\r\n\trescue missions especially in difficult to access areas. Precise control of aerial robotic systems with multiple degrees of freedom arms is a challenging task due to the fact that the translational and rotational dynamics of the aerial vehicle are strongly coupled with the dynamics of the manipulator. In order to accomplish complex missions in presence of uncertainties in the environment, to achieve better maneuverability and precise 3D position and attitude control, nonlinear control techniques have been found effective. Swarm robotics (multiple robot working together) is another exciting application of the aerial robotics. This book intends to provide a wide range of readers in applied mathematics and various engineering disciplines an excellent survey of recent studies of aerial robotic systems.
",isbn:"978-1-78984-567-9",printIsbn:"978-1-78984-566-2",pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"53805f091c3107536edd2579c9987649",bookSignature:"Dr. Mahmut Reyhanoglu and Dr. Geert De Cubber",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/7792.jpg",keywords:"Nonlinear Dynamics, Lagrangian Formulation, Visual Tracking, Way Point, Lyapunov Technique, Backstepping, Surveilance, Emergency Response, Crop Monitoring, Sliding Mode Observer, Nonlinear Filter, Coordinated Control, Leader-Follower",numberOfDownloads:1023,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"December 11th 2018",dateEndSecondStepPublish:"January 15th 2019",dateEndThirdStepPublish:"March 16th 2019",dateEndFourthStepPublish:"May 21st 2019",dateEndFifthStepPublish:"July 20th 2019",remainingDaysToSecondStep:"a year",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,editors:[{id:"15068",title:"Dr.",name:"Mahmut",middleName:null,surname:"Reyhanoglu",slug:"mahmut-reyhanoglu",fullName:"Mahmut Reyhanoglu",profilePictureURL:"https://mts.intechopen.com/storage/users/15068/images/system/15068.png",biography:"Mahmut Reyhanoglu is presently the Glaxo Wellcome Distinguished Professor of Engineering at the University of North Carolina at Asheville, North Carolina, USA. His extensive research makes use of advanced mathematical techniques and models that arise from fundamental physical principles. His major research interests are in the areas of nonlinear dynamical systems and control theory, with particular emphasis on applications to mechatronics and aerospace systems. He has edited 3 books, and authored/co-authored several book chapters and over 130 peer-reviewed journal/proceedings papers. He served on the IEEE Transactions on Automatic Control Editorial Board and on the IEEE Control Systems Society Conference Editorial Board as an Associate Editor. He also served as International Program Committee member for several conferences and as a member of AIAA Guidance, Navigation, and Control Technical Committee. He is currently serving as an editor of International Journal of Aerospace Engineering.",institutionString:"University of North Carolina",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"3",institution:{name:"University of North Carolina at Asheville",institutionURL:null,country:{name:"United States of America"}}}],coeditorOne:{id:"81429",title:"Dr.",name:"Geert",middleName:null,surname:"De Cubber",slug:"geert-de-cubber",fullName:"Geert De Cubber",profilePictureURL:"https://mts.intechopen.com/storage/users/81429/images/system/81429.png",biography:"Geert De Cubber works at the Unmanned Vehicle Centre of the Belgian Royal Military Academy, where he is leading the research activities of the research group on robotics for high-risk applications. The specialization of this research unit is the development of robots for applications like search and rescue and humanitarian demining. Geert’s main task is to apply computer vision techniques to mobile robots, rendering these robots able to perceive, analyze, and – to some degree – understand their environment.\nGeert was the coordinator of the EU-FP7-ICARUS projectnwhich was a large-scale EU-project dealing with the development of unmanned tools (aerial, ground and marine robots) which can assist search and rescue workers to save human survivors after a major crisis (earthquake, tsunami, typhoon, shipwreck, etc.).",institutionString:"Royal Military Academy",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"242",title:"Aerial Robotics",slug:"aerial-robotics"}],chapters:[{id:"67435",title:"A System for Continuous Underground Site Mapping and Exploration",slug:"a-system-for-continuous-underground-site-mapping-and-exploration",totalDownloads:136,totalCrossrefCites:0,authors:[null]},{id:"67297",title:"Decentralised Scalable Search for a Hazardous Source in Turbulent Conditions",slug:"decentralised-scalable-search-for-a-hazardous-source-in-turbulent-conditions",totalDownloads:137,totalCrossrefCites:0,authors:[null]},{id:"67003",title:"Vision-Based Autonomous Control Schemes for Quadrotor Unmanned Aerial Vehicle",slug:"vision-based-autonomous-control-schemes-for-quadrotor-unmanned-aerial-vehicle",totalDownloads:162,totalCrossrefCites:0,authors:[null]},{id:"67705",title:"Advanced UAVs Nonlinear Control Systems and Applications",slug:"advanced-uavs-nonlinear-control-systems-and-applications",totalDownloads:312,totalCrossrefCites:0,authors:[null]},{id:"68391",title:"Robotic Search and Rescue through In-Pipe Movement",slug:"robotic-search-and-rescue-through-in-pipe-movement",totalDownloads:280,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"194666",firstName:"Nina",lastName:"Kalinic Babic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/194666/images/4750_n.jpg",email:"nina@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6651",title:"Nonlinear Systems",subtitle:"Modeling, Estimation, and Stability",isOpenForSubmission:!1,hash:"085cfe19a4bd48a9e8034b2e5cc17172",slug:"nonlinear-systems-modeling-estimation-and-stability",bookSignature:"Mahmut Reyhanoglu",coverURL:"https://cdn.intechopen.com/books/images_new/6651.jpg",editedByType:"Edited by",editors:[{id:"15068",title:"Dr.",name:"Mahmut",surname:"Reyhanoglu",slug:"mahmut-reyhanoglu",fullName:"Mahmut Reyhanoglu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5708",title:"Computational and Experimental Studies of Acoustic Waves",subtitle:null,isOpenForSubmission:!1,hash:"518d2ac3c49f5c4c48d4f3f3b0729232",slug:"computational-and-experimental-studies-of-acoustic-waves",bookSignature:"Mahmut Reyhanoglu",coverURL:"https://cdn.intechopen.com/books/images_new/5708.jpg",editedByType:"Edited by",editors:[{id:"15068",title:"Dr.",name:"Mahmut",surname:"Reyhanoglu",slug:"mahmut-reyhanoglu",fullName:"Mahmut Reyhanoglu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5513",title:"Dynamical Systems",subtitle:"Analytical and Computational Techniques",isOpenForSubmission:!1,hash:"9ba4129f30ef1b92fd4b7ae193781183",slug:"dynamical-systems-analytical-and-computational-techniques",bookSignature:"Mahmut Reyhanoglu",coverURL:"https://cdn.intechopen.com/books/images_new/5513.jpg",editedByType:"Edited by",editors:[{id:"15068",title:"Dr.",name:"Mahmut",surname:"Reyhanoglu",slug:"mahmut-reyhanoglu",fullName:"Mahmut Reyhanoglu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"61791",title:"Chemically Exfoliated Graphene Nanosheets for Flexible Electrode Applications",doi:"10.5772/intechopen.77284",slug:"chemically-exfoliated-graphene-nanosheets-for-flexible-electrode-applications",body:'\nAtomically thin graphene oxide (GO), produced by oxidation and exfoliation of graphite powder, has been intensively studied for applications in electrodes, templates for hybrid materials, interfacial modifiers, three-dimensional structures, and so on [1, 2, 3, 4]. Its performance as an electrode material is determined by its chemical and structural states. The topological defects present in the basal plane of reduced GO (RGO) can significantly affect its electrical and electrochemical properties. As shown in Figure 1, GO nanosheets are typically produced by oxidizing graphite using strong acids and oxidants, followed by exfoliation in aqueous solutions [5, 6, 7, 8]. It should be noted that, the characteristics of GO and RGO nanosheets critically depend on the oxidation states of graphite oxide and its exfoliation. Moreover, for real-life applications, the dispersion stability of RGO inks or pastes is a prerequisite. The dispersion of high-quality chemically exfoliated graphene (CEG) or RGO in polar solvents, which contain few oxygen functional groups and defects, has been impossible due to the hydrophobic nature of graphene without post treatment or addition of dispersant molecules. The stability of RGO dispersion is one of the crucial factors for preserving their unique properties such as electrical conductivity and mechanical strength.
\nProduction schematics of chemically exfoliated graphene from graphite. Here, GIC stands for graphite intercalation compound and LIB for lithium ion batteries.
Therefore, this chapter describes some of the research on CEG nanosheets conducted over the past 8 years that addresses these and other challenges, with an emphasis on our own efforts. We began with the efficient fabrication method of single layer GO nanosheets from graphite, and then described the stable dispersion of RGO in solutions. Furthermore, we described the applications of GOs as p-type dopants, conductors and interfacial modifiers. We concluded with some discussion of future directions and the remaining challenges in chemically exfoliated graphene technologies.
\nConventional sonicators vigorously destroy the structure of GO, which results in producing small-sized GO nanosheets due to acoustical wave agitation in solution. An alternative way to minimize the destructive effect of exfoliation of graphite oxide is to use a homogenizer to apply a shear force in the solution (Figure 2(A)). The average lateral size of sonicated GO (SGO) nanosheets (a few square micrometers) was smaller than that of the homogenized GO (HGO) nanosheets (a few hundred square micrometers) in the optical images in Figure 2(B) and (C). The SGO nanosheets exhibited some agglomerated GO on the silicon substrate due to the small size distribution of the sheets. To confirm the exfoliation effects of HGO and SGO sheets, we carried out homogeneous dispersion of GO sheets in aqueous solution without using small size graphite powder (70 μm). The rheologically derived or sonicated exfoliation and dispersion of GO sheets was accomplished (Figure 1(d)) in an aqueous NaOH solution at pH 10 for 1 h. After diluting it using dimethylformamide (DMF), the RGO solution was prepared by chemical reduction with hydrazine for preparing transparent conducting films. The enhanced sheet resistance of the reduced HGO (HRGO) thin film was found to be 2.2 kΩ/sq. at 80% transmittance. The effective exfoliation method has great potential for application for high performance GO-based flexible electrodes.
\nFabrication of GO and RGO nanosheets by using different exfoliation methods. (A) Exfoliation of graphite oxide by sonication (S) or homogenization (H). (B) and (C) optical images of GO samples prepared by sonication (B) and homogenization (C) deposited on a 300-nm-thick SiO2 substrate (inset: AFM images of the GO sheets). (D) Fabrication of transparent conducting films (TCFs) with RGO nanosheets by the contact printing of filtrated RGO films. Here PDMS is polydimethylsiloxane, PET is polyethylene terephthalate, and RGO-TCFs are reduced graphene oxide transparent conductive films. The scale bars in (B) and (C) are 10 μm, and those in the respective insets are 2 μm [9].
Acoustic cavitation, also called sonication, has been used to fabricate two-dimensional (2-D) nanosheets via exfoliation of bulk-layered crystal materials in solution to fabricate fascinating materials such as graphene, transition metal dichalcogenides, and transition metal oxides. The high energetic transient acoustic cavitation; the formation, growth, and implosive collapse of bubbles at high ultrasonic intensities (10–30 W cm−2) in a liquid medium, allow to give physical effects on exfoliation of layered materials. However, the high energetic transient cavitation phenomenon can give a detrimental effect on 2D materials by generating defects on the surface, which decrease their electrical and other useful properties. Recently large (>10 μm) chemically modified graphene nanosheets have been developed from graphite oxide. These have fewer defects than those produced by other methods without requiring further separation processes and can be produced by combining ultrasonic acoustic cavitation with sufficient acoustic shearing and additional microbubbling by aeration in an extremely short time (10 min). It can be achieved by adjusting the ultrasound parameters (amplitude, time, and probe immersion depth) for the delivered power (related to temperature change (ΔT) Figure 3(a)), the acoustic flow rate, and the bubbling behavior in 200 mL water using conventional flat tip probes with a 12.7 mm diameter. In order to reduce the detrimental effect of transient cavitation, the probe tip was located at a 0.5 cm depth. Subsequently, the acoustic flow rate decreased from 0.62 to 0.47 m s−1 and then increased to 0.73 m s−1 at 100% amplitude, which was faster than the 10% amplitude at the 2.5 cm probe depth. Moreover, bubbling due to the liquid surface instability under acoustic oscillation is also helpful for the efficient exfoliation of graphite oxide. Bubbling by aeration at the liquid surface is also helpful for the dispersion of nanomaterials because bubbling can produce a greater shearing effect on the particles in suspension under an acoustic flow with lower energy. Figure 3(b) and (c) shows the scanning electron microscopy (SEM) images of exfoliated GO nanosheets under different cavitation conditions. The maximum size of GO was dramatically increased by adjusting the probe depth from 2.5 to 0.5 cm. At a probe depth of 2.5 cm, the lateral size of GO was less than 5 μm even at 10% amplitude after 10 min of sonication (Figure 3(b)) because of breakage in the stretched C–C or C–O–C bonds [10, 11] due to the high energetic physical phenomena of microjets and shock waves [12]. However, at a probe depth of 0.5 cm, GO nanosheets with a maximum 30 μm size were produced even at the high output power setting (amplitude 100%) by reducing the detrimental effect of the high energy cavitation process (Figure 3(c)).
\n(a) Temperature change (ΔT) over time during sonication of pure water and of a GO suspension containing different initial amounts of graphite oxide. (b) and (c) FESEM images of GO nanosheets fabricated using probe sonication by dipping probe into the liquid surface by 2.5 and 0.5 cm, respectively, for 10 min. The large GO nanosheet was fabricated at 0.5 probe depth condition. (d) Shear viscosity of GO paste samples showing different rheological behavior due to their sizes. (e) Raman spectra of the chemically reduced GO nanosheets demonstrating the effect of acoustic cavitation at different probe depth on the crystalline structure of RGO (f) breakage of GO nanosheet initiated at the defect site or from the sp3 hybridized region during probe sonication. (g) Real THz conductivity of the GO, SRGO, and LRGO films prepared by sonication with probe depths of 0.5 and 2.5 cm [13].
The problems associated with the aggregation of the RGO sheets in organic solvents were addressed by introducing noncovalent interactions among the sp2 carbons of the RGO sheets and the TiO2 precursor sol, as shown in Figure 4(a). Titanium dioxide is also a promising charge screening candidate because it can interact electrostatically with oxygen moieties causing charge trapping [14, 15]. The TiO2 precursor sol was prepared from a titanium isopropoxide (TIP)/acac stabilizer (1/5 molar ratio) solution, which was added to the GO solution. In order to determine the minimum amount of used TiO2 precursor for RGO dispersion, the varying amount of TiO2 precursor sols were added into the GO solution prior to hydrazine reduction. The weight ratio between GO and TIP in the precursor TiO2 sol was varied between 0 and 1.5. Just a 0.1 weight ratio was required to stabilize the RGO solution in dimethylformamide (DMF) after hydrazine reduction. This stable RGO/TiO2 precursor sol mixture can be deposited onto the large area substrate by air-spraying without postreduction process. Usually, RGO films are fabricated by deposition of GO nanosheets on the substratem, followed by thermal or chemical reduction at elevated temperatures. Moreover, direct deposition of RGO solution onto the substrate induces formation of wrinkled structures, which can decrease their electrical properties. However, wrinkle-free RGO/TiO2 hybrid multilayer films can be built up on SiO2 by automatic spray-coating. The electrical transport characteristics of the RGO and RGO/TiO2 hybrid films were investigated by preparing graphene field-effect transistors (FETs) on heavily doped Si substrates, which are commonly employed as gate electrodes. It is worth noting that the conductivity of the RGO film at the neutral charge point was maximized for GO/TIP (1/0.7 ratio) by inserting a thin TiO2 layer into the RGO multilayer film, despite the amorphous insulating characteristics of TiO2. This was due to the hole-doping effect caused by increasing the TiO2 amount between the RGO nanosheets, which was demonstrated by observing a significant blue shift of the G peaks in Raman spectra.
\n(a) Proposed mechanism for the dispersion of RGO sheets by the TiO2 precursor sol via a hydrophobic interaction. (b) Dispersion stability of RGO solution in DMF after chemical reduction with hydrazine monohydrate; gradual increase of absorbance of GO solution at 550 nm and vial images shows the stable dispersion of RGO dispersion. (c) UV–Vis absorption spectra of RGO/TiO2 hybrid multilayer films; the linear increase of absorption intensity shows the regular deposition of films by spraying. (d) C1s XPS spectra of GO, RGO reduced by hydrazine vapor (H-RGO), RGO/TIP:acac (TiO2 precursor), and RGO/TiO2 hybrid film thermally treated at 200°C [16].
The cation-π interaction on crystallized RGO, which has fewer defects and oxygen functional groups, can be enhanced the dispersion stability in various solvents due to Coulombic repulsion between the cations on the in-plane of graphene. (Jeong et al. [17]) Figure 5 shows the stable dispersion of RGO by monovalent cation–π interactions. The interactions did not directly occur on the basal plane of GO because the cations usually interact with the oxygen functional groups of highly oxidized GO (as described in Figure 5(a)–(c)). In order to effectively activate the cation interaction on π stage, the sp2 carbon state on the basal plane is exposed through the reduction process (Figure 5(a), (b), (d), and (e)). Therefore, mild reduction and aging processes are necessary to increase the six-membered sp2 carbon states as described in Figure 5(d). Here, the electrostatic binding enthalpy of cations to a π system (−ΔH = 19.2 kcal/mol) was higher than that that of water (−ΔH = 17.9 kcal/mol). As the aging time is optimized, GO can be formed due to the cation interacting GO (CIGO) as shown in Figure 5(e). Interestingly, the dispersion stability of noninteracting GO and CIGO were similar in aqueous solutions because of the presence of oxygen functional groups. However, the significant differences occurred after chemical reduction, which is described in Figure 5(c) and (e). These results show that the cations with interacting sp2 carbon did not desorb from the CIGO after the reduction process. Following the hydrazine reduction, the CIGO formed a dispersion of cation–π interacting RGO (CIRGO), whereas, the noninteracting GO aggregated in aqueous solution, as shown in Figure 5(c). Moreover, the atomic force microscopy (AFM) image of the single-layered CIGO in Figure 5(f) confirmed its 2 μm size and 0.9 nm thickness.
\n(a) Structure of graphite oxide, (b) as-exfoliated GO in NaOH solution, (c) highly interacting cations with oxygen functional groups. (a, b, d, e) procedure for obtaining the cation–π interacting GO. (d) Intermediate state of GO by mild deoxygenation aging in NaOH solution (e) decoration of cations on the partially reduced GO surface via a cation-π interaction. (f) FE-SEM image of CIGO on a silicon wafer (inset: AFM images of CIGO sheets). The scale bars in (f) and the inset are 2 μm [17].
For real-life applications of RGO nanosheets, alcohol-based formulations of graphene are sometimes needed for graphene processing if the use of harsh organic solvents is not possible. Alcoholic solvents are not good for the dispersion of RGO in solutions due to their solubility parameters. Therefore, for the stable dispersion of RGO in alcoholic solvents, dispersant molecules should be added before the chemical reduction of GO in solutions. Recently, it has been reported that hexamethyldisilazane (HMDS) is a good candidate for the dispersion of RGO in alcohol because HMDS can be easily hydrolyzed into trimethylsilanol and ammonia in the presence of water. Furthermore, for the reduction of GO in solutions, hydrazine can be in-situ synthesized in a GO suspension by mimicking a typical reaction cycle involving GO (using alternative ketone molecules as catalysts) and ammonia and hydrogen peroxide as reagents. Thus, HMDS can be used as a source of ammonia molecules for synthesizing hydrazine and dispersing RGO (Figure 6). The step-wise heating of the solution at 50 and 100°C is required to utilize keton groups in GO for in-situ synthesis of hydrazine molecules at high temperature for reduction of GO.
\nRoles of hexamethyldisilazane (HMDS): (i) ammonia source for the GO-assisted production of hydrazine upon the addition of hydrogen peroxide and (ii) RGO dispersion agent in ethanol, via hydrophobic interactions [18].
Highly concentrated colloidal suspensions of graphene nanosheets are of great interest for a variety of applications ranging from flexible electronics and conducting fibers to electrochemical electrodes for energy harvesting or storage devices. Unfortunately, many additives such as organic surfactants and polymeric dispersants should be added to prepare highly concentrated graphene pastes. These organic dispersant molecules can give detrimental effects on their electrical or thermal properties because graphene nanosheets can be separated by insulating organic materials if it is removed. Quadruple hydrogen bond (QHB) networks can overcome these issues for fabricating printable, spinnable, and chemically compatible conducting pastes containing high quality graphene nanosheets in organic solvents without the need for additional dispersion agents. Motivated by the self-assembly of donor-donor-acceptor-acceptor (DDAA) arrays of hydrogen bonding sites, GO nanosheets were functionalized using 2-ureido-4[1H]pyrimidinone (UHP) moieties to provide QHB motifs (Figure 7(a)). QHB arrays are much stronger than triple hydrogen bond arrays and are easily accessible synthetically. Figure 7(b) shows the well-dispersed RGO paste in DMF illustrating the striking synergy effect of QHB moieties into graphene nanosheets on the fabrication of dispersant-free RGO pastes. This unique paste can be used in electrochemical and printed electrodes and could be formed into flexible buckypaper.
\n(a) Synthetic scheme for fabrication of graphene nanosheets functionalized with 2-ureido-4[1H]pyrimidinone moieties via a sequential reaction with toluene diisocyanate (TDI) and 2-amino-4-hydroxy-6-methyl-pyrimidine (AHMP) to form. (b) Photographs of well-dispersed RGO paste and printed electrode on the plastic substrate [19].
Highly oxidized GO with electron-withdrawing groups can be utilized as a strong p-type dopant of nanocarbon materials such as carbon nanotubes (CNTs) and graphene because of the charge transfer interactions between sp2 carbon and the oxidative functional groups in GO [20, 21]. Doping nanocarbon materials with GO nanosheets have advantages: stable and strong p-doping that maintains the intrinsic properties of pristine CNT films and chemical vapor deposition (CVD)-graphene. Controlling the surface wetting properties of nanocarbon films is very important for their use in optoelectronic devices, which are fabricated by layering a hydrophilic material on top of hydrophobic carbon electrodes. Moreover, deposited GO nanosheets on porous CNT networks can reduce the surface roughness of the film. Further, it is worth noting that the doping state assisted by GO nanosheets is stable for more than 40 days at room temperature and atmospheric pressure compared to that doped with nitric acid. Figure 8 illustrates the advantage of GO nanosheets as p-type dopants for CVD-graphene. Graphene oxide doping decreased the sheet resistance of CVD-graphene from 600 to 292 Ω/sq. The doping effect of GO nanosheets on the CVD-graphene was demonstrated using Kelvin probe force microscopy (KPFM) and Raman spectroscopy results. The KPFM images associated with AFM images show that the surface potential of the graphene/single GO sheet is negatively shifted by 120 mV. The bright region in the Raman map of the 2D peak shows a p-doped area in a single GO nanosheet. The gate-dependent I-V characteristics of CVD-graphene and GO-doped CVD-graphene show that the hole mobility of CVD-graphene is almost unaffected by doping. The hole mobility of GO-coated graphene was found to be 3330 cm2/Vs, which is only slightly lower than that of pristine graphene (under equivalent device positions before GO coating), 3500 cm2/Vs. Graphene oxide nanosheets can be also used to modify the properties of single-walled carbon nanotube networks by p-doping, flattening the network surface, and making it hydrophilic. This is useful for fabricating optoelectronic devices onto GO modified graphene or single-walled carbon nanotube (SWCNT) films.
\n(a) Schematic diagram of graphene/GO film fabricated on an HMDS-treated SiO2/Si substrate. (b) SEM image of CVD-grown graphene transferred on a GO sheet. (c) Atomic force microscope image and height profile showing the thickness of GO nanosheet, (d) kelvin probe force microscopy, and (e) Raman map of the 2D-band shift of CVD-grown graphene on a GO single sheet. (f) Electrical conductance variation of GO- and HNO3-doped graphene with time at atmospheric pressure and room temperature. (g) Gate-dependent I-V characteristics of CVD-grown graphene and GO-doped graphene. (h) AFM images of CVD-grown graphene with and without GO [21].
For the fabrication of SWCNT patterns on hydrophilic substrates, partially reduced GO nanosheets are used as interfacial adhesive layers on hydrophilic SiO2 surfaces. Hydrophobic materials can be easily detached from hydrophilic substrates. Thus, to obtain stable interfacial structure, hydrophilic substrates are usually treated with surface modifiers such as silane coupling agents. In this context, the deposition of GO onto substrates and its partial reduction has several advantages. The partially reduced GO having hydroxyl and carboxyl groups can play as a role of the interfacial adhesive between the substrate and the deposited materials. Moreover, this process is scalable and straightforward because uniform SWCNT networks can be formed even by spraying on plastic substrates. In terms of optoelectronic device application, partially reduced GO can be used for the work function engineering with the conducting and semiconducting materials. Uniform GO films and patterns can be fabricated by blow-assisted spin coating and inkjet printing, respectively, and the surface energy of the GO surface can be modulated by thermal treatment in vacuum. The SWCNTs were selectively deposited onto partially reduced GO films with moderately hydrophobic properties as shown in Figure 9.
\nFESEM images of selectively deposited single-walled CNT films on partially reduced GO surfaces [22].
The hierarchical three-dimensional (3-D) structure for lithium ion battery (LIB) anodes has great potential for high electrochemical performances such as high-power densities and enhanced Coulomb’s rates (C-rates). The efficient monolithic structure has a large specific surface area with numerous active sites, stable multistacking with short diffusion length, and high percolation threshold with high electrical conductivity as shown in Figure 10(a). Unlike the porous-like graphene structuring on anode described in previous studies, monolithic graphene is similar to densely branched pine trees as shown in Figure 10(b). The structure has high mechanical strength and flexibility, as well as high adhesion stability on the current collector. Figure 10(c) shows the growth mechanism for the structure by freeze-drying with water-soluble polymer [23]. The monolithic graphene anodes induced ultrafast charge/discharge rates with outstanding cycling stability with high capacitance as seen in Figure 10(d) and (e). The fabrication method is simple and straightforward and suitable for high performance LIB anodes.
\n(a) FE-SEM image for monolithic RGO structure (inset: Vertically aligned RGO structure on current collector), (b) high magnification view of monolithic RGO, (c) growth mechanism for the monolithic structure during the freeze-drying process, (d) voltage profiles for monolithic-MGO (M-MGO) and 2-D RGO, (e) charge/discharge capacities for five cycles as the capacity rates increase from 0.2 to 100 C with respect to natural graphite and M-RGO, and (f) capacity retention for M-RGO (red line) and natural graphite (black line) [24].
Graphene oxide can be defined as chemically functionalized graphene containing oxygen. Moreover, GO has a large bandgap, which implies an insulating behavior. The bandgap can be decreased with decreasing the oxidation level of GO. Thus, this is a promising method for bandgap tuning that can be applicable to various optical and electronic devices. The spectrum ranges of GO-based photodetectors are limited within the visible and near-infrared (IR) wavelengths because they are based on the photovoltaic effect. Therefore, a new mechanism for mid-IR detection using GO sensors is required. Significantly, the control of oxygen functional groups in GO is possible for the application of IR detectors. (Bae et al. [25]) Here, GO is synthesized using thermal chemical vapor deposition (TCVD) and its electrical and optical properties are characterized using low-temperature measurements and Raman spectroscopy. The electrical conductivity of GO-based devices under IR irradiation was subsequently measured. The electrical characterization process can be described as follows. Single layered graphene (SLG) is synthesized on a copper substrate using the CVD method. Following its synthesis, the graphene is transferred onto SiO2 substrate as shown in Figure 11(a). Subsequently, SLG is deposited on a silicon substrate patterned using oxygen plasma etching. Furthermore, the metal electrode is deposited on the patterned substrate using Au as shown in Figure 11(b). To produce GO, we performed chemical treatments using immersion in an aqueous acid solution as shown in Figure 11(c). Subsequently, GO is cleaned with water to remove the residual acid and dried in vacuum as shown in Figure 11(d). It should be noted that, in order to control the oxygen functional groups with certain resistance, it is reduced by annealing at optimum temperature as shown in Figure 11(e). The optical microscopy image of the GO device is shown in Figure 11(f). The dotted area indicates the fabricated GO channel between the metal electrodes.
\nFabrication schematics of the GO device: (a) transfer of CVD-grown graphene onto the Si/SiO2 substrate, (b) patterning of graphene and deposition of electrodes, (c) acid treatment, (d) rinsing and drying, (e) reduction of GO, and (f) optical image of GO device [25].
Raman spectra illustrate the chemical doping effect by charge transfer between graphene and oxygen molecules. The spectra revealed significant changes in intensity ratio that can be described by the I(D)/I(G) and I(2D)/I(G) ratios. Moreover, the G band at 1590 cm−1 can be shifted due to the oxidation treatment. Four different samples: pristine CVD graphene, acid treated graphene, and annealed graphene after acid treatment are shown in Figure 12(a). Initially, the I(D)/I(G) ratio increased after acid treatment compared to that of pristine graphene. This is caused by oxygen moieties generating intervalley scattering. After mild reduction by thermal treatment, the ratio decreases due to the partial elimination of oxygen functional groups. Thus, Raman spectra illustrate the doping effect of the oxygen functional groups. Moreover, charge transfer behavior presents as a p-type characteristic. The I(2D)/I(G) ratio is significantly decreased and the G band shows a red shift. Unlike graphene, GO has characteristic IR absorption peaks at 750–2250 cm−1, as shown in Figure 12(b). The Fourier transform infrared (FTIR) spectra of GO reveal oxygen functional groups from 960 to 1860 cm−1, without graphene [26].
\n(a) Raman spectra of graphene, GO, and RGO and (b) IR absorption spectra of graphene and GO [25].
The optical properties of GO show in the mid-IR range at 7–14 μm. Depending on the functionality of GO by control of mild reduction, it reveals larger resistance changes as temperature. When the IR source is turned on, the resistance of the GO immediately drops from 31 to 7.4 MΩ, as shown in Figure 13(a). This is a promising approach for obtaining sensitive mid-IR sensors by controlling GO functionalities. To describe the response of GO as a function of IR irradiation, the curve is fitted using nearest neighbor hopping (NNH) model as shown in Figure 13(b) and (c). Figure 13(c) reveals a linear fit of ln(G)-T−1 in the 200–350 K temperature range, where G is the conductance and T is the temperature. Consequently, under IR irradiation, NNH is more dominant than variable range hoping (VRH) in the electron transport of GO, which is usually observed at a higher temperature range in a disordered system, jumping electrons to other defect sites due to thermal activation. Therefore, the different nature of the electron transport induced by IR irradiation contributes to the different temperature dependence exhibited by G. The activation energy W, extracted from the slope of the plot in Figure 13(c) is approximately 164 meV. The energy is easily obtained by the incident IR. The specific NNH transport phenomena is confirmed by plotting ln(W) as a function of ln(T) as shown in Figure 13(d). The temperature exponent is −0.97, indicating thermal transport in GO under IR irradiation. The plot exhibits a negative slope between 250 and 350 K. These results demonstrate that the conducting mechanism can be attributed to VRH. The shift from VRH to NNH transport occurs due to the increase in the temperature of GO due to the incident IR irradiation.
\nElectrical transport properties of GO under IR irradiation: (a) change in GO resistance, (b) GO resistance-temperature plot between 50 and 350 K, (c) temperature dependence of GO electrical conductance plotted for the NNH mechanism between 260 and 350 K, (d) ln(W) vs. ln(T) plot for GO [25].
Controlling the structure of graphene emitters such as the aspect ratio, density, and alignment, which are of practical importance for applications in field emission devices, is not readily achievable. Jeong et al. introduced a simple method for fabricating tubular structured graphene arrays with controlled tube lengths and alignment as shown in Figure 14. They used the filtration of RGO suspensions with a polycarbonate membrane. The interactions between hydrophobic graphene and the pore walls, but not the top surfaces, of a polycarbonate membrane were tuned, and the filtration rate was varied to control the length and alignment of the graphene arrays. They observed that the lengths of the graphene arrays increased with increasing filtration rate, but a maximum field emission efficiency was reached for intermediate filtration rates due to field screening for array lengths longer than an optimum value. The turn-on field and field enhancement factor for an optimum length of graphene arrays were 1.89 V/μm and 4624, respectively.
\n(a) Schematic and (b) SEM image of RGO emitters fabricated by filtration-transfer method. (c) J-E curves of RGO emitters as a function of filtration rate [27].
Another useful approach for fabricating graphene field emitters is a thermal welding-peeling method as shown in Figure 15. The graphene film was formed on a polytetrafluoroethylene membrane by filtering the dispersed RGO solutions. The CNT/polyethersulfone (PES) substrate used as cathode was then coated with an adhesive polycarbonate layer to prepare an upper graphene thin film under pressed thermal treatment of the sample. Vertically aligned graphene emitters were finally constructed by peeling off the polytetrafluoroethylene membrane from the welded sample. The average height and interspace of graphene emitters were 1.2 and 0.8 μm, respectively, which could be controlled by experimental conditions such as the size of the GO sheets and peeling force of the membrane. A large field enhancement factor for the RGO emitters was achieved by optimum vertical alignment of GO nanosheets, resulting in a high emission current density and a low turn-on field.
\n(a) Schematic diagram of RGO emitters fabricated using a thermal welding-peeling technique. SEM image of (b) RGO sheets and (c) fabricated RGO emitters [28].
The “breath figure” technique is a simple and versatile self-assembly method for fabricating porous nanomaterial patterns with high regularity. Although highly ordered 3-D graphene assemblies with high porosity have been fabricated, their use for field emitters was not readily achieved because the flat or smooth surface structures of the graphene assemblies did not emit electrons. Vertically aligned graphene ordered structures for an efficient field emitter was first fabricated using the “breath figure” method as shown in Figure 16. Octadecylamine (ODA)-functionalized GO solution dispersed in toluene was uniformly coated onto a substrate by spin coating. The ODA-functionalized GO was self-assembled under high humidity conditions and presented high periodicity due to the surface energy difference between the water droplet and toluene. Moreover, the ODA-functionalized GO nanosheets tended to encapsulate water droplets and precipitate at the water–solution interface, thereby preventing coalescence of the water droplets. The patterned ODA-functionalized GO array structure was obtained after the complete evaporation of the toluene and water droplets. The structure of GO array, the size, shape, and homogeneity, was dependent on the viscosity of the ODA-functionalized GO solution, large hexagonally structured GO patterns were fabricated with solutions having a low viscosity. The vertically aligned tip structures were formed at the interfaces between pores. However, with highly viscous solutions, small spherical patterns generated without tip formation. The graphene array prepared using a 2.0 g/L GO solution displayed the lowest turn-on field of 2.04 V/μm of all the arrays prepared using various GO concentrations.
\n(a) Schematic diagram of the graphene arrays obtained using the ‘breath figure” method, and pattern structures obtained at (b) and (d) low and (c) and (e) high solution viscosities, respectively. (f) J-E and (g) F-N plots of graphene arrays fabricated using various GO concentrations [29].
Freeze-drying of highly concentrated water-based RGO/polymer paste is one of the fabricating methods for 3-D graphene emitters with random micropores. Kim et al. first reported 3-D monolithic graphene structures as shown in Figure 17. They used highly concentrated water-based RGO paste prepared using monovalent cation-π interactions. After bar coating the paste on substrate, freezing was performed by immersing the sample in a liquid nitrogen bath. Low temperature freezing using liquid nitrogen resulted in the rapid formation of ice nuclei, hence the growth of relatively small ice crystals. After the sublimation of the ice crystals by vacuum drying, monolithic 3-D graphene structures with cylindrical pores could be obtained. Although the randomly distributed pores of the 3-D graphene structure were several tens of micrometers in size, the pore walls had numerous sharp edges. The size, shape, and homogeneity of these pores could be adjusted by choosing different freezing temperatures, solution concentrations, and solvents.
\n(a) Photo image of a water-based RGO paste. Inset shows the SEM image of the RGO sheets. The scale bar is 5 μm. (b) Fabrication method of the monolithic 3-D graphene structure using bar coating of the RGO paste, followed by subsequent freeze-drying. (c) a 3-D structured graphene fabricated on a plastic substrate. (d) Cross-sectional and (e) top view SEM images of a 3-D graphene structure. The scale bars are 300 μm. (f) J–E and (g) F-N plots of the 3-D graphene emitters as a function of graphene concentrations [30].
The tunneling barrier at the interface between a material surface and vacuum can be modulated by varying the physical properties of an emitter material. In this context, the field-emission characteristics are critically dependent on the work function of an emitter material. Low work functions decrease the barrier height causing the enhancement of electron tunneling for a given applied electric field, which results in high field-emission characteristics. Chemical doping can be a useful approach for modulating the work function of graphene because the intrinsic Fermi level of graphene can be readily shifted, due to charge transfer between the dopant and graphene. Jeong et al. reported the work-function engineering of graphene field emitters using chemical doping. Gold chloride as a p-type dopant and aluminum chloride powder as an n-type dopant were dissolved in distilled water and mixed with a GO solution. After centrifugation, the solution was filtered and the doped graphene films were dried. The schematic diagram in Figure 18 shows the charge transfer from graphene to the gold and aluminum ions and the corresponding band diagrams. The charge transfer upon chemical doping was confirmed using various techniques such as Raman, X-ray photoelectron spectroscopy (XPS), and ultraviolet photoelectron spectroscopy (UPS). Due to decreasing the work-function of graphene, the Al-doped graphene emitters showed lower turn-on field than those of undoped and Au-doped graphene emitters. A similar study was conducted by mixing dopant solution with graphene paste.
\n(a) Schematic diagram showing the electron transfer from graphene to the Au ion and from Al to graphene and corresponding band diagrams under application of a certain external voltage. (b) Raman, (c) XPS, and (d) UPS spectra for the undoped, Au-doped, and Al-doped graphene emitters [28].
Long-term emission stability of electron emitters is needed for thigh quality field emission devices. The ion bombardment of residual gas species which are degassed from cathodes, getters, inner walls, and phosphors can destruct electron emitters, resulting in a critical reduction of the emitter characteristics. To enhance the current stability, Jeong et al. introduced the ZnO sol coating as a protective layer for the RGO emitters as shown in Figure 19 [27]. Zinc oxide is an n-type semiconductor with a wide band gap and a low resistivity in the order of 10−2 to 10−3 Ω cm. The ZnO layer on the graphene surface was realized by hydrogen bonding between the amine groups of the ZnO sol and carboxyl groups of RGO and subsequent thermal treatment. A life time test showed stable emission for the ZnO-coated graphene emitters, which might be due to the ZnO protection of the emission site from reactive ion bombardment.
\n(a) Illustration of formation of a ZnO protective layer on the RGO surface. (b) SEM images and (c) EDAXS plot of the RGO emitters modified with a ZnO layer. Scale bars in (b) are 5 μm. (d) Current stability of the RGO array emitters wit and without a ZnO layer in vacuum and after exposure to O2 [27].
Since the development of graphene-based thin film fabrication techniques on polymeric substrates, research into graphene-based flexible electrodes for display application has advanced. In addition to the high electrical and mechanical flexibility of graphene-based thin films, the interface between an electrode and an emitter material should be strong and provide ohmic contact to achieve highly flexible field emitters. Thus, SWNT-coated polymer substrates have been used as electrodes [31]. Moreover, RGO emitters were fabricated on SWNT-coated PET substrates. A PET film was used as the spacer and a white phosphor-coated SWNT layer on a PET substrate was used as the anode as shown in Figure 20. Strong π-π carbon bonds allowed the RGO arrays to form strong mechanical contact with the SWNT network. The emission current density of the RGO emitters did not decrease much with increasing the bending angle. This stable emission is likely due to the strong adhesion of the 3-D RGO emitters to the SWNT-coated PET substrate.
\n(a) J–E and (b) F–N plots of the RGO emitters as a function of the bending angle. The insets show schematic diagrams of the flexible field emission setup and an emission pattern at a 30° bending angle, respectively [26].
We have briefly reviewed the recent research progress on chemically exfoliated graphene nanosheets via graphite oxide exfoliation and chemical reduction. Efficient graphite oxide exfoliation methods were developed by using homogenizers for shearing in solution and unusual horn sonication for stable acoustic cavitation. These methods show promise for fabricate improved GO nanosheets for high performance RGO nanosheets for conductor or electrochemical electrode applications. Highly oxidized GO nanosheets were utilized for p-type doping of CNTs and graphene films as well as for surface energy modifications. The modulation of the surface energy of GO can also allow us to deposit hydrophobic materials on hydrophilic surfaces. Strategies for the stable dispersion of RGO nanosheets in solution included sol–gel chemistry, cation-π interaction, supramolecular chemistry, and so on. Both GO and RGO nanosheets can be used as mid-IR detector, field emitters, 0r as electrodes in energy storage devices. Although some fascinating results have been achieved in previous publications, studying the fundamental and practical properties of GO or RGO should continue because their properties are critically dependent on the oxidation process of graphite, exfoliation method, reduction, and so on. Future applications of chemically exfoliated graphene in soft electronics, nanostructure control and hybridization with other materials are yet a challenge for high performance in real-life applications.
\nThis work was supported by the Center for Advanced Soft-Electronics as Global Frontier Project (2014M3A6A5060953) and Nano-Material Technology Development Program (2016M3A7B4021151) funded by the Ministry of Science, ICT and Future Planning and by the Primary Research Program (18-12-N0101-16/18) of the Korea Electrotechnology Research Institute.
\nOver recent years, the scientific community has expressed great concern about antimicrobial resistance (AMR), which has been recognized as one of the most serious global public health threats in this century [1]. Nowadays, most multilateral organizations focused on global health accept the use of antibiotics in animal intended for food production as one of the main drivers of AMR infections in human health, adopting national action plans that commit to reduce the indiscriminate use of antibiotics by their members [2, 3, 4]. These action plans propose many strategies to control this problem, particularly by encouraging reasonable and limited use of antibiotics in food animal production, particularly those that are considered of critical importance for both human and veterinary medicine. The World Health Organization (WHO) has issued a series of guidelines and resolutions in regard to the use of antimicrobial agents in animal production, among those that stand out being the overall reduction in the use of all classes of antimicrobials, with the conditional recommendation not to use those that have been classified as critically important for human medicine, as well as the complete restriction for growth promotion and prevention of infectious diseases that have not yet been clinically diagnosed [5], for which some government regulatory agencies have taken action on the use of antibiotics for animal production, resulting in their total ban as growth-promoting agents [6, 7].
\nIt could be expected that the total ban on the use of antibiotics as growth promoters will lead to a decrease in the levels of antibiotic resistance [8]. However, we cannot ignore some issues resulting from this ban, such as the increase in the incidence of bacterial infections which would also increase the use of other antibiotics at prophylactic or even therapeutic doses, accelerating the development of AMR in these pathogens and making it a worse scenario [9, 10]. In addition, some farming practices must be implemented to reduce the use of antibiotics in animal production, such as adequate animal vaccination, good hygiene and husbandry practices, higher animal welfare, and improved breeding programs, which implies an increase in production costs, and it is still not enough to completely reduce the risks of infection [11, 12].
\nPoultry is one of the most commonly exploited species worldwide, and a sector that continues to grow and industrialize in many parts of the world [13], so it was to be expected that a large part of the antibiotics used in animal production was destined to this industry [14, 15]. Antibiotics have been used in poultry production for therapeutic, prophylactic, or growth promotion purposes, especially in broiler chickens, which has resulted in huge profits for poultry producers [16].
\nAlthough it is a fact that the reduction or complete abolition in the use of antibiotics for poultry production would have a positive effect in the control of AMR and public health, this would also have negative economic repercussions, since production costs and, consequently, the prices of the final products, as well as the international trade of poultry products, would be affected [17, 18]. Furthermore, the antibiotic-free production of poultry could imply public health problems caused by foodborne pathogens such as e C. perfringens, E. coli, S. aureus, Campylobacter spp., or Salmonella spp. [19, 20, 21] while increasing production costs caused by bacterial infections, along with the detriment in the health of the birds and the decrease of the productive parameters. Hence, the ban on the use of antibiotics for poultry production, as well as other increasingly popular trends, such as the growth of the organic products market, has forced poultry producers to find viable alternatives with similar benefits to antibiotics. For that, many specific alternatives have been evaluated and marketed, such as enzymes, prebiotics, probiotics, organic acids, dietary fiber, highly available nutrients, herbs, spices, essential oils, plant components, and vaccines [15].
\nAmong all the available alternatives, prebiotics have proven to be promising alternatives for the poultry industry because they are able to pass through the digestive tract, which facilitates and supports the symbiotic relationship between the host and gastrointestinal tract (GIT) microbiota and results in health benefits for the birds [22, 23, 24]. Thus, this chapter exposes the use of prebiotics as feed additives in poultry, with emphasis on their beneficial effects on the microbiota composition, their ability to control pathogenic infections, positive changes in intestinal morphology, improved productive parameters, and immunomodulatory effects as possible mechanisms of action, which make them potential alternatives to avoid the use of antibiotics as growth promoters in the poultry industry.
\nIt is difficult to describe in a few words what a prebiotic is; nevertheless, all definitions agree that these compounds, when administered as feed ingredients, are resistant to enzymatic digestion and cannot be absorbed, and still they confer a health benefit for the host animal by selectively stimulating the growth, metabolism, and composition of beneficial native bacteria in the GIT and eliminating the pathogenic ones [25, 26, 27]. In general, prebiotics share these common properties, but there are some others that are also common among them, including resistance to gastric acidity, selective fermentability by a limited number of potentially beneficial microorganisms, alteration of the GIT microbiota toward a healthier composition, and modulation of the host animal defense system [28].
\nAlthough only carbohydrate-based compounds, such as nondigestible oligosaccharides and non-starch polysaccharides, were previously considered as prebiotic candidates, nowadays the prebiotic concept has expanded to “a substrate that is selectively utilized by host microorganisms conferring a health benefit,” so that other substances might fit to it, including a diversity of oligosaccharides with varying carbon chain lengths and even polyphenols and polyunsaturated fatty acids converted to respective conjugated fatty acids [29, 30]. However, to confirm its status as a prebiotic, studies for each candidate must be performed in the target animal species for its intended use, demonstrating its beneficial health effects mediated through the microbiota.
\nIn aviculture, a wide range of prebiotic alternatives have been evaluated, trying to improve the GIT health and resistance against pathogen colonization; nevertheless, all of them have been well characterized, indicating their source, purity, chemical composition and structure, suitable dose, and side effects, and have the status of generally recognized as safe (GRAS). The most commonly used prebiotics in poultry diets are nondigestible oligosaccharides (NDO), including fructooligosaccharides (FOS) and inulin type, mannan oligosaccharides (MOS), xylooligosaccharides (XOS), galactooligosaccharides (GOS), and isomaltooligosaccharide (IMO), as well as some structural carbohydrate components of non-starch polysaccharides (NSP), such as β-glucan [25, 31, 32]. These prebiotics are commonly administered to poultry orally at first hours or days after hatching, either spraying them directly in the feed or by their direct addition in drinking water; but recently, the administration of in ovo prebiotics in chicken embryos has been proposed as a better route of delivery, since the doses of prebiotics used in ovo could be at least 10 times lower than after hatching, with the same beneficial effects as the oral administration [23, 33].
\nAs mentioned above, the main purpose of prebiotics is to modify the intestinal microbiota in a favorable manner for the host animal and induce positive effects, not only in the intestinal environment but also systemically, which is reflected in positive improvements of the productive parameters such as egg production, body weight gain, feed conversion ratio, and mortality index [34, 35, 36]. Besides improved host health and productivity, prebiotics have also proven their efficacy to reduce colonization of important pathogens both for poultry production and public health, such as Salmonella, Campylobacter, C. perfringens, and E. coli [37, 38, 39, 40, 41]. This set of beneficial effects, along with the lower risks of undesirable side effects in the host and the fact that they are cheaper and easier to produce in a large scale than probiotics, make prebiotics an excellent option as an alternative to minimize the use of antibiotics in poultry production, thus contributing to reduce the problem of AMR [42, 43].
\nThere are many mechanisms and functions of prebiotics which have been associated with the poultry GIT microbiota, and it seems that there are several bacteria involved in their use; but there is evidence that other microbiota-independent interactions also exist [30]. Thus, there is no specific mechanism of how prebiotics influence the host animal health or how they can inhibit pathogen establishment, but all their beneficial effects are the result of a complex set of interactions on the host physiology, including their positive effects on intestinal morphology and microbiota balance, the suppressive effects on the enteric and systemic infections by pathogens due to the immune stimulation, the higher nutrient digestibility, and positive metabolic alterations (Figure 1), which result in improved productive parameters, higher quality of food products from poultry origin, general welfare of animals, and ultimately decrease in production cost [42, 44].
\nSome of the potential mechanisms of action of prebiotics in poultry species, showing how they are metabolized by the host microbiota and have positive effects on immunity, gut health, metabolic activity, and pathogen colonization. Modified and adapted from Refs. [25, 45].
In poultry species, as in almost all the others, the microbiota largely determines the intestinal integrity, functionality, and health, which in turn plays a vital role in nutrient digestion and absorption, immune system development, and pathogen exclusion [46]. Since a symbiotic interaction between host and its microbiota is fundamental to poultry health and production, the alteration of the intestinal microbiota when using prebiotic has been one of the most widely investigated mechanisms of action [25, 32, 47]. Nowadays it is well known that prebiotics alter positively the intestinal microbiota in poultry; however, the exact mechanism (s) and type of interaction involved will depend on the structure of the prebiotic and the host species. Among all the microorganisms that make up the intestinal microbiota in poultry, some particular bacteria, such as Lactobacillus spp. and Bifidobacterium spp., have positive effects on intestinal physiology and, thus, are beneficial for the host health. These beneficial bacteria, which have been reported to have higher abundance when chickens are fed diets supplemented with prebiotics, can ferment and metabolize prebiotics, selectively stimulating their proliferation and activity [45, 48, 49], which can potentially influence the production of short-chain fatty acids (SCFA) and the consequent decrease in intestinal pH, improve the metabolism by increasing digestive enzyme activity and vitamin production and decreasing levels of triglycerides, cholesterol, and odor compounds, and stimulate the immune system that contributes to the inhibitory effects on the growth of pathogenic bacteria [50, 51].
\nOn the other hand, several studies have shown that prebiotics influenced the beneficial intestinal microbiota of broiler chickens while maintaining low levels of potential pathogens in the small intestine and cecal digesta. Addition of FOS as prebiotic to the basal diet (4.0 g/kg) significantly increased the viable count of Bifidobacterium and Lactobacillus in the small intestinal digesta of male broiler chickens, while the number of Escherichia coli was significantly reduced compared to the control group [52].
\nIt has been also reported that feeding 0.25% of FOS and 0.05% of MOS to broilers resulted in an increased diversity and population of Lactobacillus and decreased populations of E. coli and C. perfringens in the ileum, as shown in Figure 2 [40]. In laying hens, dietary supplementation with different levels of inulin linearly reduced coliform bacteria counts by increasing concentrations of this prebiotic, while 2.0% of inulin achieved significantly increased cecal Bifidobacterium counts compared with the control group [53].
\nIntestinal microbiota modifications in the small intestinal content of broiler chickens at 4 weeks of age. Within a bacterial species (or total), bars with different letters (a–c) are different (P < 0.05, n = 8). Modified from Ref. [40].
A recent study has shown that 3.5 mg of a GOS mixture delivered in ovo had a bifidogenic effect in adult chickens, since the relative abundance of Bifidobacterium communities was higher in four sections of intestinal content (duodenum, jejunum, ileum, and cecum), while the values of Lactobacillus abundance resulted to be higher in the control group for most of the four sections [32].
\nThe ability of prebiotics in poultry diet to reduce colonization of pathogens results from the combination of several mechanisms occurring in the GIT, from those that are directly related to the selective stimulation of the favorable microbiota to those in which the prebiotics directly affect the pathogens or the host animal in a microbiota-independent manner. To date, it is not possible to define an exact mechanism of prebiotics to reduce pathogenic infections, so more research is required to fully elucidate their exact function and mode of action.
\nVarious potential mechanisms have been proposed by which prebiotics can provide resistance to pathogens, one of the main ones being directly related to the beneficial bacteria in the GIT, such as Lactobacillus and Bifidobacterium, whose selective growth results in an increased concentration of SCFA, especially acetate, propionate, and butyrate, and lactate during primary fermentation process at the ceca [30]. This is mainly because these bacteria secrete several hydrolases, which monogastric animals cannot, hydrolyzing the carbohydrate-based prebiotics through a fermentation process whose metabolic end products not only contribute to the nutrition of poultry, but they have additional beneficial effects [54]. Since SCFA are the principal luminal anions, and they are relatively weak acids, their increased concentration is correlated with a lower intestinal pH, which in turn is associated with a suppression of pathogens by dissipating the proton motive force across the bacterial cell membrane [55], although it has also been reported that SCFA, butyrate specifically, can downregulate expression of invasion genes in Salmonella at low doses [56].
\nFor instance, the effect of 14 or 19 days of 10% dietary lactose administration was evaluated in Leghorn chicks, resulting in a significantly increase of acetic, propionic, butyric, and lactic acid concentration in the cecal contents as compared with the control group; additionally, lactose decreased the pH of cecal contents, with the consequent reduction of the total number of chicks with organ cultures that were positives for this pathogen (Figure 3) [57].
\nEffect of dietary lactose (10%) during 14 and 19 days on cecal organic acid concentrations, pH of cecal contents, and Salmonella enteritidis organ invasion in Leghorn chicks. (*) (**) (***) significantly different from controls (P < 0.05) (P < 0.005) (P < 0.001), respectively. Data obtained from Ref. [57].
Another study was conducted to investigate if changes in SCFA could decrease the numbers of Enterobacteriaceae in the ceca of broiler chickens during growth; the authors found a significant negative correlation between the log CFU of Enterobacteriaceae and the concentration of acetate, and the undissociated form of acetate, propionate, and butyrate, evidencing that SCFA are one of the mechanisms responsible for the decrease in numbers of these bacteria in the ceca of broiler chickens during growth, while they did not affect beneficial GIT bacteria such as Lactobacillus [58].
\nNevertheless, there are many other mechanisms by which SCFA may be useful to avoid pathogen colonization in the GIT, such as the increased production of mucin by goblet cells that serves as a physical barrier against pathogens and contributes to their lower colonization [59, 60]. The effect of inulin dietary supplementation at different levels on mucin mRNA expression was evaluated at 21 and 42 days in broiler chickens, and it was found that dietary supplementation of this prebiotic at 10 and 15 g/kg enhanced mucin mRNA expression in the jejunum both days [61]. Moreover, depending on the poultry species, the SCFA provide different levels of the of the total metabolic energy requirements, serving as the preferred energy source of colonocytes and stimulating intestinal integrity [54, 62].
\nOn the other hand, the natural antipathogen activity of the intestinal microbiota in poultry has been documented by the Nurmi concept of competitive exclusion, also known as “bacterial antagonism” or “bacterial interference,” through which beneficial microorganisms compete with potentially pathogenic bacteria for limiting nutrients and attachment sites on the mucosa, or even by the production of bacteriocins like lactocin, helveticin, curvacin, nisin, or bifidocin, which may be destructive to various Gram-positive or Gram-negative intestinal pathogens, particularly Salmonella, Campylobacter, and E. coli [47, 63, 64]. It has been demonstrated that competitive exclusion is potentiated with prebiotics, since they promote growth of beneficial bacteria which are ubiquitous in the host animal and are capable to survive in GIT conditions.
\nIn a study carried out in broiler chicks, the effect of treatments with dietary 7% lactose and 6.3 × 106 of anaerobic organisms, alone or in combination, on cecal colonization by Salmonella typhimurium (ST) after 10 and 15 days at different inoculum doses, was evaluated. The authors report that treatment with anaerobes without the addition of lactose did not effectively control cecal colonization of ST, while chickens treated with the combination of anaerobic organisms and lactose were resistant to cecal colonization by this pathogen, concluding that oral administration of only total anaerobes did not function well as competitive exclusion cultures [65].
\nIn another similar study, the inhibitory effect of competitive exclusion and 0.1% concentration of FOS, singly and in combination, on Salmonella enteritidis SE colonization of chicks was investigated. Chicks received this pathogen at 7 or 21 days, and then birds from each group were slaughtered at 1, 7, and 14 days after for count of SE in cecal contents. Additionally, quantification of the major cecal microbiota was performed. Results from this study demonstrated the efficacy of CE on chicks 7 days post inoculation with SE, but this efficacy was not clearly demonstrated 21 days post inoculation, indicating that the efficacy of CE to reduce susceptibility to SE colonization is higher on young chicks, while FOS offered protection to chickens particularly in 21-day-old chicks (Figure 4). Nevertheless, when FOS was given in combination with a CE treatment, both in the 7- and 21-day-old chicks, a reduction in the number of SE per g of ceca was observed, so that low doses of FOS in the diet of chickens with a CE treatment may result in reduced susceptibility to Salmonella colonization. Regarding the intestinal microbiota, few changes in Bifidobacterium, Bacteroides, and Lactobacillus in the cecal contents of treated groups were observed compared with the control group, both 7- and 21-day-old chicks, although when chickens were fed FOS for long times, Bifidobacterium and/or Lactobacillus of the intestinal flora may increase [39].
\nEffect of competitive exclusion (CE) and FOS (0.1%) on recovery of Salmonella enteritidis from cecal contents of chicks infected at 7 and 21 days. Numbers in parentheses indicate the number of birds positive for SE/birds examined. The right graph shows the effect of these treatments on the major bacterial population of cecal microbiota. Data obtained from Ref. [39].
Some pathogenic bacteria, such as Salmonella spp., E. coli, or Vibrio cholerae, have mannose-specific lectins (Type 1 fimbriae) on their surface, which recognize glycoprotein receptors rich in mannose on the intestinal cells of the host animal and are key to initiate attachment and colonization [45, 48]. Prebiotics, specifically MOS, can also reduce pathogen colonization by their direct union to the pathogen lectins, avoiding its attachment to the intestinal epithelial cells and, thus, passing through the GIT without colonizing.
\nThis mechanism has been also corroborated in poultry species, both in vitro and in vivo, in two independent studies. In the first study, the in vitro effect of D-mannose, galactose, methyl-α-D-mannoside, and arabinose, on the adherence of Salmonella typhimurium to epithelial cells of the small intestine from 1-day-old chicks, was investigated. Authors showed that the small intestine of the chicken has receptors for bacteria with Type 1 fimbriae, and those fimbriae-positive strains of ST adhered significantly better than fimbriae-negative strains. They reported that adherence of ST to chicken small intestinal cells was inhibited more than 90% by methyl-α-D-mannoside and D-mannose and to a lesser extent by arabinose and galactose through the mechanism of blocking [66].
\nIn the other study, the same effect of mannose was demonstrated in vivo. For that, 1-day-old broiler chickens were fed normal drinking water or drinking water supplemented with mannose (2.5% w/v) for 10 days. On day 3, birds were challenged orally with S. typhimurium (108 CFU), and then the cecal contents were examined on day 10. Results corroborated the blocking action of D-mannose, which could reduce the percentage of chickens colonized by ST from 78 to 28%, 82 to 21%, and 93 to 43%, in three trials [67].
\nIn a more recent study, the ability of MOS from yeast cell walls to decrease the concentrations of enteric pathogens that express Type 1 fimbriae in poultry was evaluated. In the first part of this work, the ability of different enteric pathogens and coliforms to adhere to the MOS was measured in vitro, evaluating qualitatively if agglutination was modified with the presence of fructose, galactose, glucose, and mannose. Results of the agglutination test showed that 5 of 7 strains of Escherichia coli and 7 of 10 strains of Salmonella typhimurium and S. enteritidis agglutinated MOS. Other strains like S. montevideo, S. give, S. kedougou, and S. dublin also caused agglutination of MOS, but strains of S. choleraesuis, S. pullorum, and Campylobacter did not lead to agglutination. Nevertheless, agglutination of these Gram-negative bacteria could be inhibited by mannose and fructose, although it took much more fructose to observe the inhibitory responses than mannose. Authors reported that MOS had reduced cecal S. typhimurium concentrations by about 25-fold compared to the control group; concentrations of coliforms also tended to be lower when MOS was added to the feed, while concentrations of lactobacilli, enterococci, and anaerobic bacteria were not affected by treatment; concentration mean values are shown in the upper left graph of Figure 5. This tendency to reduce the salmonella concentration was observed during the time after the challenge with the pathogen, as shown in the upper right graph of Figure 5. The last part of the study consisted in a similar challenge using S. dublin, in which the percentage of prevalence this pathogen was lower in the MOS-treated groups (55.7%) than in the control group (89.8%), while concentrations of the other bacterial populations were not different. Since no changes in cecal parameters were observed with MOS addition, such as a major shift in bacterial populations or changes in pH or SCFA concentrations, which are known to affect salmonella, together with the in vitro agglutination results, authors conclude that adsorption of salmonellae by MOS could be a possible mode of action by which adhesion of these pathogens to the wall is avoided [68].
\nUpper graphs: Effect of dietary added MOS on concentrations of different bacterial populations (left) and concentration of Salmonella typhimurium at different times after challenge in the ceca of chicks (right). Lower graphs show different bacterial populations (left) in the ceca of chicks challenged with S. dublin and (right) the percentage of birds from which S. dublin was recovered. Within bacterial populations, bars with different letters (a, b) are different (P < 0.05, n = 6). Data were obtained from Ref. [68].
Another proposed mechanism for health benefits of prebiotics is the improved intestinal morphological structure; several prebiotics have proven their capacity to modify positively intestinal morphology, both on macroscopic (intestinal length) and microscopic (size and density of villi and microvilli and crypt depth) structures of different sections of the intestine in poultry species [52, 69, 70]. Furthermore, an increased number of goblet cells of the intestinal villi have been reported after dietary administration of prebiotics; these specialized cells are responsible for secreting glycoprotein compounds, mainly mucins, which bind pathogenic microorganisms and reduce their adherence to the intestinal mucosa [71]. These morphological changes lead to a higher efficiency of nutrient absorption, since well-developed and functional enterocytes have been associated with increased absorptive area of the intestine [72] but also with an increased activity of the intestinal brush border enzymes and the nutrient transport systems [70, 73].
\nIn turkeys, the dietary addition of two doses of a product based on MOS and β-glucans (1 and 2 lb./ton) on gastrointestinal tract development was evaluated through the measurement of ileal, jejunal, and duodenal morphology of turkey poults at 7 and 21 days of age. Data derived from this study suggest that feed supplemented with MOS and β-glucans could accelerate GIT maturation in turkey poults and was more pronounced in the ileum than in other portions of the small intestine. Ileum villus height, surface area, lamina propria thickness, and crypt depth were enhanced with the prebiotic treatment both on day 7 and 21, in a dose-dependent manner for many of the parameters evaluated, as it can be observed in Figure 6. In the jejunum results were consistently higher only for the highest dose of treatment (2 lb./ton) compared with the control group on both days, while in the duodenum results were better for the highest dose on day 7, although intestinal morphology of this intestinal section was not different on day 21. Furthermore, density of neutral, sialomucin, and sulfomucin goblet cells that were taken per intestinal section was also evaluated, showing a very similar tendency than the enteric morphometric evaluation, providing evidence of the immunostimulatory effects of this MOS- and β-glucan-based additive, because the numbers of neutral, sialomucin, and sulfomucin goblet cells in the GIT were increased in supplemented poults [74].
\nEffect of MOS dietary addition at two different doses on the ileal, jejunal, and duodenal morphology of Turkey poults at 7 and 21 days of age. Within treatments, bars with different letters (a–c) are different (P < 0.05, N = 9 birds, n = 20 measurements/bird). Data were obtained from Ref. [74].
Studies have also been conducted whose results demonstrate the beneficial effect of prebiotics on changes at the macroscopic level. A study to evaluate and compare the effectiveness of adding inulin (1%) and oligofructose (1%) to the feed of broiler chickens was conducted, being one of the objectives to evaluate the intestinal length considering the influence of the bird sex. The experiment the experiment lasted 6 weeks, during which the productive parameters were also evaluated. Results from this study suggest that the longer the intestinal length, the better in nutrient absorption which resulted in a heavier body weight, showing correlation coefficients between intestinal length and body weight of 0.68 and 0.74 for the male and female birds, respectively, regardless of the treatments. Oligofructose-treated birds resulted to have a longer intestinal length, especially for the females, although inulin-fed birds also had a longer small intestine than control birds. There were no visible differences in villi density among the males, regardless of the treatments, while for females, the villi from inulin- and oligofructose-treated birds appeared to be denser than those of the controls [69].
\nUndoubtedly, one of the main objectives of the use of food additives in the poultry industry is the improvement of productive performance, a major indicator of poultry well-being that is directly tied to efficiency of nutrients utilization and, thus, to the profitability of production. In fact, replacement of antibiotics as growth promoters with prebiotics to observe improvements in poultry performance is the major reason for the researches [28]. As mentioned above, there is no exact mechanism of action for beneficial effects of prebiotics, so that stimulation of poultry performance results from the very complex interactions of all mechanisms previously described, for instance, by decreasing pathogen colonization, since it has been described that pathogens depress performance by interfering with nutrient digestion, absorption, and utilization; impairment of normal cellular function; negative impact on enzyme activity, epithelial integrity, and function; and diversion of energy for growth to immune response purposes [75]. Prebiotics can potentially stimulate growth performance through increased SCFA production in poultry, mostly acetate, propionate, and butyrate, since they are directly absorbed in the intestine and used as an energy source in tissues and besides that stimulate a higher metabolic activity in the intestine [76, 77]. SCFA may also serve as a potent regulator of insulin homeostasis in the chicken and carbohydrate metabolism, which stimulate the metabolic activity of striated muscle cells, possibly also having an influence on muscle protein synthesis and, thus, growth performance [78]. Beneficial effects of prebiotic on nutrient digestibility of poultry have been also reported, such as improved digestibility of crude protein, fat, dry matter, energy, and minerals [79, 80]. These results have been attributed to an increase in the beneficial microbiota, such as Lactobacillus, changes in the intestinal mucosal structure, and improved intestinal health, which result from the morphological changes in the intestine that lead to a higher efficiency of nutrient absorption and a better nutrient transport system, as discussed above [70, 81, 82].
\nOther prebiotic effects that might influence productive performance of poultry species are alterations on lipid metabolism and mineral absorption [83, 84]. Studies have demonstrated that prebiotic supplements have a positive effect on the mineral metabolism of Ca, P, Zn, Cu, and Fe [85, 86, 87, 88], whose intake is influenced by factors such as the lower luminal pH that increases their solubility promotion and thus their passive absorption, changes in the intestinal mucosa and increased absorption surface area, elevated expression of Ca-binding proteins, release of bone-modulating factors, phytate degradation by probiotic bacteria enzymes, and improved overall intestinal health [89, 90]. On the other hand, although no exact mechanisms have been reported for the alteration on lipid metabolism caused by prebiotics, it has been demonstrated that intestinal microbiota play a role in maintaining lipid metabolism [91], so that the increase in bacterial numbers or a change in the composition of the intestinal microbiota might be related to the lipidic alterations. Studies have shown that prebiotics have a positive effect on lipid metabolism in poultry species, such as hypocholesterolemic effect both in serum and eggs, which has been attributed to many reasons. The enhanced production of SCFA results in inhibition of cholesterol biosynthesis in the liver, due to inhibition of the incorporation of colonic acetate into plasma lipids [92]. Another mechanism through which prebiotics may exert hypocholesterolemic effect is via bile acids, since they enter the small intestine and are absorbed and directed to the liver; however, during reabsorption, conjugated bile acids are exposed to intestinal microflora that hydrolyze conjugated bile acids, making cholesterol unavailable for absorption into the circulation [53]. Although it has not been evaluated in poultry, other studies have also suggested that prebiotics may modify gene expression of lipogenic enzymes, with reduced concentration of plasma phospholipids, triacylglycerols, and lipoproteins [93, 94, 95, 96]. However, reports of prebiotics on the performance of poultry have been very variable, and often contradictory, as their effectiveness is strongly dependent on the type of prebiotic and the source, dose used, time of consumption, type of diet and interactions with other feed additives, administration route, animal characteristics, hygiene, husbandry conditions, and environmental stress [28, 50].
\nIn a study carried out in White Leghorn hens, the performance parameters were measured to test two prebiotic treatments consumed for 4 weeks, oligofructose (1% w/w) and inulin (1% w/w), during the later part of the first laying cycle. Egg production, cumulative egg weight per bird, and average egg weight for each treatment were calculated weekly. Besides, body weight change, feed consumption, and feed conversion ratio were also monitored. Results showed that oligofructose and inulin increased weekly egg production by 13.35 and 10.73% and cumulative weekly egg weight per bird by 12.50 and 10.96%, respectively, as compared to the control group. Both prebiotics also improved the feed conversion ratio. Nevertheless, there were no differences in average egg weight, feed consumption, or the percentages of changes in live body weight after 4 weeks, as shown in Figure 7 [85].
\nPerformance parameters as affected by dietary oligofructose and inulin in laying hens. Within treatments, bars with different letters (a, b) are different (P < 0.05, n = 10). Data were obtained from Ref. [85].
In another study, the effect of MOS at a dosage of 2 g/kg on growth performance and nutrient digestibility of two cereal-based diets (corn or wheat) in broiler chickens was evaluated, over an experimental period of 21 days. For that, body weight, feed intake, and feed conversion ration were measured at week 1 and weeks 2–3. Also, the ileal digestibility of nutrients was evaluated on day 21. Authors reported that dietary addition of MOS did not affect the body weight gain of birds but increased their feed intake during the first 7 days, while the feed conversion ratio also tended to increase with MOS, regardless of the type of cereal-based diet. Contrary, between 7 and 21 days, dietary MOS improved the growth performance of birds given the wheat-based diet compared to that of birds given the corn-based diet. Regarding the ileal digestibility of starch, the addition of MOS improved it and showed a high interaction with the type of cereal, indicating that this positive effect of MOS was more profound for the wheat diet than for the corn diet.
\nCurrently, much research has focused in modulation of the immune system by the use of prebiotics, which results from the interaction of all the mechanisms mentioned above, so that it is not an isolated mechanism. A multitude of mechanisms and functions associated with the immunomodulatory effect of prebiotics have been reported, by the activation of genes and pathways implicated in immune processes [25]. It has been cited for many authors that the use of prebiotics in poultry diets improves bird’s immunity through the selective growth of beneficial microbiota, resulting in an increased production of a variety of substances, such as bacteriocins and SCFA, that, in addition to being able to inhibit growth of pathogens, play a role in signaling pathway of immune system [97, 98, 99].
\nThe chicken gut microbiota, especially Lactobacillus and Bifidobacterium, has also been reported to modulate intestinal gene expression, T cell-mediated immunity, and accelerated intestinal immune system maturation, by influencing the intestinal epithelium to produce antimicrobial peptides and cytokines such as IL-12, IFN-γ, IL-10, IL-1β, and TNF-α; modulating the immune system through enhancement of phagocytosis and proliferation of immune cells such as macrophages and monocytes; enhancing production of IgA, IgM, and IgG, reactive oxygen species, and reactive nitrogen species; and proliferating natural killer cells, CD3, CD4, and CD8 T cells [25, 47, 75, 100]. Some prebiotics have shown to increase the production of secretory IgA in the intestine, which inhibits the attachment and penetration of bacteria in the lumen, increases the production of mucus, and prevents inflammation that could cause epithelial tissue damage [40, 42].
\nOn the other hand, as previously mentioned, prebiotics can inhibit pathogen colonization, decreasing detrimental molecules produced by pathogenic bacteria, which act as exogenous signals called pathogen-associated molecular patterns (PAMPs). These PAMPs can be recognized by pattern recognition receptors (PRR) expressed on the surface of epithelial cells, macrophages, mast cells, and dendritic cells, including toll-like receptors and NOD-like receptors, and once recognized are activated, producing cytokines for the regulation of further innate immune responses [45]. Although little data show direct effects of prebiotics on immune function, some studies have indicated that prebiotics have an improved response to salmonella vaccine, which could be because prebiotics can act as nonpathogenic antigens themselves, being recognized by receptors of immune cells, which consequently modulate host immunity beneficially [45, 101].
\nImmunomodulatory effect of prebiotics has been evaluated in vitro and in vivo. For instance, in an in vitro study, the influence of a FOS-inulin prebiotic at 200 μg/mL on the ability of the chicken macrophage HD11 cell line to phagocytose and kill Salmonella enteritidis was tested. The influence on their ability to express selected inflammatory cytokines and chemokines, such as for IL-1β, lipopolysaccharide-induced TNF factor (LITAF), C-C motif chemokine ligand 4 (CCL4) and inducible nitric oxide synthase (iNOS), and nitric oxide production, was also evaluated. Results showed that phagocytosis of SE by macrophages was not affected with the FOS-inulin treatment, but there was a significant reduction of viable intracellular SE in macrophages treated with the prebiotic. On the other hand, prebiotic treatment did not influence the nitric oxide production, thus suggesting that the FOS-inulin-mediated bacterial clearance was not mediated by this compound. Similarly, prebiotic treatment has no influence on expression of LITAF, CCL4, nor iNOS; however, IL-1β expression was significantly lower in macrophages treated with FOS-inulin, suggesting that this prebiotic can modulate the innate immune system by preventing IL-1β-associated macrophage cell death [102].
\nIn a more recent study, GOS prebiotic was in ovo administered to evaluate the modulation of chicken intestinal microflora and demonstrate the molecular responses of the host animal. The study was performed on meat-type chickens, with 3.5 mg GOS delivered by in ovo injection on day 12 of egg incubation, and the analysis of microbial communities and mucosal gene expression was performed at day 42 post-hatching. Results showed that GOS increased the relative abundance of Bifidobacterium in the cecum. GOS also upregulated cytokine and barrier function genes in the jejunum and cecum, host defense peptides in the cecum, and free fatty acid receptors in the jejunum, ileum, and cecum, as shown in Figure 8, so that it has been demonstrated that GOS prebiotics have a bifidogenic effect in adult chickens, modulating gene expression related to intestinal immune responses and gut barrier function [32].
\nRelative mRNA expression of immune-related (cytokines and host defense peptides) and barrier function (mucin and free fatty acid receptors) genes in different segments of intestinal mucosa in chickens injected in ovo with GOS. Asterisk indicates pair-wise significant differences (P < 0.05, n = 10). Graphs were obtained from Ref. [32].
Due to the great concern about AMR, it is imperative to avoid the use of antibiotics as growth promoters and look for effective alternatives that can help poultry production to improve the welfare of the poultry birds, performance, and production costs. As a result of all the studies that have been carried out, we can conclude that dietary addition of prebiotics has a positive effect on poultry production, highlighting the improvement of intestinal health, immune system, control of pathogens, and performance parameters, which are achieved through a series of interrelated mechanisms and interactions involving interactions between the organisms of the intestinal microbiota and the microbiota with the host animal. Nevertheless, effectiveness of prebiotics will depend on many factors, like the type of supplement, doses, composition of the basal diet, animal characteristics, and environmental condition, showing variable effects on poultry species, so that it is necessary to determine conditions under which prebiotics are effective and elucidate the mechanisms(s) of action involved, ensuring their effective use. Many studies have elucidated mechanisms involved in the effectiveness of prebiotics, but we believe that there is still information that remains to be discovered or that must be confirmed, including the identification of new prebiotics and their application in the poultry industry, for which we can take hold of the emerging analysis technologies.
\nThis research was supported by the Arkansas Bioscience Institute under the project Development of an avian model for evaluation early enteric microbial colonization on the gastrointestinal tract and immune function. The authors thank the CONACyT for the doctoral grant number 270730.
\n"Open access contributes to scientific excellence and integrity. It opens up research results to wider analysis. It allows research results to be reused for new discoveries. And it enables the multi-disciplinary research that is needed to solve global 21st century problems. Open access connects science with society. It allows the public to engage with research. To go behind the headlines. And look at the scientific evidence. And it enables policy makers to draw on innovative solutions to societal challenges".
\n\nCarlos Moedas, the European Commissioner for Research Science and Innovation at the STM Annual Frankfurt Conference, October 2016.
",metaTitle:"About Open Access",metaDescription:"Open access contributes to scientific excellence and integrity. It opens up research results to wider analysis. It allows research results to be reused for new discoveries. And it enables the multi-disciplinary research that is needed to solve global 21st century problems. Open access connects science with society. It allows the public to engage with research. To go behind the headlines. And look at the scientific evidence. And it enables policy makers to draw on innovative solutions to societal challenges.\n\nCarlos Moedas, the European Commissioner for Research Science and Innovation at the STM Annual Frankfurt Conference, October 2016.",metaKeywords:null,canonicalURL:"about-open-access",contentRaw:'[{"type":"htmlEditorComponent","content":"The Open Access publishing movement started in the early 2000s when academic leaders from around the world participated in the formation of the Budapest Initiative. They developed recommendations for an Open Access publishing process, “which has worked for the past decade to provide the public with unrestricted, free access to scholarly research—much of which is publicly funded. Making the research publicly available to everyone—free of charge and without most copyright and licensing restrictions—will accelerate scientific research efforts and allow authors to reach a larger number of readers” (reference: http://www.budapestopenaccessinitiative.org)
\\n\\nIntechOpen’s co-founders, both scientists themselves, created the company while undertaking research in robotics at Vienna University. Their goal was to spread research freely “for scientists, by scientists’ to the rest of the world via the Open Access publishing model. The company soon became a signatory of the Budapest Initiative, which currently has more than 1000 supporting organizations worldwide, ranging from universities to funders.
\\n\\nAt IntechOpen today, we are still as committed to working with organizations and people who care about scientific discovery, to putting the academic needs of the scientific community first, and to providing an Open Access environment where scientists can maximize their contribution to scientific advancement. By opening up access to the world’s scientific research articles and book chapters, we aim to facilitate greater opportunity for collaboration, scientific discovery and progress. We subscribe wholeheartedly to the Open Access definition:
\\n\\n“By “open access” to [peer-reviewed research literature], we mean its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. The only constraint on reproduction and distribution, and the only role for copyright in this domain, should be to give authors control over the integrity of their work and the right to be properly acknowledged and cited” (reference: http://www.budapestopenaccessinitiative.org)
\\n\\nOAI-PMH
\\n\\nAs a firm believer in the wider dissemination of knowledge, IntechOpen supports the Open Access Initiative Protocol for Metadata Harvesting (OAI-PMH Version 2.0). Read more
\\n\\nLicense
\\n\\nBook chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen upholds a very flexible Copyright Policy. There is no copyright transfer to the publisher and Authors retain exclusive copyright to their work. All Monographs/Compacts are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). Read more
\\n\\nPeer Review Policies
\\n\\nAll scientific works are Peer Reviewed prior to publishing. Read more
\\n\\nOA Publishing Fees
\\n\\nThe Open Access publishing model employed by IntechOpen eliminates subscription charges and pay-per-view fees, enabling readers to access research at no cost. In order to sustain operations and keep our publications freely accessible we levy an Open Access Publishing Fee for manuscripts, which helps us cover the costs of editorial work and the production of books. Read more
\\n\\nDigital Archiving Policy
\\n\\nIntechOpen is committed to ensuring the long-term preservation and the availability of all scholarly research we publish. We employ a variety of means to enable us to deliver on our commitments to the scientific community. Apart from preservation by the Croatian National Library (for publications prior to April 18, 2018) and the British Library (for publications after April 18, 2018), our entire catalogue is preserved in the CLOCKSS archive.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'The Open Access publishing movement started in the early 2000s when academic leaders from around the world participated in the formation of the Budapest Initiative. They developed recommendations for an Open Access publishing process, “which has worked for the past decade to provide the public with unrestricted, free access to scholarly research—much of which is publicly funded. Making the research publicly available to everyone—free of charge and without most copyright and licensing restrictions—will accelerate scientific research efforts and allow authors to reach a larger number of readers” (reference: http://www.budapestopenaccessinitiative.org)
\n\nIntechOpen’s co-founders, both scientists themselves, created the company while undertaking research in robotics at Vienna University. Their goal was to spread research freely “for scientists, by scientists’ to the rest of the world via the Open Access publishing model. The company soon became a signatory of the Budapest Initiative, which currently has more than 1000 supporting organizations worldwide, ranging from universities to funders.
\n\nAt IntechOpen today, we are still as committed to working with organizations and people who care about scientific discovery, to putting the academic needs of the scientific community first, and to providing an Open Access environment where scientists can maximize their contribution to scientific advancement. By opening up access to the world’s scientific research articles and book chapters, we aim to facilitate greater opportunity for collaboration, scientific discovery and progress. We subscribe wholeheartedly to the Open Access definition:
\n\n“By “open access” to [peer-reviewed research literature], we mean its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. The only constraint on reproduction and distribution, and the only role for copyright in this domain, should be to give authors control over the integrity of their work and the right to be properly acknowledged and cited” (reference: http://www.budapestopenaccessinitiative.org)
\n\nOAI-PMH
\n\nAs a firm believer in the wider dissemination of knowledge, IntechOpen supports the Open Access Initiative Protocol for Metadata Harvesting (OAI-PMH Version 2.0). Read more
\n\nLicense
\n\nBook chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen upholds a very flexible Copyright Policy. There is no copyright transfer to the publisher and Authors retain exclusive copyright to their work. All Monographs/Compacts are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). Read more
\n\nPeer Review Policies
\n\nAll scientific works are Peer Reviewed prior to publishing. Read more
\n\nOA Publishing Fees
\n\nThe Open Access publishing model employed by IntechOpen eliminates subscription charges and pay-per-view fees, enabling readers to access research at no cost. In order to sustain operations and keep our publications freely accessible we levy an Open Access Publishing Fee for manuscripts, which helps us cover the costs of editorial work and the production of books. Read more
\n\nDigital Archiving Policy
\n\nIntechOpen is committed to ensuring the long-term preservation and the availability of all scholarly research we publish. We employ a variety of means to enable us to deliver on our commitments to the scientific community. Apart from preservation by the Croatian National Library (for publications prior to April 18, 2018) and the British Library (for publications after April 18, 2018), our entire catalogue is preserved in the CLOCKSS archive.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:null},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5313},{group:"region",caption:"Middle and South America",value:2,count:4819},{group:"region",caption:"Africa",value:3,count:1468},{group:"region",caption:"Asia",value:4,count:9362},{group:"region",caption:"Australia and Oceania",value:5,count:837},{group:"region",caption:"Europe",value:6,count:14778}],offset:12,limit:12,total:108153},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish",topicId:"23"},books:[{type:"book",id:"8452",title:"Argumentation",subtitle:null,isOpenForSubmission:!0,hash:"0860d5da35173d066fe692466ccc4487",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/8452.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8525",title:"LGBT+ Studies",subtitle:null,isOpenForSubmission:!0,hash:"6cb260b7524f548de18dac8fd97d5db7",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/8525.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7821",title:"Penology",subtitle:null,isOpenForSubmission:!0,hash:"2127505059817f762d95d38e83fa4b58",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/7821.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9036",title:"Social Policy",subtitle:null,isOpenForSubmission:!0,hash:"4266fa2d0a91696ade5421a773b40ec7",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/9036.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9037",title:"Types of Nonverbal Communication",subtitle:null,isOpenForSubmission:!0,hash:"9cc8207a08817f9049b2706066fb9ecd",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/9037.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9038",title:"Globalization",subtitle:null,isOpenForSubmission:!0,hash:"3761e38ada032e79742e548afe09a389",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/9038.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9041",title:"Active Reinforcement Learning",subtitle:null,isOpenForSubmission:!0,hash:"10d7900003c7af88a8d62946cd0dd920",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/9041.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9542",title:"Social Welfare",subtitle:null,isOpenForSubmission:!0,hash:"f87eca1e1da98d96aa76e55ab97eeb90",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/9542.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9538",title:"Generational Gap",subtitle:null,isOpenForSubmission:!0,hash:"9cf567fd09f3be48bf8dc6337fa13df6",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/9538.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9533",title:"Capitalism",subtitle:null,isOpenForSubmission:!0,hash:"5c20736ce60a5d627594d8036b8d64a7",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/9533.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9543",title:"Poverty",subtitle:null,isOpenForSubmission:!0,hash:"f1ced86a0f516c65e633cb59f944ae0e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/9543.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9539",title:"Social Enterprise",subtitle:null,isOpenForSubmission:!0,hash:"ace77329fc7d282621439e01547ec5c0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/9539.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:35},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:32},{group:"topic",caption:"Business, Management and Economics",value:7,count:9},{group:"topic",caption:"Chemistry",value:8,count:29},{group:"topic",caption:"Computer and Information Science",value:9,count:26},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:14},{group:"topic",caption:"Engineering",value:11,count:75},{group:"topic",caption:"Environmental Sciences",value:12,count:13},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:37},{group:"topic",caption:"Mathematics",value:15,count:14},{group:"topic",caption:"Medicine",value:16,count:142},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:5},{group:"topic",caption:"Neuroscience",value:18,count:6},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:8},{group:"topic",caption:"Physics",value:20,count:20},{group:"topic",caption:"Psychology",value:21,count:2},{group:"topic",caption:"Robotics",value:22,count:6},{group:"topic",caption:"Social Sciences",value:23,count:14},{group:"topic",caption:"Technology",value:24,count:10},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3},{group:"topic",caption:"Intelligent System",value:535,count:1}],offset:12,limit:12,total:28},popularBooks:{featuredBooks:[{type:"book",id:"7878",title:"Advances in Extracorporeal Membrane Oxygenation",subtitle:"Volume 3",isOpenForSubmission:!1,hash:"f95bf990273d08098a00f9a1c2403cbe",slug:"advances-in-extracorporeal-membrane-oxygenation-volume-3",bookSignature:"Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/7878.jpg",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7614",title:"Fourier Transforms",subtitle:"Century of Digitalization and Increasing Expectations",isOpenForSubmission:!1,hash:"ff3501657ae983a3b42fef1f7058ac91",slug:"fourier-transforms-century-of-digitalization-and-increasing-expectations",bookSignature:"Goran S. Nikoli? and Dragana Z. Markovi?-Nikoli?",coverURL:"https://cdn.intechopen.com/books/images_new/7614.jpg",editors:[{id:"23261",title:"Prof.",name:"Goran",middleName:"S.",surname:"Nikolic",slug:"goran-nikolic",fullName:"Goran Nikolic"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editors:[{id:"108709",title:"Dr.",name:"Giovanna",middleName:null,surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7062",title:"Rhinosinusitis",subtitle:null,isOpenForSubmission:!1,hash:"14ed95e155b1e57a61827ca30b579d09",slug:"rhinosinusitis",bookSignature:"Balwant Singh Gendeh and Mirjana Turkalj",coverURL:"https://cdn.intechopen.com/books/images_new/7062.jpg",editors:[{id:"67669",title:"Prof.",name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7087",title:"Tendons",subtitle:null,isOpenForSubmission:!1,hash:"786abac0445c102d1399a1e727a2db7f",slug:"tendons",bookSignature:"Hasan Sözen",coverURL:"https://cdn.intechopen.com/books/images_new/7087.jpg",editors:[{id:"161402",title:"Dr.",name:"Hasan",middleName:null,surname:"Sözen",slug:"hasan-sozen",fullName:"Hasan Sözen"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7701",title:"Assistive and Rehabilitation Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4191b744b8af3b17d9a80026dcb0617f",slug:"assistive-and-rehabilitation-engineering",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7701.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7837",title:"Geriatric Medicine and Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"e277d005b23536bcd9f8550046101979",slug:"geriatric-medicine-and-gerontology",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7837.jpg",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,isOpenForSubmission:!1,hash:"61c627da05b2ace83056d11357bdf361",slug:"current-topics-in-neglected-tropical-diseases",bookSignature:"Alfonso J. Rodriguez-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",editors:[{id:"131400",title:"Dr.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7610",title:"Renewable and Sustainable Composites",subtitle:null,isOpenForSubmission:!1,hash:"c2de26c3d329c54f093dc3f05417500a",slug:"renewable-and-sustainable-composites",bookSignature:"António B. Pereira and Fábio A. O. Fernandes",coverURL:"https://cdn.intechopen.com/books/images_new/7610.jpg",editors:[{id:"211131",title:"Prof.",name:"António",middleName:"Bastos",surname:"Pereira",slug:"antonio-pereira",fullName:"António Pereira"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8416",title:"Non-Equilibrium Particle Dynamics",subtitle:null,isOpenForSubmission:!1,hash:"2c3add7639dcd1cb442cb4313ea64e3a",slug:"non-equilibrium-particle-dynamics",bookSignature:"Albert S. Kim",coverURL:"https://cdn.intechopen.com/books/images_new/8416.jpg",editors:[{id:"21045",title:"Prof.",name:"Albert S.",middleName:null,surname:"Kim",slug:"albert-s.-kim",fullName:"Albert S. Kim"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8463",title:"Pediatric Surgery, Flowcharts and Clinical Algorithms",subtitle:null,isOpenForSubmission:!1,hash:"23f39beea4d557b0ae424e2eaf82bf5e",slug:"pediatric-surgery-flowcharts-and-clinical-algorithms",bookSignature:"Sameh Shehata",coverURL:"https://cdn.intechopen.com/books/images_new/8463.jpg",editors:[{id:"37518",title:"Prof.",name:"Sameh",middleName:null,surname:"Shehata",slug:"sameh-shehata",fullName:"Sameh Shehata"}],productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4392},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7878",title:"Advances in Extracorporeal Membrane Oxygenation",subtitle:"Volume 3",isOpenForSubmission:!1,hash:"f95bf990273d08098a00f9a1c2403cbe",slug:"advances-in-extracorporeal-membrane-oxygenation-volume-3",bookSignature:"Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/7878.jpg",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7614",title:"Fourier Transforms",subtitle:"Century of Digitalization and Increasing Expectations",isOpenForSubmission:!1,hash:"ff3501657ae983a3b42fef1f7058ac91",slug:"fourier-transforms-century-of-digitalization-and-increasing-expectations",bookSignature:"Goran S. Nikoli? and Dragana Z. Markovi?-Nikoli?",coverURL:"https://cdn.intechopen.com/books/images_new/7614.jpg",editors:[{id:"23261",title:"Prof.",name:"Goran",middleName:"S.",surname:"Nikolic",slug:"goran-nikolic",fullName:"Goran Nikolic"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editors:[{id:"108709",title:"Dr.",name:"Giovanna",middleName:null,surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7062",title:"Rhinosinusitis",subtitle:null,isOpenForSubmission:!1,hash:"14ed95e155b1e57a61827ca30b579d09",slug:"rhinosinusitis",bookSignature:"Balwant Singh Gendeh and Mirjana Turkalj",coverURL:"https://cdn.intechopen.com/books/images_new/7062.jpg",editors:[{id:"67669",title:"Prof.",name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7087",title:"Tendons",subtitle:null,isOpenForSubmission:!1,hash:"786abac0445c102d1399a1e727a2db7f",slug:"tendons",bookSignature:"Hasan Sözen",coverURL:"https://cdn.intechopen.com/books/images_new/7087.jpg",editors:[{id:"161402",title:"Dr.",name:"Hasan",middleName:null,surname:"Sözen",slug:"hasan-sozen",fullName:"Hasan Sözen"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7701",title:"Assistive and Rehabilitation Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4191b744b8af3b17d9a80026dcb0617f",slug:"assistive-and-rehabilitation-engineering",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7701.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7837",title:"Geriatric Medicine and Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"e277d005b23536bcd9f8550046101979",slug:"geriatric-medicine-and-gerontology",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7837.jpg",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,isOpenForSubmission:!1,hash:"61c627da05b2ace83056d11357bdf361",slug:"current-topics-in-neglected-tropical-diseases",bookSignature:"Alfonso J. Rodriguez-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",editors:[{id:"131400",title:"Dr.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7610",title:"Renewable and Sustainable Composites",subtitle:null,isOpenForSubmission:!1,hash:"c2de26c3d329c54f093dc3f05417500a",slug:"renewable-and-sustainable-composites",bookSignature:"António B. Pereira and Fábio A. O. Fernandes",coverURL:"https://cdn.intechopen.com/books/images_new/7610.jpg",editors:[{id:"211131",title:"Prof.",name:"António",middleName:"Bastos",surname:"Pereira",slug:"antonio-pereira",fullName:"António Pereira"}],productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8463",title:"Pediatric Surgery, Flowcharts and Clinical Algorithms",subtitle:null,isOpenForSubmission:!1,hash:"23f39beea4d557b0ae424e2eaf82bf5e",slug:"pediatric-surgery-flowcharts-and-clinical-algorithms",bookSignature:"Sameh Shehata",coverURL:"https://cdn.intechopen.com/books/images_new/8463.jpg",editedByType:"Edited by",editors:[{id:"37518",title:"Prof.",name:"Sameh",middleName:null,surname:"Shehata",slug:"sameh-shehata",fullName:"Sameh Shehata"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7187",title:"Osteosarcoma",subtitle:"Diagnosis, Mechanisms, and Translational Developments",isOpenForSubmission:!1,hash:"89096359b754beb806eca4c6d8aacaba",slug:"osteosarcoma-diagnosis-mechanisms-and-translational-developments",bookSignature:"Matthew Gregory Cable and Robert Lawrence Randall",coverURL:"https://cdn.intechopen.com/books/images_new/7187.jpg",editedByType:"Edited by",editors:[{id:"265693",title:"Dr.",name:"Matthew Gregory",middleName:null,surname:"Cable",slug:"matthew-gregory-cable",fullName:"Matthew Gregory Cable"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editedByType:"Edited by",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7701",title:"Assistive and Rehabilitation Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4191b744b8af3b17d9a80026dcb0617f",slug:"assistive-and-rehabilitation-engineering",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7701.jpg",editedByType:"Edited by",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"e7ea7e74ce7a7a8e5359629e07c68d31",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",editedByType:"Edited by",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8256",title:"Distillation",subtitle:"Modelling, Simulation and Optimization",isOpenForSubmission:!1,hash:"c76af109f83e14d915e5cb3949ae8b80",slug:"distillation-modelling-simulation-and-optimization",bookSignature:"Vilmar Steffen",coverURL:"https://cdn.intechopen.com/books/images_new/8256.jpg",editedByType:"Edited by",editors:[{id:"189035",title:"Dr.",name:"Vilmar",middleName:null,surname:"Steffen",slug:"vilmar-steffen",fullName:"Vilmar Steffen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7240",title:"Growing and Handling of Bacterial Cultures",subtitle:null,isOpenForSubmission:!1,hash:"a76c3ef7718c0b72d0128817cdcbe6e3",slug:"growing-and-handling-of-bacterial-cultures",bookSignature:"Madhusmita Mishra",coverURL:"https://cdn.intechopen.com/books/images_new/7240.jpg",editedByType:"Edited by",editors:[{id:"204267",title:"Dr.",name:"Madhusmita",middleName:null,surname:"Mishra",slug:"madhusmita-mishra",fullName:"Madhusmita Mishra"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editedByType:"Edited by",editors:[{id:"108709",title:"Dr.",name:"Giovanna",middleName:null,surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7062",title:"Rhinosinusitis",subtitle:null,isOpenForSubmission:!1,hash:"14ed95e155b1e57a61827ca30b579d09",slug:"rhinosinusitis",bookSignature:"Balwant Singh Gendeh and Mirjana Turkalj",coverURL:"https://cdn.intechopen.com/books/images_new/7062.jpg",editedByType:"Edited by",editors:[{id:"67669",title:"Prof.",name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7837",title:"Geriatric Medicine and Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"e277d005b23536bcd9f8550046101979",slug:"geriatric-medicine-and-gerontology",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7837.jpg",editedByType:"Edited by",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"505",title:"Electrochemistry",slug:"chemistry-physical-chemistry-electrochemistry",parent:{title:"Physical Chemistry",slug:"chemistry-physical-chemistry"},numberOfBooks:17,numberOfAuthorsAndEditors:423,numberOfWosCitations:300,numberOfCrossrefCitations:158,numberOfDimensionsCitations:410,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"chemistry-physical-chemistry-electrochemistry",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"6778",title:"Electrocatalysts for Fuel Cells and Hydrogen Evolution",subtitle:"Theory to Design",isOpenForSubmission:!1,hash:"0bee36d692b3ce00b11fef507609d521",slug:"electrocatalysts-for-fuel-cells-and-hydrogen-evolution-theory-to-design",bookSignature:"Abhijit Ray, Indrajit Mukhopadhyay and Ranjan K. Pati",coverURL:"https://cdn.intechopen.com/books/images_new/6778.jpg",editedByType:"Edited by",editors:[{id:"174737",title:"Dr.",name:"Abhijit",middleName:null,surname:"Ray",slug:"abhijit-ray",fullName:"Abhijit Ray"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5913",title:"Redox",subtitle:"Principles and Advanced Applications",isOpenForSubmission:!1,hash:"bc323da5a080b0f626da4c6099b5193a",slug:"redox-principles-and-advanced-applications",bookSignature:"Mohammed Awad Ali Khalid",coverURL:"https://cdn.intechopen.com/books/images_new/5913.jpg",editedByType:"Edited by",editors:[{id:"137240",title:"Prof.",name:"Mohammed",middleName:null,surname:"Khalid",slug:"mohammed-khalid",fullName:"Mohammed Khalid"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5381",title:"Ionic Liquids",subtitle:"Progress and Developments in",isOpenForSubmission:!1,hash:"e87c37c4d014c11121453605e6d0f37a",slug:"progress-and-developments-in-ionic-liquids",bookSignature:"Scott Handy",coverURL:"https://cdn.intechopen.com/books/images_new/5381.jpg",editedByType:"Edited by",editors:[{id:"42658",title:"Prof.",name:"Scott",middleName:null,surname:"Handy",slug:"scott-handy",fullName:"Scott Handy"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4599",title:"Ion Exchange",subtitle:"Studies and Applications",isOpenForSubmission:!1,hash:"2e45cfed818bc38f70a214561b0a1e21",slug:"ion-exchange-studies-and-applications",bookSignature:"Ayben Kilislioglu",coverURL:"https://cdn.intechopen.com/books/images_new/4599.jpg",editedByType:"Edited by",editors:[{id:"139903",title:"Prof.",name:"Ayben",middleName:null,surname:"Kilislioglu",slug:"ayben-kilislioglu",fullName:"Ayben Kilislioglu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4524",title:"Field Effect Electroosmosis",subtitle:"A Novel Phenomenon in Electrokinetics and its Applications in Capillary Electrophoresis",isOpenForSubmission:!1,hash:"565f91c26b8f3a3c73d9e28145d7b269",slug:"field-effect-electroosmosis-a-novel-phenomenon-in-electrokinetics-and-its-applications-in-capillary-electrophoresis",bookSignature:"Kiumars Ghowsi",coverURL:"https://cdn.intechopen.com/books/images_new/4524.jpg",editedByType:"Edited by",editors:[{id:"145098",title:"Prof.",name:"Kiumars",middleName:null,surname:"Ghowsi",slug:"kiumars-ghowsi",fullName:"Kiumars Ghowsi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2437",title:"Electrochemistry",subtitle:null,isOpenForSubmission:!1,hash:"4d77896d92a0b2f69168537e0b57c8ab",slug:"electrochemistry",bookSignature:"Mohammed A. A. Khalid",coverURL:"https://cdn.intechopen.com/books/images_new/2437.jpg",editedByType:"Edited by",editors:[{id:"40312",title:"Dr.",name:"Mohammed",middleName:"Awad",surname:"Khalid",slug:"mohammed-khalid",fullName:"Mohammed Khalid"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3476",title:"Developments in Electrochemistry",subtitle:null,isOpenForSubmission:!1,hash:"a0d070ce0c17777f7605b91a0beac07e",slug:"developments-in-electrochemistry",bookSignature:"Jang H. Chun",coverURL:"https://cdn.intechopen.com/books/images_new/3476.jpg",editedByType:"Edited by",editors:[{id:"164636",title:"Prof.",name:"Jang Ho",middleName:null,surname:"Chun",slug:"jang-ho-chun",fullName:"Jang Ho Chun"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2549",title:"Ion Exchange Technologies",subtitle:null,isOpenForSubmission:!1,hash:"d5d70a346ca433c501e5968f54286740",slug:"ion-exchange-technologies",bookSignature:"Ayben Kilislioğlu",coverURL:"https://cdn.intechopen.com/books/images_new/2549.jpg",editedByType:"Edited by",editors:[{id:"139903",title:"Prof.",name:"Ayben",middleName:null,surname:"Kilislioglu",slug:"ayben-kilislioglu",fullName:"Ayben Kilislioglu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2264",title:"Scanning Probe Microscopy",subtitle:"Physical Property Characterization at Nanoscale",isOpenForSubmission:!1,hash:"5a969e2a47b3e08d1e8c1ff3c3503fcf",slug:"scanning-probe-microscopy-physical-property-characterization-at-nanoscale",bookSignature:"Vijay Nalladega",coverURL:"https://cdn.intechopen.com/books/images_new/2264.jpg",editedByType:"Edited by",editors:[{id:"105093",title:"Dr.",name:"Vijay",middleName:null,surname:"Nalladega",slug:"vijay-nalladega",fullName:"Vijay Nalladega"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1455",title:"Electroplating",subtitle:null,isOpenForSubmission:!1,hash:"18ec8cf0e50c5e8170a9d0b20af09b7f",slug:"electroplating",bookSignature:"Darwin Sebayang and Sulaiman Bin Haji Hasan",coverURL:"https://cdn.intechopen.com/books/images_new/1455.jpg",editedByType:"Edited by",editors:[{id:"92970",title:"Prof.",name:"Darwin",middleName:null,surname:"Sebayang",slug:"darwin-sebayang",fullName:"Darwin Sebayang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2282",title:"Atomic Force Microscopy",subtitle:"Imaging, Measuring and Manipulating Surfaces at the Atomic Scale",isOpenForSubmission:!1,hash:"17fb7c8076806f6aca457071b7e7ce10",slug:"atomic-force-microscopy-imaging-measuring-and-manipulating-surfaces-at-the-atomic-scale",bookSignature:"Victor Bellitto",coverURL:"https://cdn.intechopen.com/books/images_new/2282.jpg",editedByType:"Edited by",editors:[{id:"111789",title:"Dr.",name:"Victor",middleName:null,surname:"Bellitto",slug:"victor-bellitto",fullName:"Victor Bellitto"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1430",title:"Electrochemical Cells",subtitle:"New Advances in Fundamental Researches and Applications",isOpenForSubmission:!1,hash:"8d6940c11056ad45b64997133a536a0f",slug:"electrochemical-cells-new-advances-in-fundamental-researches-and-applications",bookSignature:"Yan Shao",coverURL:"https://cdn.intechopen.com/books/images_new/1430.jpg",editedByType:"Edited by",editors:[{id:"39811",title:"Dr.",name:"Yan",middleName:null,surname:"Shao",slug:"yan-shao",fullName:"Yan Shao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:17,mostCitedChapters:[{id:"33450",doi:"10.5772/37583",title:"Measurement of the Nanoscale Roughness by Atomic Force Microscopy: Basic Principles and Applications",slug:"measurement-of-the-nanoscale-roughness-by-atomic-force-microscopy-basic-principles-and-applications",totalDownloads:19908,totalCrossrefCites:11,totalDimensionsCites:45,book:{slug:"atomic-force-microscopy-imaging-measuring-and-manipulating-surfaces-at-the-atomic-scale",title:"Atomic Force Microscopy",fullTitle:"Atomic Force Microscopy - Imaging, Measuring and Manipulating Surfaces at the Atomic Scale"},signatures:"R.R.L. De Oliveira, D.A.C. Albuquerque, T.G.S. Cruz, F.M. Yamaji and F.L. Leite",authors:[{id:"1164",title:"Dr.",name:"Fabio",middleName:"Lima",surname:"Leite",slug:"fabio-leite",fullName:"Fabio Leite"},{id:"136651",title:"MSc.",name:"Ricardo",middleName:null,surname:"De Oliveira",slug:"ricardo-de-oliveira",fullName:"Ricardo De Oliveira"},{id:"136652",title:"M.Sc.",name:"Diego",middleName:"Aparecido Carvalho",surname:"Albuquerque",slug:"diego-albuquerque",fullName:"Diego Albuquerque"},{id:"136653",title:"Prof.",name:"Tersio",middleName:null,surname:"Cruz",slug:"tersio-cruz",fullName:"Tersio Cruz"},{id:"136657",title:"Prof.",name:"Fabio",middleName:null,surname:"Yamaji",slug:"fabio-yamaji",fullName:"Fabio Yamaji"}]},{id:"40697",doi:"10.5772/51040",title:"Selective Removal of Heavy Metal Ions from Waters and Waste Waters Using Ion Exchange Methods",slug:"selective-removal-of-heavy-metal-ions-from-waters-and-waste-waters-using-ion-exchange-methods",totalDownloads:17479,totalCrossrefCites:14,totalDimensionsCites:41,book:{slug:"ion-exchange-technologies",title:"Ion Exchange Technologies",fullTitle:"Ion Exchange Technologies"},signatures:"Zbigniew Hubicki and Dorota Kołodyńska",authors:[{id:"42116",title:"Dr.",name:"Dorota",middleName:null,surname:"Kołodyńska",slug:"dorota-kolodynska",fullName:"Dorota Kołodyńska"},{id:"141883",title:"Prof.",name:"Zbigniew",middleName:null,surname:"Hubicki",slug:"zbigniew-hubicki",fullName:"Zbigniew Hubicki"}]},{id:"25422",doi:"10.5772/28293",title:"Electrochemical Polymerization of Aniline",slug:"electrochemical-polymerization-of-aniline",totalDownloads:10657,totalCrossrefCites:3,totalDimensionsCites:17,book:{slug:"electropolymerization",title:"Electropolymerization",fullTitle:"Electropolymerization"},signatures:"Milica M. Gvozdenović, Branimir Z. Jugović, Jasmina S. Stevanović, Tomislav Lj. Trišović and Branimir N. Grgur",authors:[{id:"73400",title:"Dr.",name:"Milica",middleName:null,surname:"Gvozdenović",slug:"milica-gvozdenovic",fullName:"Milica Gvozdenović"},{id:"78801",title:"Dr.",name:"Branimir",middleName:null,surname:"Jugović",slug:"branimir-jugovic",fullName:"Branimir Jugović"},{id:"78807",title:"Dr.",name:"Jasmina",middleName:null,surname:"Stevanović",slug:"jasmina-stevanovic",fullName:"Jasmina Stevanović"},{id:"120374",title:"Dr.",name:"Tomislav",middleName:null,surname:"Trišović",slug:"tomislav-trisovic",fullName:"Tomislav Trišović"},{id:"120376",title:"Prof.",name:"Branimir",middleName:null,surname:"Grgur",slug:"branimir-grgur",fullName:"Branimir Grgur"}]}],mostDownloadedChaptersLast30Days:[{id:"55292",title:"On the Titration Curves and Titration Errors in Donor Acceptor Titrations of Displacement and Electronic Transference Reactions",slug:"on-the-titration-curves-and-titration-errors-in-donor-acceptor-titrations-of-displacement-and-electr",totalDownloads:1171,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"redox-principles-and-advanced-applications",title:"Redox",fullTitle:"Redox - Principles and Advanced Applications"},signatures:"Julia Martín, Laura Ortega Estévez and Agustín G. Asuero",authors:[{id:"190870",title:"Dr.",name:"Agustín G.",middleName:null,surname:"Asuero",slug:"agustin-g.-asuero",fullName:"Agustín G. Asuero"},{id:"190871",title:"Dr.",name:"Julia",middleName:null,surname:"Martín",slug:"julia-martin",fullName:"Julia Martín"},{id:"203696",title:"Ms.",name:"Laura",middleName:null,surname:"Ortega Estévez",slug:"laura-ortega-estevez",fullName:"Laura Ortega Estévez"}]},{id:"61933",title:"Theoretical Basis of Electrocatalysis",slug:"theoretical-basis-of-electrocatalysis",totalDownloads:1015,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"electrocatalysts-for-fuel-cells-and-hydrogen-evolution-theory-to-design",title:"Electrocatalysts for Fuel Cells and Hydrogen Evolution",fullTitle:"Electrocatalysts for Fuel Cells and Hydrogen Evolution - Theory to Design"},signatures:"Chi Ho Lee and Sang Uck Lee",authors:null},{id:"40697",title:"Selective Removal of Heavy Metal Ions from Waters and Waste Waters Using Ion Exchange Methods",slug:"selective-removal-of-heavy-metal-ions-from-waters-and-waste-waters-using-ion-exchange-methods",totalDownloads:17479,totalCrossrefCites:14,totalDimensionsCites:41,book:{slug:"ion-exchange-technologies",title:"Ion Exchange Technologies",fullTitle:"Ion Exchange Technologies"},signatures:"Zbigniew Hubicki and Dorota Kołodyńska",authors:[{id:"42116",title:"Dr.",name:"Dorota",middleName:null,surname:"Kołodyńska",slug:"dorota-kolodynska",fullName:"Dorota Kołodyńska"},{id:"141883",title:"Prof.",name:"Zbigniew",middleName:null,surname:"Hubicki",slug:"zbigniew-hubicki",fullName:"Zbigniew Hubicki"}]},{id:"55442",title:"Redox Flow Batteries: Fundamentals and Applications",slug:"redox-flow-batteries-fundamentals-and-applications",totalDownloads:1822,totalCrossrefCites:4,totalDimensionsCites:6,book:{slug:"redox-principles-and-advanced-applications",title:"Redox",fullTitle:"Redox - Principles and Advanced Applications"},signatures:"Ruiyong Chen, Sangwon Kim and Zhenjun Chang",authors:[{id:"199502",title:"Dr.",name:"Ruiyong",middleName:null,surname:"Chen",slug:"ruiyong-chen",fullName:"Ruiyong Chen"},{id:"205906",title:"Dr.",name:"Sangwon",middleName:null,surname:"Kim",slug:"sangwon-kim",fullName:"Sangwon Kim"},{id:"205907",title:"Prof.",name:"Zhenjun",middleName:null,surname:"Chang",slug:"zhenjun-chang",fullName:"Zhenjun Chang"}]},{id:"62242",title:"Oxygen Reduction Reaction",slug:"oxygen-reduction-reaction",totalDownloads:1607,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"electrocatalysts-for-fuel-cells-and-hydrogen-evolution-theory-to-design",title:"Electrocatalysts for Fuel Cells and Hydrogen Evolution",fullTitle:"Electrocatalysts for Fuel Cells and Hydrogen Evolution - Theory to Design"},signatures:"Lindiwe Khotseng",authors:null},{id:"61784",title:"Active Sites Derived from Heteroatom Doping in Carbon Materials for Oxygen Reduction Reaction",slug:"active-sites-derived-from-heteroatom-doping-in-carbon-materials-for-oxygen-reduction-reaction",totalDownloads:1002,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"electrocatalysts-for-fuel-cells-and-hydrogen-evolution-theory-to-design",title:"Electrocatalysts for Fuel Cells and Hydrogen Evolution",fullTitle:"Electrocatalysts for Fuel Cells and Hydrogen Evolution - Theory to Design"},signatures:"Winston Duo Wu and Dan Xu",authors:null},{id:"52110",title:"Electrodeposition from Deep Eutectic Solvents",slug:"electrodeposition-from-deep-eutectic-solvents",totalDownloads:1952,totalCrossrefCites:3,totalDimensionsCites:7,book:{slug:"progress-and-developments-in-ionic-liquids",title:"Ionic Liquids",fullTitle:"Progress and Developments in Ionic Liquids"},signatures:"R. Bernasconi, G. Panzeri, A. Accogli, F. Liberale, L. Nobili and L.\nMagagnin",authors:[{id:"188210",title:"Associate Prof.",name:"Luca",middleName:null,surname:"Magagnin",slug:"luca-magagnin",fullName:"Luca Magagnin"},{id:"194387",title:"MSc.",name:"Roberto",middleName:null,surname:"Bernasconi",slug:"roberto-bernasconi",fullName:"Roberto Bernasconi"},{id:"194388",title:"MSc.",name:"Gabriele",middleName:null,surname:"Panzeri",slug:"gabriele-panzeri",fullName:"Gabriele Panzeri"},{id:"194389",title:"MSc.",name:"Alessandra",middleName:null,surname:"Accogli",slug:"alessandra-accogli",fullName:"Alessandra Accogli"},{id:"194390",title:"MSc.",name:"Francesco",middleName:null,surname:"Liberale",slug:"francesco-liberale",fullName:"Francesco Liberale"},{id:"194391",title:"Prof.",name:"Luca",middleName:null,surname:"Nobili",slug:"luca-nobili",fullName:"Luca Nobili"}]},{id:"40709",title:"The Role of Ion Exchange Chromatography in Purification and Characterization of Molecules",slug:"the-role-of-ion-exchange-chromatography-in-purification-and-characterization-of-molecules",totalDownloads:11424,totalCrossrefCites:1,totalDimensionsCites:5,book:{slug:"ion-exchange-technologies",title:"Ion Exchange Technologies",fullTitle:"Ion Exchange Technologies"},signatures:"Hidayat Ullah Khan",authors:[{id:"140538",title:"Dr.",name:"Hidayat",middleName:null,surname:"Khan",slug:"hidayat-khan",fullName:"Hidayat Khan"}]},{id:"40696",title:"Investigation of Sorption and Separation of Lanthanides on the Ion Exchangers of Various Types",slug:"investigation-of-sorption-and-separation-of-lanthanides-on-the-ion-exchangers-of-various-types",totalDownloads:8650,totalCrossrefCites:6,totalDimensionsCites:10,book:{slug:"ion-exchange-technologies",title:"Ion Exchange Technologies",fullTitle:"Ion Exchange Technologies"},signatures:"Dorota Kołodyńska and Zbigniew Hubicki",authors:[{id:"42116",title:"Dr.",name:"Dorota",middleName:null,surname:"Kołodyńska",slug:"dorota-kolodynska",fullName:"Dorota Kołodyńska"},{id:"141883",title:"Prof.",name:"Zbigniew",middleName:null,surname:"Hubicki",slug:"zbigniew-hubicki",fullName:"Zbigniew Hubicki"}]},{id:"53307",title:"Ionic Liquids/Ionic Liquid Crystals for Safe and Sustainable Energy Storage Systems",slug:"ionic-liquids-ionic-liquid-crystals-for-safe-and-sustainable-energy-storage-systems",totalDownloads:1847,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"progress-and-developments-in-ionic-liquids",title:"Ionic Liquids",fullTitle:"Progress and Developments in Ionic Liquids"},signatures:"Sudha J. Devaki and Renjith Sasi",authors:[{id:"187911",title:"Associate Prof.",name:"Sudha",middleName:null,surname:"J Devaki",slug:"sudha-j-devaki",fullName:"Sudha J Devaki"},{id:"187915",title:"Mr.",name:"Renjith",middleName:null,surname:"Sasi",slug:"renjith-sasi",fullName:"Renjith Sasi"}]}],onlineFirstChaptersFilter:{topicSlug:"chemistry-physical-chemistry-electrochemistry",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"6837",title:"Lithium-ion Batteries - Thin Film for Energy Materials and Devices",subtitle:null,isOpenForSubmission:!0,hash:"ea7789260b319b9a4b472257f57bfeb5",slug:null,bookSignature:"Prof. Mitsunobu Sato, Dr. Li Lu and Dr. Hiroki Nagai",coverURL:"https://cdn.intechopen.com/books/images_new/6837.jpg",editedByType:null,editors:[{id:"179615",title:"Prof.",name:"Mitsunobu",middleName:null,surname:"Sato",slug:"mitsunobu-sato",fullName:"Mitsunobu Sato"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9423",title:"Applications of Artificial Intelligence in Process Industry Automation, Heat and Power Generation and Smart Manufacturing",subtitle:null,isOpenForSubmission:!0,hash:"10ac8fb0bdbf61044395963028653d21",slug:null,bookSignature:"Prof. Konstantinos G. Kyprianidis and Prof. Erik Dahlquist",coverURL:"https://cdn.intechopen.com/books/images_new/9423.jpg",editedByType:null,editors:[{id:"35868",title:"Prof.",name:"Konstantinos",middleName:"G.",surname:"Kyprianidis",slug:"konstantinos-kyprianidis",fullName:"Konstantinos Kyprianidis"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9428",title:"New Trends in the Use of Artificial Intelligence for the Industry 4.0",subtitle:null,isOpenForSubmission:!0,hash:"9e089eec484ce8e9eb32198c2d8b34ea",slug:null,bookSignature:"Dr. Luis Romeral Martinez, Dr. Roque A. Osornio-Rios and Dr. Miguel Delgado Prieto",coverURL:"https://cdn.intechopen.com/books/images_new/9428.jpg",editedByType:null,editors:[{id:"86501",title:"Dr.",name:"Luis",middleName:null,surname:"Romeral Martinez",slug:"luis-romeral-martinez",fullName:"Luis Romeral Martinez"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10107",title:"Artificial Intelligence in Oncology Drug Discovery & Development",subtitle:null,isOpenForSubmission:!0,hash:"043c178c3668865ab7d35dcb2ceea794",slug:null,bookSignature:"Dr. John Cassidy and Dr. Belle Taylor",coverURL:"https://cdn.intechopen.com/books/images_new/10107.jpg",editedByType:null,editors:[{id:"244455",title:"Dr.",name:"John",middleName:null,surname:"Cassidy",slug:"john-cassidy",fullName:"John Cassidy"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8903",title:"Carbon Based Material for Environmental Protection and Remediation",subtitle:null,isOpenForSubmission:!0,hash:"19da699b370f320eca63ef2ba02f745d",slug:null,bookSignature:"Dr. Mattia Bartoli and Dr. Marco Frediani",coverURL:"https://cdn.intechopen.com/books/images_new/8903.jpg",editedByType:null,editors:[{id:"188999",title:"Dr.",name:"Mattia",middleName:null,surname:"Bartoli",slug:"mattia-bartoli",fullName:"Mattia Bartoli"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10132",title:"Applied Computational Near-surface Geophysics - From Integral and Derivative Formulas to MATLAB Codes",subtitle:null,isOpenForSubmission:!0,hash:"38cdbbb671df620b36ee96af1d9a3a90",slug:null,bookSignature:"Dr. Afshin Aghayan",coverURL:"https://cdn.intechopen.com/books/images_new/10132.jpg",editedByType:null,editors:[{id:"311030",title:"Dr.",name:"Afshin",middleName:null,surname:"Aghayan",slug:"afshin-aghayan",fullName:"Afshin Aghayan"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10110",title:"Advances and Technologies in Building Construction and Structural Analysis",subtitle:null,isOpenForSubmission:!0,hash:"df2ad14bc5588577e8bf0b7ebcdafd9d",slug:null,bookSignature:"Dr. Ali Kaboli and Dr. Sara Shirowzhan",coverURL:"https://cdn.intechopen.com/books/images_new/10110.jpg",editedByType:null,editors:[{id:"309192",title:"Dr.",name:"Ali",middleName:null,surname:"Kaboli",slug:"ali-kaboli",fullName:"Ali Kaboli"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10175",title:"Ethics in Emerging Technologies",subtitle:null,isOpenForSubmission:!0,hash:"9c92da249676e35e2f7476182aa94e84",slug:null,bookSignature:"Prof. Ali Hessami",coverURL:"https://cdn.intechopen.com/books/images_new/10175.jpg",editedByType:null,editors:[{id:"108303",title:"Prof.",name:"Ali",middleName:null,surname:"Hessami",slug:"ali-hessami",fullName:"Ali Hessami"}],productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:16},humansInSpaceProgram:{},teamHumansInSpaceProgram:{},route:{name:"profile.detail",path:"/profiles/97266/karen-fernandez",hash:"",query:{},params:{id:"97266",slug:"karen-fernandez"},fullPath:"/profiles/97266/karen-fernandez",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()