Diels-Alder epoxy precursors.
\r\n\t
",isbn:"978-1-83881-922-4",printIsbn:"978-1-83881-921-7",pdfIsbn:"978-1-83881-923-1",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"dcfc52d92f694b0848977a3c11c13d00",bookSignature:"Dr. Fiaz Ahmad and Prof. Muhammad Sultan",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10454.jpg",keywords:"Agricultural Engineering, Technologies, Application, Sustainable Agriculture, Information Technology in Agriculture, Food Security, Renewable Energies, Precision Farming, Smart Agriculture, Farm Mechanization, Robotics, Post Harvest Technologies",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"November 25th 2020",dateEndSecondStepPublish:"December 23rd 2020",dateEndThirdStepPublish:"February 21st 2021",dateEndFourthStepPublish:"May 12th 2021",dateEndFifthStepPublish:"July 11th 2021",remainingDaysToSecondStep:"2 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Dr. Ahmad is a researcher in the field of agricultural mechanization and agricultural equipment engineering, in-charge of Farm Machinery Design Laboratory at Bahauddin Zakariya University, with expertise in modeling and simulation. He applied for two patents at the national level.",coeditorOneBiosketch:"Renowned researcher with a focus on developing energy-efficient heat- and/or water-driven temperature and humidity control systems for agricultural storage, greenhouse, agricultural livestock and poultry applications including HVAC, desiccant air-conditioning, adsorption, Maisotsenko cycle (M-cycle), and adsorption desalination.",coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"338219",title:"Dr.",name:"Fiaz",middleName:null,surname:"Ahmad",slug:"fiaz-ahmad",fullName:"Fiaz Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/338219/images/system/338219.jpg",biography:"Fiaz Ahmad obtained his Ph.D. (2015) from Nanjing Agriculture University China in the field of Agricultural Bioenvironmental and Energy Engineering and Postdoc (2020) from Jiangsu University China in the field of Plant protection Engineering. He got the Higher Education Commission, Pakistan Scholarship for Ph.D. studies, and Post-Doctoral Fellowship from Jiangsu Government, China. During postdoctoral studies, he worked on the application of unmanned aerial vehicle sprayers for agrochemical applications to control pests and weeds. He passed the B.S. and M.S. degrees in agricultural engineering from the University of Agriculture Faisalabad, Pakistan in 2007. From 2007 to 2008, he was a Lecturer in the Department of Agricultural Engineering, Bahauddin Zakariya University, Multan-Pakistan. Since 2009, he has been an Assistant Professor in the Department of Agricultural Engineering, BZ University Multan, Pakistan. He is the author of 33 journal articles. He also supervised 6 master students and is currently supervising 5 master and 2 Ph.D. students. In addition, Dr. Ahmad completed three university-funded projects. His research interests include the design of agricultural machinery, artificial intelligence, and plant protection environment.",institutionString:"Bahauddin Zakariya University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Bahauddin Zakariya University",institutionURL:null,country:{name:"Pakistan"}}}],coeditorOne:{id:"199381",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sultan",slug:"muhammad-sultan",fullName:"Muhammad Sultan",profilePictureURL:"https://mts.intechopen.com/storage/users/199381/images/system/199381.jpeg",biography:"Muhammad Sultan completed his Ph.D. (2015) and Postdoc (2017) from Kyushu University (Japan) in the field of Energy and Environmental Engineering. He was an awardee of MEXT and JASSO fellowships (from the Japanese Government) during Ph.D. and Postdoc studies, respectively. In 2019, he did Postdoc as a Canadian Queen Elizabeth Advanced Scholar at Simon Fraser University (Canada) in the field of Mechatronic Systems Engineering. He received his Master\\'s in Environmental Engineering (2010) and Bachelor in Agricultural Engineering (2008) with distinctions, from the University of Agriculture, Faisalabad. He worked for Kyushu University International Institute for Carbon-Neutral Energy Research (WPI-I2CNER) for two years. Currently, he is working as an Assistant Professor at the Department of Agricultural Engineering, Bahauddin Zakariya University (Pakistan). He has supervised 10+ M.Eng./Ph.D. students so far and 10+ M.Eng./Ph.D. students are currently working under his supervision. He has published more than 70+ journal articles, 70+ conference articles, and a few magazine articles, with the addition of 2 book chapters and 2 edited/co-edited books. Dr. Sultan is serving as a Leading Guest Editor of a special issue in the Sustainability (MDPI) journal (IF 2.58). In addition, he is appointed as a Regional Editor for the Evergreen Journal of Kyushu University. His research is focused on developing energy-efficient heat- and/or water-driven temperature and humidity control systems for agricultural storage, greenhouse, livestock, and poultry applications. His research keywords include HVAC, desiccant air-conditioning, evaporative cooling, adsorption cooling, energy recovery ventilator, adsorption heat pump, Maisotsenko cycle (M-cycle), wastewater, energy recovery ventilators; adsorption desalination; and agricultural, poultry and livestock applications.",institutionString:"Bahauddin Zakariya University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Bahauddin Zakariya University",institutionURL:null,country:{name:"Pakistan"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"8",title:"Chemistry",slug:"chemistry"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"252211",firstName:"Sara",lastName:"Debeuc",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/252211/images/7239_n.png",email:"sara.d@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3621",title:"Silver Nanoparticles",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"silver-nanoparticles",bookSignature:"David Pozo Perez",coverURL:"https://cdn.intechopen.com/books/images_new/3621.jpg",editedByType:"Edited by",editors:[{id:"6667",title:"Dr.",name:"David",surname:"Pozo",slug:"david-pozo",fullName:"David Pozo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"63896",title:"Diels-Alder Chemistry to Develop Self-Healing Epoxy Resins and Composites Thereof",doi:"10.5772/intechopen.81360",slug:"diels-alder-chemistry-to-develop-self-healing-epoxy-resins-and-composites-thereof",body:'\nHigh-performance polymeric materials used in the automotive, aerospace, and space industries are progressively replacing metals as structural materials. However, their performances, such as mechanical properties, fatigue life, and esthetic features are usually deteriorated by severe in-service loads and/or environmental conditions. Therefore, the integration of recovery damage capability represents a major challenge for the next generation of technopolymers. [1]
\nSoon after the landmark work by White and Sottos [2] demonstrating the concept of self-healing features in a man-made material, the academic and industrial scientists recognized the ability of this new class of polymers to mitigate the effects of local damages in order to restore mechanical or functional properties and to postpone catastrophic failure of the whole structure. Two primary healing methodologies in polymers focus either on the incorporation of encapsulated healing agents in the polymer bulk or on the introduction of dynamic bonds in the macromolecular backbone. The former mechanism is referred to as extrinsic healing [2, 3, 4]: it is autonomic and is limited to a single, or to very few, healing events occurring in the same site. While the latter is referred to as intrinsic healing [5, 6]: it requires an external stimulus for its activation and can be applied multiple times on the same damaged spot. A thermal process is convenient and effective for treatment of polymers with a wide range of sample sizes and treatment durations. As a result, temperature-dependent reversible covalent cross-linking of polymers or block copolymers, such as DA-based materials, represents an effective method for the implementation of intrinsic self-healing into functional materials [5, 6, 7, 8].
\nSelf-healing thermosets potentially offer increased safety and durability of artifacts produced thereof, and remendable materials are particularly desirable for severe load-bearing applications in which repair and maintenance are costly and safety is concerned.
\nIn addition, costs for material development and production would greatly benefit from the possibility to combine new self-healing materials with conventional resin and from the compatibility with current processing techniques. Nevertheless, the heterogeneity of people involved led to many strategies for improving the durability of existing materials or the synthesis of brand-new polymeric systems. [1] The layout of an efficient strategy to achieve healing efficiency and balance it with mechanical performances exhibited by this new class of materials is a complex task.
\nThis chapter will describe the results we achieved in developing a self-healing epoxy system based on DA reaction. At first, design parameters of an epoxy adduct able to induce mendability will be discussed. Following, techniques to assess the healing capability of a polymeric material are described. Finally, the effort to fabricate composite structural material made by Diels-Alder (DA) thermoset will be discussed [8, 9, 10].
\nIntrinsic healing mechanism relies on complex chemistry, and its development affords several combined advantages. Therefore, following recent interest of scientific community on this topic, development of chemical pathways leading to self-healing strategy will be discussed.
\nSeveral reversible bonds have been used to achieve self-mending functionality. Hydrogen bonds, Van der Waals forces, and electrostatic interactions in polymeric ionomers [11] are claimed to explain self-repair features in supramolecular structures, while covalent disulfide bridges [12], ester linkages [13], alkoxyamine moieties [14], and Diels-Alder bonds [15, 16] account for damage recovery in cross-linked structures. Among them, Diels-Alder chemistry has been widely adopted because of its simplicity, high efficiency, and repeatability through only the application of heat.
\nDiels-Alder chemistry was first described by Otto Diels and Kurt Alder in 1928 [17] and is particularly useful in synthetic organic chemistry as a reliable and clean method for introducing a six-membered DA adducts on a wide range of organic substrates which can be endcapped by reactive functional groups, such as epoxies, acrylates, amines, isocyanates, and hydroxyls. The DA reaction is a thermally reversible cycloaddition between a conjugated diene and a dienophile resulting in a cyclohexene derivative. The cross-linked DA adducts can undergo a cleavage reverse reaction at higher temperatures (rDA) [18, 19]. While several diene-dienophile couples are available for DA reaction, to date, the most investigated precursors are furan/maleimide derivatives. The bond energy of the new C-C σ bonds in DA adducts was evaluated to account to 96.2 kJ/mol [20], while other covalent bond energies are 348 kJ/mol for C-C bonding and 293 kJ/mol for C-N [21]. Since covalent bonds are three to four times stronger than C-C σ bonds formed in DA adducts, cracks are more likely to form and propagate between the new formed bonds in DA adducts. Consequently, available diene and dienophile on the freshly generated surface increase the efficiency of the self-healing method, through the DA recombination. Another notable implication, resulting for the diene-dienophile choice, is the temperature where the self-recovery can be achieved. The range for the rDA reaction of furan/maleimide derivatives is approximately at temperatures higher than 115–120°C, while at lower temperatures the DA recombination is favored.
\nWhen considering self-healing thermosets with the DA reaction, the local molecular mobility, displayed during mending cycles, is a key parameter affecting the healing efficiency. Fast and efficient damage recovery and DA bond recombination are achieved via a local and temporary increase of mobility occurring at temperatures higher than polymer glass transition temperature but lower than rDA cleavage temperature. In the case of DA adducts based on the furan/maleimide couple, the processing window can be identified between the polymer’s Tg and rDA temperature.
\nEpoxy resins have been widely used due to their excellent heat resistance, outstanding corrosion protection, high electrical resistivity, and superior mechanical properties. However, cracks might occur as a result of thermal stress and mechanical fatigues during processing and service conditions. Many papers already described epoxy resins containing DA adducts in their backbone [22, 23].
\nFollowing a related concept, bifunctional epoxy precursors cross-linked with amines [24] will be described in the present work. The choice to locate the reversible DA bond on the epoxy or on the amine moieties results in structurally equivalent networks, as far as the self-healing phenomena are concerned. Nevertheless, the synthetic path to produce epoxy DA adducts is easier with respect to the preparation of DA amines, due to the added complexity of amine protection/deprotection. For the sake of simplicity, tetrafunctional amines were used as cross-linkers in the following, while the epoxy functionality was varied between two and four, to investigate about the effect of different cross-linking density.
\nCross-linking density and conformational stiffness of molecular fragments between adjacent cross-links are the main parameters, which affect properties, such as Tg, mechanical stiffness, and overall molecular mobility. However, accurate experimental evaluation of cross-linking density is often difficult, especially for glassy and rigid polymers. Therefore, the use of an easily defined marker as a measure of cross-linking density is strongly envisaged. In this respect, the average functionality of a mixture of monomers can be defined as the average number of functional groups per monomer molecule for all types of monomer molecules. It is defined by
\nwhere Ni is the number of molecules of monomer i with functionality fi and the summations are over all the monomers present in the system. As a rule of thumb, reactive mixture with favg strictly equal to 2 can lead to high molecular weight linear polymer and favg smaller than 2 results in low molar mass oligomers, while favg greater than 2 produces branched and cross-linked networks. In our specific case, for a system consisting of 2 mol of di-epoxy and 1 mol of tetrafunctional amine, favg is 2.67; for a system consisting of 1 mol of tetrafunctional epoxy and 1 mol of tetrafunctional amine, favg is 4.00. All the intermediate values are achievable by proper adjustment of the ratio between bifunctional versus tetrafunctional epoxy, stoichiometrically balanced by the amine.
\nIn the case of conventional cross-linked networks, favg is invariant with respect to temperature, and the network cannot flow upon heating. If the network precursors include reversible bonds, such as DA, favg decreases at high temperatures, after triggering the rDA cleavage reaction. Referring to the bi- and tetrafunctional DA epoxy cross-linked with conventional tetrafunctional amine, the favg drops to 1.60 in the former case, while the value is 2.67 for the latter one. Obviously, a high cross-linking density hinders molecular mobility: a value of favg higher than 2 prevents the healing phenomenon, if the condition holds true also in the cleavage state at high temperature.
\nThe ability to adjust the molecular mobility during the healing cycle at a desired preset value is an important molecular design tool, which is helpful in addressing specific application requirements. For example, if the thermosetting DA resin is intended for restoration of small impact damages or micro-delaminations, which are often encountered in the case of barely visible impact damages (BVID) of composite materials, a moderate molecular mobility is required. The sample has to retain its geometry and fiber placement, and long-range viscous flows are detrimental. This target can be achieved tailoring the cleaved state favg so as its value is close to 2. On the contrary, if thermal recycling of thermoset is sought after, a high extent of molecular mobility is required in the cleaved state to allow materials to flow. While in the first case the overall material properties closely resemble the conventional thermosets, in the latter case, a dynamic thermoplastic-like state is achieved during self-healing. The epoxy mixture formulation can be properly adjusted to suit one of the previous conditions to achieve bespoke molecular mobility, measured by favg. For this purpose, cross-linking density of the cleaved stage can be preset to different levels, corresponding to reduced molecular mobility, by mixing bifunctional Diels-Alder epoxy with conventional epoxy or mixing a bi- and a tetrafunctional Diels-Alder epoxy. The introduction of conventional epoxy brings the added benefits of overall reduced costs because of the use of a cheaper precursor, while the introduction of tetrafunctional Diels-Alder epoxy benefits the healing efficiency increasing the overall concentration of DA functional groups.
\nFurther degree of freedom can be introduced in the molecular design if detailed precursor structure is considered. In fact, according to Figure 1(a), a symmetrical Diels-Alder precursor, bearing a pair of cleavable dienophile groups, can be considered. But the same structural features can be achieved using a smaller molecule, as shown in Figure 1(b). In the former case, the formation of an unbound dienophile allows higher molecular mobility, increasing therefore the healing efficiency.
\nExamples of of Diels-Alder adducts: a) symmetric molecules, b) asymmetric molecules.
The coexistence of a stable and a thermo-reversible polymeric network, required for the development of robust self-healing ability [8, 25], is depicted in Figure 2. The hybrid polymer architecture is guaranteed by irreversible cross-links of conventional epoxy (green oval) with tetrafunctional amines (green rectangle) and reversible covalent bonds between furan derivative diene (red pincer) and bismaleimide derivative dienophile (yellow square) of a DA adduct.
\nHybrid network scheme.
The left-hand side of Figure 2 is representative of the cross-linked structure which prevents viscous flows. At low temperatures, the material behaves like a thermoset. As the temperature is increased above the rDA threshold trigger, the cleavage of epoxy DA activates a higher molecular mobility. Small molecular fragments, depicted in the right-hand side schematic of Figure 2 as result of retro Diels-Alder reaction, symbolize distinguishing mobile state and viscous flow of thermoplastic material. Therefore, the presence of thermo-reversible chemical bonds switches the material state between thermoset-like behavior at low temperature and thermoplastic-like flow at high temperature.
\nThe presence of mechanical, thermal, or electrochemical damages results in regions with reduced performances with respect to the surrounding materials and deteriorates the overall response of the component.
\nThe evaluation of self-healing efficiency is a complex task, which is not extensively disciplined yet in test standards or experimental procedures. It can be performed at different dimensional scales, starting from visual inspection or optical microscopy (OM) observation, up to spectroscopic techniques based on molecular interaction, comprising mechanical and dynamical-mechanical characterization [26].
\nThe self-healing mechanism of thermo-reversible epoxy resins relies on the direct and reverse cycloaddition Diels-Alder reaction, which could be monitored by FTIR through the investigation of the spectral band of the C-O-C peak around 1180 cm−1 [8, 27]. Similarly, stretching vibrations in Raman spectra of C=C at 1501, 1575, 1585, and 1600 cm−1 bands, related to furan/maleimide-based DA adduct, could be used to monitor the progress of the reactions [28]. Due to the system complexity, only the signal at 1501 cm−1, ascribable to C=C stretching vibration of the furan ring [28, 29], is a useful marker.
\nSince reversible epoxy thermosets exhibit properties of both highly cross-linked epoxy thermosets as well as typical behavior of thermoplastics that soften and flow at elevated temperatures, the study of thermomechanical behavior of self-healing DA system allows the identification of macroscopic behavior related to low-temperature highly cross-linked status or the high-temperature viscous thermoplastic-like condition.
\nFigure 3 depicts the healing and reshaping cycles of a composite coupon based on self-healing resin. Thermo-reversible bonds affect the molecular mobility [30]; therefore, the investigation of linear viscoelastic behavior is a suitable procedure to assess the self-healing feature of the material.
\nSchematic of the transition between thermoset state and thermoplastic state triggered by temperature.
Rheological tests can be used to discriminate between the solid like behavior and the semi-viscous state of degenerated networks, by measuring storage and loss moduli as a function of temperature [8, 31, 32].
\nOn the other hand, rheological experiments can effectively complement the mechanical and dynamical-mechanical characterization. Thermo-reversible epoxy resins, similar to conventional ones, exhibit little elongation at break. This characteristic depends on the degree of cross-linking of the polymer chains, and then failure of such systems could be described in terms of linear fracture mechanics [6].
\nThe experimental assessment of the fracture properties relies on the study of short-term monotonical loading.
\nThe failures in polymeric materials are a result of chain scission and structural breakup. Self-healing recovery of damaged polymeric structure prevents or reduces the fracture propagation. When the applied load exceeds the critical fracture stress, the crack grows. If the healing cycles preserve the initial shape and dimensions, the healing efficiency, η, may be calculated as expressed in Eq. (2):
\nwhere \n
However, while the efficiency defined in terms of the applied stress represents an actual measured quantity, the same quantity expressed in terms of the stress-intensity factor represents an estimate using a fracture model. The lack of control inherent in the fracture process precludes a direct comparison.
\nGenerally, the efficiency of the healing process is evaluated by the experimental comparison between the performance of intact and healed material [2]:
\nThe subscripts refer to whether the property is measured after healing (healed) or before damage occurs (initial). In many cases, healing efficiency is defined in terms of the fracture toughness [33] or in terms of material strength [34, 35] or material stiffness [10, 12].
\nSelf-healing feature increases the durability of thermosets by reducing the service costs for high-end applications. Unfortunately, the use of smart polymeric materials raises the issue of a compromise between material performance and integration of self-healing properties. Rigid materials have specific properties, which should remain unchanged by the self-healing chemistry both during use and later to a healing treatment. Such surfaces are usually made of highly cross-linked thermoset polymers; the incorporation of self-healing functionalities into their formulations can be problematic and needs to be investigated.
\nBased on the hierarchical criteria developed on Section 2, a family of epoxy precursors was prepared integrating Diels-Alder precursors 2Ph2Epo and 2Ph4Epo cross-linked with tetrafunctional amines (Table 1).
\nDiels-Alder epoxy precursors.
The two precursors differ in number of epoxy groups, keeping central furan/maleimide DA adduct fixed. Structural formulae of epoxy precursors are shown in Table 1. The 2Ph2Epo is characterized by the presence of two oxirane rings and two Diels-Alder adducts. The introduction of two additional functional groups results in 2Ph4Epo.
\nTo induce the self-healing capability, two identical dienes (furfural derivatives) were capped on a bismaleimide dienophiles, resulting in a symmetrical epoxy compound containing two Diels-Alder adducts. The synthesis of 2Ph2Epo has already been described by the authors in [24]. 1H-NMR spectrum, recorded in d6-DMSO with Bruker Avance 400, points out the appearance of characteristic peak of DA adduct (δ~5.5), because two carbon atoms change from sp2 to sp3 hybridization (double peak slightly split for the formation of the two stereoisomers, endo and exo, with the former overwhelming the latter).
\nAnalogously, the use of furan derivative with a pair of oxirane rings results in the preparation of 2Ph4Epo adduct. Also in this case, the 1H-NMR spectrum confirmed the accuracy of structure reported in Table 1.
\nThe Diels-Alder epoxies 2Ph2Epo and 2Ph4Epo and their mixture with DGEBA were cross-linked using stoichiometrically balanced DDM and Jeff500 as curing agents (Figure 4) at 90°C for 24 hours.
\nMolecular structures of DGEBA, DDM, and Jeff500.
Suitable samples of self-healing epoxy resin have been developed by application of the criteria shown in Section 2. To vouch for a complete physical-chemical and technological compatibility with conventional epoxy system and production technology used in the field of epoxy resin and composites thereof, a mixture of commercial tetrafunctional amines was used as curing agent. The mixture of two different amines was used to finely tune the glass transition temperature of the self-healing resin in the range of 90°C and achieve full cure at temperatures below rDA reaction without incurring the temporary scission of epoxy precursor. The cross-linking density and favg during the healing process were controlled by the proper ratio between the functional DA epoxy and a commercial epoxy resin.
\nComposition of all samples is reported in Table 2.
\nAcronym | \nDA epoxy (mol) | \nDGEBA (mol) | \nDDM (mol) | \nJeff500 (mol) | \n
---|---|---|---|---|
DGEBA100 | \n— | \n1.00 | \n0.30 | \n0.20 | \n
2Ph2Epo100 | \n1.00 | \n— | \n0.30 | \n0.20 | \n
2Ph2Epo65 | \n0.65 | \n0.35 | \n0.30 | \n0.20 | \n
2Ph4Epo100 | \n1.00 | \n— | \n0.60 | \n0.40 | \n
DGEBA100 | \n— | \n1.00 | \n0.30 | \n0.20 | \n
Cross-linked sample composition.
Samples reported in Table 2 were cured at 90°C for 24 hours. DSC confirmed the complete conversion of cross-linking reaction by the absence of residual reactivity.
\nAs already discussed, the self-healing capability of small fractures and BVID is related to local molecular mobility, temporarily activated by temperature increase. The observation of superficial scratches and their recovery is a generally accepted technique for the assessment of self-healing features. For this task, a controlled mark has been produced by sharp scalpel and observed by optical microscopy (Olympus BX 51 M), applying suitable thermal stimulus by means of Linkam THM600 hot stage.
\nAs expected, microscopy observation performed on cross-linked DGEBA resin cured with a mixture of 60/40 mol/mol of DDM and Jeff500 amines (DGEBA100, Tg = 90°C) evidenced the lack of scratch recovery even at 140°C (Figure 5), well above sample Tg.
\nScratch recovery for DGEBA100, 10 × magnification. From left to right: at room temperature, at 140°C, after additional annealing for 20 min at 140°C.
Only a minor modification of scratch width can be detected as a result of stress relaxation at temperature higher than resin Tg. Nevertheless, self-healing is hindered by cross-links.
\nOn the other hand, thermal treatment at 120°C for 5 min completely restored the damaged surface of 2Ph2Epo100 sample, as depicted in Figure 6. Unfortunately, the high molecular mobility achieved in the activated stage produced sample deformation and viscous flow. In fact, due to the high concentration of reversible bonds, the cross-linking density in the cleaved stage dropped, and materials transformed into viscous thermoplastic.
\nScratch recovery for 2Ph2Epo100, 10 × magnification. From left to right: at room temperature, at 120°C, after additional annealing for 5 min at 120°C.
The occurrence of this phenomenon is not desirable if self-healing materials have to be used for structural application and the molecular mobility has to be reduced, either by introducing a thermally stable epoxy precursor such as DGEBA or by using a tetrafunctional DA precursor.
\nIn the first case, the 2Ph2Epo65 system, containing 65% of DA epoxy and 35% of DGEBA (Table 2), was prepared, with Tg of 90°C. Self-healing capability of 2Ph2Epo65 was confirmed even after reduction of thermo-reversible bond concentration. The increased network stability preserved the sample shape and dimension still allowing self-healing phenomenon, as reported in Figure 7. The scratch completely disappeared after 30 min at 120°C, restoring the pristine surface.
\nScratch recovery for 2Ph2Epo65, 10 × magnification. From left to right: at room temperature, at 120°C, after additional annealing for 30 min at 120°C.
The second approach to prevent viscous flow of materials during the high-temperature stage is to use Diels-Alder epoxy adduct with functionality higher than 2. The presence of four reacting epoxy groups for each precursor molecule (2Ph4Epo) increases the cross-linking density. 2Ph4Epo100 was prepared according to Table 2 and fully cured at 90°C for 24 hours, reaching a Tg of 95°C. The occurrence of rDA reaction reduces the cross-linking density at high temperature. But the favg calculated in the cleaved state for tetrafunctional DA epoxy is 2.67 and suggests hindered molecular mobility, as already discussed in Paragraph 2. As a consequence, morphological damages were not recovered for 2Ph4Epo100 (Figure 8).
\nScratch recovery for DGEBA2Ph4Epo100, 10 × magnification. From left to right: at room temperature, at 120°C, after additional annealing for 20 min at 120°C.
Upon sample breakage, Diels-Alder bonds are preferentially cleaved because they are weaker than other covalent bonds building up the cross-linked network. Therefore, the occurrence of mechanical damage makes diene and dienophile groups available for self-healing on the fracture surface. But molecular backbone in the close proximity of damage remains unaffected, and the overall material stiffness prevents an efficient fracture healing. For this reason, further thermal treatment at 120°C is applied to complete cleavage of DA bonds and to maximize molecular mobility. Physical healing, due to diffusion of molecular fragments in the activated stage, allows the fracture edges recombination. After the first step, a further annealing at 90°C is required to restore the pristine cross-linking density and mechanical properties by direct Diels-Alder reaction.
\nThe proposed healing mechanism is validated by analysis of micro-mechanical tests, performed by Micro Materials NanoTest™ Platform. 2Ph2Epo65 properties have been evaluated and compared between the pristine as prepared and after incremental treatments, including morphological healing and structural annealing.
\nThe reduced elastic modulus, Er, was calculated based on Eq. (4), taking into account the effect of nonrigid indenter column:
\nwhere A is the contact area, β the geometric constant (1.034 for a Berkovich indenter), and S the unloading stiffness at maximum load. E and ν are the elastic modulus and the Poisson ratio; and the subscripts “i” and “s” refer to the diamond indenter and the specimen, respectively. The Ei is 1140 GPa, the νi is 0.07, and the νs is 0.35.
\nAll data were corrected for thermal drift and instrument compliance and subsequently analyzed with the Oliver and Pharr method [36]. According to Zheng [37], elastic modulus measured by depth indentation technique overrates the elastic modulus by a factor of 5–20%. Reduced modulus is reported in Table 3. After heating at 120°C, required to promote the morphological recombination of scratch edges, the modulus drops down by a factor of 2. In fact, the occurrence of rDA reaction induces the cleavage of specific covalent bonds and reduces the cross-linking density. However, the effect is not permanent. The pristine properties can be recovered by prolonged annealing at 90°C, when DA reaction can lead to network restoration.
\nSpecimen type | \nReduced modulus, Er (GPa) | \n
---|---|
As prepared | \n4.80 ± 0.03 | \n
Morphological healing: 20’ @ 120°C | \n2.54 ± 0.05 | \n
Structural healing: 20’ @ 120°C + 12h @ 90°C | \n4.56 ± 0.05 | \n
Reduced modulus (GPa) of self-healing 2Ph2Epo65 epoxy resin.
The self-healing epoxy 2Ph2Epo65 has been considered for manufacturing a composite plate with the aim to investigate the fracture behavior and to assess the healing efficiency of the system. Interlaminar behavior of the CFRP (composite fiber-reinforced plastic) has been studied by means of shear strength of the laminate.
\nShear tests can be conducted on composite laminates following different experimental approaches, depending on the mode of fracture that needs to be assessed. The ability to recover damages after a cohesive failure has been investigated by interlaminar shear strength (ILSS), and mode II fracture loading has been studied by performing the End Notch Failure (ENF).
\nA composite plate has been manufactured by liquid molding process under vacuum bag; 12 unidirectional layers were laminated to reach a nominal thickness of 3 mm. The presence of a Kapton layer in a bending test (in the case of ENF tests) leads to the mutual sliding of separated parts promoting a mode II failure (shear mode) [38], according to ASTM D7905.
\nLoad versus displacement curves during ENF tests is reported in Figure 9 and show an initial linear behaviour up to the critical load (nonlinearity load, NL). Above this point, delaminations start and steadily propagate until the maximum load is achieved. Afterwards, unstable delamination growth leads to load decrease.
\nEnd Notched Failure test.
The first healing treatment allowed to recover the pristine stiffness, with a sample strength decrease. However, during the third load cycle (i.e., after the second healing), a significant stiffness loss is experienced. Different behaviors between neat polymer and laminate should be related to specific composite features. Delaminations could occur both as effect of a matrix failure and as interface debonding. Moreover, any damage incurring to the reinforcing fibers would reduce material stiffness without chance of recovery.
\nThe critical strain energy release rate should be evaluated as function of the NL load:
\nFracture toughness was determined using Eq. (5), where m is the calibration compliance, P is the critical load, a is the critical length, and B is the specimen width.
\nTable 4 reports the recovery efficiencies measured as interlaminar critical strength and as critical energy for mode II delaminations. Fracture toughness showed a less effective recovery ability of 52.4% compared to static interlaminar strength recovery of 81.7%.
\nCycle | \nILSS (MPa) | \nη (%) | \nGIIc (J/m2) | \nη (%) | \n
---|---|---|---|---|
0 | \n54.1 ± 1.1 | \n100 | \n650 ± 20 | \n100 | \n
1 | \n51.4 ± 5.1 | \n95.1 | \n583 ± 13 | \n89.7 | \n
2 | \n44.2 ± 4.9 | \n81.7 | \n341 ± 32 | \n52.4 | \n
Strength recovery after failures.
The development of self-healing materials is a very attractive approach to provide long-lasting and efficient protection against micro damages. Great attention from numerous research groups has been paid to polymers, composites, and coatings, which exhibit self-healing behavior at different dimensional scales. Through the chapter, the overall design flow for achieving hybrid epoxy systems containing covalent thermo-reversible bonds and the preparation and evaluation of selected examples were detailed. This paper underlines that the concurring presence of thermo-reversible covalent bonds and high molecular mobility are essential requirements to develop self-healing systems. The most effective structural modification has been pursued by adjustment of the several features: average functionality of reacting precursor mixture and cross-linking density and thermosetting network and concentration of self-healing reversible bonds. Also, the requirements of easy and efficient self-healing were compromised with development of material properties compliant with structural and semi-structural applications.
\nIn particular, possibility to tailor the properties of “dynamic” epoxy resins containing Diels-Alder bonds would allow the development of novel materials, such as reengineered FRP combining the ease of processability typical of thermosets with reworking/recycling capability at the end of life typical of thermoplastics, as an effort to improve environmental sustainability of advanced materials.
\nThe authors thank Mrs. Maria Rosaria Marcedula, Mr. Fabio Docimo, and Mr. Mario De Angioletti for their contribution to the experimental setup and testing.
\nThe authors declare no conflict.
Research methodology is the path through which researchers need to conduct their research. It shows the path through which these researchers formulate their problem and objective and present their result from the data obtained during the study period. This research design and methodology chapter also shows how the research outcome at the end will be obtained in line with meeting the objective of the study. This chapter hence discusses the research methods that were used during the research process. It includes the research methodology of the study from the research strategy to the result dissemination. For emphasis, in this chapter, the author outlines the research strategy, research design, research methodology, the study area, data sources such as primary data sources and secondary data, population consideration and sample size determination such as questionnaires sample size determination and workplace site exposure measurement sample determination, data collection methods like primary data collection methods including workplace site observation data collection and data collection through desk review, data collection through questionnaires, data obtained from experts opinion, workplace site exposure measurement, data collection tools pretest, secondary data collection methods, methods of data analysis used such as quantitative data analysis and qualitative data analysis, data analysis software, the reliability and validity analysis of the quantitative data, reliability of data, reliability analysis, validity, data quality management, inclusion criteria, ethical consideration and dissemination of result and its utilization approaches. In order to satisfy the objectives of the study, a qualitative and quantitative research method is apprehended in general. The study used these mixed strategies because the data were obtained from all aspects of the data source during the study time. Therefore, the purpose of this methodology is to satisfy the research plan and target devised by the researcher.
The research design is intended to provide an appropriate framework for a study. A very significant decision in research design process is the choice to be made regarding research approach since it determines how relevant information for a study will be obtained; however, the research design process involves many interrelated decisions [1].
This study employed a mixed type of methods. The first part of the study consisted of a series of well-structured questionnaires (for management, employee’s representatives, and technician of industries) and semi-structured interviews with key stakeholders (government bodies, ministries, and industries) in participating organizations. The other design used is an interview of employees to know how they feel about safety and health of their workplace, and field observation at the selected industrial sites was undertaken.
Hence, this study employs a descriptive research design to agree on the effects of occupational safety and health management system on employee health, safety, and property damage for selected manufacturing industries. Saunders et al. [2] and Miller [3] say that descriptive research portrays an accurate profile of persons, events, or situations. This design offers to the researchers a profile of described relevant aspects of the phenomena of interest from an individual, organizational, and industry-oriented perspective. Therefore, this research design enabled the researchers to gather data from a wide range of respondents on the impact of safety and health on manufacturing industries in Ethiopia. And this helped in analyzing the response obtained on how it affects the manufacturing industries’ workplace safety and health. The research overall design and flow process are depicted in Figure 1.
Research methods and processes (author design).
To address the key research objectives, this research used both qualitative and quantitative methods and combination of primary and secondary sources. The qualitative data supports the quantitative data analysis and results. The result obtained is triangulated since the researcher utilized the qualitative and quantitative data types in the data analysis. The study area, data sources, and sampling techniques were discussed under this section.
According to Fraenkel and Warren [4] studies, population refers to the complete set of individuals (subjects or events) having common characteristics in which the researcher is interested. The population of the study was determined based on random sampling system. This data collection was conducted from March 07, 2015 to December 10, 2016, from selected manufacturing industries found in Addis Ababa city and around. The manufacturing companies were selected based on their employee number, established year, and the potential accidents prevailing and the manufacturing industry type even though all criterions were difficult to satisfy.
It was obtained from the original source of information. The primary data were more reliable and have more confidence level of decision-making with the trusted analysis having direct intact with occurrence of the events. The primary data sources are industries’ working environment (through observation, pictures, and photograph) and industry employees (management and bottom workers) (interview, questionnaires and discussions).
Desk review has been conducted to collect data from various secondary sources. This includes reports and project documents at each manufacturing sectors (more on medium and large level). Secondary data sources have been obtained from literatures regarding OSH, and the remaining data were from the companies’ manuals, reports, and some management documents which were included under the desk review. Reputable journals, books, different articles, periodicals, proceedings, magazines, newsletters, newspapers, websites, and other sources were considered on the manufacturing industrial sectors. The data also obtained from the existing working documents, manuals, procedures, reports, statistical data, policies, regulations, and standards were taken into account for the review.
In general, for this research study, the desk review has been completed to this end, and it had been polished and modified upon manuals and documents obtained from the selected companies.
The study population consisted of manufacturing industries’ employees in Addis Ababa city and around as there are more representative manufacturing industrial clusters found. To select representative manufacturing industrial sector population, the types of the industries expected were more potential to accidents based on random and purposive sampling considered. The population of data was from textile, leather, metal, chemicals, and food manufacturing industries. A total of 189 sample sizes of industries responded to the questionnaire survey from the priority areas of the government. Random sample sizes and disproportionate methods were used, and 80 from wood, metal, and iron works; 30 from food, beverage, and tobacco products; 50 from leather, textile, and garments; 20 from chemical and chemical products; and 9 from other remaining 9 clusters of manufacturing industries responded.
A simple random sampling and purposive sampling methods were used to select the representative manufacturing industries and respondents for the study. The simple random sampling ensures that each member of the population has an equal chance for the selection or the chance of getting a response which can be more than equal to the chance depending on the data analysis justification. Sample size determination procedure was used to get optimum and reasonable information. In this study, both probability (simple random sampling) and nonprobability (convenience, quota, purposive, and judgmental) sampling methods were used as the nature of the industries are varied. This is because of the characteristics of data sources which permitted the researchers to follow the multi-methods. This helps the analysis to triangulate the data obtained and increase the reliability of the research outcome and its decision. The companies’ establishment time and its engagement in operation, the number of employees and the proportion it has, the owner types (government and private), type of manufacturing industry/production, types of resource used at work, and the location it is found in the city and around were some of the criteria for the selections.
The determination of the sample size was adopted from Daniel [5] and Cochran [6] formula. The formula used was for unknown population size Eq. (1) and is given as
where n = sample size, Z = statistic for a level of confidence, P = expected prevalence or proportion (in proportion of one; if 50%, P = 0.5), and d = precision (in proportion of one; if 6%, d = 0.06). Z statistic (Z): for the level of confidence of 95%, which is conventional, Z value is 1.96. In this study, investigators present their results with 95% confidence intervals (CI).
The expected sample number was 267 at the marginal error of 6% for 95% confidence interval of manufacturing industries. However, the collected data indicated that only 189 populations were used for the analysis after rejecting some data having more missing values in the responses from the industries. Hence, the actual data collection resulted in 71% response rate. The 267 population were assumed to be satisfactory and representative for the data analysis.
The sample size for the experimental exposure measurements of physical work environment has been considered based on the physical data prepared for questionnaires and respondents. The response of positive were considered for exposure measurement factors to be considered for the physical environment health and disease causing such as noise intensity, light intensity, pressure/stress, vibration, temperature/coldness, or hotness and dust particles on 20 workplace sites. The selection method was using random sampling in line with purposive method. The measurement of the exposure factors was done in collaboration with Addis Ababa city Administration and Oromia Bureau of Labour and Social Affair (AACBOLSA). Some measuring instruments were obtained from the Addis Ababa city and Oromia Bureau of Labour and Social Affair.
Data collection methods were focused on the followings basic techniques. These included secondary and primary data collections focusing on both qualitative and quantitative data as defined in the previous section. The data collection mechanisms are devised and prepared with their proper procedures.
Primary data sources are qualitative and quantitative. The qualitative sources are field observation, interview, and informal discussions, while that of quantitative data sources are survey questionnaires and interview questions. The next sections elaborate how the data were obtained from the primary sources.
Observation is an important aspect of science. Observation is tightly connected to data collection, and there are different sources for this: documentation, archival records, interviews, direct observations, and participant observations. Observational research findings are considered strong in validity because the researcher is able to collect a depth of information about a particular behavior. In this dissertation, the researchers used observation method as one tool for collecting information and data before questionnaire design and after the start of research too. The researcher made more than 20 specific observations of manufacturing industries in the study areas. During the observations, it found a deeper understanding of the working environment and the different sections in the production system and OSH practices.
Interview is a loosely structured qualitative in-depth interview with people who are considered to be particularly knowledgeable about the topic of interest. The semi-structured interview is usually conducted in a face-to-face setting which permits the researcher to seek new insights, ask questions, and assess phenomena in different perspectives. It let the researcher to know the in-depth of the present working environment influential factors and consequences. It has provided opportunities for refining data collection efforts and examining specialized systems or processes. It was used when the researcher faces written records or published document limitation or wanted to triangulate the data obtained from other primary and secondary data sources.
This dissertation is also conducted with a qualitative approach and conducting interviews. The advantage of using interviews as a method is that it allows respondents to raise issues that the interviewer may not have expected. All interviews with employees, management, and technicians were conducted by the corresponding researcher, on a face-to-face basis at workplace. All interviews were recorded and transcribed.
The main tool for gaining primary information in practical research is questionnaires, due to the fact that the researcher can decide on the sample and the types of questions to be asked [2].
In this dissertation, each respondent is requested to reply to an identical list of questions mixed so that biasness was prevented. Initially the questionnaire design was coded and mixed up from specific topic based on uniform structures. Consequently, the questionnaire produced valuable data which was required to achieve the dissertation objectives.
The questionnaires developed were based on a five-item Likert scale. Responses were given to each statement using a five-point Likert-type scale, for which 1 = “strongly disagree” to 5 = “strongly agree.” The responses were summed up to produce a score for the measures.
The data was also obtained from the expert’s opinion related to the comparison of the knowledge, management, collaboration, and technology utilization including their sub-factors. The data obtained in this way was used for prioritization and decision-making of OSH, improving factor priority. The prioritization of the factors was using Saaty scales (1–9) and then converting to Fuzzy set values obtained from previous researches using triangular fuzzy set [7].
The researcher has measured the workplace environment for dust, vibration, heat, pressure, light, and noise to know how much is the level of each variable. The primary data sources planned and an actual coverage has been compared as shown in Table 1.
Planned versus actual coverage of the survey.
The response rate for the proposed data source was good, and the pilot test also proved the reliability of questionnaires. Interview/discussion resulted in 87% of responses among the respondents; the survey questionnaire response rate obtained was 71%, and the field observation response rate was 90% for the whole data analysis process. Hence, the data organization quality level has not been compromised.
This response rate is considered to be representative of studies of organizations. As the study agrees on the response rate to be 30%, it is considered acceptable [8]. Saunders et al. [2] argued that the questionnaire with a scale response of 20% response rate is acceptable. Low response rate should not discourage the researchers, because a great deal of published research work also achieves low response rate. Hence, the response rate of this study is acceptable and very good for the purpose of meeting the study objectives.
The pretest for questionnaires, interviews, and tools were conducted to validate that the tool content is valid or not in the sense of the respondents’ understanding. Hence, content validity (in which the questions are answered to the target without excluding important points), internal validity (in which the questions raised answer the outcomes of researchers’ target), and external validity (in which the result can generalize to all the population from the survey sample population) were reflected. It has been proved with this pilot test prior to the start of the basic data collections. Following feedback process, a few minor changes were made to the originally designed data collect tools. The pilot test made for the questionnaire test was on 10 sample sizes selected randomly from the target sectors and experts.
The secondary data refers to data that was collected by someone other than the user. This data source gives insights of the research area of the current state-of-the-art method. It also makes some sort of research gap that needs to be filled by the researcher. This secondary data sources could be internal and external data sources of information that may cover a wide range of areas.
Literature/desk review and industry documents and reports: To achieve the dissertation’s objectives, the researcher has conducted excessive document review and reports of the companies in both online and offline modes. From a methodological point of view, literature reviews can be comprehended as content analysis, where quantitative and qualitative aspects are mixed to assess structural (descriptive) as well as content criteria.
A literature search was conducted using the database sources like MEDLINE; Emerald; Taylor and Francis publications; EMBASE (medical literature); PsycINFO (psychological literature); Sociological Abstracts (sociological literature); accident prevention journals; US Statistics of Labor, European Safety and Health database; ABI Inform; Business Source Premier (business/management literature); EconLit (economic literature); Social Service Abstracts (social work and social service literature); and other related materials. The search strategy was focused on articles or reports that measure one or more of the dimensions within the research OSH model framework. This search strategy was based on a framework and measurement filter strategy developed by the Consensus-Based Standards for the Selection of Health Measurement Instruments (COSMIN) group. Based on screening, unrelated articles to the research model and objectives were excluded. Prior to screening, researcher (principal investigator) reviewed a sample of more than 2000 articles, websites, reports, and guidelines to determine whether they should be included for further review or reject. Discrepancies were thoroughly identified and resolved before the review of the main group of more than 300 articles commenced. After excluding the articles based on the title, keywords, and abstract, the remaining articles were reviewed in detail, and the information was extracted on the instrument that was used to assess the dimension of research interest. A complete list of items was then collated within each research targets or objectives and reviewed to identify any missing elements.
Data analysis method follows the procedures listed under the following sections. The data analysis part answered the basic questions raised in the problem statement. The detailed analysis of the developed and developing countries’ experiences on OSH regarding manufacturing industries was analyzed, discussed, compared and contrasted, and synthesized.
Quantitative data were obtained from primary and secondary data discussed above in this chapter. This data analysis was based on their data type using Excel, SPSS 20.0, Office Word format, and other tools. This data analysis focuses on numerical/quantitative data analysis.
Before analysis, data coding of responses and analysis were made. In order to analyze the data obtained easily, the data were coded to SPSS 20.0 software as the data obtained from questionnaires. This task involved identifying, classifying, and assigning a numeric or character symbol to data, which was done in only one way pre-coded [9, 10]. In this study, all of the responses were pre-coded. They were taken from the list of responses, a number of corresponding to a particular selection was given. This process was applied to every earlier question that needed this treatment. Upon completion, the data were then entered to a statistical analysis software package, SPSS version 20.0 on Windows 10 for the next steps.
Under the data analysis, exploration of data has been made with descriptive statistics and graphical analysis. The analysis included exploring the relationship between variables and comparing groups how they affect each other. This has been done using cross tabulation/chi square, correlation, and factor analysis and using nonparametric statistic.
Qualitative data analysis used for triangulation of the quantitative data analysis. The interview, observation, and report records were used to support the findings. The analysis has been incorporated with the quantitative discussion results in the data analysis parts.
The data were entered using SPSS 20.0 on Windows 10 and analyzed. The analysis supported with SPSS software much contributed to the finding. It had contributed to the data validation and correctness of the SPSS results. The software analyzed and compared the results of different variables used in the research questionnaires. Excel is also used to draw the pictures and calculate some analytical solutions.
The reliability of measurements specifies the amount to which it is without bias (error free) and hence ensures consistent measurement across time and across the various items in the instrument [8]. In reliability analysis, it has been checked for the stability and consistency of the data. In the case of reliability analysis, the researcher checked the accuracy and precision of the procedure of measurement. Reliability has numerous definitions and approaches, but in several environments, the concept comes to be consistent [8]. The measurement fulfills the requirements of reliability when it produces consistent results during data analysis procedure. The reliability is determined through Cranach’s alpha as shown in Table 2.
Internal consistency and reliability test of questionnaires items.
K stands for knowledge; M, management; T, technology; C, collaboration; P, policy, standards, and regulation; H, hazards and accident conditions; PPE, personal protective equipment.
Cronbach’s alpha is a measure of internal consistency, i.e., how closely related a set of items are as a group [11]. It is considered to be a measure of scale reliability. The reliability of internal consistency most of the time is measured based on the Cronbach’s alpha value. Reliability coefficient of 0.70 and above is considered “acceptable” in most research situations [12]. In this study, reliability analysis for internal consistency of Likert-scale measurement after deleting 13 items was found similar; the reliability coefficients were found for 76 items were 0.964 and for the individual groupings made shown in Table 2. It was also found internally consistent using the Cronbach’s alpha test. Table 2 shows the internal consistency of the seven major instruments in which their reliability falls in the acceptable range for this research.
Face validity used as defined by Babbie [13] is an indicator that makes it seem a reasonable measure of some variables, and it is the subjective judgment that the instrument measures what it intends to measure in terms of relevance [14]. Thus, the researcher ensured, in this study, when developing the instruments that uncertainties were eliminated by using appropriate words and concepts in order to enhance clarity and general suitability [14]. Furthermore, the researcher submitted the instruments to the research supervisor and the joint supervisor who are both occupational health experts, to ensure validity of the measuring instruments and determine whether the instruments could be considered valid on face value.
In this study, the researcher was guided by reviewed literature related to compliance with the occupational health and safety conditions and data collection methods before he could develop the measuring instruments. In addition, the pretest study that was conducted prior to the main study assisted the researcher to avoid uncertainties of the contents in the data collection measuring instruments. A thorough inspection of the measuring instruments by the statistician and the researcher’s supervisor and joint experts, to ensure that all concepts pertaining to the study were included, ensured that the instruments were enriched.
Insight has been given to the data collectors on how to approach companies, and many of the questionnaires were distributed through MSc students at Addis Ababa Institute of Technology (AAiT) and manufacturing industries’ experience experts. This made the data quality reliable as it has been continually discussed with them. Pretesting for questionnaire was done on 10 workers to assure the quality of the data and for improvement of data collection tools. Supervision during data collection was done to understand how the data collectors are handling the questionnaire, and each filled questionnaires was checked for its completeness, accuracy, clarity, and consistency on a daily basis either face-to-face or by phone/email. The data expected in poor quality were rejected out of the acting during the screening time. Among planned 267 questionnaires, 189 were responded back. Finally, it was analyzed by the principal investigator.
The data were collected from the company representative with the knowledge of OSH. Articles written in English and Amharic were included in this study. Database information obtained in relation to articles and those who have OSH area such as interventions method, method of accident identification, impact of occupational accidents, types of occupational injuries/disease, and impact of occupational accidents, and disease on productivity and costs of company and have used at least one form of feedback mechanism. No specific time period was chosen in order to access all available published papers. The questionnaire statements which are similar in the questionnaire have been rejected from the data analysis.
Ethical clearance was obtained from the School of Mechanical and Industrial Engineering, Institute of Technology, Addis Ababa University. Official letters were written from the School of Mechanical and Industrial Engineering to the respective manufacturing industries. The purpose of the study was explained to the study subjects. The study subjects were told that the information they provided was kept confidential and that their identities would not be revealed in association with the information they provided. Informed consent was secured from each participant. For bad working environment assessment findings, feedback will be given to all manufacturing industries involved in the study. There is a plan to give a copy of the result to the respective study manufacturing industries’ and ministries’ offices. The respondents’ privacy and their responses were not individually analyzed and included in the report.
The result of this study will be presented to the Addis Ababa University, AAiT, School of Mechanical and Industrial Engineering. It will also be communicated to the Ethiopian manufacturing industries, Ministry of Labor and Social Affair, Ministry of Industry, and Ministry of Health from where the data was collected. The result will also be availed by publication and online presentation in Google Scholars. To this end, about five articles were published and disseminated to the whole world.
The research methodology and design indicated overall process of the flow of the research for the given study. The data sources and data collection methods were used. The overall research strategies and framework are indicated in this research process from problem formulation to problem validation including all the parameters. It has laid some foundation and how research methodology is devised and framed for researchers. This means, it helps researchers to consider it as one of the samples and models for the research data collection and process from the beginning of the problem statement to the research finding. Especially, this research flow helps new researchers to the research environment and methodology in particular.
There is no “conflict of interest.”
"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality. Throughout the world, we are seeing progress in attracting, retaining, and promoting women in STEMM. IntechOpen are certainly supporting this work globally by empowering all scientists and ensuring that women are encouraged and enabled to publish and take leading roles within the scientific community." Dr. Catrin Rutland, University of Nottingham, UK
",metaTitle:"Advantages of Publishing with IntechOpen",metaDescription:"We have more than a decade of experience in Open Access publishing. \n\n ",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"We have more than a decade of experience in Open Access publishing. The advantages of publishing with IntechOpen include:
\\n\\nOur platform – IntechOpen is the world’s leading publisher of OA books, built by scientists, for scientists.
\\n\\nOur reputation – Everything we publish goes through a two-stage peer review process. We’re proud to count Nobel laureates among our esteemed authors. We meet European Commission standards for funding, and the research we’ve published has been funded by the Bill and Melinda Gates Foundation and the Wellcome Trust, among others. IntechOpen is a member of all relevant trade associations (including the STM Association and the Association of Learned and Professional Society Publishers) and has a selection of books indexed in Web of Science's Book Citation Index.
\\n\\nOur expertise – We’ve published more than 4,500 books by more than 118,000 authors and editors.
\\n\\nOur reach – Our books have more than 130 million downloads and more than 146,150 Web of Science citations. We increase citations via indexing in all the major databases, including the Book Citation Index at Web of Science and Google Scholar.
\\n\\nOur services – The support we offer our authors and editors is second to none. Each book in our program receives the following:
\\n\\nOur end-to-end publishing service frees our authors and editors to focus on what matters: research. We empower them to shape their fields and connect with the global scientific community.
\\n\\n"In developing countries until now, advancement in science has been very limited, because insufficient economic resources are dedicated to science and education. These limitations are more marked when the scientists are women. In order to develop science in the poorest countries and decrease the gender gap that exists in scientific fields, Open Access networks like IntechOpen are essential. Free access to scientific research could contribute to ameliorating difficult life conditions and breaking down barriers." Marquidia Pacheco, National Institute for Nuclear Research (ININ), Mexico
\\n\\nInterested? Contact Ana Pantar (book.idea@intechopen.com) for more information.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'We have more than a decade of experience in Open Access publishing. The advantages of publishing with IntechOpen include:
\n\nOur platform – IntechOpen is the world’s leading publisher of OA books, built by scientists, for scientists.
\n\nOur reputation – Everything we publish goes through a two-stage peer review process. We’re proud to count Nobel laureates among our esteemed authors. We meet European Commission standards for funding, and the research we’ve published has been funded by the Bill and Melinda Gates Foundation and the Wellcome Trust, among others. IntechOpen is a member of all relevant trade associations (including the STM Association and the Association of Learned and Professional Society Publishers) and has a selection of books indexed in Web of Science's Book Citation Index.
\n\nOur expertise – We’ve published more than 4,500 books by more than 118,000 authors and editors.
\n\nOur reach – Our books have more than 130 million downloads and more than 146,150 Web of Science citations. We increase citations via indexing in all the major databases, including the Book Citation Index at Web of Science and Google Scholar.
\n\nOur services – The support we offer our authors and editors is second to none. Each book in our program receives the following:
\n\nOur end-to-end publishing service frees our authors and editors to focus on what matters: research. We empower them to shape their fields and connect with the global scientific community.
\n\n"In developing countries until now, advancement in science has been very limited, because insufficient economic resources are dedicated to science and education. These limitations are more marked when the scientists are women. In order to develop science in the poorest countries and decrease the gender gap that exists in scientific fields, Open Access networks like IntechOpen are essential. Free access to scientific research could contribute to ameliorating difficult life conditions and breaking down barriers." Marquidia Pacheco, National Institute for Nuclear Research (ININ), Mexico
\n\nInterested? Contact Ana Pantar (book.idea@intechopen.com) for more information.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5775},{group:"region",caption:"Middle and South America",value:2,count:5238},{group:"region",caption:"Africa",value:3,count:1721},{group:"region",caption:"Asia",value:4,count:10409},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15805}],offset:12,limit:12,total:118373},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"23"},books:[{type:"book",id:"10656",title:"Intellectual Property",subtitle:null,isOpenForSubmission:!0,hash:"135df9b403b125a6458eba971faab3f6",slug:null,bookSignature:"Dr. Sakthivel Lakshmana Prabu and Dr. Suriyaprakash TNK",coverURL:"https://cdn.intechopen.com/books/images_new/10656.jpg",editedByType:null,editors:[{id:"91590",title:"Dr.",name:"Sakthivel",surname:"Lakshmana Prabu",slug:"sakthivel-lakshmana-prabu",fullName:"Sakthivel Lakshmana Prabu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10658",title:"Multilingualism",subtitle:null,isOpenForSubmission:!0,hash:"a6bf171e05831c00f8687891ab1b10b5",slug:null,bookSignature:"Prof. Xiaoming Jiang",coverURL:"https://cdn.intechopen.com/books/images_new/10658.jpg",editedByType:null,editors:[{id:"189844",title:"Prof.",name:"Xiaoming",surname:"Jiang",slug:"xiaoming-jiang",fullName:"Xiaoming Jiang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10660",title:"Heritage - New Paradigm",subtitle:null,isOpenForSubmission:!0,hash:"d0b747909f95bd54d009ed0838c38f84",slug:null,bookSignature:"Prof. Daniela Turcanu-Carutiu",coverURL:"https://cdn.intechopen.com/books/images_new/10660.jpg",editedByType:null,editors:[{id:"176482",title:"Prof.",name:"Daniela",surname:"Turcanu-Carutiu",slug:"daniela-turcanu-carutiu",fullName:"Daniela Turcanu-Carutiu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:16},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:4},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:18},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:3},popularBooks:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5240},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"479",title:"Bioorganic Chemistry",slug:"chemistry-analytical-chemistry-bioorganic-chemistry",parent:{title:"Analytical Chemistry",slug:"chemistry-analytical-chemistry"},numberOfBooks:3,numberOfAuthorsAndEditors:86,numberOfWosCitations:94,numberOfCrossrefCitations:35,numberOfDimensionsCitations:99,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"chemistry-analytical-chemistry-bioorganic-chemistry",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8637",title:"Recent Advances in Analytical Chemistry",subtitle:null,isOpenForSubmission:!1,hash:"9d61b693f14e24d81342f6c36fc5ba32",slug:"recent-advances-in-analytical-chemistry",bookSignature:"Muharrem Ince and Olcay Kaplan Ince",coverURL:"https://cdn.intechopen.com/books/images_new/8637.jpg",editedByType:"Edited by",editors:[{id:"258431",title:"Associate Prof.",name:"Muharrem",middleName:null,surname:"Ince",slug:"muharrem-ince",fullName:"Muharrem Ince"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6621",title:"Electrophoresis",subtitle:"Life Sciences Practical Applications",isOpenForSubmission:!1,hash:"f56a7cec216143862d31daab30431b44",slug:"electrophoresis-life-sciences-practical-applications",bookSignature:"Oana-Maria Boldura and Cornel Baltă",coverURL:"https://cdn.intechopen.com/books/images_new/6621.jpg",editedByType:"Edited by",editors:[{id:"189429",title:"Prof.",name:"Oana-Maria",middleName:null,surname:"Boldura",slug:"oana-maria-boldura",fullName:"Oana-Maria Boldura"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"641",title:"Chemometrics in Practical Applications",subtitle:null,isOpenForSubmission:!1,hash:"f7572edde10624ccd785aa13aa74d9fe",slug:"chemometrics-in-practical-applications",bookSignature:"Kurt Varmuza",coverURL:"https://cdn.intechopen.com/books/images_new/641.jpg",editedByType:"Edited by",editors:[{id:"87198",title:"Dr.",name:"Kurt",middleName:null,surname:"Varmuza",slug:"kurt-varmuza",fullName:"Kurt Varmuza"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:3,mostCitedChapters:[{id:"33607",doi:"10.5772/31896",title:"Analysis of Chemical Processes, Determination of the Reaction Mechanism and Fitting of Equilibrium and Rate Constants",slug:"analysis-of-chemical-processes-determination-of-the-reaction-mechanism-and-fitting-of-equilibrium-an",totalDownloads:3198,totalCrossrefCites:9,totalDimensionsCites:19,book:{slug:"chemometrics-in-practical-applications",title:"Chemometrics in Practical Applications",fullTitle:"Chemometrics in Practical Applications"},signatures:"Marcel Maeder and Peter King",authors:[{id:"89226",title:"Prof.",name:"Marcel",middleName:null,surname:"Maeder",slug:"marcel-maeder",fullName:"Marcel Maeder"},{id:"153800",title:"Dr.",name:"Peter",middleName:null,surname:"King",slug:"peter-king",fullName:"Peter King"}]},{id:"33614",doi:"10.5772/34148",title:"Chemometrics in Food Technology",slug:"chemometrics-in-food-technology",totalDownloads:3388,totalCrossrefCites:6,totalDimensionsCites:19,book:{slug:"chemometrics-in-practical-applications",title:"Chemometrics in Practical Applications",fullTitle:"Chemometrics in Practical Applications"},signatures:"Riccardo Guidetti, Roberto Beghi and Valentina Giovenzana",authors:[{id:"98921",title:"Prof.",name:"Riccardo",middleName:null,surname:"Guidetti",slug:"riccardo-guidetti",fullName:"Riccardo Guidetti"},{id:"101841",title:"Dr.",name:"Roberto",middleName:null,surname:"Beghi",slug:"roberto-beghi",fullName:"Roberto Beghi"},{id:"127538",title:"Dr.",name:"Valentina",middleName:null,surname:"Giovenzana",slug:"valentina-giovenzana",fullName:"Valentina Giovenzana"}]},{id:"33609",doi:"10.5772/33265",title:"Experimental Optimization and Response Surfaces",slug:"experimental-optimization-and-response-surfaces",totalDownloads:11830,totalCrossrefCites:0,totalDimensionsCites:8,book:{slug:"chemometrics-in-practical-applications",title:"Chemometrics in Practical Applications",fullTitle:"Chemometrics in Practical Applications"},signatures:"Veli-Matti Tapani Taavitsainen",authors:[{id:"94676",title:"Dr.",name:"Veli-Matti",middleName:null,surname:"Taavitsainen",slug:"veli-matti-taavitsainen",fullName:"Veli-Matti Taavitsainen"}]}],mostDownloadedChaptersLast30Days:[{id:"63893",title:"Quantitative and Qualitative LC-High-Resolution MS: The Technological and Biological Reasons for a Shift of Paradigm",slug:"quantitative-and-qualitative-lc-high-resolution-ms-the-technological-and-biological-reasons-for-a-sh",totalDownloads:1265,totalCrossrefCites:2,totalDimensionsCites:7,book:{slug:"recent-advances-in-analytical-chemistry",title:"Recent Advances in Analytical Chemistry",fullTitle:"Recent Advances in Analytical Chemistry"},signatures:"Bertrand Rochat",authors:[{id:"268132",title:"Dr.",name:"Bertrand",middleName:null,surname:"Rochat",slug:"bertrand-rochat",fullName:"Bertrand Rochat"}]},{id:"66038",title:"Aptamers for Diagnostics with Applications for Infectious Diseases",slug:"aptamers-for-diagnostics-with-applications-for-infectious-diseases",totalDownloads:997,totalCrossrefCites:3,totalDimensionsCites:5,book:{slug:"recent-advances-in-analytical-chemistry",title:"Recent Advances in Analytical Chemistry",fullTitle:"Recent Advances in Analytical Chemistry"},signatures:"Muslum Ilgu, Rezzan Fazlioglu, Meric Ozturk, Yasemin Ozsurekci\nand Marit Nilsen-Hamilton",authors:[{id:"272293",title:"Dr.",name:"Muslum",middleName:null,surname:"Ilgu",slug:"muslum-ilgu",fullName:"Muslum Ilgu"},{id:"272326",title:"Prof.",name:"Marit",middleName:null,surname:"Nilsen-Hamilton",slug:"marit-nilsen-hamilton",fullName:"Marit Nilsen-Hamilton"},{id:"290213",title:"Mr.",name:"Meric",middleName:null,surname:"Ozturk",slug:"meric-ozturk",fullName:"Meric Ozturk"},{id:"290214",title:"Ms.",name:"Rezzan",middleName:null,surname:"Fazlioglu",slug:"rezzan-fazlioglu",fullName:"Rezzan Fazlioglu"},{id:"290215",title:"Prof.",name:"Yasemin",middleName:null,surname:"Ozsurekci",slug:"yasemin-ozsurekci",fullName:"Yasemin Ozsurekci"}]},{id:"60438",title:"Peculiarities of SDS-PAGE of Titin/Connectin",slug:"peculiarities-of-sds-page-of-titin-connectin",totalDownloads:509,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"electrophoresis-life-sciences-practical-applications",title:"Electrophoresis",fullTitle:"Electrophoresis - Life Sciences Practical Applications"},signatures:"Ivan M. Vikhlyantsev and Zoya A. Podlubnaya",authors:[{id:"243028",title:"Dr.",name:"Ivan",middleName:null,surname:"Vikhlyantsev",slug:"ivan-vikhlyantsev",fullName:"Ivan Vikhlyantsev"},{id:"243031",title:"Prof.",name:"Zoya",middleName:null,surname:"Podlubnaya",slug:"zoya-podlubnaya",fullName:"Zoya Podlubnaya"}]},{id:"66021",title:"Bioanalytical Method Development and Validation: A Review",slug:"bioanalytical-method-development-and-validation-a-review",totalDownloads:1519,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"recent-advances-in-analytical-chemistry",title:"Recent Advances in Analytical Chemistry",fullTitle:"Recent Advances in Analytical Chemistry"},signatures:"Mahesh Mukund Deshpande, Veena Sanjay Kasture, Mahalaxmi Mohan\nand Macchindra J. Chavan",authors:[{id:"270956",title:"Mr.",name:"Mahesh",middleName:null,surname:"Deshpande",slug:"mahesh-deshpande",fullName:"Mahesh Deshpande"},{id:"271075",title:"Dr.",name:"Veena",middleName:null,surname:"Kasture",slug:"veena-kasture",fullName:"Veena Kasture"},{id:"271076",title:"Prof.",name:"Mahalaxmi",middleName:null,surname:"Mohan",slug:"mahalaxmi-mohan",fullName:"Mahalaxmi Mohan"},{id:"271077",title:"Dr.",name:"Machhindra",middleName:null,surname:"Chavan",slug:"machhindra-chavan",fullName:"Machhindra Chavan"}]},{id:"61001",title:"Lactate Dehydrogenase Isoenzyme Electrophoretic Pattern in Serum and Tissues of Mammalian and Bird Origin",slug:"lactate-dehydrogenase-isoenzyme-electrophoretic-pattern-in-serum-and-tissues-of-mammalian-and-bird-o",totalDownloads:792,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"electrophoresis-life-sciences-practical-applications",title:"Electrophoresis",fullTitle:"Electrophoresis - Life Sciences Practical Applications"},signatures:"Dagmar Heinová, Zuzana Kostecká and Eva Petrovová",authors:[{id:"174872",title:"Dr.",name:"Eva",middleName:null,surname:"Petrovova",slug:"eva-petrovova",fullName:"Eva Petrovova"},{id:"216044",title:"Prof.",name:"Zuzana",middleName:null,surname:"Kostecká",slug:"zuzana-kostecka",fullName:"Zuzana Kostecká"},{id:"237340",title:"Prof.",name:"Dagmar",middleName:null,surname:"Heinová",slug:"dagmar-heinova",fullName:"Dagmar Heinová"}]},{id:"65007",title:"Characterization of Whole and Fragmented Wild-Type Porcine IgG",slug:"characterization-of-whole-and-fragmented-wild-type-porcine-igg",totalDownloads:577,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"recent-advances-in-analytical-chemistry",title:"Recent Advances in Analytical Chemistry",fullTitle:"Recent Advances in Analytical Chemistry"},signatures:"Claudia Nelson, Raymond Bacala, Baylie Gigolyk, Evelyn Ang, Haley Neustaeter,\nEmy Komatsu, Oleg Krokhin, Dave Hatcher and Hélène Perreault",authors:[{id:"271050",title:"Prof.",name:"Hélène",middleName:null,surname:"Perreault",slug:"helene-perreault",fullName:"Hélène Perreault"},{id:"283187",title:"Ms.",name:"Claudia",middleName:null,surname:"Nelson",slug:"claudia-nelson",fullName:"Claudia Nelson"},{id:"283190",title:"Mr.",name:"Raymond",middleName:null,surname:"Bacala",slug:"raymond-bacala",fullName:"Raymond Bacala"},{id:"283191",title:"Ms.",name:"Baylie",middleName:null,surname:"Gigolyk",slug:"baylie-gigolyk",fullName:"Baylie Gigolyk"},{id:"283192",title:"Ms.",name:"Evelyn",middleName:null,surname:"Ang",slug:"evelyn-ang",fullName:"Evelyn Ang"},{id:"283193",title:"Ms.",name:"Haley",middleName:null,surname:"Neustaeter",slug:"haley-neustaeter",fullName:"Haley Neustaeter"},{id:"283195",title:"MSc.",name:"Emy",middleName:null,surname:"Komatsu",slug:"emy-komatsu",fullName:"Emy Komatsu"},{id:"283196",title:"Prof.",name:"Oleg",middleName:null,surname:"Krokhin",slug:"oleg-krokhin",fullName:"Oleg Krokhin"},{id:"283200",title:"Dr.",name:"Dave",middleName:null,surname:"Hatcher",slug:"dave-hatcher",fullName:"Dave Hatcher"}]},{id:"60460",title:"Improving Tribological Behavior of Porous Anodic Film by Electrophoretic Impregnation by a Tio2 Synthesized Nanoparticle",slug:"improving-tribological-behavior-of-porous-anodic-film-by-electrophoretic-impregnation-by-a-tio2-synt",totalDownloads:503,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"electrophoresis-life-sciences-practical-applications",title:"Electrophoresis",fullTitle:"Electrophoresis - Life Sciences Practical Applications"},signatures:"Koubaa Anouar and Bargui Mansour",authors:[{id:"239347",title:"Mr.",name:"Anouar",middleName:null,surname:"Koubaa",slug:"anouar-koubaa",fullName:"Anouar Koubaa"},{id:"239360",title:"Dr.",name:"Mansour",middleName:null,surname:"Bargui",slug:"mansour-bargui",fullName:"Mansour Bargui"}]},{id:"33615",title:"Metabolomics and Chemometrics as Tools for Chemo(bio)diversity Analysis - Maize Landraces and Propolis",slug:"metabolomics-and-chemometrics-as-tools-for-chemo-bio-diversity-analysis-maize-landraces-and-propolis",totalDownloads:3007,totalCrossrefCites:1,totalDimensionsCites:4,book:{slug:"chemometrics-in-practical-applications",title:"Chemometrics in Practical Applications",fullTitle:"Chemometrics in Practical Applications"},signatures:"Marcelo Maraschin, Shirley Kuhnen, Priscilla M.M. Lemos, Simone Kobe de Oliveira, Diego A. da Silva, Maíra M. Tomazzoli, Ana Carolina V. Souza, Rúbia Mara Pinto, Virgílio G. Uarrota, Ivanir Cella, Antônio G. Ferreira, Amélia R.S. Zeggio, Maria B.R. Veleirinho, Ivone Delgadillo and Flavia A. Vieira",authors:[{id:"92013",title:"Dr.",name:"Marcelo",middleName:null,surname:"Maraschin",slug:"marcelo-maraschin",fullName:"Marcelo Maraschin"}]},{id:"65177",title:"Modern Extraction and Cleanup Methods of Veterinary Drug Residues in Food Samples of Animal Origin",slug:"modern-extraction-and-cleanup-methods-of-veterinary-drug-residues-in-food-samples-of-animal-origin",totalDownloads:923,totalCrossrefCites:4,totalDimensionsCites:4,book:{slug:"recent-advances-in-analytical-chemistry",title:"Recent Advances in Analytical Chemistry",fullTitle:"Recent Advances in Analytical Chemistry"},signatures:"Babra Moyo and Nikita Tawanda Tavengwa",authors:[{id:"282181",title:"Dr.",name:"Nikita",middleName:null,surname:"Tavengwa",slug:"nikita-tavengwa",fullName:"Nikita Tavengwa"},{id:"282292",title:"Ms.",name:"Barbara",middleName:null,surname:"Moyo",slug:"barbara-moyo",fullName:"Barbara Moyo"}]},{id:"59738",title:"Spontaneous Unexplained Preterm Labor with Intact Membrane: Finding Protein Biomarkers through Placenta Proteome",slug:"spontaneous-unexplained-preterm-labor-with-intact-membrane-finding-protein-biomarkers-through-placen",totalDownloads:568,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"electrophoresis-life-sciences-practical-applications",title:"Electrophoresis",fullTitle:"Electrophoresis - Life Sciences Practical Applications"},signatures:"Niu J. Tan, Leona D.J. Daim, Amilia A.M. Jamil, Norhafizah\nMohtarrudin and Karuppiah Thilakavathy",authors:[{id:"195911",title:"Associate Prof.",name:"Thilakavathy",middleName:null,surname:"Karuppiah",slug:"thilakavathy-karuppiah",fullName:"Thilakavathy Karuppiah"},{id:"232571",title:"MSc.",name:"Tan",middleName:null,surname:"Niu Jin",slug:"tan-niu-jin",fullName:"Tan Niu Jin"},{id:"232577",title:"Dr.",name:"Amilia Afzan",middleName:null,surname:"Mohd Jamil",slug:"amilia-afzan-mohd-jamil",fullName:"Amilia Afzan Mohd Jamil"},{id:"232580",title:"Dr.",name:"Norhafizah",middleName:null,surname:"Mohtarrudin",slug:"norhafizah-mohtarrudin",fullName:"Norhafizah Mohtarrudin"},{id:"232582",title:"Dr.",name:"Leona Daniela Jeffery",middleName:null,surname:"Daim",slug:"leona-daniela-jeffery-daim",fullName:"Leona Daniela Jeffery Daim"}]}],onlineFirstChaptersFilter:{topicSlug:"chemistry-analytical-chemistry-bioorganic-chemistry",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/98769/naohiro-iwata",hash:"",query:{},params:{id:"98769",slug:"naohiro-iwata"},fullPath:"/profiles/98769/naohiro-iwata",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()