Main characteristics of the second-generation bioethanol production processes accompanied by an example of its implementation in the literature [23, 24, 25, 26, 27, 28].
\r\n\t
",isbn:"978-1-83969-150-8",printIsbn:"978-1-83969-149-2",pdfIsbn:"978-1-83969-151-5",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"7409b2acd5150a93004300800918b736",bookSignature:"Prof. Karmen Pažek",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10548.jpg",keywords:"Lean Manufacturing, Agriculture, Production and Process, Costs Reduction, Lean Principles, Industry, Tools, Implementation, Sustainability, Modeling, Environment, Planning",numberOfDownloads:11,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 20th 2020",dateEndSecondStepPublish:"November 17th 2020",dateEndThirdStepPublish:"January 16th 2021",dateEndFourthStepPublish:"April 6th 2021",dateEndFifthStepPublish:"June 5th 2021",remainingDaysToSecondStep:"2 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Dr. Pažek is Head of the undergraduate study program Agricultural economics and rural development and Vice-dean for education. She is the author or co-author of 61 scientific papers, 6 scientific books, and 24 book chapters.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"179642",title:"Prof.",name:"Karmen",middleName:null,surname:"Pažek",slug:"karmen-pazek",fullName:"Karmen Pažek",profilePictureURL:"https://mts.intechopen.com/storage/users/179642/images/system/179642.jpg",biography:"Karmen Pažek achieved her Ph.D. at University of Maribor, Faculty of Agriculture in 2006. She is active as Full Professor for Farm management in the Department for Agriculture Economics and Rural Development on Faculty of Agriculture and Life Sciences, University of Maribor. Her research includes development of decision support tools and systems for farm management (simulation modeling, multi-criteria decision analysis, option models, investment analysis) and economics of agricultural production. She is involved in teaching activities as thesis supervisor at postgraduate study programs and involved in national and international research projects. She is author or coauthor of 61 scientific papers (including 34 papers in journals with impact factor), 6 scientific books and 24 book chapters. Currently she is Head of the undergraduate study program Agricultural economics and rural development and Vice dean for education. \r\n\r\nAcademic activities\r\nResearch:\r\n-\tFarm management\r\n-\tDecision support, simulation, forecasting, multi criteria decision making in the area of agriculture with emphasis on field crops, farm tourism and fruit producon\r\n\r\nCurrent Research work:\r\n- Financial parameters assessment based on perfect and in-perfect information in agrifood \r\n systems \r\n- Option modeling of agrifood projects\r\n-\tEfficiency assessment in farm tourism \r\n-\tEfficiency of sugar beet production systems \r\n\r\nTeaching:\r\nUndergraduate Programmes and Courses\r\n-\tFarm management I and II\r\n-\tIntroduction to decision theory\r\n-\tOrganic fam management\r\n-\tManagement od supplementary activities\r\n-\tEconomics and management of rural tourism\r\n-\tSelected issues in agricultural entrepreneurship\r\n\r\nMaster Programmes and Courses\r\n\r\n-\tResearch methods in farm management\r\n-\tDecision theory\r\n-\tProject planning and quality management\r\n-\tOrganic fam management\r\n\r\n \r\nPhD Programme and Course\r\n\r\n-\tProject management (transferable skills)\r\n-\tSelected issues in farm management",institutionString:"University of Maribor",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Maribor",institutionURL:null,country:{name:"Slovenia"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:[{id:"74769",title:"Development of Integrated Lean Six Sigma-Baldrige Framework for Manufacturing Waste Minimization: A Case of NAS Foods Plc",slug:"development-of-integrated-lean-six-sigma-baldrige-framework-for-manufacturing-waste-minimization-a-c",totalDownloads:16,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"247865",firstName:"Jasna",lastName:"Bozic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/247865/images/7225_n.jpg",email:"jasna.b@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3621",title:"Silver Nanoparticles",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"silver-nanoparticles",bookSignature:"David Pozo Perez",coverURL:"https://cdn.intechopen.com/books/images_new/3621.jpg",editedByType:"Edited by",editors:[{id:"6667",title:"Dr.",name:"David",surname:"Pozo",slug:"david-pozo",fullName:"David Pozo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"61818",title:"Second-Generation Bioethanol Production through a Simultaneous Saccharification-Fermentation Process Using Kluyveromyces Marxianus Thermotolerant Yeast",doi:"10.5772/intechopen.78052",slug:"second-generation-bioethanol-production-through-a-simultaneous-saccharification-fermentation-process",body:'\nThe consumption of fossil fuels derived from petroleum is one of the main sources of pollution of the environment, in addition to its expensive and decreasing production, whereas its demand is increasing [1]. This is why countries around the world have directed their policies toward the biofuels usage, which are sustainable, biodegradable, with high combustion efficiency, and their development generates manufacturing and investment jobs, promoting the de agricultural sector development, as well reducing greenhouse gases [2, 3]. This way, the use of biofuels such as bioethanol is pursued to reduce dependence on fossil fuels and contribute to meet the future demands of energy in the world, and at the same time meeting the carbon dioxide emissions reduction goals specified in the Kyoto Protocol [4]. Therefore, it is expected that by 2050 biofuels contribute 30% of the world’s fuel demand [5].
\nEconomically viable bioethanol production still has to date challenges to overcome. This chapter addresses the lignocellulosic biomass utilization for second-generation bioethanol production through a simultaneous saccharification and fermentation process, utilizing thermotolerant yeasts such as K. marxianus.
\nBioethanol is one of the most used biofuels with a worldwide production of around 27 billion gallons per year [2, 6]. This biofuel, defined as ethanol produced from biomass has characteristics such as low combustion temperature, high octane number, and lower evaporation loss compared to gasoline [7, 8]. Disadvantages of bioethanol compared to gasoline are its lower energy density and vapor pressure, as well as water miscibility and corrosive capacity [9].
\nBioethanol can be mixed with gasoline in 10% (E10), 20% (E20), and 22% (E22) proportions, without the need to make mechanical modifications in combustion vehicles [9]. There are even current designs by some manufacturers that allow vehicles to use up to 85% ethanol [10] and in Brazil more than 20% of cars can use 100% ethanol as fuel [2]. The main purpose of bioethanol, when mixed with gasoline is as an oxygenating agent. Mixed with gasoline, ethanol provides advantages such as increased gas volume change, better combustion, and reduced carbon dioxide emission [11]. It has also been shown that bioethanol can significantly reduce SO2 emissions when mixed with 95% gasoline. This is because the fuel added with bioethanol increases its oxygen content, causing a better oxidation of hydrocarbons and decreasing the emission of greenhouse gases [4].
\nThe main bioethanol producing countries are currently the United States and Brazil, generating up to 70% of world production [12]. However, the bioethanol industry has expanded to other countries such as China, Argentina, and the European Union due to this product increased demand [13]. In the case of the United States, there has been a dramatic increase in bioethanol production from 175 million gallons in 1980 to 14,810 million gallons in 2015 [14].
\nBioethanol is currently obtained in commercial quantities mainly from the fermentation of simple sugars using food inputs such as corn, sugar cane, and sorghum as raw material. The bioethanol obtained from this class of substrates is called first generation bioethanol [15]. The viability of the production of first-generation biofuels is questionable, due to their associated conflicts, such as ethical aspects and their high-cost since the raw materials are linked to the food market, which affects the final price of the product [16].
\nGiven the problems of first-generation fuels, an alternative would be second-generation fuels, where fermentable sugars are derived from lignocellulosic biomass, which are present in agro-industrial wastes. By using industrial wastes as a raw material, pollution is reduced by the elimination of these potentially polluting wastes, as well the materials being of low-cost and its handling and conservation is efficient and economical [17]. Biofuel production such as second-generation bioethanol is considered one of the most promising strategies to replace non-renewable fossil fuels because it does not interfere with the materials available for human or animal consumption, at the same time as collaborating with sustainable development [18, 19].
\nAs a disadvantage, a technological investment is necessary for the treatment of lignocellulosic biomass, and currently, its production is not economically sustainable [20, 21].
\nCurrently, second-generation bioethanol is produced mainly in pilot plants and most commercial plants have been built in the last decade in Denmark, Finland, Spain and Italy, and the United States [22] and due to the challenges that its commercialization still represents the design and optimization of different processes for second-generation bioethanol production has been promoted to reduce production costs.
\nThere are different process configurations for bioethanol production, but all of them include the steps of raw material pretreatment to achieve biomass components solubilization and separation (cellulose, hemicellulose, and lignin); lignocellulosic material hydrolysis to degrade its components and obtain simple sugars; and the fermentation of the substrate to transform the sugars into bioethanol. Reported processes vary mainly in the number of stages and bioreactors needed, which present different pH conditions, oxygenation, sugar concentration, and temperature. Figure 1 shows the main process configurations and their stages, while Table 1 lists the main characteristics of each one of these configurations [23].
\nProcesses for second-generation bioethanol production. Each box refers to a bioreactor. The pretreatment consists of a chemical hydrolysis. Sequential hydrolysis and fermentation (SHF); sequential hydrolysis and cofermentation (SHCF); simultaneous saccharification-fermentation (SSF); SSCF: Simultaneous saccharification-cofermentation (SSCF); consolidated bioprocess (CBP).
The CBP proposes cellulase enzyme production by microorganisms integrated into the fermentation, reducing the enzyme cost in the bioethanol production. However, currently, this process is in its early stages of development since a limited number of microorganisms capable of generating economically viable enzymes are reported. Furthermore, there is no microorganism or microorganism consortium that generates cost-effective bioethanol through CBP at the industry level [29]. In consideration to this situation, the development of genetically modified microorganisms able to produce these enzymes with an economically viable concentration and activity is one of the most promising options. Within the genetically modified microorganisms, yeasts have been one of the most used. Hasunuma and Kondo [30] presented a review of the development of yeast cells for second-generation bioethanol production through CBP. Within their study, they conclude that the combination of cell surface engineering and metabolome are an efficient proposal for the development of CBP yeasts strains. Favaro et al., Mattam et al., Liao et al., and Van et al. [31, 32, 33, 34] review the possibilities of recombinant yeasts generation for second-generation bioethanol production through CBP.
\nIn the rest of the mentioned processes in Figure 1, the cellulases are added beforehand SHF or during the fermentation process SSF. These enzymes can be purchased commercially through different companies responsible for selecting enzymes with the best characteristics to perform these processes. The current commercial cellulases are produced mainly by fungi, bacteria, and yeasts, although they can also be produced by plants and ruminants [35].
\nThis process is carried out in two stages, where hydrolysis and fermentation operate in different procedures. First, the enzymatic cocktail is used to hydrolyze the pretreated lignocellulosic biomass to obtain sugar monomers. The resulting hydrolyzate is subsequently used as a substrate for the fermentation process of sugars to ethanol [36]. The cellulose hydrolysis process through cellulases is the most feasible method for the liberation of sugars since in optimum conditions yields greater than 90% can be obtained. Chandel et al. [37] reviewed the techniques developed in molecular biology and cellulase engineering, as well as the application of cellulases for cellulose hydrolysis.
\nThe main disadvantage of the SHF process is that both stages operate in their respective optimal conditions, thus more processing time is necessary. In addition, the hydrolytic enzymes employed can suffer from product inhibition. These characteristics impact on the productivity of the process [25]. The enzyme cost contributes significantly to the second-generation bioethanol final price, which is why more research is needed in order to reduce saccharification costs through the use of cellulases [36, 37]. In order to make second-generation bioethanol production affordable, cellulase cost must be decreased, and one solution is to increase its activity, which can be achieved through SSF processes at optimum temperatures of the enzymes employed [38].
\nThe main characteristic of the SSF process is that the stages of enzymatic hydrolysis and fermentation are carried out simultaneously. This reduces the energy investment, and therefore, the operating costs, in addition to optimizing the process by reducing the time needed for each of them. These stages favor a greater enzymatic activity of the cellulases eliminating product inhibition since the sugars are metabolized by the yeasts simultaneously as they are released in the hydrolysis. In general, through the SSF process, higher ethanol yields have been obtained compared to SHF, with increases from 13 to 30% [39]. The main disadvantage of the SSF process is the cellulase activity optimal temperature (45–60°C), which is higher than that required for the yeast growth and fermentation (30–35°C) [40, 41]. Besides, fermentation is an exothermic process, so as the fermentation progresses the temperature increases [42]. Therefore, the temperature is one of the main factors that must be considered when establishing a SSF system.
\nFermentation at high temperatures presents advantages such as bioreactor cooling costs reduction and ethanol extraction promotion, reducing its toxic effects on yeasts. Moreover, it is possible to do this process in warm climate countries [43]. In a study conducted by Abdel-Banat et al., an increase of 5°C in the fermentation process, a reduction of enzyme cost up to 50% was observed. However, high temperatures generate yeast growth inhibition, decrease in the cell cycle, increase in fluidity and reduction of the plasma membrane permeability, intracellular pH reduction, breakage of cytoskeleton filaments and microtubules, proteins synthesis repression, mutation frequency increment, and inefficient damaged DNA repair. All the above effects reduce the yeast viability and decrease the bioethanol production yield. Therefore, the use of thermotolerant yeasts in the SSF process for second-generation bioethanol production is proposed as a promising option [23].
\nAlthough traditionally S. cerevisiae yeasts have been the most used in fermentation processes, the production of second-generation bioethanol confronts these microorganisms to conditions not found in traditional fermentation processes [44, 45].
\nIn a SSF process, the selected yeast must be a thermotolerant strain. Thermotolerant yeasts are those that have an optimal growth at temperatures equal to or greater than 40°C [46]. During the last years, potential industrial applications of thermotolerant yeasts have been developing, such as prebiotic and probiotic agents, biomass, and recombinant protein production, as well as bioethanol production [47]. Bioethanol production through SSF process using thermotolerant yeasts generates a reduction in investment costs, such as the industrial equipment needed, lower contamination degree, and decreased process time [17].
\nThe most known non-Saccharomyces yeast species used in SSF processes are K. marxianus, although there are also reports of other species such as K. fragilis, H. polymorpha, and P. pastoris [47].
\nK. marxianus strains are phenotypically very diverse due to the great variety of habitats in which they have been isolated, resulting in a great metabolic diversity [48].
\nIn general, they are considered GRAS (Generally recognized as safe), they are the eukaryotic cells that have presented the highest growth rate [49], they have an efficient ethanol production capacity up to 45°C, with thermotolerance up to 52°C, besides the genomes of some strains have been described [50, 51, 52, 53, 54, 55, 56]. Recently, studies have been carried out on the optimization of the metabolic engineering pathways in these yeasts [57], and genetic engineering has been used to obtain strains capable of producing heterologous proteins or metabolites such as lactate and xylitol [58, 59].
\nOne necessary characteristic in sustainable bioethanol production is the fermentation of different sugars [60], innate in most of K. marxianus yeasts. These yeasts can ferment xylose, xylitol, cellobiose, lactose, and arabinose, both in liquid and solid medium, considered a great advantage compared with S. cerevisiae [61].
\nWhereas strains of S. cerevisiae have been obtained by genetic engineering with pentose metabolism [62], these strains still present different problems that must be solved [63], besides that they are not thermotolerant. Nitiyon et al. [64] reported that the yeast K. marxianus BUNL-21 presents a xylose to ethanol efficient conversion capacity, as well as thermotolerance. López-Alvarez et al. [65] obtained higher ethanol yields with K. marxianus UMPe-1 yeast compared with S. cerevisiae Pan-1. Lyubomirov et al. [66] and Kuloyo et al. [67] compared the ethanol production at temperatures of 35 and 40°C by the strains K. marxianus UOFS Y-2791 and S. cerevisiae UOFS Y-0528, concluding K. marxianus presents potential as an alternative to S. cerevisiae for the bioethanol production, as well as other metabolites such as 2-phenyl ethanol.
\nDue to the aforementioned characteristics, K. marxianus have been considered as one of the yeast with the highest potential for the second-generation bioethanol production, and a viable alternative compared with S. cerevisiae [68, 30].
\nAs a thermotolerant yeast and due to its ability to use various sugars as a carbon source, K. marxianus yeasts have been used widely for second-generation bioethanol production through SSF and SSCF processes (Table 2).
\nKádár et al. [80] compared the yield in the second-generation bioethanol production by K. marxianus and S. cerevisiae yeasts, in an SSF process at 40°C. Having found no significant differences in the ethanol production with respect to SHF processes, it is suggested to carry out the fermentation processes with K. marxianus thermotolerant yeasts at temperatures above 40°C. Tomás-Pejó et al. [79] performed SSF processes with a K. marxianus thermotolerant yeast CECT 10,875 at 50°C. By using a feed back process they increased ethanol production by 20%. Hyun-Woo et al. [75] carried out an SSF process with a temperature change from 45 to 35°C at 24 h of the process using the thermotolerant yeast K. marxianus CHY 1612. This change generated an increase of 12 g/L of ethanol, compared to a SSF process carried out at a constant temperature of 45°C. Yu-Sheng et al. [73] studied the bioethanol production using a K. marxianusthermotolerant yeast, through the SSF process in a rotating reactor, which allowed a constant exchange of biomass that was in contact with the yeast, concluding that through this process bioethanol production has commercial potential. Wu et al. [84] implemented a SSF process with a high solid load of taro waste using K. marxianus, reaching 94% of theoretical yields in 20 h of fermentation, which was reflected in high process productivity (Wu et al. [84]).
\nWith the previous reports, we observed that modifications to the SSF process using K. marxianus thermotolerant yeasts can increase ethanol production to economically viable levels.
\nLignocellulosic biomass is a source of renewable energy, available in most of the world. However, its treatment is one of the main factors that increase the cost of second-generation bioethanol production. The biomass selection for this process is directly correlated with its availability in the production area, characteristics that depend on geographical variables [85]. In Mexico, agave bagasse is one of the most generated lignocellulosic materials, since it is an agro-industrial waste resulting from tequila and mezcal production. The blue agave (Agave tequilana) used for tequila production is cultivated mainly in the western region of Mexico. In general, the process of tequila production considers the use of blue agave plant cores, which are cooked in ovens or systems such as the diffuser. Afterward, they are pressed for their juice extraction, and the fructans present in the juice are then hydrolyzed to monosaccharides. The residue of this process is agave bagasse. It is estimated that 859,000 tons of agave are processed per year to produce tequila, and approximately 343,600 tons of agave bagasse are generated. Agave bagasse can be used as livestock food, construction material, and for recycled paper elaboration [86], as well as a substrate for edible fungi growth [87]. However, most of it is incinerated, which generates large amounts of ash that can contaminate rivers, bodies of water and damage flora and fauna [88]. Table 3 shows that agave bagasse has a higher cellulose proportion, compared to main lignocellulosic biomass used for bioethanol production.
\nThe lignocellulosic composition of agroindustrial wastes used in second-generation bioethanol production [89].
Hernández-Salas et al. [90] obtained a sugar yield of 12–58% by hydrolysis of agave bagasse using an alkaline-enzymatic treatment, while under the same conditions with sugarcane bagasse the yield was lower, with values of 11–20% [90]. Therefore, according to its production and composition, agave bagasse can be considered a promising source of fermentable sugars for bioethanol production. Table 4 shows studies for bioethanol production using agave bagasse.
\n\nCaspeta et al. [92] released 91% of agave bagasse sugars during saccharification and produced 64 g/L of ethanol after 9 h of fermentation with S. cerevisiae SuperStart yeast, this being the highest yield obtained with agave bagasse.
\nRios González et al. [94] managed to implement a process of autohydrolysis pretreatment which allowed preserving the glycan content in agave bagasse, achieving a high digestibility in the hydrolysis process for its subsequent fermentation to ethanol with a strain of S. cerevisiae.
\nThrough a simulation program analysis, Barrera et al. [95] carried out the technical and economic evaluation of bioethanol production, considering sugarcane bagasse, and agave bagasse as lignocellulosic biomass substrates. The results showed a lower production cost using agave bagasse (1.34 USD/gallon), compared to sugarcane bagasse (1.46 USD/gallon), suggesting that this result is due to the lower processing cost required for agave bagasse and its low lignin content [95].
\nAgave bagasse, besides being a good source of sugars for bioethanol production, is considered one of the best agro-industrial residues generated in the Mexico region, to be used in solid state fermentation processes [3], as well as for succinic acid production [96].
\nIt is worth highlighting the scarce reports of bioethanol production from agave bagasse using non-Saccharomyces strains, as well as there are only reported SHF processes with this material, which represents a study opportunity to use this substrate in more efficient processes such as SSF.
\nDependence on fossil fuels has led to a high degree of pollution on the planet, as well as low availability and an increase in its price, which forces the pursuit of new sources of energy. The use of second-generation bioethanol is a promising option to face this problem. However, currently, its production is not affordable, which has prevented its commercialization. Although metabolic engineering in conjunction with bioprocess optimization is recommended techniques for bioethanol cost-effective production, these are still in development, which contrasts with the widely used and perfected yeast selection techniques. These approaches can be used to find thermotolerant yeasts such as K. marxianus for their application in the second-generation bioethanol production through SSF processes to overcome the economic challenges in the production of this biofuel.
\nVeganism is a philosophy and lifestyle that seeks to exclude the use of animals for food or clothing and includes all other forms of diet of non-animal origin. Vegan diet is based on cereals, legumes, fruits and vegetables. Vegans do not eat meat, fish, seafood, eggs, milk, dairy products, honey threads carry things made of fur, wool, bones, leather, coral, pearls or any other materials of animal origin. Within the commitment to a vegan lifestyle, there is a group of people who eat exclusively fresh raw fruits, vegetables without heat treatment. This group of vegans is called a row food diet. Veganism differs from vegetarianism in that it is reduced entirely to a plant-based diet, while vegetarians also eat some products of animal origin, when animals are not killed when obtaining these products, e.g. eggs, honey, milk and dairy products. It seems that feminist ecology has more sympathy to movements related to animal rights, because females are exactly the most explored ones by the industry: for milk, eggs, frequent pregnancies, rape, etc., which draws more empathy in women.
The word vegan was given by Donald Watson in 1944 in Leicester, England, who, with several other members of the Vegetarian Society, wanted to establish a subgroup of vegetarians who do not consume milk or dairy products. After rejecting the proposal, Watson and associates founded. The Vegan Society which advocates a complete plant-based diet. The newly formed association agreed that the cessation of any form of animal exploitation was necessary to create a much more reasonable and humane society.
People become vegan for many reasons, including ethical care for animals and the natural environment, as well as circumstances related to health, spirituality, and religion [1]. As far as ethical principles are concerned, a vegan diet prevents the mass breeding and systematic slaughter of large numbers of animals on farms. Vegan food contains lower levels of cholesterol and fat than the usual diet. From the ecological point of view, the meat industry participates in the pollution of air, land and water, contributes to the exploitation and deforestation of forests and large land areas for the cultivation of crops intended for feeding a large number of farmed animals.
The basis of a healthy vegan diet is all vegetables, vegetable proteins, good fats and whole grains. However, vegans should pay attention to the intake of calcium, magnesium and vitamin D. Adequate intake of vitamin B12 is especially important, which is available in certain types of herbal drinks such as herbal drinks that do not contain lactose or added sugars and are especially suitable for vegans. A well-planned vegan diet can meet all the needs of the body. A poorly organized vegan diet can cause a lack of calcium, iodine, iron, vitamin B12 and vitamin D, which must then be taken from vitamin and mineral supplements [2].
According to surveys, vegans make up between 0.2% and 1.3% of the American population and between 0.25% and 7% of the general population [3].
The benefits of a vegan diet are great - it reduces the risk of cancer, cardiovascular disease, myocardial infarction, stroke, rheumatoid arthritis, high blood pressure, asthma, allergies and kidney stones.
Many studies suggest a link between cancer and diet [4]. More than half of these cancer cases are potentially preventable. Diet affects approximately 30% of all cancers in developed countries and 20% in developing countries [5].
The diet enables the assessment of the connection between the disease and the intake of certain foods in relation to the usual diet [6]. Several studies have been published that deal with the relationship between dietary factors and overall cancer risk. The vegan diet is thought to be inversely related to the overall incidence of cancer. There are studies whose results for certain cancers are not in line with the diet. This lack of clarity may result from the heterogeneity of vegetarian diets among respondents in different countries, as they may vary widely in relation to the ratio of animal and plant foods eaten, food quality, cooking methods, limitations of measures used to quantify dietary nutrition, and other factors may affect the development of cancer [7, 8].
Vegetarians and vegans generally include greater amounts of plant foods, avoid the intake of meat, and often adopt other healthy lifestyles compared to non-vegetarians [9]. Thus there is reason to suspect that vegetarian diets may protect against cancer. Factors associated with the high fiber content in vegetarian diets promote increased insulin sensitivity [10]. Plant-based diet is associated with lower circulating levels of total IGF-I and higher levels of IGFBP-I and IGFBP-2 compared with a meat-eating or even a lacto-ovo-vegetarian diet [11]. Insulin and IGF-I act as promoters for most normal and pre-neoplastic tissues. Therefore, their down- regulation may reduce cancer rates [12]. The strongest evidence linking specific foods to decrease risk of certain cancers includes the consumption of fruits and vegetables and whole grains [13]. Studies show a strong inverse relationship between dietary fiber intake and colon cancer in populations at low risk for the disease [14]. Several hypotheses have been postulated to explain this effect, 2 of which are outlined as follows. First, fiber increases the bulk of the stool, which decreases transit time and, in turn, could decrease the time colonic epithelial cells are exposed to potential fecal carcinogens. Second, bacteria in the gut can ferment fiber to short-chain fatty acids such as butyrate. These fatty acids may promote colonic cell differentiation and normal cell apoptosis [15]. It is estimated that an increase of dietary fiber to 20 g a day from average current intakes would reduce the rate of colorectal cancer by 40% [16].
The vegan diet has been found to be an effective means of preventing and treating cardiometabolic diseases. The risk of type 2 diabetes can be reduced by 50%, preventing atherosclerosis, hypercholesterolemia and hypertension [17].
Most of the data on the vegan diet is based on the adult population. Less is known about the vegan diet of newborns and children. Children have a greater need for energy and protein, which is met by vegetables, tofu, beans, whole grains, nuts and seeds. It is recommended for 10% more protein in childhood than in adult vegans. For this reason, alternatives rich in low-fiber vegan proteins, such as tofu and seitan, may be desirable, as these foods usually result in high satiety and can support adequate protein intake. Because animal foods such as meat, dairy, eggs, fish and fowl are among the best sources of protein, vegans can sometimes lack sufficient protein in their diets. The American Dietetic Association, however, notes that protein requirements can be met if a variety of plant proteins are consumed. Complementary proteins, specifically, can be very helpful in providing all the essential amino acids required by the body. Complementary proteins are made up by two incomplete proteins, such as beans and rice, that, when combined, form a complete protein. These proteins do not need to be consumed at the same meal, just during the same day [18]. Though vegan diets are often rich in omega-6 fatty acids, they can lack sufficient amounts of omega-3 due to the restriction of omega-3-rich foods, including eggs, fish and other seafood. The omega-3 fatty acids found in animal sources, which include eicosapentaenoic acid and docosahexaenoic acid, are important for cardiovascular, brain and eye health. Plant foods rich in omega-3, such as flaxseed, only contain another type of fatty acid, known as alpha-linolenic acid. Vegans can purchase soy milk and breakfast bars fortified with DHA, as well as DHA supplements derived from microalgae. Because DHA can be retroconverted to EPA, sources containing DHA are sufficient for vegan diets. Vitamin D is important for bone health, and low levels have been linked to reduced bone mass. Sunlight exposure is best source of vitamin D. Therefore, vegans who do not get regular sun exposure need to consume dietary vitamin D through either fortified foods or supplements, since vitamin D occurs naturally in very few foods. Vegan sources of vitamin D that are often fortified include soy milk, rice milk and orange juice. Lack of vitamin B-12 is one of the biggest concerns with vegan diets, especially because vegan diets are typically rich in folacin, which can mask B-12 deficiency symptoms [6]. Severe B-12 deficiencies can result in both anemia and dementia, notes Harvard Medical School. So, if you are a vegan, be sure to consume B-12 fortified foods such as soy and rice beverages and breakfast cereals, or supplements. Because the bioavailability of iron in vegan diets is lower than in traditional diets, vegans should consume 1.8 times the amount of iron consumed by nonvegans. Good sources of iron for vegans include dried beans and dark, leafy green vegetables. Zinc is another mineral whose bioavailability is lower in vegans than in nonvegans. Vegan sources of zinc include legumes, soy products, grains and nuts. Some research suggests that because plant-based diets are low in iodine, vegans who do not consume key sources of iodine, including iodized salt and sea vegetables, are more likely to be deficient in the mineral. The American Dietetic Association notes that vegans tend to fall below the recommended intake of calcium. The calcium in certain calcium-rich vegetables, such as Swiss chard and spinach, is not absorbed well, making fortified foods such as fruit juices, breakfast cereal and soy and rice milk among the best choices for vegans [2].
A vegan diet can increase the risk of micronutrient deficiencies, particularly iodine, iron, zinc, calcium, Vitamin B12, Vitamin D, Vitamin B2, Vitamin A, n-3 fatty acids (docosahexanoic acid; DHA).
In a vegan diet, iodine needs can be met by iodized salt or supplements to sources of algae [19].
Vegan sources of iron are from tofu (soy), chickpeas, nuts, seeds and grains. Unlike iron from animal sources, called heme iron, which is easily absorbed, non-heme iron from plants has poor bioavailability and lower absorption due to high levels of phytate and polyphenols. Vegans, as well as vegetarians, require 1.8 times more iron in the diet, compared to those who eat meat. Vitamin C may increase the absorption of non-heme iron. However, many vegan sources of iron, especially soy, nuts and sesame seeds, are food allergens. For non-allergic children, iron-fortified foods, including packaged cereals, can be an additional source of iron. During later childhood, iron deficiency is the most common micronutrient deficiency, which emphasizes the importance of adequate iron intake [20].
Vegan sources of zinc include soy and other legumes, nuts, seeds and whole grains, as well as fortified cereals. Due to the lower bioavailability of zinc in plant foods, vegans (as well as vegetarians) may need 1.5 times more zinc than those who eat meat [21].
Calcium is a mineral important for the development of bone density. It is found mostly in milk and dairy products, which are absent in the vegan diet. Foods of plant origin rich in calcium are vegetables, legumes and cereals, leafy vegetables, sesame seeds, almonds and dried figs. If calcium intake is insufficient, a supplement in combination with vitamin D that promotes absorption should be considered [22].
Vitamin B12 is the biggest problem in the vegan diet, perhaps because it is found almost exclusively in foods of animal origin. Constant vitamin B12 supplementation or herbal drinks enriched with vitamin B12 are suggested [23].
Most research indicates that vitamin D3 of animal origin is more effective than vitamin D2 of plant origin. Humans get most of their vitamin D from sun exposure [24].
Vitamin B2, or riboflavin, is necessary for the metabolism of amino acids, carbohydrates and the development of the nervous system. The main dietary sources include milk, eggs and some meat, which is not part of the vegan diet, as well as leafy greens, fortified cereals, nuts and soy [25].
Vitamin A is found in fortified foods and beverages, including milk, cod liver oil, eggs, and leafy green vegetables greens rich in beta-carotene (e.g., kale, spinach). Vegan intake was also below nutritional recommendations [25].
Omega-3 fatty acids require special attention in the vegan diet. The inclusion of vegan, omega-3-containing foods, such as walnuts, ground chia seeds and ground flaxseed, is advisable. Concerns have been expressed about flaxseed processing. Currently, the safe amount of ground flaxseed is not well known and caution is advised. Alternatively, supplementary sources of preformed DHA should be considered [26].
It is important to note that a diet without animal meat and products also reduces the chances of food poisoning.
The majority of microorganisms in the human intestine belong to the phyla Firmicutes (which includes Clostridium, Enterococcus, Lactobacillus and Ruminococcus) and Bacteroidetes (which includes Bacteroides and Prevotella in proportions determined in part by diet) [27].
Vegan samples had a significantly lower number of microbes compared to omnivores for four bacterial taxa: Bacteroides, Bifidobacterium, E. coli. coli and Enterobacteriaceae. Interestingly, the vegetarian sample also showed significantly reduced bacteria and bifidobacteria. It is important to note that vegans and vegetarians did not differ significantly from each other in these four taxa, nor did they differ in Enterobacter, Enterococcus, Clostridium, Klebsiella, or Lactobacillus, compared to each other or to omnivorous specimens. The vegan diet contains more carbohydrates and fiber than omnivores, and as such, vegan samples significantly reduced stool pH than control groups. The lower pH is strongly correlated with the reduced number of E. coli and Enterobacteriaceae, species that are not tolerant of acidic environments. Microbiota and pH of vegetarian stools fall on continuity between vegans and omnivores. These results suggest that the composition of the human gut changes with diet along the continuum, with the vegan diet differing most from omnivores, but not necessarily and significantly from those of other vegetarians. It is possible that the disproportionately high prevalence of this beneficial bacterium in the vegan gut is attributable to a high fiber diet. The role of dietary fiber needs to be examined in greater depth, beyond its mechanical effect of increasing stool bulk and speeding transit time. Dietary fiber also influences the intestinal environment by inhibiting pathogen adhesion, altering bacterial fermentation patterns and short chain fatty acid concentrations, modifying microbiota community profiles, and lowering stool pH [28]. A vegan diet promotes an intestinal microbiota that directly reduces the risk of metabolic diseases. Studies have noticed a link between a vegan diet and protection against autoimmune diseases. For example, an analysis of the Adventist cohort found that a vegan diet, but not a vegetarian one, was associated with a lower risk of hypothyroidism [29]. Four fecal hydrolytic enzymes, associated with toxic and inflammatory products, decreased during the vegan diet. However, these changes in fecal urease, hololglycine hydrolases, β-glucuronidase and β-glucosidase disappeared within two weeks of starting a normal diet. The authors attribute this reduction in fecal enzymes not only to bacterial activity during the dietary change, but also to the high fiber content in the vegan diet, which can affect fecal weight, transit time, and bacterial metabolism. More detailed research has focused on the vegan diet and the “extreme” raw vegan diet (live food movement) as a promising treatment for rheumatoid arthritis (RA). This possibility that a vegan diet may cause a rapid change in bowel profile was supported by studies in patients with rheumatoid arthritis in which a one-month transition to a vegan diet was sufficient to significantly alter fecal microflora, as determined by stool sample gas–liquid chromatographic profiles of bacterial cellular fatty acids [30]. Thus a patient’s personal taste and cultural traditions may need to dictate whether a vegan diet is the ideal choice for medical nutrition therapy [31].
A well-planned vegan diet can meet all the body’s needs. A poorly organized vegan diet can cause a deficiency of calcium, iodine, omega-3 fatty acids, iron, vitamin B12 and vitamin D, which must then be taken from vitamin and mineral supplements.
If you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links.
",metaTitle:"List of Institutions by Country",metaDescription:"If you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links. However, if your research is financed through any of the below-mentioned funders, please consult their Open Access policies or grant ‘terms and conditions’ to explore ways to cover your publication costs (also accessible by clicking on the link in their title).",metaKeywords:null,canonicalURL:"open-access-funding-institutions-list",contentRaw:'[{"type":"htmlEditorComponent","content":"Book Chapters and Monographs
\\n\\nBook Chapters
\\n\\nMonographs Only
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\nMonographs Only
\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nCSIC affiliated authors can also take advantage of a central Open Access fund (amounting to 10,000 EUR) to cover up to 50% of the rest of the OAPF until it expires. Effective for chapters accepted from January 1, 2020.
\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\n\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nThe Claremont Colleges are pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 15% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nThe University of Massachusetts, Amherst is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nThe University of Surrey is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nMonographs Only
\\n\\n\\n\\nImportant: You must be a member or grantee of the above listed institutions in order to apply for their Open Access publication funds.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Book Chapters and Monographs
\n\n\n\nBook Chapters
\n\nMonographs Only
\n\n\n\nBook Chapters and Monographs
\n\nMonographs Only
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\n\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nCSIC affiliated authors can also take advantage of a central Open Access fund (amounting to 10,000 EUR) to cover up to 50% of the rest of the OAPF until it expires. Effective for chapters accepted from January 1, 2020.
\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\n\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\nThe Claremont Colleges are pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 15% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nThe University of Massachusetts, Amherst is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nThe University of Surrey is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nMonographs Only
\n\n\n\nImportant: You must be a member or grantee of the above listed institutions in order to apply for their Open Access publication funds.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5684},{group:"region",caption:"Middle and South America",value:2,count:5166},{group:"region",caption:"Africa",value:3,count:1682},{group:"region",caption:"Asia",value:4,count:10211},{group:"region",caption:"Australia and Oceania",value:5,count:887},{group:"region",caption:"Europe",value:6,count:15616}],offset:12,limit:12,total:117315},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{},books:[{type:"book",id:"7724",title:"Climate Issues in Asia and Africa - Examining Climate, Its Flux, the Consequences, and Society's Responses",subtitle:null,isOpenForSubmission:!0,hash:"c1bd1a5a4dba07b95a5ae5ef0ecf9f74",slug:null,bookSignature:" John P. Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/7724.jpg",editedByType:null,editors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7829",title:"Psychosis - Phenomenology, Psychopathology and Pathophysiology",subtitle:null,isOpenForSubmission:!0,hash:"a211068a33e47af974e3823f33feaa43",slug:null,bookSignature:"Dr. Kenjiro Fukao",coverURL:"https://cdn.intechopen.com/books/images_new/7829.jpg",editedByType:null,editors:[{id:"32519",title:"Dr.",name:"Kenjiro",surname:"Fukao",slug:"kenjiro-fukao",fullName:"Kenjiro Fukao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7901",title:"Advances in Germ Cell Biology – New Technologies, Applications and Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"4adab31469b82dd5a99eec04dbbe09f2",slug:null,bookSignature:"Ph.D. Sonia Oliveira and Prof. Maria De Lourdes Pereira",coverURL:"https://cdn.intechopen.com/books/images_new/7901.jpg",editedByType:null,editors:[{id:"323848",title:"Ph.D.",name:"Sonia",surname:"Oliveira",slug:"sonia-oliveira",fullName:"Sonia Oliveira"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7921",title:"Optogenetics",subtitle:null,isOpenForSubmission:!0,hash:"3ae7e24d8f03ff3932bceee4b8d3e727",slug:null,bookSignature:"Dr. Thomas Heinbockel",coverURL:"https://cdn.intechopen.com/books/images_new/7921.jpg",editedByType:null,editors:[{id:"70569",title:"Dr.",name:"Thomas",surname:"Heinbockel",slug:"thomas-heinbockel",fullName:"Thomas Heinbockel"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8485",title:"Weather Forecasting",subtitle:null,isOpenForSubmission:!0,hash:"eadbd6f9c26be844062ce5cd3b3eb573",slug:null,bookSignature:"Associate Prof. Muhammad Saifullah",coverURL:"https://cdn.intechopen.com/books/images_new/8485.jpg",editedByType:null,editors:[{id:"320968",title:"Associate Prof.",name:"Muhammad",surname:"Saifullah",slug:"muhammad-saifullah",fullName:"Muhammad Saifullah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8575",title:"Animal Regeneration",subtitle:null,isOpenForSubmission:!0,hash:"689b9f46c48cd54a2874b8da7386549d",slug:null,bookSignature:"Dr. Hussein Abdelhay Essayed Kaoud",coverURL:"https://cdn.intechopen.com/books/images_new/8575.jpg",editedByType:null,editors:[{id:"265070",title:"Dr.",name:"Hussein Abdelhay",surname:"Essayed Kaoud",slug:"hussein-abdelhay-essayed-kaoud",fullName:"Hussein Abdelhay Essayed Kaoud"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8737",title:"Rabies Virus",subtitle:null,isOpenForSubmission:!0,hash:"49cce3f548da548c718c865feb343509",slug:null,bookSignature:"Dr. Sergey Tkachev",coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",editedByType:null,editors:[{id:"61139",title:"Dr.",name:"Sergey",surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8950",title:"Birds - Challenges and Opportunities for Business, Conservation and Research",subtitle:null,isOpenForSubmission:!0,hash:"404a05af45e47e43871f4a0b1bedc6fd",slug:null,bookSignature:"Dr. Heimo Juhani Mikkola",coverURL:"https://cdn.intechopen.com/books/images_new/8950.jpg",editedByType:null,editors:[{id:"144330",title:"Dr.",name:"Heimo Juhani",surname:"Mikkola",slug:"heimo-juhani-mikkola",fullName:"Heimo Juhani Mikkola"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8977",title:"Protein Kinase - New Opportunities, Challenges and Future Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"6d200cc031706a565b554fdb1c478901",slug:null,bookSignature:"Dr. Rajesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",editedByType:null,editors:[{id:"329385",title:"Dr.",name:"Rajesh",surname:"Singh",slug:"rajesh-singh",fullName:"Rajesh Singh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9008",title:"Vitamin K - Recent Advances, New Perspectives and Applications for Human Health",subtitle:null,isOpenForSubmission:!0,hash:"8b43add5389ba85743e0a9491e4b9943",slug:null,bookSignature:"Prof. Hiroyuki Kagechika and Dr. Hitoshi Shirakawa",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",editedByType:null,editors:[{id:"180528",title:"Prof.",name:"Hiroyuki",surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9016",title:"Psychoneuroendocrinology",subtitle:null,isOpenForSubmission:!0,hash:"cb4ce09b8e853bef06c572df42933500",slug:null,bookSignature:"Dr. Ifigenia Kostoglou-Athanassiou",coverURL:"https://cdn.intechopen.com/books/images_new/9016.jpg",editedByType:null,editors:[{id:"307495",title:"Dr.",name:"Ifigenia",surname:"Kostoglou-Athanassiou",slug:"ifigenia-kostoglou-athanassiou",fullName:"Ifigenia Kostoglou-Athanassiou"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9046",title:"Amyloidosis History and Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"371a4ad514bb6d6703406741702a19d0",slug:null,bookSignature:"Dr. Jonathan Harrison",coverURL:"https://cdn.intechopen.com/books/images_new/9046.jpg",editedByType:null,editors:[{id:"340843",title:"Dr.",name:"Jonathan",surname:"Harrison",slug:"jonathan-harrison",fullName:"Jonathan Harrison"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:18},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:60},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:307},popularBooks:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5131},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editedByType:"Edited by",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8063",title:"Food Security in Africa",subtitle:null,isOpenForSubmission:!1,hash:"8cbf3d662b104d19db2efc9d59249efc",slug:"food-security-in-africa",bookSignature:"Barakat Mahmoud",coverURL:"https://cdn.intechopen.com/books/images_new/8063.jpg",editedByType:"Edited by",editors:[{id:"92016",title:"Dr.",name:"Barakat",middleName:null,surname:"Mahmoud",slug:"barakat-mahmoud",fullName:"Barakat Mahmoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10118",title:"Plant Stress Physiology",subtitle:null,isOpenForSubmission:!1,hash:"c68b09d2d2634fc719ae3b9a64a27839",slug:"plant-stress-physiology",bookSignature:"Akbar Hossain",coverURL:"https://cdn.intechopen.com/books/images_new/10118.jpg",editedByType:"Edited by",editors:[{id:"280755",title:"Dr.",name:"Akbar",middleName:null,surname:"Hossain",slug:"akbar-hossain",fullName:"Akbar Hossain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editedByType:"Edited by",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editedByType:"Edited by",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"13",title:"Immunology and Microbiology",slug:"immunology-and-microbiology",parent:{title:"Life Sciences",slug:"life-sciences"},numberOfBooks:65,numberOfAuthorsAndEditors:1808,numberOfWosCitations:762,numberOfCrossrefCitations:741,numberOfDimensionsCitations:1754,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"immunology-and-microbiology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9742",title:"Ubiquitin",subtitle:"Proteasome Pathway",isOpenForSubmission:!1,hash:"af6880d3a5571da1377ac8f6373b9e82",slug:"ubiquitin-proteasome-pathway",bookSignature:"Xianquan Zhan",coverURL:"https://cdn.intechopen.com/books/images_new/9742.jpg",editedByType:"Edited by",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8967",title:"Bacterial Biofilms",subtitle:null,isOpenForSubmission:!1,hash:"e692b520263526cca2b37092c3e8d0b4",slug:"bacterial-biofilms",bookSignature:"Sadik Dincer, Melis Sümengen Özdenefe and Afet Arkut",coverURL:"https://cdn.intechopen.com/books/images_new/8967.jpg",editedByType:"Edited by",editors:[{id:"188141",title:"Prof.",name:"Sadik",middleName:null,surname:"Dincer",slug:"sadik-dincer",fullName:"Sadik Dincer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9294",title:"Fluorescence Methods for Investigation of Living Cells and Microorganisms",subtitle:null,isOpenForSubmission:!1,hash:"a97a566a3a19eb9e0c9ba61042bb06c5",slug:"fluorescence-methods-for-investigation-of-living-cells-and-microorganisms",bookSignature:"Natalia Grigoryeva",coverURL:"https://cdn.intechopen.com/books/images_new/9294.jpg",editedByType:"Edited by",editors:[{id:"239430",title:"Dr.",name:"Natalia",middleName:"Yu.",surname:"Grigoryeva",slug:"natalia-grigoryeva",fullName:"Natalia Grigoryeva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9352",title:"Proteoforms",subtitle:"Concept and Applications in Medical Sciences",isOpenForSubmission:!1,hash:"0f0288da2d32c0c0fcda6be0d4d45d67",slug:"proteoforms-concept-and-applications-in-medical-sciences",bookSignature:"Xianquan Zhan",coverURL:"https://cdn.intechopen.com/books/images_new/9352.jpg",editedByType:"Edited by",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8997",title:"Microorganisms",subtitle:null,isOpenForSubmission:!1,hash:"d4bb9c77b89f8baf2716d1fb84c5bd9f",slug:"microorganisms",bookSignature:"Miroslav Blumenberg, Mona Shaaban, Abdelaziz Elgaml",coverURL:"https://cdn.intechopen.com/books/images_new/8997.jpg",editedByType:"Edited by",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9025",title:"Parasitology and Microbiology Research",subtitle:null,isOpenForSubmission:!1,hash:"d9a211396d44f07d2748e147786a2c8b",slug:"parasitology-and-microbiology-research",bookSignature:"Gilberto Antonio Bastidas Pacheco and Asghar Ali Kamboh",coverURL:"https://cdn.intechopen.com/books/images_new/9025.jpg",editedByType:"Edited by",editors:[{id:"238219",title:"Dr.",name:"Gilberto Antonio",middleName:null,surname:"Bastidas Pacheco",slug:"gilberto-antonio-bastidas-pacheco",fullName:"Gilberto Antonio Bastidas Pacheco"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8590",title:"Macrophage Activation",subtitle:"Biology and Disease",isOpenForSubmission:!1,hash:"e15abd1b0e08f1b67d33592999c52c32",slug:"macrophage-activation-biology-and-disease",bookSignature:"Khalid Hussain Bhat",coverURL:"https://cdn.intechopen.com/books/images_new/8590.jpg",editedByType:"Edited by",editors:[{id:"162478",title:"Dr.",name:"Khalid Hussain",middleName:null,surname:"Bhat",slug:"khalid-hussain-bhat",fullName:"Khalid Hussain Bhat"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8422",title:"Metagenomics",subtitle:"Basics, Methods and Applications",isOpenForSubmission:!1,hash:"82c6409553747ffccd6075f9420e3175",slug:"metagenomics-basics-methods-and-applications",bookSignature:"Wael N. Hozzein",coverURL:"https://cdn.intechopen.com/books/images_new/8422.jpg",editedByType:"Edited by",editors:[{id:"189233",title:"Prof.",name:"Wael N.",middleName:"Nabil",surname:"Hozzein",slug:"wael-n.-hozzein",fullName:"Wael N. Hozzein"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6967",title:"Prebiotics and Probiotics",subtitle:"Potential Benefits in Nutrition and Health",isOpenForSubmission:!1,hash:"11781d6b1c070edcf204518e632033be",slug:"prebiotics-and-probiotics-potential-benefits-in-nutrition-and-health",bookSignature:"Elena Franco-Robles and Joel Ramírez-Emiliano",coverURL:"https://cdn.intechopen.com/books/images_new/6967.jpg",editedByType:"Edited by",editors:[{id:"219102",title:"Dr.",name:"Elena",middleName:null,surname:"Franco-Robles",slug:"elena-franco-robles",fullName:"Elena Franco-Robles"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7013",title:"Immunohistochemistry",subtitle:"The Ageless Biotechnology",isOpenForSubmission:!1,hash:"cd11a72871d4b30ec4855a33d49adf3f",slug:"immunohistochemistry-the-ageless-biotechnology",bookSignature:"Charles F. Streckfus",coverURL:"https://cdn.intechopen.com/books/images_new/7013.jpg",editedByType:"Edited by",editors:[{id:"29033",title:"Prof.",name:"Charles",middleName:"F.",surname:"Streckfus",slug:"charles-streckfus",fullName:"Charles Streckfus"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8019",title:"Alginates",subtitle:"Recent Uses of This Natural Polymer",isOpenForSubmission:!1,hash:"61ea5c1aef462684a3b2215631b7dbf2",slug:"alginates-recent-uses-of-this-natural-polymer",bookSignature:"Leonel Pereira",coverURL:"https://cdn.intechopen.com/books/images_new/8019.jpg",editedByType:"Edited by",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8806",title:"Biology of Trypanosoma cruzi",subtitle:null,isOpenForSubmission:!1,hash:"514ab85661e01a47575e845792ef5bdc",slug:"biology-of-em-trypanosoma-cruzi-em-",bookSignature:"Wanderley De Souza",coverURL:"https://cdn.intechopen.com/books/images_new/8806.jpg",editedByType:"Edited by",editors:[{id:"161922",title:"Dr.",name:"Wanderley",middleName:null,surname:"De Souza",slug:"wanderley-de-souza",fullName:"Wanderley De Souza"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:65,mostCitedChapters:[{id:"39599",doi:"10.5772/50046",title:"Encapsulation Technology to Protect Probiotic Bacteria",slug:"encapsulation-technology-to-protect-probiotic-bacteria",totalDownloads:11213,totalCrossrefCites:23,totalDimensionsCites:53,book:{slug:"probiotics",title:"Probiotics",fullTitle:"Probiotics"},signatures:"María Chávarri, Izaskun Marañón and María Carmen Villarán",authors:[{id:"150285",title:"Dr.",name:"María",middleName:null,surname:"Chávarri Hueda",slug:"maria-chavarri-hueda",fullName:"María Chávarri Hueda"},{id:"151613",title:"MSc.",name:"Izaskun",middleName:null,surname:"Marañon",slug:"izaskun-maranon",fullName:"Izaskun Marañon"},{id:"151621",title:"Dr.",name:"Mª Carmen",middleName:null,surname:"Villarán",slug:"ma-carmen-villaran",fullName:"Mª Carmen Villarán"}]},{id:"39607",doi:"10.5772/50121",title:"Recent Application of Probiotics in Food and Agricultural Science",slug:"recent-application-of-probiotics-in-food-and-agricultural-science",totalDownloads:9076,totalCrossrefCites:17,totalDimensionsCites:48,book:{slug:"probiotics",title:"Probiotics",fullTitle:"Probiotics"},signatures:"Danfeng Song, Salam Ibrahim and Saeed Hayek",authors:[{id:"107905",title:"Prof.",name:"Salam",middleName:null,surname:"Ibrahim",slug:"salam-ibrahim",fullName:"Salam Ibrahim"},{id:"150202",title:"Dr.",name:"Danfeng",middleName:null,surname:"Song",slug:"danfeng-song",fullName:"Danfeng Song"},{id:"151025",title:"MSc.",name:"Saeed",middleName:null,surname:"Hayek",slug:"saeed-hayek",fullName:"Saeed Hayek"}]},{id:"33740",doi:"10.5772/35797",title:"Interferences in Immunoassays",slug:"interference-in-immunoassays",totalDownloads:16951,totalCrossrefCites:13,totalDimensionsCites:42,book:{slug:"advances-in-immunoassay-technology",title:"Advances in Immunoassay Technology",fullTitle:"Advances in Immunoassay Technology"},signatures:"Johan Schiettecatte, Ellen Anckaert and Johan Smitz",authors:[{id:"105883",title:"Mr.",name:"Johan",middleName:null,surname:"Schiettecatte",slug:"johan-schiettecatte",fullName:"Johan Schiettecatte"},{id:"113099",title:"Dr.",name:"Ellen",middleName:null,surname:"Anckaert",slug:"ellen-anckaert",fullName:"Ellen Anckaert"},{id:"113100",title:"Prof.",name:"Johan",middleName:null,surname:"Smitz",slug:"johan-smitz",fullName:"Johan Smitz"}]}],mostDownloadedChaptersLast30Days:[{id:"54154",title:"Staphylococcus aureus: Overview of Bacteriology, Clinical Diseases, Epidemiology, Antibiotic Resistance and Therapeutic Approach",slug:"staphylococcus-aureus-overview-of-bacteriology-clinical-diseases-epidemiology-antibiotic-resistance-",totalDownloads:5104,totalCrossrefCites:5,totalDimensionsCites:9,book:{slug:"frontiers-in-i-staphylococcus-aureus-i-",title:"Frontiers in Staphylococcus aureus",fullTitle:"Frontiers in Staphylococcus aureus"},signatures:"Arumugam Gnanamani, Periasamy Hariharan and Maneesh Paul-\nSatyaseela",authors:[{id:"192829",title:"Dr.",name:"Arumugam",middleName:null,surname:"Gnanamani",slug:"arumugam-gnanamani",fullName:"Arumugam Gnanamani"},{id:"204388",title:"Dr.",name:"Periasamy",middleName:null,surname:"Hariharan",slug:"periasamy-hariharan",fullName:"Periasamy Hariharan"},{id:"204389",title:"Dr.",name:"Maneesh",middleName:null,surname:"Paul-Satyaseela",slug:"maneesh-paul-satyaseela",fullName:"Maneesh Paul-Satyaseela"}]},{id:"62553",title:"Antibiotic Use in Poultry Production and Its Effects on Bacterial Resistance",slug:"antibiotic-use-in-poultry-production-and-its-effects-on-bacterial-resistance",totalDownloads:4918,totalCrossrefCites:15,totalDimensionsCites:36,book:{slug:"antimicrobial-resistance-a-global-threat",title:"Antimicrobial Resistance",fullTitle:"Antimicrobial Resistance - A Global Threat"},signatures:"Christian Agyare, Vivian Etsiapa Boamah, Crystal Ngofi Zumbi and\nFrank Boateng Osei",authors:[{id:"182058",title:"Dr.",name:"Christian",middleName:null,surname:"Agyare",slug:"christian-agyare",fullName:"Christian Agyare"},{id:"261271",title:"MSc.",name:"Crystal Ngofi",middleName:null,surname:"Zumbi",slug:"crystal-ngofi-zumbi",fullName:"Crystal Ngofi Zumbi"},{id:"261272",title:"MSc.",name:"Frank Boateng",middleName:null,surname:"Osei",slug:"frank-boateng-osei",fullName:"Frank Boateng Osei"},{id:"261273",title:"Dr.",name:"Vivian Etsiapa",middleName:null,surname:"Boamah",slug:"vivian-etsiapa-boamah",fullName:"Vivian Etsiapa Boamah"}]},{id:"65613",title:"The Methods for Detection of Biofilm and Screening Antibiofilm Activity of Agents",slug:"the-methods-for-detection-of-biofilm-and-screening-antibiofilm-activity-of-agents",totalDownloads:6467,totalCrossrefCites:3,totalDimensionsCites:6,book:{slug:"antimicrobials-antibiotic-resistance-antibiofilm-strategies-and-activity-methods",title:"Antimicrobials, Antibiotic Resistance, Antibiofilm Strategies and Activity Methods",fullTitle:"Antimicrobials, Antibiotic Resistance, Antibiofilm Strategies and Activity Methods"},signatures:"Sahra Kırmusaoğlu",authors:[{id:"179460",title:"Dr.",name:"Sahra",middleName:null,surname:"Kırmusaoğlu",slug:"sahra-kirmusaoglu",fullName:"Sahra Kırmusaoğlu"}]},{id:"56849",title:"Physiology and Pathology of Innate Immune Response Against Pathogens",slug:"physiology-and-pathology-of-innate-immune-response-against-pathogens",totalDownloads:4842,totalCrossrefCites:9,totalDimensionsCites:14,book:{slug:"physiology-and-pathology-of-immunology",title:"Physiology and Pathology of Immunology",fullTitle:"Physiology and Pathology of Immunology"},signatures:"José Luis Muñoz Carrillo, Flor Pamela Castro García, Oscar\nGutiérrez Coronado, María Alejandra Moreno García and Juan\nFrancisco Contreras Cordero",authors:[{id:"214236",title:"Dr.",name:"Jose Luis",middleName:null,surname:"Muñoz-Carrillo",slug:"jose-luis-munoz-carrillo",fullName:"Jose Luis Muñoz-Carrillo"},{id:"216080",title:"Dr.",name:"Alejandra",middleName:null,surname:"Moreno-García",slug:"alejandra-moreno-garcia",fullName:"Alejandra Moreno-García"},{id:"216081",title:"Dr.",name:"Oscar",middleName:null,surname:"Gutiérrez-Coronado",slug:"oscar-gutierrez-coronado",fullName:"Oscar Gutiérrez-Coronado"},{id:"216082",title:"Dr.",name:"Pamela",middleName:null,surname:"Castro-García",slug:"pamela-castro-garcia",fullName:"Pamela Castro-García"},{id:"220717",title:"Dr.",name:"Juan Francisco",middleName:null,surname:"Contreras Cordero",slug:"juan-francisco-contreras-cordero",fullName:"Juan Francisco Contreras Cordero"}]},{id:"65914",title:"Introductory Chapter: The Action Mechanisms of Antibiotics and Antibiotic Resistance",slug:"introductory-chapter-the-action-mechanisms-of-antibiotics-and-antibiotic-resistance",totalDownloads:2848,totalCrossrefCites:1,totalDimensionsCites:0,book:{slug:"antimicrobials-antibiotic-resistance-antibiofilm-strategies-and-activity-methods",title:"Antimicrobials, Antibiotic Resistance, Antibiofilm Strategies and Activity Methods",fullTitle:"Antimicrobials, Antibiotic Resistance, Antibiofilm Strategies and Activity Methods"},signatures:"Sahra Kırmusaoğlu, Nesrin Gareayaghi and Bekir S. Kocazeybek",authors:[{id:"179460",title:"Dr.",name:"Sahra",middleName:null,surname:"Kırmusaoğlu",slug:"sahra-kirmusaoglu",fullName:"Sahra Kırmusaoğlu"}]},{id:"74640",title:"Alternative Methods to Animal Use for Monoclonal Antibody Generation and Production",slug:"alternative-methods-to-animal-use-for-monoclonal-antibody-generation-and-production",totalDownloads:107,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:null,title:"Monoclonal Antibodies",fullTitle:"Monoclonal Antibodies"},signatures:"Jane Zveiter de Moraes, Barbara Hamaguchi, Camila Braggion, Enzo Speciale, Fernanda Cesar, Gabriela Soares, Juliana Osaki, Rodrigo Aguiar and Tauane Pereira",authors:null},{id:"74660",title:"Analytical Characterization of Monoclonal Antibodies with Novel Fc Receptor-Based Chromatography Technique",slug:"analytical-characterization-of-monoclonal-antibodies-with-novel-fc-receptor-based-chromatography-tec",totalDownloads:101,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:null,title:"Monoclonal Antibodies",fullTitle:"Monoclonal Antibodies"},signatures:"Atis Chakrabarti, Jukka Kervinen, Egbert Müller, Toru Tanaka and Kazuaki Muranaka",authors:null},{id:"50488",title:"Biosynthesis of Vitamins by Probiotic Bacteria",slug:"biosynthesis-of-vitamins-by-probiotic-bacteria",totalDownloads:4725,totalCrossrefCites:8,totalDimensionsCites:12,book:{slug:"probiotics-and-prebiotics-in-human-nutrition-and-health",title:"Probiotics and Prebiotics in Human Nutrition and Health",fullTitle:"Probiotics and Prebiotics in Human Nutrition and Health"},signatures:"Qing Gu and Ping Li",authors:[{id:"180415",title:"Prof.",name:"Qing",middleName:null,surname:"Gu",slug:"qing-gu",fullName:"Qing Gu"},{id:"180891",title:"Dr.",name:"Ping",middleName:null,surname:"Li",slug:"ping-li",fullName:"Ping Li"}]},{id:"74385",title:"Precision Medicine of Autoimmune Diseases",slug:"precision-medicine-of-autoimmune-diseases",totalDownloads:100,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:null,title:"Innate Immunity in Health and Disease",fullTitle:"Innate Immunity in Health and Disease"},signatures:"Ayodeji Ajayi, Oluwadunsin Adebayo and Emmanuel Adebayo",authors:null},{id:"55860",title:"Biotechnologies Applied in Biomedical Vaccines",slug:"biotechnologies-applied-in-biomedical-vaccines",totalDownloads:2055,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"vaccines",title:"Vaccines",fullTitle:"Vaccines"},signatures:"Yuan‐Chuan Chen, Hwei‐Fang Cheng, Yi‐Chen Yang and Ming‐\nKung Yeh",authors:[{id:"180299",title:"Dr.",name:"Ming-Kung",middleName:null,surname:"Yeh",slug:"ming-kung-yeh",fullName:"Ming-Kung Yeh"},{id:"185559",title:"Dr.",name:"Yuan-Chuan",middleName:null,surname:"Chen",slug:"yuan-chuan-chen",fullName:"Yuan-Chuan Chen"},{id:"185560",title:"Dr.",name:"Hwei-Fang",middleName:null,surname:"Cheng",slug:"hwei-fang-cheng",fullName:"Hwei-Fang Cheng"},{id:"185561",title:"Dr.",name:"Yi-Chen",middleName:null,surname:"Yang",slug:"yi-chen-yang",fullName:"Yi-Chen Yang"}]}],onlineFirstChaptersFilter:{topicSlug:"immunology-and-microbiology",limit:3,offset:0},onlineFirstChaptersCollection:[{id:"74842",title:"Role of Dendritic Cells in Pathogen Infections: A Current Perspective",slug:"role-of-dendritic-cells-in-pathogen-infections-a-current-perspective",totalDownloads:7,totalDimensionsCites:0,doi:"10.5772/intechopen.95551",book:{title:"Cell Interaction - Regulation of Immune Responses, Disease Development and Management Strategies"},signatures:"José Luis Muñoz-Carrillo, Juan Francisco Contreras-Cordero, Oscar Gutiérrez-Coronado, Paola Trinidad Villalobos-Gutiérrez, Luis Guillermo Ramos-Gracia and Jazmín Monserrat Vargas-Barboza"},{id:"74788",title:"SARS-CoV-2 and Coronavirus Ancestors under a Molecular Scope",slug:"sars-cov-2-and-coronavirus-ancestors-under-a-molecular-scope",totalDownloads:6,totalDimensionsCites:0,doi:"10.5772/intechopen.95102",book:{title:"Cell Interaction - Regulation of Immune Responses, Disease Development and Management Strategies"},signatures:"Maram Adel Abdelghany, Sarah Abdullah Gozai Alghamdi and Jehane Ibrahim Eid"},{id:"74782",title:"Study of Various Chemically and Structurally Diverse Currently Clinically Used and Recently Developed Antimycobacterial Drugs",slug:"study-of-various-chemically-and-structurally-diverse-currently-clinically-used-and-recently-develope",totalDownloads:11,totalDimensionsCites:0,doi:"10.5772/intechopen.95538",book:{title:"Molecular Epidemiology Study of Mycobacterium Tuberculosis Complex"},signatures:"Saad Alghamdi and Mohammad Asif"}],onlineFirstChaptersTotal:29},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/91241/valentina-de-pinto",hash:"",query:{},params:{id:"91241",slug:"valentina-de-pinto"},fullPath:"/profiles/91241/valentina-de-pinto",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()