Trace elements statistics for the first 6 months sampling, for PM2.5
\r\n\t
",isbn:"978-1-80356-345-9",printIsbn:"978-1-80356-344-2",pdfIsbn:"978-1-80356-346-6",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,isSalesforceBook:!1,hash:"37f858c8b681abe60704245c7a1e89ee",bookSignature:"Prof. Hideki Nakano",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11832.jpg",keywords:"Basic Research, Fundamental Theory, Animal Study, Human Study, Applied Research, Clinical Application, Clinical Study, Translational Research, Advanced Technology, Robotics, Regenerative Medicine, Deep Learning",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 17th 2022",dateEndSecondStepPublish:"March 17th 2022",dateEndThirdStepPublish:"May 16th 2022",dateEndFourthStepPublish:"August 4th 2022",dateEndFifthStepPublish:"October 3rd 2022",remainingDaysToSecondStep:"2 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Dr. Nakano is a pioneering researcher in neurorehabilitation and physical therapy. He has research training experience as a JSPS Research Fellow at Neurorehabilitation Research Center, Kio University, Japan, and Queensland Brain Institute, University of Queensland, Australia. Dr. Nakano has received 13 awards from academic organizations, has authored more than 120 journal papers and 10 book chapters, and was the editor member of 7 academic journals.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano",profilePictureURL:"https://mts.intechopen.com/storage/users/196461/images/system/196461.jpg",biography:"Dr. Hideki Nakano is a physical therapist and associate professor at the Neurorehabilitation Laboratory, Graduate School of Health Sciences, Kyoto Tachibana University, Japan. He received his Ph.D. in Health Science from Kio University, Japan, and has accepted research training experience as a JSPS Research Fellow at Neurorehabilitation Research Center, Kio University, Japan, and Queensland Brain Institute, University of Queensland, Australia. He specializes in neuroscience, neurophysiology, and rehabilitation science and conducts research using non-invasive brain function measurement and brain stimulation methods such as electroencephalography, transcranial magnetic stimulation, and transcranial electrical stimulation. His current main research interest is developing rehabilitation evaluation and treatment methods using visualization and manipulation methods of brain functions for healthy, elderly, and diseased patients.",institutionString:"Kyoto Tachibana University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Kyoto Tachibana University",institutionURL:null,country:{name:"Japan"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"444318",firstName:"Nika",lastName:"Karamatic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/444318/images/20011_n.jpg",email:"nika@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editedByType:"Edited by",editors:[{id:"196461",title:"Prof.",name:"Hideki",surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9500",title:"Recent Advances in Bone Tumours and Osteoarthritis",subtitle:null,isOpenForSubmission:!1,hash:"ea4ec0d6ee01b88e264178886e3210ed",slug:"recent-advances-in-bone-tumours-and-osteoarthritis",bookSignature:"Hiran Amarasekera",coverURL:"https://cdn.intechopen.com/books/images_new/9500.jpg",editedByType:"Edited by",editors:[{id:"67634",title:"Dr.",name:"Hiran",surname:"Amarasekera",slug:"hiran-amarasekera",fullName:"Hiran Amarasekera"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"45145",title:"Air Pollution from Space",doi:"10.5772/39310",slug:"air-pollution-from-space",body:'The South Eastern Mediterranean region is an atmospheric cross road where aerosols of different origins can be observed. Atmospheric pollution due to particulate matter from natural and anthropogenic sources is a continuing problem in many areas of Cyprus. Particulate matter (PM) is a major component of urban air pollution and has a significant effect on human health. High quality PM monitoring with a fine spatial and temporal resolution may help decision makers to assess the efficiency of control strategies and also may be useful for informing the general public about air pollution levels and hazards. The AIRSPACE research project was established with the main aim of combining remote sensing data (mainly MODIS) with concurrent in-situ observations (sunphotometric, LIDAR and ground level PM measurements) for monitoring air pollution in an integrated manner. AIRSPACE aims to develop a novel methodology based on in-situ experimental observations in order to use satellite retrieval as a tool for monitoring air particulate pollution. This methodology was applied in Cyprus with an emphasis on urban areas and, to a lesser extent, industrial regions. Observations from passive and active ground-based and satellite techniques for Aerosol Optical Thickness (AOT) retrieval, in combination with PM10 and PM2.5 concentrations at sites near different PM sources, have been considered. Several factors, such as aerosol vertical distribution, that affect the relationship between PM ground measurements and AOT, were considered. Data sets from three types of sites (urban, near urban and rural) were used to develop a statistical model for the estimating PM mass concentrations using AOT measured from remote sensing techniques and meteorological parameters. Furthermore, the ground truth observations collected within AIRSPACE project were used to assess qualitative and quantitative performance of a chemical model forecast of PM concentrations throughout Cyprus.
Midletton et al. (2008) reported that in Nicosia, Cyprus for every 10-μg/m3 increase in PM10 daily average concentrations there was a 0.9% (95%CI: 0.6%, 1.2%) increase in all-cause and 1.2% (95%CI: -0.0%, 2.4%) increase in cardiovascular admissions. A recent study regarding dust storm events in Nicosia, Cyprus, found a 2.43% (95% CI: 0.53, 4.37) increase in daily cardiovascular mortality associated with each 10-μg/m3 increase in PM10 concentrations on dust days in comparison with non-dust days (Neophytou et al., 2013).
Air pollution in large cities is one of the major issues to be addressed by local and global communities due to its widespread presence, and deleterious impact on human life (Hadjimitsis, 2009). As air pollution is a major environmental health risk, by reducing the levels of air pollutants, countries will reduce the incidence of disease from respiratory infections, heart disease and lung cancer (WHO, 2011). Actions by policy makers and public authorities at the national, regional and international levels are required in order to control the exposure to air pollutants (EEA, Air Quality in Europe, 2012 - Report). Transboundary domestic air pollution is of high concern among the EU member states. In 2010, about 21% of the EU urban population was exposed to concentrations of PM10 above the limit value established by the European Environmental Agency (EEA, Air Quality in Europe, 2012 - Report). The WHO, USEPA (U.S. Environmental Protection Agency) and EEA have established an extensive body of legislation which establishes standards and objectives for a number of air pollutants such as PM10 (coarse particles), PM2.5 (fine particles) and O3 (WHO, Fact sheet No 313, 2011; USEPA, NAAQS, 2012; EEA, AAS, 2012).
Current research focused on the study of regional and intercontinental transport of air pollutants, such as particulate matter (PM10, 2.5), points to a need for additional data sources to monitor air pollution in multiple dimensions, both spatially and temporally. To address this issue, earth observations from satellite sensors can be a valuable tool for monitoring air pollution due to their ability to provide complete and synoptic views of large areas.
Although air quality monitoring stations have been established in major cities, there is an increased need to establish mobile stations for additional coverage, as such stations provide a means for alerting the public regarding air quality. However, measuring stations are localised and do not provide sufficient geographic coverage, since air quality is highly variable spatially. The use of earth observations to monitor air pollution in different geographical areas, especially cities, has received considerable attention from researchers (see Wald et al., 1999; Grosso and Paronis, 2012; Hadjimitsis, 2009; Hadjimitsis et al., 2010; Jones and Christopher, 2007; Michaelides et al., 2011; Nisantzi et al., 2012; Retalis and Sifakis, 2010; Retalis et al., 2003; Retalis et al., 1999; Vidot et al., 2007). Several researchers (Chudnovsky et al., 2013; Gupta et al., 2006; Koelemeijer et al., 2006; van Donkelaar et al., 2010) have focused on the use of satellite sensors on air pollution studies, especially their ability for systematic monitoring and synoptic coverage. The use of sunphotometers and LIDAR systems are found to be suitable tools for assisting the air pollution monitoring studies (Ansmann et al., 2012; Amiridis et al., 2008; Engel-Cox et al., 2006; Papayannis et al., 2007a,b; Pitari et al., 2013). This study presents the integrated use of satellite remote sensing, sunphotometers and LIDAR for monitoring air pollution in Cyprus.
At the main study site in Limassol, the sunphotometer observations were performed by a CIMEL sun-sky radiometer, which is part of the AERONET Global Network (http://aeronet.gsfc.nasa.gov). The CIMEL sunphotometer allows for measurements of direct solar irradiance and sky radiance at 8 wavelengths; 340, 380, 440, 500, 670, 870, 1020 and 1640 nm. The technical specifications of the instrument are given in detail by Holben et al. (1998).
CUT-TEPAK AERONET station
The instrument is located on the roof of the building of the Department of Civil Engineering and Geomatics of Cyprus University of Technology (CUT) (34.675ºN, 33.043ºE elevation: 10 m). The CUT_TEPAK AERONET station is located in the center of Limassol, 500m away from the sea. The sunphotometric station has been in operation since April 2010. Figure 1 features the CUT-TEPAK AERONET Cimel sun-photometer.
At the study sites in Nicosia, Larnaka and Paphos where CIMEL’s data were not available a handheld MICROTOPS II sunphotometer was used in order to retrieve AOT measurements. The sun-photometer is equipped with five accurately aligned optical collimators and internal baffles to eliminate internal reflections. Microtops II provides AOT and water vapor retrievals at five channels, which are determined using the Bouguer-Lambert-Beer law. In order to achieve measurements with great accuracy, the sunphotometer was mounted on a tripod at the same location each time. To avoid cloud contamination, measurements were taken during cloud-free daylight hours. Figure 2 shows the MICROTOPS II handheld sunphotometer used.
MICROTOPS II handheld sunphotometer
For the vertical distribution of aerosols, the LIDAR system located at CUT, in Limassol, Cyprus (34.675ºN, 33.043ºE, 10 m above sea level) was used. The LIDAR records daily measurements between 08:00 UTC and 09:00 UTC (consistent with MODIS overpass) and provides continuous measurements for the retrieval of the aerosol optical properties over Limassol, Cyprus inside the Planetary Boundary Layer (PBL) and the lower free troposphere, thus providing information for the load, the size and the sphericity of the aerosols.
The LIDAR transmits laser pulses at 532 and 1064 nm simultaneously and collinear with a repetition rate of 20 Hz. This system is based on a small, rugged, flashlamp-pumped Nd-YAG laser with pulse energies around 25 and 56 mJ at 1064 and 532 nm, respectively. An achromatic beam expander reduces the divergence to less than 0.15 mrad. Elastically backscatter signals at two wavelengths (532nm, 1064nm) are collected with a Newtonian telescope with primary mirror diameter of 200 mm and an overall focal length of 1000 mm. The field of view (FOV) of the telescope is 2 mrad. The mirror and cover plate coatings are optimized for the wavelength range from 532 nm to 1064 nm. A plain cover plate protects the mirrors. Behind the field stop two plano-convex with a focal length of 80 mm output parallel rays. The LIDAR covers the whole range starting at the full overlap of the LIDAR (~300 m) up to tropopause level. Three channels are detected, one for the wavelength 1064 nm and two for 532 nm. The two polarization components at 532nm are separated in the receiver by means of polarizing beamsplitter cubes (PBC). A special optomechanical design allows the manual ±45°-rotation of the whole depolarization detector module with respect to the laser polarization for evaluating the depolarization calibration constant of the system. The CUT depolarization LIDAR operates at 532nm and it is possible to rotate the detection box including the polarization beam-splitter cube in order to calibrate the instrument (Freudenthaler et al., 2009). Firstly, the backscattered LIDAR signals (P and S) were recorded using the normal orientation of the LIDAR detection box. For the next two steps, the LIDAR detection box is rotated by ±45º, and the P and S signals are recorded. The operation principal of this method is based on the fact that same amount of energy is sent to P and S channels, at “opposite” directions (Freudenthaler et al., 2009). Photomultiplier tubes (PMTs) are used as detectors at all wavelengths except for the signals at 1064 nm (avalanche photodiode, APD). A transient recorder that combines a powerful A/D converter (12 bit at 20 MHz) with a 250 MHz fast photon counting system (Licel, Berlin) is used for the detection of 532 nm radiation, while only analog detection is used at 1064nm. The raw signal spatial resolution is 7.5 meters. The CUT LIDAR system is featured in Figure 3.
CUT’s Depolarization Lidar System
Two approached were used to monitor near-surface levels of particulate matter. DustTrack monitors were used at all sites to provide continuous monitoring of PM10. Harvard Impactors were used to collect 24 hour samples of PM10 and PM2.5 which could be analyzed for mass, elemental composition, and other physical-chemical properties of the aerosol. The surface monitoring of particulate matter (PM) concentrations, The DustTrack (TSI, Model 8533) monitors were located in each of the four sampling sites and were selected to provide weekly monitoring of PM10 concentrations during morning hours from 08:00 to 13:00 UTC. It records the PM temporal variability with satisfactory time resolution. DustTrak\'s nominal flow rate of 1.7 l/min is obtained by an internal pump integral to the sampler. The monitor is factory calibrated for the respirable fraction of standard ISO12103-1, A1 test dust (Arizona Test Dust), which is representative of a wide variety of aerosols. It measures concentrations in the range of 0.001– 100 mg/m3, with a resolution of 0.1% of the reading or 0.001 mg/m3. Before each measurement, the instrument is zeroed and its flow rate is checked. PM10 concentrations have been recorded continuously since March 2011. The instrument is located, on the roof of the Cyprus International Institute (CII) in Limassol, at 10 m above ground level in order to avoid the measurements being affected by localized pollution such as passing cars. PM10 concentrations were also recorded by DustTrak (TSI, Model 8520) at Nicosia, Larnaca and Paphos. One TSI DustTrack has been operated by Frederick University since July 2011 and is located at the top of the Frederick University library building in Nicosia, at 10 m above ground level. The second DustTrack has been operated by CUT’s scientific team during 15-day campaigns at Larnaca and Paphos. All sampling points were selected to ensure exposure to wind and to be free of other obstacles. Figure 4 features the TSI Dust Trak. Harvard Impactors were operated each third day at the primary sampling site in Limassol and every sixth day at the other sampling sites.
TSI DUST-Track
Under the AIRSPACE project, the Harvard School of Public Health (HSPH) and Cyprus International Institute for Environmental and Public Health (CII) were responsible for providing comprehensive and reliable data on the air pollution throughout Cyprus based on ground level measurements.
Air pollution near ground level measurement sites were established in the four cities of Cyprus: Nicosia, Larnaca, Limassol and Paphos. These sites were located at positions thought to be representative of air pollution in each city. In Nicosia, the site is located on the roof of the Frederick University library building, on the same site where the DustTrak and sunphotometer were operated. The Larnaca site is located in the center of the city, on the roof of the tax agency building. The Limassol site is located on the roof of the CII building in the center of the city and Paphos site is on the roof of the economics department of Paphos Municipality. In Figure 5 the setup of the Harvard samplers is presented.
Harvard Samplers
The Moderate Resolution Imaging Spectro-Radiometer (MODIS) observations from the TERRA and AQUA satellites both measuring spectral radiance in 36 channels (412–14200 nm), in with resolutions between 250 m and 1 km (at nadir) were used to provide a climatology for Cyprus. In polar orbit, approximately 700 km above the Earth, MODIS views a swath of approximately 2300 km resulting in near daily global coverage of Earth’s land/ocean/atmosphere system. The swath is broken into 5-min ‘‘granules’’, each approximately 2,030 km long. Aerosol products are reported at 10 km resolution (at nadir). Details of file specification of MODIS L2 aerosol products can be found at the website http://modis.gsfc.nasa.gov/.
MODIS image for Eastern Mediterranean region
Overall Methodology of the Airspace project
The overall methodology is described below (see Fig. 7):
An overview of the available instrumentations at the selected sites is given in Figure 8.
Overview of the available instrumentations at the selected sites within AIRSPACE project. Limassol was the main site (LIDAR, AERONET, PM), Nicosia validation site (MicrotopsII, PM); 15-day campaigns were conducted at Larnaca and Paphos.
Meteorological conditions: Cyprus is characterized by a subtropical - Mediterranean climate with very mild winters (mainly in the coastal areas) and hot summers. Snowfall occurs mainly in the Troodos Mountains in the centre of the island. Rain occurs mostly during the winter period, with summer being generally dry. Temperature and rainfall are both correlated with altitude and, to a lesser extent, distance from the coast. The prevailing weather conditions on the island are hot, dry summers (from mid-May to mid-September) and rainy, rather changeable winters (from November to mid-March). These are separated by short autumn and spring seasons.
During the summer period (a season of high temperatures with almost cloudless skies), the island is often under the influence of a shallow trough of low pressure extending from the great continental depression centred over Western Asia. During winter, Cyprus is mainly affected by frequent small depressions traversing the Mediterranean Sea from west to east between the continental anticyclone of Eurasia and the generally low pressure belt of North Africa. These depressions result in disturbed weather usually lasting no more than a few days and producing most of the annual precipitation (the average rainfall from December to February is typically about 60% of the average annual total precipitation). Relative humidity averages between 60% and 80% during the winter period and between 40% and 60% during the summer period. Fog is infrequent and visibility is generally very good. Sunshine is abundant all year round, particularly from April to September when the average duration of bright sunshine exceeds 11 hours per day. Winds are generally light to moderate with high variability when it comes to direction. Gales are infrequent over Cyprus and are mainly confined to exposed coastal areas as well as areas at high elevation.
Aerosol sources: Two main types of air pollutant sources can be identified: anthropogenic and natural. Notable natural sources include dust from inland wind erosion, transboundary sources and sea salt. Cyprus’ arid climate results in large portions of surface area having very low index of vegetative cover. This, combined with very low levels of moisture for a substantial part of the year, results in the overall vulnerability to wind erosion. Furthermore, Cyprus presents a high ratio of shoreline when compared to surface area, with maximum distances inland from the shore being in the order of 30-40 km and three of the four urban centres located on the coast. Therefore, sea salt can have a significant effect on the concentrations of particulates in the majority of the island’s area. Finally, the transportation of dust from the surrounding eastern Mediterranean and African areas (most notably from northern Africa) significantly affects air quality (Nisantzi et al, 2012).
Local anthropogenic sources also contribute to PM concentrations on the island. The main anthropogenic PM sources include traffic (both highways and inner city traffic), industrial zones, urban agglomerations, agriculture, mines and quarries and localized emissions from a series of activities such as power stations and cement factories.
For the purposes of the project, Limassol was selected as the main ground based site for the development and the application of the AIRSPACE methodology. The main instrumentation used for the aerosol observation in a daily basis was a backscatter-depolarization LIDAR system for the study of the vertical aerosol distribution as well as the sunphotometer for the columnar aerosol information, both located at the premises of CUT, in Limassol (see Figure 9) (34.675ºN, 33.043ºE, 10m above sea level), since 2010. The LIDAR records daily measurements between 08:00 UTC and 09:00 UTC (consistent with the MODIS overpass) and performs continuous measurements for the retrieval of the aerosol optical properties such as depolarization ratio and backscatter coefficient over Limassol, inside the Planetary Boundary Layer (PBL) and the lower free troposphere. Additionally, the AERONET sun-photometer provides daily aerosol information including AOT and aerosol size distribution.
Satellite image of Limassol
For the purposes of the AIRSPACE project, Nicosia was selected as a validation site (in addition to the Limassol main site), for ground based measurements of PM10 and AOT. Two locations in Nicosia were used as test sites: Strovolos municipality building (N35.144°, 33.343° E) during the period September 2011 to December 2011 and Pallouriotissa Frederick University Research Centre building (N35.181°, 33.379° E) during the period February 2012 to June 2012 and the period October 2012 to January 2012. The Strovolos area is mainly commercial with heavy traffic at peak hours while the Pallouriotissa site is residential.
For both sites, a TSI Dust Trak model 8520 was used for measuring the mass concentration of particulate matter of diameter less than 10 micrometers (PM10). The Dust Trak is a light scattering laser photometer which determines PM10 concentrations by measuring the amount of scattering light, which is proportional to the volume concentration of aerosols, in order to determine the mass concentration of aerosols (Nisantzi et al., 2012). The Dust Track features an integrated pump, internal memory and data-logger for automatic storage of measured values at programmable intervals. The device was programmed to begin PM10 recordings every morning at 08:00 UTC for a 5-hour period to coincide with the satellite MODIS TERRA and AQUA overpass except at weekends.
Adjacent to the Dust Trak, a Microtops II model 540 sunphotometer was set up to measure the AOT. This is a 5-channel hand-held sunphotometer which measures and stores data at 5 different wavelengths. In addition to the Dust Track and the sunphotometer which were set up originally at the Strovolos site and then moved to the Pallouriotissa site, the Harvard Impactors were operated at the Pallouriotissa site only (next to the other two devices) for chemical analysis of PM10, PM2.5, EC-OC and nitrate concentrations.
The in-situ data were collected in conjunction with satellite data (MODIS) to validate a novel statistical model developed within AIRSPACE using AOT retrievals to estimate air particulate pollution.
For Larnaka, two sets of measurements took place: one using the Dust Track along with the Sun photometer for a period of three weeks in August of 2011 (8th-26th) on a site at the centre of Larnaka city (34.916° N, 33.630° E), for the first set of measurements: PM10 recordings every morning at 08:00 UTC for a 5-hour period and subsequent measurements using the MICROTOPS sun photometer at 08:00 UTC and at 11:00 UTC to coincide with the MODIS TERRA and AQUA overpasses. A second set of measurements was provided by the Harvard Impactor situated on top of the tax agency building (34.919° N, 33.631° E) in Larnaka. This station provided measurements of PM10, PM2.5, EC-OC (elemental & organic carbon) and nitrate concentrations.
For air pollution ground level measurements, the Harvard Impactor stations were established by HSPH and CII: Limassol, Nicosia, Larnaca and Paphos. The sampling commenced on 12 January 2012 and ended on 12 January 2013. Samples were collected every six days, on 24-hr basis from 08:00 to 08:00 next day (UTC), at all sites except Limassol, where the sample collection was done every three days. Samples were collected for PM2.5, PM10, EC-OC and nitrates using the Harvard Impactors. For quality assurance and control, collocated and blank samples were collected for each sample at the Limassol site, according to a predetermined schedule. Standard Operating Procedure (SOP) was followed for each measurement at each site. Filters were collected and sent to HSPH for chemical analysis. The parameters measured included fine particles (PM2.5): mass, reflectance, nitrate, trace elements and EC-OC; and inhalable particle (PM10): mass, reflectance and trace elements. Chemical analysis included Thermal Optical Transmitance (TOT) to measure EC-OC particle concentration, gravimetric mass determination and X-Ray fluorescence to determine trace elemental composition of PM2.5 and PM10. Samples up to 19 June 2012 have been completely analyzed. The remaining samples have undergone chemical process for analysis.
As described previously, Limassol was the main site for the development of the AIRSPACE methodology for the estimation of the PM levels. The ground based data were used to validate the satellite data. Complementary to the Limassol site, Nicosia’s and Larnaca\'s site observations were used to validate the performance of the models. In this section, the major results from the AIRSPACE project are analysed in some detail.
In the AIRSPACE project, both ground based and satellite observations were used to provide aerosol related information for South Eastern Mediterranean region. The first goal of the AIRSPACE project was the validation of the satellite observations in Cyprus, an area affected by aerosol from a variety of sources and surrounded by sea. The ground based observations performed over Limassol and Nicosia were used as the main sites for the validation of the satellite observations.
To incorporate both the spatial and temporal variability of aerosol distribution, the MODIS retrievals at 10 km x 10 km resolution and the AERONET direct Sun measurements at 15-minute intervals (Holben et al., 1998) need to be co-located in space and time.
The AERONET data provide the ground truth for the MODIS validation. The global CUT-TEPAK ground-based AERONET sunphotometer measures aerosol optical thickness in eight channels (340 to 1640 nm). The instrument takes measurements every 15 minutes. From the observations taken within ±30 minutes of MODIS overpass time (Ichoku et al., 2002), mean values of the optical parameters were calculated. Therefore, the maximum number of AERONET observations within the hour of an overpass is 5. Fewer observations within the hour indicate data have been removed by the AERONET Run-Time Cloud Checking procedure.
The study required at least 2 out of possible 5 AERONET measurements to be within ±30 min of MODIS overpasses and at least 5 out of possible 25 MODIS retrievals to be within a 25 km radius centred over the AERONET site. The mean values of the collocated spatial and temporal ensemble were then used in a linear regression analysis and in calculating RMS errors. The AERONET level 1.5 data were cloud screened. Though the level 2.0 data provide final calibration, they are not available for the entire time period of the project. Therefore, the level 1.5 data (instead of level 2.0) were used in the operational MODIS aerosol validation scheme.
A total of 352 points of AERONET site representing the correlated criteria for the MODIS- and AERONET derived AOT were collected in the period from April 2010 to December 2012.
Figure 10 features the correlation of the MODIS AQUA and TERRA sensors and CUT_TEPAK AERONET measurements. The slope of linear regression in the correlation plot between MODIS and AERONET provides an overview of possible differences. The correlation coefficient value of the order of 0.62 for both TERRA and AQUA satellites is due to the coast line of the Limassol site. Limassol’s CUT-TEPAK AERONET site is a coastal area, thus the surface inhomogeneity or sub-pixel water contamination has a larger effect than anticipated in continental coastal regions (Nisantzi et al., 2012). The systematic biases overestimations in MODIS retrievals are mainly due to aerosol model assumptions (deviation of 0–20%) andinstrument calibration (2–5%).
Comparisons of MODIS and AERONET derived at 0.50 nm wavelength, encompassing 352 points from CUT-TEPAK AERONET coastal site. The solid line represents the slopes of linear regression both for AQUA and TERRA MODIS sensors
Using the MICROTOPS II AOT, the procedure was duplicated for the validation of the satellite observations in Nicosia. The number of collocated and synchronized ground based and satellite measurements were statistically low in order to provide correlation factor which can represent a reliable validation study.
In the present work, the Level 2, 10x10km, MOD04 aerosol products (Collection 051) were retrieved for the years 2001 to 2011 from NASA\'s Level 1 and Atmosphere Archive and Distribution System (LAADS). The AOT fields were extracted from the \'Optical_Depth_Land_And_Ocean\' parameter which provides the AOT at 550nm derived via the dark-target algorithms and with best quality data (Remer et al., 2005). According to Remer et al. (2009), the AOT fields for this product have been respectively validated to within the error bounds of (0.04+0.05AOT) and ±(0.05+0.15AOT) at 550nm.
Based on the above AOT data, subsets for the area of Cyprus were extracted and mean monthly climatology maps were constructed for the period 2001-2011. For the area considered, the number of days with valid TERRA AOT measurements ranged approximately from 1000 to 2300 (which amount to 25%-57% time coverage), as shown in Figure 11. The highest number of valid measurements was observed over the central area of Cyprus (in the vicinity of Troodos Mountain), whereas near the coastline, this number decreased.
Number of valid TERA AOT observations for the period 2001-2011
The maps for each month are presented in Figure 12. The seasonal cycle of the aerosol load is well depicted. Minima are observed during winter months and maxima during spring and summer when intense phenomena associated with dust transport from Sahara desert are more frequent. The respective monthly average values for the three urban sites of Nicosia, Larnaca, and Limassol (marked as LE, LA and LM, respectively, on the maps) and the background site of Agia Marina, (marked as AM) have been calculated. In general, the background site is characterised by lower aerosol loads (ranging from 0.1 to 0.28) than those observed at the urban sites. Limassol (the main port city) presents the highest values for the period January-May and Nicosia (the capital city) from June to December. For this latter period, Larnaca presents intermediate values. The two distinct maxima associated with dust transport phenomena are observed at all sites in May and August. The value for the first peak in May is approximately the same for all urban sites (~0.40) but for August, the levels for Nicosia are higher (~0.45) compared to the other two urban sites (~0.35 for Larnaca and Limassol).
Average monthly AOT. (LE, LA, LM, and AM mark the sites of Nicosia, Larnaca, Limassol and Ag. Marina)
One element of the AIRSPACE program in Cyprus was the measurement of ground level PM concentrations by Harvard Impactors.
Statistics for the Limassol site show that for the first six months of observations the mean value for PM10 is 32.1 μg/m3, for PM2.5 13.4 μg/m3 and for total carbon 2.3 μg/m3 with standard deviations of 20.9, 4.6 and 1.1 μg/m3, respectively.
PM10 and PM2.5 were analysed, for trace elements such as sulfur, magnesium, aluminum, sodium, silicon, chlorine, potassium and calcium. Statistics for some of those trace elements for PM2.5 are shown below, in Table 1.
\n\t\t\t | \n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t
Sodium | \n\t\t\t0.27 | \n\t\t\t0.15 | \n\t\t\t0.23 | \n\t\t
Magnesium | \n\t\t\t0.06 | \n\t\t\t0.08 | \n\t\t\t0.05 | \n\t\t
Aluminum | \n\t\t\t0.16 | \n\t\t\t0.29 | \n\t\t\t0.07 | \n\t\t
Silicon | \n\t\t\t0.29 | \n\t\t\t0.55 | \n\t\t\t0.13 | \n\t\t
Sulfur | \n\t\t\t1.29 | \n\t\t\t0.73 | \n\t\t\t0.99 | \n\t\t
Chlorine | \n\t\t\t0.07 | \n\t\t\t0.17 | \n\t\t\t0.02 | \n\t\t
Potassium | \n\t\t\t0.11 | \n\t\t\t0.06 | \n\t\t\t0.10 | \n\t\t
Calcium | \n\t\t\t0.20 | \n\t\t\t0.37 | \n\t\t\t0.12 | \n\t\t
Trace elements statistics for the first 6 months sampling, for PM2.5
Figure 13 and 14 indicate the 6 month time series of the PM2.5 and PM10 concentrations, as well as the elemental, organic and total carbon levels from the Limassol filters.
Analysis of these initial samples revealed evidence of a dust storm event recorded on 12 March 2012, with PM10 and PM2.5 concentrations reaching up to 156.6 μg/m3 and 29.4 μg/m3, respectively. These values are several times higher than the typical values shown during the sampling period and well above the 24-hour limit value set by EEA, especially for PM10.
Time series of PM10 and PM2.5 at the Limassol site for the first 6 months’ samples
Time series of organic (OC), elemental (EC), and total carbon (TC) at the Limassol site for the first 6 months’ samples.
PM10 and PM2.5 concentrations show a small increase from the start of the sampling (January 2012) until June 2012, indicating a temporal relationship.
Based on the data collected a statistical model was established for estimation of PM concentrations from AOT measurements. Using a general linear regression model, the AOT retrieved by MODIS was used to predict ground-level PM10 concentrations in Limassol, Cyprus.
The proposed model by Liu et al. (2007) is given in equation 1:
Where βi are the regression coefficients, AOT is the Aerosol Optical Thickness, AE is the Ångström Exponent, WV is the Water Vapour, T is the surface temperature, WS is the wind speed, Wd the wind direction, P is the pressure at surface level and PBL is the Planetary boundary layer height.
The available data set in AIRSPACE project are given in Table 3:
Aerosol Optical Depth | \n\t\t\tCIMEL | \n\t\t
Angstrom Exponent | \n\t\t\tCIMEL | \n\t\t
Total Column Water Vapour | \n\t\t\tCIMEL | \n\t\t
PM 10 | \n\t\t\tDust Track TSI | \n\t\t
PBL height | \n\t\t\tLIDAR | \n\t\t
Meteorological Data | \n\t\t\tMETAR-LCRA (Akrotiri Air Base, Cyprus) | \n\t\t
AIRSPACE dataset used for the statistical model
Based on the proposed methodology, the performance of the multi-regression model was examined by introducing one predictor (Xi) at a time, together with the initial predictor, the AOT at 500nm (Xi i=0). For each predictor Xi, four transformations (j) were considered
1 | \n\t\t\tLn(Xi) | \n\t\t
2 | \n\t\t\tXi | \n\t\t
3 | \n\t\t\tDepartures from mean value of Xi | \n\t\t
4 | \n\t\t\tRatio of mean value of Xi | \n\t\t
From the above options (j=1 to 4), the one with the highest correlation coefficient (CCij) between predicted and measured PM10 was selected. In each iteration step k, the maximum values of the CCij = CCik were compared, in order to select the predictor Xik with the highest positive impact. Due to the limited dataset, no evident seasonal dependence was noted (Cook and Sanford, 1982).
The results are presented below. In Figure 15 the correlation coefficient between the predicted and measured PM10 is presented for 8 different models. The maximum performance of the model is reached by using the following predictors (in strength order), with a correlation coefficient on the order of CC=0.85
\n\t\t\t | \n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t
\n\t\t\t | \n\t\t\t | \n\t\t\t\n\t\t\t | \n\t\t
Constant Term | \n\t\t\t-4.117 | \n\t\t\t-4.111 | \n\t\t
Ln(AOT) | \n\t\t\t0.952 | \n\t\t\t0.943 | \n\t\t
Ln(AE) | \n\t\t\t0.299 | \n\t\t\t0.299 | \n\t\t
Wavapour-mean(Wavapour) | \n\t\t\t-0.393 | \n\t\t\t-0.384 | \n\t\t
Ln(Temp) | \n\t\t\t0.643 | \n\t\t\t0.6.23 | \n\t\t
Humidity | \n\t\t\t0.008 | \n\t\t\t0.008 | \n\t\t
Ln(Wind) | \n\t\t\t-0.096 | \n\t\t\t-0.071 | \n\t\t
WindDir | \n\t\t\t\n\t\t\t | -0.0004 | \n\t\t
Best correlation coefficients and regression coefficients
The correlation coefficient between the predicted and measured PM10 is presented for 8 different models
The results of the above sensitivity analysis indicate the maximum performance of the model of the order of CC=0.85 as shown in equation 2:
Finally, using formula 2 as the best model and the coefficients derived and shown in Table 4, the relationship between the model’s prediction and the measured PM10 concentrations, is shown in Figure 16. The residuals, i.e, the differences between the measured and the predicted values of the PM concentration are shown in Figure 17. The points in the residual plot in Figure 17 are randomly dispersed around the horizontal axis, thus, a linear regression model is appropriate.
Comparison between predicted and measured PM10 by TSI DUST Track at Limassol (Red line : linear fit )
Differences between the measured and the predicted value of the PM concentration (Residual plots)
Within AIRSPACE project, a high resolution atmospheric Chemistry General Circulation Model (AC-GCM) was used to study the emission, transport and deposition of dust. The Modular Earth Sub-model System (MESSy version 2.41) (Joeckel et al., 2005; 2006; 2010) is an earth system model which is capable of running with multiple representations of processes simultaneously paired to the core atmospheric general circulation model (ECHAM5). The model configuration used in the present study has a spectral resolution of T255L31 (0.5°, 50km) and 31 vertical levels up to 10 hPa. Gleser et al. (2012) emphasized the importance of higher resolution simulations for better dust representation in the model. As this is a global model, no boundary conditions are necessary. All known emission sources are included, while the initial conditions originate from the ERA40 reanalysis data (European Centre for Medium-Range Weather Forecasts - ECMWF) at 0.5-degree resolution. Every 12 hours of operation, the model fields are moved towards the ERA40 data in order to simulate the meteorological conditions, as precised as possible. In order to reduce computational time, the model uses a simplified chemistry module, preserving only the sulfate and NOx interactions which are considered the most important as far as the aerosols are considered. The model output is averaged and stored over 5-hour intervals, which provides an entire diurnal cycle after 5 days. The configuration includes also a simplified sulphate chemistry scheme (Gleser et al., 2012) allowing the production of sulphuric acid and particulate sulphate, which play an important role in transforming dust particles from hydrophobic into hydrophilic, thus affecting their ability to interact with clouds and be removed by precipitation (Astitha et al., 2012). The ammonia (NH3) reaction with sulphate and corresponding coating with dust (Ginoux et al., 2012) is also considered in this study. Due to the focus on dust episodes, a reduced version of the atmospheric chemistry scheme was applied which did not account for secondary inorganic and organic aerosol species associated with air pollution. The model used ECMWF gridded meteorological data to represent the actual meteorological conditions. To ensure adequate representation of the pollutants and dust in the atmosphere, the model runs for 15 days (spin-off) to create from the meteorology and the emissions the current weather conditions. This strategy ensures that the existing pollutants not represented in the model are removed from the atmosphere, while the sources will produce pollutants that will be dispersed in the atmosphere. After the initial spin-off, the atmospheric conditions represented from the model fields and the pollutant concentrations are considered as close to reality as possible. The model simulation was performed over the period of September to October 2011.
The most significant issue for the operational run of a numerical model prediction of the dust is the complete absence of initial conditions for pollutant and dust concentrations. This enforces the utilization of global models to simulate the atmosphere with extremely accurate emission inventories which are absent or not complete for North Africa and Eastern Mediterranean. The latter is an important source of uncertainty for concentrations. Furthermore, the sparse coverage of measurements for the spatial validation of the model in the region does not provide a clear picture for the evaluation assessment of the model.
The use of a global model necessitated the utilization of a large grid due to computational limitations. The global grid introduced an adequate representation of the topography of the models and requires special parameterization of processes that often lead to errors. Another restriction is the simplified chemistry used for the simulation. The computational power necessary for the implementation of a full chemistry scheme is not currently available.
The model results were evaluated using the AOT fields provided by the NASA AERONET available from http://aeronet.gsfc.nasa.gov. The data comparison represents the AOT for all aerosols simulated in the model as well as those observed in the atmosphere at 550nm wavelength. The observed AOT was averaged over the 5-hour output intervals in line with the averaged AOT over the same period from the model. Figure 18 shows the eight AERONET stations which observational data were available during the simulation period and which were used in this study. These stations are not necessarily located in dust-dominated regions but can be more strongly affected by other aerosol types, including air pollution.
AERONET stations used to evaluate the model results
The scatter plot between the modeled and observed AOT is shown in Figure 19. Different colors and symbols are used for each station ID (see legend). As shown, the model is capable of simulating the AOT in general. However, at some stations (Leipzig, Palencia, Paris) the model tends to underestimate the observed AOT. This is explained by the use of the reduced atmospheric chemistry scheme in the model that does not fully account for urban air pollution in addition to the unresolved physics at small scales in the global models. However, the comparison of the output of the model for the AOT with the measured values from the AERONET network indicates that the simulated atmosphere is valid in areas with similar climatological and industrial characteristics to Cyprus, while for areas with heavy industry, there is a significant deviation which can be justified from the reduced chemistry module used for the runs.
Scatter plot between modeled and observed AOT for different AERONET stations
Furthermore, model AOT estimations have been compared with the available AOT measurements from CUT-TEPAK AERONET site. Figure 20 shows the time evolution of the AOT for the Limassol AERONET station together with the model results. As shown in Figure 20, the model is generally, in agreement with observations in both magnitude and timing for Limassol with respect to the average measured values. The comparison between the modeled and observed AOT indicates the ability of the model to simulate the AOT adequately.
Comparison between the modeled (dark green) and observed (light green) AOT for Limassol AERONET on September 2011
An integrated methodology for assessing and studying air pollution in several areas of Cyprus was presented through the AIRSPACE project. Satellite derived aerosol optical thickness data along with LIDAR, sun-photometric and in-situ (PM) measurements were analyzed. The proposed integration of several tools and technologies provides to the user an alternative way for assessing and monitoring air pollution.
First, a new multiple linear regression model for estimating PM10 using AOT values and some other auxiliary meteorological atmospheric parameters has been developed for the urban area of Limassol in Cyprus. AOT can be retrieved by satellite sensors and is validated on the ground by using measured values with sunphotometers. Such model can be used for future satellite acquisitions. The integrated use of several resources and technologies such as satellite image data, LIDAR measurements, meteorological data and sunphotometric data lead to the development of new approaches in estimating PM concentrations
Second, an atmospheric chemical simulation model was run for the period September-October 2011. The model results were evaluated using the AOT provided by the NASA AERONET. AOT estimations have been compared with the available AOT measurements from CUT-TEPAK AERONET site. It has been found that the modeled and observed AOT values were in good agreement, except during the periods of peak PM concentrations.
The results presented in this Chapter form part of the research project “Air Pollution from Space in Cyprus” - AIRSPACE, funded by the Cyprus Research Promotion Foundation of Cyprus, under contract No. AEIFORIA/ASTI/0609(BE)/12. Special thanks to Harvard University for funding their participation.
The world population is increasing and is projected to rise by more than 1 billion by 2030 and over 2.4 billion by 2050 [1]. Therefore, to feed the increasing population, agricultural food production must be increased by 70% by 2050 [2]. In the event of growing concerns of uncertainties in climatic conditions, the abiotic stresses have become the major threat to agriculture production worldwide. Drought is one of the most important abiotic stresses which affect crop growth and yield. In Bangladesh drought is a major threat to agricultural production. As maize is usually a winter condition and due to low rainfall, the growth of maize and yield of maize are severely affected by drought stress [3]. Under drought stress, plant photosynthesis can significantly decrease, consequently reducing the amount and energy of metabolites [4] required for the proper development of both the above- and belowground biomass [5]. In severe water shortage conditions, the roots will shrink and in the leaves induced deposition. In drought conditions, reduced water potential and increased cell content of ABA regulate the metabolism of cells. Increase in substances such as proline can be one of the major molecular responses to drought stress [6]. Drought stress-induced free radicals cause lipid peroxidation and membrane deterioration in plants [7].
\nMaize is the third most important cereal crops in Bangladesh, after rice and wheat. It can be cultivated year round. The crop is high yielding and rich in nutrient and has diversified uses. The demand of maize in Bangladesh is primarily from the commercial feed processing industry. This industry is the driving force of maize sector, using 80% of its aggregate maize production (excluding imports), and statistically, the poultry sector (a significant representative of feed industry) is growing at an average rate of 23% per year [8].Therefore, production of maize needs to be increased. However maize production is severely affected by drought stress. Water absorption, imbibition, and metabolic enzymatic activation are hindered under limited water availability which reduces the maize grain germination. Root and shoot elongations are parameters of seedling growth, and these are subjected to reduction by drought stress. At seedling stage in maize, reduction in shoot elongation is more than root elongation under drought stress [9]. Application of biochar is such technology which can mitigate adverse effects of drought stress on maize.
\nBiochar is charcoal formed from the thermal decomposition of biomass in a low- or zero-oxygen environment and at high temperatures (<700°C), and biochar production and application in soils has a very high potential for the expansion of sustainable agricultural systems and also for global climate change mitigation [10]. Experimental evidence so far shows that incorporation of biochar to soil enhanced soil water-holding capacity, improved soil water permeability, and improved saturated hydraulic conductivity (SHC) [11], modification in soil bulk density [12], and modified aggregate stability [13]. Biochar has the potential to increase the availability of plant nutrient [14]. Furthermore, research has found that biochar improves crop productivity and mitigates drought, salinity, acidity, and toxic metal stresses that are commonly associated with plant stress [15]. Biochar application increases growth and biomass of drought-stressed plants as well as increased photosynthesis [16].
\nTherefore, the objectives of this manuscript are to know the effects of rice husk biochar to mitigate drought effects on the growth, physiology, and yield of maize at drought conditions.
\nPlant height differences of maize at vegetative stages indicated that plant height varied due to different doses of biochar under drought conditions (\nTable 1\n).
\nBiochar doses (t/ha) | \n6th leaf stage (cm) | \n10th leaf stage (cm) | \n14th leaf stage (cm) | \n||||||
---|---|---|---|---|---|---|---|---|---|
Control | \n60% of FC | \n40% of FC | \nControl | \n60% of FC | \n40% of FC | \nControl | \n60% of FC | \n40% of FC | \n|
0 | \n39.4de | \n39.1e | \n38.7f | \n90.4b | \n89.5b | \n80.2b | \n150.60d | \n139.0f | \n134.3f | \n
5 | \n42.2a–e | \n40.9b-e | \n40.2 c–e | \n91.2ab | \n90.4b | \n90.3b | \n156.6c | \n145.3e | \n136.3f | \n
10 | \n42.8a–c | \n41.9a–e | \n41.2b–e | \n93.9ab | \n91.4ab | \n90.7b | \n164.0b | \n151.3d | \n138.3f | \n
20 | \n44.8a | \n43.8ab | \n42.0a–e | \n95.4a | \n93.0ab | \n91.2ab | \n169.3a | \n154.3cd | \n145.0e | \n
CV (%) | \n4.2 | \n3.1 | \n2.0 | \n
Effect of rice husk biochar on plant height of maize at vegetative stages under drought conditions.
Figure having similar letter did not vary significantly.
At the sixth leaf stage, under control condition (80% of FC), 60% of field capacity, and 40% of field capacity, highest plant heights of maize were 44.8, 43.8, and 42.2 cm, respectively, when biochar was applied at 20 t/ha, and lowest plant heights of maize were 39.4, 39.1, and 38.7 cm, respectively, when no biochar was applied. At the 10th leaf stage, under control condition (80% of FC), 60% of field capacity, and 40% of field capacity, highest plant heights of maize were 95.4, 93.0, and1.2 cm, respectively, when biochar was applied at 20 t/ha, and lowest plant heights of maize were 90.4, 89.5, and 80.2 cm, respectively, when no biochar was applied. At the 14th leaf stage, under control condition (80% of FC), 60% of field capacity, and 40% of field capacity, highest plant heights of maize were 169.3, 154.3, and 145.0 cm, respectively, when biochar was applied at 20 t/ha, and lowest plant heights of maize were 150.6, 139.0, and 134.3 cm, respectively, when no biochar was applied. So it is clear that plant height is affected by drought conditions and application of rice husk biochar mitigated the effect of drought condition by increasing plant height. Similar result was reported in maize by [17]. Biochar promoted plant height of maize under drought conditions [18]. By affecting cell turgidity, drought impaired plant height [19]. Application of biochar can increase soil water-holding capacity which increased tissue water status and ultimately increased plant height [20].
\nPlant height differences of maize at reproductive stages indicated that plant height varied due to different doses of biochar under drought conditions (\nTable 2\n).
\nBiochar doses (t/ha) | \nTasseling stage (cm) | \nCob initiation stage (cm) | \nMaturity stage (cm) | \n||||||
---|---|---|---|---|---|---|---|---|---|
Control | \n60% of FC | \n40% of FC | \nControl | \n60% of FC | \n40% of FC | \nControl | \n60% of FC | \n40% of FC | \n|
0 | \n164.0cd | \n161.6 d | \n136.6 f | \n174.3cd | \n170.0d | \n141.3 f | \n175.3c | \n173.0c | \n154.0 e | \n
5 | \n172.6bc | \n172.0 bc | \n139.3 f | \n175.6cd | \n174.6cd | \n145.3 f | \n180.6bc | \n178.3bc | \n156.6de | \n
10 | \n174.3b | \n174.0 b | \n151.3 e | \n186.6b | \n182.6bc | \n157.6 e | \n186.6b | \n185.6b | \n163.0 d | \n
20 | \n190.0a | \n184.3 a | \n165.6bcd | \n195.6a | \n190.3ab | \n169.0 d | \n202.3a | \n195.6a | \n173.3 c | \n
CV (%) | \n3.5 | \n2.9 | \n2.9 | \n
Effect of rice husk biochar on plant height in maize at reproductive stages under drought conditions.
Figure having similar letter did not vary significantly.
At tasseling stage, under control condition (80% of FC), 60% of field capacity, and 40% of field capacity, highest plant heights of maize were 190.0, 184.3, and 165.6 cm, respectively, when biochar was applied at 20 t/ha, and lowest plant heights of maize were 164.0, 161.6, and 136.6 cm, respectively, when no biochar was applied. At cob initiation stage, under control condition (80% of FC), 60% of field capacity, and 40% of field capacity, highest plant heights of maize were 195.6, 190.3, and 169.0 cm, respectively, when biochar was applied at 20 t/ha, and lowest plant heights of maize were 174.3, 170.0, and 141.3 cm, respectively, when no biochar was applied. At maturity stage, under control condition (80% of FC), 60% of field capacity, and 40% of field capacity, highest plant heights of maize were 202.3, 195.6, and 173.3 cm, respectively, when biochar was applied at 20 t/ha, and lowest plant heights of maize were 175.3, 173.0, and 154.0 cm, respectively, when no biochar was applied. Drought conditions affected plant height, and biochar application increased plant height under drought conditions. Similar result was reported in maize by [21]. Addition of biochar improved plant height [22]. In rice, drought stress during the vegetative stage greatly reduced the plant height; [23] and [24] found that biochar increased the plant height of maize.
\nUnder drought conditions plant growth as well as days to flowering of maize was affected. Days to flowering of maize varied appreciably with different doses of biochar under drought conditions (\nFigure 1\n).
\nEffect of rice husk biochar on days to flowering of maize under drought conditions. Bar indicates LSD at 5% level of significance.
Under control condition (80% of FC), 60% of field capacity, and 40% of field capacity, lowest days to flowering of maize were 52, 57, and 61 days, respectively, when biochar was applied at 20 t/ha, and highest days to flowering of maize were 60, 62, and 63 days, respectively, when no biochar was applied. Drought stress affected plant physiological process and biochar helps to maintain physiological activities thereby flowering of plants, improved plant growth and influenced days to flowering. [25] observed that the mung bean plants grown in soil amended with 8.5% and 15.75% wood biochar started flowering, pod filling, and maturing 6 to 7 days earlier than those grown in unamended soil.
\nPlants try to avoid drought conditions by completing their life cycle within the short times. Biochar helped to reduce the effects of drought stress on crops. Days to maturity of maize plant were varied significantly at different doses of biochar under drought conditions (\nFigure 2\n).
\nEffect of rice husk biochar on days to maturity of maize under drought conditions. Bar indicates LSD at 5% level of significance.
Under control condition (80% of FC), 60% of field capacity, and 40% of field capacity, highest days to maturity of maize were 136, 135, and 133 days, respectively, when biochar was applied at 20 t/ha, and lowest days to flowering of maize were 131, 130, and 128 days, respectively, when no biochar was applied. Application of biochar increased the water-holding capacity of silty sand under maize cultivation in pots; [26] and [27] reported that biochar helped in maintaining normal physiological functions including maturity of wheat under saline conditions. [28] observed that biochar application increased tomato growth and life cycle under saline conditions.
\nRelative water content of maize plant was reduced significantly at drought stress conditions because of low water content of soil. Application of rice husk biochar at different doses helped to increase water-holding capacity of soil under drought conditions and thereby increased relative water content of maize plant (\nTable 3\n). Under control condition (80% of FC), 60% of field capacity, and 40% of field capacity, highest RWC of maize were 83.37, 79.86, and 78.32%, respectively, when biochar was applied at 20 t/ha, and lowest RWC of maize were 66.93, 63.75, and 62.25%, respectively, when no biochar was applied.
\nBiochar doses (t/ha) | \nRelative water content (%) | \nWater saturation deficit (%) | \nWater uptake capacity | \n||||||
---|---|---|---|---|---|---|---|---|---|
Control | \n60% of FC | \n40% of FC | \nControl | \n60% of FC | \n40% of FC | \nControl | \n60% of FC | \n40% of FC | \n|
0 | \n66.9bc | \n63.7bc | \n62.2c | \n33.1a–c | \n36.2ab | \n37.7 a | \n1.9ab | \n1.9a | \n2.0a | \n
5 | \n71.2bc | \n70.2a–c | \n66.4bc | \n28.8a–c | \n29.7a–c | \n33.5a–c | \n1.8a–d | \n1.8a–c | \n1.9a | \n
10 | \n76.8bc | \n75.7a–c | \n72.8a–c | \n23.1a–c | \n24.3a–c | \n27.1a–c | \n1.7a–d | \n1.7a–d | \n1.8a–d | \n
0 | \n83.3a | \n79.8ab | \n78.3bc | \n16.6c | \n20.1bc | \n21.1a–c | \n1.5d | \n1.5cd | \n1.6b–d | \n
CV (%) | \n14.1 | \n36.8 | \n10.7 | \n
Effect of rice husk biochar on RWC, WSD, and WUC of maize under drought conditions.
Figure having similar letter did not vary significantly.
Water saturation deficit of maize plant was increased significantly at drought stress conditions, and it is varied with different doses of biochar under drought conditions (\nTable 3\n).Under control condition (80% of FC), 60% of field capacity, and 40% of field capacity, lowest WSD of maize were 16.6, 20.1, and 21.1%, respectively, when biochar was applied at 20 t/ha, and highest WSD of maize were 33.0, 36.2, and 37.7%, respectively, when no biochar was applied.
\nWater uptake capacity of maize plant was increased significantly under drought stress because soil contained low moisture to be uptaken by plant. WUC depended on water-holding capacity of soil, and it was varied with different doses of biochar under drought condition (\nTable 3\n). Under control condition (80% of FC), 60% of field capacity, and 40% of field capacity, lowest WUC of maize were 1.5, 1.5, and 1.6, respectively, when biochar was applied at 20 t/ha, and highest WUC of maize were 1.9, 1.9, and 2.0, respectively, when no biochar was applied. [29] reported biochar increased water-holding capacity. [30] found that biochar increased RWC and water use efficiency of drought-stressed tomato plants. [31] also reported that biochar increased tissue water status of maize in sandy soil.
\nExudation rate of maize plant was reduced significantly at drought conditions. Exudation rate depends on available water in soil to be uptaken by the plant. Exudation rate of maize varied due to different doses of biochar under drought conditions (\nFigure 3\n). Under control condition (80% of FC), 60% of field capacity, and 40% of field capacity, highest exudation rates of maize were 2.3, 1.5, and 1.5 g/hr., respectively, when biochar was applied at 20 t/ha, and lowest exudation rates of maize were 1.1, 1.0, and 0.7 g/hr., respectively, when no biochar was applied. Similar result was observed by [32]. [33] found biochar application increased water retention capacity of soil. [34] reported application of biochar increased water-holding capacity of field-grown wheat and exudation rate.
\nEffect of rice husk biochar on exudation rate of maize under drought conditions. Bar indicates LSD at 5% level of significance.
Chlorophyll content of maize leaf was reduced significantly at drought stress conditions. Chlorophyll a content varied significantly with different doses of biochar under drought conditions (\nTable 4\n).
\nBiochar doses (t/ha) | \nChlorophyll a (mg/g fresh weight) | \nChlorophyll b (mg/g fresh weight) | \nTotal chlorophyll (mg/g fresh weight) | \n||||||
---|---|---|---|---|---|---|---|---|---|
Control | \n60% of FC | \n40% of FC | \nControl | \n60% of FC | \n40% of FC | \nControl | \n60% of FC | \n40% of FC | \n|
0 | \n1.2c–e | \n1.1de | \n1.1e | \n0.9a | \n0.9a | \n0.9a | \n1.5ab | \n1.4ab | \n1.3b | \n
5 | \n1.2c | \n1.2de | \n1.2c–e | \n1.0a | \n0.9a | \n0.9a | \n1.5ab | \n1.5ab | \n1.4ab | \n
10 | \n1.2c | \n1.2cd | \n1.2c–e | \n1.0a | \n1.0a | \n0.9a | \n1.9ab | \n1.5ab | \n1.5ab | \n
20 | \n1.4a | \n1.4ab | \n1.3bc | \n1.1a | \n1.0a | \n1.0a | \n2.0a | \n1.7ab | \n1.6ab | \n
CV (%) | \n6.1 | \n3.3 | \n2.3 | \n
Effect of rice husk biochar on chlorophyll content in maize under drought conditions.
Figure having similar letter did not vary significantly.
Under control condition highest chlorophyll a (1.4 mg/g) was found when biochar was applied at 20 t/ha, and it was lowest (1.2 mg/g) when no biochar was applied. Under 60% of field capacity, highest chlorophyll a (1.4 mg/g) was found when biochar was applied at 20 t/ha, and it was lowest (1.1 mg/g) when no biochar was applied. Under 40% of field capacity, highest chlorophyll a was observed when plant was treated with biochar at 20 t/ha (1.3 mg/g), and it was lowest (1.1 mg/g) when no biochar was applied. Chlorophyll b increased with the application of biochar under drought stress conditions, although it was insignificant (\nTable 4\n). Under control condition highest chlorophyll b (1.1 mg/g) was found when biochar was applied at 20 t/ha, and it was lowest (0.9 mg/g) when no biochar was applied. Under 60% of field capacity, highest total chlorophyll b (1.0 mg/g) was found when biochar was applied at 20 t/ha, and it was lowest (0.9 mg/g) when no biochar was applied. Under 40% of field capacity, highest chlorophyll b was observed when plant was treated with biochar at 20 t/ha (1.0 mg/g), and it was lowest (0.9 mg/g) when no biochar was applied. Under control condition highest total chlorophyll (2.0 mg/g) was found when biochar was applied at 20 t/ha, and it was lowest (1.5 mg/g) when no biochar was applied. Under 60% of field capacity, highest total chlorophyll (1.7 mg/g) was found when biochar was applied at 20 t/ha, and it was lowest (1.4 mg/g) when no biochar was applied. Under 40% of field capacity, highest total chlorophyll was observed when plant was treated with biochar at 20 t/ha (1.6 mg/g), and it was lowest (1.3 mg/g) when no biochar was applied. [39] marked reduction in chlorophylls in wheat cultivars subjected to water stress. [35] reported that biochar increased chlorophyll content in milk thistle under drought conditions.
\nAt vegetative stage SPAD value of maize plant was reduced significantly at drought stress conditions. SPAD value varied with different doses of biochar under drought conditions (\nTable 5\n).
\nBiochar doses (t/ha) | \n6th leaf stage | \n10th leaf stage | \n14th leaf stage | \n||||||
---|---|---|---|---|---|---|---|---|---|
Control | \n60% of FC | \n40% of FC | \nControl | \n60% of FC | \n40% of FC | \nControl | \n60% of FC | \n40% of FC | \n|
0 | \n25.3c–e | \n23.7e | \n20.4f | \n30.4cd | \n29.3ef | \n29.0f | \n29.5de | \n27.7e | \n27.2e | \n
5 | \n27.5bc | \n25.2de | \n24.4de | \n30.7c | \n29.9de | \n29.4ef | \n33.0a–c | \n29.9b–e | \n28.9de | \n
10 | \n29.5ab | \n26.4cd | \n26.2cd | \n32.0b | \n30.0cd | \n29.7d–f | \n33.3ab | \n31.1bd | \n29.7c–e | \n
20 | \n30.7a | \n30.5a | \n29.5ab | \n33.3a | \n30.2cd | \n29.8d–f | \n35.3a | \n32.0a–d | \n31.8b–d | \n
CV (%) | \n5.0 | \n1.6 | \n6.6 | \n
Effect of rice husk biochar on SPAD value in maize at vegetative stages under drought conditions.
Figure having similar letter did not vary significantly.
At the 6th leaf stage of maize after under control condition, highest SPAD value (30.7) was found when biochar was applied at 20 t ha−1, and it was lowest (25.3) when no biochar was applied. Under 60% of field capacity, highest SPAD value (30.5) was found when biochar was applied at 20 t/ha, and it was lowest (23.7) when no biochar was applied. Under 40% of field capacity, highest SPAD value (29.5) was found when biochar was applied at 20 t/ha, and it was lowest (20.4) when no biochar was applied. At the 10th leaf stage of maize after under control condition, highest SPAD value (33.3) was found when biochar was applied at 20 t/ha, and it was lowest (29.3) when no biochar was applied. Under 60% of field capacity, highest SPAD value (30.2) was found when biochar was applied at 20 t/ha, and it was lowest (29.3) when no biochar was applied. Under 40% of field capacity, highest SPAD value (29.8) was found when biochar was applied at 20 t/ha and at 5 t/ha (29.4), and it was lowest (29.0) when no biochar was applied. At the 14th leaf stage of maize after under control condition, highest SPAD value (35.3) was found when biochar was applied at 20 t/ha, and it was lowest (29.5) when no biochar was applied. Under 60% of field capacity, highest SPAD value (32.0) was found when biochar was applied at 20 t/ha, and it was lowest (27.7) when no biochar was applied. Under 40% of field capacity, highest SPAD value (31.8) was found when biochar was applied at 20 t/ha, and it was lowest (27.2) when no biochar was applied. It indicates that the longer the exposure to drought stress, the higher the decreases of the SPAD value. The decrease of SPAD reading under drought conditions is reported by [36]. [37] showed that biochar may alleviate water stress in plants and increased SPAD value.
\nSPAD value of maize plant was reduced significantly at drought conditions, and reduction was higher at 40% field capacity than 60% of field capacity at tasseling stage and cob initiation stage (\nTable 6\n).
\nBiochar doses (t/ha) | \nTasseling stage | \nCob initiation stage | \n||||
---|---|---|---|---|---|---|
Control | \n60% of FC | \n40% of FC | \nControl | \n60% of FC | \n40% of FC | \n|
0 | \n30.2bc | \n28.0cd | \n27.8d | \n28.2b–d | \n27.6cd | \n27.1d | \n
5 | \n30.6b | \n29.4c–d | \n29.2b–d | \n29.8a–c | \n29.3a–d | \n29.2a–d | \n
10 | \n30.9b | \n29.8b–d | \n29.7b–d | \n30.7ab | \n29.5a–d | \n29.5a–d | \n
20 | \n33.5a | \n31.2b | \n30.7b | \n31.3a | \n31.0a | \n30.7ab | \n
CV (%) | \n4.4 | \n5.0 | \n
Effect of rice husk biochar on SPAD value in maize at reproductive stages under drought conditions.
Figure having similar letter did not vary significantly.
When biochar was applied at different doses, SPAD value was increased. At tasseling stage of maize under control condition (80% of FC), 60% of field capacity, and 40% of field capacity, highest SPAD values were 33.5, 31.2, and 30.7, respectively, when biochar was applied at 20 t/ha, and lowest SPAD values were 30.2, 28.0, and 27.8, respectively, when no biochar was applied. At cob initiation stage of maize under control condition (80% of FC), 60% of field capacity, and 40% of field capacity, highest SPAD values were 31.3, 31.0, and 30.7, respectively, when biochar was applied at 20 t/ha, and lowest SPAD values were 28.2, 27.6, and 27.1, respectively, when no biochar was applied. Similar result was reported by Mannan et al. (2016) in soybean plant under salinity stress due to poultry litter biochar. With increasing drought stress levels, SPAD readings were decreased [38]. [39] reported biochar increased soil moisture level and maize yield.
\nProline is a kind of stress protein. Proline accumulation under stress condition occurred because the Calvin cycle of photosynthesis is affected by drought; as a result N content could not be properly metabolized. In drought soil biochar increases photosynthesis and proper metabolism of N content. Proline content of maize varied significantly with different doses of biochar under drought conditions (\nFigure 4\n).
\nEffect of rice husk biochar on proline content of maize under drought conditions. Bar indicates LSD at 5% level of significance.
Under control condition (80% of FC), 60% of field capacity, and 40% of field capacity, lowest proline contents were 1.1, 1.1, and 3.2 μ mole/g, respectively, when biochar was applied at 20 t/ha, and highest proline contents were 1.8, 2.9, and 6.1 μ mole/g, respectively, when no biochar was applied. [40] reported biochar decreased proline content in plants. [41] marked drought stress caused overproduction of proline content. [42] also reported biochar increased photosynthesis in grape leaves.
\nA major effect of drought is reduction in photosynthesis, which is associated with reduction in food production and ultimately reduced dry weight of plant parts. Dry weight of cob sheath, leaf, and stem of maize is greatly affected by drought conditions. Application of rice husk biochar increased dry matter of cob sheath, leaf, and stem of maize under drought conditions. Dry weight of cob sheath, leaf, and stem of maize varied significantly with different doses of biochar under drought conditions (\nTable 7\n).
\nBiochar doses (t/ha) | \nCob sheath (g/plant) | \nLeaf (g/plant) | \nStem (g/plant) | \n||||||
---|---|---|---|---|---|---|---|---|---|
Control | \n60% of FC | \n40% of FC | \nControl | \n60% of FC | \n40% of FC | \nControl | \n60% of FC | \n40% of FC | \n|
0 | \n12.8bc | \n11.7bc | \n10.3c | \n37.2d–g | \n35.2fg | \n34.4g | \n24.8ab | \n21.4ab | \n19.0b | \n
5 | \n13.1bc | \n12.6bc | \n11.4bc | \n39.8a–d | \n36.4e–g | \n36.2e–g | \n25.4ab | \n22.3ab | \n20.6ab | \n
10 | \n14.5bc | \n14.2bc | \n12.9bc | \n40.3a–c | \n39.4a–d | \n37.7c–f | \n26.8a | \n25.2ab | \n21.3ab | \n
20 | \n19.7a | \n15.5ab | \n14.8abc | \n42.0a | \n41.5ab | \n38.6b–e | \n27.2a | \n26.2a | \n22.7ab | \n
CV (%) | \n21.9 | \n4.6 | \n17.3 | \n
Effect of rice husk biochar on dry weight of cob sheath, leaf and stem of maize under drought conditions.
Figure having similar letter did not vary significantly.
The highest dry weight of stem were 27.28 g, 26.25 g and 22.75 g in control, 60% of field capacity and 40% of field capacity, respectively, when biochar was applied at 20 t/ha, and lowest dry weights of cob sheath were 12.8, 11.7, and 10.3 g, respectively, when no biochar was applied. Under control condition (80% of FC), 60% of field capacity, and 40% of field capacity, highest dry weights of leaf were 42.0, 41.5, and 38.6 g, respectively, when biochar was applied at 20 t/ha, and lowest dry weights of leaf were.
\n\n\nTable 7\n. Effect of rice husk biochar on dry weight of cob sheath, leaf, and stem of maize under drought conditions, 37.2, 35.2, and 34.4 g, respectively, when no biochar was applied. Under control condition (80%of FC), 60% of field capacity, and 40% of field capacity, highest dry weights of stem were 27.2, 26.2, and 22.7 g, respectively, when biochar was applied at 20 t/ha, and lowest dry weights of stem were 24.8, 21.8, and 19.0 g, respectively, when no biochar was applied. [43] found drought stress reduced dry weight of plant parts by affecting photosynthesis. [44] reported that application of biochar increased dry weight of field-grown wheat.
\nIn drought stress shoot dry weight of maize reduced, but root dry weight increased, because under drought conditions for searching water, root growth increased, thereby increasing dry weight of root. Application of rice husk biochar reduced the effects of drought. The dry weight of root and shoot varied significantly with the application of biochar under drought conditions (\nTable 8\n).
\nBiochar doses (t/ha) | \nShoot dry weight (g/plant) | \nRoot dry weight (g/plant) | \nTotal dry weight (g/plant) | \n||||||
---|---|---|---|---|---|---|---|---|---|
Control | \n60% of FC | \n40% of FC | \nControl | \n60% of FC | \n40% of FC | \nControl | \n60% of FC | \n40% of FC | \n|
0 | \n75.4a–d | \n68.4cd | \n63.8d | \n17.5a–c | \n26.8a | \n27.3a | \n93.1a | \n91.1a | \n89.3a | \n
5 | \n77.8a–c | \n71.5b–d | \n68.2cd | \n16.7a–c | \n17.7a–c | \n24.4ab | \n95.2a | \n94.6a | \n92.6a | \n
10 | \n81.2ab | \n79.3a–c | \n72.9a–d | \n15.7bc | \n16.3a–c | \n21.7a–c | \n95.6a | \n95.5a | \n92.8a | \n
20 | \n84.1a | \n83.1ab | \n75.9a–c | \n12.4c | \n15.6bc | \n16.8a–c | \n98.8a | \n97.0a | \n93.9a | \n
CV (%) | \n9.3 | \n34.4 | \n8.7 | \n
Effect of rice husk biochar on shoot, root, and total dry weight of maize under drought conditions.
Figure having similar letter did not vary significantly.
Under control condition (80% of FC), 60% of field capacity, and 40% of field capacity, highest dry weights of shoot were 84.1, 83.1, and 75.9 g, respectively, when biochar was applied at 20 t/ha, and lowest dry weights of shoot were 75.4, 68.4, and 63.8 g, respectively, when no biochar was applied. Under control condition (80% of FC), 60% of field capacity, and 40% of field capacity, lowest dry weights of root were 12.4, 15.6, and 16.8 g, respectively, when biochar was applied at 20 t/ha, and highest dry weights of root were 17.5, 26.8, and 27.3 g, respectively, when no biochar was applied. Total dry weight of maize plant was reduced at drought stress conditions, but reduction was not significant. When biochar is applied at different doses under drought conditions, total dry weight increased (\nTable 8\n). Under control condition (80% of FC), 60% of field capacity, and 40% of field capacity, highest total dry weights were 98.8, 97.0, and 93.9 g, respectively, when biochar was applied at 20 t/ha, and lowest total dry weights were 93.1, 91.1, and 89.3 g, respectively, when no biochar was applied. [45] found that root dry weight increased, while shoot dry weight decreased under drought conditions. [46] marked shoot dry weight increased under drought conditions due to application of biochar.
\nThe number of cob was one per plant, and there is no significant difference among numbers of cob per plant under drought stress condition with different biochar doses (\nTable 9\n).
\nBiochar doses (t/ha) | \nNumber of cob | \nLength of cob (cm) | \nDiameter of cob (cm) | \n||||||
---|---|---|---|---|---|---|---|---|---|
Control | \n60% of FC | \n40% of FC | \nControl | \n60% of FC | \n40% of FC | \nControl | \n60% of FC | \n40% of FC | \n|
0 | \n1.0a | \n1.0a | \n1.0a | \n15.9a–c | \n13.2bc | \n12.1c | \n3.5a–c | \n3.2c | \n3.1c | \n
5 | \n1.0a | \n1.0a | \n1.0a | \n16.5ab | \n14.7a–c | \n14.6a–c | \n3.6a–c | \n3.3bc | \n3.2c | \n
10 | \n1.0a | \n1.0a | \n1.0a | \n17.2ab | \n15.1a–c | \n15.0a–c | \n3.8ab | \n3.5a–c | \n3.3a–c | \n
20 | \n1.0a | \n1.0a | \n1.0a | \n17.6a | \n15.3aa–c | \n15.3a–c | \n3.9a | \n3.6a–c | \n3.5a–c | \n
CV (%) | \n0.0 | \n15.7 | \n2.15 | \n
Effect of rice husk biochar on number of cob, length of cob, and diameter of cob of maize under drought conditions.
Figure having similar letter did not vary significantly.
Drought affected growth of maize. Length of cob of maize was reduced under drought conditions. When biochar was applied at different doses, the cob length was increased under drought conditions (\nTable 9\n). Under control condition highest cob length (17.6 cm) was found when biochar was applied at 20 t/ha, and it was lowest (15.9 cm) when no biochar was applied. Under 60% of field capacity, highest cob length (15.3 cm) was found when biochar was applied at 20 t/ha, and it was lowest (13.2 cm) when no biochar was applied. Under 40% of field capacity, highest total cob length (15.3 cm) was found when biochar was applied at 20 t/ha, and it was lowest (12.1 cm) when no biochar was applied. Cob diameter of maize was reduced under drought stress conditions, and reduction was higher at 40% of field capacity than at 60% of field capacity. Biochar application increased cob diameter under drought conditions (\nTable 9\n). Under control condition highest cob diameter (17.6 cm) was found when biochar was applied at 20 t/ha, and it was lowest (15.9 cm) when no biochar was applied. Under 60% of field capacity, highest cob diameter (15.3 cm) was found when biochar was applied at 20 t/ha, and it was lowest (13.2 cm) when no biochar was applied. Under 40% of field capacity, highest total cob diameter (15.3 cm) was found when biochar was applied at 20 t/ha, and it was lowest (12.1 cm) when no biochar was applied. [47] reported biochar increased yield of lettuce. Reductions in plant yield have been reported in snap bean by [48]. [49] observed biochar application increased maize yield in semiarid conditions.
\nDrought stress affected anthesis, grain filling of maize associated with reduction of number seed/cob, 100 grain weight, and ultimately grain yield. Decrease of photosynthesis under drought conditions also affected grain yield. Application of biochar increased photosynthesis efficiency, anthesis, and grain filling, thereby increasing yield of maize. The number of seed per cob, 100 grain weight, and grain yield varied significantly with biochar doses under drought conditions (\nTable 10\n).
\nBiochar doses (t/ha) | \nNumber of seed /cob | \n100 grain weight (g) | \nGrain yield (g/plant) | \n||||||
---|---|---|---|---|---|---|---|---|---|
Control | \n60% of FC | \n40% of FC | \nControl | \n60% of FC | \n40% of FC | \nControl | \n60% of FC | \n40% of FC | \n|
0 | \n163.0bcd | \n147.3cd | \n139.0d | \n21.8a–c | \n20.7bc | \n20.0c | \n40.7cd | \n35.9cd | \n27.8d | \n
5 | \n273.0a–d | \n244.0a–d | \n164.3b–d | \n23.4a–c | \n21.7a–c | \n21.4a–c | \n58.6a–d | \n57.5a–d | \n34.9cd | \n
10 | \n300.0ab | \n297.0a–c | \n288.3a–d | \n26.8ab | \n23.0a–c | \n21.5a–c | \n79.5ab | \n68.9a–c | \n61.0a–d | \n
20 | \n353.0a | \n335.0a | \n334.6a | \n27.7a | \n26.5a–c | \n25.0a–c | \n96.7a | \n89.7ab | \n84.5ab | \n
CV (%) | \n35.5 | \n16.70 | \n37.40 | \n
Effect of rice husk biochar on the number of seed/cob, 100 grain wt. (g), and grain yield (g) of maize under drought conditions.
Figure having similar letter did not vary significantly.
Under control condition (80%of FC), 60% of field capacity, and 40% of field capacity, highest numbers of seed per cob were 353.0, 335.0, and 334.6, respectively, when biochar was applied at 20 t/ha, and lowest seeds per cob were 163.0, 147.3, and 139.0, respectively, when no biochar was applied. Under control condition highest 100 grain weight (27.7 g) was found when biochar was applied at 20 t/ha, and it was lowest (21.8 g) when no biochar was applied. Under 60% of field capacity, highest 100 grain weight (26.5 g) was found when biochar was applied at 20 t/ha, and it was lowest (20.7 g) when no biochar was applied. Under 40% of field capacity, highest 100 grain weight (25.0 g) was found when biochar was applied at 20 t/ha, and it was lowest (20.0 g) when no biochar was applied. Under control condition (80% of FC), 60% of field capacity, and 40% of field capacity, highest grain yields were 96.7, 89.7, and 84.5 g/plant, respectively, when biochar was applied at 20 t/ha, and lowest grain yields were 40.7, 35.9, and 27.8 g/plant, respectively, when no biochar was applied. Similar result was reported by [50]. [51] observed water stress reduced yield of triticale. [52] reported biochar increased pod yield of soybean under saline conditions.
\nUnder drought conditions biological activities as well as nutrients in soil are greatly affected. As a result macronutrients such as N, P, and K are reduced. Application of rice husk biochar showed positive effects on total nitrogen content and P and K under stress and nonstressed conditions (\nTable 11\n).
\nBefore sowing | \nTotal N (%) | \nP (ppm) | \nK (meq/100 g soil) | \n||||||
---|---|---|---|---|---|---|---|---|---|
0.172 | \n7.24 | \n0.169 | \n|||||||
After harvest | \n|||||||||
Biochar doses (t/ha) | \nControl | \n60% of FC | \n40% of FC | \nControl | \n60% of FC | \n40% of FC | \nControl | \n60% of FC | \n40% of FC | \n
0 | \n0.10a | \n0.10a | \n0.09a | \n7.49bc | \n7.48bc | \n7.44c | \n0.17a | \n0.17a | \n0.17a | \n
5 | \n0.11a | \n0.11a | \n0.10a | \n7.96bc | \n7.74bc | \n7.61bc | \n0.17a | \n0.17a | \n0.17a | \n
10 | \n0.12a | \n0.11a | \n0.11a | \n9.13a | \n7.98bc | \n7.64bc | \n0.18a | \n0.17a | \n0.17a | \n
20 | \n0.14a | \n0.13a | \n0.11a | \n9.18a | \n8.00b | \n7.96bc | \n0.18a | \n0.18a | \n0.17a | \n
CV (%) | \n7.0 | \n4.0 | \n1.5 | \n
Effect of rice husk biochar on N, P, and K in soil under drought conditions.
Figure having similar letter did not vary significantly.
The initial total N was 0.17%, and after crop harvest under control condition, the highest total N (0.14%) was found when biochar was applied at 20 t/ha; it was lowest (0.10%) when no biochar was applied. Under 60% of field capacity, highest total N (0.13%) was found when biochar was applied at 20 t/ha, and it was lowest (0.10%) when no biochar was applied. Under 40% of field capacity, highest total N (0.11%) was found when biochar was applied at 20 t/ha, and it was lowest (0.09%) when no biochar was applied. The initial P was 7.24 ppm, and after harvest under control condition (80% of FC), 60% of field capacity, and 40% of field capacity, highest P were 9.18, 8.00, and 7.96 ppm, respectively, when biochar was applied at 20 t/ha, and lowest P were 7.49, 7.48, and 7.44 ppm, respectively, when no biochar was applied. The initial K was 0.16 meq/100 g soil, and after crop harvest under control condition (80% of FC), 60% of field capacity, and 40% of field capacity, highest K were 0.18 meq/100 g soil, 0.18 meq/100 g soil, and 0.17 meq/100 g soil, respectively, when biochar was applied at 20 t/ha, and lowest K were 0.17 meq/100 g soil, 0.17 meq/100 g soil, and 0.17 meq/100 g soil, respectively, when no biochar was applied. [53] reported biochar increased plant available nutrient in soil. [54] reported drought reduced N, P, and K levels in soil. [55] observed that the addition of biochar to soils increased soil phosphorus (P), soil potassium (K), and total soil nitrogen (N).
\nDrought stress adversely affected soil chemical properties such as Zn, pH, and OC. Application of rice husk biochar increased Zn, pH, and OC in soil. Zn and soil pH varied significantly with different doses of rice husk biochar under drought conditions, but OC varied insignificantly (\nTable 12\n).The initial Zn content was 17.4 meq/100 g soil, and after crop harvest under control condition (80% of FC), 60% of field capacity, and 40% of field capacity, highest Zn were 17.4 meq/100 g soil, 15.3 meq/100 g soil, and 14.9 meq/100 g soil, respectively, when biochar was applied at 20 t/ha, and lowest Zn were 13.9 meq/100 g soil, 13.2 meq/100 g soil, and 12.6 meq/100 g soil, respectively, when no biochar was applied. The initial pH was 6.1, and after crop harvest under control condition (80% of FC), 60% of field capacity, and 40% of field capacity, highest pH were 7.0, 6.9, and 6.7, respectively, when biochar was applied at 20 t/ha, and lowest pH were 6.7, 6.7, and 6.6, respectively, when no biochar was applied. The initial OC was 1.4%, and after crop harvest under control condition (80% of FC), 60% of field capacity, and 40% field capacity, highest OC were 0.7, 0.7, and 0.6%, respectively, when biochar was applied at 20 t/ha, and lowest OC were 0.54, 0.53, and 0.52%, respectively, when no biochar was applied. Similar result was reported by [56]. [57] marked biochar improved soil chemical properties of saline soil and biochar increased organic carbon. [58] found that biochar increased soil pH, thus reducing lime requirements.
\nBefore sowing | \nZn (meq/100 g soil) | \npH | \nOC (%) | \n||||||
---|---|---|---|---|---|---|---|---|---|
17.49 | \n6.18 | \n1.45 | \n|||||||
After harvest | \n|||||||||
Biochar doses (t/ha) | \nControl | \n60% of FC | \n40% of FC | \nControl | \n60% of FC | \n40% of FC | \nControl | \n60% of FC | \n40% of FC | \n
0 | \n13.9b–e | \n13.2de | \n12.6e | \n6.7ab | \n6.7b | \n6.6b | \n0.5a | \n0.5a | \n0.5a | \n
5 | \n14.3b–e | \n14.0b–e | \n13.2de | \n6.7ab | \n6.7ab | \n6.7ab | \n0.5a | \n0.5a | \n0.5a | \n
10 | \n15.7ab | \n14.8b–d | \n13.9c–e | \n6.9a | \n6.7ab | \n6.7ab | \n0.6a | \n0.6a | \n0.59a | \n
20 | \n17.4a | \n15.3bc | \n14.9b–d | \n7.0a | \n6.9a | \n6.7ab | \n0.7a | \n0.7a | \n0.6a | \n
CV (%) | \n7.4 | \n2.9 | \n6.8 | \n
Effect of rice husk biochar on Zn, pH, and organic carbon in soil under drought conditions.
Figure having similar letter did not vary significantly.
Application of rice husk biochar increased plant height, days to maturity, total dry weight, chlorophyll content, plant water relations, SPAD value, exudation rate and reduced proline content, and days to flowering of maize under drought conditions. In maize plant drought stress tolerance ameliorate rice husk biochar and increased cob diameter, cob length, 100 grain weight of cob, seed /cob and finally maize yield at drought conditions.
\nWe are grateful to the University Grants Commission (UGC), Government of Bangladesh, for funding the work.
\nThere is no conflict of interest.
Our business values are based on those any scientist applies to their research. The values of our business are based on the same ones that all good scientists apply to their research. We have created a culture of respect and collaboration within a relaxed, friendly, and progressive atmosphere, while maintaining academic rigour.
\n\nPlease check out our job board for open positions.
',metaTitle:"Careers at IntechOpen",metaDescription:"Employee quote to be added",metaKeywords:null,canonicalURL:"/page/careers-at-intechopen",contentRaw:'[{"type":"htmlEditorComponent","content":"Integrity - We are consistent and dependable, always striving for precision and accuracy in the true spirit of science.
\\n\\nOpenness - We communicate honestly and transparently. We are open to constructive criticism and committed to learning from it.
\\n\\nDisruptiveness - We are eager for discovery, for new ideas and for progression. We approach our work with creativity and determination, with a clear vision that drives us forward. We look beyond today and strive for a better tomorrow.
\\n\\nIntechOpen is a dynamic, vibrant company, where exceptional people are achieving great things. We offer a creative, dedicated, committed, and passionate environment but never lose sight of the fact that science and discovery is exciting and rewarding. We constantly strive to ensure that members of our community can work, travel, meet world-renowned researchers and grow their own career and develop their own experiences.
\\n\\nIf this sounds like a place that you would like to work, whether you are at the beginning of your career or are an experienced professional, we invite you to drop us a line and tell us why you could be the right person for IntechOpen.
\\n\\n\\n"}]'},components:[{type:"htmlEditorComponent",content:"
Integrity - We are consistent and dependable, always striving for precision and accuracy in the true spirit of science.
\n\nOpenness - We communicate honestly and transparently. We are open to constructive criticism and committed to learning from it.
\n\nDisruptiveness - We are eager for discovery, for new ideas and for progression. We approach our work with creativity and determination, with a clear vision that drives us forward. We look beyond today and strive for a better tomorrow.
\n\nIntechOpen is a dynamic, vibrant company, where exceptional people are achieving great things. We offer a creative, dedicated, committed, and passionate environment but never lose sight of the fact that science and discovery is exciting and rewarding. We constantly strive to ensure that members of our community can work, travel, meet world-renowned researchers and grow their own career and develop their own experiences.
\n\nIf this sounds like a place that you would like to work, whether you are at the beginning of your career or are an experienced professional, we invite you to drop us a line and tell us why you could be the right person for IntechOpen.
\n\n\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[],filtersByRegion:[],offset:0,limit:12,total:null},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"3D1",sort:"3DdateEndThir="},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:6},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:21},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:59},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:28},{group:"topic",caption:"Mathematics",value:15,count:10},{group:"topic",caption:"Medicine",value:16,count:122},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3665,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1713,editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",publishedDate:"April 28th 2022",numberOfDownloads:2481,editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1107,editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3307,editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3266,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1868,editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",publishedDate:"May 4th 2022",numberOfDownloads:856,editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1704,editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7489,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"721",title:"Fuzzy Control Systems",slug:"fuzzy-control-systems",parent:{id:"115",title:"Control Engineering",slug:"engineering-control-engineering"},numberOfBooks:4,numberOfSeries:0,numberOfAuthorsAndEditors:88,numberOfWosCitations:40,numberOfCrossrefCitations:55,numberOfDimensionsCitations:84,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"721",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9976",title:"Fuzzy Systems",subtitle:"Theory and Applications",isOpenForSubmission:!1,hash:"5c4c0d41cf25d2e8fda944450ac46d95",slug:"fuzzy-systems-theory-and-applications",bookSignature:"Constantin Volosencu",coverURL:"https://cdn.intechopen.com/books/images_new/9976.jpg",editedByType:"Edited by",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7485",title:"Applied Modern Control",subtitle:null,isOpenForSubmission:!1,hash:"c7a7be73f7232e08867ed81bdf9850c6",slug:"applied-modern-control",bookSignature:"Le Anh Tuan",coverURL:"https://cdn.intechopen.com/books/images_new/7485.jpg",editedByType:"Edited by",editors:[{id:"180550",title:"Dr.",name:"Le",middleName:null,surname:"Anh Tuan",slug:"le-anh-tuan",fullName:"Le Anh Tuan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6806",title:"Fuzzy Logic Based in Optimization Methods and Control Systems and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"fedf4479b910cbcee3025e391f073417",slug:"fuzzy-logic-based-in-optimization-methods-and-control-systems-and-its-applications",bookSignature:"Ali Sadollah",coverURL:"https://cdn.intechopen.com/books/images_new/6806.jpg",editedByType:"Edited by",editors:[{id:"147215",title:"Dr.",name:"Ali",middleName:null,surname:"Sadollah",slug:"ali-sadollah",fullName:"Ali Sadollah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"39",title:"Fuzzy Controllers",subtitle:"Theory and Applications",isOpenForSubmission:!1,hash:null,slug:"fuzzy-controllers-theory-and-applications",bookSignature:"Lucian Grigorie",coverURL:"https://cdn.intechopen.com/books/images_new/39.jpg",editedByType:"Edited by",editors:[{id:"18103",title:"Dr.",name:"Teodor Lucian",middleName:null,surname:"Grigorie",slug:"teodor-lucian-grigorie",fullName:"Teodor Lucian Grigorie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:4,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"62600",doi:"10.5772/intechopen.79552",title:"Introductory Chapter: Which Membership Function is Appropriate in Fuzzy System?",slug:"introductory-chapter-which-membership-function-is-appropriate-in-fuzzy-system-",totalDownloads:1893,totalCrossrefCites:31,totalDimensionsCites:52,abstract:null,book:{id:"6806",slug:"fuzzy-logic-based-in-optimization-methods-and-control-systems-and-its-applications",title:"Fuzzy Logic Based in Optimization Methods and Control Systems and Its Applications",fullTitle:"Fuzzy Logic Based in Optimization Methods and Control Systems and Its Applications"},signatures:"Ali Sadollah",authors:[{id:"147215",title:"Dr.",name:"Ali",middleName:null,surname:"Sadollah",slug:"ali-sadollah",fullName:"Ali Sadollah"}]},{id:"13968",doi:"10.5772/13466",title:"Extended Kalman Filter for the Estimation and Fuzzy Optimal Control of Takagi-Sugeno Model",slug:"extended-kalman-filter-for-the-estimation-and-fuzzy-optimal-control-of-takagi-sugeno-model",totalDownloads:2505,totalCrossrefCites:4,totalDimensionsCites:6,abstract:null,book:{id:"39",slug:"fuzzy-controllers-theory-and-applications",title:"Fuzzy Controllers",fullTitle:"Fuzzy Controllers, Theory and Applications"},signatures:"Agustín Jiménez, Basil M.Al-Hadithi and Fernando Matía",authors:[{id:"6013",title:"Dr.",name:"Basil M.",middleName:null,surname:"Al Hadithi",slug:"basil-m.-al-hadithi",fullName:"Basil M. Al Hadithi"},{id:"16314",title:"Prof.",name:"Agustin",middleName:null,surname:"Jimenez",slug:"agustin-jimenez",fullName:"Agustin Jimenez"},{id:"16315",title:"Prof.",name:"Fernando",middleName:null,surname:"Matia",slug:"fernando-matia",fullName:"Fernando Matia"}]},{id:"13973",doi:"10.5772/13879",title:"Fuzzy Maximum Power Point Tracking Techniques Applied to a Grid-Connected Photovoltaic System",slug:"fuzzy-maximum-power-point-tracking-techniques-applied-to-a-grid-connected-photovoltaic-system",totalDownloads:3869,totalCrossrefCites:4,totalDimensionsCites:5,abstract:null,book:{id:"39",slug:"fuzzy-controllers-theory-and-applications",title:"Fuzzy Controllers",fullTitle:"Fuzzy Controllers, Theory and Applications"},signatures:"Neson Diaz, Johann Hernández and Oscar Duarte",authors:[{id:"16158",title:"BSc.",name:"Nelson",middleName:null,surname:"Diaz",slug:"nelson-diaz",fullName:"Nelson Diaz"},{id:"18354",title:"PhD.",name:"Oscar",middleName:null,surname:"Duarte",slug:"oscar-duarte",fullName:"Oscar Duarte"},{id:"18355",title:"MSc.",name:"Johann",middleName:null,surname:"Hernandez",slug:"johann-hernandez",fullName:"Johann Hernandez"}]},{id:"63709",doi:"10.5772/intechopen.80424",title:"Energy Efficient Speed Control of Interior Permanent Magnet Synchronous Motor",slug:"energy-efficient-speed-control-of-interior-permanent-magnet-synchronous-motor",totalDownloads:1244,totalCrossrefCites:5,totalDimensionsCites:5,abstract:"In this chapter, methods for the structural realization of a speed control system for the interior permanent magnet synchronous motor (IPMSM) using the “maximum torque per ampere” (MTA) and “maximum torque per volt” (MTV) optimal control strategies are considered. In the system in constant torque region, is a technique for adapting the speed controller to the presence of the reactive motor torque component, which improves the quality of the transient processes, is proposed. It is also recommended to approximate the dependence of the flux-forming current component on the motor torque by the “dead zone” nonlinearity, which will simplify the optimal control algorithm and avoid solving the fourth-degree algebraic equation in real time. For the speed control with field weakening technique, a novel system is recommended. In this system, the control algorithms are switched by the variable of the direct stator current component constraint generated in accordance with the MTA law: the upper limit is calculated in accordance with the “field weakening control” (FWC) strategy, and the lower limit in accordance with the MTV strategy. The steady-state stator voltage constraint is implemented through the variable quadrature stator current component limitation. The effectiveness of the proposed solutions is confirmed by the simulation results.",book:{id:"7485",slug:"applied-modern-control",title:"Applied Modern Control",fullTitle:"Applied Modern Control"},signatures:"Olga Tolochko",authors:[{id:"249845",title:"Dr.",name:"Tolochko",middleName:null,surname:"Olga",slug:"tolochko-olga",fullName:"Tolochko Olga"}]},{id:"62036",doi:"10.5772/intechopen.78786",title:"Development of a Genetic Fuzzy Controller and Its Application to a Noisy Inverted Double Pendulum",slug:"development-of-a-genetic-fuzzy-controller-and-its-application-to-a-noisy-inverted-double-pendulum",totalDownloads:761,totalCrossrefCites:3,totalDimensionsCites:3,abstract:"Fuzzy logic is used in a variety of applications due to its universal approximator attribute and non-linear characteristics. The tuning of the parameters of a fuzzy logic system, viz. the membership functions and the rulebase, requires a lot of trial and error. This process could be simplified by using a heuristic search algorithm like genetic algorithm (GA). In this chapter, we discuss the design of such a genetic fuzzy controller that can control an inverted double pendulum. GA improves the fuzzy logic controller (FLC) with each generation during the training process to obtain an FLC that can bring the pendulum to its inverted position. After training, the effectiveness of the FLC is tested for different scenarios by varying the initial conditions. We also show the effectiveness of the FLC even when subjected to noise and how the performance improves when the controller is tuned with noise.",book:{id:"6806",slug:"fuzzy-logic-based-in-optimization-methods-and-control-systems-and-its-applications",title:"Fuzzy Logic Based in Optimization Methods and Control Systems and Its Applications",fullTitle:"Fuzzy Logic Based in Optimization Methods and Control Systems and Its Applications"},signatures:"Anoop Sathyan and Kelly Cohen",authors:[{id:"200834",title:"Dr.",name:"Kelly",middleName:null,surname:"Cohen",slug:"kelly-cohen",fullName:"Kelly Cohen"},{id:"243285",title:"Dr.",name:"Anoop",middleName:null,surname:"Sathyan",slug:"anoop-sathyan",fullName:"Anoop Sathyan"}]}],mostDownloadedChaptersLast30Days:[{id:"75699",title:"Data Clustering for Fuzzyfier Value Derivation",slug:"data-clustering-for-fuzzyfier-value-derivation",totalDownloads:276,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"The fuzzifier value m is improving significant factor for achieving the accuracy of data. Therefore, in this chapter, various clustering method is introduced with the definition of important values for clustering. To adaptively calculate the appropriate purge value of the gap type −2 fuzzy c-means, two fuzzy values m1 and m2 are provided by extracting information from individual data points using a histogram scheme. Most of the clustering in this chapter automatically obtains determination of m1 and m2 values that depended on existent repeated experiments. Also, in order to increase efficiency on deriving valid fuzzifier value, we introduce the Interval type-2 possibilistic fuzzy C-means (IT2PFCM), as one of advanced fuzzy clustering method to classify a fixed pattern. In Efficient IT2PFCM method, proper fuzzifier values for each data is obtained from an algorithm including histogram analysis and Gaussian Curve Fitting method. Using the extracted information form fuzzifier values, two modified fuzzifier value m1 and m2 are determined. These updated fuzzifier values are used to calculated the new membership values. Determining these updated values improve not only the clustering accuracy rate of the measured sensor data, but also can be used without additional procedure such as data labeling. It is also efficient at monitoring numerous sensors, managing and verifying sensor data obtained in real time such as smart cities.",book:{id:"9976",slug:"fuzzy-systems-theory-and-applications",title:"Fuzzy Systems",fullTitle:"Fuzzy Systems - Theory and Applications"},signatures:"JaeHyuk Cho",authors:[{id:"329648",title:"Prof.",name:"JaeHyuk",middleName:null,surname:"Cho",slug:"jaehyuk-cho",fullName:"JaeHyuk Cho"}]},{id:"62600",title:"Introductory Chapter: Which Membership Function is Appropriate in Fuzzy System?",slug:"introductory-chapter-which-membership-function-is-appropriate-in-fuzzy-system-",totalDownloads:1893,totalCrossrefCites:31,totalDimensionsCites:52,abstract:null,book:{id:"6806",slug:"fuzzy-logic-based-in-optimization-methods-and-control-systems-and-its-applications",title:"Fuzzy Logic Based in Optimization Methods and Control Systems and Its Applications",fullTitle:"Fuzzy Logic Based in Optimization Methods and Control Systems and Its Applications"},signatures:"Ali Sadollah",authors:[{id:"147215",title:"Dr.",name:"Ali",middleName:null,surname:"Sadollah",slug:"ali-sadollah",fullName:"Ali Sadollah"}]},{id:"63216",title:"The Design and Development of Control System for High Vacuum Deoxygenated and Water-Removal Glove Box with Cycling Cleaning and Regeneration",slug:"the-design-and-development-of-control-system-for-high-vacuum-deoxygenated-and-water-removal-glove-bo",totalDownloads:1034,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"This study proposed a high vacuum deoxygenated and water removal glove box control system. Through parameter setting, the system can automatically perform various glove box cleaning operations and quickly reach the micro-oxygen and micro-water concentration requirements. In addition, two sets of reaction tanks are built in the system, and the hardware pipeline switching design and monitoring software control are used to provide two sets of reaction tanks to execute the cycling cleaning and cycling regeneration operation procedures synchronously, which can effectively solve the problem of interruption of the experimental process, improve the efficiency of its cleaning operations, and greatly reduce the manpower and material costs of the glove box operation. In addition, the system can automatically record the relevant data during various operations for the analysis of glove box monitoring effectiveness.",book:{id:"7485",slug:"applied-modern-control",title:"Applied Modern Control",fullTitle:"Applied Modern Control"},signatures:"Ming-Sen Hu",authors:[{id:"248986",title:"Associate Prof.",name:"Ming-Sen",middleName:null,surname:"Hu",slug:"ming-sen-hu",fullName:"Ming-Sen Hu"}]},{id:"63072",title:"Fuzzy Controller-Based MPPT of PV Power System",slug:"fuzzy-controller-based-mppt-of-pv-power-system",totalDownloads:1894,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"The power demand has been increasing day by day due to population growth, new industrial development, etc. Meeting power demand is one of the challenge factors for fossil fuel-based power generation alone as well as the environmental issue of carbon footprint. Consequently, there is a need to concentrate on alternate energy sources to meet the power demand. In this chapter, the photovoltaic (PV) cell operation under various weather conditions is analysed, and based on the performance, the MPPT controller is developed by using fuzzy logic controller. The proposed system has been modelled in MATLAB environment, and the system performance has been analysed. Finally, the simulation results are evaluated and compared with IEEE 1547 standard for proving the effectiveness of the proposed system.",book:{id:"6806",slug:"fuzzy-logic-based-in-optimization-methods-and-control-systems-and-its-applications",title:"Fuzzy Logic Based in Optimization Methods and Control Systems and Its Applications",fullTitle:"Fuzzy Logic Based in Optimization Methods and Control Systems and Its Applications"},signatures:"M. Venkateshkumar",authors:[{id:"243101",title:"Dr.",name:"M",middleName:null,surname:"Mven",slug:"m-mven",fullName:"M Mven"}]},{id:"62654",title:"Fuzzy Information Measures with Multiple Parameters",slug:"fuzzy-information-measures-with-multiple-parameters",totalDownloads:937,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"Information theory deals with the study of problems concerning any system. This includes information processing, information storage, information retrieval and decision making. Information theory studies all theoretical problems connected with the transmission of information over communication channels. This includes the study of uncertainty (information) measures and various practical and economical methods of coding information for transmission. In this chapter, the introduction of a new generalised measure of fuzzy information involving two real parameters is given. The proposed measure satisfies all the necessary properties of being a measure. Some additional properties of the proposed measure have also been studied. Further, the monotonic nature of generalised fuzzy information measure with respect to the parameters is studied and validity of the same is checked by constructing the computed tables and plots on taking different fuzzy sets and different values of the parameters. Also, a new generalised fuzzy information measure involving three parameters has been introduced.",book:{id:"6806",slug:"fuzzy-logic-based-in-optimization-methods-and-control-systems-and-its-applications",title:"Fuzzy Logic Based in Optimization Methods and Control Systems and Its Applications",fullTitle:"Fuzzy Logic Based in Optimization Methods and Control Systems and Its Applications"},signatures:"Anjali Munde",authors:[{id:"254393",title:"Dr.",name:"Anjali",middleName:null,surname:"Munde",slug:"anjali-munde",fullName:"Anjali Munde"}]}],onlineFirstChaptersFilter:{topicId:"721",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403",scope:"Artificial Intelligence (AI) is a rapidly developing multidisciplinary research area that aims to solve increasingly complex problems. In today's highly integrated world, AI promises to become a robust and powerful means for obtaining solutions to previously unsolvable problems. This Series is intended for researchers and students alike interested in this fascinating field and its many applications.",coverUrl:"https://cdn.intechopen.com/series/covers/14.jpg",latestPublicationDate:"May 18th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:9,editor:{id:"218714",title:"Prof.",name:"Andries",middleName:null,surname:"Engelbrecht",slug:"andries-engelbrecht",fullName:"Andries Engelbrecht",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRNR8QAO/Profile_Picture_1622640468300",biography:"Andries Engelbrecht received the Masters and PhD degrees in Computer Science from the University of Stellenbosch, South Africa, in 1994 and 1999 respectively. He is currently appointed as the Voigt Chair in Data Science in the Department of Industrial Engineering, with a joint appointment as Professor in the Computer Science Division, Stellenbosch University. Prior to his appointment at Stellenbosch University, he has been at the University of Pretoria, Department of Computer Science (1998-2018), where he was appointed as South Africa Research Chair in Artifical Intelligence (2007-2018), the head of the Department of Computer Science (2008-2017), and Director of the Institute for Big Data and Data Science (2017-2018). In addition to a number of research articles, he has written two books, Computational Intelligence: An Introduction and Fundamentals of Computational Swarm Intelligence.",institutionString:null,institution:{name:"Stellenbosch University",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:10,paginationItems:[{id:"22",title:"Applied Intelligence",coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",editor:{id:"27170",title:"Prof.",name:"Carlos",middleName:"M.",surname:"Travieso-Gonzalez",slug:"carlos-travieso-gonzalez",fullName:"Carlos Travieso-Gonzalez",profilePictureURL:"https://mts.intechopen.com/storage/users/27170/images/system/27170.jpeg",biography:"Carlos M. Travieso-González received his MSc degree in Telecommunication Engineering at Polytechnic University of Catalonia (UPC), Spain in 1997, and his Ph.D. degree in 2002 at the University of Las Palmas de Gran Canaria (ULPGC-Spain). He is a full professor of signal processing and pattern recognition and is head of the Signals and Communications Department at ULPGC, teaching from 2001 on subjects on signal processing and learning theory. His research lines are biometrics, biomedical signals and images, data mining, classification system, signal and image processing, machine learning, and environmental intelligence. He has researched in 52 international and Spanish research projects, some of them as head researcher. He is co-author of 4 books, co-editor of 27 proceedings books, guest editor for 8 JCR-ISI international journals, and up to 24 book chapters. He has over 450 papers published in international journals and conferences (81 of them indexed on JCR – ISI - Web of Science). He has published seven patents in the Spanish Patent and Trademark Office. He has been a supervisor on 8 Ph.D. theses (11 more are under supervision), and 130 master theses. He is the founder of The IEEE IWOBI conference series and the president of its Steering Committee, as well as the founder of both the InnoEducaTIC and APPIS conference series. He is an evaluator of project proposals for the European Union (H2020), Medical Research Council (MRC, UK), Spanish Government (ANECA, Spain), Research National Agency (ANR, France), DAAD (Germany), Argentinian Government, and the Colombian Institutions. He has been a reviewer in different indexed international journals (<70) and conferences (<250) since 2001. He has been a member of the IASTED Technical Committee on Image Processing from 2007 and a member of the IASTED Technical Committee on Artificial Intelligence and Expert Systems from 2011. \n\nHe has held the general chair position for the following: ACM-APPIS (2020, 2021), IEEE-IWOBI (2019, 2020 and 2020), A PPIS (2018, 2019), IEEE-IWOBI (2014, 2015, 2017, 2018), InnoEducaTIC (2014, 2017), IEEE-INES (2013), NoLISP (2011), JRBP (2012), and IEEE-ICCST (2005)\n\nHe is an associate editor of the Computational Intelligence and Neuroscience Journal (Hindawi – Q2 JCR-ISI). He was vice dean from 2004 to 2010 in the Higher Technical School of Telecommunication Engineers at ULPGC and the vice dean of Graduate and Postgraduate Studies from March 2013 to November 2017. He won the “Catedra Telefonica” Awards in Modality of Knowledge Transfer, 2017, 2018, and 2019 editions, and awards in Modality of COVID Research in 2020.\n\nPublic References:\nResearcher ID http://www.researcherid.com/rid/N-5967-2014\nORCID https://orcid.org/0000-0002-4621-2768 \nScopus Author ID https://www.scopus.com/authid/detail.uri?authorId=6602376272\nScholar Google https://scholar.google.es/citations?user=G1ks9nIAAAAJ&hl=en \nResearchGate https://www.researchgate.net/profile/Carlos_Travieso",institutionString:null,institution:{name:"University of Las Palmas de Gran Canaria",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"13633",title:"Prof.",name:"Abdelhamid",middleName:null,surname:"Mellouk",slug:"abdelhamid-mellouk",fullName:"Abdelhamid Mellouk",profilePictureURL:"https://mts.intechopen.com/storage/users/13633/images/1567_n.jpg",institutionString:null,institution:{name:"Paris 12 Val de Marne University",institutionURL:null,country:{name:"France"}}},{id:"109268",title:"Dr.",name:"Ali",middleName:null,surname:"Al-Ataby",slug:"ali-al-ataby",fullName:"Ali Al-Ataby",profilePictureURL:"https://mts.intechopen.com/storage/users/109268/images/7410_n.jpg",institutionString:null,institution:{name:"University of Liverpool",institutionURL:null,country:{name:"United Kingdom"}}},{id:"3807",title:"Dr.",name:"Carmelo",middleName:"Jose Albanez",surname:"Bastos-Filho",slug:"carmelo-bastos-filho",fullName:"Carmelo Bastos-Filho",profilePictureURL:"https://mts.intechopen.com/storage/users/3807/images/624_n.jpg",institutionString:null,institution:{name:"Universidade de Pernambuco",institutionURL:null,country:{name:"Brazil"}}},{id:"38850",title:"Dr.",name:"Efren",middleName:null,surname:"Gorrostieta Hurtado",slug:"efren-gorrostieta-hurtado",fullName:"Efren Gorrostieta Hurtado",profilePictureURL:"https://mts.intechopen.com/storage/users/38850/images/system/38850.jpg",institutionString:null,institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},{id:"239041",title:"Prof.",name:"Yang",middleName:null,surname:"Yi",slug:"yang-yi",fullName:"Yang Yi",profilePictureURL:"https://mts.intechopen.com/storage/users/239041/images/system/239041.jpeg",institutionString:"Virginia Tech",institution:{name:"Virginia Tech",institutionURL:null,country:{name:"United States of America"}}}]},{id:"23",title:"Computational Neuroscience",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",editor:{id:"14004",title:"Dr.",name:"Magnus",middleName:null,surname:"Johnsson",slug:"magnus-johnsson",fullName:"Magnus Johnsson",profilePictureURL:"https://mts.intechopen.com/storage/users/14004/images/system/14004.png",biography:"Dr Magnus Johnsson is a cross-disciplinary scientist, lecturer, scientific editor and AI/machine learning consultant from Sweden. \n\nHe is currently at Malmö University in Sweden, but also held positions at Lund University in Sweden and at Moscow Engineering Physics Institute. \nHe holds editorial positions at several international scientific journals and has served as a scientific editor for books and special journal issues. \nHis research interests are wide and include, but are not limited to, autonomous systems, computer modeling, artificial neural networks, artificial intelligence, cognitive neuroscience, cognitive robotics, cognitive architectures, cognitive aids and the philosophy of mind. \n\nDr. Johnsson has experience from working in the industry and he has a keen interest in the application of neural networks and artificial intelligence to fields like industry, finance, and medicine. \n\nWeb page: www.magnusjohnsson.se",institutionString:null,institution:{name:"Malmö University",institutionURL:null,country:{name:"Sweden"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"13818",title:"Dr.",name:"Asim",middleName:null,surname:"Bhatti",slug:"asim-bhatti",fullName:"Asim Bhatti",profilePictureURL:"https://mts.intechopen.com/storage/users/13818/images/system/13818.jpg",institutionString:null,institution:{name:"Deakin University",institutionURL:null,country:{name:"Australia"}}},{id:"151889",title:"Dr.",name:"Joao Luis Garcia",middleName:null,surname:"Rosa",slug:"joao-luis-garcia-rosa",fullName:"Joao Luis Garcia Rosa",profilePictureURL:"https://mts.intechopen.com/storage/users/151889/images/4861_n.jpg",institutionString:null,institution:{name:"University of Sao Paulo",institutionURL:null,country:{name:"Brazil"}}},{id:"103779",title:"Prof.",name:"Yalcin",middleName:null,surname:"Isler",slug:"yalcin-isler",fullName:"Yalcin Isler",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRyQ8QAK/Profile_Picture_1628834958734",institutionString:null,institution:{name:"Izmir Kâtip Çelebi University",institutionURL:null,country:{name:"Turkey"}}}]},{id:"24",title:"Computer Vision",coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",editor:{id:"294154",title:"Prof.",name:"George",middleName:null,surname:"Papakostas",slug:"george-papakostas",fullName:"George Papakostas",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002hYaGbQAK/Profile_Picture_1624519712088",biography:"George A. Papakostas has received a diploma in Electrical and Computer Engineering in 1999 and the M.Sc. and Ph.D. degrees in Electrical and Computer Engineering in 2002 and 2007, respectively, from the Democritus University of Thrace (DUTH), Greece. Dr. Papakostas serves as a Tenured Full Professor at the Department of Computer Science, International Hellenic University, Greece. Dr. Papakostas has 10 years of experience in large-scale systems design as a senior software engineer and technical manager, and 20 years of research experience in the field of Artificial Intelligence. Currently, he is the Head of the “Visual Computing” division of HUman-MAchines INteraction Laboratory (HUMAIN-Lab) and the Director of the MPhil program “Advanced Technologies in Informatics and Computers” hosted by the Department of Computer Science, International Hellenic University. He has (co)authored more than 150 publications in indexed journals, international conferences and book chapters, 1 book (in Greek), 3 edited books, and 5 journal special issues. His publications have more than 2100 citations with h-index 27 (GoogleScholar). His research interests include computer/machine vision, machine learning, pattern recognition, computational intelligence. \nDr. Papakostas served as a reviewer in numerous journals, as a program\ncommittee member in international conferences and he is a member of the IAENG, MIR Labs, EUCogIII, INSTICC and the Technical Chamber of Greece (TEE).",institutionString:null,institution:{name:"International Hellenic University",institutionURL:null,country:{name:"Greece"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"1177",title:"Prof.",name:"Antonio",middleName:"J. R.",surname:"Neves",slug:"antonio-neves",fullName:"Antonio Neves",profilePictureURL:"https://mts.intechopen.com/storage/users/1177/images/system/1177.jpg",institutionString:null,institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}},{id:"220565",title:"Dr.",name:"Jucheng",middleName:null,surname:"Yang",slug:"jucheng-yang",fullName:"Jucheng Yang",profilePictureURL:"https://mts.intechopen.com/storage/users/220565/images/5988_n.jpg",institutionString:null,institution:{name:"Tianjin University of Technology",institutionURL:null,country:{name:"China"}}},{id:"29299",title:"Prof.",name:"Serestina",middleName:null,surname:"Viriri",slug:"serestina-viriri",fullName:"Serestina Viriri",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYOalQAG/Profile_Picture_1620817405517",institutionString:null,institution:{name:"University of KwaZulu-Natal",institutionURL:null,country:{name:"South Africa"}}},{id:"315933",title:"Dr.",name:"Yalın",middleName:null,surname:"Baştanlar",slug:"yalin-bastanlar",fullName:"Yalın Baştanlar",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002qpr7hQAA/Profile_Picture_1621430127547",institutionString:null,institution:{name:"Izmir Institute of Technology",institutionURL:null,country:{name:"Turkey"}}}]},{id:"25",title:"Evolutionary Computation",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",editor:{id:"136112",title:"Dr.",name:"Sebastian",middleName:null,surname:"Ventura Soto",slug:"sebastian-ventura-soto",fullName:"Sebastian Ventura Soto",profilePictureURL:"https://mts.intechopen.com/storage/users/136112/images/system/136112.png",biography:"Sebastian Ventura is a Spanish researcher, a full professor with the Department of Computer Science and Numerical Analysis, University of Córdoba. Dr Ventura also holds the positions of Affiliated Professor at Virginia Commonwealth University (Richmond, USA) and Distinguished Adjunct Professor at King Abdulaziz University (Jeddah, Saudi Arabia). Additionally, he is deputy director of the Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI) and heads the Knowledge Discovery and Intelligent Systems Research Laboratory. He has published more than ten books and over 300 articles in journals and scientific conferences. Currently, his work has received over 18,000 citations according to Google Scholar, including more than 2200 citations in 2020. In the last five years, he has published more than 60 papers in international journals indexed in the JCR (around 70% of them belonging to first quartile journals) and he has edited some Springer books “Supervised Descriptive Pattern Mining” (2018), “Multiple Instance Learning - Foundations and Algorithms” (2016), and “Pattern Mining with Evolutionary Algorithms” (2016). He has also been involved in more than 20 research projects supported by the Spanish and Andalusian governments and the European Union. He currently belongs to the editorial board of PeerJ Computer Science, Information Fusion and Engineering Applications of Artificial Intelligence journals, being also associate editor of Applied Computational Intelligence and Soft Computing and IEEE Transactions on Cybernetics. Finally, he is editor-in-chief of Progress in Artificial Intelligence. He is a Senior Member of the IEEE Computer, the IEEE Computational Intelligence, and the IEEE Systems, Man, and Cybernetics Societies, and the Association of Computing Machinery (ACM). Finally, his main research interests include data science, computational intelligence, and their applications.",institutionString:null,institution:{name:"University of Córdoba",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"111683",title:"Prof.",name:"Elmer P.",middleName:"P.",surname:"Dadios",slug:"elmer-p.-dadios",fullName:"Elmer P. Dadios",profilePictureURL:"https://mts.intechopen.com/storage/users/111683/images/system/111683.jpg",institutionString:"De La Salle University",institution:{name:"De La Salle University",institutionURL:null,country:{name:"Philippines"}}},{id:"106873",title:"Prof.",name:"Hongwei",middleName:null,surname:"Ge",slug:"hongwei-ge",fullName:"Hongwei Ge",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Dalian University of Technology",institutionURL:null,country:{name:"China"}}},{id:"171056",title:"Dr.",name:"Sotirios",middleName:null,surname:"Goudos",slug:"sotirios-goudos",fullName:"Sotirios Goudos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9IuQAK/Profile_Picture_1622623673666",institutionString:null,institution:{name:"Aristotle University of Thessaloniki",institutionURL:null,country:{name:"Greece"}}},{id:"15895",title:"Assistant Prof.",name:"Takashi",middleName:null,surname:"Kuremoto",slug:"takashi-kuremoto",fullName:"Takashi Kuremoto",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLrqQAG/Profile_Picture_1625656196038",institutionString:null,institution:{name:"Nippon Institute of Technology",institutionURL:null,country:{name:"Japan"}}},{id:"125844",title:"Prof.",name:"Wellington",middleName:"Pinheiro Dos",surname:"Santos",slug:"wellington-santos",fullName:"Wellington Santos",profilePictureURL:"https://mts.intechopen.com/storage/users/125844/images/4878_n.jpg",institutionString:null,institution:{name:"Federal University of Pernambuco",institutionURL:null,country:{name:"Brazil"}}}]},{id:"26",title:"Machine Learning and Data Mining",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",editor:{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"43680",title:"Prof.",name:"Ciza",middleName:null,surname:"Thomas",slug:"ciza-thomas",fullName:"Ciza Thomas",profilePictureURL:"https://mts.intechopen.com/storage/users/43680/images/system/43680.jpeg",institutionString:null,institution:{name:"Government of Kerala",institutionURL:null,country:{name:"India"}}},{id:"16614",title:"Prof.",name:"Juan Ignacio",middleName:null,surname:"Guerrero Alonso",slug:"juan-ignacio-guerrero-alonso",fullName:"Juan Ignacio Guerrero Alonso",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6HB8QAM/Profile_Picture_1627901127555",institutionString:null,institution:{name:"University of Seville",institutionURL:null,country:{name:"Spain"}}},{id:"3095",title:"Prof.",name:"Kenji",middleName:null,surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/3095/images/1592_n.jpg",institutionString:null,institution:{name:"University of Chicago",institutionURL:null,country:{name:"United States of America"}}},{id:"214067",title:"Dr.",name:"W. David",middleName:null,surname:"Pan",slug:"w.-david-pan",fullName:"W. David Pan",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSEI9QAO/Profile_Picture_1623656213532",institutionString:null,institution:{name:"University of Alabama in Huntsville",institutionURL:null,country:{name:"United States of America"}}},{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk",profilePictureURL:"https://mts.intechopen.com/storage/users/72920/images/system/72920.jpeg",institutionString:"Dalarna University, Faculty of Data and Information Sciences",institution:{name:"Dalarna University",institutionURL:null,country:{name:"Sweden"}}}]},{id:"27",title:"Multi-Agent Systems",coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",editor:{id:"148497",title:"Dr.",name:"Mehmet",middleName:"Emin",surname:"Aydin",slug:"mehmet-aydin",fullName:"Mehmet Aydin",profilePictureURL:"https://mts.intechopen.com/storage/users/148497/images/system/148497.jpg",biography:"Dr. Mehmet Emin Aydin is a Senior Lecturer with the Department of Computer Science and Creative Technology, the University of the West of England, Bristol, UK. His research interests include swarm intelligence, parallel and distributed metaheuristics, machine learning, intelligent agents and multi-agent systems, resource planning, scheduling and optimization, combinatorial optimization. Dr. Aydin is currently a Fellow of Higher Education Academy, UK, a member of EPSRC College, a senior member of IEEE and a senior member of ACM. In addition to being a member of advisory committees of many international conferences, he is an Editorial Board Member of various peer-reviewed international journals. He has served as guest editor for a number of special issues of peer-reviewed international journals.",institutionString:null,institution:{name:"University of the West of England",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"275140",title:"Dr.",name:"Dinh Hoa",middleName:null,surname:"Nguyen",slug:"dinh-hoa-nguyen",fullName:"Dinh Hoa Nguyen",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRbnKQAS/Profile_Picture_1622204093453",institutionString:null,institution:{name:"Kyushu University",institutionURL:null,country:{name:"Japan"}}},{id:"20259",title:"Dr.",name:"Hongbin",middleName:null,surname:"Ma",slug:"hongbin-ma",fullName:"Hongbin Ma",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRhDJQA0/Profile_Picture_2022-05-02T08:25:21.jpg",institutionString:null,institution:{name:"Beijing Institute of Technology",institutionURL:null,country:{name:"China"}}},{id:"28640",title:"Prof.",name:"Yasushi",middleName:null,surname:"Kambayashi",slug:"yasushi-kambayashi",fullName:"Yasushi Kambayashi",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYOQxQAO/Profile_Picture_1625660525470",institutionString:null,institution:{name:"Nippon Institute of Technology",institutionURL:null,country:{name:"Japan"}}}]}]},overviewPageOFChapters:{paginationCount:4,paginationItems:[{id:"81821",title:"Pneumococcal Carriage in Jordanian Children and the Importance of Vaccination",doi:"10.5772/intechopen.104999",signatures:"Adnan Al-Lahham",slug:"pneumococcal-carriage-in-jordanian-children-and-the-importance-of-vaccination",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:null,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"81813",title:"Schistosomiasis: Discovery of New Molecules for Disease Treatment and Vaccine Development",doi:"10.5772/intechopen.104738",signatures:"Andressa Barban do Patrocinio",slug:"schistosomiasis-discovery-of-new-molecules-for-disease-treatment-and-vaccine-development",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"New Horizons for Schistosomiasis Research",coverURL:"https://cdn.intechopen.com/books/images_new/10829.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"81644",title:"Perspective Chapter: Ethics of Using Placebo Controlled Trials for Covid-19 Vaccine Development in Vulnerable Populations",doi:"10.5772/intechopen.104776",signatures:"Lesley Burgess, Jurie Jordaan and Matthew Wilson",slug:"perspective-chapter-ethics-of-using-placebo-controlled-trials-for-covid-19-vaccine-development-in-vu",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"80546",title:"Streptococcal Skin and Skin-Structure Infections",doi:"10.5772/intechopen.102894",signatures:"Alwyn Rapose",slug:"streptococcal-skin-and-skin-structure-infections",totalDownloads:48,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}}]},overviewPagePublishedBooks:{paginationCount:13,paginationItems:[{type:"book",id:"6667",title:"Influenza",subtitle:"Therapeutics and Challenges",coverURL:"https://cdn.intechopen.com/books/images_new/6667.jpg",slug:"influenza-therapeutics-and-challenges",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"105e347b2d5dbbe6b593aceffa051efa",volumeInSeries:1,fullTitle:"Influenza - Therapeutics and Challenges",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}]},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}]},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",slug:"current-topics-in-neglected-tropical-diseases",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"61c627da05b2ace83056d11357bdf361",volumeInSeries:3,fullTitle:"Current Topics in Neglected Tropical Diseases",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}]},{type:"book",id:"7839",title:"Malaria",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",slug:"malaria",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Fyson H. Kasenga",hash:"91cde4582ead884cb0f355a19b67cd56",volumeInSeries:4,fullTitle:"Malaria",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga",profilePictureURL:"https://mts.intechopen.com/storage/users/86725/images/system/86725.jpg",biography:"Dr. Kasenga is a graduate of Tumaini University, Kilimanjaro Christian Medical College, Moshi, Tanzania and Umeå University, Sweden. He obtained a Master’s degree in Public Health and PhD in Public Health and Epidemiology. He has a background in Clinical Medicine and has taken courses at higher diploma levels in public health from University of Transkei, Republic of South Africa, and African Medical and Research Foundation (AMREF) in Nairobi, Kenya. Dr. Kasenga worked in different places in and outside Malawi, and has held various positions, such as Licensed Medical Officer, HIV/AIDS Programme Officer, HIV/AIDS resource person in the International Department of Diakonhjemet College, Oslo, Norway. He also managed an Integrated HIV/AIDS Prevention programme for over 5 years. He is currently working as a Director for the Health Ministries Department of Malawi Union of the Seventh Day Adventist Church. Dr. Kasenga has published over 5 articles on HIV/AIDS issues focusing on Prevention of Mother to Child Transmission of HIV (PMTCT), including a book chapter on HIV testing counseling (currently in press). Dr. Kasenga is married to Grace and blessed with three children, a son and two daughters: Happy, Lettice and Sungani.",institutionString:"Malawi Adventist University",institution:{name:"Malawi Adventist University",institutionURL:null,country:{name:"Malawi"}}}]}]},openForSubmissionBooks:{paginationCount:4,paginationItems:[{id:"11445",title:"Multi-Agent Technologies and Machine Learning",coverURL:"https://cdn.intechopen.com/books/images_new/11445.jpg",hash:"d980826615baa6e33456e2a79064c5e8",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"March 29th 2022",isOpenForSubmission:!0,editors:[{id:"265237",title:"Prof.",name:"Igor",surname:"Sheremet",slug:"igor-sheremet",fullName:"Igor Sheremet"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11446",title:"Industry 4.0 - Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11446.jpg",hash:"be984f45b90c1003798661ef885d8a34",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 12th 2022",isOpenForSubmission:!0,editors:[{id:"303193",title:"Dr.",name:"Meisam",surname:"Gordan",slug:"meisam-gordan",fullName:"Meisam Gordan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11448",title:"Artificial Neural Networks - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11448.jpg",hash:"e57ff97a39cfc6fe68a1ac62b503dbe9",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 3rd 2022",isOpenForSubmission:!0,editors:[{id:"22866",title:"Dr.",name:"Chi Leung Patrick",surname:"Hui",slug:"chi-leung-patrick-hui",fullName:"Chi Leung Patrick Hui"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11447",title:"Swarm Intelligence - Recent Advances and Current Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11447.jpg",hash:"f68e3c3430a74fc7a7eb97f6ea2bb42e",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 14th 2022",isOpenForSubmission:!0,editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:49,paginationItems:[{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81756",title:"Alteration of Cytokines Level and Oxidative Stress Parameters in COVID-19",doi:"10.5772/intechopen.104950",signatures:"Marija Petrusevska, Emilija Atanasovska, Dragica Zendelovska, Aleksandar Eftimov and Katerina Spasovska",slug:"alteration-of-cytokines-level-and-oxidative-stress-parameters-in-covid-19",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}},{id:"81681",title:"Immunomodulatory Effects of a M2-Conditioned Medium (PRS® CK STORM): Theory on the Possible Complex Mechanism of Action through Anti-Inflammatory Modulation of the TLR System and the Purinergic System",doi:"10.5772/intechopen.104486",signatures:"Juan Pedro Lapuente",slug:"immunomodulatory-effects-of-a-m2-conditioned-medium-prs-ck-storm-theory-on-the-possible-complex-mech",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81647",title:"Diabetes and Epigenetics",doi:"10.5772/intechopen.104653",signatures:"Rasha A. Alhazzaa, Thomas Heinbockel and Antonei B. Csoka",slug:"diabetes-and-epigenetics",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"81580",title:"Graft-Versus-Host Disease: Pathogenesis and Treatment",doi:"10.5772/intechopen.104450",signatures:"Shin Mukai",slug:"graft-versus-host-disease-pathogenesis-and-treatment",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81533",title:"Prenylation of Natural Products: An Overview",doi:"10.5772/intechopen.104636",signatures:"Kantharaju Kamanna and Aravind Kamath",slug:"prenylation-of-natural-products-an-overview",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Kantharaju",surname:"Kamanna"}],book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}},{id:"81067",title:"Encapsulation of Essential Oils and Their Use in Food Applications",doi:"10.5772/intechopen.103147",signatures:"Hamdy A. Shaaban and Amr Farouk",slug:"encapsulation-of-essential-oils-and-their-use-in-food-applications",totalDownloads:47,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81099",title:"SK Channels and Heart Disease",doi:"10.5772/intechopen.104115",signatures:"Katherine Zhong, Shawn Kant, Frank Sellke and Jun Feng",slug:"sk-channels-and-heart-disease",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}}]},subseriesFiltersForOFChapters:[{caption:"Proteomics",value:18,count:3,group:"subseries"},{caption:"Metabolism",value:17,count:9,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:17,group:"subseries"},{caption:"Chemical Biology",value:15,count:19,group:"subseries"}],publishedBooks:{paginationCount:27,paginationItems:[{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",slug:"reactive-oxygen-species",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Rizwan Ahmad",hash:"176adcf090fdd1f93cb8ce3146e79ca1",volumeInSeries:28,fullTitle:"Reactive Oxygen Species",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",publishedDate:"March 23rd 2022",editedByType:"Edited by",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",hash:"8b43add5389ba85743e0a9491e4b9943",volumeInSeries:27,fullTitle:"Vitamin K - Recent Topics on the Biology and Chemistry",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9659",title:"Fibroblasts",subtitle:"Advances in Inflammation, Autoimmunity and Cancer",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",slug:"fibroblasts-advances-in-inflammation-autoimmunity-and-cancer",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Mojca Frank Bertoncelj and Katja Lakota",hash:"926fa6446f6befbd363fc74971a56de2",volumeInSeries:25,fullTitle:"Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer",editors:[{id:"328755",title:"Ph.D.",name:"Mojca",middleName:null,surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj",profilePictureURL:"https://mts.intechopen.com/storage/users/328755/images/system/328755.jpg",institutionString:"BioMed X Institute",institution:{name:"University Hospital of Zurich",institutionURL:null,country:{name:"Switzerland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8018",title:"Extracellular Matrix",subtitle:"Developments and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/8018.jpg",slug:"extracellular-matrix-developments-and-therapeutics",publishedDate:"October 27th 2021",editedByType:"Edited by",bookSignature:"Rama Sashank Madhurapantula, Joseph Orgel P.R.O. and Zvi Loewy",hash:"c85e82851e80b40282ff9be99ddf2046",volumeInSeries:23,fullTitle:"Extracellular Matrix - Developments and Therapeutics",editors:[{id:"212416",title:"Dr.",name:"Rama Sashank",middleName:null,surname:"Madhurapantula",slug:"rama-sashank-madhurapantula",fullName:"Rama Sashank Madhurapantula",profilePictureURL:"https://mts.intechopen.com/storage/users/212416/images/system/212416.jpg",institutionString:"Illinois Institute of Technology",institution:{name:"Illinois Institute of Technology",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9759",title:"Vitamin E in Health and Disease",subtitle:"Interactions, Diseases and Health Aspects",coverURL:"https://cdn.intechopen.com/books/images_new/9759.jpg",slug:"vitamin-e-in-health-and-disease-interactions-diseases-and-health-aspects",publishedDate:"October 6th 2021",editedByType:"Edited by",bookSignature:"Pınar Erkekoglu and Júlia Scherer Santos",hash:"6c3ddcc13626110de289b57f2516ac8f",volumeInSeries:22,fullTitle:"Vitamin E in Health and Disease - Interactions, Diseases and Health Aspects",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoğlu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoğlu",profilePictureURL:"https://mts.intechopen.com/storage/users/109978/images/system/109978.jpg",institutionString:"Hacettepe University",institution:{name:"Hacettepe University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9753",title:"Terpenes and Terpenoids",subtitle:"Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/9753.jpg",slug:"terpenes-and-terpenoids-recent-advances",publishedDate:"July 28th 2021",editedByType:"Edited by",bookSignature:"Shagufta Perveen and Areej Mohammad Al-Taweel",hash:"575689df13c78bf0e6c1be40804cd010",volumeInSeries:21,fullTitle:"Terpenes and Terpenoids - Recent Advances",editors:[{id:"192992",title:"Prof.",name:"Shagufta",middleName:null,surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen",profilePictureURL:"https://mts.intechopen.com/storage/users/192992/images/system/192992.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9403",title:"Human Microbiome",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9403.jpg",slug:"human-microbiome",publishedDate:"June 16th 2021",editedByType:"Edited by",bookSignature:"Natalia V. Beloborodova and Andrey V. Grechko",hash:"c31366ba82585ba3ac91d21eb1cf0a4d",volumeInSeries:20,fullTitle:"Human Microbiome",editors:[{id:"199461",title:"Prof.",name:"Natalia V.",middleName:null,surname:"Beloborodova",slug:"natalia-v.-beloborodova",fullName:"Natalia V. Beloborodova",profilePictureURL:"https://mts.intechopen.com/storage/users/199461/images/system/199461.jpg",institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",slug:"oxidoreductase",publishedDate:"February 17th 2021",editedByType:"Edited by",bookSignature:"Mahmoud Ahmed Mansour",hash:"852e6f862c85fc3adecdbaf822e64e6e",volumeInSeries:19,fullTitle:"Oxidoreductase",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour",profilePictureURL:"https://mts.intechopen.com/storage/users/224662/images/system/224662.jpg",institutionString:"King Saud bin Abdulaziz University for Health Sciences",institution:{name:"King Saud bin Abdulaziz University for Health Sciences",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9742",title:"Ubiquitin",subtitle:"Proteasome Pathway",coverURL:"https://cdn.intechopen.com/books/images_new/9742.jpg",slug:"ubiquitin-proteasome-pathway",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"af6880d3a5571da1377ac8f6373b9e82",volumeInSeries:18,fullTitle:"Ubiquitin - Proteasome Pathway",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9002",title:"Glutathione System and Oxidative Stress in Health and Disease",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9002.jpg",slug:"glutathione-system-and-oxidative-stress-in-health-and-disease",publishedDate:"August 26th 2020",editedByType:"Edited by",bookSignature:"Margarete Dulce Bagatini",hash:"127defed0a50ad5ed92338dc96e1e10e",volumeInSeries:17,fullTitle:"Glutathione System and Oxidative Stress in Health and Disease",editors:[{id:"217850",title:"Dr.",name:"Margarete Dulce",middleName:null,surname:"Bagatini",slug:"margarete-dulce-bagatini",fullName:"Margarete Dulce Bagatini",profilePictureURL:"https://mts.intechopen.com/storage/users/217850/images/system/217850.jpeg",institutionString:"Universidade Federal da Fronteira Sul",institution:{name:"Universidade Federal da Fronteira Sul",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Proteomics",value:18,count:3},{group:"subseries",caption:"Metabolism",value:17,count:6},{group:"subseries",caption:"Cell and Molecular Biology",value:14,count:8},{group:"subseries",caption:"Chemical Biology",value:15,count:10}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:3},{group:"publicationYear",caption:"2021",value:2021,count:7},{group:"publicationYear",caption:"2020",value:2020,count:12},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:2}],authors:{paginationCount:301,paginationItems:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",biography:"Professor Nima Rezaei obtained an MD from Tehran University of Medical Sciences, Iran. He also obtained an MSc in Molecular and Genetic Medicine, and a Ph.D. in Clinical Immunology and Human Genetics from the University of Sheffield, UK. He also completed a short-term fellowship in Pediatric Clinical Immunology and Bone Marrow Transplantation at Newcastle General Hospital, England. Dr. Rezaei is a Full Professor of Immunology and Vice Dean of International Affairs and Research, at the School of Medicine, Tehran University of Medical Sciences, and the co-founder and head of the Research Center for Immunodeficiencies. He is also the founding president of the Universal Scientific Education and Research Network (USERN). Dr. Rezaei has directed more than 100 research projects and has designed and participated in several international collaborative projects. He is an editor, editorial assistant, or editorial board member of more than forty international journals. He has edited more than 50 international books, presented more than 500 lectures/posters in congresses/meetings, and published more than 1,100 scientific papers in international journals.",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",country:{name:"Iran"}}},{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",biography:"Dr. Jean Engohang-Ndong was born and raised in Gabon. After obtaining his Associate Degree of Science at the University of Science and Technology of Masuku, Gabon, he continued his education in France where he obtained his BS, MS, and Ph.D. in Medical Microbiology. He worked as a post-doctoral fellow at the Public Health Research Institute (PHRI), Newark, NJ for four years before accepting a three-year faculty position at Brigham Young University-Hawaii. Dr. Engohang-Ndong is a tenured faculty member with the academic rank of Full Professor at Kent State University, Ohio, where he teaches a wide range of biological science courses and pursues his research in medical and environmental microbiology. Recently, he expanded his research interest to epidemiology and biostatistics of chronic diseases in Gabon.",institutionString:"Kent State University",institution:{name:"Kent State University",country:{name:"United States of America"}}},{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",biography:"Emmanuel Drouet, PharmD, is a Professor of Virology at the Faculty of Pharmacy, the University Grenoble-Alpes, France. As a head scientist at the Institute of Structural Biology in Grenoble, Dr. Drouet’s research investigates persisting viruses in humans (RNA and DNA viruses) and the balance with our host immune system. He focuses on these viruses’ effects on humans (both their impact on pathology and their symbiotic relationships in humans). He has an excellent track record in the herpesvirus field, and his group is engaged in clinical research in the field of Epstein-Barr virus diseases. He is the editor of the online Encyclopedia of Environment and he coordinates the Universal Health Coverage education program for the BioHealth Computing Schools of the European Institute of Science.",institutionString:null,institution:{name:"Grenoble Alpes University",country:{name:"France"}}},{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},{id:"332819",title:"Dr.",name:"Chukwudi Michael",middleName:"Michael",surname:"Egbuche",slug:"chukwudi-michael-egbuche",fullName:"Chukwudi Michael Egbuche",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/332819/images/14624_n.jpg",biography:"I an Dr. Chukwudi Michael Egbuche. I am a Senior Lecturer in the Department of Parasitology and Entomology, Nnamdi Azikiwe University, Awka.",institutionString:null,institution:{name:"Nnamdi Azikiwe University",country:{name:"Nigeria"}}},{id:"284232",title:"Mr.",name:"Nikunj",middleName:"U",surname:"Tandel",slug:"nikunj-tandel",fullName:"Nikunj Tandel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/284232/images/8275_n.jpg",biography:'Mr. Nikunj Tandel has completed his Master\'s degree in Biotechnology from VIT University, India in the year of 2012. He is having 8 years of research experience especially in the field of malaria epidemiology, immunology, and nanoparticle-based drug delivery system against the infectious diseases, autoimmune disorders and cancer. He has worked for the NIH funded-International Center of Excellence in Malaria Research project "Center for the study of complex malaria in India (CSCMi)" in collaboration with New York University. The preliminary objectives of the study are to understand and develop the evidence-based tools and interventions for the control and prevention of malaria in different sites of the INDIA. Alongside, with the help of next-generation genomics study, the team has studied the antimalarial drug resistance in India. Further, he has extended his research in the development of Humanized mice for the study of liver-stage malaria and identification of molecular marker(s) for the Artemisinin resistance. At present, his research focuses on understanding the role of B cells in the activation of CD8+ T cells in malaria. Received the CSIR-SRF (Senior Research Fellow) award-2018, FIMSA (Federation of Immunological Societies of Asia-Oceania) Travel Bursary award to attend the IUIS-IIS-FIMSA Immunology course-2019',institutionString:"Nirma University",institution:{name:"Nirma University",country:{name:"India"}}},{id:"334383",title:"Ph.D.",name:"Simone",middleName:"Ulrich",surname:"Ulrich Picoli",slug:"simone-ulrich-picoli",fullName:"Simone Ulrich Picoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334383/images/15919_n.jpg",biography:"Graduated in Pharmacy from Universidade Luterana do Brasil (1999), Master in Agricultural and Environmental Microbiology from Federal University of Rio Grande do Sul (2002), Specialization in Clinical Microbiology from Universidade de São Paulo, USP (2007) and PhD in Sciences in Gastroenterology and Hepatology (2012). She is currently an Adjunct Professor at Feevale University in Medicine and Biomedicine courses and a permanent professor of the Academic Master\\'s Degree in Virology. She has experience in the field of Microbiology, with an emphasis on Bacteriology, working mainly on the following topics: bacteriophages, bacterial resistance, clinical microbiology and food microbiology.",institutionString:null,institution:{name:"Universidade Feevale",country:{name:"Brazil"}}},{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",biography:"Dr. Amjad Islam Aqib obtained a DVM and MSc (Hons) from University of Agriculture Faisalabad (UAF), Pakistan, and a PhD from the University of Veterinary and Animal Sciences Lahore, Pakistan. Dr. Aqib joined the Department of Clinical Medicine and Surgery at UAF for one year as an assistant professor where he developed a research laboratory designated for pathogenic bacteria. Since 2018, he has been Assistant Professor/Officer in-charge, Department of Medicine, Manager Research Operations and Development-ORIC, and President One Health Club at Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan. He has nearly 100 publications to his credit. His research interests include epidemiological patterns and molecular analysis of antimicrobial resistance and modulation and vaccine development against animal pathogens of public health concern.",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:null},{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",biography:"Professor Fethi Derbel was born in 1960 in Tunisia. He received his medical degree from the Sousse Faculty of Medicine at Sousse, University of Sousse, Tunisia. He completed his surgical residency in General Surgery at the University Hospital Farhat Hached of Sousse and was a member of the Unit of Liver Transplantation in the University of Rennes, France. He then worked in the Department of Surgery at the Sahloul University Hospital in Sousse. Professor Derbel is presently working at the Clinique les Oliviers, Sousse, Tunisia. His hospital activities are mostly concerned with laparoscopic, colorectal, pancreatic, hepatobiliary, and gastric surgery. He is also very interested in hernia surgery and performs ventral hernia repairs and inguinal hernia repairs. He has been a member of the GREPA and Tunisian Hernia Society (THS). During his residency, he managed patients suffering from diabetic foot, and he was very interested in this pathology. For this reason, he decided to coordinate a book project dealing with the diabetic foot. Professor Derbel has published many articles in journals and collaborates intensively with IntechOpen Access Publisher as an editor.",institutionString:"Clinique les Oliviers",institution:null},{id:"300144",title:"Dr.",name:"Meriem",middleName:null,surname:"Braiki",slug:"meriem-braiki",fullName:"Meriem Braiki",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/300144/images/system/300144.jpg",biography:"Dr. Meriem Braiki is a specialist in pediatric surgeon from Tunisia. She was born in 1985. She received her medical degree from the University of Medicine at Sousse, Tunisia. She achieved her surgical residency training periods in Pediatric Surgery departments at University Hospitals in Monastir, Tunis and France.\r\nShe is currently working at the Pediatric surgery department, Sidi Bouzid Hospital, Tunisia. Her hospital activities are mostly concerned with laparoscopic, parietal, urological and digestive surgery. She has published several articles in diffrent journals.",institutionString:"Sidi Bouzid Regional Hospital",institution:null},{id:"229481",title:"Dr.",name:"Erika M.",middleName:"Martins",surname:"de Carvalho",slug:"erika-m.-de-carvalho",fullName:"Erika M. de Carvalho",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229481/images/6397_n.jpg",biography:null,institutionString:null,institution:{name:"Oswaldo Cruz Foundation",country:{name:"Brazil"}}},{id:"186537",title:"Prof.",name:"Tonay",middleName:null,surname:"Inceboz",slug:"tonay-inceboz",fullName:"Tonay Inceboz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/186537/images/system/186537.jfif",biography:"I was graduated from Ege University of Medical Faculty (Turkey) in 1988 and completed his Med. PhD degree in Medical Parasitology at the same university. I became an Associate Professor in 2008 and Professor in 2014. I am currently working as a Professor at the Department of Medical Parasitology at Dokuz Eylul University, Izmir, Turkey.\n\nI have given many lectures, presentations in different academic meetings. I have more than 60 articles in peer-reviewed journals, 18 book chapters, 1 book editorship.\n\nMy research interests are Echinococcus granulosus, Echinococcus multilocularis (diagnosis, life cycle, in vitro and in vivo cultivation), and Trichomonas vaginalis (diagnosis, PCR, and in vitro cultivation).",institutionString:"Dokuz Eylül University",institution:{name:"Dokuz Eylül University",country:{name:"Turkey"}}},{id:"71812",title:"Prof.",name:"Hanem Fathy",middleName:"Fathy",surname:"Khater",slug:"hanem-fathy-khater",fullName:"Hanem Fathy Khater",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/71812/images/1167_n.jpg",biography:"Prof. Khater is a Professor of Parasitology at Benha University, Egypt. She studied for her doctoral degree, at the Department of Entomology, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, USA. She has completed her Ph.D. degrees in Parasitology in Egypt, from where she got the award for “the best scientific Ph.D. dissertation”. She worked at the School of Biological Sciences, Bristol, England, the UK in controlling insects of medical and veterinary importance as a grant from Newton Mosharafa, the British Council. Her research is focused on searching of pesticides against mosquitoes, house flies, lice, green bottle fly, camel nasal botfly, soft and hard ticks, mites, and the diamondback moth as well as control of several parasites using safe and natural materials to avoid drug resistances and environmental contamination.",institutionString:null,institution:{name:"Banha University",country:{name:"Egypt"}}},{id:"99780",title:"Prof.",name:"Omolade",middleName:"Olayinka",surname:"Okwa",slug:"omolade-okwa",fullName:"Omolade Okwa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/99780/images/system/99780.jpg",biography:"Omolade Olayinka Okwa is presently a Professor of Parasitology at Lagos State University, Nigeria. She has a PhD in Parasitology (1997), an MSc in Cellular Parasitology (1992), and a BSc (Hons) Zoology (1990) all from the University of Ibadan, Nigeria. She teaches parasitology at the undergraduate and postgraduate levels. She was a recipient of a Commonwealth fellowship supported by British Council tenable at the Centre for Entomology and Parasitology (CAEP), Keele University, United Kingdom between 2004 and 2005. She was awarded an Honorary Visiting Research Fellow at the same university from 2005 to 2007. \nShe has been an external examiner to the Department of Veterinary Microbiology and Parasitology, University of Ibadan, MSc programme between 2010 and 2012. She is a member of the Nigerian Society of Experimental Biology (NISEB), Parasitology and Public Health Society of Nigeria (PPSN), Science Association of Nigeria (SAN), Zoological Society of Nigeria (ZSN), and is Vice Chairperson of the Organisation of Women in Science (OWSG), LASU chapter. She served as Head of Department of Zoology and Environmental Biology, Lagos State University from 2007 to 2010 and 2014 to 2016. She is a reviewer for several local and international journals such as Unilag Journal of Science, Libyan Journal of Medicine, Journal of Medicine and Medical Sciences, and Annual Research and Review in Science. \nShe has authored 45 scientific research publications in local and international journals, 8 scientific reviews, 4 books, and 3 book chapters, which includes the books “Malaria Parasites” and “Malaria” which are IntechOpen access publications.",institutionString:"Lagos State University",institution:{name:"Lagos State University",country:{name:"Nigeria"}}},{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/273100/images/system/273100.jpeg",biography:"Dr. Vijay Bhaskar Reddy Gayam is currently practicing as an internist at Interfaith Medical Center in Brooklyn, New York, USA. He is also a Clinical Assistant Professor at the SUNY Downstate University Hospital and Adjunct Professor of Medicine at the American University of Antigua. He is a holder of an M.B.B.S. degree bestowed to him by Osmania Medical College and received his M.D. at Interfaith Medical Center. His career goals thus far have heavily focused on direct patient care, medical education, and clinical research. He currently serves in two leadership capacities; Assistant Program Director of Medicine at Interfaith Medical Center and as a Councilor for the American\r\nFederation for Medical Research. As a true academician and researcher, he has more than 50 papers indexed in international peer-reviewed journals. He has also presented numerous papers in multiple national and international scientific conferences. His areas of research interest include general internal medicine, gastroenterology and hepatology. He serves as an editor, editorial board member and reviewer for multiple international journals. His research on Hepatitis C has been very successful and has led to multiple research awards, including the 'Equity in Prevention and Treatment Award” from the New York Department of Health Viral Hepatitis Symposium (2018) and the 'Presidential Poster Award” awarded to him by the American College of Gastroenterology (2018). He was also awarded 'Outstanding Clinician in General Medicine” by Venus International Foundation for his extensive research expertise and services, perform over and above the standard expected in the advancement of healthcare, patient safety and quality of care.",institutionString:"Interfaith Medical Center",institution:{name:"Interfaith Medical Center",country:{name:"United States of America"}}},{id:"93517",title:"Dr.",name:"Clement",middleName:"Adebajo",surname:"Meseko",slug:"clement-meseko",fullName:"Clement Meseko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/93517/images/system/93517.jpg",biography:"Dr. Clement Meseko obtained DVM and PhD degree in Veterinary Medicine and Virology respectively. He has worked for over 20 years in both private and public sectors including the academia, contributing to knowledge and control of infectious disease. Through the application of epidemiological skill, classical and molecular virological skills, he investigates viruses of economic and public health importance for the mitigation of the negative impact on people, animal and the environment in the context of Onehealth. \r\nDr. Meseko’s field experience on animal and zoonotic diseases and pathogen dynamics at the human-animal interface over the years shaped his carrier in research and scientific inquiries. He has been part of the investigation of Highly Pathogenic Avian Influenza incursions in sub Saharan Africa and monitors swine Influenza (Pandemic influenza Virus) agro-ecology and potential for interspecies transmission. He has authored and reviewed a number of journal articles and book chapters.",institutionString:"National Veterinary Research Institute",institution:{name:"National Veterinary Research Institute",country:{name:"Nigeria"}}},{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",country:{name:"India"}}},{id:"94928",title:"Dr.",name:"Takuo",middleName:null,surname:"Mizukami",slug:"takuo-mizukami",fullName:"Takuo Mizukami",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94928/images/6402_n.jpg",biography:null,institutionString:null,institution:{name:"National Institute of Infectious Diseases",country:{name:"Japan"}}},{id:"233433",title:"Dr.",name:"Yulia",middleName:null,surname:"Desheva",slug:"yulia-desheva",fullName:"Yulia Desheva",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/233433/images/system/233433.png",biography:"Dr. Yulia Desheva is a leading researcher at the Institute of Experimental Medicine, St. Petersburg, Russia. She is a professor in the Stomatology Faculty, St. Petersburg State University. She has expertise in the development and evaluation of a wide range of live mucosal vaccines against influenza and bacterial complications. Her research interests include immunity against influenza and COVID-19 and the development of immunization schemes for high-risk individuals.",institutionString:'Federal State Budgetary Scientific Institution "Institute of Experimental Medicine"',institution:null},{id:"238958",title:"Mr.",name:"Atamjit",middleName:null,surname:"Singh",slug:"atamjit-singh",fullName:"Atamjit Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/238958/images/6575_n.jpg",biography:null,institutionString:null,institution:null},{id:"333753",title:"Dr.",name:"Rais",middleName:null,surname:"Ahmed",slug:"rais-ahmed",fullName:"Rais Ahmed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/333753/images/20168_n.jpg",biography:null,institutionString:null,institution:null},{id:"252058",title:"M.Sc.",name:"Juan",middleName:null,surname:"Sulca",slug:"juan-sulca",fullName:"Juan Sulca",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252058/images/12834_n.jpg",biography:null,institutionString:null,institution:null},{id:"191392",title:"Dr.",name:"Marimuthu",middleName:null,surname:"Govindarajan",slug:"marimuthu-govindarajan",fullName:"Marimuthu Govindarajan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/191392/images/5828_n.jpg",biography:"Dr. M. Govindarajan completed his BSc degree in Zoology at Government Arts College (Autonomous), Kumbakonam, and MSc, MPhil, and PhD degrees at Annamalai University, Annamalai Nagar, Tamil Nadu, India. He is serving as an assistant professor at the Department of Zoology, Annamalai University. His research interests include isolation, identification, and characterization of biologically active molecules from plants and microbes. He has identified more than 20 pure compounds with high mosquitocidal activity and also conducted high-quality research on photochemistry and nanosynthesis. He has published more than 150 studies in journals with impact factor and 2 books in Lambert Academic Publishing, Germany. He serves as an editorial board member in various national and international scientific journals.",institutionString:null,institution:null},{id:"274660",title:"Dr.",name:"Damodar",middleName:null,surname:"Paudel",slug:"damodar-paudel",fullName:"Damodar Paudel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274660/images/8176_n.jpg",biography:"I am DrDamodar Paudel,currently working as consultant Physician in Nepal police Hospital.",institutionString:null,institution:null},{id:"241562",title:"Dr.",name:"Melvin",middleName:null,surname:"Sanicas",slug:"melvin-sanicas",fullName:"Melvin Sanicas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241562/images/6699_n.jpg",biography:null,institutionString:null,institution:null},{id:"337446",title:"Dr.",name:"Maria",middleName:null,surname:"Zavala-Colon",slug:"maria-zavala-colon",fullName:"Maria Zavala-Colon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Puerto Rico, Medical Sciences Campus",country:{name:"United States of America"}}},{id:"338856",title:"Mrs.",name:"Nur Alvira",middleName:null,surname:"Pascawati",slug:"nur-alvira-pascawati",fullName:"Nur Alvira Pascawati",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universitas Respati Yogyakarta",country:{name:"Indonesia"}}},{id:"441116",title:"Dr.",name:"Jovanka M.",middleName:null,surname:"Voyich",slug:"jovanka-m.-voyich",fullName:"Jovanka M. Voyich",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Montana State University",country:{name:"United States of America"}}},{id:"330412",title:"Dr.",name:"Muhammad",middleName:null,surname:"Farhab",slug:"muhammad-farhab",fullName:"Muhammad Farhab",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Agriculture Faisalabad",country:{name:"Pakistan"}}},{id:"349495",title:"Dr.",name:"Muhammad",middleName:null,surname:"Ijaz",slug:"muhammad-ijaz",fullName:"Muhammad Ijaz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Veterinary and Animal Sciences",country:{name:"Pakistan"}}}]}},subseries:{item:{id:"13",type:"subseries",title:"Plant Physiology",keywords:"Plant Nutrition, Plant Hormone, Photosynthesis, Respiration, Plant Stress, Multi-omics, High-throughput Technology, Genome Editing",scope:"Plant Physiology explores fundamental processes in plants, and it includes subtopics such as plant nutrition, plant hormone, photosynthesis, respiration, and plant stress. In recent years, emerging technologies such as multi-omics, high-throughput technologies, and genome editing tools could assist plant physiologists in unraveling molecular mechanisms in specific critical pathways. The global picture of physiological processes in plants needs to be investigated continually to increase our knowledge, and the resulting technologies will benefit sustainable agriculture.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/13.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11409,editor:{id:"332229",title:"Prof.",name:"Jen-Tsung",middleName:null,surname:"Chen",slug:"jen-tsung-chen",fullName:"Jen-Tsung Chen",profilePictureURL:"https://mts.intechopen.com/storage/users/332229/images/system/332229.png",biography:"Dr. Jen-Tsung Chen is currently a professor at the National University of Kaohsiung, Taiwan. He teaches cell biology, genomics, proteomics, medicinal plant biotechnology, and plant tissue culture. Dr. Chen\\'s research interests include bioactive compounds, chromatography techniques, in vitro culture, medicinal plants, phytochemicals, and plant biotechnology. He has published more than ninety scientific papers and serves as an editorial board member for Plant Methods, Biomolecules, and International Journal of Molecular Sciences.",institutionString:"National University of Kaohsiung",institution:{name:"National University of Kaohsiung",institutionURL:null,country:{name:"Taiwan"}}},editorTwo:null,editorThree:null,series:{id:"10",title:"Physiology",doi:"10.5772/intechopen.72796",issn:"2631-8261"},editorialBoard:[{id:"313856",title:"Dr.",name:"Christophe",middleName:"F.E.",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano",profilePictureURL:"https://mts.intechopen.com/storage/users/313856/images/system/313856.png",institutionString:"University of Orléans",institution:{name:"University of Orléans",institutionURL:null,country:{name:"France"}}},{id:"33993",title:"Dr.",name:"Jose Carlos",middleName:null,surname:"Jimenez-Lopez",slug:"jose-carlos-jimenez-lopez",fullName:"Jose Carlos Jimenez-Lopez",profilePictureURL:"https://mts.intechopen.com/storage/users/33993/images/system/33993.jpg",institutionString:null,institution:{name:"Spanish National Research Council",institutionURL:null,country:{name:"Spain"}}},{id:"191770",title:"Dr.",name:"Mohamed A.",middleName:null,surname:"El-Esawi",slug:"mohamed-a.-el-esawi",fullName:"Mohamed A. El-Esawi",profilePictureURL:"https://mts.intechopen.com/storage/users/191770/images/system/191770.jpeg",institutionString:null,institution:{name:"Tanta University",institutionURL:null,country:{name:"Egypt"}}},{id:"247858",title:"Dr.",name:"Saddam",middleName:null,surname:"Hussain",slug:"saddam-hussain",fullName:"Saddam Hussain",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSF2aQAG/Profile_Picture_1625658281836",institutionString:null,institution:{name:"University of Agriculture Faisalabad",institutionURL:null,country:{name:"Pakistan"}}}]},onlineFirstChapters:{paginationCount:13,paginationItems:[{id:"81751",title:"NanoBioSensors: From Electrochemical Sensors Improvement to Theranostic Applications",doi:"10.5772/intechopen.102552",signatures:"Anielle C.A. Silva, Eliete A. Alvin, Lais S. de Jesus, Caio C.L. de França, Marílya P.G. da Silva, Samaysa L. Lins, Diógenes Meneses, Marcela R. Lemes, Rhanoica O. Guerra, Marcos V. da Silva, Carlo J.F. de Oliveira, Virmondes Rodrigues Junior, Renata M. Etchebehere, Fabiane C. de Abreu, Bruno G. Lucca, Sanívia A.L. Pereira, Rodrigo C. Rosa and Noelio O. Dantas",slug:"nanobiosensors-from-electrochemical-sensors-improvement-to-theranostic-applications",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81678",title:"Developmental Studies on Practical Enzymatic Phosphate Ion Biosensors and Microbial BOD Biosensors, and New Insights into the Future Perspectives of These Biosensor Fields",doi:"10.5772/intechopen.104377",signatures:"Hideaki Nakamura",slug:"developmental-studies-on-practical-enzymatic-phosphate-ion-biosensors-and-microbial-bod-biosensors-a",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hideaki",surname:"Nakamura"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81412",title:"Mathematical Morphology and the Heart Signals",doi:"10.5772/intechopen.104113",signatures:"Taouli Sidi Ahmed",slug:"mathematical-morphology-and-the-heart-signals",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81360",title:"Deep Learning Algorithms for Efficient Analysis of ECG Signals to Detect Heart Disorders",doi:"10.5772/intechopen.103075",signatures:"Sumagna Dey, Rohan Pal and Saptarshi Biswas",slug:"deep-learning-algorithms-for-efficient-analysis-of-ecg-signals-to-detect-heart-disorders",totalDownloads:31,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81068",title:"Characteristic Profiles of Heart Rate Variability in Depression and Anxiety",doi:"10.5772/intechopen.104205",signatures:"Toshikazu Shinba",slug:"characteristic-profiles-of-heart-rate-variability-in-depression-and-anxiety",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80691",title:"Applications of Quantum Mechanics, Laws of Classical Physics, and Differential Calculus to Evaluate Source Localization According to the Electroencephalogram",doi:"10.5772/intechopen.102831",signatures:"Kristin S. Williams",slug:"applications-of-quantum-mechanics-laws-of-classical-physics-and-differential-calculus-to-evaluate-so",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80643",title:"EEG Authentication System Using Fuzzy Vault Scheme",doi:"10.5772/intechopen.102699",signatures:"Fatima M. Baqer and Salah Albermany",slug:"eeg-authentication-system-using-fuzzy-vault-scheme",totalDownloads:34,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80529",title:"Effective EEG Artifact Removal from EEG Signal",doi:"10.5772/intechopen.102698",signatures:"Vandana Roy",slug:"effective-eeg-artifact-removal-from-eeg-signal",totalDownloads:66,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80505",title:"Soft Tissue Image Reconstruction Using Diffuse Optical Tomography",doi:"10.5772/intechopen.102463",signatures:"Umamaheswari K, Shrichandran G.V. and Jebaderwin D.",slug:"soft-tissue-image-reconstruction-using-diffuse-optical-tomography",totalDownloads:47,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"79881",title:"Control of Cytoskeletal Dynamics in Cancer through a Combination of Cytoskeletal Components",doi:"10.5772/intechopen.101624",signatures:"Ban Hussein Alwash, Rawan Asaad Jaber Al-Rubaye, Mustafa Mohammad Alaaraj and Anwar Yahya Ebrahim",slug:"control-of-cytoskeletal-dynamics-in-cancer-through-a-combination-of-cytoskeletal-components",totalDownloads:104,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"79580",title:"Dotting the “i” of Interoperability in FAIR Cancer-Registry Data Sets",doi:"10.5772/intechopen.101330",signatures:"Nicholas Nicholson, Francesco Giusti, Luciana Neamtiu, Giorgia Randi, Tadeusz Dyba, Manola Bettio, Raquel Negrao Carvalho, Nadya Dimitrova, Manuela Flego and Carmen Martos",slug:"dotting-the-i-of-interoperability-in-fair-cancer-registry-data-sets",totalDownloads:100,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"79550",title:"Urologic Cancer Molecular Biology",doi:"10.5772/intechopen.101381",signatures:"Pavel Onofrei, Viorel Dragoș Radu, Alina-Alexandra Onofrei, Stoica Laura, Doinita Temelie-Olinici, Ana-Emanuela Botez, Vasile Bogdan Grecu and Elena Carmen Cotrutz",slug:"urologic-cancer-molecular-biology",totalDownloads:96,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"79450",title:"Identification of Biomarkers Associated with Cancer Using Integrated Bioinformatic Analysis",doi:"10.5772/intechopen.101432",signatures:"Arpana Parihar, Shivani Malviya and Raju Khan",slug:"identification-of-biomarkers-associated-with-cancer-using-integrated-bioinformatic-analysis",totalDownloads:156,totalCrossrefCites:1,totalDimensionsCites:1,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}}]},publishedBooks:{},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.jpg",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/88030",hash:"",query:{},params:{id:"88030"},fullPath:"/profiles/88030",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()