhang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11484",title:"Thin Film Deposition - Fundamentals, Processes, and Applications",subtitle:null,isOpenForSubmission:!0,hash:"9c10a55203c2f0f7d47c743e6cfa2492",slug:null,bookSignature:"Dr. Dongfang Yang",coverURL:"https://cdn.intechopen.com/books/images_new/11484.jpg",editedByType:null,editors:[{id:"177814",title:"Dr.",name:"Dongfang",surname:"Yang",slug:"dongfang-yang",fullName:"Dongfang Yang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11121",title:"Crystal Growth - Technologies and Applications",subtitle:null,isOpenForSubmission:!0,hash:"81f076fab2acb567946aeaa4b7281fc1",slug:null,bookSignature:"Dr. Riadh Marzouki",coverURL:"https://cdn.intechopen.com/books/images_new/11121.jpg",editedByType:null,editors:[{id:"300527",title:"Dr.",name:"Riadh",surname:"Marzouki",slug:"riadh-marzouki",fullName:"Riadh Marzouki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:6},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:21},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:59},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:28},{group:"topic",caption:"Mathematics",value:15,count:10},{group:"topic",caption:"Medicine",value:16,count:122},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:166},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3665,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1713,editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",publishedDate:"April 28th 2022",numberOfDownloads:2481,editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1107,editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3307,editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3266,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1868,editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",publishedDate:"May 4th 2022",numberOfDownloads:856,editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1704,editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7489,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"685",title:"Bioinformatics",slug:"engineering-biomedical-engineering-bioinformatics",parent:{id:"112",title:"Biomedical Engineering",slug:"engineering-biomedical-engineering"},numberOfBooks:11,numberOfSeries:0,numberOfAuthorsAndEditors:229,numberOfWosCitations:533,numberOfCrossrefCitations:310,numberOfDimensionsCitations:670,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"685",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10107",title:"Artificial Intelligence in Oncology Drug Discovery and Development",subtitle:null,isOpenForSubmission:!1,hash:"043c178c3668865ab7d35dcb2ceea794",slug:"artificial-intelligence-in-oncology-drug-discovery-and-development",bookSignature:"John W. Cassidy and Belle Taylor",coverURL:"https://cdn.intechopen.com/books/images_new/10107.jpg",editedByType:"Edited by",editors:[{id:"244455",title:"Dr.",name:"John",middleName:null,surname:"Cassidy",slug:"john-cassidy",fullName:"John Cassidy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9236",title:"Cheminformatics and its Applications",subtitle:null,isOpenForSubmission:!1,hash:"3fed97d1719b8a321190c86985494a34",slug:"cheminformatics-and-its-applications",bookSignature:"Amalia Stefaniu, Azhar Rasul and Ghulam Hussain",coverURL:"https://cdn.intechopen.com/books/images_new/9236.jpg",editedByType:"Edited by",editors:[{id:"213696",title:"Dr.",name:"Amalia",middleName:null,surname:"Stefaniu",slug:"amalia-stefaniu",fullName:"Amalia Stefaniu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6835",title:"Computer Methods and Programs in Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"19f08ef15d97900c94dc8fb04f9afb5f",slug:"computer-methods-and-programs-in-biomedical-signal-and-image-processing",bookSignature:"Lulu Wang",coverURL:"https://cdn.intechopen.com/books/images_new/6835.jpg",editedByType:"Edited by",editors:[{id:"257388",title:"Distinguished Prof.",name:"Lulu",middleName:null,surname:"Wang",slug:"lulu-wang",fullName:"Lulu Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7639",title:"Bioinformatics Tools for Detection and Clinical Interpretation of Genomic Variations",subtitle:null,isOpenForSubmission:!1,hash:"94f9f01b510ca80812f0eee467f9428b",slug:"bioinformatics-tools-for-detection-and-clinical-interpretation-of-genomic-variations",bookSignature:"Ali Samadikuchaksaraei and Morteza Seifi",coverURL:"https://cdn.intechopen.com/books/images_new/7639.jpg",editedByType:"Edited by",editors:[{id:"187501",title:"Prof.",name:"Ali",middleName:null,surname:"Samadikuchaksaraei",slug:"ali-samadikuchaksaraei",fullName:"Ali Samadikuchaksaraei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",isOpenForSubmission:!1,hash:"a3852659e727f95c98c740ed98146011",slug:"artificial-intelligence-applications-in-medicine-and-biology",bookSignature:"Marco Antonio Aceves-Fernandez",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",editedByType:"Edited by",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6573",title:"Bioinformatics in the Era of Post Genomics and Big Data",subtitle:null,isOpenForSubmission:!1,hash:"ebdf5cb36c49d7d0eaa38059c4434ee4",slug:"bioinformatics-in-the-era-of-post-genomics-and-big-data",bookSignature:"Ibrokhim Y. Abdurakhmonov",coverURL:"https://cdn.intechopen.com/books/images_new/6573.jpg",editedByType:"Edited by",editors:[{id:"213344",title:"Prof.",name:"Ibrokhim Y.",middleName:null,surname:"Abdurakhmonov",slug:"ibrokhim-y.-abdurakhmonov",fullName:"Ibrokhim Y. Abdurakhmonov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6456",title:"Proceedings of the Conference on Design and Semantics of Form and Movement",subtitle:"Sense and Sensitivity, DeSForM 2017",isOpenForSubmission:!1,hash:"0c1a7c2cda06b0fc2ebaa90f8e7036dc",slug:"proceedings-of-the-conference-on-design-and-semantics-of-form-and-movement-sense-and-sensitivity-desform-2017",bookSignature:"Miguel Bruns Alonso and Elif Ozcan",coverURL:"https://cdn.intechopen.com/books/images_new/6456.jpg",editedByType:"Edited by",editors:[{id:"156855",title:"Dr.",name:"Elif",middleName:null,surname:"Ozcan",slug:"elif-ozcan",fullName:"Elif Ozcan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"2",chapterContentType:"conference paper",authoredCaption:"Edited by"}},{type:"book",id:"3222",title:"State of the Art in Biosensors",subtitle:"General Aspects",isOpenForSubmission:!1,hash:"0057daafc7f0654587e99f5fc3f03a34",slug:"state-of-the-art-in-biosensors-general-aspects",bookSignature:"Toonika Rinken",coverURL:"https://cdn.intechopen.com/books/images_new/3222.jpg",editedByType:"Edited by",editors:[{id:"24687",title:"Dr.",name:"Toonika",middleName:null,surname:"Rinken",slug:"toonika-rinken",fullName:"Toonika Rinken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2715",title:"Independent Component Analysis for Audio and Biosignal Applications",subtitle:null,isOpenForSubmission:!1,hash:"3915fb2a427c73e9aeee010bb1857ae5",slug:"independent-component-analysis-for-audio-and-biosignal-applications",bookSignature:"Ganesh R Naik",coverURL:"https://cdn.intechopen.com/books/images_new/2715.jpg",editedByType:"Edited by",editors:[{id:"2276",title:"Dr.",name:"Ganesh R.",middleName:null,surname:"Naik",slug:"ganesh-r.-naik",fullName:"Ganesh R. Naik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"506",title:"Advanced Biomedical Engineering",subtitle:null,isOpenForSubmission:!1,hash:"8ae90cb19bbf5c0a612d7cf490464f8d",slug:"advanced-biomedical-engineering",bookSignature:"Gaetano D. Gargiulo and Alistair McEwan",coverURL:"https://cdn.intechopen.com/books/images_new/506.jpg",editedByType:"Edited by",editors:[{id:"24082",title:"Dr.",name:"Gaetano",middleName:"D.",surname:"Gargiulo",slug:"gaetano-gargiulo",fullName:"Gaetano Gargiulo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3703",title:"New Developments in Biomedical Engineering",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"new-developments-in-biomedical-engineering",bookSignature:"Domenico Campolo",coverURL:"https://cdn.intechopen.com/books/images_new/3703.jpg",editedByType:"Edited by",editors:[{id:"1909",title:"Dr.",name:"Domenico",middleName:null,surname:"Campolo",slug:"domenico-campolo",fullName:"Domenico Campolo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:11,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"9103",doi:"10.5772/7598",title:"Wireless Body Area Network (WBAN) for Medical Applications",slug:"wireless-body-area-network-wban-for-medical-applications",totalDownloads:23256,totalCrossrefCites:9,totalDimensionsCites:70,abstract:null,book:{id:"3703",slug:"new-developments-in-biomedical-engineering",title:"New Developments in Biomedical Engineering",fullTitle:"New Developments in Biomedical Engineering"},signatures:"Jamil. Y. Khan and Mehmet R. Yuce",authors:null},{id:"9090",doi:"10.5772/7611",title:"Skin Roughness Assessment",slug:"skin-roughness-assessment",totalDownloads:6091,totalCrossrefCites:18,totalDimensionsCites:44,abstract:null,book:{id:"3703",slug:"new-developments-in-biomedical-engineering",title:"New Developments in Biomedical Engineering",fullTitle:"New Developments in Biomedical Engineering"},signatures:"Lioudmila Tchvialeva, Haishan Zeng, Igor Markhvida, David I McLean, Harvey Lui and Tim K Lee",authors:null},{id:"9105",doi:"10.5772/7596",title:"Complete Sound and Speech Recognition System for Health Smart Homes: Application to the Recognition of Activities of Daily Living",slug:"complete-sound-and-speech-recognition-system-for-health-smart-homes-application-to-the-recognition-o",totalDownloads:2293,totalCrossrefCites:27,totalDimensionsCites:43,abstract:null,book:{id:"3703",slug:"new-developments-in-biomedical-engineering",title:"New Developments in Biomedical Engineering",fullTitle:"New Developments in Biomedical Engineering"},signatures:"Michel Vacher, Anthony Fleury, Francois Portet, Jean-Francois Serignat and Norbert Noury",authors:null},{id:"43454",doi:"10.5772/53077",title:"Love Wave Biosensors: A Review",slug:"love-wave-biosensors-a-review",totalDownloads:3620,totalCrossrefCites:12,totalDimensionsCites:38,abstract:null,book:{id:"3222",slug:"state-of-the-art-in-biosensors-general-aspects",title:"State of the Art in Biosensors",fullTitle:"State of the Art in Biosensors - General Aspects"},signatures:"María Isabel Gaso Rocha, Yolanda Jiménez, Francis A. Laurent and Antonio Arnau",authors:[{id:"30056",title:"Prof.",name:"Antonio",middleName:null,surname:"Arnau",slug:"antonio-arnau",fullName:"Antonio Arnau"},{id:"35995",title:"Dr.",name:"Yolanda",middleName:null,surname:"Jiménez",slug:"yolanda-jimenez",fullName:"Yolanda Jiménez"},{id:"100875",title:"Prof.",name:"Laurent",middleName:"Alain",surname:"Francis",slug:"laurent-francis",fullName:"Laurent Francis"},{id:"156599",title:"Ms.",name:"María-Isabel",middleName:null,surname:"Rocha-Gaso",slug:"maria-isabel-rocha-gaso",fullName:"María-Isabel Rocha-Gaso"}]},{id:"43443",doi:"10.5772/54428",title:"Polymers for Biosensors Construction",slug:"polymers-for-biosensors-construction",totalDownloads:3727,totalCrossrefCites:9,totalDimensionsCites:26,abstract:null,book:{id:"3222",slug:"state-of-the-art-in-biosensors-general-aspects",title:"State of the Art in Biosensors",fullTitle:"State of the Art in Biosensors - General Aspects"},signatures:"Xiuyun Wang and Shunichi Uchiyama",authors:[{id:"156779",title:"Dr",name:"Shunichi",middleName:null,surname:"Uchiyama",slug:"shunichi-uchiyama",fullName:"Shunichi Uchiyama"}]}],mostDownloadedChaptersLast30Days:[{id:"18367",title:"Pulse Wave Analysis",slug:"pulse-wave-analysis",totalDownloads:9327,totalCrossrefCites:13,totalDimensionsCites:17,abstract:null,book:{id:"506",slug:"advanced-biomedical-engineering",title:"Advanced Biomedical Engineering",fullTitle:"Advanced Biomedical Engineering"},signatures:"Zhaopeng Fan, Gong Zhang and Simon Liao",authors:[{id:"24603",title:"Dr.",name:"Gong",middleName:null,surname:"Zhang",slug:"gong-zhang",fullName:"Gong Zhang"},{id:"103967",title:"Dr.",name:"Zhaopeng",middleName:null,surname:"Fan",slug:"zhaopeng-fan",fullName:"Zhaopeng Fan"},{id:"126697",title:"Dr.",name:"Simon",middleName:null,surname:"Liao",slug:"simon-liao",fullName:"Simon Liao"}]},{id:"71466",title:"Cell-Penetrating Peptides: A Challenge for Drug Delivery",slug:"cell-penetrating-peptides-a-challenge-for-drug-delivery",totalDownloads:1103,totalCrossrefCites:4,totalDimensionsCites:5,abstract:"Cell-penetrating peptide (CPP) is a term that describes relatively short amphipathic and cationic peptides (7–30 amino acid residues) with rapid translocation across the cell membrane. They can be used to deliver molecular bioactive cargoes due to their efficacy in cellular internalization and also to their low cytotoxicity. In this review we provide an overview of the current approaches and describe the potential of CPP-based drug delivery systems and indicate their powerful promise for clinical efficacy.",book:{id:"9236",slug:"cheminformatics-and-its-applications",title:"Cheminformatics and its Applications",fullTitle:"Cheminformatics and its Applications"},signatures:"Sonia Aroui and Abderraouf Kenani",authors:[{id:"313768",title:"Ph.D.",name:"Sonia",middleName:null,surname:"Aroui",slug:"sonia-aroui",fullName:"Sonia Aroui"},{id:"412248",title:"Dr.",name:"Abderraouf",middleName:null,surname:"Kenani",slug:"abderraouf-kenani",fullName:"Abderraouf Kenani"}]},{id:"63949",title:"A Survey on 3D Ultrasound Reconstruction Techniques",slug:"a-survey-on-3d-ultrasound-reconstruction-techniques",totalDownloads:1993,totalCrossrefCites:8,totalDimensionsCites:9,abstract:"This book chapter aims to discuss the 3D ultrasound reconstruction and visualization. First, the various types of 3D ultrasound system are reviewed, such as mechanical, 2D array, position tracking-based freehand, and untracked-based freehand. Second, the 3D ultrasound reconstruction technique or pipeline used by the current existing system, which includes the data acquisition, data preprocessing, reconstruction method and 3D visualization, is discussed. The reconstruction method and 3D visualization will be emphasized. The reconstruction method includes the pixel-based method, volume-based method, and function-based method, accompanied with their benefits and drawbacks. In the 3D visualization, methods such as multiplanar reformatting, volume rendering, and surface rendering are presented. Lastly, its application in the medical field is reviewed as well.",book:{id:"7723",slug:"artificial-intelligence-applications-in-medicine-and-biology",title:"Artificial Intelligence",fullTitle:"Artificial Intelligence - Applications in Medicine and Biology"},signatures:"Farhan Mohamed and Chan Vei Siang",authors:null},{id:"67673",title:"Bioinformatics Workflows for Genomic Variant Discovery, Interpretation and Prioritization",slug:"bioinformatics-workflows-for-genomic-variant-discovery-interpretation-and-prioritization",totalDownloads:2001,totalCrossrefCites:1,totalDimensionsCites:4,abstract:"Next-generation sequencing (NGS) techniques allow high-throughput detection of a vast amount of variations in a cost-efficient manner. However, there still are inconsistencies and debates about how to process and analyse this ‘big data’. To accurately extract clinically relevant information from genomics data, choosing appropriate tools, knowing how to best utilize them and interpreting the results correctly is crucial. This chapter reviews state-of-the-art bioinformatics approaches in clinically relevant genomic variant detection. Best practices of reads-to-variant discovery workflows for germline and somatic short genomic variants are presented along with the most commonly utilized tools for each step. Additionally, methods for detecting structural variations are overviewed. Finally, approaches and current guidelines for clinical interpretation of genomic variants are discussed. As emphasized in this chapter, data processing and variant discovery steps are relatively well-understood. The differences in prioritization algorithms on the other hand can be perplexing, thus creating a bottleneck during interpretation. This review aims to shed light on the pros and cons of these differences to help experts give more informed decisions.",book:{id:"7639",slug:"bioinformatics-tools-for-detection-and-clinical-interpretation-of-genomic-variations",title:"Bioinformatics Tools for Detection and Clinical Interpretation of Genomic Variations",fullTitle:"Bioinformatics Tools for Detection and Clinical Interpretation of Genomic Variations"},signatures:"Osman Ugur Sezerman, Ege Ulgen, Nogayhan Seymen and Ilknur Melis Durasi",authors:[{id:"283538",title:"Prof.",name:"Osman Ugur",middleName:null,surname:"Sezerman",slug:"osman-ugur-sezerman",fullName:"Osman Ugur Sezerman"}]},{id:"9090",title:"Skin Roughness Assessment",slug:"skin-roughness-assessment",totalDownloads:6091,totalCrossrefCites:18,totalDimensionsCites:44,abstract:null,book:{id:"3703",slug:"new-developments-in-biomedical-engineering",title:"New Developments in Biomedical Engineering",fullTitle:"New Developments in Biomedical Engineering"},signatures:"Lioudmila Tchvialeva, Haishan Zeng, Igor Markhvida, David I McLean, Harvey Lui and Tim K Lee",authors:null}],onlineFirstChaptersFilter:{topicId:"685",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 18th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"10",title:"Animal Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/10.jpg",isOpenForSubmission:!0,annualVolume:11406,editor:{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null},{id:"11",title:"Cell Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/11.jpg",isOpenForSubmission:!0,annualVolume:11407,editor:{id:"133493",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",profilePictureURL:"https://mts.intechopen.com/storage/users/133493/images/3091_n.jpg",biography:"Prof. Dr. Angel Catalá \r\nShort Biography Angel Catalá was born in Rodeo (San Juan, Argentina). He studied \r\nchemistry at the Universidad Nacional de La Plata, Argentina, where received aPh.D. degree in chemistry (Biological Branch) in 1965. From\r\n1964 to 1974, he worked as Assistant in Biochemistry at the School of MedicineUniversidad Nacional de La Plata, Argentina. From 1974 to 1976, he was a Fellowof the National Institutes of Health (NIH) at the University of Connecticut, Health Center, USA. From 1985 to 2004, he served as a Full Professor oBiochemistry at the Universidad Nacional de La Plata, Argentina. He is Member ofthe National Research Council (CONICET), Argentina, and Argentine Society foBiochemistry and Molecular Biology (SAIB). His laboratory has been interested for manyears in the lipid peroxidation of biological membranes from various tissues and different species. Professor Catalá has directed twelve doctoral theses, publishedover 100 papers in peer reviewed journals, several chapters in books andtwelve edited books. Angel Catalá received awards at the 40th InternationaConference Biochemistry of Lipids 1999: Dijon (France). W inner of the Bimbo PanAmerican Nutrition, Food Science and Technology Award 2006 and 2012, South AmericaHuman Nutrition, Professional Category. 2006 award in pharmacology, Bernardo\r\nHoussay, in recognition of his meritorious works of research. Angel Catalá belongto the Editorial Board of Journal of lipids, International Review of Biophysical ChemistryFrontiers in Membrane Physiology and Biophysics, World Journal oExperimental Medicine and Biochemistry Research International, W orld Journal oBiological Chemistry, Oxidative Medicine and Cellular Longevity, Diabetes and thePancreas, International Journal of Chronic Diseases & Therapy, International Journal oNutrition, Co-Editor of The Open Biology Journal.",institutionString:null,institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}},editorTwo:null,editorThree:null},{id:"12",title:"Human Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/12.jpg",isOpenForSubmission:!0,annualVolume:11408,editor:{id:"195829",title:"Prof.",name:"Kunihiro",middleName:null,surname:"Sakuma",slug:"kunihiro-sakuma",fullName:"Kunihiro Sakuma",profilePictureURL:"https://mts.intechopen.com/storage/users/195829/images/system/195829.jpg",biography:"Professor Kunihiro Sakuma, Ph.D., currently works in the Institute for Liberal Arts at the Tokyo Institute of Technology. He is a physiologist working in the field of skeletal muscle. He was awarded his sports science diploma in 1995 by the University of Tsukuba and began his scientific work at the Department of Physiology, Aichi Human Service Center, focusing on the molecular mechanism of congenital muscular dystrophy and normal muscle regeneration. His interest later turned to the molecular mechanism and attenuating strategy of sarcopenia (age-related muscle atrophy). His opinion is to attenuate sarcopenia by improving autophagic defects using nutrient- and pharmaceutical-based treatments.",institutionString:null,institution:{name:"Tokyo Institute of Technology",institutionURL:null,country:{name:"Japan"}}},editorTwo:null,editorThree:{id:"331519",title:"Dr.",name:"Kotomi",middleName:null,surname:"Sakai",slug:"kotomi-sakai",fullName:"Kotomi Sakai",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000031QtFXQA0/Profile_Picture_1637053227318",biography:"Senior researcher Kotomi Sakai, Ph.D., MPH, works at the Research Organization of Science and Technology in Ritsumeikan University. She is a researcher in the geriatric rehabilitation and public health field. She received Ph.D. from Nihon University and MPH from St.Luke’s International University. Her main research interest is sarcopenia in older adults, especially its association with nutritional status. Additionally, to understand how to maintain and improve physical function in older adults, to conduct studies about the mechanism of sarcopenia and determine when possible interventions are needed.",institutionString:null,institution:{name:"Ritsumeikan University",institutionURL:null,country:{name:"Japan"}}}},{id:"13",title:"Plant Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/13.jpg",isOpenForSubmission:!0,annualVolume:11409,editor:{id:"332229",title:"Prof.",name:"Jen-Tsung",middleName:null,surname:"Chen",slug:"jen-tsung-chen",fullName:"Jen-Tsung Chen",profilePictureURL:"https://mts.intechopen.com/storage/users/332229/images/system/332229.png",biography:"Dr. Jen-Tsung Chen is currently a professor at the National University of Kaohsiung, Taiwan. He teaches cell biology, genomics, proteomics, medicinal plant biotechnology, and plant tissue culture. Dr. Chen\\'s research interests include bioactive compounds, chromatography techniques, in vitro culture, medicinal plants, phytochemicals, and plant biotechnology. He has published more than ninety scientific papers and serves as an editorial board member for Plant Methods, Biomolecules, and International Journal of Molecular Sciences.",institutionString:"National University of Kaohsiung",institution:{name:"National University of Kaohsiung",institutionURL:null,country:{name:"Taiwan"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:17,paginationItems:[{id:"81751",title:"NanoBioSensors: From Electrochemical Sensors Improvement to Theranostic Applications",doi:"10.5772/intechopen.102552",signatures:"Anielle C.A. Silva, Eliete A. Alvin, Lais S. de Jesus, Caio C.L. de França, Marílya P.G. da Silva, Samaysa L. Lins, Diógenes Meneses, Marcela R. Lemes, Rhanoica O. Guerra, Marcos V. da Silva, Carlo J.F. de Oliveira, Virmondes Rodrigues Junior, Renata M. Etchebehere, Fabiane C. de Abreu, Bruno G. Lucca, Sanívia A.L. Pereira, Rodrigo C. Rosa and Noelio O. Dantas",slug:"nanobiosensors-from-electrochemical-sensors-improvement-to-theranostic-applications",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81766",title:"Evolution of Organoids in Oncology",doi:"10.5772/intechopen.104251",signatures:"Allen Thayakumar Basanthakumar, Janitha Chandrasekhar Darlybai and Jyothsna Ganesh",slug:"evolution-of-organoids-in-oncology",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81678",title:"Developmental Studies on Practical Enzymatic Phosphate Ion Biosensors and Microbial BOD Biosensors, and New Insights into the Future Perspectives of These Biosensor Fields",doi:"10.5772/intechopen.104377",signatures:"Hideaki Nakamura",slug:"developmental-studies-on-practical-enzymatic-phosphate-ion-biosensors-and-microbial-bod-biosensors-a",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hideaki",surname:"Nakamura"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81547",title:"Organoids and Commercialization",doi:"10.5772/intechopen.104706",signatures:"Anubhab Mukherjee, Aprajita Sinha, Maheshree Maibam, Bharti Bisht and Manash K. Paul",slug:"organoids-and-commercialization",totalDownloads:30,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}}]},overviewPagePublishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}]},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",biography:"Michele Lanza is Associate Professor of Ophthalmology at Università della Campania, Luigi Vanvitelli, Napoli, Italy. His fields of interest are anterior segment disease, keratoconus, glaucoma, corneal dystrophies, and cataracts. His research topics include\nintraocular lens power calculation, eye modification induced by refractive surgery, glaucoma progression, and validation of new diagnostic devices in ophthalmology. \nHe has published more than 100 papers in international and Italian scientific journals, more than 60 in journals with impact factors, and chapters in international and Italian books. He has also edited two international books and authored more than 150 communications or posters for the most important international and Italian ophthalmology conferences.",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}]},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null}]},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}]}]},openForSubmissionBooks:{paginationCount:3,paginationItems:[{id:"11675",title:"Advances in Skeletal Muscle Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11675.jpg",hash:"e1d9662c334dd78ab35bfb57c3bf106e",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 19th 2022",isOpenForSubmission:!0,editors:[{id:"281317",title:"Dr.",name:"Fabio",surname:"Iannotti",slug:"fabio-iannotti",fullName:"Fabio Iannotti"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11677",title:"New Insights in Mammalian Endocrinology",coverURL:"https://cdn.intechopen.com/books/images_new/11677.jpg",hash:"c59dd0f87bbf829ca091c485f4cc4e68",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 5th 2022",isOpenForSubmission:!0,editors:[{id:"321396",title:"Prof.",name:"Muhammad Subhan",surname:"Qureshi",slug:"muhammad-subhan-qureshi",fullName:"Muhammad Subhan Qureshi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11676",title:"Recent Advances in Homeostasis",coverURL:"https://cdn.intechopen.com/books/images_new/11676.jpg",hash:"63eb775115bf2d6d88530b234a1cc4c2",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 10th 2022",isOpenForSubmission:!0,editors:[{id:"203015",title:"Dr.",name:"Gaffar",surname:"Zaman",slug:"gaffar-zaman",fullName:"Gaffar Zaman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{},subseriesFiltersForOFChapters:[],publishedBooks:{paginationCount:27,paginationItems:[{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",slug:"reactive-oxygen-species",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Rizwan Ahmad",hash:"176adcf090fdd1f93cb8ce3146e79ca1",volumeInSeries:28,fullTitle:"Reactive Oxygen Species",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",publishedDate:"March 23rd 2022",editedByType:"Edited by",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",hash:"8b43add5389ba85743e0a9491e4b9943",volumeInSeries:27,fullTitle:"Vitamin K - Recent Topics on the Biology and Chemistry",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9659",title:"Fibroblasts",subtitle:"Advances in Inflammation, Autoimmunity and Cancer",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",slug:"fibroblasts-advances-in-inflammation-autoimmunity-and-cancer",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Mojca Frank Bertoncelj and Katja Lakota",hash:"926fa6446f6befbd363fc74971a56de2",volumeInSeries:25,fullTitle:"Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer",editors:[{id:"328755",title:"Ph.D.",name:"Mojca",middleName:null,surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj",profilePictureURL:"https://mts.intechopen.com/storage/users/328755/images/system/328755.jpg",institutionString:"BioMed X Institute",institution:{name:"University Hospital of Zurich",institutionURL:null,country:{name:"Switzerland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8018",title:"Extracellular Matrix",subtitle:"Developments and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/8018.jpg",slug:"extracellular-matrix-developments-and-therapeutics",publishedDate:"October 27th 2021",editedByType:"Edited by",bookSignature:"Rama Sashank Madhurapantula, Joseph Orgel P.R.O. and Zvi Loewy",hash:"c85e82851e80b40282ff9be99ddf2046",volumeInSeries:23,fullTitle:"Extracellular Matrix - Developments and Therapeutics",editors:[{id:"212416",title:"Dr.",name:"Rama Sashank",middleName:null,surname:"Madhurapantula",slug:"rama-sashank-madhurapantula",fullName:"Rama Sashank Madhurapantula",profilePictureURL:"https://mts.intechopen.com/storage/users/212416/images/system/212416.jpg",institutionString:"Illinois Institute of Technology",institution:{name:"Illinois Institute of Technology",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9759",title:"Vitamin E in Health and Disease",subtitle:"Interactions, Diseases and Health Aspects",coverURL:"https://cdn.intechopen.com/books/images_new/9759.jpg",slug:"vitamin-e-in-health-and-disease-interactions-diseases-and-health-aspects",publishedDate:"October 6th 2021",editedByType:"Edited by",bookSignature:"Pınar Erkekoglu and Júlia Scherer Santos",hash:"6c3ddcc13626110de289b57f2516ac8f",volumeInSeries:22,fullTitle:"Vitamin E in Health and Disease - Interactions, Diseases and Health Aspects",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoğlu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoğlu",profilePictureURL:"https://mts.intechopen.com/storage/users/109978/images/system/109978.jpg",institutionString:"Hacettepe University",institution:{name:"Hacettepe University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9753",title:"Terpenes and Terpenoids",subtitle:"Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/9753.jpg",slug:"terpenes-and-terpenoids-recent-advances",publishedDate:"July 28th 2021",editedByType:"Edited by",bookSignature:"Shagufta Perveen and Areej Mohammad Al-Taweel",hash:"575689df13c78bf0e6c1be40804cd010",volumeInSeries:21,fullTitle:"Terpenes and Terpenoids - Recent Advances",editors:[{id:"192992",title:"Prof.",name:"Shagufta",middleName:null,surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen",profilePictureURL:"https://mts.intechopen.com/storage/users/192992/images/system/192992.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9403",title:"Human Microbiome",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9403.jpg",slug:"human-microbiome",publishedDate:"June 16th 2021",editedByType:"Edited by",bookSignature:"Natalia V. Beloborodova and Andrey V. Grechko",hash:"c31366ba82585ba3ac91d21eb1cf0a4d",volumeInSeries:20,fullTitle:"Human Microbiome",editors:[{id:"199461",title:"Prof.",name:"Natalia V.",middleName:null,surname:"Beloborodova",slug:"natalia-v.-beloborodova",fullName:"Natalia V. Beloborodova",profilePictureURL:"https://mts.intechopen.com/storage/users/199461/images/system/199461.jpg",institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",slug:"oxidoreductase",publishedDate:"February 17th 2021",editedByType:"Edited by",bookSignature:"Mahmoud Ahmed Mansour",hash:"852e6f862c85fc3adecdbaf822e64e6e",volumeInSeries:19,fullTitle:"Oxidoreductase",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour",profilePictureURL:"https://mts.intechopen.com/storage/users/224662/images/system/224662.jpg",institutionString:"King Saud bin Abdulaziz University for Health Sciences",institution:{name:"King Saud bin Abdulaziz University for Health Sciences",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9742",title:"Ubiquitin",subtitle:"Proteasome Pathway",coverURL:"https://cdn.intechopen.com/books/images_new/9742.jpg",slug:"ubiquitin-proteasome-pathway",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"af6880d3a5571da1377ac8f6373b9e82",volumeInSeries:18,fullTitle:"Ubiquitin - Proteasome Pathway",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9002",title:"Glutathione System and Oxidative Stress in Health and Disease",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9002.jpg",slug:"glutathione-system-and-oxidative-stress-in-health-and-disease",publishedDate:"August 26th 2020",editedByType:"Edited by",bookSignature:"Margarete Dulce Bagatini",hash:"127defed0a50ad5ed92338dc96e1e10e",volumeInSeries:17,fullTitle:"Glutathione System and Oxidative Stress in Health and Disease",editors:[{id:"217850",title:"Dr.",name:"Margarete Dulce",middleName:null,surname:"Bagatini",slug:"margarete-dulce-bagatini",fullName:"Margarete Dulce Bagatini",profilePictureURL:"https://mts.intechopen.com/storage/users/217850/images/system/217850.jpeg",institutionString:"Universidade Federal da Fronteira Sul",institution:{name:"Universidade Federal da Fronteira Sul",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Proteomics",value:18,count:3},{group:"subseries",caption:"Metabolism",value:17,count:6},{group:"subseries",caption:"Cell and Molecular Biology",value:14,count:8},{group:"subseries",caption:"Chemical Biology",value:15,count:10}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:3},{group:"publicationYear",caption:"2021",value:2021,count:7},{group:"publicationYear",caption:"2020",value:2020,count:12},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:2}],authors:{}},subseries:{item:{id:"7",type:"subseries",title:"Bioinformatics and Medical Informatics",keywords:"Biomedical Data, Drug Discovery, Clinical Diagnostics, Decoding Human Genome, AI in Personalized Medicine, Disease-prevention Strategies, Big Data Analysis in Medicine",scope:"Bioinformatics aims to help understand the functioning of the mechanisms of living organisms through the construction and use of quantitative tools. The applications of this research cover many related fields, such as biotechnology and medicine, where, for example, Bioinformatics contributes to faster drug design, DNA analysis in forensics, and DNA sequence analysis in the field of personalized medicine. Personalized medicine is a type of medical care in which treatment is customized individually for each patient. Personalized medicine enables more effective therapy, reduces the costs of therapy and clinical trials, and also minimizes the risk of side effects. Nevertheless, advances in personalized medicine would not have been possible without bioinformatics, which can analyze the human genome and other vast amounts of biomedical data, especially in genetics. The rapid growth of information technology enabled the development of new tools to decode human genomes, large-scale studies of genetic variations and medical informatics. The considerable development of technology, including the computing power of computers, is also conducive to the development of bioinformatics, including personalized medicine. In an era of rapidly growing data volumes and ever lower costs of generating, storing and computing data, personalized medicine holds great promises. Modern computational methods used as bioinformatics tools can integrate multi-scale, multi-modal and longitudinal patient data to create even more effective and safer therapy and disease prevention methods. Main aspects of the topic are: Applying bioinformatics in drug discovery and development; Bioinformatics in clinical diagnostics (genetic variants that act as markers for a condition or a disease); Blockchain and Artificial Intelligence/Machine Learning in personalized medicine; Customize disease-prevention strategies in personalized medicine; Big data analysis in personalized medicine; Translating stratification algorithms into clinical practice of personalized medicine.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11403,editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",slug:"slawomir-wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",biography:"Professor Sławomir Wilczyński, Head of the Chair of Department of Basic Biomedical Sciences, Faculty of Pharmaceutical Sciences, Medical University of Silesia in Katowice, Poland. His research interests are focused on modern imaging methods used in medicine and pharmacy, including in particular hyperspectral imaging, dynamic thermovision analysis, high-resolution ultrasound, as well as other techniques such as EPR, NMR and hemispheric directional reflectance. Author of over 100 scientific works, patents and industrial designs. Expert of the Polish National Center for Research and Development, Member of the Investment Committee in the Bridge Alfa NCBiR program, expert of the Polish Ministry of Funds and Regional Policy, Polish Medical Research Agency. Editor-in-chief of the journal in the field of aesthetic medicine and dermatology - Aesthetica.",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null,series:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343"},editorialBoard:[{id:"5886",title:"Dr.",name:"Alexandros",middleName:"T.",surname:"Tzallas",slug:"alexandros-tzallas",fullName:"Alexandros Tzallas",profilePictureURL:"https://mts.intechopen.com/storage/users/5886/images/system/5886.png",institutionString:"University of Ioannina, Greece & Imperial College London",institution:{name:"University of Ioannina",institutionURL:null,country:{name:"Greece"}}},{id:"257388",title:"Distinguished Prof.",name:"Lulu",middleName:null,surname:"Wang",slug:"lulu-wang",fullName:"Lulu Wang",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRX6kQAG/Profile_Picture_1630329584194",institutionString:null,institution:{name:"Shenzhen Technology University",institutionURL:null,country:{name:"China"}}},{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb",profilePictureURL:"https://mts.intechopen.com/storage/users/225387/images/system/225387.jpg",institutionString:"Assiut University",institution:{name:"Assiut University",institutionURL:null,country:{name:"Egypt"}}}]},onlineFirstChapters:{paginationCount:13,paginationItems:[{id:"81566",title:"New and Emerging Technologies for Integrative Ambulatory Autonomic Assessment and Intervention as a Catalyst in the Synergy of Remote Geocoded Biosensing, Algorithmic Networked Cloud Computing, Deep Learning, and Regenerative/Biomic Medicine: Further Real",doi:"10.5772/intechopen.104092",signatures:"Robert L. Drury",slug:"new-and-emerging-technologies-for-integrative-ambulatory-autonomic-assessment-and-intervention-as-a-",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"81286",title:"Potassium Derangements: A Pathophysiological Review, Diagnostic Approach, and Clinical Management",doi:"10.5772/intechopen.103016",signatures:"Sairah Sharif and Jie Tang",slug:"potassium-derangements-a-pathophysiological-review-diagnostic-approach-and-clinical-management",totalDownloads:24,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80895",title:"Heart Rate Variability as a Marker of Homeostatic Level",doi:"10.5772/intechopen.102500",signatures:"Moacir Fernandes de Godoy and Michele Lima Gregório",slug:"heart-rate-variability-as-a-marker-of-homeostatic-level",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Moacir",surname:"Godoy"},{name:"Michele",surname:"Gregório"}],book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80433",title:"Heart Autonomic Nervous System: Basic Science and Clinical Implications",doi:"10.5772/intechopen.101718",signatures:"Elvan Wiyarta and Nayla Karima",slug:"heart-autonomic-nervous-system-basic-science-and-clinical-implications",totalDownloads:49,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80316",title:"Central Control of the Larynx in Mammals",doi:"10.5772/intechopen.102009",signatures:"Manuel Víctor López-González, Marta González-García, Laura Carrillo-Franco, Amelia Díaz-Casares and Marc Stefan Dawid-Milner",slug:"central-control-of-the-larynx-in-mammals",totalDownloads:36,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80402",title:"General Anesthesia and Autonomic Nervous System: Control and Management in Neurosurgery",doi:"10.5772/intechopen.101829",signatures:"Irina Alexandrovna Savvina, Anna Olegovna Petrova and Yulia Mikhailovna Zabrodskaya",slug:"general-anesthesia-and-autonomic-nervous-system-control-and-management-in-neurosurgery",totalDownloads:58,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80035",title:"Healthy Lifestyle, Autonomic Nervous System Activity, and Sleep Status for Healthy Aging",doi:"10.5772/intechopen.101837",signatures:"Miki Sato, Feni Betriana, Ryuichi Tanioka, Kyoko Osaka, Tetsuya Tanioka and Savina Schoenhofer",slug:"healthy-lifestyle-autonomic-nervous-system-activity-and-sleep-status-for-healthy-aging",totalDownloads:60,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80175",title:"Signaling Pathways Regulating Axogenesis and Dendritogenesis in Sympathetic Neurons",doi:"10.5772/intechopen.102442",signatures:"Vidya Chandrasekaran",slug:"signaling-pathways-regulating-axogenesis-and-dendritogenesis-in-sympathetic-neurons",totalDownloads:66,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Vidya",surname:"Chandrasekaran"}],book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80176",title:"Impacts of Environmental Stressors on Autonomic Nervous System",doi:"10.5772/intechopen.101842",signatures:"Mayowa Adeniyi",slug:"impacts-of-environmental-stressors-on-autonomic-nervous-system",totalDownloads:66,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"79655",title:"The Autonomic Nervous System, Sex Differences, and Chronobiology under General Anesthesia in In Vivo Experiments Involving Rats",doi:"10.5772/intechopen.101075",signatures:"Pavol Svorc Jr and Pavol Svorc",slug:"the-autonomic-nervous-system-sex-differences-and-chronobiology-under-general-anesthesia-in-in-vivo-e",totalDownloads:91,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"79194",title:"Potassium in Solid Cancers",doi:"10.5772/intechopen.101108",signatures:"Jessica Iorio, Lisa Lastraioli and Elena Lastraioli",slug:"potassium-in-solid-cancers",totalDownloads:119,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"78820",title:"Potassium Homeostasis",doi:"10.5772/intechopen.100368",signatures:"Shakuntala S. Patil and Sachin M. Patil",slug:"potassium-homeostasis",totalDownloads:108,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"78193",title:"Potassium and Cardiac Surgery",doi:"10.5772/intechopen.99735",signatures:"Shawn Kant, Frank W. Sellke and Jun Feng",slug:"potassium-and-cardiac-surgery",totalDownloads:175,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}}]},publishedBooks:{},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.jpg",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"ofsBook.detail",path:"/welcome/70396c6f5f2928c422c1eaf6d33c6269",hash:"",query:{},params:{hash:"70396c6f5f2928c422c1eaf6d33c6269"},fullPath:"/welcome/70396c6f5f2928c422c1eaf6d33c6269",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()