\r\n\tCell viability is defined as the number of healthy cells in a sample and proliferation of cells is a vital indicator for understanding the mechanisms inaction of certain genes, proteins, and pathways involved in cell survival or death after exposure to toxic agents. The methods used to determine viability are also common for the detection of cell proliferation. A cell viability assay is performed based on the ratio of live and dead cells. This assay is based on an analysis of cell viability in cell culture for evaluating in vitro drug effects in cell-mediated cytotoxicity assays for monitoring cell proliferation. Various methods are involved in performing a cell viability assay, including the dilution method, surface viable count, roll tube technique, nalidixic acid method, fluorogenic dye assay, and the Trypan Blue Cell Viability Assay. The cell viability assays can determine the effect of drug candidates on cells and be used to optimize the cell culture conditions. The parameters that define cell viability can be as diverse as the redox potential of the cell population, the integrity of cell membranes, or the activity of cellular enzymes. \r\n\tCytotoxicity is the degree to which a substance can cause damage to a cell. Cytotoxicity assays measure the ability of cytotoxic compounds to cause cell damage or cell death. Cytotoxicity assays are widely used in fundamental research and drug discovery to screen libraries for toxic compounds. The cell cytotoxicity and proliferation assays are mainly used for drug screening to detect whether the test molecules have effects on cell proliferation or display direct cytotoxic effects. In a cell-based assay, it is important to know how many viable cells are remaining at the end of the experiment. There are a variety of assay methods based on various cell functions such as enzyme activity, cell membrane permeability, cell adherence, ATP production, co-enzyme production, and nucleotide uptake activity. These methods could be classified in to different categories: (I) dye exclusion methods such as trypan blue dye exclusion assay, (II) methods based on metabolic activity, (III) ATP assay, (IV) sulforhodamine B assay, (V) protease viability marker assay, (VI) clonogenic cell survival assay, (VII) DNA synthesis cell proliferation assays and (V) Raman micro-spectroscopy. \r\n\tMedical devices have been widely used in various clinical disciplines and these devices have direct contact with the tissues and cells of the body, they should have good physical and chemical properties as well as good biocompatibility. Biocompatibility testing assesses the compatibility of medical devices with a biological system. It studies the interaction between the device and the various types of living tissues and cells exposed to the device when it comes into contact with patients.
\r\n
\r\n\t \r\n\tThe book will cover original studies, reviews, all aspects of Cell Viability and Cytotoxicity assays, methods, Biocompatibility of studies of biomedical devices, and related topics.
",isbn:"978-1-80356-246-9",printIsbn:"978-1-80356-245-2",pdfIsbn:"978-1-80356-247-6",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,isSalesforceBook:!1,isNomenclature:!1,hash:"ad664980a1e5007239b6de58fcf0bd9a",bookSignature:"Prof. Sukumaran Anil",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11678.jpg",keywords:"Cytotoxicity, Cytotoxicity Testing, Biocompatibility, ATP Assay, MTT Assay, Cell Viability, DNA Synthesis Cell Proliferation Assays, Raman Micro-Spectroscopy, Trypan Blue Dye Exclusion Assay, Medical Devices, Drugs, Safety Testing",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 10th 2022",dateEndSecondStepPublish:"March 10th 2022",dateEndThirdStepPublish:"May 9th 2022",dateEndFourthStepPublish:"July 28th 2022",dateEndFifthStepPublish:"September 26th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"2 months",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Prof. Anil Sukumaran is currently Senior Consultant and Professor of Periodontics and Implant Dentistry, Hamad Medical Corporation/Qatar University, Doha, Qatar. He received his Ph.D. in 2002 at the University of Hong Kong. In 1995 he was the invited Researcher at the UK Centre for Oral HIV Studies, UMDS Guys Hospital, London. He is the honorary fellow of the International College of Dentists, USA, and Pierre Fauchard Academy, USA.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"420937",title:"Prof.",name:"Sukumaran",middleName:null,surname:"Anil",slug:"sukumaran-anil",fullName:"Sukumaran Anil",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:null}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"19",title:"Pharmacology, Toxicology and Pharmaceutical Science",slug:"pharmacology-toxicology-and-pharmaceutical-science"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"455410",firstName:"Dajana",lastName:"Jusic",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/455410/images/20500_n.jpeg",email:"dajana.j@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"25057",title:"Myeloid Leukemia: A Molecular Focus on Etiology and Risk Within Africa",doi:"10.5772/27359",slug:"myeloid-leukemia-a-molecular-focus-on-etiology-and-risk-within-africa",body:null,keywords:null,chapterPDFUrl:"https://cdn.intechopen.com/pdfs/25057.pdf",chapterXML:null,downloadPdfUrl:"/chapter/pdf-download/25057",previewPdfUrl:"/chapter/pdf-preview/25057",totalDownloads:3668,totalViews:97,totalCrossrefCites:1,totalDimensionsCites:1,totalAltmetricsMentions:0,impactScore:1,impactScorePercentile:53,impactScoreQuartile:3,hasAltmetrics:0,dateSubmitted:"February 17th 2011",dateReviewed:"September 14th 2011",datePrePublished:null,datePublished:"December 14th 2011",dateFinished:null,readingETA:"0",abstract:null,reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/25057",risUrl:"/chapter/ris/25057",book:{id:"737",slug:"myeloid-leukemia-basic-mechanisms-of-leukemogenesis"},signatures:"Muntaser E. Ibrahim and Emad-Aldin I. Osman",authors:[{id:"69817",title:"Prof.",name:"Muntaser",middleName:null,surname:"Ibrahim",fullName:"Muntaser Ibrahim",slug:"muntaser-ibrahim",email:"mibrahim@iend.org",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"University of Khartoum",institutionURL:null,country:{name:"Sudan"}}},{id:"151416",title:"Dr.",name:"Emad",middleName:"Ibrahim",surname:"Osman",fullName:"Emad Osman",slug:"emad-osman",email:"emad.ibrahim.osman@gmail.com",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null}],sections:null,chapterReferences:null,footnotes:null,contributors:null,corrections:null},book:{id:"737",type:"book",title:"Myeloid Leukemia",subtitle:"Basic Mechanisms of Leukemogenesis",fullTitle:"Myeloid Leukemia - Basic Mechanisms of Leukemogenesis",slug:"myeloid-leukemia-basic-mechanisms-of-leukemogenesis",publishedDate:"December 14th 2011",bookSignature:"Steffen Koschmieder and Utz Krug",coverURL:"https://cdn.intechopen.com/books/images_new/737.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:null,printIsbn:"978-953-307-789-5",pdfIsbn:"978-953-51-6608-5",reviewType:"peer-reviewed",numberOfWosCitations:21,isAvailableForWebshopOrdering:!0,editors:[{id:"72872",title:"Dr",name:"Steffen",middleName:null,surname:"Koschmieder",slug:"steffen-koschmieder",fullName:"Steffen Koschmieder"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"64777",title:"Dr.",name:"Utz",middleName:null,surname:"Krug",slug:"utz-krug",fullName:"Utz Krug"},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1082"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"25035",type:"chapter",title:"BCR-ABL Hits at Mitosis; Implications for Chromosomal Instability, Aneuploidy and Therapeutic Strategy",slug:"bcr-abl-hits-at-mitosis-implications-for-chromosomal-instability-aneuploidy-and-therapeutic-strategy",totalDownloads:2491,totalCrossrefCites:1,signatures:"Katarzyna Piwocka, Kamila Wolanin, Monika Kusio-Kobialka and Paulina Podszywalow-Bartnicka",reviewType:"peer-reviewed",authors:[{id:"64524",title:"Dr.",name:"Katarzyna",middleName:null,surname:"Piwocka",fullName:"Katarzyna Piwocka",slug:"katarzyna-piwocka"},{id:"73363",title:"Dr.",name:"Paulina",middleName:null,surname:"Podszywalow-Bartnicka",fullName:"Paulina Podszywalow-Bartnicka",slug:"paulina-podszywalow-bartnicka"},{id:"73364",title:"MSc",name:"Monika",middleName:null,surname:"Kusio-Kobialka",fullName:"Monika Kusio-Kobialka",slug:"monika-kusio-kobialka"},{id:"121151",title:"Dr.",name:"Kamila",middleName:null,surname:"Wolanin",fullName:"Kamila Wolanin",slug:"kamila-wolanin"}]},{id:"25036",type:"chapter",title:"BCR/ABL1 Extra Fusions in Patients with Chronic Myeloid Leukaemia (CML)",slug:"bcr-abl1-extra-fusions-in-patients-with-chronic-myeloid-leukaemia-cml-",totalDownloads:3047,totalCrossrefCites:0,signatures:"Maria Teresa Vargas",reviewType:"peer-reviewed",authors:[{id:"64831",title:"Prof.",name:"Maria Teresa",middleName:null,surname:"Vargas",fullName:"Maria Teresa Vargas",slug:"maria-teresa-vargas"},{id:"71536",title:"Dr.",name:"Maria De Los Angeles",middleName:null,surname:"Portero",fullName:"Maria De Los Angeles Portero",slug:"maria-de-los-angeles-portero"},{id:"71537",title:"Dr.",name:"Inmaculada",middleName:null,surname:"Trigo",fullName:"Inmaculada Trigo",slug:"inmaculada-trigo"},{id:"71538",title:"Dr.",name:"Alicia",middleName:null,surname:"Rodriguez",fullName:"Alicia Rodriguez",slug:"alicia-rodriguez"},{id:"121016",title:"Dr.",name:"Alejandra",middleName:null,surname:"Abasolo",fullName:"Alejandra Abasolo",slug:"alejandra-abasolo"},{id:"121099",title:"Dr.",name:"Antonio",middleName:null,surname:"Garcia-Escudero",fullName:"Antonio Garcia-Escudero",slug:"antonio-garcia-escudero"}]},{id:"25037",type:"chapter",title:"Causative Factors Involved in Development of Resistance to Tyrosine Kinase Inhibition and Novel Strategies Designed to Override This Resistance",slug:"causative-factors-involved-in-development-of-resistance-to-tyrosine-kinase-inhibition-and-novel-stra",totalDownloads:1726,totalCrossrefCites:0,signatures:"Ellen Weisberg and James D. Griffin",reviewType:"peer-reviewed",authors:[{id:"69272",title:"Dr.",name:"Ellen",middleName:null,surname:"Weisberg",fullName:"Ellen Weisberg",slug:"ellen-weisberg"}]},{id:"25038",type:"chapter",title:"De Novo Acquisition of BCR-ABL Mutations for CML Acquired Resistance",slug:"de-novo-acquisition-of-bcr-abl-mutations-for-cml-acquired-resistance",totalDownloads:2135,totalCrossrefCites:1,signatures:"WenYong Chen, Hongfeng Yuan and Zhiqiang Wang",reviewType:"peer-reviewed",authors:[{id:"76121",title:"Prof.",name:"WenYong",middleName:null,surname:"Chen",fullName:"WenYong Chen",slug:"wenyong-chen"},{id:"76131",title:"Dr.",name:"Hongfeng",middleName:null,surname:"Yuan",fullName:"Hongfeng Yuan",slug:"hongfeng-yuan"},{id:"76134",title:"Dr.",name:"Zhiqiang",middleName:null,surname:"Wang",fullName:"Zhiqiang Wang",slug:"zhiqiang-wang"}]},{id:"25039",type:"chapter",title:"Targeting the Chronic Myeloid Leukemia Stem Cell: A Paradigm for the Curative Treatment of Human Malignancies",slug:"targeting-the-chronic-myeloid-leukemia-stem-cell-a-paradigm-for-the-curative-treatment-of-human-mali",totalDownloads:2235,totalCrossrefCites:3,signatures:"Adrian Woolfson and Xiaoyan Jiang",reviewType:"peer-reviewed",authors:[{id:"77437",title:"Dr",name:"Xiaoyan",middleName:null,surname:"Jiang",fullName:"Xiaoyan Jiang",slug:"xiaoyan-jiang"},{id:"126808",title:"Dr.",name:"Adrian",middleName:null,surname:"Woolfson",fullName:"Adrian Woolfson",slug:"adrian-woolfson"}]},{id:"25040",type:"chapter",title:"The Proteasome as a Therapeutic Target in Chronic Myeloid Leukemia",slug:"the-proteasome-as-a-therapeutic-target-in-chronic-myeloid-leukemia",totalDownloads:1816,totalCrossrefCites:0,signatures:"Ignacio Pérez-Roger and María Pilar Albero",reviewType:"peer-reviewed",authors:[{id:"69085",title:"Dr.",name:"Ignacio",middleName:null,surname:"Perez-Roger",fullName:"Ignacio Perez-Roger",slug:"ignacio-perez-roger"}]},{id:"25041",type:"chapter",title:"Ser/Thr Phosphatases: The New Frontier for Myeloid Leukemia Therapy?",slug:"ser-thr-phosphatases-the-new-frontier-for-myeloid-leukemia-therapy-",totalDownloads:2393,totalCrossrefCites:0,signatures:"Amanda M. Smith, Kathryn G. Roberts and Nicole M. Verrills",reviewType:"peer-reviewed",authors:[{id:"66560",title:"Dr.",name:"Nicole",middleName:null,surname:"Verrills",fullName:"Nicole Verrills",slug:"nicole-verrills"}]},{id:"25042",type:"chapter",title:"Role of JAK2 Beyond Myeloproliferative Neoplasms (MPNs): Rationale for Targeting the JAK-STAT Pathway in Other Hematological Malignancies and Solid Tumors",slug:"role-of-jak2-beyond-myeloproliferative-neoplasms-mpns-rationale-for-targeting-the-jak-stat-pathway-i",totalDownloads:2911,totalCrossrefCites:0,signatures:"Theresa M. McDevitt and Matthew V. Lorenzi",reviewType:"peer-reviewed",authors:[{id:"67072",title:"Mr.",name:"Matthew",middleName:null,surname:"Lorenzi",fullName:"Matthew Lorenzi",slug:"matthew-lorenzi"},{id:"74639",title:"Dr.",name:"Theresa",middleName:null,surname:"Mcdevitt",fullName:"Theresa Mcdevitt",slug:"theresa-mcdevitt"}]},{id:"25043",type:"chapter",title:"Genetic Alterations and Their Clinical Implications in Acute Myeloid Leukemia",slug:"genetic-alterations-and-their-clinical-implications-in-acute-myeloid-leukemia",totalDownloads:2793,totalCrossrefCites:1,signatures:"Hsin-An Hou, Wen-Chien Chou and Hwei-Fang Tien",reviewType:"peer-reviewed",authors:[{id:"66546",title:"Prof.",name:"Hwei-Fang",middleName:null,surname:"Tien",fullName:"Hwei-Fang Tien",slug:"hwei-fang-tien"},{id:"73271",title:"Dr.",name:"Hsin-An",middleName:null,surname:"Hou",fullName:"Hsin-An Hou",slug:"hsin-an-hou"}]},{id:"25044",type:"chapter",title:"Bone Marrow Microenvironment in the Pathogenesis of AML",slug:"bone-marrow-microenvironment-in-the-pathogenesis-of-aml",totalDownloads:3023,totalCrossrefCites:0,signatures:"Olga Blau",reviewType:"peer-reviewed",authors:[{id:"64876",title:"Dr.",name:"Olga",middleName:null,surname:"Blau",fullName:"Olga Blau",slug:"olga-blau"}]},{id:"25045",type:"chapter",title:"Distinct Inhibitory Effect of TGFβ on the Growth of Human Myeloid Leukemia Cells",slug:"distinct-inhibitory-effect-of-tgf-on-the-growth-of-human-myeloid-leukemia-cells",totalDownloads:1774,totalCrossrefCites:1,signatures:"Xiao Tang Hu",reviewType:"peer-reviewed",authors:[{id:"65871",title:"Prof.",name:"Xiao Tang",middleName:null,surname:"Hu",fullName:"Xiao Tang Hu",slug:"xiao-tang-hu"}]},{id:"25046",type:"chapter",title:"Novel Targets in Myelogenous Leukemia: The Id Family of Proteins",slug:"novel-targets-in-myelogenous-leukemia-the-id-family-of-proteins",totalDownloads:2185,totalCrossrefCites:1,signatures:"Kimberly D. Klarmann, Ming Ji, Huajie Li, Ande Satyanarayana, Wonil Kim, Emily Bowers, Bjorg Gudmundsdottir and Jonathan R. Keller",reviewType:"peer-reviewed",authors:[{id:"73443",title:"Dr.",name:"Jonathan",middleName:null,surname:"Keller",fullName:"Jonathan Keller",slug:"jonathan-keller"},{id:"126212",title:"Dr.",name:"Kimberly",middleName:null,surname:"Klarmann",fullName:"Kimberly Klarmann",slug:"kimberly-klarmann"},{id:"126241",title:"Dr.",name:"Ming",middleName:null,surname:"Ji",fullName:"Ming Ji",slug:"ming-ji"},{id:"126243",title:"Dr.",name:"Ande",middleName:null,surname:"Satyanarayana",fullName:"Ande Satyanarayana",slug:"ande-satyanarayana"},{id:"126244",title:"Ms.",name:"Emily",middleName:null,surname:"Bowers",fullName:"Emily Bowers",slug:"emily-bowers"},{id:"126245",title:"Dr.",name:"Huajie",middleName:null,surname:"Li",fullName:"Huajie Li",slug:"huajie-li"},{id:"126247",title:"Ms.",name:"Bjorg",middleName:null,surname:"Gudmundsdottir",fullName:"Bjorg Gudmundsdottir",slug:"bjorg-gudmundsdottir"},{id:"126284",title:"Dr.",name:"Wonil",middleName:null,surname:"Kim",fullName:"Wonil Kim",slug:"wonil-kim"}]},{id:"25047",type:"chapter",title:"PU.1, a Versatile Transcription Factor and a Suppressor of Myeloid Leukemia",slug:"pu-1-a-versatile-transcription-factor-and-a-suppressor-of-myeloid-leukemia",totalDownloads:3145,totalCrossrefCites:0,signatures:"Shinichiro Takahashi",reviewType:"peer-reviewed",authors:[{id:"64753",title:"Prof.",name:"Shinichiro",middleName:null,surname:"Takahashi",fullName:"Shinichiro Takahashi",slug:"shinichiro-takahashi"}]},{id:"25048",type:"chapter",title:"Vav1: A Key Player in Agonist-Induced Differentiation of Promyelocytes from Acute Myeloid Leukemia (APL)",slug:"vav1-a-key-player-in-agonist-induced-differentiation-of-promyelocytes-from-acute-myeloid-leukemia-ap",totalDownloads:1737,totalCrossrefCites:0,signatures:"Valeria Bertagnolo, Federica Brugnoli and Silvano Capitani",reviewType:"peer-reviewed",authors:[{id:"73288",title:"Prof.",name:"Valeria",middleName:null,surname:"Bertagnolo",fullName:"Valeria Bertagnolo",slug:"valeria-bertagnolo"},{id:"74893",title:"Dr.",name:"Federica",middleName:null,surname:"Brugnoli",fullName:"Federica Brugnoli",slug:"federica-brugnoli"},{id:"74894",title:"Prof.",name:"Silvano",middleName:null,surname:"Capitani",fullName:"Silvano Capitani",slug:"silvano-capitani"}]},{id:"25049",type:"chapter",title:"p15INK4b, a Tumor Suppressor in Acute Myeloid Leukemia",slug:"p15ink4b-a-tumor-suppressor-in-acute-myeloid-leukemia",totalDownloads:1729,totalCrossrefCites:0,signatures:"Joanna Fares, Linda Wolff and Juraj Bies",reviewType:"peer-reviewed",authors:[{id:"71419",title:"Dr",name:null,middleName:null,surname:"Bies",fullName:"Bies",slug:"bies"},{id:"74946",title:"Ph.D.",name:"Joanna",middleName:null,surname:"Fares",fullName:"Joanna Fares",slug:"joanna-fares"},{id:"74947",title:"Dr.",name:"Linda",middleName:null,surname:"Wolff",fullName:"Linda Wolff",slug:"linda-wolff"}]},{id:"25050",type:"chapter",title:"New Molecular Markers in Acute Myeloid Leukemia",slug:"new-molecular-markers-in-acute-myeloid-leukemia",totalDownloads:5073,totalCrossrefCites:0,signatures:"Silvia de la Iglesia Iñigo, María Teresa Gómez Casares, Carmen Elsa López Jorge, Jezabel López Brito and Pedro Martin Cabrera",reviewType:"peer-reviewed",authors:[{id:"68876",title:"Dr",name:"Silvia",middleName:null,surname:"De La Iglesia",fullName:"Silvia De La Iglesia",slug:"silvia-de-la-iglesia"},{id:"74098",title:"Dr.",name:"Maria Teresa",middleName:null,surname:"Gomez Casares",fullName:"Maria Teresa Gomez Casares",slug:"maria-teresa-gomez-casares"},{id:"74099",title:"Mrs.",name:"Carmen Elsa",middleName:null,surname:"Lopez Jorge",fullName:"Carmen Elsa Lopez Jorge",slug:"carmen-elsa-lopez-jorge"},{id:"119785",title:"Dr.",name:"Jezabel",middleName:null,surname:"López Brito",fullName:"Jezabel López Brito",slug:"jezabel-lopez-brito"},{id:"126483",title:"Dr.",name:"Pedro",middleName:null,surname:"Martín Cabrera",fullName:"Pedro Martín Cabrera",slug:"pedro-martin-cabrera"}]},{id:"25051",type:"chapter",title:"Analysis of Leukemogenic Gene Products in Hematopoietic Progenitor Cells",slug:"analysis-of-leukemogenic-gene-products-in-hematopoietic-progenitor-cells",totalDownloads:2253,totalCrossrefCites:0,signatures:"Julia Schanda, Reinhard Henschler, Manuel Grez and Christian Wichmann",reviewType:"peer-reviewed",authors:[{id:"65954",title:"Dr.",name:"Christian",middleName:null,surname:"Wichmann",fullName:"Christian Wichmann",slug:"christian-wichmann"},{id:"119503",title:"Ms.",name:"Julia",middleName:null,surname:"Schanda",fullName:"Julia Schanda",slug:"julia-schanda"},{id:"119504",title:"Dr.",name:"Manuel",middleName:null,surname:"Grez",fullName:"Manuel Grez",slug:"manuel-grez"},{id:"119505",title:"Dr.",name:"Reinhard",middleName:null,surname:"Henschler",fullName:"Reinhard Henschler",slug:"reinhard-henschler"}]},{id:"25052",type:"chapter",title:"Acute Promyelocytic Leukemia: A Model Disease for Targeted Cancer Therapy",slug:"acute-promyelocytic-leukemia-a-model-disease-for-targeted-cancer-therapy",totalDownloads:2427,totalCrossrefCites:1,signatures:"Emma Lång and Stig Ove Bøe",reviewType:"peer-reviewed",authors:[{id:"66958",title:"Dr.",name:"Stig Ove",middleName:null,surname:"Boe",fullName:"Stig Ove Boe",slug:"stig-ove-boe"},{id:"68520",title:"Dr.",name:"Emma",middleName:null,surname:"Lång",fullName:"Emma Lång",slug:"emma-lang"}]},{id:"25053",type:"chapter",title:"The Association of the DNA Repair Genes with Acute Myeloid Leukemia: The Susceptibility and the Outcome After Therapy",slug:"the-association-of-the-dna-repair-genes-with-acute-myeloid-leukemia-the-susceptibility-and-the-outco",totalDownloads:3087,totalCrossrefCites:0,signatures:"Claudia Bănescu, Carmen Duicu and Minodora Dobreanu",reviewType:"peer-reviewed",authors:[{id:"65677",title:"Dr.",name:"Claudia",middleName:null,surname:"Banescu",fullName:"Claudia Banescu",slug:"claudia-banescu"},{id:"73992",title:"Prof.",name:"Minodora",middleName:null,surname:"Dobreanu",fullName:"Minodora Dobreanu",slug:"minodora-dobreanu"},{id:"73993",title:"Dr.",name:"Duicu",middleName:null,surname:"Carmen",fullName:"Duicu Carmen",slug:"duicu-carmen"}]},{id:"25054",type:"chapter",title:"Apoptosis and Apoptosis Modulators in Myeloid Leukemia",slug:"apoptosis-and-apoptosis-modulators-in-myeloid-leukemia",totalDownloads:1845,totalCrossrefCites:0,signatures:"Maha Abdullah and Zainina Seman",reviewType:"peer-reviewed",authors:[{id:"68993",title:"Dr.",name:"Abdullah",middleName:null,surname:"Maha",fullName:"Abdullah Maha",slug:"abdullah-maha"},{id:"73653",title:"Dr.",name:"Zainina",middleName:null,surname:"Seman",fullName:"Zainina Seman",slug:"zainina-seman"}]},{id:"25055",type:"chapter",title:"Role of Signaling Pathways in Acute Myeloid Leukemia",slug:"role-of-signaling-pathways-in-acute-myeloid-leukemia",totalDownloads:4877,totalCrossrefCites:2,signatures:"Maha Abdullah and Zainina Seman",reviewType:"peer-reviewed",authors:[{id:"68993",title:"Dr.",name:"Abdullah",middleName:null,surname:"Maha",fullName:"Abdullah Maha",slug:"abdullah-maha"},{id:"73653",title:"Dr.",name:"Zainina",middleName:null,surname:"Seman",fullName:"Zainina Seman",slug:"zainina-seman"}]},{id:"25056",type:"chapter",title:"Epigenetic Changes Associated with Chromosomal Translocation in Leukemia",slug:"epigenetic-changes-associated-with-chromosomal-translocation-in-leukemia",totalDownloads:2452,totalCrossrefCites:0,signatures:"Soraya Gutierrez, Amjad Javed, Janet Stein, Gary Stein, Sandra Nicovani, Valentina Fernandez, Ricardo Alarcon, Marcela Stuardo, Milka Martinez, Marcela Hinojosa and Boris Rebolledo-Jaramillo",reviewType:"peer-reviewed",authors:[{id:"74039",title:"Dr.",name:"Soraya",middleName:null,surname:"Gutierrez",fullName:"Soraya Gutierrez",slug:"soraya-gutierrez"},{id:"121179",title:"Dr.",name:"Amjad",middleName:null,surname:"Javed",fullName:"Amjad Javed",slug:"amjad-javed"},{id:"121180",title:"Dr.",name:"Sandra",middleName:null,surname:"Nicovani",fullName:"Sandra Nicovani",slug:"sandra-nicovani"},{id:"121181",title:"BSc.",name:"Valentina",middleName:null,surname:"Fernandez",fullName:"Valentina Fernandez",slug:"valentina-fernandez"},{id:"121183",title:"MSc.",name:"Ricardo",middleName:null,surname:"Alarcón",fullName:"Ricardo Alarcón",slug:"ricardo-alarcon"},{id:"121184",title:"MSc.",name:"Marcela",middleName:null,surname:"Stuardo",fullName:"Marcela Stuardo",slug:"marcela-stuardo"},{id:"121185",title:"BSc.",name:"Milka",middleName:null,surname:"Martinez",fullName:"Milka Martinez",slug:"milka-martinez"},{id:"121186",title:"BSc.",name:"Marcela",middleName:null,surname:"Hinojosa",fullName:"Marcela Hinojosa",slug:"marcela-hinojosa"},{id:"121187",title:"MSc.",name:"Boris",middleName:null,surname:"Rebolledo-Jaramillo",fullName:"Boris Rebolledo-Jaramillo",slug:"boris-rebolledo-jaramillo"},{id:"127496",title:"Dr.",name:"Janet",middleName:null,surname:"Stein",fullName:"Janet Stein",slug:"janet-stein"},{id:"127497",title:"Dr.",name:"Gary",middleName:null,surname:"Stein",fullName:"Gary Stein",slug:"gary-stein"}]},{id:"25057",type:"chapter",title:"Myeloid Leukemia: A Molecular Focus on Etiology and Risk Within Africa",slug:"myeloid-leukemia-a-molecular-focus-on-etiology-and-risk-within-africa",totalDownloads:3668,totalCrossrefCites:1,signatures:"Muntaser E. Ibrahim and Emad-Aldin I. Osman",reviewType:"peer-reviewed",authors:[{id:"69817",title:"Prof.",name:"Muntaser",middleName:null,surname:"Ibrahim",fullName:"Muntaser Ibrahim",slug:"muntaser-ibrahim"},{id:"151416",title:"Dr.",name:"Emad",middleName:"Ibrahim",surname:"Osman",fullName:"Emad Osman",slug:"emad-osman"}]}]},relatedBooks:[{type:"book",id:"1953",title:"Myeloid Leukemia",subtitle:"Clinical Diagnosis and Treatment",isOpenForSubmission:!1,hash:"b4ca26bff5ca8033e1cf276ffa80d275",slug:"myeloid-leukemia-clinical-diagnosis-and-treatment",bookSignature:"Steffen Koschmieder and Utz Krug",coverURL:"https://cdn.intechopen.com/books/images_new/1953.jpg",editedByType:"Edited by",editors:[{id:"72872",title:"Dr",name:"Steffen",surname:"Koschmieder",slug:"steffen-koschmieder",fullName:"Steffen Koschmieder"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"25652",title:"Treatment of Chronic Myeloid Leukaemia: Current Practice and Future Prospects",slug:"treatment-of-chronic-myeloid-leukaemia-current-practice-and-future-prospects",signatures:"Daniela M. Zisterer",authors:[{id:"64566",title:"Dr.",name:"Daniela",middleName:null,surname:"Zisterer",fullName:"Daniela Zisterer",slug:"daniela-zisterer"}]},{id:"25653",title:"The Value of Molecular Response in Chronic Myeloid Leukemia: The Present and the Future",slug:"the-value-of-molecular-response-in-chronic-myeloid-leukemia-the-present-and-the-future",signatures:"Lorenzo Falchi, Viviana Appolloni, Lucia Ferranti and Anna Marina Liberati",authors:[{id:"65597",title:"Prof.",name:"Anna Marina",middleName:null,surname:"Liberati",fullName:"Anna Marina Liberati",slug:"anna-marina-liberati"},{id:"73880",title:"Dr.",name:"Lorenzo",middleName:null,surname:"Falchi",fullName:"Lorenzo Falchi",slug:"lorenzo-falchi"},{id:"73881",title:"Dr.",name:"Lucia",middleName:null,surname:"Ferranti",fullName:"Lucia Ferranti",slug:"lucia-ferranti"},{id:"117152",title:"Dr.",name:"Viviana",middleName:null,surname:"Appolloni",fullName:"Viviana Appolloni",slug:"viviana-appolloni"}]},{id:"25654",title:"Role of High Dose Imatinib in BCR/ABLpos/Phpos CML",slug:"role-of-high-dose-imatinib-in-bcr-ablpos-phpos-cml",signatures:"Andreas L. Petzer and Holger Rumpold",authors:[{id:"65394",title:"Prof.",name:"Andreas",middleName:null,surname:"Petzer",fullName:"Andreas Petzer",slug:"andreas-petzer"},{id:"78467",title:"Dr.",name:"Holger",middleName:null,surname:"Rumpold",fullName:"Holger Rumpold",slug:"holger-rumpold"}]},{id:"25655",title:"Therapeutic Drug Monitoring of Imatinib for Chronic Myeloid Leukemia Patients",slug:"therapeutic-drug-monitoring-of-imatinib-for-chronic-myeloid-leukemia-patients",signatures:"Naoto Takahashi and Masatomo Miura",authors:[{id:"68924",title:"Dr.",name:"Naoto",middleName:null,surname:"Takahashi",fullName:"Naoto Takahashi",slug:"naoto-takahashi"},{id:"119675",title:"Dr.",name:"Masatomo",middleName:null,surname:"Miura",fullName:"Masatomo Miura",slug:"masatomo-miura"}]},{id:"25656",title:"Drug- Induced Pneumonitis: A Rare Complication of Imatinib Mesylate Therapy in Patients with Chronic Myeloid Leukemia",slug:"drug-induced-pneumonitis-a-rare-complication-of-imatinib-mesylate-therapy-in-patients-with-chronic-m",signatures:"O.V. Lazareva and A.G. Turkina",authors:[{id:"66744",title:"Mrs.",name:"Olga V.",middleName:null,surname:"Lazareva",fullName:"Olga V. Lazareva",slug:"olga-v.-lazareva"},{id:"73554",title:"Prof.",name:"Anna G.",middleName:null,surname:"Turkina",fullName:"Anna G. Turkina",slug:"anna-g.-turkina"}]},{id:"25657",title:"Towards the Cure of CML by the Molecular Approach Strategy",slug:"towards-the-cure-of-cml-by-the-molecular-approach-strategy",signatures:"Michele Cea, Antonia Cagnetta, Marco Gobbi and Franco Patrone",authors:[{id:"68045",title:"Dr.",name:"Michele",middleName:null,surname:"Cea",fullName:"Michele Cea",slug:"michele-cea"},{id:"70906",title:"Dr.",name:"Antonia",middleName:null,surname:"Cagnetta",fullName:"Antonia Cagnetta",slug:"antonia-cagnetta"},{id:"121901",title:"Prof.",name:"Marco",middleName:null,surname:"Gobbi",fullName:"Marco Gobbi",slug:"marco-gobbi"},{id:"121902",title:"Prof.",name:"Franco",middleName:null,surname:"Patrone",fullName:"Franco Patrone",slug:"franco-patrone"}]},{id:"25658",title:"Therapy of Acute Myeloid Leukemia",slug:"therapy-of-acute-myeloid-leukemia",signatures:"Jean El-Cheikh and Roberto Crocchiolo",authors:[{id:"66627",title:"Dr.",name:"Jean",middleName:null,surname:"El-Cheikh",fullName:"Jean El-Cheikh",slug:"jean-el-cheikh"},{id:"120579",title:"Dr.",name:"Roberto",middleName:null,surname:"Crocchiolo",fullName:"Roberto Crocchiolo",slug:"roberto-crocchiolo"}]},{id:"25659",title:"Diagnosis of Acute Myeloid Leukaemia",slug:"diagnosis-of-acute-myeloid-leukaemia",signatures:"Anca Bacârea",authors:[{id:"65766",title:"Dr.",name:"Anca",middleName:null,surname:"Bacarea",fullName:"Anca Bacarea",slug:"anca-bacarea"}]},{id:"25660",title:"Diagnostic Approach in Acute Myeloid Leukemias in Line with WHO 2008 Classification",slug:"diagnostic-approach-in-acute-myeloid-leukemias-in-line-with-who-2008-classification",signatures:"Manu Goyal and K. Gayathri",authors:[{id:"67697",title:"Dr.",name:"Manu",middleName:null,surname:"Goyal",fullName:"Manu Goyal",slug:"manu-goyal"},{id:"73740",title:"Dr.",name:"Gayathri",middleName:null,surname:"K",fullName:"Gayathri K",slug:"gayathri-k"}]},{id:"25661",title:"Clinical and Biological Relevance of Gene Expression Profiling in Acute Myeloid Leukemia",slug:"clinical-and-biological-relevance-of-gene-expression-profiling-in-acute-myeloid-leukemia",signatures:"Alicja M. Gruszka and Myriam Alcalay",authors:[{id:"70454",title:"Prof.",name:"Myriam",middleName:null,surname:"Alcalay",fullName:"Myriam Alcalay",slug:"myriam-alcalay"},{id:"72838",title:"Dr.",name:"Alicja",middleName:null,surname:"Gruszka",fullName:"Alicja Gruszka",slug:"alicja-gruszka"}]},{id:"25662",title:"Clinical Characteristics of Acute Myeloid Leukemia with t(8;21) in Japan and Western Countries",slug:"clinical-characteristics-of-acute-myeloid-leukemia-with-t-8-21-in-japan-and-western-countries",signatures:"Hiroto Narimatsu",authors:[{id:"69286",title:"Dr.",name:"Hiroto",middleName:null,surname:"Narimatsu",fullName:"Hiroto Narimatsu",slug:"hiroto-narimatsu"}]},{id:"25663",title:"Acute Promyelocytic Leukemia Lacking the Classic Translocation t(15;17)",slug:"acute-promyelocytic-leukemia-lacking-the-classic-translocation-t-15-17-",signatures:"Jad J. Wakim and Carlos A. Tirado",authors:[{id:"69951",title:"Dr.",name:"Carlos A.",middleName:null,surname:"Tirado",fullName:"Carlos A. Tirado",slug:"carlos-a.-tirado"},{id:"117771",title:"Dr.",name:"Jad J",middleName:null,surname:"Wakim",fullName:"Jad J Wakim",slug:"jad-j-wakim"}]},{id:"25664",title:"Treating the Elderly Patient with Acute Myelogenous Leukemia",slug:"treating-the-elderly-patient-with-acute-myelogenous-leukemia",signatures:"Mehrdad Payandeh, Mehrnosh Aeinfar and Vahid Aeinfar",authors:[{id:"75876",title:"Prof.",name:"Mehrdad",middleName:null,surname:"Payandeh",fullName:"Mehrdad Payandeh",slug:"mehrdad-payandeh"}]},{id:"25665",title:"Prognosis and Survival in Acute Myelogenous Leukemia",slug:"prognosis-and-survival-in-acute-myelogenous-leukemia",signatures:"Muath Dawod and Amr Hanbali",authors:[{id:"68824",title:"Dr.",name:"Amr",middleName:null,surname:"Hanbali",fullName:"Amr Hanbali",slug:"amr-hanbali"},{id:"68843",title:"Dr.",name:"Muath",middleName:null,surname:"Dawod",fullName:"Muath Dawod",slug:"muath-dawod"}]},{id:"25666",title:"Bacillus cereus Sepsis in the Treatment of Acute Myeloid Leukemia",slug:"bacillus-cereus-sepsis-in-the-treatment-of-acute-myeloid-leukemia",signatures:"Daichi Inoue and Takayuki Takahashi",authors:[{id:"43361",title:"Dr.",name:"Takayuki",middleName:null,surname:"Takahashi",fullName:"Takayuki Takahashi",slug:"takayuki-takahashi"},{id:"55463",title:"Dr.",name:"Daichi",middleName:null,surname:"Inoue",fullName:"Daichi Inoue",slug:"daichi-inoue"}]}]}],publishedBooks:[{type:"book",id:"318",title:"Acute Leukemia",subtitle:"The Scientist's Perspective and Challenge",isOpenForSubmission:!1,hash:"7e697a80aa41aec2dd86a911ddcd7be9",slug:"acute-leukemia-the-scientist-s-perspective-and-challenge",bookSignature:"Mariastefania Antica",coverURL:"https://cdn.intechopen.com/books/images_new/318.jpg",editedByType:"Edited by",editors:[{id:"36211",title:"Prof.",name:"Mariastefania",surname:"Antica",slug:"mariastefania-antica",fullName:"Mariastefania Antica"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"377",title:"T-Cell Leukemia",subtitle:null,isOpenForSubmission:!1,hash:"3467e106fca6aaa2fabd2468461a0c70",slug:"t-cell-leukemia",bookSignature:"Olga Babusikova, Sinisa Dovat and Kimberly J. Payne",coverURL:"https://cdn.intechopen.com/books/images_new/377.jpg",editedByType:"Edited by",editors:[{id:"41671",title:"Dr.",name:"Olga",surname:"Babusikova",slug:"olga-babusikova",fullName:"Olga Babusikova"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"539",title:"Novel Aspects in Acute Lymphoblastic Leukemia",subtitle:null,isOpenForSubmission:!1,hash:"dfef11575616931bbc329551f943115f",slug:"novel-aspects-in-acute-lymphoblastic-leukemia",bookSignature:"Stefan Faderl",coverURL:"https://cdn.intechopen.com/books/images_new/539.jpg",editedByType:"Edited by",editors:[{id:"64603",title:"Dr.",name:"Stefan",surname:"Faderl",slug:"stefan-faderl",fullName:"Stefan Faderl"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"826",title:"Tumor Angiogenesis",subtitle:null,isOpenForSubmission:!1,hash:"b7623895df0aba62ffdeed2e9588df06",slug:"tumor-angiogenesis",bookSignature:"Sophia Ran",coverURL:"https://cdn.intechopen.com/books/images_new/826.jpg",editedByType:"Edited by",editors:[{id:"79980",title:"Dr.",name:"Sophia",surname:"Ran",slug:"sophia-ran",fullName:"Sophia Ran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"946",title:"Advancements in Tumor Immunotherapy and Cancer Vaccines",subtitle:null,isOpenForSubmission:!1,hash:"aa9eb0c98931a6c6e516ecf1962f99a4",slug:"advancements-in-tumor-immunotherapy-and-cancer-vaccines",bookSignature:"Hilal Arnouk",coverURL:"https://cdn.intechopen.com/books/images_new/946.jpg",editedByType:"Edited by",editors:[{id:"76431",title:"Dr.",name:"Hilal",surname:"Arnouk",slug:"hilal-arnouk",fullName:"Hilal Arnouk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],publishedBooksByAuthor:[]},onlineFirst:{chapter:{type:"chapter",id:"80465",title:"The Hydrolysates from Fish By-Product, An Opportunity Increasing",doi:"10.5772/intechopen.102348",slug:"the-hydrolysates-from-fish-by-product-an-opportunity-increasing",body:'
1. Introduction
Production levels of fishery and aquaculture have been increasing for the last 30 years, as fish is an important protein source for human consumption and it is expected to reach a production of 196 mt by 2025 [1]. As a result, more and more people depend on fish or other fisheries production, capture, processing and marketing. By 2018, aquaculture production in the world was estimated to reach over 178 million tons [2], whereas marine capture fisheries have been around half the global production [3].
A huge waste volume has been produced along with that production increase, too. Around 70% of fish is processed before final sale, producing between 20 and 80% of fish waste, depending on the fish type and its transformation technology [4]. Furthermore, important amounts of water are required for those processes [5]. That situation represents a challenge from an environmental perspective because around 50% of that fish waste is discarded without being used [6]. Most of it is buried or deposited in water sources, either in the ocean, rivers, or streams. In the case of landfills, it can lead to saturations that cause odor and leachate problems. As for dumping in water sources, aerobic bacteria use organic matter by the action of oxygen, releasing large amounts of phosphorus, nitrogen and ammonium, affecting pH, causing algae growth, and turbidity. The absence of oxygen in water results in the release of hydrogen sulfide, carbon dioxide, organic acids, methane, and ammonium [7].
These wastes contain important nutrient levels [8] and their composition depends on species, source organs or obtaining processes, as seen in Table 1. On the other hand, some of those nutrients represent an opportunity from an economic perspective, as in the case of the protein, which can be recovered to obtain high added-value compounds.
Process
Organic byproduct
%
Goal
Stunning
N/A
Decrease agony time to reduce undesirable compound production
Classification
Whole fish
Separate by size or species
Slime removal
Aqueous fluid
Reduce microbial contamination surface
Scaling
Scales
5
Reduce bacterial contamination
Washing
Washing water
100
Remove micro-organisms and contaminants
Head removal
Heads
9–32
Remove non-edible or low-value parts
Evisceration
Viscera
12–18
Remove internal organs to reduce microbial contamination
Fin Cutting
Fins
1–2
Remove non-edible parts
Skinning
Skin
3
Remove non-edible parts
Filleting
Fillet remains
15–20
Separation of dorsal and abdominal meat from fish
Bone/meat separation
Bones and skeletons
9–15
Separate meat from ribs and bones
Table 1.
Processes used for fish preparation after capture.
Among the methods used to add value to fish residues, there are protein hydrolysis, silage, and collagen recovery [9]. In the first hydrolysis tests evaluated, chemical processes and extraction with organic solvents were used, showing that they affected the nutritional quality of proteins and amino acids. For this reason, commercial enzymes have been increasingly applied to intend to obtain hydrolyzed protein of this substrate type [10]. These latter processes have moderate operating conditions, show greater reproducibility, and are more controllable and selective than chemical processes. Besides, they deliver products with techno-functional properties, excellent digestibility, rapid absorption, and amino acid balance, in addition to high levels of bioactive peptides [11].
This chapter will address the issue of protein residues used in fish processing aiming to obtain bioactive peptides through enzymatic hydrolysis using commercial enzymes. The basic concepts of fish processing, the characteristics of the waste generated, their use by enzymatic hydrolysis, and bioactive and functional peptide production will be addressed.
2. Fish post-harvest
Once the fish is harvested, it undergoes different processes intending to improve conservation conditions, separate the non-edible or low commercial value parts, and leave the product ready to deliver to the consumer. Table 1 lists, in general terms, the stages of fish processing, many of which release some type of organic by-product [3, 6].
3. Bromatological characteristics of the Main fish-farmed by-products
Fish by-products are made up of different compound types with food importance [12]. The major components are moisture, fat, and protein. However, the bromatological composition varies depending on the species, age, and gender of the fish, in addition to the part of the fish from which the by-product comes, or the processes to which it has been subjected [13]. Thus, Table 2 presents the bromatological composition of different fish by-products, for different species, fish parts, and processes.
Type of waste
Protein
Fat
Moisture
Ash
Reference
Freeze-dried Viscera of Yamú (Brycon siebenthalae)
Bromatological composition of fish by-products D.B.: Dry base.
As Table 2 shows, these residues contain mainly proteins, fats and water, but they may also contain high added-value compounds such as collagen and gelatin, polyunsaturated fatty acids (EPA and DHA), monounsaturated such as palmitic and oleic, in addition to minerals and enzymes such as pepsin, trypsin, chymotrypsin and collagenase [3]. Because of their nutrient richness, inappropriate dumping of these residues affects not only the area where they are directly discharged, but it can also alter natural ecosystems in a wider area. In this sense, phosphorus and dissolved nitrogen release can be favored and thus increase biochemical demand for oxygen (BDO), because at least 80% of the nutrients in fish residues are potentially eutrophic substances. This leads to the higher growth of macroalgae in aquifers [31].
In some regions of the world, alternatives to use by-products have been sought. That is how the demand for complete fish heads and skeletons as food for humans has increased in Asia and Africa [32]. Bones, which contain the highest protein levels among the residues (41–84%), are a good source of collagen and gelatin. Besides, their mineral content has been used in the manufacture of food products for schoolchildren (85 mg/kg zinc, 350 mg/kg iron, and 84 g/kg calcium) [32]. Whereas skeletons contain significant amounts of meat remaining after filleting, whose protein is highly digestible and can be extracted for different purposes since it has better nutritional properties than plant proteins, and better essential amino acids balance than other animal protein sources [33] but are more sensitive to heat [34]. On the other hand, fish skin, provides gelatin [32], such as, Nile Tilapia skin has been used to produce collagen [35], which can be used for tissue regeneration [36].
A fish by-product that has gained the most attention in recent years is the viscera (12–20% of the fish), which comprise all organs of the main body cavity, including gills, heart, liver, spleen, swim bladder, stomach, gonads, intestines and their contents [6]. This residue has an average composition of 8–21% proteins, 2–12% lipids, 60–81% humidity and 1–5% ash [6]. The high protein content, in addition to being an excellent enzyme source, makes them a potential source of added-value products with exceptional properties for different industrial applications [37].
Between 70 and 80% of fish muscle is a structural protein, between 20 and 30% sarcoplasma proteins, and the remaining 2–3% of proteins are insoluble connective tissue. The main food protein is myofibrillar, with 66–77% of the total in fish meat. This protein comprises between 50 and 60% myosin and 15–30% actin [38]. Myosin fibers are connected by actin molecules and can be cut at one end by trypsin and chymotrypsin, while at the other end by papain, to form they divide into two forms of meromyosin, heavy and light, with different functional properties [39].
Fish proteins contain between 16 and 18 amino acids, which have an excellent balance, usually 8 essential and 8 non-essential. This makes this type of protein very widely used for animal feed, although they are also used for fertilizer production, silage and in recent decades, bioactive peptide production [30, 40]. Table 3 shows the aminograms of different residues of several fish species, some raw and others that have undergone hydrolysis processes [14], atomization drying [40] and membrane fractionation [11].
FRTVH: Fraction <3 kDa of Red Tilapia Viscera Hydrolysates.
PI: Yamú Protein Viscera Isolate.
DH9: Yamú Protein Viscera Hydrolysates with 9% of Degree of hydrolysis.
DH28: Yamú Protein Viscera Hydrolysates with 28% of Degree of hydrolysis.
4. Enzymatic hydrolysis of fish by-product proteins
4.1 Protein hydrolysis
Protein hydrolysis occurs when a peptide bond is broken by water action, in the presence of a catalyst that may be an enzyme or a chemical agent [42]. Low-cost chemical processes can be by acid or alkaline hydrolysis, but they are non-specific, not reproducible and lead to amino acid denaturation. On the other hand, enzymatic hydrolysis is more expensive but does not deteriorate amino acids [43].
Once the native protein is broken, fragments of the native protein (oligomers) form, which can be a substrate for the subsequent hydrolysis process, so it is a multi-substrate reaction [44], especially in mediums where no pure protein is available, but mixtures of innumerable proteins, such as in fish residues and in general in other agro-industrial waste. Due to the hydrolysis process, the molecular characteristics of the proteins change, because the average molecular weight of the protein fragments present decreases, this increases the surface load, causes the release of hydrophobic groups, and changes functional properties, among other effects [45].
4.2 Enzymatic hydrolysis of protein
This process consists of decomposing proteins into smaller fragments, whose catalysts are enzymes called proteases [11]. This is a set of simultaneous link break reactions, consisting of serial stages, with different species loaded in equilibrium, giving fragments of decreasing size as follows [46]:
proteous→proteins→peptones→peptides→amino acid
The catalytic process that occurs is divided into three steps. First, the enzyme (E) should approach the substrate (S) and bind to form the enzyme-substrate complex (ES). Second, the rupture of the peptide bond results in the release of a peptide. Third, the remaining peptide is separated from the enzyme after a nucleophilic attack from a water molecule [11]. Each of these reactions has its speed as described in Eq. (1) [47]. This process can be repeated on any of the peptides formed [46].
E+S⇔K1ES→K2EP+H−P´+H2O→K3E+P−OH+H−P´E1
E: Enzyme, S: Substrate, P and P´: Resulting peptides, kx: Constant reaction rate.
This procedure has advantages over chemical hydrolysis as they have high selectivity and low contamination. It is a specific process that is carried out under moderate pH and temperature conditions, which makes it easy to control [30]. The product obtained is called protein hydrolyzate and it consists of peptides generally between 2 and 20 amino acids [48]. However, there are also disadvantages such as the high enzyme costs and long processing times [49].
Critical operating conditions in protein enzymatic hydrolysis include temperature, pH, enzyme type and concentration, substrate and concentration, cofactors, coenzymes, hydrolysis time [50], agitation speed [51], and presence of inhibitors, like fat in fish by-products [11].
On the other hand, variations that enzyme activity may suffer during the reaction should be controlled, such as denaturation, aggregation, or enzyme inactivation, which can be produced by temperature effects, pH shear stress or other substances that interfere with catalysis [12].
4.2.1 Enzymatic hydrolysis kinetics
During the reaction, the enzyme attacks the peptide bond as follows [52, 53]:
Under neutral or alkaline conditions, the dissociation of the amino group becomes significant, so a decrease in pH may occur due to the accumulation of the protons released, which makes it necessary to add a base to keep pH constant and prevent the enzyme from being affected in its activity [30]. The analysis of the equations above concludes that the amount of hydrolyzed protein is proportional to the amount of base required to neutralize the pH of the reaction medium [30].
4.2.2 Follow-up of hydrolysis reaction
The hydrolysis reaction progress is established by the Hydrolysis Degree (HD), expressed as a fraction or percentage of the number of broken peptide bonds at any given time (h) for the total peptide bonds in the intact protein (htot) (Eq. 5) [54]. Both can be expressed as protein meq/g or as protein mmol/g [30].
GH%=hhtot.100E5
Methods used to determine Hydrolysis Degree (HD) include the pH-stat method [52], O-phthaldialdehyde (OPA) [54], Trinitrobenesulfonic acid (TNBS) [55], formalin titration, and soluble nitrogen in trichloroacetic acid (TCA) [56]. The fundamental difference between these methods is in the principle that each one is based to measure the number of broken bonds (h) at any given time of the reaction, because htot is usually determined from the analysis of the total amino acid content in the intact protein [57].
4.2.2.1 pH-stat method
This method is based on the fact that in peptide bond hydrolysis, a carboxyl group and an amino group are released. In an aqueous solution, these groups will be more or less ionized depending on pH [55]. At neutral or alkaline pH, carboxyl groups are fully ionized and proton exchange occurs between the carboxyl group and the amino group. At alkaline pH, amino groups will also be partially or fully ionized depending on the pH and amino acid in question, since the pK of the free amino acids N-terminal amino group ranges from 9 to 10.8. The following equations show, in general, the chemical species involved in protein enzymatic hydrolysis [58].
P1−CO−NH−P2+H2O→proteaseP1−COOH+NH2−P2E6
P1−COOH→P1−COO−+H+E7
NH2−P2⇄NH3+−P2E8
The resulting free protons cause a pH decrease of the reaction mixture, and a base addition is required to keep pH constant. The amount of base required is directly related to the amount of hydrolyzed peptide bonds, and it can be used to estimate HD. Unfortunately, the relationship between HD and base consumption is not simple and depends on several variables, including pK of the α-amino group released, the temperature of the reaction mixture, and length of the peptide chain [52]. The relationship between the spent base volume and HD has been described by Adler-Nissen, 1986 [55] in Eq. (9).
GH%=BNBMpαhTot.100E9
where B is the base volume consumed in L to keep pH constant, MP is the protein mass in kg, NB is the base concentration, and α is the dissociation degree of the amino groups released in the reaction. α and pK are calculated with Eqs. (10) and (11), respectively, where T is the temperature (K) [59].
α=10pH−pK1+10pH−pKE10
pK=7.8+298−T298∗T∗2400E11
4.2.2.2 O-phthaldialdehyde method (OPA) and Trinitrobencenesulfonic acid method (TNBS)
Both methods are spectrophotometric, based on the determination of the α-amino groups released, by derivatization with trinitro-bencenesulfonic acid or ortho-phthaldialdehyde, respectively [56]. They are detected in the ultraviolet–visible range for the TNBS method, or fluorescent for the OPA. The absorbance value obtained is then converted into quantitative values using a standard curve prepared with a free amino acid, usually leucine, calculating HD as the percentage proportion of the amino acid released in the hydrolyzed regarding the amino acid amount of the whole protein [54, 55]. In Figures 1 and 2, reactions of an amino group with TNBS and OPA, respectively, take place [56].
Figure 1.
Reaction of OPA with amino acids. Source [60].
Figure 2.
Reaction of TNBS with amino acids. Source [61].
However, in these methods, derivatization reagents exhibit different reactivity to some amino acids, affecting measurement accuracy. For example, in the case of the OPA method, it will not be accurate when applied on proline- and cysteine-rich hydrolyzates [57].
4.2.3 Proteases most important characteristics
Proteases are the enzymes responsible for catalyzing the hydrolysis reaction of protein-peptide bonds, also known as peptidases [62]. Although, they can be obtained from plants, animals or microorganisms, most commercially viable proteases are obtained from this latter [63], especially Bacillus species, such as Bacillus licheniformis, Bacillus subtilis, and Aspergillus fungal species such as Aspergillus niger, A. flavus, Ammophilus fumigatus, and A. oryzae [64]. Some of the commercial proteases that have been used to obtain hydrolyzates from fish residues include trypsin, chymotrypsin, pepsin, Alcalase® 2.4 L, Flavourzyme® 500 L, E Properase, pronase, collagenases, bromelain and papain [50].
Proteases belong to the hydrolases group, they constitute a large and complex group of enzymes that differ from each other in their specificity due to substrate, their selectivity, the nature of their active sites, their catalytic mechanism, their stability profile, their pH, and optimum temperature. For these reasons, proteases cannot be classified under the general enzyme nomenclature system, but are classified according to their catalytic action, the nature of their active site, and their optimal pH value [63]. From the point of view of functional groups that have their active site, proteases can be classified into four main groups as follows [62]: Serine Proteases, Aspartic Proteases, Cysteine Proteases, Metalloproteases. On the other hand, when considering its catalytic mode of action, i.e., the excision site of the polypeptide chain, proteases are classified into exopeptidases and endopeptidases [65]. While, based on their optimal pH range, proteases can be classified into alkaline, neutral and acidic.
5. Production of bioactive and techno-functional peptides of fishery by-products
According to the HD achieved, the hydrolyzate obtained will potentially have biological activities or techno-functional properties. HD less than 10% result in improved techno-functional properties, such as emulsification, foaming capacity and greater solubility, whereas a higher HD tend to deliver hydrolyzates with greater potential as bioactive peptide sources [66].
5.1 Bioactive peptides
A bioactive peptide is a sequence of amino acids that is encrypted in the intact protein, in which it remains inactive, but once released, it can interact with certain receptors and regulate the physiological functions of the organism [67]. This may express some kind of effect on metabolic behavior, either human or animal [65]. These peptides can be released from the protein by gastrointestinal digestion, enzyme hydrolysis, or fermentation [68].
Among the most widely studied biological activities, are antihypertensive [69] Antioxidant [11] Antimicrobial [70], antithrombotic [71], anticancer [11] metal chelating agent, anticoagulants, among others [72].
One of the methods currently applied for obtaining bioactive peptides is enzymatic hydrolysis using commercial enzymes, which represents a reproducible, scalable, and industrial-application-capable method [73]. In this technology, biological activities of the peptides obtained may be affected by the operating conditions applied to isolate proteins, hydrolysis degree, protease type, peptide structure, the amino acids sequence, concentration, and the molecular weight of the peptides obtained [74].
The relationship between the peptide’s biological activity and their molecular weight has been widely documented [73], so the search for conditions that maximize HD has been one of the priorities in many studies [75] Peptide fractions with molecular weights between 1 and 4 kDa are of the greatest interest for nutritional and/or pharmaceutical uses in particular [75].
5.1.1 Antioxidant peptides
Free radicals and reactive oxygen species ROS [76], can cause DNA, protein, or lipid damage, resulting in human body damage from neurodegenerative, inflammatory, cardiovascular, diabetes, and cancer diseases [76]. This type of effect can be counteracted by substances with antioxidant capacity, which have different mechanisms of action depending on the free radical reduction form, among which are SET (single electron transfer), and HAT (hydrogen atom transfer) [77]. Based on these mechanisms, some methods to evaluate the antioxidant capacity of different substances have been designed. SET-based methods detect the antioxidant’s ability to transfer a chemical species such as metals, carbonyls and electrons, the most commonly used methods of this type are ABTS and FRAP. In the case of HAT methods, the antioxidant ability to inactivate a free radical is measured through the donation of a hydrogen atom, in which one of the most commonly used methods is ORAC [77].
On the other hand, some metals such as iron and copper, which are of importance at the physiological level, may also participate in the formation of reactive oxygen species [78], as in the case of hydroxyl radicals (OH), that are formed by the Fenton reaction and can cause damage to different types of tissues (Canabady-Rochelle et al., 2018). In this sense, metal chelation can counteract the formation of metal-catalyzed radicals in some way, which has somewhat been considered as a form of antioxidant activity [79].
Thus, peptide antioxidant activity is related to metal chelating activity and electron donation activity, which facilitates interaction with free radicals and cuts the reaction chain in which they participate [80]. In addition, the presence of hydrophobic sequences in peptides can interact with lipid molecules, eliminating the donation of protons to result in lipid radicals [81]. Thus, the imidazole group in histidine residues participates in hydrogen atom transfer, electron transfer, active oxygen extinction and capture of hydroxyl radicals [82].
The antioxidant capacity in these hydrolyzates has been attributed to the presence at the N-terminal end of peptide sequences of non-polar hydrophobic amino acids, such as phenylalanine, alanine and proline, and hydrophilic amino acids such as tyrosine, histidine and valine [6]. Thus, capturing the activity of hydrogen peroxide, the chelating activity of Fe2+, and reducing the power of Abalone (Haliotis discus hannai) hydrolyzates was related to hydrophobic amino acids in their peptides [83]. The capturing capacity of radicals has also been attributed to the presence of aromatic residues [84]. While tryptophan and tyrosine have been attributed antioxidant activity mediated by their phenolic and indolic groups, capable of donating hydrogen atoms [85]. The Table 4 lists several sequences of antioxidant peptides, from different kinds of fish by-products.
Amino acid sequence of antioxidant peptides from fish by-products.
5.1.2 Antihypertensive peptides
Hypertension is one of the most important cardiovascular risk factors worldwide, since high blood pressure currently affects about 20% of adults around the world [97]. In these blood pressure-increasing processes, the angiotensin I converter enzyme (ACE) plays a crucial role. This enzyme, a dipeptidyl carboxypeptidase (EC. 3.4.15.1), promotes the conversion of angiotensin I to a powerful angiotensin II vasoconstrictor, and inactivates the bradequinine vasodilator, which is a depressant of the renin-angiotensin system action [97]. Angiotensin II is also involved in the release of the steroid Na-retaining, which also tends to increase blood pressure [97]. For these reasons, a first step in the search for potentially useful substances to control high blood pressure is the ability test to inhibit ACE. In this sense, the search for peptides that can reach therapeutic tests as drugs for blood pressure control should initially be evaluated as ACE inhibitors [97]. The Table 5 lists several sequences of antihypertensive peptides, from different kind of fish by-products.
Amino acid sequence of ACE inhibitor peptides from fish by-products.
5.1.3 Anti-carcinogenic peptides
Cancer (malignant tumor), one of the most common diseases in the world [106], consists of abnormal and uncontrolled growth of cells, with proliferation and spread in surrounding tissues [11]. Thus, inhibition of deregulated cell proliferation is one of the strategies for treating this type of disease [107]. Among the broad list of substances that have been evaluated for this purpose are luteinizing hormone-releasing hormone and Atrial natriuretic peptide, for the treatment of prostate and colorectal cancer, respectively [106].
Various fish-derived proteins have been reported as sources of anticancer peptides [11, 108], as in the case with the antiproliferative activity of protein hydrolyzates of 18 fish species against breast cancer cell lines [109]. In Table 6, different fishery sources that have been active against some types of cancer are shown.
Use of peptides from fish by-products in cancer treatment.
There are three ways in which antiproliferative peptides act on cancer cells, apoptosis, necrosis, and cell cycle disturbances [11]. These mechanisms of action change according to structural characteristics such as molecular weight and amino acid composition. Thus, smaller peptides have greater molecular mobility and diffusivity, so they can interact better with the components of cancer cells. This activity has been attributed to amino acid sequences between 3 and 25 residues, with the predominance of hydrophobic amino acids, and one or more residues of Lys, Pro, Arg, Ser, Glu, THR Leu, Gly, Ala and Tyr. Because hydrophobic amino acids improve interactions between peptides and the outer surface of the bilayer of the tumor cell membrane, due to their phospholipid content and thus, they exert selective cytotoxic activity on these cells to healthy cells [107].
In addition to the amino acid sequence, the anti-cancer peptide’s function is influenced by net load, amphipathicity, hydrophobicity, structural membrane folding (including secondary structure, dynamics and orientation), oligomerization, and peptide concentration [11]. The cationic amphibious structure predisposes them to interact with the cell membrane anion surfaces [114]. The α helix is a main structural characteristic of this peptide type, with lateral chains of hydrophilic and hydrophobic amino acids, forming clear hydrophilic and hydrophobic surfaces. On the other hand, they concentrate on the N-terminal and the C-terminal to form different hydrophilic and hydrophobic domains. Anti-cancer peptides with a β sheet structure are generally stabilized by disulfide bonds, and these sheets are in β antiparallel formation. Meanwhile [11]. The net charge and positive charge number also influence these peptides activity, since their association with the cancer cell membrane occurs through electrostatic interactions due to its cationic condition and the anion lipopolysaccharide on the external membrane that causes its disturbance [115].
5.1.4 Anticoagulant peptides
Blood clotting is a crucial process for human health, excessive clotting that leads to blocked blood vessels causes strokes, heart attacks, and pulmonary embolism [11]. This makes anticoagulant compounds vital to preserving life quality in modern times. The anticoagulant is a compound that will stop blood clotting by binding to one or more coagulation factors, preventing it from binding to the membrane phospholipids [11]. Heparin is currently the anticoagulant most commonly used, but heparin has several disadvantages, including thrombocytopenia and non-specific plasma binding. In addition, it can cause platelet dysfunction and aggregation [116]. Therefore, there is a marked interest in the search for new anticoagulant compounds with minor collateral risks for the medical treatment of thromboembolic events [11].
Anticoagulant activity is less investigated than other biological activities, and specifically, peptides with this activity isolated from fish-based by-products have not been reported [11]. This way, an oligopeptide from the blue mussel, with a molecular mass of approximately 2,5 kDa has been isolated, showing anticoagulant activity by the prolongation of both thrombin time and activated partial thromboplastin time, by interaction specifically with blood clotting factors IX, X, and II. Nasri et al. [71], in 2012 isolated four anticoagulant peptides from protein hydrolyzates of goby muscle proteins, in which they found that they had Arg in the C-terminal position. Thus, concluding that small peptides with an amino acid charged at the C-end are considered potential thrombin inhibitors and/or other factors involved in the coagulation process [71]. Anticoagulant peptides from yellow-sole fish skeleton have also been isolated [117].
5.1.5 Antimicrobial peptides
The excessive use of conventional antimicrobial products has caused the emergence of resistant strains, which poses a health threat. Therefore, the development of antimicrobials using mechanisms other than traditional antibiotics is needed [11]. In this context, antimicrobial peptides effectively promote toxicity against invading pathogenic microorganisms, and also modulate the immune response in superior organisms [118]. These peptides are produced in all kingdoms, from bacteria to fungi and plants to mammals. Their unique intrinsic properties make them attractive therapeutic agents, since they show high biological activities associated with low toxicity and high specificity, as well as potentially useful as ingredients of functional or health-promoting foods [119]. These peptides generally contain less than 50 amino acid residues, with a molecular weight less than 10 kDa [120]. Despite their structural diversity, they have common physico-chemical characteristics; they are positively charged (+2 to +9) under physiological conditions due to the presence of lysine, arginine and histidine residues; and contain a substantial portion (50% or more) of hydrophobic residues [118]. These peptides commonly adopt an amphipathic conformation in which positively charged and hydrophobic groups are segregated into opposite faces of a α-helix, a β-leaf, or some other tertiary structure. This gives them the ability to cross the phospholipid membrane. The spectrum of different chemical properties of the amino acid side chain provides a variety of peptide sequences to show a cationic amphibious helical peptide [121]. Having a positive net charge allows them to interact with the anionic phospholipids of the bacterial membrane or other pathogens, and their amphipathicity, i.e., presence of apolar regions (with hydrophobic amino acids), and positive loads regions (cationic amino acids, Arg, Lys or His), facilitates them that, after initial interaction, the polar regions interact with the polar chains of the phospholipids, achieving the insertion of the peptide into the microbial membrane [122]. They are also flexible, which allows their internalization toward the bacterial cytoplasm, and leads to cell death due to ion and metabolic substances loss [123].
The most common mechanisms of action recognized in peptide antimicrobial activity include (i) the barrel model, in which a water-filled channel and an ion channel protein are formed by the interaction of peptides, acting as pores that disrupt the structure of the cell membrane; (ii) toroidal pore, in which less organized pore structures are formed; (iii) carpet models, in which the destabilization of the cell membrane in mycellar structures is caused by the accumulation of peptides above the limit concentration; (iv) molecular electroporation, following the concept that molecular electroporation can be achieved not only by electrical fields externally applied, but also by highly charged molecules that bind to the membrane surface; (v) sinking raft model, product of the induction of the membrane curvature by adsorbed peptides, which is relieved by its aggregation in the bilayer, allowing the aggregate to be translocated into the lumen of the gallbladder by a sinking raft process; and after membrane permeation, intracellular targets activation or blocking occurs [11]. These peptides not only generate toxic effects on microorganisms, but also exert important effects on the host, including immunomodulation, angiogenesis induction, wound healing and gene expression modulation. These effects may complement each other during the control of infectious and inflammatory diseases, and may be highly desirable when considered an optimal combination of an antimicrobial compound and regeneration booster [118]. In recent decades, barbel muscle antimicrobial peptides have been obtained by enzymatic hydrolysis of proteins from aquatic organisms [124]. Mustelus viscera [125], sea cucumber by-products [126], and different fish species [120], among others.
5.2 Commercial peptides obtained from fish sources
Thanks to their potential to produce bioactive compounds, fish parts and their residues have been used to obtain different types of functional inputs that have reached the market in different countries (Table 7). It should be noted, however, that few countries in which these products are being marketed. Given that fish, production extends to a much larger number of countries and that waste from that industry is proportional to production, it is clear that there is a latent possibility of expanding the market for products derived from fish sources.
Commercial name
Source
Functionality
Country
Custom Collagen®
Tilapia
Liver and kidney
US
Hydroiyzed Fish Collagen Type 1
Tilapia
Skin, tendons, and arteries
UK
Amizate®
Atlantic salmon
Muscle anabolism
North America
Protizen®
Stress, weight disorder, sleep trouble
UK
Levenorm®
Sarda
Antihypertensive
Canada
MOLVAL®
Molva
Cholesterol, stress, and cardiovascular health
UK
Norland Hydrolyzed Fish Collagen
Cod
Hair, skin and nails
US
PeptACE®
Sarda
Vascular function and blood pressure
Japan and US
Stabilium®200
Molva dypterygia
Stress, memory, and cognitive function
UK
Seacure®
Hake
Gastrointestinal and bowel function
Canada and US
Seagest™
White fish
Intestinal lining and health
US
Valtyron®
Sardine
Blood pressure
Vasotensin®
Tuna and verdel
Vascular function and blood pressure
Japan and US
Nutripeptin®
Cod
Weight and blood glucose
US and UK
Liquamen®
Molva
Oxidative stress, glycemic index, and stress
UK
Table 7.
Commercial products obtained by enzymatic Hydroiysis of fish protein by-products [37, 127].
\n',keywords:"bioactives peptides, enzymatic hydrolysis, protein revaluation",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/80465.pdf",chapterXML:"https://mts.intechopen.com/source/xml/80465.xml",downloadPdfUrl:"/chapter/pdf-download/80465",previewPdfUrl:"/chapter/pdf-preview/80465",totalDownloads:63,totalViews:0,totalCrossrefCites:0,dateSubmitted:"November 19th 2021",dateReviewed:"December 22nd 2021",datePrePublished:"February 14th 2022",datePublished:null,dateFinished:"February 14th 2022",readingETA:"0",abstract:"The fishery industries have continuously increased over the last decade. This growth comes accompanied by a high volume of by-products released to environment, because these industries discard between 60 and 70% of their production as waste. This waste includes fish whole or part from these such as fillet remains (15–20%), skin and fins (1–3%), bones (9–15%), heads (9–12%), viscera (12–18%) and scales (5%). This by-products are rich in proteins and lipids which of several nature, which can be recovered to obtain compounds of high added value. In this chapter, some methods to recover compounds from fish by-products will be discussed. Among others, will be discussed topics about postharvest of fish, by-product releasing, enzymatic hydrolysis of by-product and bioactive peptide obtaining from fish waste.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/80465",risUrl:"/chapter/ris/80465",signatures:"Jose Edgar Zapata Montoya and Angie Franco Sanchez",book:{id:"10841",type:"book",title:"Hydrolases",subtitle:null,fullTitle:"Hydrolases",slug:null,publishedDate:null,bookSignature:"Dr. Sajjad Haider, Assistant Prof. Adnan Haider and Prof. Angel Catala",coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",licenceType:"CC BY 3.0",editedByType:null,isbn:"978-1-80355-163-0",printIsbn:"978-1-80355-162-3",pdfIsbn:"978-1-80355-164-7",isAvailableForWebshopOrdering:!0,editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:null,sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Fish post-harvest",level:"1"},{id:"sec_3",title:"3. Bromatological characteristics of the Main fish-farmed by-products",level:"1"},{id:"sec_4",title:"4. Enzymatic hydrolysis of fish by-product proteins",level:"1"},{id:"sec_4_2",title:"4.1 Protein hydrolysis",level:"2"},{id:"sec_5_2",title:"4.2 Enzymatic hydrolysis of protein",level:"2"},{id:"sec_5_3",title:"4.2.1 Enzymatic hydrolysis kinetics",level:"3"},{id:"sec_6_3",title:"4.2.2 Follow-up of hydrolysis reaction",level:"3"},{id:"sec_6_4",title:"4.2.2.1 pH-stat method",level:"4"},{id:"sec_7_4",title:"4.2.2.2 O-phthaldialdehyde method (OPA) and Trinitrobencenesulfonic acid method (TNBS)",level:"4"},{id:"sec_9_3",title:"4.2.3 Proteases most important characteristics",level:"3"},{id:"sec_12",title:"5. Production of bioactive and techno-functional peptides of fishery by-products",level:"1"},{id:"sec_12_2",title:"5.1 Bioactive peptides",level:"2"},{id:"sec_12_3",title:"Table 4.",level:"3"},{id:"sec_13_3",title:"Table 5.",level:"3"},{id:"sec_14_3",title:"Table 6.",level:"3"},{id:"sec_15_3",title:"5.1.4 Anticoagulant peptides",level:"3"},{id:"sec_16_3",title:"5.1.5 Antimicrobial peptides",level:"3"},{id:"sec_18_2",title:"5.2 Commercial peptides obtained from fish sources",level:"2"}],chapterReferences:[{id:"B1",body:'Ishak NH, Sarbon NM. A review of protein hydrolysates and bioactive peptides deriving from wastes generated by fish processing. Food and Bioprocess Technology. 2018;11:2-16'},{id:"B2",body:'FAO. The State of World Fisheries and Aquaculture: Meeting the Sustainable Development Goals. Rome: FAO; 2018'},{id:"B3",body:'Ghaly AE, Ramakrishnan VV, Brooks MS, Budge SM, Dave D. Fish processing wastes as a potential source of proteins, amino acids and oils: A critical review. J Microb Biochem Technol. 2013;5:107-129. DOI: 10.4172/1948-5948.1000110'},{id:"B4",body:'AMEC. Management of wastes from Atlantic seafood processing operations. Dartmouth, Nova Scotia, Canada: AMEC Earth and Environment Limited; 2003'},{id:"B5",body:'Gaviria YS, Figueroa OA, Zapata JE. Aplicación de la metodología de huella ecológica como indicador de sostenibilidad en el uso de ensilaje de pescado en dietas para alimentación de aves. Información tecnológica. 2021;32(5):199–208. DOI: 10.4067/s0718-07642021000500199'},{id:"B6",body:'Villamil O, Vaquiro H, Solanilla JF. Fish viscera protein hydrolysates: Production, potential applications and functional and bioactive properties. Food Chemistry. 2017;224:160-171. DOI: 10.1016/j.foodchem.2016.12.057'},{id:"B7",body:'Tchoukanova N, Gonzalez M, Poirier S. Best Management Practices: Marine Products Processing. New Brunswick: The Fisheries and Marine Products Division of the Coastal Zones Research Institute Inc; 2012'},{id:"B8",body:'Suarez LM, Montes JR, Zapata JE. Optimization acid content in silage víscera red tilapia (Oreochromis spp.) with Life cycle assessment of feeds derived. Technol Inf. 2018;29(6):83-94'},{id:"B9",body:'Liu Y, Li X, Chen Z, Yu J, Wang F, Wang J. Characterization of structural and functional properties of fish protein hydrolysates from surimi processing by-products. Food Chemistry. 2014;151:459-465'},{id:"B10",body:'Zapata JE, Moya M, Figueroa OA. Hidrólisis Enzimática de la Proteína de Vísceras de Trucha Arco Íris (Oncorhynchus mykiss): Efecto del tipo de Enzima, Temperatura, pH y Velocidad de Agitación. Información Tecnológica. 2019;30(6):63-72'},{id:"B11",body:'Gomez LJ, Gomez NA, Zapata JE, Lopez-García G, Cilla A, Alegría A. In-vitro antioxidant capacity and cytoprotective/cytotoxic effects upon Caco-2 cells of red tilapia (Oreochromis spp.) viscera hydrolysates. Food Research International. 2019;120:52-61. DOI: 10.1016/j.foodres.2019.02.029'},{id:"B12",body:'Esteban MB, García AJ, Ramos P, Márquez MC. Evaluation of fruitvegetable and fish wastes as alternative feedstuffs in pig diets. Waste Management. 2007;27:193-200'},{id:"B13",body:'Ghaedian R, Coupland JN, Decker EA, McClemets JD. Ultrasonic determination of fish composition. Journal of Food Engineering. 1998;35:323-337'},{id:"B14",body:'Carranza-Saavedra D, Zapata-Montoya JE, Váquiro-Herrera HA, Solanilla-Duque JF. Study of biological activities and physicochemical properties of Yamú (Brycon siebenthalae) viscera hydrolysates in sodium alginate-based edible coating solutions. International Journal of Food Engineering. 2021;17:677-691. DOI: 10.1515/ijfe-2021-0036'},{id:"B15",body:'Leonarduzzi E, Rodrigues KA, Macchi GJ. Proximate composition and energy density in relation to Argentine hake females (Merluccius hubbsi) morphometrics and condition indices. Fisheries Research. 2014;160:33-40'},{id:"B16",body:'Gaviria YS, Figueroa OA, Zapata JE. Efecto de la inclusión de ensilado químico de vísceras de tilapia roja (Oreochromis spp.) en dietas para pollos de engorde sobre los parámetros productivos y sanguíneos. Información tecnológica. 2021;32:79-88. DOI: 10.4067/S0718-07642021000300079'},{id:"B17",body:'Chuesiang P, Sanguandeekul R. Protein hydrolysate from tilapia frame: Antioxidant and angiotensin I converting enzyme inhibitor properties. International Journal of Food Science and Technology. 2015;50(6):1436-1444'},{id:"B18",body:'Bhaskar N, Mahendrakar NS. Protein hydrolysate from visceral waste proteins of Catla (Catla catla): Optimization of hydrolysis conditions for a commercial neutral protease. Bioresour Technology. 2008;99(10):4105-4111. DOI: 10.1016/j.biortech.2007.09.006'},{id:"B19",body:'Pires C, Teixeira B, Cardoso C, Mendes R, Nunes ML, Batista I. Cape hake protein hydrolysates prepared from alkaline solubilised proteins pre-treated with citric acid and calcium ions: Functional properties and ACE inhibitory activity. Process Biochemistry. 2015;50(6):1006-1015'},{id:"B20",body:'Quintero J, Zapata JE. Optimización de la extracción del colágeno soluble en Ácido de subproductos de tilapia roja (oreochromis spp) mediante un diseño de superficie de respuesta. Información tecnológica. 2017;28:109-120. DOI: 10.4067/s0718-07642017000100011'},{id:"B21",body:'Sousa SC, Vazquez JA, Pérez-Martín RI, Carvalho AP, Gomes AM. Valorization of byproducts from commercial fish species: Extraction and chemical properties of skin gelatins. Molecules. 2017;22(1545):1-12'},{id:"B22",body:'Sampedro LJG, Grimaldos NAG, Pereañez JA, Montoya JEZ. Lipids as competitive inhibitors of subtilisin carlsberg in the enzymatic hydrolysis of proteins in red tilapia (oreochromis sp.) viscera: Insights from kinetic models and a molecular docking study. Brazilian Journal of Chemical Engineering. 2019;36:647-655. DOI: 10.1590/0104-6632.20190362s20180346'},{id:"B23",body:'Taheri A, Anvar SAA, Ahari H, Fogliano V. Comparison the functional properties of protein Hydrolysates from poultry byproducts and rainbow trout (Onchorhynchus mykiss) viscera. Iranian Journal of Fisheries Sciences. 2013;12(1):154-169'},{id:"B24",body:'Opheim M, Šližytė R, Sterten H, Provan F, Larssen E, Kjos NP. Hydrolysis of Atlantic salmon (Salmo salar) rest raw materials- effect of raw material and processing on composition, nutritional value, and potential bioactive peptides in the hydrolysates. Process Biochemistry. 2015;50(8):1247-1257'},{id:"B25",body:'Roslan J, Yunos KFM, Abdullah N, Kamal SMM. Characterization of fish protein hydrolysate from tilapia (Oreochromis Niloticus) by-product. Agriculture and Agricultural Science Procedia. 2014;2:312-319. DOI: 10.1016/j.aaspro.2014.11.044'},{id:"B26",body:'Giraldo-Rios DE, Rios LA, Zapata-Montoya JE. Kinetic modeling of the alkaline deproteinization of Nile-tilapia skin for the production of collagen. Heliyon. 2020;6:1-8. DOI: 10.1016/j.heliyon.2020.e03854'},{id:"B27",body:'Gencbay G, Turhan S. Proximate composition and nutritional profile of the black sea anchovy (Engraulis encrasicholus) whole fish, fillets, and by products. J Aquat Food Prod T. 2016;25(6):864-874'},{id:"B28",body:'Arias L, Gómez LJ, Zapata JE. Efecto de Temperatura-Tiempo sobre los lípidos extraídos de vísceras de tilapia roja (oreochromis sp.) utilizando un proceso de Calentamiento-Congelación. Información tecnológica. 2017;28:131-142. DOI: 10.4067/s0718-07642017000500014'},{id:"B29",body:'Soufi-Kechaou E, Derouiniot-Chaplin M, Ben Amar R, Jaouen P, Berge JP. Recovery of valuable marine compounds from cuttlefish by-product hydrolysates: Combination of enzyme bioreactor and membrane technologies. C. R. Chimie. 2017;20(9–10):975-985'},{id:"B30",body:'Sierra-Lopera LM, Zapata-Montoya JE. Optimization of enzymatic hydrolysis of red tilapia scales (Oreochromis sp.) to obtain bioactive peptides. Biotechnology Reports. 2021;30:e00611. DOI: 10.1016/j.btre.2021.e00611'},{id:"B31",body:'Morkore T, Vallet JL, Cardinal M, Guillen MCG, Montero P, et al. Fat content and fillet shape of Atlantic salmon: Relevance for processing yield and quality of raw and smoked products. Journal of Food Science. 2001;66:1348-1354'},{id:"B32",body:'FAO/NACA/WHO J. The State of World Fisheries and Aquaculture [internet]. 2016. USA. Available from: www.fao.org/publications [Accessed: 29 Jan 2021]'},{id:"B33",body:'Friedman K. Nutritional value of proteins from different food sources: A review. Journal of Agricultural and Food Chemistry. 1996;44:6-29'},{id:"B34",body:'Dunajski E. Texture of fish muscle. Journal of Texture Studies. 1979;10:301-318'},{id:"B35",body:'Chen J, Li L, Yi R, Xu N, Gao R, Hong B. Extraction and characterization of acid-soluble collagen from scales and skin of tilapia (Oreochromis niloticus). LWT - Food Science and Technology. 2016;66:453-459'},{id:"B36",body:'Zhang Q, Wang Q, Lv S, Lu J, Jiang S, Regenstein JM, et al. Comparison of collagen and gelatin extracted from the skins of Nile tilapia (Oreochromis niloticus) and channel catfish (Ictalurus punctatus). Food Bioscience. 2016;13:41-48'},{id:"B37",body:'Chalamaiah M, Dinesh Kumar B, Hemalatha R, Jyothirmayi T. Fish protein hydrolysates: Proximate composition, amino acid composition, antioxidant activities and applications: A review. Food Chemistry. 2012;135:3020-3038'},{id:"B38",body:'Spinelli J, Dassow JA. Fish proteins: Their modification and potential uses in the food industry. In: Chemistry and Biochemistry of Marine Food Products. Westport, CT, USA: AVI Publishing Company; 1982. pp. 13-25'},{id:"B39",body:'Kristinsson HG, Rasco BA. Fish protein hydrolysates: Production, biochemical, and functional properties. Critical Reviews in Food Science and Nutrition. 2000;40:43-81'},{id:"B40",body:'Sepúlveda CT, Zapata JE, Martínez-Álvarez O, Alemán A, Montero MP, Gómez-Guillén MC. The preferential use of a soy-rapeseed lecithin blend for the liposomal encapsulation of a tilapia viscera hydrolysate. LWT. 2021;139:110530. DOI: 10.1016/j.lwt.2020.110530'},{id:"B41",body:'Brooks MS, Ghaly AE, Ramakrishnan VV, Budge SM, Dave D. Fish processing wastes as a potential source of proteins, amino acids and oils: A critical review. Journal of Microbial & Biochemical Technology. 2013;5(4):107-129. DOI: 10.4172/1948-5948.1000110'},{id:"B42",body:'Sierra M. Revaloración de escamas y esqueletos de tilapia roja (oreochromis spp.) para la obtención de péptidos bioactivos. Medellin: Universidad de Antioquia; 2021'},{id:"B43",body:'Tavano OL. Protein hydrolysis using proteases: An important tool for food biotechnology. Journal of Molecular Catalysis B: Enzymatic. 2013;90:1-11. DOI: 10.1016/j.molcatb.2013.01.011'},{id:"B44",body:'Trusek-Holownia A, Lech M, Noworyta A. Protein enzymatic hydrolysis integrated with ultrafiltration: Thermolysin application in obtaining peptides. Chemical Engineering Journal. 2016;305:61-68. DOI: 10.1016/j.cej.2016.05.087'},{id:"B45",body:'Samaranayaka AGP, Li-Chan ECY. Food-derived peptidic antioxidants: A review of their production, assessment, and potential applications. Journal of Functional Foods. 2011;3(4):229-254. DOI: 10.1016/j.jff.2011.05.006'},{id:"B46",body:'Benítez R, Ibarz A, Pagan J. Hidrolizados de proteína: procesos y aplicaciones Resumen. Acta Bioquímica Clínica Latinoamericana. 2008;42(2):227-237'},{id:"B47",body:'Mc Auley MT. Computer Modelling for Nutritionists. Chester: Springer; 2019. DOI: 10.1007/978-3-319-39994-2'},{id:"B48",body:'Zamora-Sillero J, Gharsallaoui A, Prentice C. Peptides from fish by-product protein hydrolysates and its functional properties: An overview. Marine Biotechnology. 2018;20(2):118-130. DOI: 10.1007/s10126-018-9799-3'},{id:"B49",body:'He S, Franco C, Zhang W. Functions, applications and production of protein hydrolysates from fish processing co-products (FPCP). Food Research International. 2013;50(1):289-297. DOI: 10.1016/j.foodres.2012.10.031'},{id:"B50",body:'Wang C, Chang T, Shi L, Yang H, Cui M, Tambalu L. Seafood processing by-products: Collagen and gelatin. In: Kim S-K, editor. Seafood Processing By-Products. 1st ed. New York: Springer; 2014. pp. 207-242. DOI: 10.1007/978-1-4614-9590-1_12'},{id:"B51",body:'Gómez LJ, Zapata JE. Efecto del Nivel de Grasa y Velocidad de Agitación en la Hidrolisis Enzimática de Vísceras de Tilapia Roja (Orechromis sp.). Información tecnológica. 2017;28(4):47-56. DOI: 10.4067/s0718-07642017000400007'},{id:"B52",body:'Adler-Nissen J. Enzymic hydrolysis of food proteins. London: Elsevier Applied Science Publishers; 1986'},{id:"B53",body:'Márquez MC, Vázquez MA. Modeling of enzymatic protein hydrolysis. Process Biochemistry. 1999;35:111-117'},{id:"B54",body:'Nielsen PM, Petersen D, Dambmann C. Improved method for determining food protein degree of hydrolysis. Journal of Food Science. 2001;66(5):642-646. DOI: 10.1111/j.1365-2621.2001.tb04614.x'},{id:"B55",body:'Adler-Nissen J. Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid. Journal of Agricultural and Food Chemistry. 1979;27(6):1256-1262'},{id:"B56",body:'Rutherfurd SM. Methodology for determining degree of hydrolysis of proteins in hydrolysates: A review. Journal of Aoac International. 2010;93(5):1515-1522. DOI: 10.1093/jaoac/93.5.1515'},{id:"B57",body:'Wubshet SG, Lindberg D, Veiseth-Kent E, Kristoffersen KA, Böcker U, Washburn KE, et al. Bioanalytical aspects in enzymatic protein hydrolysis of by products. In: Proteins: Sustainable Source, Processing and Applications. Cambridge: Academic Press; 2019. DOI: 10.1016/b978-0-12-816695-6.00008-8'},{id:"B58",body:'Mat DJL, Cattenoz T, Souchon I, Michon C, Le Feunteun S. Monitoring protein hydrolysis by pepsin using pH-stat: In vitro gastric digestions in static and dynamic pH conditions. Food Chemistry. 2018;239:268-275. DOI: 10.1016/j.foodchem.2017.06.115'},{id:"B59",body:'Valencia P, Espinoza K, Ceballos A, Pinto M, Almonacid S. Novel modeling methodology for the characterization of enzymatic hydrolysis of proteins. Process Biochemistry. 2015;50(4):589-597. DOI: 10.1016/j.procbio.2014.12.028'},{id:"B60",body:'Dzwolak W, Ziajka S. Enzymatic hydrolysis of milk proteins under alkaline and acidic conditions. Journal of Food Science. 1999;64:393-395'},{id:"B61",body:'Satake K, Okuyama T, Ohashi M, Shinoda T. Journal of Biochemistry. 1960;47:654-660'},{id:"B62",body:'Rao MB, Tanksale AM, Ghatge MS, Deshpande VV. Molecular and biotechnological aspects of microbial proteases. Microbiology and Molecular Biology Reviews. 1998;62(3):597-635'},{id:"B63",body:'Vazquez JA, Medina A, Duran AI, Nogueira M, Fernandez-Compas A, Perez Martin RI, et al. Production of valuable compounds and bioactive metabolites from by-products of fish discards using chemical processing, enzymatic hydrolysis, and bacterial fermentation. Marine Drugs. 2019;17(3):139. DOI: 10.3390/md17030139'},{id:"B64",body:'Singh P, Kumar S. Microbial enzyme in food biotechnology. In: Kuddus M, editor. Enzymes in Food Biotechnology. Cambridge: Academic Press; 2019. pp. 19-28. DOI: 10.1016/B978-0-12-813280-7.00002-5'},{id:"B65",body:'Martínez-Medina GA, Barragán AP, Ruiz HA, Ilyina A, Martínez Hernández JL, Rodríguez-Jasso RM, et al. Fungal proteases and production of bioactive peptides for the food industry. In: Kuddus M, editor. Enzymes in Food Biotechnology. Cambridge: Academic Press; 2019. pp. 221-246. DOI: 10.1016/B978-0-12-813280-7.00014-1'},{id:"B66",body:'Beaubier S, Framboisier X, Ioannou I, Galet O, Kapel R. Simultaneous quantification of the degree of hydrolysis, protein conversion rate and mean molar weight of peptides released in the course of enzymatic proteolysis. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences. 2019;1105:1-9. DOI: 10.1016/j.jchromb.2018.12.005'},{id:"B67",body:'Tkaczewska J, Jamroz E, Kulawik P, Morawska M, Szczurowska K. Evaluation of the potential use of a carp (Cyprinus carpio) skin gelatine hydrolysate as an antioxidant component. Food & Function. 2019;10(2):1038-1048. DOI: 10.1039/c8fo02492h'},{id:"B68",body:'Sabbione AC, Nardo AE, Añón MC, Scilingo A. Amaranth peptides with antithrombotic activity released by simulated gastrointestinal digestion. Journal of Functional Foods. 2016;20:204-214. DOI: 10.1016/j.jff.2015.10.015'},{id:"B69",body:'Ketnawa S, Suwal S, Huang J, Liceaga AM. Selective separation and characterisation of dual ACE and DPP-IV inhibitory peptides from rainbow trout (Oncorhynchus mykiss) protein hydrolysates. International Journal of Food Science & Technology. 2018;54(4):1062-1073. DOI: 10.1111/ijfs.13939'},{id:"B70",body:'Aissaoui N, Chobert JM, Haertle T, Marzouki MN, Abidi F. Purification and biochemical characterization of a neutral serine protease from Trichoderma harzianum. Use in antibacterial peptide production from a fish by-product hydrolysate. Applied Biochemistry and Biotechnology. 2017;182(2):831-845. DOI: 10.1007/s12010-016-2365-4'},{id:"B71",body:'Nasri R, Amor IB, Bougatef A, Nedjar-Arroume N, Dhulster P, Gargouri J, et al. Anticoagulant activities of goby muscle protein hydrolysates. Food Chemistry. 2012;133(3):835-841. DOI: 10.1016/j.foodchem.2012.01.101'},{id:"B72",body:'Agyei D, Ongkudon CM, Wei CY, Chan AS, Danquah MK. Bioprocess challenges to the isolation and purification of bioactive peptides. Food and Bioproducts Processing. 2016;98:244-256. DOI: 10.1016/j.fbp.2016.02.003'},{id:"B73",body:'Gómez LJ, Figueroa OA, Zapata YJE. Actividad antioxidante de hidrolizados enzimáticos de plasma bovino obtenidos por efecto de alcalasa® 2.4 L. Información Tecnológica. 2013;24(1):33-42. DOI: 10.4067/S0718-07642013000100005'},{id:"B74",body:'Sarmadi BH, Ismail A. Antioxidative peptides from food proteins: a review. Peptides. 2010;31(10):1949-1956. DOI: 10.1016/j.peptides.2010.06.020'},{id:"B75",body:'Saidi S, Deratani A, Belleville MP, Amar RB. Production and fractionation of tuna by-product protein hydrolysate by ultrafiltration and nanofiltration: Impact on interesting peptides fractions and nutritional properties. Food Research International. 2014;65:453-461. DOI: 10.1016/j.foodres.2014.04.026'},{id:"B76",body:'Ngo D, Vo T, Ngo D, Wijesekara I, Kim S. Biological activities and potential health benefits of bioactive peptides derived from marine organisms. International Journal of Biological Macromolecules. 2012;51:378-383'},{id:"B77",body:'Santos-Sánchez NF, Salas-Coronado R, Villanueva-Cañongo C, Hernández Carlos B. Antioxidant compounds and their antioxidant mechanism. In: Antioxidants. London: IntechOpen; 2019'},{id:"B78",body:'Canabady-Rochelle LLS, Selmeczi K, Collin S, Pasc A, Muhr L, Boschi-Muller S. SPR screening of metal chelating peptides in a hydrolysate for their antioxidant properties. Food Chemistry. 2018;239:478-485. DOI: 10.1016/j.foodchem.2017.06.116'},{id:"B79",body:'Decker EA, Welch B. Role of ferritin as a lipid oxidation catalyst in muscle food. Journal of Agricultural and Food Chemistry. 1990;38(3):674-677. DOI: 10.1021/jf00093a019'},{id:"B80",body:'You L, Zhao M, Regenstein JM, Ren J. In vitro antioxidant activity and in vivo anti-fatigue effect of loach (Misgurnus anguillicaudatus) peptides prepared by papain digestion. Food Chemistry. 2011;124(1):188-194. DOI: 10.1016/j.foodchem.2010.06.007'},{id:"B81",body:'Je JY, Qian ZJ, Byun HG, Kim SK. Purification and characterization of an antioxidant peptide obtained from tuna backbone protein by enzymatic hydrolysis. Process Biochemistry. 2007;42(5):840-846. DOI: 10.1016/j.procbio.2007.02.006'},{id:"B82",body:'Aluko RE. Functional Foods and Nutraceuticals. Biotechnology: New Ideas, New Developments (A Textbook of Modern Technology). New York, NY: Springer New York; 2012. DOI: 10.1007/978-1-4614-3480-1'},{id:"B83",body:'Je JY, Park SY, Hwang JY, Ahn CB. Amino acid composition and in vitro antioxidant and cytoprotective activity of abalone viscera hydrolysate. Journal of Functional Foods. 2015;16:94-103. DOI: 10.1016/j.jff.2015.04.023'},{id:"B84",body:'Ghanbari R. Review on the bioactive peptides from marine sources: Indication for health effects. International Journal of Peptide Research and Therapeutics. 2019;25(3):1187-1199. DOI: 10.1007/s10989-018-9766-x'},{id:"B85",body:'Pihlanto A. Antioxidative peptides derived from milk proteins. International Dairy Journal. 2006;16(11):1306-1314. DOI: 10.1016/j.idairyj.2006.06.005'},{id:"B86",body:'Ngo DH, Ryu B, Vo TS, Himaya SWA, Wijesekara I, Kim SK. Free radical scavenging and angiotensin-I converting enzyme inhibitory peptides from Pacific cod (Gadus macrocephalus) skin gelatin. International Journal of Biological Macromolecules. 2011;49:1110-1116'},{id:"B87",body:'Nikoo M, Benjakul S, Ehsani A, Li J, Wu F, Yang N, et al. Antioxidant and cryoprotective effects of a tetrapeptide isolated from Amur sturgeon skin gelatin. Journal of Functional Foods. 2014;7:609-620'},{id:"B88",body:'Mendis E, Rajapakse N, Kim SK. Antioxidant properties of a radicals scavenging peptide purified from enzymatically prepared fish skin gelatin hydrolysate. Journal of Agriculture and Food Chemistry. 2005;53:581-587'},{id:"B89",body:'Zhang YF, Duan X, Zhuang YL. Purification and characterization of novel antioxidant peptides from enzymatic hydrolysates of tilapia (Oreochromis niloticus) skin gelatin. Peptides. 2012;38:13-21'},{id:"B90",body:'Kumar S, Sutherland F, Rosso R, Teh AW, Lee G, Heck PM, et al. Effects of chronic omega-3 polyunsaturated fatty acid supplementation on human atrial electrophysiology. Heart Rhythm. 2011;8:562-568'},{id:"B91",body:'Chi CF, Wang B, Wang YM, Zhang B, Deng SG. Isolation and characterization of three antioxidant peptides from protein hydrolysate of bluefin leatherjacket (Navodon septentrionalis) heads. Journal of Functional Foods. 2015;12:1-10'},{id:"B92",body:'Ahn CB, Kim JG, Je JY. Purification and antioxidant properties of octapeptide from salmon byproduct protein hydrolysate by gastrointestinal digestion. Food Chemistry. 2014;147:78-83'},{id:"B93",body:'Jaiganesh R, Nazeer RA, Sampath Kumar NS. Purification and identification of antioxidant peptide from black pomfret, Parastromateus niger (Bloch, 1975) viscera protein hydrolysate. Food Science and Biotechnology. 2011;20:1087-1094'},{id:"B94",body:'Pan X, Zhao Y, Hu F, Wang B. Preparation and identification of antioxidant peptides from protein hydrolysate of skate (Raja porosa) cartilage. Journal of Functional Foods. 2016;25:220-230'},{id:"B95",body:'Cai L, Wu X, Zhang Y, Li X, Ma S, Li J. Purification and characterization of three antioxidant peptides from protein hydrolysate of grass carp (Ctenopharyngodon idella) skin. Journal of Functional Foods. 2015;16:234-242. DOI: 10.1016/j.jff.2015.04.042'},{id:"B96",body:'Song R, Zhang K, Wei R. In vitro antioxidative activities of squid (Ommastrephes bartrami) viscera autolysates and identification of active peptides. Process Biochemistry. 2016;51(10):1674-1682'},{id:"B97",body:'Wijesekara I, Kim SK. Angiotensin-I-converting enzyme (ACE) inhibitors from marine resources: Prospects in the pharmaceutical industry. Marine Drugs. 2010;8(4):1080-1093. DOI: 10.3390/md8041080'},{id:"B98",body:'Byun HG, Kim SK. Purification and characterization of angiotensin I converting enzyme (ACE) inhibitory peptides from Alaska pollack (Theragra chalcogramma) skin. Process Biochemistry. 2001;36:1155-1162'},{id:"B99",body:'Lee JK, Jeon JK, Byun HG. Antihypertensive effect of novel angiotensin I converting enzyme inhibitory peptide from chum salmon (Oncorhynchus keta) skin in spontaneously hypertensive rats. Journal of Functional Foods. 2014;7:381-389'},{id:"B100",body:'Fahmi A, Morimura S, Guob HC, Shigematsu T, Kida K, Uemura Y. Production of angiotensin I converting enzyme inhibitory peptides from sea bream scale. Process Biochemistry. 2004;39:1195-1200'},{id:"B101",body:'Bougatef A, Nedjar-Arroume N, Ravallec-Plé R, Leroy Y, Guillochon D, Barkia A, et al. Angiotensin I-converting enzyme (ACE) inhibitory activities of sardinelle (Sardinella aurita) by-products protein hydrolysates obtained by treatment with microbial and visceral fish serine proteases. Food Chemistry. 2008;111:350-356'},{id:"B102",body:'Ghassem M, Babji AS, Said M, Mahmoodani F, Arihara K. Angiotensin I-converting enzyme inhibitory peptides from snakehead fish sarcoplasmic protein hydrolysate. Journal of Food Biochemistry. 2014;38(2):14-19'},{id:"B103",body:'García-Moreno PJ, Espejo-Carpio FJ, Guadix A, Guadix EM. Production and identification of angiotensin I-converting enzyme (ACE) inhibitory peptides from Mediterranean fish discards. Journal of Functional Foods. 2015;18:95-105'},{id:"B104",body:'Wu X, Cai L, Zhang Y, Mi H, Cheng X, Li J. Compositions and antioxidant properties of protein hydrolysates from the skins of four carp species. International Journal of Food Science & Technology. 2015;50(12):2589-2597. DOI: 10.1111/ijfs.12927'},{id:"B105",body:'Chen J, Liu Y, Wang G, Sun S, Liu R, Hong B, et al. Processing optimization and characterization of angiotensin-Ι-converting enzyme inhibitory peptides from lizardfish (Synodus macrops) scale gelatin. Marine Drugs. 2018;16(7):228. DOI: 10.3390/md16070228'},{id:"B106",body:'Baig MH, Ahmad K, Saeed M, Alharbi AM, Barreto GE, Ashraf GM, et al. Peptide based therapeutics and their use for the treatment of neurodegenerative and other diseases. Biomedicine & Pharmacotherapy. 2018;103:574-581. DOI: 10.1016/j.biopha.2018.04.025'},{id:"B107",body:'Chalamaiah M, Yu W, Wu J. Immunomodulatory and anticancer protein hydrolysates (peptides) from food proteins: A review. Food Chemistry. 2018;245:205-222. DOI: 10.1016/j.foodchem.2017.10.087'},{id:"B108",body:'Correia-da-Silva M, Sousa E, Pinto MMM, Kijjoa A. Anticancer and cancer preventive compounds from edible marine organisms. Seminars in Cancer Biology. 2017;46:55-64. DOI: 10.1016/j.semcancer.2017.03.011'},{id:"B109",body:'Picot L, Bordenave S, Didelot S, Fruitier-Arnaudin I, Sannier F, Thorkelsson G, et al. Antiproliferative activity of fish protein hydrolysates on human breast cancer cell lines. Process Biochemistry. 2006;41:1217-1222. DOI: 10.1016/j.procbio.2005.11.024'},{id:"B110",body:'Kim EK, Kim YS, Hwang JW, Lee JS, Moon SH, Jeon BT, et al. Purification and characterization of a novel anticancer peptide derived from Ruditapes philippinarum. Process Biochemistry. 2013;48(7):1086-1090. DOI: 10.1016/j.procbio.2013.05.004'},{id:"B111",body:'Alemán A, Pérez-santín E, Bordenave-juchereau S, Arnaudin I, Gómez-guillén MC, Montero P. Squid gelatin hydrolysates with antihypertensive, anticancer and antioxidant activity. Food Research International. 2011;44:1044-1051. DOI: 10.1016/j.foodres.2011.03.010'},{id:"B112",body:'Song R, Wei R, Luo H, Yang Z. Isolation and identification of an antiproliferative peptide derived from heated products of peptic hydrolysates of halffin anchovy (Setipinna taty). Journal of Functional Foods. 2014;10:104-111'},{id:"B113",body:'Doyen A, Beaulieu L, Saucier L, Pouliot Y, Bazinet L. Demonstration of in vitro anticancer properties of peptide fractions from a snow crab by-products hydrolysate after separation by electrodialysis with ultrafiltration membranes. Separation and Purification Technology. 2011;78(3):321-329. DOI: 10.1016/j.seppur.2011.01.037'},{id:"B114",body:'Gianfranceschi GL, Gianfranceschi G, Quassinti L, Bramucci M. Biochemical requirements of bioactive peptides for nutraceutical efficacy. Journal of Functional Foods. 2018;47:252-263. DOI: 10.1016/j.jff.2018.05.034'},{id:"B115",body:'Schweizer F. Cationic amphiphilic peptides with cancer-selective toxicity. European Journal of Pharmacology. 2009;625(1):190-194. DOI: 10.1016/j.ejphar.2009.08.043'},{id:"B116",body:'Jin NZ, Gopinath SCB. Potential blood clotting factors and anticoagulants. Biomedicine and Pharmacotherapy. 2016;84:356-365. DOI: 10.1016/j.biopha.2016.09.057'},{id:"B117",body:'Rajapakse N, Jung WK, Mendis E, Moon SH, Kim SK. A novel anticoagulant purified from fish protein hydrolysate inhibits factor XIIa and platelet aggregation. Life Sciences. 2005;76(22):2607-2619. DOI: 10.1016/j.lfs.2004.12.010'},{id:"B118",body:'Alencar-Silva T, Braga MC, Santana GOS, Saldanha-Araujo F, Pogue R, Dias SC, et al. Breaking the frontiers of cosmetology with antimicrobial peptides. Biotechnology Advances. 2018;36(8):2019-2031. DOI: 10.1016/j.biotechadv.2018.08.005'},{id:"B119",body:'Sila A, Hedhili K, Przybylski R, Ellouz-Chaabouni S, Dhulster P, Bougatef A, et al. Antibacterial activity of new peptides from barbel protein hydrolysates and mode of action via a membrane damage mechanism against Listeria monocytogenes. Journal of Functional Foods. 2014;11:322-329. DOI: 10.1016/j.jff.2014.10.006'},{id:"B120",body:'Najafian L, Babji AS. A review of fish-derived antioxidant and antimicrobial peptides: Their production, assessment, and applications. Peptides. 2012;33(1):178-185. DOI: 10.1016/j.peptides.2011.11.013'},{id:"B121",body:'Deslouches B, Phadke SM, Lazarevic V, Cascio M, Islam K, Montelaro RC, et al. De novo generation of cationic antimicrobial peptides: Influence of length and tryptophan substitution on antimicrobial activity. Antimicrobial Agents and Chemotherapy. 2005;49(1):316-322. DOI: 10.1128/AAC.49.1.316-322.2005'},{id:"B122",body:'Vogel HJ, Schibli DJ, Jing W, Lohmeier-Vogel EM, Epand RF, Epand RM. Towards a structure-function analysis of bovine lactoferricin and related tryptophanand arginine-containing peptides. Biochemistry and Cell Biology. 2002;80(1):49-63'},{id:"B123",body:'Villarruel R, Huizar R, Corrales M, Sánchez T, Islas A. Péptidos naturales antimicrobianos: Escudo esencial de la respuesta inmune. Investigación en Salud. 2004;6(3):170-179'},{id:"B124",body:'Sila A, Nedjar-Arroume N, Hedhili K, Chataigné G, Balti R, Nasri M, et al. Antibacterial peptides from barbel muscle protein hydrolysates: Activity against some pathogenic bacteria. LWT-Food Science and Technology. 2014;55(1):183-188. DOI: 10.1016/j.lwt.2013.07.021'},{id:"B125",body:'Abdelhedi O, Jridi M, Jemil I, Mora L, Toldrá F, Aristoy MC, et al. Combined biocatalytic conversion of smooth hound viscera: Protein hydrolysates elaboration and assessment of their antioxidant, anti-ACE and antibacterial activities. Food Research International. 2016;86:9-23. DOI: 10.1016/j.foodres.2016.05.013'},{id:"B126",body:'Tripoteau L, Bedoux G, Gagnon J, Bourgougnon N. In vitro antiviral activities of enzymatic hydrolysates extracted from byproducts of the Atlantic holothurian Cucumaria frondosa. Process Biochemistry. 2015;50:867-875. DOI: 10.1016/j.procbio.2015.02.012'},{id:"B127",body:'Sierra Lopera LM, Sepúlveda Rincón CT, Vásquez Mazo P, Figueroa Moreno OA, Zapata Montoya JE. Byproducts of aquaculture processes: Development and prospective uses. Review. Revista Vitae. 2018;25(3):128-140. DOI: 10.17533/udea.vitae.v25n3a03'}],footnotes:[],contributors:[{corresp:"yes",contributorFullName:"Jose Edgar Zapata Montoya",address:"edgar.zapata@udea.edu.co",affiliation:'
Nutrition and Food Technology Group, Universidad de Antioquia, Colombia
Nutrition and Food Technology Group, Universidad de Antioquia, Colombia
'}],corrections:null},book:{id:"10841",type:"book",title:"Hydrolases",subtitle:null,fullTitle:"Hydrolases",slug:null,publishedDate:null,bookSignature:"Dr. Sajjad Haider, Assistant Prof. Adnan Haider and Prof. Angel Catala",coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",licenceType:"CC BY 3.0",editedByType:null,isbn:"978-1-80355-163-0",printIsbn:"978-1-80355-162-3",pdfIsbn:"978-1-80355-164-7",isAvailableForWebshopOrdering:!0,editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},profile:{item:{id:"88525",title:"Prof.",name:"Olav",middleName:null,surname:"Tirkkonen",email:"olav.tirkkonen@aalto.fi",fullName:"Olav Tirkkonen",slug:"olav-tirkkonen",position:null,biography:null,institutionString:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",totalCites:0,totalChapterViews:"0",outsideEditionCount:0,totalAuthoredChapters:"1",totalEditedBooks:"0",personalWebsiteURL:null,twitterURL:null,linkedinURL:null,institution:{name:"Aalto University",institutionURL:null,country:{name:"Finland"}}},booksEdited:[],chaptersAuthored:[{id:"32210",title:"Exact and Asymptotic Analysis of Largest Eigenvalue Based Spectrum Sensing",slug:"exact-and-asymptotic-analysis-of-largest-eigenvalue-based-spectrum-sensing",abstract:null,signatures:"Olav Tirkkonen and Lu Wei",authors:[{id:"88427",title:"MSc.",name:"Lu",surname:"Wei",fullName:"Lu Wei",slug:"lu-wei",email:"lu.wei@aalto.fi"},{id:"88525",title:"Prof.",name:"Olav",surname:"Tirkkonen",fullName:"Olav Tirkkonen",slug:"olav-tirkkonen",email:"olav.tirkkonen@aalto.fi"}],book:{id:"592",title:"Foundation of Cognitive Radio Systems",slug:"foundation-of-cognitive-radio-systems",productType:{id:"1",title:"Edited Volume"}}}],collaborators:[{id:"12041",title:"Dr.",name:"João C. W.",surname:"Costa",slug:"joao-c.-w.-costa",fullName:"João C. W. Costa",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Federal University of Para",institutionURL:null,country:{name:"Brazil"}}},{id:"16995",title:"Dr.",name:"Aldebaro",surname:"Klautau",slug:"aldebaro-klautau",fullName:"Aldebaro Klautau",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:"Federal University of Para",institution:{name:"Federal University of Para",institutionURL:null,country:{name:"Brazil"}}},{id:"37037",title:"MSc",name:"Gianmarco",surname:"Baldini",slug:"gianmarco-baldini",fullName:"Gianmarco Baldini",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"80913",title:"Dr.",name:"Eamnn",surname:"O Nuallain",slug:"eamnn-o-nuallain",fullName:"Eamnn O Nuallain",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Trinity College Dublin",institutionURL:null,country:{name:"Ireland"}}},{id:"84150",title:"MSc.",name:"Lilian",surname:"Freitas",slug:"lilian-freitas",fullName:"Lilian Freitas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Federal University of Para",institutionURL:null,country:{name:"Brazil"}}},{id:"84720",title:"Prof.",name:"Samuel",surname:"Cheng",slug:"samuel-cheng",fullName:"Samuel Cheng",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/84720/images/3678_n.jpg",biography:"Samuel Cheng received the B.S. degree in Electrical and Electronic Engineering from the University of Hong Kong, and the M.Phil. degree in Physics and the M.S. degree in Electrical Engineering from Hong Kong University of Science and Technology and the University of Hawaii, Honolulu, respectively. He received the Ph.D. degree in Electrical Engineering from Texas A&M University in 2004. He worked in Microsoft Asia, China, and Panasonic Technologies Company, New Jersey, during the summers of 2000 and 2001. In 2004, he joined Advanced Digital Imaging Research, a research company based near Houston, Texas, as a Research Engineer and was promoted to Senior Research Engineer the next year. Since 2006, he joined the Telecommunications Program of the School of Electrical and Computer Engineering at the University of Oklahoma and is currently an assistant professor. He has been awarded five US patents in miscellaneous areas of signal processing and also coauthored a paper that received the 2006 IEEE Best Signal Processing Magazine Paper Award. He is a member of IEEE and Sigma Xi. His research interests include information theory, image/signal processing, and pattern recognition.",institutionString:null,institution:{name:"University of Oklahoma",institutionURL:null,country:{name:"United States of America"}}},{id:"88338",title:"MSc.",name:"Adalbery",surname:"Castro",slug:"adalbery-castro",fullName:"Adalbery Castro",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Federal University of Para",institutionURL:null,country:{name:"Brazil"}}},{id:"88340",title:"MSc.",name:"Claudomir",surname:"Cardoso",slug:"claudomir-cardoso",fullName:"Claudomir Cardoso",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Federal University of Para",institutionURL:null,country:{name:"Brazil"}}},{id:"88427",title:"MSc.",name:"Lu",surname:"Wei",slug:"lu-wei",fullName:"Lu Wei",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Aalto University",institutionURL:null,country:{name:"Finland"}}},{id:"127930",title:"Dr.",name:"Gregor",surname:"Gaertner",slug:"gregor-gaertner",fullName:"Gregor Gaertner",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]},generic:{page:{slug:"publish-a-whole-book",title:"Publish a Whole Book",intro:"
At IntechOpen, we not only specialize in the publication of Book Chapters as part of our Edited Volumes, but also the publication and dissemination of longer manuscripts, known as Long Form Monographs. Monographs allow Authors to focus on presenting a single subject or a specific aspect of that subject and publish their research in detail.
\n\n
Even if you have an area of research that does not at first sight fit within a previously defined IntechOpen project, we can still offer support and help you in publishing your individual research. Publishing your IntechOpen book in the form of a Long Form Monograph is a viable alternative.
",metaTitle:"Publish a Whole Book",metaDescription:"At IntechOpen, we not only specialize in the publication of book chapters as part of our Edited Volumes, but also the publication and dissemination of long form manuscripts, known as monographs. Monographs allow authors to focus on presenting a single subject or a specific aspect of that subject and publish their research at length.\n\nPerhaps you have an area of research that does not fit within a previously defined IntechOpen project, but rather need help in publishing your individual research? Publishing your IntechOpen book in the form of a long form monograph is a great alternative.",metaKeywords:null,canonicalURL:"/page/publish-a-whole-book",contentRaw:'[{"type":"htmlEditorComponent","content":"
MONOGRAPH - LONG FORM MANUSCRIPT
\\n\\n
\\n\\t
130 - 500 pages
\\n\\t
A self-contained work on a particular subject, or an aspect of it, written by one or more authors
\\n\\t
Primary research and original scholarship presented in detail
\\n
\\n\\n
FORMATS
\\n\\n
\\n\\t
Single or multiple author manuscript
\\n\\t
Edited Book - an edited collection of chapters contributed by various authors
\\n\\t
Conference Proceedings - collection of papers presented at a conference published in book format
\\n
\\n\\n
COST
\\n\\n
10,000 GBP Monograph - Long Form
\\n\\n
The final price includes project management, editorial and peer-review services, technical editing, language copyediting, cover design, book layout, book promotion and ISBN assignment.
\\n\\n
*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate applied in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\\n\\n
Optional Services
\\n\\n
IntechOpen has collaborated with Enago, through its sister brand, Ulatus, which is one of the world’s leading providers of book translation services. The services are designed to convey the essence of your work to readers from across the globe in a language they understand. Enago’s expert translators incorporate cultural nuances in translations to make the content relevant for local audiences while retaining the original meaning and style. Enago translators are equipped to handle all complex and multiple overlapping themes encompassed in a single book and their high degree of linguistic and subject expertise enables them to deliver a superior quality output.
\\n\\n
IntechOpen Authors that wish to use this service will receive a 20% discount on all translation services. To find out more information or obtain a quote, please visit: https://www.enago.com/intech.
\\n\\n
FUNDING
\\n\\n
We feel that financial barriers should never prevent researchers from publishing their work. Please consult our Open Access Funding page to explore funding opportunities and learn more about how you can finance your IntechOpen publication.
\\n\\n
BENEFITS
\\n\\n
\\n\\t
Your published content is immediately available to read, share and download for free
\\n\\t
+3.3 million unique visitors per month
\\n\\t
+184,650 Web Of Science citations
\\n\\t
You retain copyright to your work
\\n\\t
Chapter and book statistics performance reports allowing you to examine the reach of your content
\\n\\t
Full PDF version of your book available to download
\\n\\t
Rapid publishing process with personal support
\\n\\t
Competitive pricing for publishing services and print products
A self-contained work on a particular subject, or an aspect of it, written by one or more authors
\n\t
Primary research and original scholarship presented in detail
\n
\n\n
FORMATS
\n\n
\n\t
Single or multiple author manuscript
\n\t
Edited Book - an edited collection of chapters contributed by various authors
\n\t
Conference Proceedings - collection of papers presented at a conference published in book format
\n
\n\n
COST
\n\n
10,000 GBP Monograph - Long Form
\n\n
The final price includes project management, editorial and peer-review services, technical editing, language copyediting, cover design, book layout, book promotion and ISBN assignment.
\n\n
*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate applied in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\n\n
Optional Services
\n\n
IntechOpen has collaborated with Enago, through its sister brand, Ulatus, which is one of the world’s leading providers of book translation services. The services are designed to convey the essence of your work to readers from across the globe in a language they understand. Enago’s expert translators incorporate cultural nuances in translations to make the content relevant for local audiences while retaining the original meaning and style. Enago translators are equipped to handle all complex and multiple overlapping themes encompassed in a single book and their high degree of linguistic and subject expertise enables them to deliver a superior quality output.
\n\n
IntechOpen Authors that wish to use this service will receive a 20% discount on all translation services. To find out more information or obtain a quote, please visit: https://www.enago.com/intech.
\n\n
FUNDING
\n\n
We feel that financial barriers should never prevent researchers from publishing their work. Please consult our Open Access Funding page to explore funding opportunities and learn more about how you can finance your IntechOpen publication.
\n\n
BENEFITS
\n\n
\n\t
Your published content is immediately available to read, share and download for free
\n\t
+3.3 million unique visitors per month
\n\t
+184,650 Web Of Science citations
\n\t
You retain copyright to your work
\n\t
Chapter and book statistics performance reports allowing you to examine the reach of your content
\n\t
Full PDF version of your book available to download
\n\t
Rapid publishing process with personal support
\n\t
Competitive pricing for publishing services and print products
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6602},{group:"region",caption:"Middle and South America",value:2,count:5908},{group:"region",caption:"Africa",value:3,count:2400},{group:"region",caption:"Asia",value:4,count:12542},{group:"region",caption:"Australia and Oceania",value:5,count:1008},{group:"region",caption:"Europe",value:6,count:17561}],offset:12,limit:12,total:132766},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"11254",title:"Optical Coherence Tomography",subtitle:null,isOpenForSubmission:!0,hash:"a958c09ceaab1fc44c1dd0a817f48c92",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11254.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11438",title:"Fake News in the Era of Pandemics",subtitle:null,isOpenForSubmission:!0,hash:"bc9e4cab86c76f35cd70b39086d9b69e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11438.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11472",title:"21st Century Slavery",subtitle:null,isOpenForSubmission:!0,hash:"b341f3fc3411ced881e43ce007a892b8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11472.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11473",title:"Social Inequality",subtitle:null,isOpenForSubmission:!0,hash:"20307129f7fb39aa443d5449acb6a784",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11473.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11546",title:"Smart and Sustainable Transportation",subtitle:null,isOpenForSubmission:!0,hash:"e8ea27a1ff85cde00efcb6f6968c20f8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11546.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11554",title:"Information Systems Management",subtitle:null,isOpenForSubmission:!0,hash:"3134452ff2fdec020663f241c7a9a748",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11554.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11436",title:"Beauty",subtitle:null,isOpenForSubmission:!0,hash:"0e15ba86bab1a64f950318f3ab2584ed",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11436.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11588",title:"Autism",subtitle:null,isOpenForSubmission:!0,hash:"0c5043c6174db167599cb3f762e8bba8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11588.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11605",title:"Bamboo",subtitle:null,isOpenForSubmission:!0,hash:"378d957561b27c86b750a9c7841a5d18",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11605.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11616",title:"Foraging",subtitle:null,isOpenForSubmission:!0,hash:"955b60bb658c8d1a09dd4efc9bf6674b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11616.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11632",title:"Updated Research on Bacteriophages",subtitle:null,isOpenForSubmission:!0,hash:"d34dfa0d5d10511184f97ddaeef9936b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11632.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11645",title:"Neural Tube Defects",subtitle:null,isOpenForSubmission:!0,hash:"08d6ba70d97767769a97cfeeb52dac78",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11645.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:39},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:17},{group:"topic",caption:"Computer and Information Science",value:9,count:16},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:32},{group:"topic",caption:"Environmental Sciences",value:12,count:7},{group:"topic",caption:"Immunology and Microbiology",value:13,count:11},{group:"topic",caption:"Materials Science",value:14,count:11},{group:"topic",caption:"Mathematics",value:15,count:6},{group:"topic",caption:"Medicine",value:16,count:100},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:7},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:11},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:7},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:32},{group:"topic",caption:"Technology",value:24,count:1}],offset:12,limit:12,total:336},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3385,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1875,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3842,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3008,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1109,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1010,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3918,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",publishedDate:"May 11th 2022",numberOfDownloads:1654,editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7686,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3444,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"990",title:"Stem Cell Research",slug:"medicine-cell-biology-stem-cell-research",parent:{id:"171",title:"Cell Biology",slug:"medicine-cell-biology"},numberOfBooks:22,numberOfSeries:0,numberOfAuthorsAndEditors:912,numberOfWosCitations:552,numberOfCrossrefCitations:282,numberOfDimensionsCitations:709,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"990",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8026",title:"Update on Mesenchymal and Induced Pluripotent Stem Cells",subtitle:null,isOpenForSubmission:!1,hash:"48115afa72bcce1bde1e5b0e6c45f1b8",slug:"update-on-mesenchymal-and-induced-pluripotent-stem-cells",bookSignature:"Khalid Ahmed Al-Anazi",coverURL:"https://cdn.intechopen.com/books/images_new/8026.jpg",editedByType:"Edited by",editors:[{id:"37255",title:"Dr.",name:"Khalid",middleName:"Ahmed",surname:"Al-Anazi",slug:"khalid-al-anazi",fullName:"Khalid Al-Anazi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6913",title:"Innovations in Cell Research and Therapy",subtitle:null,isOpenForSubmission:!1,hash:"5a2a92efd1c7a2ecb4c396b61b6ffb4f",slug:"innovations-in-cell-research-and-therapy",bookSignature:"Zvi Loewy",coverURL:"https://cdn.intechopen.com/books/images_new/6913.jpg",editedByType:"Edited by",editors:[{id:"235950",title:"Ph.D.",name:"Zvi",middleName:null,surname:"Loewy",slug:"zvi-loewy",fullName:"Zvi Loewy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6658",title:"Stromal Cells",subtitle:"Structure, Function, and Therapeutic Implications",isOpenForSubmission:!1,hash:"c215f02d4268e4b7cccdaea141ec8647",slug:"stromal-cells-structure-function-and-therapeutic-implications",bookSignature:"Mani T. Valarmathi",coverURL:"https://cdn.intechopen.com/books/images_new/6658.jpg",editedByType:"Edited by",editors:[{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",slug:"mani-t.-valarmathi",fullName:"Mani T. Valarmathi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5369",title:"Umbilical Cord Blood Banking for Clinical Application and Regenerative Medicine",subtitle:null,isOpenForSubmission:!1,hash:"711421bf3bdb0e540fc84267b82b1995",slug:"umbilical-cord-blood-banking-for-clinical-application-and-regenerative-medicine",bookSignature:"Ana Colette Mauricio",coverURL:"https://cdn.intechopen.com/books/images_new/5369.jpg",editedByType:"Edited by",editors:[{id:"56285",title:"Prof.",name:"Ana Colette",middleName:null,surname:"Maurício",slug:"ana-colette-mauricio",fullName:"Ana Colette Maurício"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5207",title:"Pluripotent Stem Cells",subtitle:"From the Bench to the Clinic",isOpenForSubmission:!1,hash:"f29f98ebea5d3e1789f5fb5db827f40c",slug:"pluripotent-stem-cells-from-the-bench-to-the-clinic",bookSignature:"Minoru Tomizawa",coverURL:"https://cdn.intechopen.com/books/images_new/5207.jpg",editedByType:"Edited by",editors:[{id:"156161",title:"Dr.",name:"Minoru",middleName:null,surname:"Tomizawa",slug:"minoru-tomizawa",fullName:"Minoru Tomizawa"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4609",title:"Progress in Stem Cell Transplantation",subtitle:null,isOpenForSubmission:!1,hash:"abbff25d9b960e013b0623b89cdf7367",slug:"progress-in-stem-cell-transplantation",bookSignature:"Taner Demirer",coverURL:"https://cdn.intechopen.com/books/images_new/4609.jpg",editedByType:"Edited by",editors:[{id:"67350",title:"Prof.",name:"Taner",middleName:null,surname:"Demirer",slug:"taner-demirer",fullName:"Taner Demirer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3861",title:"Adult Stem Cell Niches",subtitle:null,isOpenForSubmission:!1,hash:"fa94a08bfdd9319c91079f1c6926f57a",slug:"adult-stem-cell-niches",bookSignature:"Sabine Wislet-Gendebien",coverURL:"https://cdn.intechopen.com/books/images_new/3861.jpg",editedByType:"Edited by",editors:[{id:"65329",title:"Dr.",name:"Sabine",middleName:null,surname:"Wislet",slug:"sabine-wislet",fullName:"Sabine Wislet"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3827",title:"Pluripotent Stem Cell Biology",subtitle:"Advances in Mechanisms, Methods and Models",isOpenForSubmission:!1,hash:"cefa40b44f921d8f66661757ee394474",slug:"pluripotent-stem-cell-biology-advances-in-mechanisms-methods-and-models",bookSignature:"Craig S. Atwood and Sivan Vadakkadath Meethal",coverURL:"https://cdn.intechopen.com/books/images_new/3827.jpg",editedByType:"Edited by",editors:[{id:"16945",title:"Prof.",name:"Craig",middleName:"S",surname:"Atwood",slug:"craig-atwood",fullName:"Craig Atwood"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3263",title:"Pluripotent Stem Cells",subtitle:null,isOpenForSubmission:!1,hash:"8e3646a06bb8ba1da33cb5ccb0867062",slug:"pluripotent-stem-cells",bookSignature:"Deepa Bhartiya and Nibedita Lenka",coverURL:"https://cdn.intechopen.com/books/images_new/3263.jpg",editedByType:"Edited by",editors:[{id:"139427",title:"Dr.",name:"Deepa",middleName:null,surname:"Bhartiya",slug:"deepa-bhartiya",fullName:"Deepa Bhartiya"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3354",title:"Stem Cell Biology in Normal Life and Diseases",subtitle:null,isOpenForSubmission:!1,hash:"0bbdc22389f4c4ea94547dec65f9b69e",slug:"stem-cell-biology-in-normal-life-and-diseases",bookSignature:"Kamran Alimoghaddam",coverURL:"https://cdn.intechopen.com/books/images_new/3354.jpg",editedByType:"Edited by",editors:[{id:"89450",title:"Prof.",name:"Kamran",middleName:null,surname:"Alimoghaddam",slug:"kamran-alimoghaddam",fullName:"Kamran Alimoghaddam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3427",title:"Neural Stem Cells",subtitle:"New Perspectives",isOpenForSubmission:!1,hash:"43e043afc3a3af46076832b4f784dcca",slug:"neural-stem-cells-new-perspectives",bookSignature:"Luca Bonfanti",coverURL:"https://cdn.intechopen.com/books/images_new/3427.jpg",editedByType:"Edited by",editors:[{id:"154282",title:"Dr.",name:"Luca",middleName:null,surname:"Bonfanti",slug:"luca-bonfanti",fullName:"Luca Bonfanti"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3458",title:"Innovations in Stem Cell Transplantation",subtitle:null,isOpenForSubmission:!1,hash:"09f5e6c6ce440ef556de7c8a02f257e8",slug:"innovations-in-stem-cell-transplantation",bookSignature:"Taner Demirer",coverURL:"https://cdn.intechopen.com/books/images_new/3458.jpg",editedByType:"Edited by",editors:[{id:"84241",title:"Prof.",name:"Taner",middleName:null,surname:"Demirer",slug:"taner-demirer",fullName:"Taner Demirer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:22,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"34558",doi:"10.5772/35847",title:"The Epididymis: Embryology, Structure, Function and Its Role in Fertilization and Infertility",slug:"the-epididymis-embryology-structure-function-and-its-role-in-fertilization-and-infertility",totalDownloads:13335,totalCrossrefCites:9,totalDimensionsCites:21,abstract:null,book:{id:"1699",slug:"embryology-updates-and-highlights-on-classic-topics",title:"Embryology",fullTitle:"Embryology - Updates and Highlights on Classic Topics"},signatures:"Kélen Fabiola Arrotéia, Patrick Vianna Garcia, Mainara Ferreira Barbieri, Marilia Lopes Justino and Luís Antonio Violin Pereira",authors:[{id:"106080",title:"Prof.",name:"Luis",middleName:"Antonio",surname:"Violin Pereira",slug:"luis-violin-pereira",fullName:"Luis Violin Pereira"},{id:"112722",title:"Dr.",name:"Kélen",middleName:null,surname:"Arrotéia",slug:"kelen-arroteia",fullName:"Kélen Arrotéia"},{id:"112724",title:"MSc.",name:"Patrick",middleName:null,surname:"Garcia",slug:"patrick-garcia",fullName:"Patrick Garcia"},{id:"112726",title:"BSc.",name:"Mainara",middleName:null,surname:"Barbieri",slug:"mainara-barbieri",fullName:"Mainara Barbieri"},{id:"112727",title:"BSc.",name:"Marília",middleName:null,surname:"Justino",slug:"marilia-justino",fullName:"Marília Justino"}]},{id:"18220",doi:"10.5772/17574",title:"How do Mesenchymal Stem Cells Repair?",slug:"how-do-mesenchymal-stem-cells-repair-",totalDownloads:5964,totalCrossrefCites:9,totalDimensionsCites:16,abstract:null,book:{id:"216",slug:"stem-cells-in-clinic-and-research",title:"Stem Cells in Clinic and Research",fullTitle:"Stem Cells in Clinic and Research"},signatures:"Patricia Semedo, Marina Burgos-Silva, Cassiano Donizetti-Oliveira and Niels Olsen Saraiva Camara",authors:[{id:"28751",title:"Prof.",name:"Niels",middleName:"Olsen Saraiva",surname:"Camara",slug:"niels-camara",fullName:"Niels Camara"},{id:"30464",title:"Prof.",name:"Patricia",middleName:null,surname:"Semedo",slug:"patricia-semedo",fullName:"Patricia Semedo"},{id:"30465",title:"BSc.",name:"Cassiano",middleName:null,surname:"Donizetti-Oliveira",slug:"cassiano-donizetti-oliveira",fullName:"Cassiano Donizetti-Oliveira"},{id:"30466",title:"BSc.",name:"Marina",middleName:null,surname:"Burgos-Silva",slug:"marina-burgos-silva",fullName:"Marina Burgos-Silva"}]},{id:"50685",doi:"10.5772/63202",title:"States of Pluripotency: Naïve and Primed Pluripotent Stem Cells",slug:"states-of-pluripotency-na-ve-and-primed-pluripotent-stem-cells",totalDownloads:4015,totalCrossrefCites:4,totalDimensionsCites:12,abstract:"Pluripotent stem cells are classified into naïve and primed based on their growth characteristics in vitro and their potential to give rise to all somatic lineages and the germ line in chimeras. In this chapter, I describe the similarities and differences between the naïve and primed pluripotent states as exemplified by mouse embryonic stem cells (mESCs), mouse epiblast stem cells (mEpiSCs), human embryonic stem cells (hESCs), and human induced pluripotent stem cells (hiPSCs). I also review the efforts for derivation of naïve human pluripotent stem cells by manipulating culture conditions during reprogramming of somatic cells and attempts to revert primed hESCs to the naïve state. Understanding the requirements for induction and maintenance of the naïve pluripotent state will facilitate studies on early human embryonic development and understanding the mechanisms involved in X inactivation in vitro. In addition, the development of naïve hiPSCs will improve the efficiency of gene targeting for the purpose of modeling human diseases as well as for generating gene‐corrected autologous pluripotent stem cells for regenerative medicine.",book:{id:"5207",slug:"pluripotent-stem-cells-from-the-bench-to-the-clinic",title:"Pluripotent Stem Cells",fullTitle:"Pluripotent Stem Cells - From the Bench to the Clinic"},signatures:"Daman Kumari",authors:[{id:"180527",title:"Dr.",name:"Daman",middleName:null,surname:"Kumari",slug:"daman-kumari",fullName:"Daman Kumari"}]},{id:"26987",doi:"10.5772/32381",title:"Markers for Hematopoietic Stem Cells: Histories and Recent Achievements",slug:"endothelial-cell-selective-adhesion-molecule-esam-a-novel-hsc-marker",totalDownloads:7216,totalCrossrefCites:7,totalDimensionsCites:12,abstract:null,book:{id:"694",slug:"advances-in-hematopoietic-stem-cell-research",title:"Advances in Hematopoietic Stem Cell Research",fullTitle:"Advances in Hematopoietic Stem Cell Research"},signatures:"Takafumi Yokota, Kenji Oritani, Stefan Butz, Stephan Ewers, Dietmar Vestweber and Yuzuru Kanakura",authors:[{id:"91282",title:"Dr.",name:"Takafumi",middleName:null,surname:"Yokota",slug:"takafumi-yokota",fullName:"Takafumi Yokota"},{id:"97447",title:"Dr.",name:"Takao",middleName:null,surname:"Sudo",slug:"takao-sudo",fullName:"Takao Sudo"},{id:"97448",title:"Dr.",name:"Kenji",middleName:null,surname:"Oritani",slug:"kenji-oritani",fullName:"Kenji Oritani"},{id:"97450",title:"Prof.",name:"Yuzuru",middleName:null,surname:"Kanakura",slug:"yuzuru-kanakura",fullName:"Yuzuru Kanakura"}]},{id:"18217",doi:"10.5772/23755",title:"Stem Cells: General Features and Characteristics",slug:"stem-cells-general-features-and-characteristics",totalDownloads:9708,totalCrossrefCites:5,totalDimensionsCites:12,abstract:null,book:{id:"216",slug:"stem-cells-in-clinic-and-research",title:"Stem Cells in Clinic and Research",fullTitle:"Stem Cells in Clinic and Research"},signatures:"Hongxiang Hui, Yongming Tang, Min Hu and Xiaoning Zhao",authors:[{id:"53560",title:"Dr.",name:"Hongxiang",middleName:null,surname:"Hui",slug:"hongxiang-hui",fullName:"Hongxiang Hui"},{id:"59235",title:"Mr",name:"Xiaoning",middleName:null,surname:"Zhao",slug:"xiaoning-zhao",fullName:"Xiaoning Zhao"},{id:"59236",title:"Mr",name:"Yongming",middleName:null,surname:"Tang",slug:"yongming-tang",fullName:"Yongming Tang"},{id:"118970",title:"Dr.",name:"Min",middleName:null,surname:"Hu",slug:"min-hu",fullName:"Min Hu"}]}],mostDownloadedChaptersLast30Days:[{id:"18220",title:"How do Mesenchymal Stem Cells Repair?",slug:"how-do-mesenchymal-stem-cells-repair-",totalDownloads:5970,totalCrossrefCites:9,totalDimensionsCites:16,abstract:null,book:{id:"216",slug:"stem-cells-in-clinic-and-research",title:"Stem Cells in Clinic and Research",fullTitle:"Stem Cells in Clinic and Research"},signatures:"Patricia Semedo, Marina Burgos-Silva, Cassiano Donizetti-Oliveira and Niels Olsen Saraiva Camara",authors:[{id:"28751",title:"Prof.",name:"Niels",middleName:"Olsen Saraiva",surname:"Camara",slug:"niels-camara",fullName:"Niels Camara"},{id:"30464",title:"Prof.",name:"Patricia",middleName:null,surname:"Semedo",slug:"patricia-semedo",fullName:"Patricia Semedo"},{id:"30465",title:"BSc.",name:"Cassiano",middleName:null,surname:"Donizetti-Oliveira",slug:"cassiano-donizetti-oliveira",fullName:"Cassiano Donizetti-Oliveira"},{id:"30466",title:"BSc.",name:"Marina",middleName:null,surname:"Burgos-Silva",slug:"marina-burgos-silva",fullName:"Marina Burgos-Silva"}]},{id:"61053",title:"Adult Stem Cell Membrane Markers: Their Importance and Critical Role in Their Proliferation and Differentiation Potentials",slug:"adult-stem-cell-membrane-markers-their-importance-and-critical-role-in-their-proliferation-and-diffe",totalDownloads:1329,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"The stem cells are part of the cells that belong to the stromal tissue. These cells remain in a quiescent state until they are activated by different factors, usually those generated by an alteration in the parenchymal tissue. These cells have characteristic membrane markers such as CD73, CD90, and CD105. Those are a receptor, which in response to their ligand induces strong changes in different metabolic pathways that lead to these cells, both to generate molecules with different activities and to leave their stationary phase to reproduce and even differentiate. This review describes the metabolic pathways dependent on these membrane markers and how they influence on parenchymal tissue and other stromal cells.",book:{id:"6658",slug:"stromal-cells-structure-function-and-therapeutic-implications",title:"Stromal Cells",fullTitle:"Stromal Cells - Structure, Function, and Therapeutic Implications"},signatures:"Maria Teresa Gonzalez Garza",authors:[{id:"181389",title:"Ph.D.",name:"Maria Teresa",middleName:null,surname:"Gonzalez Garza",slug:"maria-teresa-gonzalez-garza",fullName:"Maria Teresa Gonzalez Garza"}]},{id:"63044",title:"Stromal-Epithelial Interactions during Mammary Gland Development",slug:"stromal-epithelial-interactions-during-mammary-gland-development",totalDownloads:1384,totalCrossrefCites:2,totalDimensionsCites:6,abstract:"Mammary gland is an organ, which undergoes the majority of its development in the postnatal life of mammals. The complex structure of the mammary gland comprises epithelial and myoepithelial cells forming the parenchymal tissue and adipocytes, fibroblasts, vascular endothelial cells, and infiltrating immune cell composing the stromal compartment. During puberty and in adulthood, circulating hormones released from the pituitary and ovaries regulate the rate of development and functional differentiation of the mammary epithelium. In addition, growing body of evidence shows that interactions between the stromal and parenchymal compartments of the mammary gland play a crucial role in mammogenesis. This regulation takes place on a paracrine level, by locally synthesized growth factors, adipokines, and cytokines, as well as via direct cell-cell interactions. This chapter summarizes the current knowledge about the complex nature of interactions between the mammary epithelium and stroma during mammary gland development in different mammalian species.",book:{id:"6658",slug:"stromal-cells-structure-function-and-therapeutic-implications",title:"Stromal Cells",fullTitle:"Stromal Cells - Structure, Function, and Therapeutic Implications"},signatures:"Żaneta Dzięgelewska and Małgorzata Gajewska",authors:[{id:"165068",title:"Dr.",name:"Malgorzata",middleName:null,surname:"Gajewska",slug:"malgorzata-gajewska",fullName:"Malgorzata Gajewska"},{id:"249847",title:"Ms.",name:"Żaneta",middleName:null,surname:"Dzięgelewska",slug:"zaneta-dziegelewska",fullName:"Żaneta Dzięgelewska"}]},{id:"69757",title:"Flow Cytometry Applied to the Diagnosis of Primary Immunodeficiencies",slug:"flow-cytometry-applied-to-the-diagnosis-of-primary-immunodeficiencies",totalDownloads:1048,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Primary immunodeficiencies are the result of biological defects associated with functional immune abnormalities. It consists of a group of disorders showing a higher incidence and severity of infections, expression of immunological dysregulation such as inflammation and lymphoproliferation. The immunophenotyping and in vitro functional characterization of immunodeficient patients contribute, together with the clinical aspects, to define the underlying immune defect particularities. Flow cytometry applications in primary immunodeficiency assessment are multiple and include the study of a wide range of specific cell lymphocyte subpopulations. This chapter describes the main techniques used in the diagnosis of a wide variety of primary immunodeficiencies, in which intracellular proteins or activation markers involved in immunity are evaluated, as well as functional proliferation, cytokine production, phosphorylation of transcription factors, cytotoxic and degranulation capacity. Flow cytometry is a tool that allows rapid and accurate evaluation of multiple lymphocyte populations and immunological function, and this information is essential for the diagnosis and evaluation of patients with primary immunodeficiencies.",book:{id:"6913",slug:"innovations-in-cell-research-and-therapy",title:"Innovations in Cell Research and Therapy",fullTitle:"Innovations in Cell Research and Therapy"},signatures:"Mónica Martínez-Gallo and Marina García-Prat",authors:[{id:"286242",title:"Ph.D.",name:"Mónica",middleName:null,surname:"Martínez Gallo",slug:"monica-martinez-gallo",fullName:"Mónica Martínez Gallo"},{id:"286704",title:"BSc.",name:"Marina",middleName:null,surname:"García-Prat",slug:"marina-garcia-prat",fullName:"Marina García-Prat"}]},{id:"50685",title:"States of Pluripotency: Naïve and Primed Pluripotent Stem Cells",slug:"states-of-pluripotency-na-ve-and-primed-pluripotent-stem-cells",totalDownloads:4015,totalCrossrefCites:4,totalDimensionsCites:12,abstract:"Pluripotent stem cells are classified into naïve and primed based on their growth characteristics in vitro and their potential to give rise to all somatic lineages and the germ line in chimeras. In this chapter, I describe the similarities and differences between the naïve and primed pluripotent states as exemplified by mouse embryonic stem cells (mESCs), mouse epiblast stem cells (mEpiSCs), human embryonic stem cells (hESCs), and human induced pluripotent stem cells (hiPSCs). I also review the efforts for derivation of naïve human pluripotent stem cells by manipulating culture conditions during reprogramming of somatic cells and attempts to revert primed hESCs to the naïve state. Understanding the requirements for induction and maintenance of the naïve pluripotent state will facilitate studies on early human embryonic development and understanding the mechanisms involved in X inactivation in vitro. In addition, the development of naïve hiPSCs will improve the efficiency of gene targeting for the purpose of modeling human diseases as well as for generating gene‐corrected autologous pluripotent stem cells for regenerative medicine.",book:{id:"5207",slug:"pluripotent-stem-cells-from-the-bench-to-the-clinic",title:"Pluripotent Stem Cells",fullTitle:"Pluripotent Stem Cells - From the Bench to the Clinic"},signatures:"Daman Kumari",authors:[{id:"180527",title:"Dr.",name:"Daman",middleName:null,surname:"Kumari",slug:"daman-kumari",fullName:"Daman Kumari"}]}],onlineFirstChaptersFilter:{topicId:"990",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:288,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"24",title:"Sustainable Development",doi:"10.5772/intechopen.100361",issn:null,scope:"
\r\n\tTransforming our World: the 2030 Agenda for Sustainable Development endorsed by United Nations and 193 Member States, came into effect on Jan 1, 2016, to guide decision making and actions to the year 2030 and beyond. Central to this Agenda are 17 Goals, 169 associated targets and over 230 indicators that are reviewed annually. The vision envisaged in the implementation of the SDGs is centered on the five Ps: People, Planet, Prosperity, Peace and Partnership. This call for renewed focused efforts ensure we have a safe and healthy planet for current and future generations.
\r\n
\r\n\t
\r\n
\r\n\tThis Series focuses on covering research and applied research involving the five Ps through the following topics:
\r\n
\r\n\t
\r\n
\r\n\t1. Sustainable Economy and Fair Society that relates to SDG 1 on No Poverty, SDG 2 on Zero Hunger, SDG 8 on Decent Work and Economic Growth, SDG 10 on Reduced Inequalities, SDG 12 on Responsible Consumption and Production, and SDG 17 Partnership for the Goals
\r\n
\r\n\t
\r\n
\r\n\t2. Health and Wellbeing focusing on SDG 3 on Good Health and Wellbeing and SDG 6 on Clean Water and Sanitation
\r\n
\r\n\t
\r\n
\r\n\t3. Inclusivity and Social Equality involving SDG 4 on Quality Education, SDG 5 on Gender Equality, and SDG 16 on Peace, Justice and Strong Institutions
\r\n
\r\n\t
\r\n
\r\n\t4. Climate Change and Environmental Sustainability comprising SDG 13 on Climate Action, SDG 14 on Life Below Water, and SDG 15 on Life on Land
\r\n
\r\n\t
\r\n
\r\n\t5. Urban Planning and Environmental Management embracing SDG 7 on Affordable Clean Energy, SDG 9 on Industry, Innovation and Infrastructure, and SDG 11 on Sustainable Cities and Communities.
\r\n
\r\n\t
\r\n
\r\n\tThe series also seeks to support the use of cross cutting SDGs, as many of the goals listed above, targets and indicators are all interconnected to impact our lives and the decisions we make on a daily basis, making them impossible to tie to a single topic.
",coverUrl:"https://cdn.intechopen.com/series/covers/24.jpg",latestPublicationDate:"May 23rd, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:0,editor:{id:"262440",title:"Prof.",name:"Usha",middleName:null,surname:"Iyer-Raniga",slug:"usha-iyer-raniga",fullName:"Usha Iyer-Raniga",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRYSXQA4/Profile_Picture_2022-02-28T13:55:36.jpeg",biography:"Usha Iyer-Raniga is a professor in the School of Property and Construction Management at RMIT University. Usha co-leads the One Planet Network’s Sustainable Buildings and Construction Programme (SBC), a United Nations 10 Year Framework of Programmes on Sustainable Consumption and Production (UN 10FYP SCP) aligned with Sustainable Development Goal 12. The work also directly impacts SDG 11 on Sustainable Cities and Communities. She completed her undergraduate degree as an architect before obtaining her Masters degree from Canada and her Doctorate in Australia. Usha has been a keynote speaker as well as an invited speaker at national and international conferences, seminars and workshops. Her teaching experience includes teaching in Asian countries. She has advised Austrade, APEC, national, state and local governments. She serves as a reviewer and a member of the scientific committee for national and international refereed journals and refereed conferences. She is on the editorial board for refereed journals and has worked on Special Issues. Usha has served and continues to serve on the Boards of several not-for-profit organisations and she has also served as panel judge for a number of awards including the Premiers Sustainability Award in Victoria and the International Green Gown Awards. Usha has published over 100 publications, including research and consulting reports. Her publications cover a wide range of scientific and technical research publications that include edited books, book chapters, refereed journals, refereed conference papers and reports for local, state and federal government clients. She has also produced podcasts for various organisations and participated in media interviews. She has received state, national and international funding worth over USD $25 million. Usha has been awarded the Quarterly Franklin Membership by London Journals Press (UK). Her biography has been included in the Marquis Who's Who in the World® 2018, 2016 (33rd Edition), along with approximately 55,000 of the most accomplished men and women from around the world, including luminaries as U.N. Secretary-General Ban Ki-moon. In 2017, Usha was awarded the Marquis Who’s Who Lifetime Achiever Award.",institutionString:null,institution:{name:"RMIT University",institutionURL:null,country:{name:"Australia"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:5,paginationItems:[{id:"91",title:"Sustainable Economy and Fair Society",coverUrl:"https://cdn.intechopen.com/series_topics/covers/91.jpg",isOpenForSubmission:!0,annualVolume:11975,editor:{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo",profilePictureURL:"https://mts.intechopen.com/storage/users/181603/images/system/181603.jpg",biography:"Antonella Petrillo is a Professor at the Department of Engineering of the University of Naples “Parthenope”, Italy. She received her Ph.D. in Mechanical Engineering from the University of Cassino. Her research interests include multi-criteria decision analysis, industrial plant, logistics, manufacturing and safety. She serves as an Associate Editor for the International Journal of the Analytic Hierarchy Process. She is a member of AHP Academy and a member of several editorial boards. She has over 160 Scientific Publications in International Journals and Conferences and she is the author of 5 books on Innovation and Decision Making in Industrial Applications and Engineering.",institutionString:null,institution:{name:"Parthenope University of Naples",institutionURL:null,country:{name:"Italy"}}},editorTwo:null,editorThree:null},{id:"92",title:"Health and Wellbeing",coverUrl:"https://cdn.intechopen.com/series_topics/covers/92.jpg",isOpenForSubmission:!0,annualVolume:11976,editor:{id:"348225",title:"Prof.",name:"Ann",middleName:null,surname:"Hemingway",slug:"ann-hemingway",fullName:"Ann Hemingway",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035LZFoQAO/Profile_Picture_2022-04-11T14:55:40.jpg",biography:"Professor Hemingway is a public health researcher, Bournemouth University, undertaking international and UK research focused on reducing inequalities in health outcomes for marginalised and excluded populations and more recently focused on equine assisted interventions.",institutionString:null,institution:{name:"Bournemouth University",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null},{id:"93",title:"Inclusivity and Social Equity",coverUrl:"https://cdn.intechopen.com/series_topics/covers/93.jpg",isOpenForSubmission:!0,annualVolume:11977,editor:{id:"210060",title:"Prof. Dr.",name:"Ebba",middleName:null,surname:"Ossiannilsson",slug:"ebba-ossiannilsson",fullName:"Ebba Ossiannilsson",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6LkBQAU/Profile_Picture_2022-02-28T13:31:48.png",biography:'Professor Dr. Ebba Ossiannilsson is an independent researcher, expert, consultant, quality auditor and influencer in the fields of open, flexible online and distance learning (OFDL) and the "new normal". Her focus is on quality, innovation, leadership, and personalised learning. She works primarily at the strategic and policy levels, both nationally and internationally, and with key international organisations. She is committed to promoting and improving OFDL in the context of SDG4 and the future of education. Ossiannilsson has more than 20 years of experience in her current field, but more than 40 years in the education sector. She works as a reviewer and expert for the European Commission and collaborates with the Joint Research Centre for Quality in Open Education. Ossiannilsson also collaborates with ITCILO and ICoBC (International Council on Badges and Credentials). She is a member of the ICDE Board of Directors and has previously served on the boards of EDEN and EUCEN. Ossiannilsson is a quality expert and reviewer for ICDE, EDEN and the EADTU. She chairs the ICDE OER Advocacy Committee and is a member of the ICDE Quality Network. She is regularly invited as a keynote speaker at conferences. She is a guest editor for several special issues and a member of the editorial board of several scientific journals. She has published more than 200 articles and is currently working on book projects in the field of OFDL. Ossiannilsson is a visiting professor at several international universities and was recently appointed Professor and Research Fellow at Victoria University of Wellington, NZ. Ossiannilsson has been awarded the following fellowships: EDEN Fellows, EDEN Council of Fellows, and Open Education Europe. She is a ICDE OER Ambassador, Open Education Europe Ambassador, GIZ Ambassador for Quality in Digital Learning, and part of the Globe-Community of Digital Learning and Champion of SPARC Europe. On a national level, she is a quality developer at the Swedish Institute for Standards (SIS) and for ISO. She is a member of the Digital Skills and Jobs Coalition Sweden and Vice President of the Swedish Association for Distance Education. She is currently working on a government initiative on quality in distance education at the National Council for Higher Education. She holds a Ph.D. from the University of Oulu, Finland.',institutionString:"Swedish Association for Distance Education, Sweden",institution:null},editorTwo:null,editorThree:null},{id:"94",title:"Climate Change and Environmental Sustainability",coverUrl:"https://cdn.intechopen.com/series_topics/covers/94.jpg",isOpenForSubmission:!1,annualVolume:null,editor:null,editorTwo:null,editorThree:null},{id:"95",title:"Urban Planning and Environmental Management",coverUrl:"https://cdn.intechopen.com/series_topics/covers/95.jpg",isOpenForSubmission:!0,annualVolume:11979,editor:{id:"181079",title:"Dr.",name:"Christoph",middleName:null,surname:"Lüthi",slug:"christoph-luthi",fullName:"Christoph Lüthi",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRHSqQAO/Profile_Picture_2022-04-12T15:51:33.png",biography:"Dr. Christoph Lüthi is an urban infrastructure planner with over 25 years of experience in planning and design of urban infrastructure in middle and low-income countries. He holds a Master’s Degree in Urban Development Planning from the University College of London (UCL), and a Ph.D. in Urban Planning & Engineering from TU Berlin. He has conducted applied research on urban planning and infrastructure issues in over 20 countries in Africa and Asia. In 2005 he joined Eawag-Sandec as Leader of the Strategic Environmental Sanitation Planning Group. Since 2015 he heads the research department Sanitation, Water and Solid Waste for Development (Sandec) at the Swiss Federal Institute of Aquatic Research and Technology (Eawag).",institutionString:"Swiss Federal Institute of Aquatic Science and Technology, Switzerland",institution:null},editorTwo:{id:"290571",title:"Dr.",name:"Rui Alexandre",middleName:null,surname:"Castanho",slug:"rui-alexandre-castanho",fullName:"Rui Alexandre Castanho",profilePictureURL:"https://mts.intechopen.com/storage/users/290571/images/system/290571.jpg",biography:"Rui Alexandre Castanho has a master\\'s degree in Planning, Audit, and Control in Urban Green Spaces and an international Ph.D. in Sustainable Planning in Borderlands. Currently, he is a professor at WSB University, Poland, and a visiting professor at the University of Johannesburg, South Africa. Dr. Castanho is a post-doc researcher on the GREAT Project, University of Azores, Ponta Delgada, Portugal. He collaborates with the Environmental Resources Analysis Research Group (ARAM), University of Extremadura (UEx), Spain; VALORIZA - Research Center for the Enhancement of Endogenous Resources, Polytechnic Institute of Portalegre (IPP), Portugal; Centre for Tourism Research, Development and Innovation (CITUR), Madeira, Portugal; and AQUAGEO Research Group, University of Campinas (UNICAMP), Brazil.",institutionString:"University of Johannesburg, South Africa and WSB University, Poland",institution:{name:"University of Johannesburg",institutionURL:null,country:{name:"South Africa"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:50,paginationItems:[{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:0,totalCrossrefCites:null,totalDimensionsCites:null,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}}]},overviewPagePublishedBooks:{paginationCount:27,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science and Technology from the Department of Chemistry, National University of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013. She relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the National Institute of Fundamental Studies from April 2013 to October 2016. She was a senior lecturer on a temporary basis at the Department of Food Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is currently Deputy Principal of the Australian College of Business and Technology – Kandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI) Ambassador to Sri Lanka.",institutionString:"Australian College of Business & Technology",institution:null}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{paginationCount:6,paginationItems:[{id:"11460",title:"Pluralistic Approaches for Conservation and Sustainability in Biodiversity",coverURL:"https://cdn.intechopen.com/books/images_new/11460.jpg",hash:"ab014f8ed1669757335225786833e9a9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 22nd 2022",isOpenForSubmission:!0,editors:[{id:"101105",title:"Dr.",name:"Gopal",surname:"Shukla",slug:"gopal-shukla",fullName:"Gopal Shukla"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11475",title:"Food Security Challenges and Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11475.jpg",hash:"090302a30e461cee643ec49675c811ec",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 5th 2022",isOpenForSubmission:!0,editors:[{id:"292145",title:"Dr.",name:"Muhammad",surname:"Haseeb Ahmad",slug:"muhammad-haseeb-ahmad",fullName:"Muhammad Haseeb Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11450",title:"Environmental Impacts of COVID-19 Pandemic on the World",coverURL:"https://cdn.intechopen.com/books/images_new/11450.jpg",hash:"a58c7b02d07903004be70f744f2e1835",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 10th 2022",isOpenForSubmission:!0,editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11477",title:"Public Economics - New Perspectives and Uncertainty",coverURL:"https://cdn.intechopen.com/books/images_new/11477.jpg",hash:"a8e6c515dc924146fbd2712eb4e7d118",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"May 27th 2022",isOpenForSubmission:!0,editors:[{id:"414400",title:"Dr.",name:"Habtamu",surname:"Alem",slug:"habtamu-alem",fullName:"Habtamu Alem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11457",title:"Forest Degradation Under Global Change",coverURL:"https://cdn.intechopen.com/books/images_new/11457.jpg",hash:"8df7150b01ae754024c65d1a62f190d9",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 1st 2022",isOpenForSubmission:!0,editors:[{id:"317087",title:"Dr.",name:"Pavel",surname:"Samec",slug:"pavel-samec",fullName:"Pavel Samec"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11474",title:"Quality of Life Interventions - Magnitude of Effect and Transferability",coverURL:"https://cdn.intechopen.com/books/images_new/11474.jpg",hash:"5a6bcdaf5ee144d043bcdab893ff9e1c",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 2nd 2022",isOpenForSubmission:!0,editors:[{id:"245319",title:"Ph.D.",name:"Sage",surname:"Arbor",slug:"sage-arbor",fullName:"Sage Arbor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:50,paginationItems:[{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:0,totalCrossrefCites:null,totalDimensionsCites:null,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81756",title:"Alteration of Cytokines Level and Oxidative Stress Parameters in COVID-19",doi:"10.5772/intechopen.104950",signatures:"Marija Petrusevska, Emilija Atanasovska, Dragica Zendelovska, Aleksandar Eftimov and Katerina Spasovska",slug:"alteration-of-cytokines-level-and-oxidative-stress-parameters-in-covid-19",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}},{id:"81681",title:"Immunomodulatory Effects of a M2-Conditioned Medium (PRS® CK STORM): Theory on the Possible Complex Mechanism of Action through Anti-Inflammatory Modulation of the TLR System and the Purinergic System",doi:"10.5772/intechopen.104486",signatures:"Juan Pedro Lapuente",slug:"immunomodulatory-effects-of-a-m2-conditioned-medium-prs-ck-storm-theory-on-the-possible-complex-mech",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81647",title:"Diabetes and Epigenetics",doi:"10.5772/intechopen.104653",signatures:"Rasha A. Alhazzaa, Thomas Heinbockel and Antonei B. Csoka",slug:"diabetes-and-epigenetics",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"81580",title:"Graft-Versus-Host Disease: Pathogenesis and Treatment",doi:"10.5772/intechopen.104450",signatures:"Shin Mukai",slug:"graft-versus-host-disease-pathogenesis-and-treatment",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81533",title:"Prenylation of Natural Products: An Overview",doi:"10.5772/intechopen.104636",signatures:"Kantharaju Kamanna and Aravind Kamath",slug:"prenylation-of-natural-products-an-overview",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Kantharaju",surname:"Kamanna"}],book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}},{id:"81067",title:"Encapsulation of Essential Oils and Their Use in Food Applications",doi:"10.5772/intechopen.103147",signatures:"Hamdy A. Shaaban and Amr Farouk",slug:"encapsulation-of-essential-oils-and-their-use-in-food-applications",totalDownloads:50,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}}]},subseriesFiltersForOFChapters:[{caption:"Proteomics",value:18,count:3,group:"subseries"},{caption:"Metabolism",value:17,count:10,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:17,group:"subseries"},{caption:"Chemical Biology",value:15,count:19,group:"subseries"}],publishedBooks:{paginationCount:27,paginationItems:[{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",slug:"reactive-oxygen-species",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Rizwan Ahmad",hash:"176adcf090fdd1f93cb8ce3146e79ca1",volumeInSeries:28,fullTitle:"Reactive Oxygen Species",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",publishedDate:"March 23rd 2022",editedByType:"Edited by",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",hash:"8b43add5389ba85743e0a9491e4b9943",volumeInSeries:27,fullTitle:"Vitamin K - Recent Topics on the Biology and Chemistry",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9659",title:"Fibroblasts",subtitle:"Advances in Inflammation, Autoimmunity and Cancer",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",slug:"fibroblasts-advances-in-inflammation-autoimmunity-and-cancer",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Mojca Frank Bertoncelj and Katja Lakota",hash:"926fa6446f6befbd363fc74971a56de2",volumeInSeries:25,fullTitle:"Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer",editors:[{id:"328755",title:"Ph.D.",name:"Mojca",middleName:null,surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj",profilePictureURL:"https://mts.intechopen.com/storage/users/328755/images/system/328755.jpg",institutionString:"BioMed X Institute",institution:{name:"University Hospital of Zurich",institutionURL:null,country:{name:"Switzerland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8018",title:"Extracellular Matrix",subtitle:"Developments and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/8018.jpg",slug:"extracellular-matrix-developments-and-therapeutics",publishedDate:"October 27th 2021",editedByType:"Edited by",bookSignature:"Rama Sashank Madhurapantula, Joseph Orgel P.R.O. and Zvi Loewy",hash:"c85e82851e80b40282ff9be99ddf2046",volumeInSeries:23,fullTitle:"Extracellular Matrix - Developments and Therapeutics",editors:[{id:"212416",title:"Dr.",name:"Rama Sashank",middleName:null,surname:"Madhurapantula",slug:"rama-sashank-madhurapantula",fullName:"Rama Sashank Madhurapantula",profilePictureURL:"https://mts.intechopen.com/storage/users/212416/images/system/212416.jpg",institutionString:"Illinois Institute of Technology",institution:{name:"Illinois Institute of Technology",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9759",title:"Vitamin E in Health and Disease",subtitle:"Interactions, Diseases and Health Aspects",coverURL:"https://cdn.intechopen.com/books/images_new/9759.jpg",slug:"vitamin-e-in-health-and-disease-interactions-diseases-and-health-aspects",publishedDate:"October 6th 2021",editedByType:"Edited by",bookSignature:"Pınar Erkekoglu and Júlia Scherer Santos",hash:"6c3ddcc13626110de289b57f2516ac8f",volumeInSeries:22,fullTitle:"Vitamin E in Health and Disease - Interactions, Diseases and Health Aspects",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoğlu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoğlu",profilePictureURL:"https://mts.intechopen.com/storage/users/109978/images/system/109978.jpg",institutionString:"Hacettepe University",institution:{name:"Hacettepe University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9753",title:"Terpenes and Terpenoids",subtitle:"Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/9753.jpg",slug:"terpenes-and-terpenoids-recent-advances",publishedDate:"July 28th 2021",editedByType:"Edited by",bookSignature:"Shagufta Perveen and Areej Mohammad Al-Taweel",hash:"575689df13c78bf0e6c1be40804cd010",volumeInSeries:21,fullTitle:"Terpenes and Terpenoids - Recent Advances",editors:[{id:"192992",title:"Prof.",name:"Shagufta",middleName:null,surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen",profilePictureURL:"https://mts.intechopen.com/storage/users/192992/images/system/192992.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9403",title:"Human Microbiome",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9403.jpg",slug:"human-microbiome",publishedDate:"June 16th 2021",editedByType:"Edited by",bookSignature:"Natalia V. Beloborodova and Andrey V. Grechko",hash:"c31366ba82585ba3ac91d21eb1cf0a4d",volumeInSeries:20,fullTitle:"Human Microbiome",editors:[{id:"199461",title:"Prof.",name:"Natalia V.",middleName:null,surname:"Beloborodova",slug:"natalia-v.-beloborodova",fullName:"Natalia V. Beloborodova",profilePictureURL:"https://mts.intechopen.com/storage/users/199461/images/system/199461.jpg",institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",slug:"oxidoreductase",publishedDate:"February 17th 2021",editedByType:"Edited by",bookSignature:"Mahmoud Ahmed Mansour",hash:"852e6f862c85fc3adecdbaf822e64e6e",volumeInSeries:19,fullTitle:"Oxidoreductase",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour",profilePictureURL:"https://mts.intechopen.com/storage/users/224662/images/system/224662.jpg",institutionString:"King Saud bin Abdulaziz University for Health Sciences",institution:{name:"King Saud bin Abdulaziz University for Health Sciences",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9742",title:"Ubiquitin",subtitle:"Proteasome Pathway",coverURL:"https://cdn.intechopen.com/books/images_new/9742.jpg",slug:"ubiquitin-proteasome-pathway",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"af6880d3a5571da1377ac8f6373b9e82",volumeInSeries:18,fullTitle:"Ubiquitin - Proteasome Pathway",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9002",title:"Glutathione System and Oxidative Stress in Health and Disease",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9002.jpg",slug:"glutathione-system-and-oxidative-stress-in-health-and-disease",publishedDate:"August 26th 2020",editedByType:"Edited by",bookSignature:"Margarete Dulce Bagatini",hash:"127defed0a50ad5ed92338dc96e1e10e",volumeInSeries:17,fullTitle:"Glutathione System and Oxidative Stress in Health and Disease",editors:[{id:"217850",title:"Dr.",name:"Margarete Dulce",middleName:null,surname:"Bagatini",slug:"margarete-dulce-bagatini",fullName:"Margarete Dulce Bagatini",profilePictureURL:"https://mts.intechopen.com/storage/users/217850/images/system/217850.jpeg",institutionString:"Universidade Federal da Fronteira Sul",institution:{name:"Universidade Federal da Fronteira Sul",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Proteomics",value:18,count:3},{group:"subseries",caption:"Metabolism",value:17,count:6},{group:"subseries",caption:"Cell and Molecular Biology",value:14,count:8},{group:"subseries",caption:"Chemical Biology",value:15,count:10}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:3},{group:"publicationYear",caption:"2021",value:2021,count:7},{group:"publicationYear",caption:"2020",value:2020,count:12},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:2}],authors:{}},subseries:{item:{id:"23",type:"subseries",title:"Computational Neuroscience",keywords:"Single-Neuron Modeling, Sensory Processing, Motor Control, Memory and Synaptic Pasticity, Attention, Identification, Categorization, Discrimination, Learning, Development, Axonal Patterning and Guidance, Neural Architecture, Behaviours and Dynamics of Networks, Cognition and the Neuroscientific Basis of Consciousness",scope:"Computational neuroscience focuses on biologically realistic abstractions and models validated and solved through computational simulations to understand principles for the development, structure, physiology, and ability of the nervous system. This topic is dedicated to biologically plausible descriptions and computational models - at various abstraction levels - of neurons and neural systems. This includes, but is not limited to: single-neuron modeling, sensory processing, motor control, memory, and synaptic plasticity, attention, identification, categorization, discrimination, learning, development, axonal patterning, guidance, neural architecture, behaviors, and dynamics of networks, cognition and the neuroscientific basis of consciousness. Particularly interesting are models of various types of more compound functions and abilities, various and more general fundamental principles (e.g., regarding architecture, organization, learning, development, etc.) found at various spatial and temporal levels.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",hasOnlineFirst:!1,hasPublishedBooks:!0,annualVolume:11419,editor:{id:"14004",title:"Dr.",name:"Magnus",middleName:null,surname:"Johnsson",slug:"magnus-johnsson",fullName:"Magnus Johnsson",profilePictureURL:"https://mts.intechopen.com/storage/users/14004/images/system/14004.png",biography:"Dr Magnus Johnsson is a cross-disciplinary scientist, lecturer, scientific editor and AI/machine learning consultant from Sweden. \n\nHe is currently at Malmö University in Sweden, but also held positions at Lund University in Sweden and at Moscow Engineering Physics Institute. \nHe holds editorial positions at several international scientific journals and has served as a scientific editor for books and special journal issues. \nHis research interests are wide and include, but are not limited to, autonomous systems, computer modeling, artificial neural networks, artificial intelligence, cognitive neuroscience, cognitive robotics, cognitive architectures, cognitive aids and the philosophy of mind. \n\nDr. Johnsson has experience from working in the industry and he has a keen interest in the application of neural networks and artificial intelligence to fields like industry, finance, and medicine. \n\nWeb page: www.magnusjohnsson.se",institutionString:null,institution:{name:"Malmö University",institutionURL:null,country:{name:"Sweden"}}},editorTwo:null,editorThree:null,series:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403"},editorialBoard:[{id:"13818",title:"Dr.",name:"Asim",middleName:null,surname:"Bhatti",slug:"asim-bhatti",fullName:"Asim Bhatti",profilePictureURL:"https://mts.intechopen.com/storage/users/13818/images/system/13818.jpg",institutionString:null,institution:{name:"Deakin University",institutionURL:null,country:{name:"Australia"}}},{id:"151889",title:"Dr.",name:"Joao Luis Garcia",middleName:null,surname:"Rosa",slug:"joao-luis-garcia-rosa",fullName:"Joao Luis Garcia Rosa",profilePictureURL:"https://mts.intechopen.com/storage/users/151889/images/4861_n.jpg",institutionString:null,institution:{name:"University of Sao Paulo",institutionURL:null,country:{name:"Brazil"}}},{id:"103779",title:"Prof.",name:"Yalcin",middleName:null,surname:"Isler",slug:"yalcin-isler",fullName:"Yalcin Isler",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRyQ8QAK/Profile_Picture_1628834958734",institutionString:null,institution:{name:"Izmir Kâtip Çelebi University",institutionURL:null,country:{name:"Turkey"}}}]},onlineFirstChapters:{paginationCount:1,paginationItems:[{id:"78849",title:"Application of Vermicompost Fertilizer in Aquaculture Nutrition: Review",doi:"10.5772/intechopen.100326",signatures:"Sonnia Nzilani Musyoka and Rita Nairuti",slug:"application-of-vermicompost-fertilizer-in-aquaculture-nutrition-review",totalDownloads:67,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Nutrition - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11416.jpg",subseries:{id:"20",title:"Animal Nutrition"}}}]},publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",slug:"brain-computer-interface",publishedDate:"May 18th 2022",editedByType:"Edited by",bookSignature:"Vahid Asadpour",hash:"a5308884068cc53ed31c6baba756857f",volumeInSeries:9,fullTitle:"Brain-Computer Interface",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour",profilePictureURL:"https://mts.intechopen.com/storage/users/165328/images/system/165328.jpg",institutionString:"Kaiser Permanente Southern California",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/88525",hash:"",query:{},params:{id:"88525"},fullPath:"/profiles/88525",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()