Optimal sizing of HRESs.
\\n\\n
More than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\\n\\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\\n\\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\\n\\nAdditionally, each book published by IntechOpen contains original content and research findings.
\\n\\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:{caption:"IntechOpen Maintains",originalUrl:"/media/original/113"}},components:[{type:"htmlEditorComponent",content:'
Simba Information has released its Open Access Book Publishing 2020 - 2024 report and has again identified IntechOpen as the world’s largest Open Access book publisher by title count.
\n\nSimba Information is a leading provider for market intelligence and forecasts in the media and publishing industry. The report, published every year, provides an overview and financial outlook for the global professional e-book publishing market.
\n\nIntechOpen, De Gruyter, and Frontiers are the largest OA book publishers by title count, with IntechOpen coming in at first place with 5,101 OA books published, a good 1,782 titles ahead of the nearest competitor.
\n\nSince the first Open Access Book Publishing report published in 2016, IntechOpen has held the top stop each year.
\n\n\n\nMore than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\n\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\n\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\n\nAdditionally, each book published by IntechOpen contains original content and research findings.
\n\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\n\n\n\n
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"5994",leadTitle:null,fullTitle:"Sex Hormones in Neurodegenerative Processes and Diseases",title:"Sex Hormones in Neurodegenerative Processes and Diseases",subtitle:null,reviewType:"peer-reviewed",abstract:"The book provides chapters on sex hormones and their modulation in neurodegenerative processes and pathologies, from basic molecular mechanisms, physiology, gender differences, to neuroprotection and clinical aspects for potential novel pharmacotherapy approaches. The book contains 14 chapters written by authors from various biomedical professions, from basic researchers in biology and physiology to medicine and veterinary medicine, pharmacologists, psychiatrist, etc. Chapters sum up the past and current knowledge on sex hormones, representing original new insights into their role in brain functioning, mental disorders and neurodegenerative diseases. The book is written for a broad range of audience, from biomedical students to highly profiled medical specialists and biomedical researchers, helping them to expand their knowledge on sex hormones in neurodegenerative processes and opening new questions for further investigation.",isbn:"978-1-78923-015-4",printIsbn:"978-1-78923-014-7",pdfIsbn:"978-1-83881-265-2",doi:"10.5772/66585",price:139,priceEur:155,priceUsd:179,slug:"sex-hormones-in-neurodegenerative-processes-and-diseases",numberOfPages:358,isOpenForSubmission:!1,isInWos:1,isInBkci:!1,hash:"54689eec88385391ea70e159fa6b3923",bookSignature:"Gorazd Drevenšek",publishedDate:"May 2nd 2018",coverURL:"https://cdn.intechopen.com/books/images_new/5994.jpg",numberOfDownloads:18027,numberOfWosCitations:13,numberOfCrossrefCitations:13,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:31,numberOfDimensionsCitationsByBook:0,hasAltmetrics:1,numberOfTotalCitations:57,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"January 9th 2017",dateEndSecondStepPublish:"January 30th 2017",dateEndThirdStepPublish:"September 16th 2017",dateEndFourthStepPublish:"October 16th 2017",dateEndFifthStepPublish:"December 16th 2017",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"63770",title:"Prof.",name:"Gorazd",middleName:null,surname:"Drevensek",slug:"gorazd-drevensek",fullName:"Gorazd Drevensek",profilePictureURL:"https://mts.intechopen.com/storage/users/63770/images/7247_n.jpg",biography:"Gorazd Drevenšek holds an MSc degree in Pharmacology and a PhD degree in Medical Sciences, both from the University of Ljubljana, Faculty of Medicine. He started his research in cardiovascular pharmacology, modelling ischemic and reperfusion injuries and atherosclerotic processes. His focus is on pharmacological and toxicological evaluation of natural compounds as potential therapeutic agents with cardio- and neuro-protectant potential. His laboratory and research skills comprise methods used with isolated organs, in vivo animal pharmacology and human studies. His present engagement is with psychopharmacology-oriented research.\nDr. Drevenšek teaches Psychopharmacology, Psychopharmacology of Mental Disorders and Molecular Basis of Neurodegenerative Diseases, for students of Biopsychology at the University of Primorska in Koper, Slovenia, where he is involved in neuroscience research, coupling psychopharmacology to EEG and autonomic nervous system-based studies. At the Faculty of Medicine at the University of Ljubljana, he is heading the Laboratory for Cardiovascular Pharmacology.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"University of Ljubljana",institutionURL:null,country:{name:"Slovenia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"211",title:"Endocrinology",slug:"life-sciences-neuroscience-endocrinology"}],chapters:[{id:"57255",title:"Cellular and Molecular Mechanisms of the Effects of Sex Hormones on the Nervous System",doi:"10.5772/intechopen.71140",slug:"cellular-and-molecular-mechanisms-of-the-effects-of-sex-hormones-on-the-nervous-system",totalDownloads:1427,totalCrossrefCites:0,totalDimensionsCites:5,hasAltmetrics:0,abstract:"The mechanisms of the action of sex steroid hormones on the nervous system are related to both classical, intracellularly mediated effects and non-classical membrane effects due to binding to membrane receptors. Some steroids are capable of inducing rapid neurotransmitter-like effects, similar to those of dopamine or glutamate that alter the activity of neuronal systems via different types of receptors. The neuroactive steroids are endogenous neuromodulators synthesized in the brain and rapidly affecting neuronal excitability. Sex steroids exert many pleiotropic effects in the nervous system: they modulate main neurotransmitter systems, promote the viability of neurons, play an important role in myelination, and influence cognitive processes. Estradiol protects neurons from excitotoxic damage and increases neuronal survival. Progesterone stimulates neurological and functional recovery. Androgens also exhibit a wide array of neuroprotective effects in motoneurons, including supporting cell survival, axonal regeneration, and dendritic maintenance. Despite the considerable increase of sex hormones and neurosteroids research in recent years and the ongoing discovery of biochemical mechanisms of action, their role in neurodegenerative processes remains not well determined.",signatures:"Slavi Delchev and Katerina Georgieva",downloadPdfUrl:"/chapter/pdf-download/57255",previewPdfUrl:"/chapter/pdf-preview/57255",authors:[{id:"204757",title:"Associate Prof.",name:"Slavi",surname:"Delchev",slug:"slavi-delchev",fullName:"Slavi Delchev"},{id:"205070",title:"Prof.",name:"Katerina",surname:"Georgieva",slug:"katerina-georgieva",fullName:"Katerina Georgieva"}],corrections:null},{id:"58623",title:"17β-Estradiol as a Neuroprotective Agent",doi:"10.5772/intechopen.72682",slug:"17-estradiol-as-a-neuroprotective-agent",totalDownloads:1256,totalCrossrefCites:0,totalDimensionsCites:4,hasAltmetrics:0,abstract:"The pathophysiology of neurodegeneration in the central nervous system is complex and multifactorial in nature and yet to be fully understood. Broad-spectrum neuroprotective agents with multiple mechanisms of action rather than a single druggable target are, therefore, highly desirable. The main human estrogen, 17β-estradiol, can also be considered a neurosteroid as it forms de novo in the central nervous system, and it possesses beneficial effects against practically all critical contributors to neurodegeneration to collectively thwart both the initiation and the progression of neuronal cell death. This chapter details the main aspects of the hormone’s genomic and non-genomic actions important to protect the highly vulnerably neurons of the central nervous system, as well as translational efforts to successfully realize its powerful neuroprotective potential in clinical setting while ensuring both therapeutic safety and efficacy.",signatures:"Katalin Prokai-Tatrai and Laszlo Prokai",downloadPdfUrl:"/chapter/pdf-download/58623",previewPdfUrl:"/chapter/pdf-preview/58623",authors:[{id:"219084",title:"Prof.",name:"Katalin",surname:"Prokai-Tatrai",slug:"katalin-prokai-tatrai",fullName:"Katalin Prokai-Tatrai"}],corrections:null},{id:"58381",title:"Dehydroepiandrosterone (DHEA) and DHEA Sulfate: Roles in Brain Function and Disease",doi:"10.5772/intechopen.71141",slug:"dehydroepiandrosterone-dhea-and-dhea-sulfate-roles-in-brain-function-and-disease",totalDownloads:1921,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:1,abstract:"Among the neuroactive steroids, dehydroepiandrosterone (3b-hydroxyandrost-5-ene-17-one, [DHEA]) and its sulfated metabolite DHEA sulfate (DHEAS) have been shown to be potent modulators of neural function, including neurogenesis, neuronal growth and differentiation, and neuroprotection. Highlighting the potential health significance of DHEA and DHEAS in humans, serum concentrations decrease steadily with age, with lowest concentrations present at the time many diseases of aging and neurodegeneration become apparent. This temporal association has led to the suggestion that pathology associated with cognitive decline, age-related neurological disorders such as Alzheimer’s disease, dementia, amyotrophic lateral sclerosis (ALS), and adult onset schizophrenia may, in part at least, be attributed to decreased secretion of DHEA. Animal studies suggest neuroprotective functions for DHEA and DHEAS through reduction of glutamate-induced excitotoxicity. Reduced myelin loss and reactive gliosis after spinal cord injury by DHEA treatment also suggest a role for DHEA in the treatment of white matter pathologies such as multiple sclerosis. In this chapter, we discuss the physiological roles of DHEA and DHEAS in the central nervous system (CNS), their potential as neuroprotective hormones with reference to documented effects on excitotoxicity and oxidative stress, and their anti-glucocorticoid actions during chronic stress. The potential for metabolic derivatives of DHEA, such as estrogens and testosterone on brain function, and their contribution to neurodevelopment and neurodegenerative conditions are also discussed.",signatures:"Tracey A. Quinn, Stephen R. Robinson and David Walker",downloadPdfUrl:"/chapter/pdf-download/58381",previewPdfUrl:"/chapter/pdf-preview/58381",authors:[{id:"205051",title:"Dr.",name:"Tracey",surname:"Quinn",slug:"tracey-quinn",fullName:"Tracey Quinn"},{id:"205075",title:"Prof.",name:"David",surname:"Walker",slug:"david-walker",fullName:"David Walker"}],corrections:null},{id:"59558",title:"Gender Differences in Frontotemporal Lobar Degeneration (FTLD) Support an Estrogenic Model of Delayed Onset",doi:"10.5772/intechopen.74158",slug:"gender-differences-in-frontotemporal-lobar-degeneration-ftld-support-an-estrogenic-model-of-delayed-",totalDownloads:1007,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Gender differences in frontotemporal lobar degeneration (FTLD) have been reported in the literature but not well characterized or explored. In the present work, we propose that steroid hormone estrogens delay the onset of FTLD in pre-menopausal women compared to age equivalent men, and may provide neuroprotection in the early post-menopausal period. We present a model wherein estrogens serve a regulatory role in attenuating the microglia conversion from the benign to active form in response to cell stress that might otherwise trigger an inflammatory response. Via microglia stabilization, estrogens preserve the homeostasis of both the ubiquitin-proteosome degradation system and lysosome-autophagy recycling system. Both systems have been implicated in the genetic forms of FTLD, with the latter system recognized to be associated with the majority of them.",signatures:"Claire V. Flaherty, Arghavan S. Zangeneh, Marissa A. Harrison and\nSanjana Marikunte",downloadPdfUrl:"/chapter/pdf-download/59558",previewPdfUrl:"/chapter/pdf-preview/59558",authors:[{id:"72822",title:"Prof.",name:"Marissa",surname:"Harrison",slug:"marissa-harrison",fullName:"Marissa Harrison"},{id:"205105",title:"Prof.",name:"Claire",surname:"Flaherty",slug:"claire-flaherty",fullName:"Claire Flaherty"},{id:"205365",title:"Dr.",name:"Arghavan",surname:"Sadeghi Zangeneh",slug:"arghavan-sadeghi-zangeneh",fullName:"Arghavan Sadeghi Zangeneh"},{id:"205366",title:"Ms.",name:"Sanjana",surname:"Marikunte",slug:"sanjana-marikunte",fullName:"Sanjana Marikunte"}],corrections:null},{id:"59576",title:"Reproductive Aging: Perimenopause and Psychopathological Symptoms",doi:"10.5772/intechopen.74159",slug:"reproductive-aging-perimenopause-and-psychopathological-symptoms",totalDownloads:994,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:"The female reproductive axis essentially comprises of the hypothalamic-pituitary-ovarian axis and the mullerian-derived structures. The reproductive axis ages to a nonfunctional state (menopause) much earlier than the other organ systems do, at a time when a woman is otherwise healthy. The basis of reproductive senescence in women is oocyte depletion in the ovary. Perimenopause is defined by menstrual cycle and endocrine changes, such as disturbed ovarian-pituitary-hypothalamic feedback relationships, inaccurate estrogen levels, and decreased progesterone levels. Many psychopathological changes can take place, but most commonly women experience mild cognitive impairment, anxiety, irritability, mood swings, and depression. Estrogens influence depression and depressive-like behavior through interactions with neurotropic factors and through an influence on the serotonergic system.",signatures:"Ksenija Gersak, Ziva Miriam Gersak and Arijana Turcin",downloadPdfUrl:"/chapter/pdf-download/59576",previewPdfUrl:"/chapter/pdf-preview/59576",authors:[{id:"53853",title:"Prof.",name:"Ksenija",surname:"Gersak",slug:"ksenija-gersak",fullName:"Ksenija Gersak"},{id:"196313",title:"Mrs.",name:"Ziva Miriam",surname:"Gersak",slug:"ziva-miriam-gersak",fullName:"Ziva Miriam Gersak"},{id:"205668",title:"Dr.",name:"Arijana",surname:"Turčin",slug:"arijana-turcin",fullName:"Arijana Turčin"}],corrections:null},{id:"59494",title:"Neuroprotection in Perimenopausal Women",doi:"10.5772/intechopen.74330",slug:"neuroprotection-in-perimenopausal-women",totalDownloads:1192,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Endocrine and neural senescence overlap in time, by intertwined complex feedback loops. Womens’ brain is genetically more prone to suffer during life, and perimenopause is a “critical period” in neuroaging, when the degenerative processes begin. Many hypotheses on the multifactorial nature of women’s brain aging are elaborated, and tested in high-tech research centers. The most analyzed Alzheimer’s disease (AD) is characterized not only by Aβ oligomers and fibrils accumulation, but also by metabolic and inflammatory changes, with the onset during menopausal transition and early years of menopause. Deep analysis of endocrine, neural, and metabolic pathways are giving new insights to the sequential view of Aβ-centric in AD pathogenesis, prevention, and treatment from perimenopause, for maintaining women’s neurological health.",signatures:"Manuela Cristina Russu and Alexandra Cristina Antonescu",downloadPdfUrl:"/chapter/pdf-download/59494",previewPdfUrl:"/chapter/pdf-preview/59494",authors:[{id:"219629",title:"Distinguished Prof.",name:"Manuela Cristina",surname:"Russu",slug:"manuela-cristina-russu",fullName:"Manuela Cristina Russu"},{id:"221926",title:"MSc.",name:"Alexandra Cristina",surname:"Antonescu",slug:"alexandra-cristina-antonescu",fullName:"Alexandra Cristina Antonescu"}],corrections:null},{id:"58312",title:"Sex Hormones and Alzheimer’s Disease",doi:"10.5772/intechopen.72561",slug:"sex-hormones-and-alzheimer-s-disease",totalDownloads:1194,totalCrossrefCites:2,totalDimensionsCites:3,hasAltmetrics:0,abstract:"Alzheimer’s disease (AD) is the most common type of dementia and the most common neurodegenerative disorder of elderly. It is not an accelerated form of aging but it is characterized by distinct temporospatial brain pathological changes, including amyloid plaques accumulation, neurofibrillary tangles deposition, synaptic loss and neuronal death with gross brain atrophy. These changes result in persistent progressive memory and cognitive decline interfering with the usual daily activities. AD is a multifactorial disorder results from the interaction of genetic, epigenetic, environmental and lifestyle factors. Estrogen, progesterone and androgen effects are important building stones in AD pathogenesis, and their effect in brain modulation and development results in different gender susceptibility to the disease. These sex hormones whether gonadal or neurosteroids (synthesized locally in the brain) play important neuroprotective roles influencing the individual’s vulnerability to AD development, rate of mild cognitive impairment (MCI)/AD conversion and speed of AD progression. Despite the little therapeutic implications of hormonal replacement therapy in AD treatment, yet this topic still represents a challenging hopeful way to construct a strategy for the development of personalized, gender-specific AD management.",signatures:"Wafik Said Bahnasy, Yasser A. El-Heneedy and Ehab A. El-Seidy",downloadPdfUrl:"/chapter/pdf-download/58312",previewPdfUrl:"/chapter/pdf-preview/58312",authors:[{id:"218654",title:"Prof.",name:"Wafik",surname:"Bahnasy",slug:"wafik-bahnasy",fullName:"Wafik Bahnasy"},{id:"218797",title:"Prof.",name:"Yasser",surname:"ElHeneedy",slug:"yasser-elheneedy",fullName:"Yasser ElHeneedy"},{id:"218904",title:"Prof.",name:"Ehab",surname:"El- Seidy",slug:"ehab-el-seidy",fullName:"Ehab El- Seidy"}],corrections:null},{id:"57061",title:"Differences Between Intact and Ovariectomized Hemiparkinsonian Rats in Response to L-DOPA, Melatonin, and L-DOPA/Melatonin Coadministration on Motor Behavior and Cytological Alterations",doi:"10.5772/intechopen.70898",slug:"differences-between-intact-and-ovariectomized-hemiparkinsonian-rats-in-response-to-l-dopa-melatonin-",totalDownloads:1297,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Parkinson?s disease (PD) higher incidence has been observed in postmenopausal women compared to premenopausal women, suggesting estrogen neuroprotective effect. L-DOPA (LD) chronic treatment causes dyskinesia; evidences indicate that LD increases the preexisting oxidative stress condition. This study determines melatonin ability, alone or in combination with LD (LD/Mel) to protect dopaminergic loss induced by 6-OHDA in a rat PD model in ovariectomized (OVX) and intact (with ovaries (W/OV)) rats on motor behavior and cytological alterations, comparing with LD-only treated rats. LD/Mel-treated rats showed dyskinesia decrease (score 5–7.5) and had the best performance in the staircase test (five pellets) throughout all studies. The beam walking time was 20–35 s, showing good coordination (as control group (20–38 s)), dopaminergic cells increase of 22.8% (W/OV rats) and 27.2% (OVX rats) in the contralateral side as well as 100% conservation in the contralateral dendritic spines. Our results suggest that LD/Mel co-administration and estrogen presence result in an efficient treatment to reduce dyskinesia through the conservation of some dopaminergic cells, which imply a well-preserved neuropil of a less denervated striatum. We assume that these results are because of a synergistic effect between LD, melatonin and estrogens.",signatures:"Ana Luisa Gutiérrez-Valdez, Vianey Rodríguez-Lara, Verónica\nAnaya-Martínez, José Luis Ordóñez-Librado, Javier Sanchez-\nBetancourt, Enrique Montiel-Flores, Leonardo Reynoso-Erazo, Rocio\nTron-Alvarez, Patricia Aley-Medina, Jesús Espinosa-Villanueva, Cesar\nSanchez-Vazquez del Mercado and María Rosa Avila-Costa",downloadPdfUrl:"/chapter/pdf-download/57061",previewPdfUrl:"/chapter/pdf-preview/57061",authors:[{id:"38601",title:"Dr.",name:"Vianey",surname:"Rodriguez-Lara",slug:"vianey-rodriguez-lara",fullName:"Vianey Rodriguez-Lara"},{id:"204986",title:"Dr.",name:"Maria Rosa",surname:"Avila-Costa",slug:"maria-rosa-avila-costa",fullName:"Maria Rosa Avila-Costa"},{id:"210108",title:"Dr.",name:"Ana Luisa",surname:"Gutiérrez-Valdez",slug:"ana-luisa-gutierrez-valdez",fullName:"Ana Luisa Gutiérrez-Valdez"},{id:"210109",title:"Dr.",name:"Verónica",surname:"Anaya-Martínez",slug:"veronica-anaya-martinez",fullName:"Verónica Anaya-Martínez"},{id:"210110",title:"Dr.",name:"José Luis",surname:"Ordóñez-Librado",slug:"jose-luis-ordonez-librado",fullName:"José Luis Ordóñez-Librado"},{id:"210111",title:"Dr.",name:"Javier",surname:"Sanchez-Betancourt",slug:"javier-sanchez-betancourt",fullName:"Javier Sanchez-Betancourt"},{id:"210112",title:"Prof.",name:"Enrique",surname:"Montiel-Flores",slug:"enrique-montiel-flores",fullName:"Enrique Montiel-Flores"},{id:"210113",title:"Dr.",name:"Leonardo",surname:"Reynoso-Erazo",slug:"leonardo-reynoso-erazo",fullName:"Leonardo Reynoso-Erazo"},{id:"210114",title:"Dr.",name:"Rocío",surname:"Tron-Alvarez",slug:"rocio-tron-alvarez",fullName:"Rocío Tron-Alvarez"},{id:"210115",title:"Mrs.",name:"Patricia",surname:"Aley-Medina",slug:"patricia-aley-medina",fullName:"Patricia Aley-Medina"},{id:"210116",title:"Mr.",name:"Jesús",surname:"Espinosa-Villanueva",slug:"jesus-espinosa-villanueva",fullName:"Jesús Espinosa-Villanueva"},{id:"210117",title:"Dr.",name:"Cesar",surname:"Sanchez-Vazquez Del Mercado",slug:"cesar-sanchez-vazquez-del-mercado",fullName:"Cesar Sanchez-Vazquez Del Mercado"}],corrections:null},{id:"57440",title:"Sex Hormones: Role in Neurodegenerative Diseases and Addiction",doi:"10.5772/intechopen.71380",slug:"sex-hormones-role-in-neurodegenerative-diseases-and-addiction",totalDownloads:1050,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:1,abstract:"The brain is a complex organ in charge of regulating the homeostasis of our body and behaviors such as motivation, reward, memory, and movement control, between others. These behaviors are regulated by dopaminergic neurons, which can be modulated by several stimuli throughout the life of an individual. For example, early exposure to sex hormones or endocrine disruptors during critical period of neuronal development affects dopaminergic pathways permanently, producing some disorders such as drug addiction. On the other hand, current knowledge regarding neurodegeneration in Parkinson and Alzheimer diseases pointed out the neuroprotection that estradiol can exert, but contradictory information can also be found in the literature. To know the underlying mechanisms that are related to the above mentioned diseases will help to improve health policies and treatments development.",signatures:"Jonathan Martínez Pinto, Rodrigo L. Castillo and Ramón\nSotomayor-Zárate",downloadPdfUrl:"/chapter/pdf-download/57440",previewPdfUrl:"/chapter/pdf-preview/57440",authors:[{id:"200498",title:"Dr.",name:"Ramon",surname:"Sotomayor",slug:"ramon-sotomayor",fullName:"Ramon Sotomayor"},{id:"201973",title:"Dr.",name:"Jonathan",surname:"Martinez",slug:"jonathan-martinez",fullName:"Jonathan Martinez"},{id:"201974",title:"Dr.",name:"Rodrigo L.",surname:"Castillo",slug:"rodrigo-l.-castillo",fullName:"Rodrigo L. Castillo"}],corrections:null},{id:"56749",title:"Neurophysiological Repercussions of Anabolic Steroid Abuse: A Road into Neurodegenerative Disorders",doi:"10.5772/intechopen.70475",slug:"neurophysiological-repercussions-of-anabolic-steroid-abuse-a-road-into-neurodegenerative-disorders",totalDownloads:1236,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Since its discovery, several chemical modifications in the testosterone molecule have been done by pharmaceutical industry in order to improve its pharmacological effects, resulting in the creation of anabolic steroids (AS). Despite the therapeutic benefits, AS abuse has spread among elite and recreational athletes in the search for improvements on physical appearance and physical performance. Illicit use of anabolic AS has been correlated with several adverse effects, such as cardiovascular, endocrine, reproductive, and neurobehavioral dysfunctions. Recently, declines on cognitive and mnemonic performance have been demonstrated clinically and experimentally. Experimental studies have demonstrated that these neurological dysfunctions are correlated to spread neuronal apoptosis throughout important areas of the central nervous system (CNS), such as hippocampus and cortex. Several pathophysiological mechanisms have been linked to the AS-induced neurotoxicity, including redox imbalance and recruitment of pro-apoptotic downstream pathways. Furthermore, exposure to AS has arisen as a potential risk factor to the development of Alzheimer’s disease. Altogether, these evidences imply that AS abuse per se induces neurodegeneration and can aggravate the prognosis of neurodegenerative diseases.",signatures:"Fernando de Azevedo Cruz Seara, Rodrigo Soares Fortunato, Denise\nPires Carvalho and José Hamilton Matheus Nascimento",downloadPdfUrl:"/chapter/pdf-download/56749",previewPdfUrl:"/chapter/pdf-preview/56749",authors:[{id:"203284",title:"Ph.D.",name:"Jose Hamilton",surname:"Nascimento",slug:"jose-hamilton-nascimento",fullName:"Jose Hamilton Nascimento"},{id:"203804",title:"Dr.",name:"Fernando",surname:"Seara",slug:"fernando-seara",fullName:"Fernando Seara"},{id:"203805",title:"Dr.",name:"Rodrigo Soares",surname:"Fortunato",slug:"rodrigo-soares-fortunato",fullName:"Rodrigo Soares Fortunato"},{id:"203806",title:"Dr.",name:"Denise Pires",surname:"Carvalho",slug:"denise-pires-carvalho",fullName:"Denise Pires Carvalho"}],corrections:null},{id:"58597",title:"Testosterone and Erectile Function: A Review of Evidence from Basic Research",doi:"10.5772/intechopen.72935",slug:"testosterone-and-erectile-function-a-review-of-evidence-from-basic-research",totalDownloads:1330,totalCrossrefCites:2,totalDimensionsCites:2,hasAltmetrics:0,abstract:"Androgens are essential for male physical activity and normal erectile function. Hence, age-related testosterone deficiency, known as late-onset hypogonadism (LOH), is considered a risk factor for erectile dysfunction (ED). This chapter summarizes relevant basic research reports examining the effects of testosterone on erectile function. Testosterone affects several organs and is especially active on the erectile tissue. The mechanism of testosterone deficiency effects on erectile function and the results of testosterone replacement therapy (TRT) have been well studied. Testosterone affects nitric oxide (NO) production and phosphodiesterase type 5 (PDE-5) expression in the corpus cavernosum through molecular pathways, preserves smooth muscle contractility by regulating both contraction and relaxation, and maintains the structure of the corpus cavernosum. Interestingly, testosterone deficiency has relationship to neurological diseases, which leads to ED. Testosterone replacement therapy is widely used to treat patients with testosterone deficiency; however, this treatment might also induce some problems. Basic research suggests that PDE-5 inhibitors, L-citrulline, and/or resveratrol therapy might be effective therapeutic options for testosterone deficiency-induced ED. Future research should confirm these findings through more specific experiments using molecular tools and may shed more light on endocrine-related ED and its possible treatments.",signatures:"Tomoya Kataoka and Kazunori Kimura",downloadPdfUrl:"/chapter/pdf-download/58597",previewPdfUrl:"/chapter/pdf-preview/58597",authors:[{id:"219042",title:"Ph.D.",name:"Tomoya",surname:"Kataoka",slug:"tomoya-kataoka",fullName:"Tomoya Kataoka"},{id:"229066",title:"Prof.",name:"Kazunori",surname:"Kimura",slug:"kazunori-kimura",fullName:"Kazunori Kimura"}],corrections:null},{id:"59585",title:"New Insights for Hormone Therapy in Perimenopausal Women Neuroprotection",doi:"10.5772/intechopen.74332",slug:"new-insights-for-hormone-therapy-in-perimenopausal-women-neuroprotection",totalDownloads:1045,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Perimenopause is a mandatory period in women’s life, when the medical staff may initiate hormone therapy with sex steroids for the delay of brain aging and neurodegenerative diseases, during the so-called “window of opportunity.” Animals’ models are helpful to sustain the still controversial results of human clinical observational and/or randomized controlled studies. Estrogens, progesterone, and androgens, with their nuclear and membrane receptors, genes, and epigenetics, with their connections to cholinergic, GABAergic, serotoninergic, and glutamatergic systems are involved in women’s normal brain or in brain’s pathology. The sex steroids are active through direct and/or indirect mechanisms to modulate and/or to protect brain plasticity, and vessels network, fuel metabolism—glucose, ketones, ATP, to reduce insulin resistance, and inflammation of the aging brain through blood-brain barrier disruption, microglial aberrant activation, and neural cell survival/loss.",signatures:"Manuela Cristina Russu and Alexandra Cristina Antonescu",downloadPdfUrl:"/chapter/pdf-download/59585",previewPdfUrl:"/chapter/pdf-preview/59585",authors:[{id:"219629",title:"Distinguished Prof.",name:"Manuela Cristina",surname:"Russu",slug:"manuela-cristina-russu",fullName:"Manuela Cristina Russu"}],corrections:null},{id:"58791",title:"Clinical Use of Progesterone and Its Relation to Oxidative Stress in Ruminants",doi:"10.5772/intechopen.73311",slug:"clinical-use-of-progesterone-and-its-relation-to-oxidative-stress-in-ruminants",totalDownloads:1499,totalCrossrefCites:7,totalDimensionsCites:9,hasAltmetrics:0,abstract:"Studies to determine the physiological effects and functions of progesterone started in the twentieth century. Progesterone is a steroid-structured hormone with 21 carbon atoms originating from cholesterol. The corpus luteum, formed after ovulation in ruminants, secretes progesterone, which plays a role in the continuity of the pregnancy. Progestagens can be used for estrus synchronization in cows and heifers. Similarly, they are used for estrus synchronization during the breeding season or outside the breeding season by taking advantage of the negative feedback effect of progesterone in small ruminants. It is applied for the treatment of embryonic deaths due to luteal insufficiency in cows with high milk yield. In anovulatory anestrus, exogenous progesterone applications can be very useful. Progesterone treatment contributes to the resolution of the anestrus by rearranging hypothalamic functions in cattle with follicular cysts. The oxidative stress index in the luteal phase, when progesterone is high in ruminants, is higher than in the follicular phase. In the critical period of pregnancy, a high index of oxidative stress-induced progesterone causes embryonic death. Factors that cause stress in high milk-yielding cows can affect the amount of progesterone synthesis by inhibiting luteal cell function due to excessive free radical production.",signatures:"Mushap Kuru, Abdulsamed Kükürt, Hasan Oral and Metin Öğün",downloadPdfUrl:"/chapter/pdf-download/58791",previewPdfUrl:"/chapter/pdf-preview/58791",authors:[{id:"177273",title:"Associate Prof.",name:"Metin",surname:"Öğün",slug:"metin-ogun",fullName:"Metin Öğün"},{id:"218960",title:"Dr.",name:"Mushap",surname:"Kuru",slug:"mushap-kuru",fullName:"Mushap Kuru"},{id:"218985",title:"Prof.",name:"Hasan",surname:"Oral",slug:"hasan-oral",fullName:"Hasan Oral"},{id:"219081",title:"Dr.",name:"Abdulsamed",surname:"Kükürt",slug:"abdulsamed-kukurt",fullName:"Abdulsamed Kükürt"}],corrections:null},{id:"59444",title:"Sex Hormones and Inner Ear",doi:"10.5772/intechopen.74157",slug:"sex-hormones-and-inner-ear",totalDownloads:1580,totalCrossrefCites:0,totalDimensionsCites:2,hasAltmetrics:1,abstract:"There are increasing evidence of interactions between sex hormones and the structure and function of inner ear, especially in hearing impairment and balance disorders. In this chapter, we will discuss the mechanism of sex hormones on the inner ear, describe both clinical and basic research that has led us to our current understanding, and conclude with future perspectives on avenues of investigation that may lead to innovative treatments on the hearing loss, tinnitus, and dizziness resulted from the changes in estrogen and progesterone levels. The presence of estrogen receptors α and β has earlier been shown in the inner ear of mice. Expression of estrogen receptors (ER) correlates with the protection of auditory function. Estrogen may have certain protective effects on the hearing. Evidence for the treatment of sex hormone-induced symptoms is principally restricted to case reports and retrospective studies. Recognition and understanding of sex hormone-related inner ear problems will allow otologists to notice and manage these patients. Also, basic studies on the mechanism of how sex hormones act on inner ear provide the way to further prevent and treat on hearing impairment and balance disorders. High-quality evidence for their management is limited, with further research required.",signatures:"Zi-Yu He and Dong-Dong Ren",downloadPdfUrl:"/chapter/pdf-download/59444",previewPdfUrl:"/chapter/pdf-preview/59444",authors:[{id:"202896",title:"Dr.",name:"Dong-Dong",surname:"Ren",slug:"dong-dong-ren",fullName:"Dong-Dong Ren"},{id:"205165",title:"Dr.",name:"Zi-Yu",surname:"He",slug:"zi-yu-he",fullName:"Zi-Yu He"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"64452",slug:"erratum-processing-parameters-for-selective-laser-sintering-or-melting-of-oxide-ceramics",title:"Erratum - Processing Parameters for Selective Laser Sintering or Melting of Oxide Ceramics",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/64452.pdf",downloadPdfUrl:"/chapter/pdf-download/64452",previewPdfUrl:"/chapter/pdf-preview/64452",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/64452",risUrl:"/chapter/ris/64452",chapter:{id:"60707",slug:"processing-parameters-for-selective-laser-sintering-or-melting-of-oxide-ceramics",signatures:"Haidong Zhang and Saniya LeBlanc",dateSubmitted:"June 5th 2017",dateReviewed:"February 22nd 2018",datePrePublished:null,datePublished:"July 11th 2018",book:{id:"6306",title:"Additive Manufacturing of High-performance Metals and Alloys",subtitle:"Modeling and Optimization",fullTitle:"Additive Manufacturing of High-performance Metals and Alloys - Modeling and Optimization",slug:"additive-manufacturing-of-high-performance-metals-and-alloys-modeling-and-optimization",publishedDate:"July 11th 2018",bookSignature:"Igor V. Shishkovsky",coverURL:"https://cdn.intechopen.com/books/images_new/6306.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"178616",title:"Prof.",name:"Igor",middleName:"V.",surname:"Shishkovsky",slug:"igor-shishkovsky",fullName:"Igor Shishkovsky"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"213235",title:"Prof.",name:"Saniya",middleName:null,surname:"LeBlanc",fullName:"Saniya LeBlanc",slug:"saniya-leblanc",email:"sleblanc@gwu.edu",position:null,institution:{name:"George Washington University",institutionURL:null,country:{name:"United States of America"}}},{id:"213239",title:"Dr.",name:"Haidong",middleName:null,surname:"Zhang",fullName:"Haidong Zhang",slug:"haidong-zhang",email:"haidongzhang@email.gwu.edu",position:null,institution:{name:"George Washington University",institutionURL:null,country:{name:"United States of America"}}}]}},chapter:{id:"60707",slug:"processing-parameters-for-selective-laser-sintering-or-melting-of-oxide-ceramics",signatures:"Haidong Zhang and Saniya LeBlanc",dateSubmitted:"June 5th 2017",dateReviewed:"February 22nd 2018",datePrePublished:null,datePublished:"July 11th 2018",book:{id:"6306",title:"Additive Manufacturing of High-performance Metals and Alloys",subtitle:"Modeling and Optimization",fullTitle:"Additive Manufacturing of High-performance Metals and Alloys - Modeling and Optimization",slug:"additive-manufacturing-of-high-performance-metals-and-alloys-modeling-and-optimization",publishedDate:"July 11th 2018",bookSignature:"Igor V. Shishkovsky",coverURL:"https://cdn.intechopen.com/books/images_new/6306.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"178616",title:"Prof.",name:"Igor",middleName:"V.",surname:"Shishkovsky",slug:"igor-shishkovsky",fullName:"Igor Shishkovsky"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"213235",title:"Prof.",name:"Saniya",middleName:null,surname:"LeBlanc",fullName:"Saniya LeBlanc",slug:"saniya-leblanc",email:"sleblanc@gwu.edu",position:null,institution:{name:"George Washington University",institutionURL:null,country:{name:"United States of America"}}},{id:"213239",title:"Dr.",name:"Haidong",middleName:null,surname:"Zhang",fullName:"Haidong Zhang",slug:"haidong-zhang",email:"haidongzhang@email.gwu.edu",position:null,institution:{name:"George Washington University",institutionURL:null,country:{name:"United States of America"}}}]},book:{id:"6306",title:"Additive Manufacturing of High-performance Metals and Alloys",subtitle:"Modeling and Optimization",fullTitle:"Additive Manufacturing of High-performance Metals and Alloys - Modeling and Optimization",slug:"additive-manufacturing-of-high-performance-metals-and-alloys-modeling-and-optimization",publishedDate:"July 11th 2018",bookSignature:"Igor V. Shishkovsky",coverURL:"https://cdn.intechopen.com/books/images_new/6306.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"178616",title:"Prof.",name:"Igor",middleName:"V.",surname:"Shishkovsky",slug:"igor-shishkovsky",fullName:"Igor Shishkovsky"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"6894",leadTitle:null,title:"Conifers",subtitle:null,reviewType:"peer-reviewed",abstract:"The conifer tree can lead to a wide variety of products and services. Overall, the evaluation, management and planning of the multiplicity of these forest systems requires effective and specific methods and tools in a sustainable frame of the systems and of their products and services. This book reflects the current research on conifer stands and forests. The authors, specialists in different areas, addressed several issues in forest science, focusing on the species' characteristics, silviculture and climate change; growth analysis; reconstruction of stand dynamics of mixed stands; establishment, regeneration and succession; litter-fall, nutrient cycle and silviculture; distribution and zonation; and ecosystem services provided by monocultures and mixed stands.",isbn:"978-1-78984-801-4",printIsbn:"978-1-78984-800-7",pdfIsbn:"978-1-83881-741-1",doi:"10.5772/intechopen.73422",price:119,priceEur:129,priceUsd:155,slug:"conifers",numberOfPages:136,isOpenForSubmission:!1,isSalesforceBook:!1,hash:"08346de6b4e92146db7819ccbefd4130",bookSignature:"Ana Cristina Gonçalves",publishedDate:"December 5th 2018",coverURL:"https://cdn.intechopen.com/books/images_new/6894.jpg",keywords:null,numberOfDownloads:5982,numberOfWosCitations:9,numberOfCrossrefCitations:6,numberOfDimensionsCitations:17,numberOfTotalCitations:32,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 13th 2018",dateEndSecondStepPublish:"April 11th 2018",dateEndThirdStepPublish:"June 10th 2018",dateEndFourthStepPublish:"August 29th 2018",dateEndFifthStepPublish:"October 28th 2018",remainingDaysToSecondStep:"4 years",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:"Edited by",kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"194484",title:"Prof.",name:"Ana Cristina",middleName:null,surname:"Gonçalves",slug:"ana-cristina-goncalves",fullName:"Ana Cristina Gonçalves",profilePictureURL:"https://mts.intechopen.com/storage/users/194484/images/system/194484.jpg",biography:"Ana Cristina Gonçalves, Ph.D., is Assistant Professor of Habilitation, Department of Rural Engineering, University of Évora,\nPortugal. She is also a researcher at the Institute for Mediterranean Agrarian Sciences (ICAAM). Dr. Gonçalves has a Ph.D. in\nForest Engineering, and has authored more than 100 publications and participated in fifteen research projects. Her research\nfocuses on silviculture and modeling in pure, mixed, even-aged\nand uneven-aged stands; and forest management and planning integrated into a\nGIS environment.",institutionString:"University of Évora",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"10",totalChapterViews:"0",totalEditedBooks:"3",institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"138",title:"Forestry Science",slug:"environmental-sciences-forestry-science"}],chapters:[{id:"62798",title:"Lodgepole Pine (Pinus contorta Douglas ex Loudon) from the Perspective of Its Possible Utilization in Conditions of Changing Central European Climate",slug:"lodgepole-pine-pinus-contorta-douglas-ex-loudon-from-the-perspective-of-its-possible-utilization-in-",totalDownloads:911,totalCrossrefCites:0,authors:[null]},{id:"62611",title:"A New Method to Reconstruct Recent Tree and Stand Attributes of Temporary Research Plots: New Opportunity to Analyse Mixed Forest Stands",slug:"a-new-method-to-reconstruct-recent-tree-and-stand-attributes-of-temporary-research-plots-new-opportu",totalDownloads:1121,totalCrossrefCites:4,authors:[null]},{id:"63524",title:"Establishment, Regeneration, and Succession of Korean Red Pine (Pinus densiflora S. et Z.) Forest in Korea",slug:"establishment-regeneration-and-succession-of-korean-red-pine-pinus-densiflora-s-et-z-forest-in-korea",totalDownloads:1027,totalCrossrefCites:0,authors:[null]},{id:"62895",title:"Litter Fall and Forest Floor under Conifer Stands: Silviculture Consequences - A Review",slug:"litter-fall-and-forest-floor-under-conifer-stands-silviculture-consequences-a-review",totalDownloads:1022,totalCrossrefCites:1,authors:[null]},{id:"62635",title:"Conifers in Mountains of China",slug:"conifers-in-mountains-of-china",totalDownloads:1032,totalCrossrefCites:1,authors:[null]},{id:"64159",title:"Why Forest Plantations Are Disputed? An Assessment of Locally Important Ecosystem Services from the Cryptomeria japonica Plantations in the Darjeeling Hills, India",slug:"why-forest-plantations-are-disputed-an-assessment-of-locally-important-ecosystem-services-from-the-c",totalDownloads:869,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"192910",firstName:"Romina",lastName:"Skomersic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/192910/images/4743_n.jpg",email:"romina.s@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"9727",title:"Silviculture",subtitle:null,isOpenForSubmission:!1,hash:"22ee60f177a2963821d834c66c466115",slug:"silviculture",bookSignature:"Ana Cristina Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/9727.jpg",editedByType:"Edited by",editors:[{id:"194484",title:"Prof.",name:"Ana Cristina",surname:"Gonçalves",slug:"ana-cristina-goncalves",fullName:"Ana Cristina Gonçalves"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10167",title:"Forest Biomass",subtitle:"From Trees to Energy",isOpenForSubmission:!1,hash:"44e2683e29770ccb1462894a48e2afb5",slug:"forest-biomass-from-trees-to-energy",bookSignature:"Ana Cristina Gonçalves, Adélia Sousa and Isabel Malico",coverURL:"https://cdn.intechopen.com/books/images_new/10167.jpg",editedByType:"Edited by",editors:[{id:"194484",title:"Prof.",name:"Ana Cristina",surname:"Gonçalves",slug:"ana-cristina-goncalves",fullName:"Ana Cristina Gonçalves"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6370",title:"Tropical Forests",subtitle:"New Edition",isOpenForSubmission:!1,hash:"ddbf46d32dfc9541f9cc624c69b121b4",slug:"tropical-forests-new-edition",bookSignature:"Padmini Sudarshana, Madhugiri Nageswara-Rao and Jaya R. Soneji",coverURL:"https://cdn.intechopen.com/books/images_new/6370.jpg",editedByType:"Edited by",editors:[{id:"79318",title:"Dr.",name:"Padmini",surname:"Sudarshana",slug:"padmini-sudarshana",fullName:"Padmini Sudarshana"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"52752",title:"Optimizing Hybrid Renewable Energy Systems: A Review",doi:"10.5772/65971",slug:"optimizing-hybrid-renewable-energy-systems-a-review",body:'\n
Use of solar and wind power has become more and more significant, attractive and less expensive, since the oil crises in the early 1970s. Even though there is a need to use renewable energy sources, the main problem with it is the dependency on environmental conditions like solar irradiance and wind speed. The individual energy sources cannot provide continuous power supply to the load because of the uncertainty and on-and-off nature of the environmental conditions [1]. Combining intermittent renewable energy sources with other dispatchable sources of energy such as biogas and fuel cells as well as energy storage systems provides a solution to address this challenge. Hybrid renewable energy system (HRES) is a term to describe the combination of two or more renewable and nonrenewable energy sources. Basic components of such systems are power sources (wind turbine, diesel engine generator and solar arrays), the battery and the power management center, which regulates power production from each of the sources [1]. As an example of such systems, microgrid is an integrated energy system that includes energy resources, loads and storages. Microgrids found popularity over the years due to the needs for distributed generation and with the integration of HRESs including photovoltaic (PV) and wind generators as well as the battery storage devices. The microgrids have many benefits for both utility grids and customers, such as higher power quality, reduction in carbon emission, energy efficiency and reduced costs. Another capability of microgrids is islanding which allows the microgrid to be disconnected from the utility grid in the case of upstream disturbances or voltage fluctuations [2].
\nOperating an HRES requires optimizing its performance while satisfying its physical and technical constraints. Therefore, optimization tools, techniques and applications have found popularity to achieve these goals [3].
\nThis chapter provides an overview of the optimization techniques, optimization objectives and component sizing for hybrid renewable energy systems. Section 2 summarizes optimal sizing results of hybrid renewable energy systems in different studies. Section 3 describes the three commonly used algorithms to optimize the operation and modelling of hybrid energy systems: classical algorithms, metaheuristic algorithms and hybrid algorithms. Section 4 reviews different objective functions, constraints and indexes in use for the hybrid system optimization.
HRESs require an optimal design for their component sizing to economically, efficiently and reliably meet the objectives outlined in Section 4. Table 1 provides examples of studies related to HRES optimal sizing along with details regarding the hybrid system components, their load characteristics and sizing results.
\nReferences | Components of the hybrid system | Load specifications | Sizing results |
---|---|---|---|
[4] | \nWind turbine (WT), photovoltaic (PV) and battery | \n225 kW peak, 25 kW base | \n195 kW WT, 85 kW PV, 230 kW microturbine, 2.14 kAh battery | \n
[5] | \nWT, PV, microturbine and battery | \n1.5 kW constant | \n6 kW WT, 12.8 kW PV, 6 kAh battery | \n
[6] | \nWT, PV, diesel and battery | \n26 kW peak, 5 kW base | \n15 kW WT, 24 kW PV 50 kW diesel, 151 kWh battery | \n
[7] | \nWT, PV and battery | \n1500 W | \n78 × 100 W PV, 2 × 6 kW WT, 5000 Ah (24 V) battery | \n
[8] | \nPV, diesel and battery | \n3.5 kW peak, 0.25 kW base | \n2.8 kW DG, 4.2 m2 PV, 2.75 kWh battery | \n
[9] | \nWind, PV and energy storage | \n1 MW peak, 0.4 MW base | \n2.096 MW wind, 0 MW PV, 6.576 MWh energy storage | \n
[10] | Wind, PV and energy storage | 2.42 MW wind, 0 MW PV, 6.7878 MWh energy storage |
Optimal sizing of HRESs.
Optimization algorithms are ways of computing maximum or minimum of mathematical functions. Different objectives can be considered when optimizing a system’s design. Maximizing the efficiency of the system and minimizing the cost of its production are examples of such objectives. Optimization methods and techniques can help to solve complex problems. When designing a HRES, we have to consider its components’ performances. The main goal is to have a better performance with reduced costs. These goals can be achieved through optimal modelling of the system [11]. The three commonly used modelling and optimization techniques for hybrid systems are classical algorithms, metaheuristic methods and hybrid of two or more optimization techniques.
\nClassical optimization algorithms use differential calculus to find optimum solutions for differentiable and continuous functions. The classical methods have limited capabilities for applications whose objective functions are not differentiable and/or continuous. Several conventional optimization methods have been used for hybrid energy systems. Linear programming model (LPM), dynamic programming (DP) and nonlinear programming (NLP) are examples of classical algorithms widely in use for optimizing HRESs.
\nLinear programming model (LPM) studies the cases in which the objective function is linear and the design variable space is specified using only linear equalities and inequalities.
\nThis model has been used in several studies for HRES optimization [12–17]. These studies take advantage of the LPM capabilities to stochastically perform reliability and economic analysis. However, the energy delivery capability of the overall system is adversely affected by failure of any of the renewables to function properly [11].
\nNonlinear programming (NLP) model studies the general cases in which the objective functions or the constraints or both contain nonlinear parts. This model has been used in some studies [18, 19]. The model enables solving complex problems with simple operations. However, high number of iterations for numerical methods such as NLP increases the computational burden of the problem [11].
\nDynamic programming (DP) studies the cases in which the optimization strategy is based on splitting the problem into smaller subproblems. This method helps solving sequential or multistage problems in which the stages are related together. One advantage of DP is the ability of optimizing each stage. Therefore, it can address the complexity of larger systems. However, high number of recursive functions for DP makes the coding and implementation complex and confusing [11]. Ref. [20] provides an example of studies that uses DP for HRES optimization.
Metaheuristic search techniques have been extensively used for optimizing complex systems such as HRESs due to their capabilities to give efficient, accurate and optimal solutions. These algorithms are nature-inspired as their developments are based on behaviour of nature. Examples of metaheuristic optimization in use for HRESs include genetic algorithm (GA), particle swarm optimization (PSO), simulated annealing (SA) and ant colony (AC) algorithm.
\nGenetic algorithm (GA) is an evolutionary population-based algorithm that includes several operations such as initialization, mutation, crossover and selection to ensure finding an optimal solution to a given problem. Several studies used GA to optimize the design and operation of HRESs [21–28]. GA may result in local optima if it is not initialized or designed properly.
\nParticle swarm optimization (PSO) simulates the social behaviour of how a swarm moves to find food in a specific area. It is an iterative algorithm with the goal of finding a solution for a given objective function within a given space. Its application for optimizing HRESs has been investigated in several studies [29–34]. PSO is efficient in solving the scattering and optimization problems. However, it requires several modifications due to its complex and conflicted nature [11].
\nSimulated annealing (SA) is based on the metal annealing processing. A metal gets melted at a very high temperature and then it gets cooled down and finally gets frozen into a crystalline state with the minimum amount of energy. As a result, the metal develops larger crystal sizes with a minimum amount of defects in its metallic structure. SA has been used for hybrid system sizing in several studies such as [35].
\nAnt colony (AC) algorithm is based on behaviour of ants to use a specific pheromone to mark the path for other ants. More pheromones are left on the path as more ants follow the same path. On the other hand, if a path is not used, then the smell of the last pheromone will disappear. Ants are more attracted to the paths with the most pheromone smells and it usually leads them to places with most foods. By following this method, ants mark the shortest path towards food. AC simulates this behaviour to find the most optimal solution for a given objective function [36]. This algorithm has been used for size optimization for hybrid systems [37]. AC algorithms have high convergence speed but require long-term memory space [11].
Combination of two or more optimization techniques can overcome limitations of the individual techniques mentioned above to provide more effective and reliable solutions for HRESs. This combination is referred to as hybrid techniques. Examples of such techniques are SA-Tabu search; Monte Carlo simulation (MCS)-PSO; hybrid iterative/GA; MODO (multiobjective design optimization)/GA; artificial neural fuzzy interface system (ANFIS); artificial neural network/GA/MCS; PSO/DE (differential evolution); evolutionary algorithms and simulation optimization-MCS which have been used in several studies for optimizing HRESs [38–47]. Although hybrid techniques enhance the overall performance of the optimization, they may suffer from some limitations. Examples of such limitations are the partial optimism of the hybrid MCS-PSO method in [40], suboptimal solutions of the hybrid iterative/GA in [41], cost-sizing compromise of the hybrid methods in [42, 43], design complexity of the hybrid ANN/GA/MCS method in [44], random adjusting of the inertia weight of the evolutionary algorithm in [46] and coding complexity of the optimization-MCS in [47].
Various criteria are considered for optimal design and component sizing of HRESs. These criteria can be broadly categorized as economic and technical. Economic criteria are used to minimize costs of HRESs. Technical criteria include reliability, efficiency and environmental objectives to supply the load demand of HRESs at desired reliability levels with maximum efficiency and minimum greenhouse gas emissions.
\nHRESs often times include higher capital costs and lower operation and maintenance (O&M) costs which require an optimization to determine the compromise solution between the costs and benefits. Cost optimization of hybrid renewable energy systems includes minimizing energy cost, net present cost (NPC) and any other costs associated with such systems.
\nSeveral studies have investigated minimizing levelized cost of energy (LCE) for HRESs. LCE is the ratio of total cost of the hybrid system to the annual energy supplied by the system. Table 2 summarizes the related research works, their objective functions, techniques in use for optimization and their main findings.
\nReferences | Objective function(s) | Optimization technique | Findings |
---|---|---|---|
[33] | \n8760 = hours per year. | \nPSO | \nLevelized cost of energy is achieved which is based on several factors such as financing, insurance, maintenance and other depreciation factors. | \n
[48] | \nAn optimal model is developed to ensure capacity sizes are ideal for different hybrid system components including PV system, wind system and battery bank. | \n||
[49] | \n; | An optimal sizing model is designed for solar wind systems to meet energy demands. | \n|
[50, 51] | \nMonthly and daily energy balances are evaluated for optimal configurations of hybrid PV/wind systems. | \n||
[52] | \nGA | \nA compromise solution is obtained between the levelized cost of energy and CO2 emission. | \n|
[53] | \nLevelized cost of energy is estimated on the basis of electricity pricing for the entire life cycle of a given hybrid system. | \n||
[54] | \nA hybrid wind-PV system is designed for an off-grid electrification project considering several parameters such as number, type and location of generators, controllers, batteries and inverters. | \n||
[55] | GA | PV-diesel hybrid systems are shown to be optimal economic solutions to incorporate renewable energy into pumping for drip irrigation facilities. |
Optimization of HRESs for minimizing LCE.
Net present cost (NPC) of an HRES is defined as the total present value of the system that includes the initial cost of the system components as well as the replacement and maintenance cost within the project lifetime. The objective here is to minimize the NPC of HRESs. Table 3 summarizes the related research works, their objective functions, techniques in use for optimization and their main findings.
\nReferences | Objective function | Optimization technique | Findings | \n
---|---|---|---|
[56] | \nPSO | \nA hybrid system of solar, diesel, hydro, biomass and biogas energy is optimally designed to meet the load demand of seven villages in India. CO2 emissions, renewable fraction, net present cost and cost of energy are included in the model. | \n|
[57] | \nThe PV/diesel/battery HRES configuration is found as the optimum solution among different hybrid system configurations for different study areas within the geopolitical zones of Nigeria. | \n||
[58] | \nANN/GA | \nA model is developed to evaluate technical and economic impacts of charge controller operation and coulombic efficiency on stand-alone hybrid PV/wind/diesel/battery power systems. | \n|
[59] | Two scenarios are modeled for stand-alone hybrid renewable systems with hydrogen production and storage. The hybrid wind/PV model was found to provide the optimal configuration for the study area. |
Optimization of HRESs for minimizing NPC.
Other cost-related optimizations include minimizing life cycle cost (LCC), levelized unit electricity cost (LUEC), annualized cost of the system (ACS), capital cost (CC) of the hybrid system, total cost of the system (TCS) and average generation cost (AGC). Table 4 summarizes the related research works, their objective functions, techniques in use for optimization and their main findings.
\nReferences | Objective function | Optimization technique | Findings |
---|---|---|---|
[42] | \nMultiobjective programming (MOP)/GA | \nA multiobjective optimization is developed to combine life cycle cost, embodied energy and loss of power supply probability as the objectives for designing an autonomous hybrid wind/PV/battery system. An optimal economic and environmental design is obtained among the Pareto solutions based on the designer’s preferences. | \n|
[60] | \nAn optimization is developed to incorporate reliability and cost models for a grid-independent hybrid PV/wind system. | \n||
[61] | \n\nGA | \nOptimal component sizes are calculated for a standalone hybrid wind-PV-battery system. | \n|
[7] | \n; | \nGA | \nOptimal PV module number and slope angle, wind turbine number and installation height and battery capacity are calculated to design a hybrid system for a telecommunication relay station. | \n
[62] | \nPSO | \nTotal cost of a stand-alone hybrid power generation system is reduced while maximizing its reliability. | \n|
[63] | Cav = the average generation cost; | An integrated renewable energy optimization model (IREOM) is developed to size renewable energy systems for desired reliability levels. |
Optimization of HRESs for minimizing other costs.
Besides the cost optimization explained in Section 4.1, technical objectives can be also optimized when designing an HRES. Technical objectives include, but are not limited to, satisfying desired reliability levels based on loss of power supply probability (LPSP) or loss of load probability (LOL) [64–66], minimizing cost/efficiency ratio [67], minimizing carbon emissions [68] and maximizing power availability [69]. Table 5 summarizes the related research works, their objective functions, techniques in use for optimization and their main findings.
\nReferences | Objective function | Optimization technique | Findings |
---|---|---|---|
[64] | \nGA | \nOptimal sizing of HRES is achieved for a custom required loss of power supply probability. | \n|
[65] | \n\nLower levels of LOLP result in higher costs of the hybrid system and vice versa. | \n||
[66] | \nGA | \nThe total capital cost is minimized while satisfying the constraint of the loss of power supply probability (LPSP). | \n|
[67] | \nMultiobjective programming (MOP) | \nAnalysis was done to find out the reliability factor of solar PV power plant and wind turbine generator. | \n|
[68] | \nPSO | \nA multiobjective optimization is developed to meet the load and water desalination demand of an HRES. | \n|
[69] | Multiobjective genetic algorithm (MOGA) | A multiobjective optimization is developed that considers the availability of the generated electricity and cost of the equipment for the system design. |
Optimization of HRESs for technical objectives.
One the most famous cats in science must be the Schrödinger’s cat in quantum mechanics, in which the cat can be either alive or dead at the same time, unless we look into the Schrödinger’s box. The life of Schrödinger’s cat has been puzzling the quantum physicists for over eight decades as Schrödinger disclosed it in 1935. In this chapter, I will show that the paradox of the cat’s life is primarily due to the underneath subspace in which the hypothetical subatomic model is submerged within a timeless empty subspace (i.e., t = 0). And this is the atomic model that all the particle physicists, quantum scientists, and engineers had been using for over a century, since Niels Bohr proposed it in 1913. However, the universe (our home) is a temporal space (i.e., t > 0), and it does not allow any timeless subspace in it. I will show that by immersing the subatomic model into a temporal subspace, instead of a timeless subspace, the situation is different. I will show that Schrödinger’s cat can only either be alive or dead, but not at the same time, regardless if we look into or not look into the Schrödinger’s box. Since the whole quantum space is timeless (i.e., t = 0), we will show that the fundamental superposition principle fails to exist within our temporal space but only existed within a timeless virtual space. This is by no means of saying that timeless quantum space is a useless subspace. On the contrary it has produced numerous numbers of useful solutions for practical application, as long as the temporal or causality condition (i.e., t > 0) is not the issue. In short, we have found the hypothesis of Schrödinger’s cat is not a physical realizable postulation, and his quantum mechanics as well as his fundamental principle of superposition is timeless, which behaves like mathematics does.
\nOne important aspect within our temporal universe (or time-dependent universe) [1, 2] is that one cannot get something from nothing: there is always a price to pay. For example, every piece of temporal subspace (or every bit of information) takes energy and time to create. And the created subspace (or substance) cannot bring back the section of time that has expensed for its creation. Every temporal subspace cannot be a subspace of an absolute empty subspace, and any absolute empty space cannot have temporal subspace in it. Any science proven within our temporal universe is physically real; otherwise, it is fictitious unless it can be repeated by experiments.
\nScience is a law of approximation and mathematics is an axiom of absolute certainty. Using exact math to evaluate inexact science cannot guarantee the solution exists within our temporal subspace. Science is also an axiom of logic; without logic science would be useless for practical application.
\nIn addition, all the fundamental sciences need constant revision. For example, science has evolved from Newtonian mechanics to Einstein’s theory of relativity and to Schrödinger’s quantum mechanics. And the beauty of the fundamental laws must be mathematical simplicity, so that their complicated logics and significances can be understood easily. And the advantages have been very useful for extending scientific researches and their applications.
\nNonetheless, practically all the particle sciences were developed from point-singularity approximation and had been “unintentionally” embedding a point-singularity atomic model [3] within an empty timeless subspace, as shown in Figure 1.
\nAn isolated Bohr’s atomic model (or a timeless model);
In which we see that, nucleus and electrons were shown by a dimensionless singularities representation. And we may not be aware that the model is not a physically real model, since the submerged background represents a timeless empty subspace. However, a timeless empty subspace cannot exist within our temporal universe! Although Bohr’s atomic model have been used since the birth of Bohr’s atom [3], its background has been mistakenly interpreted as an absolutely empty timeless subspace. Strictly speaking, as a whole it is not a physically correct model, and the solution should not be used for temporal or causality problems. The reason is that the timeless subspace model (i.e., t = 0) cannot exist within our temporal space (i.e., t > 0).
\nOn the other hand, any atomic model as presented in Figure 2 is physically real, in which we see that a Bohr atom is embedded within a temporal (time-dependent) subspace (e.g., our universe).
\nAn isolated atomic model embedded in temporal subspace (or a temporal atomic model). f(x, y, z; t); t > 0 represents a function of three-dimensional space and time t as a forward variable.
Basically all the models are approximated. For example, point-singularity approximation for an atomic model offers the advantage of simplicity representation, but it deviates away from a real physical dimension, which causes the accuracy in solution. Secondly, physical model embedded within a timeless (i.e., t = 0) subspace is absolutely incorrect, since every physical subspace is a temporal (i.e., t > 0) subspace, and it cannot be coexisted with a time-independent (or a timeless) subspace [1, 2]. Therefore as we can see, solution obtained from a physical model embedded within a timeless empty subspace shown in Figure 2 is absolutely incorrect, and it bounds to have incomplete or fictitious solution. The fact is that one of the significant reasons other than the singularity approximation is the temporal or causality condition (i.e., t > 0) which is required as we applied within our temporal universe. Therefore as depicted in Figure 1, it is not a physical realizable model, since time-dependent (or temporal) atom cannot exist within an absolute empty timeless subspace. As shown, it produces physically nonexistent fictitious solutions, which is similar as plunging a temporal machine into a nontemporal subspace.
\nOn the other hand as referenced to Figure 2, a temporal (time-dependent) atomic model which is embedded within a time-dependent (or temporal) subspace is a physical realizable model, in which we see that the temporal or causality requirement (i.e., t > 0) imposed by our temporal subspace is included. In fact our universe was created by a Big Bang explosion followed by the laws of physics, which is a temporal (i.e., t > 0) universe [1, 2]. Therefore, any physical system within our temporal space has to follow the law of time (or causality condition), so that every physical science has to be proven temporal (i.e., t > 0) within our universe (our home); otherwise it is a virtual fictitious science.
\nOne of the most important equations in quantum mechanics must be the Schrödinger equation as given by [4, 5]:
\nwhere 𝝍 is the Schrödinger wave function, m is the mass, E is the energy, V is potential energy, and
Since the derivation of Schrödinger equation is based on point-singularity approximation which is not a perfect assumption, it is an acceptable good approximation for this hypothesis. But it is the timeless subspace of the Bohr’s atomic model embedded, which produces timeless solutions (i.e., t = 0) that are not acceptable within the temporal (time-dependent) subspace. In other words, the solution as derived from Schrödinger equation is expected to be timeless since Schrodinger equation is a time-independent equation. Thus we see that Schrödinger’s quantum mechanics is a time-independent mechanics or timeless (i.e., with respect to the absolute empty timeless subspace) mechanics, which does not exist within our temporal universe!
\nAs quoted by Feynman [6], “He think he can safely say that nobody understands quantum mechanics. So do not take his lecture too seriously….” Yet, after we understood the flaw of Schrödinger’s cat, which has haunted quantum physicists for decades, we shall take a closer look at the paradox of the Schrodinger’s cat. And at that moment, we may change our mind to saying that we have learned the inconsistency of Schrödinger’s timeless (i.e., t = 0) quantum mechanics, as applied within our temporal universe (i.e., t > 0).
\nHowever, as I attempt to derive a wave dynamic where a particle is assumed situated within a temporal subspace, I am not sure that I will not be buried by complicated mathematical formulation (e.g., I have not attempted to do it yet at the time being). But I anticipate that the new result would not be paying off at least for the time being; it will have a better one than the Schrödinger equation that has already provided. But I am sure the solution will obey toward the causality condition (i.e., t > 0).
\nAs has been done by using the Schrödinger equation to evaluate the particle wave function, one may need to reinterpret the solution to meet the causality constraint as imposed by our temporal universe. Otherwise, the evaluated solution would not be useful for practical application, in which we see that instant quantum entanglement [7] is one of the typical examples that was derived from the classic Schrödinger superposition principle. And we can see that the “instant” (i.e., t = 0) entanglement between particles is “fictitious” and it would not happen within our temporal space. As we know that within our temporal universe time is distance and distance is time, any particle entanglement cannot happen instantly without a price to pay (e.g., time or distance).
\nAs we look back to the particle model embedded in an empty subspace for deriving the classic Schrödinger equation, without such a simplistic model, viable solution may not be able to obtain even using tons of complicated mathematic manipulation. Although those assumptions alleviate (somewhat) the complexity in analysis, it also introduces incomplete results that may not exist within our universe. Thus by knowing Schrödinger’s quantum mechanics, it is a time-independent (or more precisely a timeless quantum computing machine) mechanics which was the consequence of using the assumed particle model within a timeless subspace. Since in practice timeless substance cannot exist within our temporal universe, we see that the flaw of Schrödinger cat as well the whole quantum space is due to the assumption that the embedded subspace is absolutely empty, in which we see that one cannot simply insert a timeless quantum machine into a time-dependent (i.e., t > 0) subspace.
\nThe Pauli exclusive principle [8] states that two identical particles with the same quantum state cannot occupy the same quantum state simultaneously, unless these particles exist with a different half-spin. While quantum entanglement [7] occurs when a pair of particles interacts in such a way that the quantum state of the particles cannot be independently described, even when the particles are separated by a large distance, a quantum state must be described by the pair of particles as a whole.
\nIn view of Pauli exclusive principle, the entanglement between particles does exist, but the separation between the particles has to be limited, since the particles are situated within a time-dependent subspace (i.e., t > 0) [8]. Again we see that the flaw of instant entanglement comes from the assumption that the exclusive principle was derived within the timeless subspace, in which we see again that temporal and timeless subspaces cannot coexist. In other words, time-dependent particles cannot coexist within a timeless subspace.
\nBefore we move away from the timeless issue, we would point out that practically all of the fundamental principles in science, such as Paul’s exclusive principle, Schrödinger’s superposition principle, Einstein’s energy equation, and others, are timeless principles, of which they were hypothesized “inadvertently” within a timeless environment.
\nOne of the most intriguing cats in quantum mechanics must the Schrödinger’s cat, in which it has eluded the particle physicists and quantum scientists for decades. Let us start with the Schrödinger’s box as shown in Figure 3; inside the box we have equipped a bottle of poison gas and a device (i.e., a hammer) to break the bottle, triggered by the decaying of a radioactive particle, to kill the cat. The box is assumed totally opaque of which we do not know that the cat will be killed or not, as imposed by the Schrödinger’s superposition principle, until we open the box.
\nInside the box we equipped a bottle of poison gas and a device (i.e., hammer) to break the bottle, triggered by the decaying of a radioactive particle, to kill the cat.
With reference to the fundamental principle of superposition of quantum mechanics [4], the principle tells us that superposition holds for multi-quantum states in an atomic particle, of which the principle is the “core” of quantum mechanics. In other words, without the superposition principle, it will not have Schrödinger’s quantum mechanics. In view of this principle, we see that the assumed two states of radioactive particle inside the box can actually simultaneously coexist, with a cloud of probability (i.e., both one thing and the other existed at the same time).
\nSince the hypothetical radioactive particle has two possible quantum states (i.e., decay or non-decay) that existed at the same time, which is imposed by the virtue of superposition principle in quantum mechanics, this means that the cat can be simultaneously alive and dead, before we open the box.
\nBut as soon as we open the box, the state of superposition of the radioactive particle collapses, without proof! In an instant, we have found that after the box is opened, the cat is either alive or dead, but not both. This paradox in quantum mechanics has been intriguing particle physicists and quantum scientists over eight decades, since the birth of Schrodinger’s cat in 1935, as disclosed by Erwin Schrödinger who is as famous as Albert Einstein in modern physics.
\nLet us momentarily accept what the fundamental principle holds, such that superposition of a dual-quantum state radioactive particle exists within the box. This tells us that the principle has created itself a timeless (i.e., t = 0) quantum subspace or time-independent quantum space. However, timeless subspace cannot exist within our temporal universe, in which we see that any solution (i.e., wave function) as obtained by Schrödinger equation contradicts the basic superposition principle, such that a timeless quantum subspace exists within our temporal (i.e., time-dependent) universe. This conjecture tells us that the hypothetical radioactive material cannot actually exist within the box, since both quantum states (i.e., decay or non-decay) cannot occur at the same time within a time-dependent subspace. We stress that time is distance and distance is time within a temporal subspace.
\nNevertheless, it remains a question to be asked: Where is the source that produces the timeless radioactive particle? Why is Schrodinger’s superposition principle timeless (i.e., t = 0) for which the particle’s quantum states exist simultaneously (i.e., t = 0)? A trivial answer is that it has to be coming from a timeless subspace where the particle model embedded is shown in Figure 5. As we continue searching the root of paradox of the Schrödinger cat, we will provide an equivalent example to show that the paradox of the half-life cat is not a paradox.
\nLet us replace the binary radioactive particle with a flipping coin in the Schrödinger’s box shown in Figure 4.
\nA flipping coin analogy is substituted in the box for Schrödinger’s cat paradox.
So as one flips a coin before it is landed, it is absolutely uncertain that the coin will land either as a head or as a tail. Suppose we are able to “freeze” the flipping coin in the space at time t’; then the flipping coin is in a timeless mode subspace at time t’, which is equivalent to a two-state timeless particle frizzed as time equates to t’. Then as soon as we let the flipping coin continuingly flip down at the same instance time t = t’, there should be “no” lost time with respect to the time of the coin itself, but “not” with respect to the time of the box. In other words, there is a section of time 𝛥t that the box has gone by. So there is a time difference between the coin’s time and box’s time. That is precisely why we cannot tell if the cat will die or be alive, as Schrödinger himself assumed his fundamental principle is correct. As soon as we open the box, we have to accept the physical consequence that the cat is either dead or alive, but not both. Then I guess Schrödinger creates a logic to save his fundamental principle that superposition of the radioactive particle quantum states suddenly “collapses” as we open the box, without any physical proof. Otherwise the core of quantum mechanics fails to live up with the physical reality. Nevertheless as we see it, the failure of the fundamental principle is due to the fact that a timeless flipping coin “cannot be coexisted” within a time-dependent (i.e., t > 0) box.
\nWe further note that it is possible to alleviate the timelessness of superposition, if we appropriately add the temporal constraint (i.e., t > 0) in deriving the Schrödinger equation. We can change the timeless Schrödinger’s equation to a time-dependent (i.e., t > 0) equation, of which we will see that Schrödinger’s wave functions of the dual-state radioactive particle can be shown as 𝝍1 (t) and 𝝍2 (t + 𝛥t), respectively, where 𝛥t represents a time delay between them. Since time is distance and distance within a temporal subspace, we see that the quantum states will not occur at the same time (i.e., t = 0). Furthermore, the degree of their mutual superposition states can be shown as a time ensemble of < 𝜓1 (t) 𝜓 2*(t+𝛥t)>, respectively, where * denotes the complex conjugate, in which we see that a perfect degree of mutual superimposition occurs if and only if 𝛥t = 0, which corresponds to the timeless (i.e., t = 0) quantum state of the radioactive particle.
\nNow let us go back to the half-live cat in Schrödinger’s box, where the radioactive particle is assumed within a timeless sub-box as shown in Figure 5, in which we see that a timeless (i.e., t = 0) radioactive particle is situated inside the time-dependent (i.e., t > 0) box, which is “not” a physical realizable postulation for Schrödinger’s cat. The fact is that a timeless (t = 0) subspace cannot exist within a time-dependent (t > 0) space (i.e., the box). Thus we have shown that again the paradox of Schrödinger’s is not a paradox, since the postulated superposition is timeless, and it is not a physical realizable principle within our temporal universe!
\nSchrödinger’s box with a timeless radioactive particle. Notice that timeless radioactive particle cannot exist in a temporal (i.e., time-dependent) subspace.
However, by replacing the timeless particle with a time-dependent (i.e., t > 0) particle shown in Figure 5, then we see there is a match in time as a variable with respect to the box. Then Schrödinger’s cat can only either be dead or not be dead but not at the same time, in which we see that there is nothing to do whether we open the box or not to cause the fundamental principle to collapse. In other words, a dead cat or a live cat has already been determined before we open up the box. And the occurrence of the particle’s quantum states is not simultaneously by means of the fundamental principle of Schrödinger, in which we have shown that superposition principle does not exist within our temporal space and it only exists within a timeless virtual subspace similar to what mathematics does.
\nAt last, we have found the flaw of Schrödinger’s cat, where Schrödinger was not supposed to introduce a timeless radioactive particle into the box. This vital mistake that he committed is apparently due to an atomic model in which subspace is assumed to be absolutely empty as shown in Figure 1, in which we see that a timeless (i.e., t = 0) particle is wrongly inserted into a temporal (i.e., t > 0) box. I believe we have finally found the root of the paradox of Schrödinger’s cat, for which we shall leave the cat behind with a story to tell; once upon a time, there was a half-life cat!
\nWith high degree of certainty, most of the fundamental laws of science embraced the singularity approximation which includes the atomic models embedded within a timeless subspace. As we look at any conventional atomic model, we might inadvertently assume that the background subspace is an absolutely empty space. And this is the consequence of Schrödinger’s timeless quantum mechanics, since any physical atom (i.e., t > 0) cannot be situated within a timeless (i.e., t = 0) subspace. Although singularity model works very well for scores of quantum mechanical application until the postulation of Schrödinger’s cat emerged. Since the paradox of the half-life cat is the core of the fundamental principle, it has been argued for over eight decades by Einstein, Bohr, Schrödinger, and many others since Schrödinger disclosed the postulation at a Copenhagen forum in 1935. This intrigues us to look at Schrödinger’s equation which was developed on an empty (i.e., t = 0) subspace platform, in which we see that superposition position collapses as soon as we open Schrödinger’s box. This must be the apparent justification for Schrödinger to preserve the fate of his fundamental principle. Otherwise his timeless fundamental principle cannot survive within our temporal universe (i.e., t > 0). In short, we see that the hypotheses of Schrödinger’s cat are a fictitious postulation, and we have proof that it does not have a viable physical solution, since any timeless radioactive particle cannot coexist in a temporal box, and we have seen that Schrödinger have had inadvertently introduced in the box (Figure 6).
\nA time-dependent cat is in a temporal (time-depending) box, in which we see a temporal radioactive particle is introduced within Schrodinger’s temporal box.
Fundamental principle of quantum mechanics tells us that superposition of a multi-quantum-state particle holds if and only if within a quantum environment, by which it creates itself a timeless quantum subspace, but quantum subspaces cannot exist within our temporal universe. Then there is a question being asked: Can those quantum subspaces be utilized in our temporal universe? The answer is “no” and “yes.”
\nThe “no” part answer is that if time component in application is an issue, such as applied to “instant” quantum entanglement [9] and “simultaneous” quantum states computing [10], then the superposition principle as derived from the time-independent Schrödinger equation would have a problem, as applied within our temporal universe, since the superposition is timeless. For example, those instant and simultaneous response promises by the fundamental principle do not exist within our temporal space. And the postulated Schrödinger’s cat is not a physical realizable solution, in which we have shown that the burden of the cat’s half-life can be liberated by using a temporal (i.e., t > 0) radioactive particle instead, in which we see that the paradox of Schrödinger’s cat may never be discovered that it is not a paradox, if we did not discover that Schrödinger’s quantum mechanics is timeless.
\nSince the Schrödinger equation is a timeless quantum computer, which is designed to solve a variety of particle’s quantum dynamics, the solution as obtained from Schrodinger’s equation is also timeless, which produces a non-realizable solution such as timeless (i.e., t = 0) superposition.
\nWe see that if one forces a timeless (i.e., t = 0) solution into a temporal (i.e., t > 0) subspace, one would anticipate paradox solution that does not exist within our temporal universe, such as Schrödinger’s half-live cat. This is equivalent to chasing a ghost of a timeless half-life cat in a temporal subspace, in which we have found that a timeless radioactive particle was inserted within Schrödinger’s box!
\nAs to answer the “yes” part, if temporal aspect as applying a quantum mechanical solution is not an issue within our temporal space, then we have already seen scores of solutions as obtained from the Schrödinger equation which have been brought to use in practice, since the birth of quantum mechanics in 1933. This is similar to using mathematics (i.e., a timeless machine) to obtain solution for time-dependent application and sometime produces solution not physically realizable, in which we see that the Schrödinger equation is a mathematics, which requires a time boundary condition (i.e., t > 0) to justify that its solution is physically realizable.
\nEvery physical science existed within our temporal subspace must be temporal (i.e., t > 0); otherwise, it is a virtual (or fictitious) science as mathematics does. The burden of a scientific postulation is to prove it exists within our universe and then find the solution. We shall now show that there exists a duality between science and mathematics in which any scientific hypothesis has to be shown that it is within the boundary condition of our temporal universe, before accepting it as a real postulation. Otherwise, the hypothesis is not a guarantee to be physically real. One of the essential boundary conditions is the causality condition (i.e., t > 0), which is to show that the solution is temporal and causal (i.e., t > 0). For instance, take Einstein’s energy equation [11] as an example as given by.
\nwhere m is the rest mass and c is the speed of light. In view of this equation, we first see that it is not a temporal or time-domain function. Strictly speaking, this equation cannot be directly implemented within our temporal subspace, since our universe is a temporal variable spatial function which can be described by [1, 2].
\nwhere (x, y, z) is a spatial variable and (t > 0) is a forward time variable, in which we see that every subspace within our universe is time-dependent variable space. Since energy equation of Eq. () is not time variable equation, it is apparent that the equation cannot be directly implemented within our temporal universe. To make the energy equation be acceptable or match to our temporal (i.e., t > 0) subspace condition, we can transform the equation to become time-domain or temporal equation as given by [].
\nwhere \n
On the other hand, if Eq. (4) is imposed by a timeless (i.e., t = 0) constraint as shown by
\nthen we see that the solution as obtained by Eq. (5) will be timeless (i.e., existed at t = 0). And it cannot be implemented within our temporal (i.e., t > 0) universe.
\nNeedless to say, if we put a constraint on Eq. (3) as can be shown by f(x, y, z; t), t = 0. Then we see that a temporal equation has been transformed into a timeless equation which exists only at t = 0, in which we see that Eq. (5) cannot be used within our temporal universe (i.e., t > 0).
\nAs we know that a timeless space is actually a mathematical virtual space, only mathematician and possibly quantum physicist can produce it, since quantum mechanics is mathematics. Nevertheless, a timeless space has no time and no substance in it. When we look back at all the fundamental laws in science, they are mostly presented by point-singularity approximation, and many of them are timeless or time-independent equations, such as Schrödinger’s equation. And we have shown in proceeding that Schrodinger’s quantum machine is timeless since its mechanics was built on an empty subspace. Nevertheless we are going to show some possible outcome when a timeless superposition principle is implemented within a timeless platform. Before showing, let us introduce a few subspaces that may be used for the illustration, as depicted in Figure 7.
\nThis figure shows an absolute empty space (a), a virtual space (b), a Newtonian space (c), and Yu’s temporal space (d).
In Ref. to this figure, we see an absolute empty space which has no time, no substance, and no coordinate. A mathematical virtual space is an empty and timeless space with spatial coordinates. A Newtonian space is filled with substance but treated time as an independent variable. And finally a temporal space is filled with substance and existed only at t > 0, of which substance and time coexisted [1, 2]. We further see that none of the spaces such as absolutely empty, virtual, and Newtonian spaces can be a subspace of the temporal space or vice versa, since temporal (i.e., t > 0) space is a time-invariant system (i.e., the system analysis standpoint) and the others are not.
\nNow, let us take an example as illustrated in Figure 8 in which we assume three delta functions 𝛿(t−t1), 𝛿(t−t2), and 𝛿(t−t3) representing a set of particles that are plunging into a timeless subspace system diagram as depicted in Figure 8b. We see that output delta functions are superimposed on top of each other at t = 0, shown in Figure 8c, of which we note that all the input pulses (i.e., particles) lost their temporal identities within a timeless space. And this is precisely the superposition principle tells us that the entire quantum states exist simultaneously and instantly (i.e., at t = 0). However, superposition principle does not exist within a temporal (i.e., t > 0) space. Since time is distance and distance is time, the entire quantum states exist simultaneously everywhere only within a timeless space as can be seen in Figure 8e. Therefore, it is a serious mistake to assume superposition principle works within our temporal universe, such as the paradox of Schrödinger’s cat and possibly others. It is interesting to find out from system analysis standpoint [3] how a timeless (i.e., t = 0) subspace respond to a time-domain input excitation.
\n(a) Shows a set of three pulses (e.g., particles) within a temporal subspace as shown in topographical view in (d). As these particles plunge into a timeless subspace of (b), the output responses are superposing at t = 0 shown in (c), and the superimposed particles can be found all over the timeless domain as can be seen in (e). It is interesting to note that within a timeless space, all things are in one and one is everywhere within the space.
On the other hand, if we plunge the delta pulses within a temporal subspace, as shown in Figure 9, we see the output responses are faithfully temporally reproduced, which shows the time-invariant property of our temporal subspace, in which these particles (e.g., quantum states) are temporally separated, instead of superposing together at t = 0. And this is precisely the moment when we open Schrodinger’s box, we found the cat can only be either dead or alive but not both at the same time. Instead of assuming the fundamental principle collapses to justify the superposition principle.
\nThe time-invariant response property from a temporal subspace.
In summing up our illustration, our universe is a causal (i.e., t > 0) time-invariant system which can be symbolically described by f(x, y, z; t), t > 0, in which time and space coexisted. Since time is a constant forwarded variable, the speed of time is determined by the velocity of light as given by t ≈ 1/c, where c ≈ 186,282 miles/sec, by which our temporal universe was indeed created by means of Einstein energy equation that was derived with his relativity theory, in which we see that time is distance and distance is time within our temporal universe. In contrast within a timeless (i.e., t = 0) space, it has no time and no distance, since d = ct and t = 0, for which everything collapses instantly at t = 0 (or d = 0) within a timeless space, as superposition principle does. Although scores of quantum mechanical solutions have been put into use, it is the fundamental principle of superposition that confronted with the temporal boundary condition t > 0 that produces Schrödinger’s cat.
\nRegardless the mutual exclusive issues between timeless and temporal subspaces, some quantum scientists still believe they can implant superposition principle within our universe. This is the reason that we would show what would happen when a multi-quantum states particle is implemented within a temporal space. For simplicity, we will simulate a two-quantum states particle plunging into an empty subspace as shown in Figure 10a and b. We further let two quantum states associated with two eigenfunctions exp.[i(ω1t)] and exp.[i(ω2t)], where ω represents the angular frequency of the quantum state. And the output response from an empty space is given in Figure 10c that corresponds to a “timeless” superposing dual-quantum state (a real quantity), where we assume energy is conserved. When this timeless simulated response is plunged into a temporal (i.e., t > 0) space as depicted in Figure 10d, its output response is shown in Figure 10e, in which we note that the output response occurs at t > 0 and it was not started instantly at t = 0, since time is distance and distance is time within a temporal space. In view of this simulation, we learn that particle’s quantum states lost their personalities as soon it plunges into a timeless space. Since the timeless subspace is assumed to be within a temporal (i.e., t > 0) space, it is the temporal space that dictates the end response, as shown in Figure 10e. This shows us that all the “instance and simultaneous” quantum states as indicated by the superposition principle are not happening. Equivalently speaking, this is precisely why the dual-quantum states of the radioactive particle within Schrodinger’s box are dysfunctional or impaired, within a temporal space.
\nSystem simulation for an empty subspace within a temporal space. (a) Input excitation, (b) empty timeless system, (c) output response from an empty space, (d) temporal system, and (e) final output from a temporal space.
The Schrödinger equation was developed on an absolute timeless subspace platform, for which all the solutions are timeless or time-independent. Since the fundamental principle of superposition was derived from the timeless Schrodinger equation, the corresponding quantum states’ wave functions are also timeless with respect to the subspace that the particle is embedded in. Although wave function is time-dependent equation, it is with respect to the corresponding quantum state itself. This can be easily understood by an atomic model where the particle quantum states are represented by
Since the whole quantum space is timeless, it cannot coexist within our temporal universe. In view of the logic of collapsing superposition principle as soon as we open up the Schrödinger’s box, it must satisfy the physical reality that the cat cannot be alive and dead at the same time. Otherwise, the fundamental principle of superposition has proven itself to not exist within our temporal (i.e., t > 0) universe. It is apparent that Schrödinger’s fundamental principle only exists within a timeless subspace. Personally I believe this must be the reason for him to justify the fate of his fundamental principle; otherwise, the principle is not able to survive. It must be Schrödinger himself that made the argument; otherwise, the paradox of his half-life cat has no physical foundation to debate by the world’s top scientists over three quarter of a century, since 1935.
\nSince quantum mechanics is a virtual quantum machine as mathematics is, we have found that Schrödinger’s machine is a timeless (or a virtual quantum) computer and it does not exist within our temporal universe. As we have seen, the Schrödinger equation was derived within an empty subspace; it is not a physical realizable model to use, since empty subspace and non-empty subspace are mutually exclusive. And we have seen that, as one plunges the timeless superposition principle within a temporal (i.e., t > 0) subspace and then anticipates the timeless superposition to behave “timelessly” within a temporal subspace is physically impossible. We have shown that only mathematician and quantum mechanists can do it, since quantum mechanics is mathematics.
\nBut this is by no means to say that timeless quantum mechanics is useless, since it has proven to us with scores of practical application that long solutions are not directly confronted with time-dependent or causality (i.e., t > 0) issue within our temporal universe. As quoted by the late Richard Feynman [12] that “nobody understands part of quantum mechanics,” we have found the part of quantum mechanics nobody understands which must be from the “timeless superposition principle” that causes the confusion. And the root of timelessness quantum world is from the empty subspace that the atomic model was inadvertently anchored on. We are sure this discovery would change our perception as applying the fundamental principle to quantum computing and to quantum entanglement in communication, for which the “instance and simultaneous” (i.e., t = 0 and concurrent) phenomena as promised by the fundamental principle do not exist within our temporal universe. The important fallout from this discovery of the non-paradox of Schrödinger’s cat encourages us to look for a new time-dependent quantum machine, similar to the one that Schrödinger has already paved the roadmap for us.
\nIn conclusion, I have shown that the atomic model that Schrödinger used must be anchored within an absolute empty subspace. And it must be the underneath timeless subspace that caused the paradox of his half-life cat. The reason for overlooking the underneath timeless subspace must be due to the well-accepted Bohr’s model that has been used for over a century, since the birth of Niels Bohr’s atom in 1913 [3]. It has been very successfully used with excellent results for over a century. And it has never in our wildness dream that the underneath empty subspace causes the problem. In view of Schrödinger’s time-dependent wave solutions, we have found the time dependency is with respect to the atomic particle itself but not with respect to the subspace the atomic model embedded in. In searching the root of the paradox of Schrödinger’s cat, we found that a timeless radioactive particle should not have had introduced within a time-dependent (or temporal) Schrödinger’s box. To alleviate the timeless radioactive particle issue, we have replaced a time-dependent (i.e., t > 0) radioactive particle for which we have shown that the paradox Schrödinger’s cat is not a paradox after all. We have also used science and math duality analogy to illustrate the outcome of a temporal excitation into a timeless system analog, as well as onto a temporal subspace, in which we have shown temporal space is a time-invariant space, while superposition principle is timeless and it is neither a time-invariant nor time-variant principle. It is however a no-time or timeless principle, which cannot be implemented within a time-invariant space. In short, we found the hypothesis of Schrödinger’s cat is not a physical realizable postulation and his whole quantum world is timeless and behaves like mathematics does. Nonetheless, many of Schrodinger’s timeless solutions are very useful until the implementation of fundamental principle that confronts with causality (i.e., t > 0) issue of our universe.
\nOur journals are currently in their launching issue. They will be applied to all relevant indexes as soon as they are eligible. These include (but are not limited to): Web of Science, Scopus, PubMed, MEDLINE, Database of Open Access Journals (DOAJ), Google Scholar and Inspec.
\n\nIntechOpen books are indexed by the following abstracting and indexing services:
",metaTitle:"Indexing and Abstracting",metaDescription:"IntechOpen was built by scientists, for scientists. We understand the community we serve, but to bring an even better service to the table for IntechOpen Authors and Academic Editors, we partnered with the leading companies and associations in the industry and beyond.",metaKeywords:null,canonicalURL:"/page/indexing-and-abstracting",contentRaw:'[{"type":"htmlEditorComponent","content":"Clarivate Web Of Science - Book Citation Index
\\n\\nCroatian Library (digital NSK)
\\n\\nOCLC (Online Computer Library Center) - WorldCat® Digital Collection Gateway
\\n\\n\\n\\n
\\n"}]'},components:[{type:"htmlEditorComponent",content:'
Clarivate Web Of Science - Book Citation Index
\n\nCroatian Library (digital NSK)
\n\nOCLC (Online Computer Library Center) - WorldCat® Digital Collection Gateway
\n\n\n\n
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[],filtersByRegion:[],offset:0,limit:12,total:null},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"380"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:6},{group:"topic",caption:"Chemistry",value:8,count:22},{group:"topic",caption:"Computer and Information Science",value:9,count:21},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:59},{group:"topic",caption:"Environmental Sciences",value:12,count:8},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:28},{group:"topic",caption:"Mathematics",value:15,count:10},{group:"topic",caption:"Medicine",value:16,count:122},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:0},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3665,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1713,editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",publishedDate:"April 28th 2022",numberOfDownloads:2481,editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1107,editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3307,editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3266,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1868,editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",publishedDate:"May 4th 2022",numberOfDownloads:856,editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1704,editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7489,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"703",title:"Physical Chemistry",slug:"engineering-chemical-engineering-physical-chemistry",parent:{id:"113",title:"Chemical Engineering",slug:"engineering-chemical-engineering"},numberOfBooks:7,numberOfSeries:0,numberOfAuthorsAndEditors:344,numberOfWosCitations:781,numberOfCrossrefCitations:342,numberOfDimensionsCitations:934,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"703",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7230",title:"Recent Advances in Ionic Liquids",subtitle:null,isOpenForSubmission:!1,hash:"cebbba5d7b2b6c41fafebde32f87f90b",slug:"recent-advances-in-ionic-liquids",bookSignature:"Mohammed Muzibur Rahman",coverURL:"https://cdn.intechopen.com/books/images_new/7230.jpg",editedByType:"Edited by",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"300",title:"Mass Transfer in Chemical Engineering Processes",subtitle:null,isOpenForSubmission:!1,hash:"d8de07525defe8ef2ac6c4f1d680526e",slug:"mass-transfer-in-chemical-engineering-processes",bookSignature:"Jozef Marko",coverURL:"https://cdn.intechopen.com/books/images_new/300.jpg",editedByType:"Edited by",editors:[{id:"12119",title:"Dr.",name:"Jozef",middleName:null,surname:"Markoš",slug:"jozef-markos",fullName:"Jozef Markoš"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"925",title:"Mass Transfer",subtitle:"Advanced Aspects",isOpenForSubmission:!1,hash:"1025f8fc1d2c7a4769cca9205cfac6ae",slug:"mass-transfer-advanced-aspects",bookSignature:"Hironori Nakajima",coverURL:"https://cdn.intechopen.com/books/images_new/925.jpg",editedByType:"Edited by",editors:[{id:"45206",title:"Dr.",name:"Hironori",middleName:null,surname:"Nakajima",slug:"hironori-nakajima",fullName:"Hironori Nakajima"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1286",title:"Advanced Topics in Mass Transfer",subtitle:null,isOpenForSubmission:!1,hash:"4bfd4251cf260812c5a9e80f3a1c7a9a",slug:"advanced-topics-in-mass-transfer",bookSignature:"Mohamed El-Amin",coverURL:"https://cdn.intechopen.com/books/images_new/1286.jpg",editedByType:"Edited by",editors:[{id:"17141",title:"Prof.",name:"Mohamed",middleName:"F.",surname:"El-Amin",slug:"mohamed-el-amin",fullName:"Mohamed El-Amin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"36",title:"Heat Transfer",subtitle:"Mathematical Modelling, Numerical Methods and Information Technology",isOpenForSubmission:!1,hash:null,slug:"heat-transfer-mathematical-modelling-numerical-methods-and-information-technology",bookSignature:"Aziz Belmiloudi",coverURL:"https://cdn.intechopen.com/books/images_new/36.jpg",editedByType:"Edited by",editors:[{id:"17391",title:"Prof.",name:"Aziz",middleName:null,surname:"Belmiloudi",slug:"aziz-belmiloudi",fullName:"Aziz Belmiloudi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"61",title:"Mass Transfer in Multiphase Systems and its Applications",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"mass-transfer-in-multiphase-systems-and-its-applications",bookSignature:"Mohamed El-Amin",coverURL:"https://cdn.intechopen.com/books/images_new/61.jpg",editedByType:"Edited by",editors:[{id:"17141",title:"Prof.",name:"Mohamed",middleName:"F.",surname:"El-Amin",slug:"mohamed-el-amin",fullName:"Mohamed El-Amin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1287",title:"Heat Transfer",subtitle:"Theoretical Analysis, Experimental Investigations and Industrial Systems",isOpenForSubmission:!1,hash:"9f1110052d685853d315515d3a1af112",slug:"heat-transfer-theoretical-analysis-experimental-investigations-and-industrial-systems",bookSignature:"Aziz Belmiloudi",coverURL:"https://cdn.intechopen.com/books/images_new/1287.jpg",editedByType:"Edited by",editors:[{id:"17391",title:"Prof.",name:"Aziz",middleName:null,surname:"Belmiloudi",slug:"aziz-belmiloudi",fullName:"Aziz Belmiloudi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:7,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"23520",doi:"10.5772/20206",title:"Dissolution Trapping of Carbon Dioxide in Reservoir Formation Brine – A Carbon Storage Mechanism",slug:"dissolution-trapping-of-carbon-dioxide-in-reservoir-formation-brine-a-carbon-storage-mechanism",totalDownloads:5654,totalCrossrefCites:41,totalDimensionsCites:111,abstract:null,book:{id:"925",slug:"mass-transfer-advanced-aspects",title:"Mass Transfer",fullTitle:"Mass Transfer - Advanced Aspects"},signatures:"Stefan Iglauer",authors:[{id:"37799",title:"Dr.",name:"Stefan",middleName:null,surname:"Iglauer",slug:"stefan-iglauer",fullName:"Stefan Iglauer"}]},{id:"23539",doi:"10.5772/22962",title:"A Review of Mass Transfer Controlling the Reaction Rate in Heterogeneous Catalytic Systems",slug:"a-review-of-mass-transfer-controlling-the-reaction-rate-in-heterogeneous-catalytic-systems",totalDownloads:32407,totalCrossrefCites:28,totalDimensionsCites:77,abstract:null,book:{id:"925",slug:"mass-transfer-advanced-aspects",title:"Mass Transfer",fullTitle:"Mass Transfer - Advanced Aspects"},signatures:"Raweewan Klaewkla, Matthias Arend and Wolfgang F. Hoelderich",authors:[{id:"49984",title:"Dr.",name:"Raweewan",middleName:null,surname:"Klaewkla",slug:"raweewan-klaewkla",fullName:"Raweewan Klaewkla"},{id:"53030",title:"Prof.",name:"Wolfgang",middleName:null,surname:"Hoelderich",slug:"wolfgang-hoelderich",fullName:"Wolfgang Hoelderich"},{id:"82993",title:"Mr.",name:"Matthias",middleName:null,surname:"Arend",slug:"matthias-arend",fullName:"Matthias Arend"}]},{id:"13204",doi:"10.5772/13790",title:"Thermophysical Properties at Critical and Supercritical Pressures",slug:"thermophysical-properties-at-critical-and-supercritical-pressures",totalDownloads:24175,totalCrossrefCites:11,totalDimensionsCites:57,abstract:null,book:{id:"1287",slug:"heat-transfer-theoretical-analysis-experimental-investigations-and-industrial-systems",title:"Heat Transfer",fullTitle:"Heat Transfer - Theoretical Analysis, Experimental Investigations and Industrial Systems"},signatures:"Igor Pioro and Sarah Mokry",authors:[{id:"15933",title:"Prof.",name:"Igor",middleName:"Leonardovich",surname:"Pioro",slug:"igor-pioro",fullName:"Igor Pioro"}]},{id:"13202",doi:"10.5772/13696",title:"Fouling of Heat Transfer Surfaces",slug:"fouling-of-heat-transfer-surfaces",totalDownloads:40949,totalCrossrefCites:14,totalDimensionsCites:41,abstract:null,book:{id:"1287",slug:"heat-transfer-theoretical-analysis-experimental-investigations-and-industrial-systems",title:"Heat Transfer",fullTitle:"Heat Transfer - Theoretical Analysis, Experimental Investigations and Industrial Systems"},signatures:"Mostafa M. Awad",authors:[{id:"15664",title:"Dr.",name:"Mostafa M.",middleName:"Mostafa",surname:"Awad",slug:"mostafa-m.-awad",fullName:"Mostafa M. Awad"}]},{id:"22864",doi:"10.5772/23436",title:"Diffusion in Polymer Solids and Solutions",slug:"diffusion-in-polymer-solids-and-solutions",totalDownloads:9345,totalCrossrefCites:25,totalDimensionsCites:40,abstract:null,book:{id:"300",slug:"mass-transfer-in-chemical-engineering-processes",title:"Mass Transfer in Chemical Engineering Processes",fullTitle:"Mass Transfer in Chemical Engineering Processes"},signatures:"Mohammad Karimi",authors:[{id:"52034",title:"Prof.",name:"Mohammad",middleName:null,surname:"Karimi",slug:"mohammad-karimi",fullName:"Mohammad Karimi"}]}],mostDownloadedChaptersLast30Days:[{id:"22865",title:"HETP Evaluation of Structured and Randomic Packing Distillation Column",slug:"hetp-evaluation-of-structured-and-randomic-packing-distillation-column",totalDownloads:43319,totalCrossrefCites:2,totalDimensionsCites:9,abstract:null,book:{id:"300",slug:"mass-transfer-in-chemical-engineering-processes",title:"Mass Transfer in Chemical Engineering Processes",fullTitle:"Mass Transfer in Chemical Engineering Processes"},signatures:"Marisa Fernandes Mendes",authors:[{id:"35803",title:"Dr.",name:"Marisa",middleName:null,surname:"Mendes",slug:"marisa-mendes",fullName:"Marisa Mendes"}]},{id:"61463",title:"Metal Extraction with Ionic Liquids-Based Aqueous Two-Phase System",slug:"metal-extraction-with-ionic-liquids-based-aqueous-two-phase-system",totalDownloads:1541,totalCrossrefCites:2,totalDimensionsCites:3,abstract:"Although ionic liquids (ILs) have excellent properties, their use as extractants in solvent extraction has not completely overcome the problems encountered when organic solvents are used. In conventional solvent extraction, a hydrophobic IL should be used to establish an IL/water biphasic system to replace the conventional organic solvent with ILs. However, the number of water-immiscible ILs is currently limited, and most contain fluorinated anions which are expensive and environmentally nonbenign. Furthermore, the use of an organic solvent as a diluent agent cannot be avoided because of the very high viscosity of ILs. An IL-based aqueous two-phase system (ATPS) can overcome these drawbacks. This chapter summarizes the use of an IL-based ATPS for the separation of metals used in various areas of human life.",book:{id:"7230",slug:"recent-advances-in-ionic-liquids",title:"Recent Advances in Ionic Liquids",fullTitle:"Recent Advances in Ionic Liquids"},signatures:"Pius Dore Ola and Michiaki Matsumoto",authors:[{id:"186660",title:"Prof.",name:"Michiaki",middleName:null,surname:"Matsumoto",slug:"michiaki-matsumoto",fullName:"Michiaki Matsumoto"},{id:"187271",title:"Mr.",name:"Pius",middleName:"Dore",surname:"Ola",slug:"pius-ola",fullName:"Pius Ola"}]},{id:"61358",title:"Ionic Polymerization in Ionic Liquids",slug:"ionic-polymerization-in-ionic-liquids",totalDownloads:1176,totalCrossrefCites:1,totalDimensionsCites:2,abstract:"Ionic liquids have emerged as a new class of solvents for ionic polymerization due to their low volatility, chemical stability, high conductivity, wide electrochemical window. The advantages and limitations of application of ionic liquids as solvents for ionic polymerization processes are critically discussed in this chapter. The field of cationic polymerization in ionic liquid has undergone rapid growth in recent years. The most important types of cationic monomers, such as styrene and its derivatives, vinyl ethers and isobutylene have been polymerized in ionic liquids; even undergo living polymerization. Corresponding elementary reactions of cationic polymerization in ionic liquids were proposed. Methyl methacrylate and styrene can undergo anionic polymerization in ionic liquids. However, ionic liquids seem unsuitable solvents for anionic polymerization.",book:{id:"7230",slug:"recent-advances-in-ionic-liquids",title:"Recent Advances in Ionic Liquids",fullTitle:"Recent Advances in Ionic Liquids"},signatures:"Yibo Wu",authors:[{id:"242608",title:"Dr.",name:"Yibo",middleName:null,surname:"Wu",slug:"yibo-wu",fullName:"Yibo Wu"}]},{id:"13191",title:"Heat Transfer in Film Boiling of Flowing Water",slug:"heat-transfer-in-film-boiling-of-flowing-water",totalDownloads:11819,totalCrossrefCites:5,totalDimensionsCites:9,abstract:null,book:{id:"1287",slug:"heat-transfer-theoretical-analysis-experimental-investigations-and-industrial-systems",title:"Heat Transfer",fullTitle:"Heat Transfer - Theoretical Analysis, Experimental Investigations and Industrial Systems"},signatures:"Yuzhou Chen",authors:[{id:"15867",title:"Prof.",name:"Yuzhou",middleName:null,surname:"Chen",slug:"yuzhou-chen",fullName:"Yuzhou Chen"}]},{id:"23539",title:"A Review of Mass Transfer Controlling the Reaction Rate in Heterogeneous Catalytic Systems",slug:"a-review-of-mass-transfer-controlling-the-reaction-rate-in-heterogeneous-catalytic-systems",totalDownloads:32412,totalCrossrefCites:28,totalDimensionsCites:77,abstract:null,book:{id:"925",slug:"mass-transfer-advanced-aspects",title:"Mass Transfer",fullTitle:"Mass Transfer - Advanced Aspects"},signatures:"Raweewan Klaewkla, Matthias Arend and Wolfgang F. Hoelderich",authors:[{id:"49984",title:"Dr.",name:"Raweewan",middleName:null,surname:"Klaewkla",slug:"raweewan-klaewkla",fullName:"Raweewan Klaewkla"},{id:"53030",title:"Prof.",name:"Wolfgang",middleName:null,surname:"Hoelderich",slug:"wolfgang-hoelderich",fullName:"Wolfgang Hoelderich"},{id:"82993",title:"Mr.",name:"Matthias",middleName:null,surname:"Arend",slug:"matthias-arend",fullName:"Matthias Arend"}]}],onlineFirstChaptersFilter:{topicId:"703",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"May 13th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"7",title:"Bioinformatics and Medical Informatics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",isOpenForSubmission:!0,editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",slug:"slawomir-wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",biography:"Professor Sławomir Wilczyński, Head of the Chair of Department of Basic Biomedical Sciences, Faculty of Pharmaceutical Sciences, Medical University of Silesia in Katowice, Poland. His research interests are focused on modern imaging methods used in medicine and pharmacy, including in particular hyperspectral imaging, dynamic thermovision analysis, high-resolution ultrasound, as well as other techniques such as EPR, NMR and hemispheric directional reflectance. Author of over 100 scientific works, patents and industrial designs. Expert of the Polish National Center for Research and Development, Member of the Investment Committee in the Bridge Alfa NCBiR program, expert of the Polish Ministry of Funds and Regional Policy, Polish Medical Research Agency. Editor-in-chief of the journal in the field of aesthetic medicine and dermatology - Aesthetica.",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},{id:"8",title:"Bioinspired Technology and Biomechanics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",isOpenForSubmission:!0,editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",slug:"adriano-andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",biography:"Dr. Adriano de Oliveira Andrade graduated in Electrical Engineering at the Federal University of Goiás (Brazil) in 1997. He received his MSc and PhD in Biomedical Engineering respectively from the Federal University of Uberlândia (UFU, Brazil) in 2000 and from the University of Reading (UK) in 2005. He completed a one-year Post-Doctoral Fellowship awarded by the DFAIT (Foreign Affairs and International Trade Canada) at the Institute of Biomedical Engineering of the University of New Brunswick (Canada) in 2010. Currently, he is Professor in the Faculty of Electrical Engineering (UFU). He has authored and co-authored more than 200 peer-reviewed publications in Biomedical Engineering. He has been a researcher of The National Council for Scientific and Technological Development (CNPq-Brazil) since 2009. He has served as an ad-hoc consultant for CNPq, CAPES (Coordination for the Improvement of Higher Education Personnel), FINEP (Brazilian Innovation Agency), and other funding bodies on several occasions. He was the Secretary of the Brazilian Society of Biomedical Engineering (SBEB) from 2015 to 2016, President of SBEB (2017-2018) and Vice-President of SBEB (2019-2020). He was the head of the undergraduate program in Biomedical Engineering of the Federal University of Uberlândia (2015 - June/2019) and the head of the Centre for Innovation and Technology Assessment in Health (NIATS/UFU) since 2010. He is the head of the Postgraduate Program in Biomedical Engineering (UFU, July/2019 - to date). He was the secretary of the Parkinson's Disease Association of Uberlândia (2018-2019). Dr. Andrade's primary area of research is focused towards getting information from the neuromuscular system to understand its strategies of organization, adaptation and controlling in the context of motor neuron diseases. His research interests include Biomedical Signal Processing and Modelling, Assistive Technology, Rehabilitation Engineering, Neuroengineering and Parkinson's Disease.",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",isOpenForSubmission:!0,editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",biography:"Dr. Luis Villarreal is a research professor from the Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México. Dr. Villarreal is the editor in chief and founder of the Revista de Ciencias Tecnológicas (RECIT) (https://recit.uabc.mx/) and is a member of several editorial and reviewer boards for numerous international journals. He has published more than thirty international papers and reviewed more than ninety-two manuscripts. His research interests include biomaterials, nanomaterials, bioengineering, biosensors, drug delivery systems, and tissue engineering.",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:17,paginationItems:[{id:"81751",title:"NanoBioSensors: From Electrochemical Sensors Improvement to Theranostic Applications",doi:"10.5772/intechopen.102552",signatures:"Anielle C.A. Silva, Eliete A. Alvin, Lais S. de Jesus, Caio C.L. de França, Marílya P.G. da Silva, Samaysa L. Lins, Diógenes Meneses, Marcela R. Lemes, Rhanoica O. Guerra, Marcos V. da Silva, Carlo J.F. de Oliveira, Virmondes Rodrigues Junior, Renata M. Etchebehere, Fabiane C. de Abreu, Bruno G. Lucca, Sanívia A.L. Pereira, Rodrigo C. Rosa and Noelio O. Dantas",slug:"nanobiosensors-from-electrochemical-sensors-improvement-to-theranostic-applications",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81766",title:"Evolution of Organoids in Oncology",doi:"10.5772/intechopen.104251",signatures:"Allen Thayakumar Basanthakumar, Janitha Chandrasekhar Darlybai and Jyothsna Ganesh",slug:"evolution-of-organoids-in-oncology",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81678",title:"Developmental Studies on Practical Enzymatic Phosphate Ion Biosensors and Microbial BOD Biosensors, and New Insights into the Future Perspectives of These Biosensor Fields",doi:"10.5772/intechopen.104377",signatures:"Hideaki Nakamura",slug:"developmental-studies-on-practical-enzymatic-phosphate-ion-biosensors-and-microbial-bod-biosensors-a",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hideaki",surname:"Nakamura"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81547",title:"Organoids and Commercialization",doi:"10.5772/intechopen.104706",signatures:"Anubhab Mukherjee, Aprajita Sinha, Maheshree Maibam, Bharti Bisht and Manash K. Paul",slug:"organoids-and-commercialization",totalDownloads:30,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}}]},overviewPagePublishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}]},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",biography:"Michele Lanza is Associate Professor of Ophthalmology at Università della Campania, Luigi Vanvitelli, Napoli, Italy. His fields of interest are anterior segment disease, keratoconus, glaucoma, corneal dystrophies, and cataracts. His research topics include\nintraocular lens power calculation, eye modification induced by refractive surgery, glaucoma progression, and validation of new diagnostic devices in ophthalmology. \nHe has published more than 100 papers in international and Italian scientific journals, more than 60 in journals with impact factors, and chapters in international and Italian books. He has also edited two international books and authored more than 150 communications or posters for the most important international and Italian ophthalmology conferences.",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}]},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null}]},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}]}]},openForSubmissionBooks:{},onlineFirstChapters:{},subseriesFiltersForOFChapters:[],publishedBooks:{},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{}},subseries:{item:{id:"12",type:"subseries",title:"Human Physiology",keywords:"Anatomy, Cells, Organs, Systems, Homeostasis, Functions",scope:"Human physiology is the scientific exploration of the various functions (physical, biochemical, and mechanical properties) of humans, their organs, and their constituent cells. The endocrine and nervous systems play important roles in maintaining homeostasis in the human body. Integration, which is the biological basis of physiology, is achieved through communication between the many overlapping functions of the human body's systems, which takes place through electrical and chemical means. Much of the basis of our knowledge of human physiology has been provided by animal experiments. Because of the close relationship between structure and function, studies in human physiology and anatomy seek to understand the mechanisms that help the human body function. The series on human physiology deals with the various mechanisms of interaction between the various organs, nerves, and cells in the human body.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/12.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11408,editor:{id:"195829",title:"Prof.",name:"Kunihiro",middleName:null,surname:"Sakuma",slug:"kunihiro-sakuma",fullName:"Kunihiro Sakuma",profilePictureURL:"https://mts.intechopen.com/storage/users/195829/images/system/195829.jpg",biography:"Professor Kunihiro Sakuma, Ph.D., currently works in the Institute for Liberal Arts at the Tokyo Institute of Technology. He is a physiologist working in the field of skeletal muscle. He was awarded his sports science diploma in 1995 by the University of Tsukuba and began his scientific work at the Department of Physiology, Aichi Human Service Center, focusing on the molecular mechanism of congenital muscular dystrophy and normal muscle regeneration. His interest later turned to the molecular mechanism and attenuating strategy of sarcopenia (age-related muscle atrophy). His opinion is to attenuate sarcopenia by improving autophagic defects using nutrient- and pharmaceutical-based treatments.",institutionString:null,institution:{name:"Tokyo Institute of Technology",institutionURL:null,country:{name:"Japan"}}},editorTwo:null,editorThree:{id:"331519",title:"Dr.",name:"Kotomi",middleName:null,surname:"Sakai",slug:"kotomi-sakai",fullName:"Kotomi Sakai",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000031QtFXQA0/Profile_Picture_1637053227318",biography:"Senior researcher Kotomi Sakai, Ph.D., MPH, works at the Research Organization of Science and Technology in Ritsumeikan University. She is a researcher in the geriatric rehabilitation and public health field. She received Ph.D. from Nihon University and MPH from St.Luke’s International University. Her main research interest is sarcopenia in older adults, especially its association with nutritional status. Additionally, to understand how to maintain and improve physical function in older adults, to conduct studies about the mechanism of sarcopenia and determine when possible interventions are needed.",institutionString:null,institution:{name:"Ritsumeikan University",institutionURL:null,country:{name:"Japan"}}},series:{id:"10",title:"Physiology",doi:"10.5772/intechopen.72796",issn:"2631-8261"},editorialBoard:[{id:"213786",title:"Dr.",name:"Henrique P.",middleName:null,surname:"Neiva",slug:"henrique-p.-neiva",fullName:"Henrique P. Neiva",profilePictureURL:"https://mts.intechopen.com/storage/users/213786/images/system/213786.png",institutionString:null,institution:{name:"University of Beira Interior",institutionURL:null,country:{name:"Portugal"}}},{id:"39275",title:"Prof.",name:"Herbert Ryan",middleName:null,surname:"Marini",slug:"herbert-ryan-marini",fullName:"Herbert Ryan Marini",profilePictureURL:"https://mts.intechopen.com/storage/users/39275/images/9459_n.jpg",institutionString:null,institution:{name:"University of Messina",institutionURL:null,country:{name:"Italy"}}},{id:"196218",title:"Dr.",name:"Pasquale",middleName:null,surname:"Cianci",slug:"pasquale-cianci",fullName:"Pasquale Cianci",profilePictureURL:"https://mts.intechopen.com/storage/users/196218/images/system/196218.png",institutionString:null,institution:{name:"University of Foggia",institutionURL:null,country:{name:"Italy"}}}]},onlineFirstChapters:{paginationCount:13,paginationItems:[{id:"81566",title:"New and Emerging Technologies for Integrative Ambulatory Autonomic Assessment and Intervention as a Catalyst in the Synergy of Remote Geocoded Biosensing, Algorithmic Networked Cloud Computing, Deep Learning, and Regenerative/Biomic Medicine: Further Real",doi:"10.5772/intechopen.104092",signatures:"Robert L. Drury",slug:"new-and-emerging-technologies-for-integrative-ambulatory-autonomic-assessment-and-intervention-as-a-",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"81286",title:"Potassium Derangements: A Pathophysiological Review, Diagnostic Approach, and Clinical Management",doi:"10.5772/intechopen.103016",signatures:"Sairah Sharif and Jie Tang",slug:"potassium-derangements-a-pathophysiological-review-diagnostic-approach-and-clinical-management",totalDownloads:24,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80895",title:"Heart Rate Variability as a Marker of Homeostatic Level",doi:"10.5772/intechopen.102500",signatures:"Moacir Fernandes de Godoy and Michele Lima Gregório",slug:"heart-rate-variability-as-a-marker-of-homeostatic-level",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Moacir",surname:"Godoy"},{name:"Michele",surname:"Gregório"}],book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80433",title:"Heart Autonomic Nervous System: Basic Science and Clinical Implications",doi:"10.5772/intechopen.101718",signatures:"Elvan Wiyarta and Nayla Karima",slug:"heart-autonomic-nervous-system-basic-science-and-clinical-implications",totalDownloads:49,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80316",title:"Central Control of the Larynx in Mammals",doi:"10.5772/intechopen.102009",signatures:"Manuel Víctor López-González, Marta González-García, Laura Carrillo-Franco, Amelia Díaz-Casares and Marc Stefan Dawid-Milner",slug:"central-control-of-the-larynx-in-mammals",totalDownloads:36,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80402",title:"General Anesthesia and Autonomic Nervous System: Control and Management in Neurosurgery",doi:"10.5772/intechopen.101829",signatures:"Irina Alexandrovna Savvina, Anna Olegovna Petrova and Yulia Mikhailovna Zabrodskaya",slug:"general-anesthesia-and-autonomic-nervous-system-control-and-management-in-neurosurgery",totalDownloads:58,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80035",title:"Healthy Lifestyle, Autonomic Nervous System Activity, and Sleep Status for Healthy Aging",doi:"10.5772/intechopen.101837",signatures:"Miki Sato, Feni Betriana, Ryuichi Tanioka, Kyoko Osaka, Tetsuya Tanioka and Savina Schoenhofer",slug:"healthy-lifestyle-autonomic-nervous-system-activity-and-sleep-status-for-healthy-aging",totalDownloads:60,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80175",title:"Signaling Pathways Regulating Axogenesis and Dendritogenesis in Sympathetic Neurons",doi:"10.5772/intechopen.102442",signatures:"Vidya Chandrasekaran",slug:"signaling-pathways-regulating-axogenesis-and-dendritogenesis-in-sympathetic-neurons",totalDownloads:66,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Vidya",surname:"Chandrasekaran"}],book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80176",title:"Impacts of Environmental Stressors on Autonomic Nervous System",doi:"10.5772/intechopen.101842",signatures:"Mayowa Adeniyi",slug:"impacts-of-environmental-stressors-on-autonomic-nervous-system",totalDownloads:66,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"79655",title:"The Autonomic Nervous System, Sex Differences, and Chronobiology under General Anesthesia in In Vivo Experiments Involving Rats",doi:"10.5772/intechopen.101075",signatures:"Pavol Svorc Jr and Pavol Svorc",slug:"the-autonomic-nervous-system-sex-differences-and-chronobiology-under-general-anesthesia-in-in-vivo-e",totalDownloads:91,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"79194",title:"Potassium in Solid Cancers",doi:"10.5772/intechopen.101108",signatures:"Jessica Iorio, Lisa Lastraioli and Elena Lastraioli",slug:"potassium-in-solid-cancers",totalDownloads:119,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"78820",title:"Potassium Homeostasis",doi:"10.5772/intechopen.100368",signatures:"Shakuntala S. Patil and Sachin M. Patil",slug:"potassium-homeostasis",totalDownloads:108,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"78193",title:"Potassium and Cardiac Surgery",doi:"10.5772/intechopen.99735",signatures:"Shawn Kant, Frank W. Sellke and Jun Feng",slug:"potassium-and-cardiac-surgery",totalDownloads:175,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}}]},publishedBooks:{},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.jpg",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/9970",hash:"",query:{},params:{id:"9970"},fullPath:"/profiles/9970",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()