\r\n\tThis book will describe the self-assembly of materials and supramolecular chemistry design principles for a broad spectrum of materials, including bio-inspired amphiphiles, metal oxides, metal nanoparticles, and organic-inorganic hybrid materials. It will provide fundamental concepts of self-assembly design approaches and supramolecular chemistry principles for research ideas in nanotechnology applications. The book will focus on three main themes, which include: the self-assembly and supramolecular chemistry of amphiplies by coordination programming, the supramolecular structures and devices of inorganic materials, and the assembly-disassembly of organic-inorganic hybrid materials. The contributing chapters will be written by leading scientists in their field, with the hope that this book will provide a foundation on supramolecular chemistry principles to students and active researchers who are interested in nanoscience and nanoengineering fields.
",isbn:"978-1-83969-702-9",printIsbn:"978-1-83969-701-2",pdfIsbn:"978-1-83969-703-6",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"e9cc643ae0a219e91e445a1e61b33a22",bookSignature:"Prof. Hemali Rathnayake and Dr. Gayani Pathiraja",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11908.jpg",keywords:"Amphiphiles, Artificial Siderophores, Coordination Chemistry, Self-Assembly Design, Supramolecular Structures, Metal Oxides, Metal Particles, 2D Inorganic Materials, Supramolecular Devices, Stimuli-Responsive Materials, Assembly-Disassembly Design, Superstructures",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 27th 2022",dateEndSecondStepPublish:"July 1st 2022",dateEndThirdStepPublish:"August 30th 2022",dateEndFourthStepPublish:"November 18th 2022",dateEndFifthStepPublish:"January 17th 2023",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"a month",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Dr. Rathnayake is a pioneering researcher in self-assembly and supramolecular chemistry, with a Ph.D. from the University of Massachusetts Amherst, US. She is an inventor of three innovative technologies, including the Bioinspried Sub-7 nm self-assembled structures for patterning, and holder of multiple registered patents.",coeditorOneBiosketch:"Dr. Gayani Pathiraja is a Postdoctoral Research Scholar at the Joint School of Nanoscience and Nanoengineering (JSNN). She received her Ph.D. in Nanoscience from the University of North Carolina at Greensboro in 2021. Her research interests focus on the crystal growth mechanism and kinetics of metal oxide nanostructure formation via self-assembly.",coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"323782",title:"Prof.",name:"Hemali",middleName:null,surname:"Rathnayake",slug:"hemali-rathnayake",fullName:"Hemali Rathnayake",profilePictureURL:"https://mts.intechopen.com/storage/users/323782/images/system/323782.jpg",biography:"Dr. Hemali Rathnayake, Associate Professor in the Department of Nanoscience at the Joint School of Nanoscience and Nanoengineering, the University of North Carolina at Greensboro, USA, obtained her B.S. in Chemistry from the University of Peradeniya in Sri Lanka. She obtained her Ph.D. from the University of Massachusetts Amherst (UMass), Department of Chemistry in 2007. She was a Postdoctoral research fellow at Polymer Science & Engineering, UMass Amherst. \r\nDr. Rathnayake is a pioneer scientist and a chemist in the field of Nanomaterials Chemistry, with a focus on the interfacial interaction of nanomaterials, molecules, macromolecules, and polymers in homogeneous and heterogeneous media. Her research on the design, synthesis, self-assembly, and application of well-defined superstructures in nanoelectronics, environmental remediation, and sustainable energy has impacted the scientific community with highly rated peer-reviewed journals publications, and more than 80 invited talks to scientific and non-scientific communities including colleges and high schools.",institutionString:"University of North Carolina at Greensboro",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of North Carolina at Greensboro",institutionURL:null,country:{name:"United States of America"}}}],coeditorOne:{id:"427650",title:"Dr.",name:"Gayani",middleName:null,surname:"Pathiraja",slug:"gayani-pathiraja",fullName:"Gayani Pathiraja",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003CCSN2QAP/Profile_Picture_1644217020559",biography:"Dr. Gayani Pathiraja is a Postdoctoral Research Scholar at the Joint School of Nanoscience and Nanoengineering (JSNN). She received her Ph.D. in Nanoscience from the University of North Carolina at Greensboro (UNCG) in 2021. Her expertise area of focus is investigating the crystal growth mechanism and kinetics of metal oxide nanostructure formation via in-situ self-assembly design principles. \r\nDr. Pathiraja earned her master’s degree in electrochemistry/Environmental Engineering from the University of Peradeniya, Sri Lanka, and her Bachelor’s degree in Materials Science and Technology from Uva Wellassa University, Sri Lanka. Dr. Pathiraja started her academic career as a lecturer at the Department of Engineering Technology, University of Ruhuna, Sri Lanka in 2016. She is a co-author of several peer-reviewed journal publications and a book chapter, and she has presented her work at several regional, international, and national conferences.",institutionString:"University of North Carolina at Greensboro",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of North Carolina at Greensboro",institutionURL:null,country:{name:"United States of America"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"8",title:"Chemistry",slug:"chemistry"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"466998",firstName:"Dragan",lastName:"Miljak",middleName:"Anton",title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/466998/images/21564_n.jpg",email:"dragan@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copy-editing and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. A unique name with a unique work ethic right at your service."}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3569",title:"Biodegradation",subtitle:"Life of Science",isOpenForSubmission:!1,hash:"bb737eb528a53e5106c7e218d5f12ec6",slug:"biodegradation-life-of-science",bookSignature:"Rolando Chamy and Francisca Rosenkranz",coverURL:"https://cdn.intechopen.com/books/images_new/3569.jpg",editedByType:"Edited by",editors:[{id:"165784",title:"Dr.",name:"Rolando",surname:"Chamy",slug:"rolando-chamy",fullName:"Rolando Chamy"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"44289",title:"Historical and Ecological Factors Affecting Regional Patterns of Endemism and Species Richness: The Case of Squamates in China",doi:"10.5772/55719",slug:"historical-and-ecological-factors-affecting-regional-patterns-of-endemism-and-species-richness-the-c",body:'Biogeography is closely tied to both ecology and phylogenetic biology and its main areas of interest are ecological biogeography, i.e. the study of factors influencing the present distribution, and historical biogeography, i.e. the study of causes that have operated in the past [1]. Ecological and historical biogeography therefore applies different concepts in order to explain the distribution of organisms. The former deals with functional groups of species and environmental constraints, whereas the latter focuses on taxonomic groups and historical biogeographical events [2]. Recently, the division between historical and ecological biogeography has been considered as an obstacle to the progress of biogeography and some authors have stressed the benefits of integrating these two points of view [1,3-4]. In this context, the present work attempts at integrating these two approaches to explore the regional patterns of endemism and species richness of the squamates(lizards and snakes) in China.
As summarized by Meng
It has long been recognized that geological complexity and history usually have a profound influence on the distributions of living organisms. China animal geography division was firstly put forward in 1959 [8]. Now based on the distributions of vertebrates, mainly mammals and birds, China was divided into seven major biogeographical regions and fifty-four provinces [9]. The Palaearctic realm includes North-eastern, Northern, Inner Mongolia-Xinjiang, and Qinghai-Tibetan China biogeographical regions, while the Oriental realm was divided into South-western, Central, and Southern biogeographical regions. The study on biogeographical divisions of China was both intriguing and challenging due to the complex topography and historical processes [9]. The zoogeographic division of China was explored into 30 units [10]. However, China’s territory was divided into 124 basic units on the basis of comprehensive natural factors (including altitude, landform, climate, vegetation, water system, farm belt, and so on) by cluster analysis [11]. Recently, based on the distributional patterns of spiders, seven major biogeographical regions in China were investigated by PAE, not corresponding to any previous studies [5]. These studies played an important role in biodiversity conservation, planning and management in China. However, these divisions need further investigation due to primarily on basis of mammals and birds which are highly adapted to environment diversity and higher locomotion [12]. Thus, the ectothermic animals may act as a better indicator to determinate zoogeographical division than mammals and birds [12]. Although only a few studies on biogeographical patterns have been identified and emphasized their biogeographical complexity, data are still not enough to evaluate and compare directly for other taxa, such as squamates with limited dispersal abilities. It is necessary to compare patterns based on different groups of organisms to better understand their biogeography and infer a general pattern [13].
One of important goals of historical biogeography is to investigate convergent biogeographical patterns relying on different taxa [14]. These may assist in identifying priority areas or hotspots for biodiversity conservation, particularly today the issue of global concern biodiversity loss. A historical biogeographical method, parsimony analysis of endemicity(PAE), firstly proposed by Rosen [15] and further elaborated by Morrone [16], provided an insight to generate area cladograms to make inferences on historical patterns. PAE was originally used the most parsimony algorithm to reconstruct relations among sampling localities [15], then previously delimited areas [17] and quadrats [16]. Analogous to cladistic methods in phylogenetic analyses, PAE classifies areas (cf. taxa in cladistics) on the basis of the shared presence of taxa (cf. characters in cladistics) [15]. Using PAE, biogeographical studies can investigate biotic similarities between different geographical regions, give static or ecological interpretations [18], and estimate historical hierarchical congruence in target localities or geographical regions [19]. Although there is ongoing debate about the value of PAE [20-21], the PAE has been widely used in many biogeographical studies in recent years [5,22-23].
PAE has been applied to establish relationships among different areas units, for example localities, quadrats, areas of endemism, continents, islands, and so on [13]. The ideal organisms for using PAE are those with limited dispersal abilities and speciation in vicariant events [13,19]. Although the same size and shape quadrats are not required in PAE and do not affect the analyses [24], the best PAE results were obtained with natural areas instead of quadrats [13]. Here, we used PAE to compare squamates biogeographical patterns at different natural area units with previously delimited biogeographic patterns obtained by Meng and Murphy [5] (Figure1), Zhang [9](Figure 2) and Xie
For a comparable study area with previously provided optimal results in detecting the biogeographical patterns, we assumed the same operational geographic units (OGUs) as suggested by Meng and Murphy [5] (Figure 1), Zhang [9] (Figure 2) and Xie et al. [11] (Figure 3) defined, respectively. According to very similar climatic, geological characteristics, topographical characteristics and natural barriers to dispersal for neighbouring quadrats, 28 biological and physiographical similar areas were combined and divided as OGUs in PAE [5]. Zoogeographical divisions of China were classified into 54 biogeographical provinces based on the distribution of mainly mammals and birds [9]. The whole China was divided into 124 basic units using comprehensive natural factors, such as altitude, landform, climate, vegetation, water system, farm belt, and so on [11]. More details about the OGUS see these studies.
The Squamates species catalogue and distributions were compiled from the most recent and comprehensive references, including specimens, exhaustive field surveys, monograph, published literature and expert reviews. All date Information from herbarium specimens was mainly obtained through Chengdu Institute of Biology, Chinese Academy of Sciences (CIB/CAS). Additional information was also obtained from HerpNET and a variety of published sources, for example
We used PAE to identify biogeographical patterns and followed the procedure modified by Morrone [16]. A taxon/area matrix for the basic PAE data set was built in which the absence of a species in an area was coded as ‘0’ and presence as ‘1’. A hypothetical area coded ‘0’ as an outgroup to provide a root for the final cladogram [13, 16]. We removed species that occurred in all areas, as well as those in only one area due to phylogenetically uninformative autapomorphies [15]. The taxon/area matrix were imported into PAUP * [29] to find the most parsimonious cladograms with a heuristic search of 1000 replicates and random sequence additions. We estimated relative support for each branch using bootstrapping, with 100 replicates and tree bisection–reconnection (TBR) swapping. All characters were weighted equally and a 50% majority consensus tree of the equally parsimonious trees was generated.
The bootstrap 50% majority-rule consensus tree using 244”characters” in the analysis was shown in Figure 1(b). Our results were substantially different from the results of Meng
For Group E, it was very complex and ten clades were discovered. Subclade E1 as Sothern region (bootstrap 88%) corresponded to the clade C in [11], but major regions such as Central region (C2), Eastern Southern region (C3), Western Southern region (C4), and Central Southern region (C5) in [5] cannot be recognized. In subclade E1, A8 mainly representing Jiangsu was basal, followed by separation of A1 and the remaining areas in subclade E1. Areas A22, A24, A25, A26 and A27 formed a clade with a moderate support of 78%, corresponding to Southern China of zoogeographical division of [9] excluding Taiwan Island. Subclade E2 had a bootstrap support of 98%, including two sub-clades, A12 and A5 + A28. It corresponded to northeastern Tsaidam basin, Loess plateau and Alashan Plateau. Subclade E3 (A10 + A19) corresponded to the steppe and desert of north-western China, including Xinjiang and Inner Mongolia. Its bootstrap support value was 72%. Subclade E4 (A14 + A18) consists of the Xiao Xingan and Changbai mountains, with a bootstrap value of 86%. The Qinghai-Tibetan Plateau included A11+A21, however, subclade E6 (A11) was separated from A21 in the results with a bootstrap support value of 64%. The remaining subclades showed ambiguous.
(a) The division of 28 areas (A01–A28) in China used in the PAE analysis. (b) 50 % majority consensus tree generated by PAE analysis. The terminals correspond to the OGUs shown in (a). Bootstrap values were shown above the branches
The 1507 most parsimonious cladograms of 930 steps with CI of 0.3172, HI of 0.6828, and RI of 0.6340 were found. The 50% majority-rule consensus tree using 295”characters” (Figure 2, b) showed a basal polytomy, but several clades emerged. Clade F consisted of areas A12, A13 and A14 with a bootstrap value of 57%, which corresponded to the Loess plateau subregion. Clade G had a weakly supported group containing areas A18, A19, A20, A21, A23 and A24 with a bootstrap proportion of 57%, which corresponded to Western desert subregion and Tian Shan mountains subregion of Mognolia-Xijiang China. Clade H had a well-support of 95%, including two sub-clades, A30 + A36 and A37, in response with the Himalaya mountains subregion of Southwestern China. Areas A40, A44, A45, A46, and A47 formed a clade I, including Eastern hills and plains subregion and Western mountains and plateau subregion of Central China, and coastal subregions of Guangdong and Fujian provinces of Southern China; its bootstrap value was 57%. Clade J consisted of areas A48 and A49 with a strongly support value of 100%, corresponding to Southern Yunnan mountains subregion of Southern China. Clade K corresponded to Hainan Island subregion of Southern China, consisting of areas A50 and A51 with 75% bootstrap value. Clade L contained Taiwan Island areas with similar Squamates faunas, areas A52 and A53; its well-supported value was 100%.
(a) The division of 54 areas (A01–A54) in China used in the PAE analysis. (b) 50 % majority consensus tree generated by PAE analysis. The terminals correspond to the OGUs shown in (a). Bootstrap values were shown above the branches
For OGUs of biological areas 124, the 1000 most parsimonious trees were obtained. The 50%-majority consensus tree using 294 characters (tree length = 1407, CI = 0.2090, RI = 0.7910) of the 1000 trees was shown in Figure 2 (b). Like the Figure 3, a basal polytomy were identified where only one of the branches contained a dicotomy in Figure 3. Clade M is moderately supported by Areas A10 and A14 with 88% bootstrap value. It corresponded to Yinshan mountains hill and Ordos Plateau. Areas (A21, ((A22, A23), A17)) formed the clade N with a week support value of 62%, corresponding to (Mountain front mesa, ((Liaodong Peninsula, Lower Liaohe Plain), Changbai mountains)) in Eastern Northeastern China. Clade O consisted of areas A29 and A32, including Southeast Shanxi plain and Western Henan mountains. Its bootstrap support proportion was 60%. Clade P contained areas (A101, (A37, A99)) with 68% bootstrap value, corresponding to the range of Qilian Mountain, Central Gansu incisive hill and Upper Yellow River incisive mountains. Areas A46 (Qinling mountains) and A47 (Daba–Micang mountains) in Central China formed clade Q with a moderate support value of 81%. Clade R was compose of Areas A58 and A63, corresponding to Xiangjiang valley hill and Honghe catchment montane basin; its support proportion was 80%. Clade S included Areas A61, A62 and A63 with a weekly support value of 51%, corresponding to Dalou Mountain mid-land valley, Miaoling hilly plain and Wujiang and Nanpanjiang catchments mid-land valley. Clade T was the largest clade including Areas A67, A68, A73, A74, A75 and A87 with 60% support value. It corresponded to Southeast Yunnan low-heat plateau, South central Yunnan low-heat valley, West Yunnan montane plain, Southwest Yunnan Plateau wide valley, South Yunnan wide valley and Salween and Lancang Rivers parallel valley. Areas A76 (West Guangdong and south Guangxi coastal mesa plain) and A79 (South Hainan montane hill) formed Clade U with 64% support value. Clade V had the greatest bootstrap value (98%), including areas A80, A81 and A83. It corresponded to Northwest subtropical hilly plain, Central subtropical mountain and East tropical coast in Taiwan Island. Clade W consisted of areas A92, A93, A94 and A95 with a bootstrap support of 73%, corresponding to areas in Himalayas mountains including Kangrigebu south wing mountains, Himalayas south wing mountains, Salween and Lancang Rivers incisive mountains and Brahmaputra Great Turn and upper Salween incisive mountains. Similarly, clade X consisted of areas A96, and A97, corresponding to areas in Himalayas mountains including Brahmaputra valley mountains and Himalayas central mountains; its bootstrap support value was 61%. Clade Y was compose of areas A104 and A105 with a week bootstrap support proportion of 59%. It corresponded to areas in Qinghai–Tibetan Plateau including South Qiangtang Plateau mountains and North Tibet plateau northwestern lake basin mountains. Clade Z included areas (A111, (A115, (A120, A122))), which corresponded to West Hexi Corridor, East Tianshan mountains, Central Tianshan mountains, Tarim Basin. Its bootstrap value was 57%. Areas A118 (Junggar Basin), A121 (Ili Valley), and A119 (Emin Valley) formed Clade AZ with a well support proportion of 97%.
Past major geological events have played important roles in shaping the biogeographic distribution of extant organisms. PAE originally aimed to find areas of congruent distributional patterns, and the best PAE results were obtained with natural areas (e.g. biogeographical provinces, ecoregions) instead of quadrats by increasing the absolute and relative numbers of synapomorphies [13]. If we compare the results of areas 28, 54 and 124, there seems to exist a trend to result in poor resolution of the resultant area cladograms as the size of OGU decreases. Although the samples within the regions are not uniform at different areas unit, in our area cladograms, biogeographic patterns of squamates distributions appear to have a hierarchical structure and general patterns for areas 28. Based on the above comprehensive squamates distributions patterns at different natural area units, seven major congruent biogeographic regions can be identified in China: Eastern Northern region, Tibetan Plateau region, Xinjiang and Inner Mongolia region, Loess plateau and Alashan Plateau region, Taiwan Island region and Southern region. However, there existed several unresolved areas relationships to one another, the uncertain position of certain areas or incongruence in the ‘character’ distributions. There may be basal problems with data themselves such as squamates distribution incomplete known. Sure, extinction, long-distance dispersal, isolation, or other undetected historical patterns may lead to incongruence in the distributions patterns [30].
(a) The division of 124 areas (A01–A124) in China used in the PAE analysis. (b) 50 % majority consensus tree generated by PAE analysis. The terminals correspond to the OGUs shown in (a). Bootstrap values were shown above the branches
It is surely not coincidental that different organisms may share a general distribution pattern. A PAE area cladogram might contain areas related by shared ecologies or similar historical events (biotic divergence and isolation) [15]. Historical hypothesis, in other words, evolutionary history has recently been considered to be a driving force determining squamates regional species pools’ differences in China. Geological complexity and history usually have a profound influence on the distributions of living organisms in China [5], though most of China has never been covered by ice sheets. Squamates species are followed this rule. For example, squamates were similar to spiders distributional patterns broadly corresponded to geological provinces in China, such as Southern China geological province versus Southern regions, The Laurentian/Cathaysian Southern, South-western Margin geological province and Tibetan geological provinc vs Tibetan Plateau biogeographical region [9]. Furthermore, biotic and abiotic conditions are also important factors in determinative of the distribution of squamates species. Some correlations between species richness and reproductive modes with geography and ecological conditions have been reported [31-32]. The interpretations of those relationships have postulated that contemporary factors are the main regulatory force of the distribution of squamates taxa in China [33-35]. Thus, both history and ecology may well be inseparable and have a profound impact on not only the diversity of Squamates taxa but also their biogeographic patterns.
Determining the causes of the great biodiversity variation across Earth has long been a major challenge for ecologists and biogeographers [36], ever since biotic diversity contrast between equatorial and polar latitudes was discovered two centuries ago [37]. Among the considerable number of hypotheses that aim to explain species richness patterns [36, 38], many ecological (environmental) hypotheses have been widely discussed and accepted [39].
Three alternative variants of ecological hypothesis, the species-energy, contemporary climate and habitat heterogeneity hypotheses, have received a great deal of attention as the primary determinants of species richness [39-43]. The species-energy hypothesis includes at least two versions, the ambient energy and productive energy hypotheses [38]. The ambient energy hypothesis, widely indicated by temperature or allied measures, argues that species richness was influenced by energy inputs into an area that affects the physiological tolerance of organisms [40, 44]. The productive energy hypothesis claims that animal species richness is limited by energy via food webs rather than by physiological requirements. The energy and water availability (i.e., energy–water dynamics) limits the total available plant productivity, which ultimately moves up the food chains [40, 45-47]. The contemporary climate hypothesis states that species richness correlates with contemporary climate conditions, and putative causal mechanisms are in terms of environmental stability, variability, favorability and harshness [40, 47-48]. The habitat heterogeneity hypothesis is measured either as the number of habitat types or the topographic relief (range in elevation) presented within an area [42, 50]. It assumes that high species richness is found in physically or biologically complex habitats, through higher speciation rates and providing more ecological niches [40-42].
However, the knowledge of the determinants of reptile richness remains insufficiently documented among terrestrial vertebrates [39, 51-82]. It is urgent to understand the drivers of reptile richness patterns due to global warming impact on species distribution and abundance [36, 52-53]. Lizards belong to Reptila and are good model systems to test these alternative hypotheses. Because their taxonomy is well resolved and distributional data are quite thorough. They are ectothermic and sensitive to environmental variables. In this study, we examine the correlation between lizard species richness and various environmental factors across China. Our objectives include (1) mapping distributions of Chinese lizards and describing any patterns, and (2) testing various ecological factors in determining species richness patterns.
We collected locality data for lizard species which occur in China from a variety of sources as above-mentioned. We excluded coastal grid cells with less than 96% land cover and all islands from the analysis in order to remove the effects of insularity. Finally, we built a database of 151 lizard with species names (see Appendix S1 in Supplementary Material) represented by a total of 3,391 records for unique point localities, with a range of 2–288 (mean = 22.5, standard deviation = 38.3).
For each of the 151 species, we used the Genetic Algorithm for Rule-set Prediction (GARP) (for free download see: http://www.nhm.ku.edu/desktopgarp/) [54] for reconstructing species distribution maps. GARP uses an evolutionary computing genetic algorithm to search iteratively for non-random correlations between species presence and environmental variables for localities using several different types of rules (i.e., atomic rules, range rules, negated range rules, logistic regression rules), and then creates ecological niche models for each species’ predicted distribution, as contrasted with environmental characteristics across the overall study area [54]. GARP was found that it did not tend to be more sensitive to sampling bias than Maxent, and GARP is a very useful technique to estimate richness and composition of unsampled areas and have been tested to correctly predict the most of the species’ distributional potential [48, 55-58], for example in applications to invasive species [57-58], tree species [59-60], squamate species [48, 61], and so on.
We included a total of eighteen environmental variables in the model. Variables for details, descriptions, and files for download are described in the following text. We set several optimization parameters while running the software following [48]. The parameters included: 20 runs, 0.001 convergence limit, and 1,000 maximum interactions; rule types: atomic, range, negated range, and logistic regression; best subset active, 5% omission error, 40% commission error, and 67% of points for training; omission measure = extrinsic, and omission threshold = hard; 10 models under hard omission threshold.
The estimation output of DesktopGarp produced in Arc/Info grid maps with ‘zeros’, where the species were not predicted to occur, and ‘ones’, where the species were predicted to occur. The area covered by the coincidence of at least seven out of the 10 models in the best subset selection (optimum models considering omission/commission relationships [62]) were used as the predicted distribution of each species. By doing so and by setting the commission error to 40%, this approach added a component of conservatism in predicting distribution by GARP, which might otherwise extrapolate too much and predict areas that are too far from where the species have previously been collected [48]. After generating such maps using the same criteria for all 151 species, we used ARCGIS software to overlay all species prediction maps into a composite map. This final map was used to create a girded of species richness map at a resolutions of 100 km (approximately equivalent to 1°at the equator) on an Albers Equal-Area Conic projection. Consequently, we used the occurrences of 151 lizard species within 827 grid cells to calculate species richness, summing the value of overlaid corresponding grid cells.
We used eighteen environmental variables. We selected these variables based on previous studies and the four associated hypotheses [40-43, 49]. All environmental variables for assessing hypothesized explanations of species richness were re-projected and re-sampled to the same equal-area cell as the species richness data in ARCGIS. The hypotheses and their related variables are:
Ambient energy—five variables are associated this hypothesis within each cell, including: mean annual potential evapotranspiration (PET) ([63], 30\'resolution, available at http://www.grid.unep.ch/data/grid/gnv183.html); mean annual highest temperature (HT), and mean annual lowest temperature (LT) (data from 1961 to 1990 with 1 km2 resolution, available at http://www.data.ac.cn/ index.asp); mean annual sum of effective temperature (≥0℃) (SET0) and mean annual sum of effective temperature (≥10℃) (SET10) (data from 1981 to 1996 with 500 m2 resolution, available at http://www.geodata.cn/Portal).
Productive energy—three variables are used to account for productive energy hypothesis, including: mean annual remotely sensed Normalized Difference Vegetation Index (NDVI), obtained from Advanced Very High-Resolution Radiometer (AVHRR) record of monthly changes in the photosynthetic activity of terrestrial vegetation (data from 1998 to 2008 with 1 km2 resolution, Data source: Environment and Ecology Scientific Data Center of western China, National Natural Science Foundation of China, available at http://westdc.westgis.ac.cn), mean annual actual evapotranspiration (AET)( [60], 30\' resolution, available at http://www.grid.unep.ch/data/grid/gnv183.html), and mean annual solar radiation (RAD) (data from 1950 to 1980 with 1 km2 resolution, available at http://www.geodata.cn/Portal).
Contemporary climate hypothesis—eight variables are associated with this hypothesis within each cell, including: mean annual temperature (AT) (data from 1961 to 1990 with 1 km2 resolution, available at http://www.data.ac.cn/index.asp); mean annual sunshine (SUN) (percent of daylength), mean annual diurnal temperature range (DTR) and mean annual frost-day frequency (FF) (data from 1961 to 1990 with 10\' resolution [64]); and mean annual wind speed (WIND) (data from 1981 to 1996 with 500 m2 resolution, available at http://www.geodata.cn/Portal); mean annual precipitation (PRE) (data from 1961 to 1990 with 1 km2 resolution, available at http://www.data.ac.cn/index.asp), mean annual wet-day frequency (WET) (number days with >0.1 mm precipitation per month) and mean annual relative humidity (REH) (data from 1961 to 1990 with 10\' resolution [64]).
Habitat heterogeneity—the count of 300 m elevation range within each quadrat (ELE) (HYDRO1 k data set for Asia, 1 km2 resolution, available at http://eros.usgs.gov/) and the number of vegetation classes (VEG) (1 km2 resolution, Data source: Environment and Ecology Scientific Data Center of western China, National Natural Science Foundation of China, available at http://westdc.westgis.ac.cn) as indicators of habitat heterogeneity.
In order to examine the potential predictors of lizard richness patterns in China, we first tested the relationship between lizard richness and environmental variables using a multiple regression analysis. We did not use all environmental variables employed to run GARP, because including many highly correlated variables in a multiple regression creates several theoretical and statistical problems, especially estimating partial regression coefficients [65]. We selected variables previously identified as affecting species richness and were not highly correlated (r<0.80) and there were one variable represented each hypothesis at least.
We used the eigenvector-based filtering, or spatial eigenvector mapping (SEVM) obtained by Principal Coordinates Neighbour Matrices (PCNM) to account for spatial autocorrelation [66]. Spatial autocorrelation is a potential problem when work with large-scale ecological data and explanatory variables [67-68]. Failure to account for spatial autocorrelation could result in inflating Type I error because model fitting may generate artificially narrow standard errors due to the lack of independence among residuals [67-68]. A truncation distance of 102.33 km, calculated in SAM—Spatial Analysis in Macroecology [69], was used to create the spatial filters. Eigenvector filters were chosen when their influence on species richness was both statistically significant (P<0.05) and had sufficient explanatory power (r2>0.02). We selected eigenvector filters in an iterative process, by minimizing both the spatial autocorrelation among residuals and the number of filters used in regression. Moran’s
To test which hypothesis best explains variation in lizard richness in China, we conducted separate regressions to fit each of the hypothesis, with an addition of mixed models using all variables associated with each hypothesis. The sample-size-corrected Akaike information criterion (AICc) was used to evaluate the goodness of model fit. The model with the lowest AICc score was considered the most parsimonious, therefore optimizing the tradeoff between bias and precision in model construction [71]. The difference between any candidate models and the best model (∆AICc) was used to evaluate the relative model fit when their AICc scores were close. The larger the ∆AICc, the less possible is the fitted model as being the best approximating model in the given models set. In general, Models having ∆AICc ≤ 2 have substantial support (evidence), those in which 4 ≤ ∆AICc ≤7 have considerably less support, and models having ∆AICc≥10 have essentially no support [72]. Model-averaging of estimates using Akaike weights (wi) was used to confront model selection uncertainty [73].
Finally, to make a comparison between the actual available data and the lizard distributions predicted by ecological niche modeling, we mapped species locality points’ data and calculated species richness at 100 km resolution (Figure 4a). This method allowed us to check whether a spatial sampling bias was shown in the final modeling map (i.e., areas that have more species collected coincide with the areas the model indicated as higher species richness) [48].
Number of species per grid cell based on (a) the raw data of museum collections, and (b) the ecological niche modeling of 151 species. The grid corresponds to the approximate area of China and the area of each cell is 100 km2. Blank cells have no specimen based on the major collections [
Figure 4(b) shows the distribution map which summed all 151 lizard species richness in China. Lizard species richness varied between 1 and 38 species per cell (mean: 13 ± 8 SD) and displayed a consistent pattern that species number increased from higher latitudes to lower ones, and from west to east. The Highest species richness occurs in the Oriental Realm tropics, around the border between southern China and southwestern China, and around the Nanling Mountains, at the border between southern China and central China. Other areas with relative high richness included southwestern China, southern China, northwestern and eastern central China of the Oriental realm (Figure 4b). The raw data map shows a slight sampling bias to the northwest central China and northeast southwestern China (Figure 4a), where the largest herpetological museum CIB/CAS in China are located. However, the niche modeling results are not highly influenced by this bias, since areas corresponding to the highest species richness in China do not overlay completely with the pattern. Furthermore, high richness areas were found by the niche modeling in the relatively poor sampling regions, such as the northwest Mongolia-Xinjiang China, west-south Qinghai-Tibet China areas (Figure 4b).
The environmental models for the multiple regression analysis using SEVM with adding eigenvector spatial filters (PCNM), were sufficient to reduce autocorrelation in the residuals (filters data not shown). A spatial correlogram based on Moran’s
Based on the multiple regression analysis taking PCNM spatial filters into account, annual frost-day frequency (FF), elevation range (ELE), the number of vegetation classes (VEG), and wet-day frequency (WET) were the best predictors of species richness. FF was negatively correlated with lizard richness, while ELE, VEG, and WET, respectively, were positively correlated with lizard species richness. Based on model selection approach, the model with the lowest AICc value was the mixed model, which contained all variables related to the different hypotheses. It had an Akaike weight of 1.00. Other models had high ∆AICc values (>10, [69]) and low values of Akaike weights.
Our results indicate that mechanisms related to different ecological hypotheses might work together to account for lizard richness in China. It is important to consider the influence that environmental factors may have on shaping richness patterns [73]. The frost-day frequency, elevation range, vegetation and wet-day frequency were the most important environmental variable predicting lizard species richness in China. The current alternative hypotheses are not mutually exclusive and may work together and best explain patterns of lizard species richness in China. Based on results of the model selection, our conclusion is in concordant with several previous studies that multiple hypotheses may best account for species richness patterns [48,66,74-75]. Clearly, a variety of factors works synergistically to determine species richness patterns. Our results indicate significant conservation implications, and habitat heterogeneity would be taken into account as an assessment of the threat to endemism from habitat loss in the future investigation. Lizards in China might have experienced large radiations and adapted to dramatic climatic fluctuations after the uplifting of the Tibetan Plateau in Pleistocene. For future studies, it is important to test species richness distribution in Asia at different spatial extent and sample resolution [76], as well as to explore other factors known to affect species richness, such as historical factors and biotic interactions (e.g., competition, predation, and parasitism).
Dramatic geologic events and climatic shifts are often considered to have significantly influenced the diversification and distributions of organisms. Central Asia has a long history of aridity, with the onset of desertification starting at least 22 million years ago (Ma) [77]. It is believed that the Miocene retreat of the Paratethys Sea, an epicontinental sea stretching over Eurasia 30 Ma, and the uplift of the Tibetan Plateau during the Oligocene–Miocene, played a major role in the shift of the Central Asian climate from oceanic to continental [78], leading to increasing levels of aridity. These climatic changes intensified in the Late Miocene and into the Plio-Pleistocene, as part of the global deterioration of the Cenozoic climates [77]. The Quaternary glaciations in the Qinghai-Tibetan Plateau (QTP) and the bordering mountains were the consequence of a combination between climate and local tectonic uplift. In particular, the Kunlun-Huanghe and Gonghe tectonic uplifts have played very important roles in triggering glaciations in high Asia [ [79-81]. The dramatic geological and climatic histories on the Plateau during the Quaternary have a remarkable influence on regional and adjacent biogeographic patterns [82].
The genus
Until recently, our knowledge of the phylogenetic relationships and historical biogeography of
Most recent analyses use relaxed-clock methods, which allow evolutionary rates to vary among genes and lineages. Guo and Wang [92] re-analyzed the data of Pang
A more recent study [93] using a ~1200 bp region of mitochondrial DNA (ND2-tRNATyr) and a ~1200 bp nuclear gene (RAG-1) and samples across Central Asian agamids results in two well supported conclusions: (i) the onset of aridification in Central Asia during the Late Oligocene, resulting from the retreat of the Paratethys Sea and the intensified uplift of the Tibetan-Himalayan complex, appears to have played an important role in
Dunayev
The topographic variation of the Qinghai-Tibetan Plateau, coupled with cyclical climatic changes in the Pleistocene, and alternating glacial-interglacial periods exerted the greatest influence on the current spatial distribution and genetic structure of viviparous toad-headed lizards. Jin
Using data from 11 microsatellite DNA loci, Wang
Jin and Liu [99] described the phylogeography of a unique endemic agamid lizard,
An aridification of the Tarim Basin and adjacent areas since middle Pleistocene has produced significant genetic structuring of the local fauna. Zhang
The lacertid genus
Until recently, our understanding of the phylogenetic relationships and historical biogeography of
Wan
Orlova
More recently, a study [111 using combined DNA data sets (3925 bp) from two mitochondrial genes (cyt
Another phylogenetic study [112] using mitochondrial 16S rRNA segment results in five major conclusions: (i) monophyly of
Rastegar-Pouyani
As exemplified with toad-headed agamas (genus
List of the 422 squamates species.
Rates of pediatric obesity are escalating worldwide. Increasing rates of childhood obesity are likely to translate into a high cumulative incidence of metabolic disease (i.e., type 2 diabetes mellitus (T2D)) and further exacerbate the strain on the healthcare system, public health, and global economy [1]. The development of obesity is often attributed to a combination of genetic and acquired environmental factors. It is well established that the epigenetic transmission of metabolic diseases to offspring will increase their risk for the development of metabolic disorders later in life [2]. Accordingly, environmental exposures (i.e., overnutrition) experienced by parents during intrauterine and early postnatal life will have profound effects on offspring health. Because of the increasing rates of obesity among individuals of child-bearing age, it is critical to develop strategies to prevent the transgenerational propagation of metabolic disease.
It is widely understood that physical activity induces an array of positive metabolic changes that can delay and/or reverse the deleterious effects of obesity. While the mechanisms of action behind the benefits of regular physical exercise are well-documented, research has mostly focused on the person performing the exercise. Consequently, there is limited understanding in the mechanisms by which regular maternal exercise influences the metabolic phenotype of offspring. Further, while studies regarding the effects of maternal exercise on pregnancy, maternal, and offspring outcomes are available and reviewed [3, 4, 5, 6, 7, 8], data which characterizes the mediating factors affecting offspring developmental programming is limited [9]. This is partly due to limitations in revealing the cellular and molecular mechanisms behind maternal exercise-derived benefits that stem from the inability to obtain neonate tissue samples (i.e., skeletal muscle (SkM)).
An understanding of the explicit alterations that maternal exercise causes in the offspring phenotype would allow for the characterization of novel targets and could be used to render different therapeutics for metabolic diseases. Further, elucidating the specific biological mechanisms induced by different exercise modalities could permit this lifestyle intervention to serve analogous to a targeted therapy. Thus, there is potential for different exercise modalities to be used in a prescription-like manner to generate a unique set of metabolic adaptations suitable for treating and/or reducing offspring predispositions to metabolic disease. In view of this possibility, the focus of this chapter will be on describing the mechanisms behind the effects of the maternal exercise on offspring metabolic programing. Emphasis will be on the analysis of the biological mechanisms behind specific metabolic adaptations that promote imperviousness to metabolic challenges (i.e., overnutrition) leading to obesity and T2D. Further, considering that mitochondrial dysfunction and insulin resistance (IR) are major constituents of these metabolic diseases, a focus will be on the alterations in offspring mitochondrial bioenergetics and glycemic control.
The use of rodent models has allowed researchers to study how various environmental factors during critical windows of prenatal and early postnatal development alter metabolic phenotype and elicit tissue specific adaptations in progeny. Considering the ever-increasing rates of obesity, dietary habits, particularly overnutrition, during gestation have a critical role in fetal development and are often the focus of investigations. Maternal obesity and often concomitant IR increase the propensity of the development and transmission of metabolic disease onto progeny. A maternal obesogenic diet during fetal life readily programs first and second generation offspring into a T2D-like phenotype, even without additional dietary insults (i.e., overnutrition) administered to these generations [10].
Maternal obesity elicits multifaceted effects on offspring behavioral habits and physiology. Offspring from obese mothers have a tendency to be physically inactive and hyperphagic [11, 12]. Further, offspring adopt a metabolic syndrome-like phenotype with impaired glucose tolerance, higher blood triglycerides, cholesterol, and leptin, but lower adiponectin levels, which increases offspring predisposition for the development of cardiometabolic disease later in life [11, 12]. Maternal obesogenic diet consumption during gestation increases offspring adiposity primarily through adipocyte hypertrophy [12, 13, 14]. Adipocyte hypertrophy, rather than hyperplasia, is associated with lower insulin responsiveness, inflammation, and an overall dysregulation of systemic energy metabolism [15]. Increased adiposity is further accompanied by a greater intramuscular fat accretion associated with higher PPARγ mRNA expression which could contribute to the development of lipotoxicity-induced SkM IR observed in these offspring [13]. Offspring from obese mothers have a restricted SkM growth potential which subsequently decreases their SkM cross-sectional area [13]. These alterations combined with lower GLUT4 and insulin receptor mRNA expression, as observed in SkM of offspring from obese mothers, attenuates their potential for insulin-stimulated glucose uptake and increase the propensity of offspring to develop hyperglycemia [13]. Considering that SkM is responsible for the majority of postprandial glucose uptake, these alterations have a profound effect on glucose homeostasis and could increase the risk for the development of T2D. Finally, maternal overnutrition leads to the downregulation of pathways associated with mitochondrial oxidation and lowers mitochondrial electron transport protein expression, leading to mitochondrial dysfunction [14].
Together, these alterations can lead to derangements in energy metabolism later in offspring life and increase their proclivity for metabolic disease. In view of this, it is essential to explore the effects of different lifestyle interventions that can alleviate the detrimental effects of maternal obesity on offspring metabolic dysregulation. Regular exercise is known to be protective against metabolic derangements observed in obesity and T2D in mother and offspring. Accordingly, illumination of the effects of maternal exercise on offspring body composition, glycemic control, and mitochondrial functioning will underline mechanistic alterations behind enhanced metabolic phenotype.
While most studies support the notion that exercise before and during gestation has an effect on offspring body weight (BW), findings are inconsistent [9]. Reports remain divided between maternal exercise causing a decrease [16, 17, 18, 19, 20], increase [21, 22], or having no effect on litter [23, 24, 25] or pup BW [26, 27, 28, 29, 30]. Additionally, these studies remain divided between maternal exercise leading to less weight gain with aging in offspring or having no effect on age-related weight gain. For example, Quiclet and associates found no effect of maternal exercise on male offspring BW at weaning or at 7 months of age; however, in their subsequent study, a decrease in BW was observed at weaning and 3 months of age, despite using the same animal and exercise model [17, 28]. Similarly, despite the use of the same animal species and exercising method across studies, change in BW is inconsistent in male offspring from exercising mothers at ~12 months of age [29, 30]. In addition to BW, discrepancies regarding the effect of maternal exercise on body composition have been observed across studies and offspring gender [16, 17, 18, 21, 23, 24, 25, 27, 28, 29, 31]. Carter et al. [26] reported an increase in lean mass and subsequent decrease in fat mass in males ~12 months of age; however, this was not observed in female offspring. Conversely, lower body fat percentages in female offspring have been shown in other studies [16, 19, 31]. Nonetheless, it is worth noting that body composition changes seem to be more prominent in male offspring. This is potentially because of a tendency for greater weight gain with aging; however, the exact reason for the sex-specific differences remains unknown [9].
With consideration of these inconsistencies, it is difficult to determine if offspring BW is a causal factor or is determined by alterations in the metabolic phenotype of the offspring. Interestingly, it has been observed that the alterations in BW, lean and fat mass are secondary to other metabolic improvements and often develop later in offspring life. For instance, improvements in glucose metabolism have been observed in multiple studies regardless of inconsistencies in BW and body composition changes between studies [16, 26, 29, 31]. This suggests that metabolic reprograming is, at least in part, independent of body composition changes and is more likely causal of these alterations with aging or subsequent metabolic challenges (i.e., overnutrition). Accordingly, significantly smaller BW and fat mass gains were observed in sedentary pups from exercised mothers who were fed a high-fat-high-sugar diet (HFHS) compared to HFHS-diet fed pups from non-exercising mothers [17, 20]. This suggests that subsequent nutritional manipulations in offspring may be needed to elicit changes in BW and body composition and to better understand the relationship between changes in BW and metabolic reprogramming.
Since SkM and liver metabolic alterations have a profound impact on the development of systemic metabolic disease, it is important to address how maternal exercise alters metabolism of these tissues. Exercise prior to and during pregnancy increases glucose tolerance and insulin sensitivity across offspring lifespan independent of changes in BW [16, 17, 19, 26, 27, 30, 31] and persist in second generation progeny [32]. Interestingly, in offspring from metabolically healthy exercising mothers, improvements in glucose tolerance are mostly observed in adulthood of the animal rather than early stages of life (i.e., at weaning) [16, 18, 25, 26]. This might be the case considering that the effects of maternal exercise are “diluted” in offspring from metabolically healthy mothers, and therefore these effects might be more pronounced in offspring from mothers with obesity, considering the previously described metabolic derangements that maternal obesity elicits. Accordingly, offspring and maternal glucose intolerance stemming from maternal obesity can be rescued by maternal pregestational and gestation exercise, and this effect is evident in early offspring life [18, 25, 29, 30, 31, 33]. These findings suggest that maternal exercise could enhance the ability of offspring to resist the future development of IR; however, these improvements may not be readily observed in healthy offspring before adulthood or without a subsequent metabolic challenge.
Multiple
Maternal exercise lowers SkM and liver triglyceride content in offspring from both healthy and obese mothers [24, 29, 31]. Lower SkM and liver triglyceride content will decrease the chance of lipid accumulation-induced impairments with insulin signaling and are suggestive of an enhanced oxidative capacity. Maternal exercise increases offspring SkM mitochondrial density, length, and mitochondrial DNA content [19, 34]. These mitochondrial alterations predominantly stem from the effects of maternal exercise on PGC-1α, a key mediator of mitochondrial functioning and biogenesis [19, 34]. Maternal exercise before and during pregnancy attenuates high-fat diet (HFD) induced PGC-1α promoter hypermethylation in offspring SkM, and is able to rescue a HFD induced decrease in PGC-1α gene expression [19, 27]. Interestingly, the effect of maternal exercise on PGC-1α expression has only been observed in adult offspring [27]. This, however, may be an artifact of the rapid proliferation and differentiation of SkM cells during early growth compared to mature SkM, when myogenic cells are quiescent and transcription of genes is predominantly influenced by gene methylation [27]. Higher PGC-1α expression in SkM increases expression of its downstream targets including cytochrome C, a central component of the electron transport chain, which potentiates improvements in the regulation of oxidative phosphorylation [27]. Additionally, in SkM of offspring from exercising mothers, greater cytochrome C oxidase and citrate synthase activities have been observed [34], suggesting that maternal exercise has an effect on mitochondrial oxidative capacity. It is worth noting that similar hypermethylation and lower mRNA expression of PGC-1α is seen in SkM of individuals with T2D [35]. This points to maternal exercise as a potential therapy to ameliorate the transgenerational transmission of mitochondrial dysfunction in humans, by increasing the oxidative capacity as well.
In liver, the maternal exercise induced increase in PGC-1α mRNA expression is accompanied by higher protein expression of phosphorylated AMP-activated protein kinase (AMPK), which is considered to be a master regulator of energy metabolism [36]. This AMPK-PGC-1α axis and its increase is paralleled by an increase in PPARα mRNA expression and is suggestive of a greater potential for fatty acid oxidation. Specifically, maternal exercise enhances gene expression of Acox1 and Acacb, enzymes involved in fatty acid handling and oxidation [36]. Interestingly, while improving the capacity for fatty acid oxidation, maternal exercise simultaneously decreases the potential for fatty acid storage by lowering PPARγ mRNA expression, a gene associated with hepatic steatosis [36, 37]. Further, greater phosphorylated AMPK expression in offspring from exercising mothers leads to greater phosphorylation of acetyl-CoA carboxylase which lowers the availability of malonyl-CoA, a precursor for fatty acid synthesis [36]. It is important to note that these adaptations on a cellular level extend to elicit whole-body protection and lead to lower BW gain and hepatic steatosis after pups are challenged with an obesogenic diet [36]. Overall, maternal exercise driven improvements of offspring mitochondrial bioenergetics are often seen as vital for proper metabolic functioning and resilience to metabolic challenges in adult life. These adaptations could influence the predisposition for the development of metabolic disease by altering mitochondrial substrate “preference” and oxidation capacity.
Maternal exercise increases the affinity for pyruvate and palmitoyl-CoA in offspring SkM mitochondria suggesting easier access of these substrates for the oxidative phosphorylation system (OXPHOS) [17]. Further, maternal exercise has no effect on the Km for palmitoyl-carnitine, which suggests that maternal exercise might be acting specifically on CPT-1, a commonly altered enzyme in obesity-related diseases. Finally, a larger decrease in enzyme affinity is seen for palmitoyl-CoA compared to pyruvate suggesting that maternal exercise increases offspring SkM preference for fatty acid oxidation and potentially explains the previously described decrease in triglyceride content [17, 29]. In addition to altering SkM metabolic pathways, offspring from exercising mothers exhibit greater levels of liver mRNA expression of genes involved in pyruvate metabolism (Pklr, Pcx), the tricarboxylic acid cycle (Pdha1, Pdk4, CS, Idh3a, Mdh2), and fatty acid transport and oxidation (Cd36, Fatp4, Acox, Cpt1) [31]. Together, this data shows that maternal exercise induces an array of adaptations that enhance substrate handling and subsequently increase resilience against future metabolic disease.
Data regarding maternal exercise and offspring OXPHOS capacity is limited. Maternal exercise decreases complex II and III activity and increases complex IV activity [22]. Additionally, when ADP-stimulated respiration is measured in SkM mitochondria from offspring of exercising mothers, there seems to be no effect on complex I and complex I + II respiration; however, data regarding respiration through complex II only is inconsistent with maternal exercise resulting in a decrease or having no effect on complex II maximal respiration [22, 23]. Interestingly, in isolated liver mitochondria from offspring of exercising mothers, lower complex II and higher complex IV activity and content is observed, and accompanied by lower maximal respiration through complex I, II, and I + II. Interestingly, respiratory control ratio (RCR) is lower in offspring mitochondria from both liver and SkM when respiration is supported through complex I and complex I + II [22]. As an index of how coupled respiration is to ADP phosphorylation, this would suggest a lower capacity for phosphorylating respiration to offset electron leak; however, implications about the effect of maternal exercise on offspring mitochondrial efficiency cannot be made as RCR, when used as a proxy of mitochondrial coupling, does not always match the ATP/O ratio, which is a direct measure of mitochondrial coupling [38]. Data regarding alterations in offspring energy efficiency come from oxygen consumption rates in free living conditions. Accordingly, on the level of the whole organism, maternal exercise increases the basal oxygen consumption rate, subsequently protecting offspring from overnutrition-induced obesity by increasing their energy expenditure [20, 30] Together, the limited data suggests that maternal exercise results in adaptations in mitochondrial respiration, but no conclusive remarks can be made considering the inconsistencies between and limited number of studies.
While mitochondria are often described predominantly in the light of energy metabolism, it is important to recognize their function in maintaining redox homeostasis. Mitochondria are mediators of redox balance, and this is influenced by alterations to pro- and antioxidant systems. Disruption of the redox balance due to alterations in mitochondrial bioenergetics or the redox buffering capacity are considered to be an integral part in the etiology of metabolic disease (i.e., IR) [39]. Maternal exercise lowers hydrogen peroxide production with complex II only and complex I + II supporting substrates in both SkM and liver mitochondria [22]; however, the effects seen in SkM are inconsistent across studies indicating maternal exercise may not affect hydrogen peroxide emission [23]. Interestingly, SkM and liver mitochondria from offspring of exercising mothers are protected from reverse electron transport linked hydrogen peroxide emission [22]. Hydrogen peroxide emission via reverse electron flow is often associated with overnutrition and suggests that maternal exercise has a protective effect on offspring redox balance during future metabolic challenges such as overnutrition [39]. In addition to lower hydrogen peroxide emission and subsequently lower reactive oxygen species (ROS) production, maternal exercise enhances glutathione activity in blood and liver [22]. Further, offspring from exercising mothers have lower blood thiol content suggestive of a higher antioxidant capacity. These adaptations are paralleled with higher offspring liver alpha-tocopherol which increases free radical scavenging ability and decreases lipid peroxidation [40, 41, 42]. Maternal exercise further induces a mitochondrial fatty acid profile shift by increasing short-chain and decreasing long-chain fatty acid content [22]. These changes can be beneficial considering that short-chain fatty acids are more resistant to free radical attack and peroxidation and have a positive influence on redox signaling [43, 44]. Finally, maternal exercises increases offspring LON protease (an oxidative stress induced mitochondrial degradation catalyst) and TFAM induced autophagy; these changes are suggestive of a greater mitochondrial turnover rate and overall lower susceptibility to oxidative stress induced mitochondrial dysfunction [24, 34]. Together, these findings suggest that maternal exercise increases antioxidant capacity, decreases ROS production, and lowers the potential accumulation of less functional mitochondria in offspring.
Together, maternal exercise will protect offspring from maternal obesity induced metabolic derangements and has the capacity to increase offspring resilience against future metabolic challenges. Further, offspring metabolic adaptations (Figure 1) as a result of maternal exercise seem to be independent of body composition alterations. These adaptations include improvements in offspring glucose and fatty acid metabolism across two major metabolically active tissues, the liver and SkM. In part, these adaptations are linked to mitochondrial structure remodeling, enhanced bioenergetic function, and greater redox capacity. Finally, it is imperative to keep in mind that cellular metabolic programing precedes improvements detected at the whole-body level making
Maternal exercise enhances offspring metabolism across two major metabolically active tissues, the liver and SkM. Offspring from exercising mothers have lower body weight (BW) and body fat (BF%) gain with age and exhibit enhanced whole body glucose tolerance. Additionally, maternal exercise leads to greater insulin sensitivity, mitochondrial remodeling, and improved bioenergetic function and substrate metabolism in peripheral tissue. Abbreviations: BW, body weight; BF%, body fat percentage; and OXPHOS, oxidative phosphorylation.
While rodent models provide an insight into the effects of maternal exercise on progeny, a major obstacle is analogizing human and animal research considering the vast physiological difference between species. In humans, maternal obesity rates are rising and are in parallel with those of the general population [45, 46]. Pre-pregnancy obesity is likely to translate into excessive gestational weight gain, pre-eclampsia, gestational diabetes, and a greater propensity towards postpartum weight retention [47]. Moreover, maternal obesity increases the risk for congenital anomalies, fetal death, stillbirth, and neonatal, perinatal, and infant death [48, 49]. Increased maternal pre-pregnancy body mass index corelates with increased risk of offspring obesity [50]. Specifically, maternal obesity increases the odds of offspring obesity by 264%, while maternal overweight increases odds by 89% [50]. Neonates born to obese mothers are often large for gestational age with increased adiposity being a major determinant of fetal overgrowth [47]. Besides increasing adiposity, neonates of obese mothers have a higher propensity towards IR independent of maternal glycemia [51, 52]. Finally, maternal obesity is associated with an adverse lipid profile in offspring and an inclination towards the development of metabolic syndrome [53, 54, 55]. While this relationship between maternal and offspring metabolism is readily accepted, limitations in the understanding of epigenetic mechanisms governing infant metabolic reprograming remain. Moreover, the biological mechanisms behind metabolic adaptations that govern offspring metabolic phenotypes remain to be elucidated.
The use of umbilical cord derived mesenchymal stem cells (MSCs) has been recognized as a model for the investigation of metabolic programming of the human offspring donor. This model capitalizes on the multilineage potential of MSCs and their ability to differentiate into various lineages of mesenchymal tissue (muscle, fat, etc.) [56, 57, 58, 59, 60, 61]. The phenotype of MSCs reflects that of the donor rendering it as an advantageous
Prenatal maternal exercise elicits an array of positive benefits for both mother and offspring. Maternal aerobic exercise lowers the risk for the development of gestational diabetes mellitus and lowers gestational weight gain in both healthy and mothers with gestational diabetes [5, 7, 8, 70]. Further, there is an inverse relationship between gestational weight gain and exercise duration and volume with benefits increasing as exercise volume approaches American College of Obstetricians and Gynecologists (ACOG) recommendations of 500 MET-minute weekly [7, 8, 71]. Maternal exercise alone reduces the risk of macrosomia and offspring being large for gestational age without increasing risk of pre-term birth or low birth weight [8, 72, 73]. Further, maternal exercise may have a greater influence on birth weight reduction in maternal obesity, however, evidence remains weak [72, 73]. Similarly, the association of maternal exercise and birth weight remains weeak across multiple meta-analysis including women of all body mass index categories and seems to be driven predominantly by exercise volume [8, 72, 73]. Accordingly, the exercise-induced reduction of offspring birth weight is predominantly observed with exercise volumes over 810 MET-min, which is much greater than the 500 MET-min per week recommendation by ACOG [72]. Finally, birth weight reductions observed with maternal exercise are often not clinically significant (i.e., >300 g) making it hard to conclude if prenatal exercise has a significant effect on fetal birth weight [74, 75]. Additionally, while body weight can be influenced by fat and lean mass, maternal exercise does not seem to effect child morphometrics based on two recent meta-analyses [73, 76]. Nonetheless, while alterations in birth weight are not significant, there is evidence to support the beneficial effects of a prenatal healthy lifestyle (i.e., normal BMI, regular exercise, etc.) on the risk of offspring childhood (child age of 9–14) obesity [77]. Overall, while prenatal exercise influences maternal gestational weight gain, the effects of maternal exercise on offspring birth weight and body composition seem to be minimal. Accordingly, and in line with rodent studies, exercise induced body composition alterations might be secondary to other metabolic improvements and may decrease the risk of obesity development with aging.
The positive effects of exercise extend to maternal metabolic health through improvements in lipid and glucose metabolism. Data suggests that maternal exercise improves maternal metabolism during pregnancy and subsequently alters pregnancy outcomes and the metabolic phenotype of offspring. Physical activity during pregnancy reduces the rise of low density lipoprotein and triglyceride, and lowers delivery and neonatal complications [78, 79, 80, 81, 82]. Maternal blood lipids are associated with infant adiposity and alterations in MSC metabolism in offspring from mothers with obesity [63, 64, 78] suggesting a potential
Aerobic exercise during pregnancy significantly improves maternal glucose metabolism with a greater effect in women with overweight, obesity, and gestational diabetes [84, 85]. In particular, maternal aerobic exercise lowers insulin levels late in pregnancy and reduces the increase in blood insulin levels from 15- to 36-weeks of gestation [86]. Maternal dysglycemia, with or without gestational or type 2 diabetes, has been associated with adverse pregnancy outcomes (i.e., preeclampsia), offspring outcomes (i.e., excessive fetal growth, congenital abnormalities), and an overall increase in postpartum risk of development of T2D in both mother and offspring [87, 88, 89]. Evidence for maternal dysglycemia altering offspring metabolism can be further observed at the level of MSCs where metabolic derangements coincide with derangements in maternal glycemic control (i.e., HOMA-IR) [64]. Further, maternal aerobic exercise increases insulin-mediated glycogen synthesis rates in undifferentiated MSCs suggestive of greater insulin sensitivity [83]. This effect was paralleled with greater insulin-mediated phosphorylation of signaling marker GSK-3β in undifferentiated MSCs. Together, these promising effects could counter the previously described transmission of IR in the case of maternal glucose dysglycemia (i.e., during obesity). In addition to glycogen synthesis, enhanced glucose oxidation efficiency and partitioning of glucose towards oxidation is observed in both undifferentiated and myogenically differentiated MSCs from offspring of aerobically trained mothers. Interestingly, a trend towards a greater capacity for glucose oxidation was observed in myogenically differentiated but not undifferentiated MSCs [83]. It is worth noting that there is greater expression of complex I in myogenically differentiated MSCs, which could in part influence the greater glucose oxidation rates considering that glucose oxidation increases the input of electrons to complex I of mitochondria [83]; however, this effect needs to be further elucidated. As previously described, obesity driven metabolic derangements lead to less efficient mitochondria with a lower oxidative capacity; thus, it is possible that a greater capacity to oxidize glucose may attenuate the transmission of decrements in glucose metabolism across generations. The partitioning of glucose towards oxidation, rather than glycolytic intermediates (i.e., lactate), would lower the propensity towards metabolic disease considering that a lower oxidation capacity and greater lactate production have been linked with T2D [90, 91, 92]. While this data is associative in nature, the importance of exercise in improving the metabolism of both mother and offspring is clear (Figure 2).
Maternal obesity increases pregnancy complications and introduces an array of metabolic derangements in mother and offspring health. Maternal gestational exercise improves many aspects of obesity-induced metabolic alterations and enhances maternal and offspring metabolism. Abbreviations: GWG, gestational weight gain; GDM, gestational diabetes mellitus; MSCs, mesenchymal stem cells; FA, fatty acid; AMPK, AMP-activated protein kinase; and IR, insulin resistance.
The effects of exercise, both acute and chronic, are partly mediated through the production and secretion of bioactive molecules termed cytokines. With exercise, an array of these metabolic factors are released by SkM influencing muscle metabolism as well as crosstalk between SkM and other organs. While extensive reviews have been published on this topic [93, 94], it is worth mentioning that these factors could mediate fetal programing as well. However, this is contingent on their placental blood barrier permeability. Many cytokines (i.e., IL-15, BAIBA, BDNF, Irisin, etc.) have an influence on energy metabolism and an overall positive effect on metabolic disease [93, 94]; however, the involvement of these cytokines in regulating offspring metabolic phenotypes is not yet understood. Recently, the effects of cytokine apelin have been shown to drive maternal exercise-induced metabolic reprogramming in offspring [19, 95]. Maternal exercise elevates apelin signaling which facilitates fetal muscle development and subsequently increases PGC-1α promoter demethylation, mitochondrial biogenesis and remodeling, and mitochondrial capacity [95]. This data suggests that maternal exercise-induced cytokine release could have a direct effect on fetal development by inducing specific adaptations that will later shape offspring metabolism. Accordingly, it is reasonable to postulate that different modes of exercise, based on their differences in cytokine expression profiles and differential metabolic demands [96, 97, 98], could have differing effects on offspring metabolic reprograming.
Exercise modes separate into aerobic and muscular strength training where activity is performed against a low resistance for a longer time or against high resistance for a short duration, respectively. These exercise modalities differ in the adaptations they elicit and are driven by the different energetic demands experienced during activity. During an acute bout of exercise, substrate oxidation is predominantly driven by the intensity and duration of exercise. There is a shift from predominantly fatty acid oxidation during prolonged low-moderate intensity exercise towards an almost exclusive reliance on glycolytic substrates during high-intensity exercise bouts. Aerobic training is often associated with improvements in cardiorespiratory fitness via an increase in maximal oxygen consumption and mitochondrial biogenesis. Specifically, aerobic exercise increases SkM mitochondrial protein synthesis, density, and oxidative function, which subsequently improves endurance capacity [99]. With this, it is not surprising that aerobic exercise results in a greater abundance of proteins involved in mitochondrial ATP production, TCA cycle, transport, and oxidation of fatty acids which are predominantly regulated through PGC-1α expression [99]. In contrast, while the effects of resistance exercise on these parameters are minimal, resistance training increases muscle size, strength, myofibrillar protein synthesis, and anaerobic capacity significantly more than aerobic exercise [99]. Both modalities improve glucose handling and are beneficial for improving glucose control predominantly through enhancing insulin sensitivity (i.e., greater GLUT4 expression) [99, 100, 101]. Additionally, aerobic training improves cardiovascular profiles and decreases adiposity, while resistance training seemingly has a very limited effect on either of these parameters [99]. Overall, while both modalities reduce the risk and lower the derangements of metabolic disease (i.e., obesity), the effects by which aerobic and resistance training influence metabolism vary to a great extent. With this in mind, it is reasonable to postulate that depending on the maternal exercise mode, effects on offspring metabolic reprograming will differ; however, research directly comparing the effects of maternal exercise modes on offspring metabolic health outcomes remains scarce especially with maternal muscular strength training.
While muscular strength training during pregnancy is safe and recommended, most research assessing the effects of prenatal exercise on offspring metabolic health utilizes aerobic only or a combination of aerobic and strength training. While these two exercise modes are beneficial for both maternal and offspring health, a delineation of their independent effects on offspring metabolic health is currently not possible [70]. Further, a comparison of the independent effects of maternal aerobic or strength training on offspring metabolism is primarily limited due to the lack of the studies utilizing maternal strength training [69]. To date, it is shown that a combination of aerobic and strength training during pregnancy increases cardiorespiratory fitness and muscle strength more so than aerobic or strength training alone [70]. Further, combined training has the most significant impact on decreasing gestational weight gain; however, more studies are needed to confirm these findings [70]. Evidence is similarly weak with inconsistent findings on the effects of combined training on improvements in birth weight; however, it is important to note that all exercise interventions increase the chance of the offspring having a normal birth weight and reduce the risk of macrosomia [70]. In conclusion, gestational exercise is safe and recommended considering the resulting array of positive metabolic changes in both mother and offspring.
Considering the prevalence and burden of obesity and T2D in today’s society, it is crucial to identify new targets and treatment approaches to combat these diseases. As discussed, maternal exercise before and/or during pregnancy has a critical influence on offspring metabolism and can decrease their risk of development of metabolic disease later in life. While the current understanding of the precise mechanisms underlying these developmental influences is not fully understood, future work in this area holds immense potential to prevent and alleviate instances of obesity and improve the life-long health of the child.
Intro
",metaTitle:"Statement Title Placeholder",metaDescription:"Intro",metaKeywords:null,canonicalURL:"/page/statement64605",contentRaw:'[{"type":"htmlEditorComponent","content":"Content
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Content
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13389},{group:"region",caption:"Middle and South America",value:2,count:11660},{group:"region",caption:"Africa",value:3,count:4168},{group:"region",caption:"Asia",value:4,count:22334},{group:"region",caption:"Australia and Oceania",value:5,count:2019},{group:"region",caption:"Europe",value:6,count:33642}],offset:12,limit:12,total:135275},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"11369",title:"RNA Viruses Infection",subtitle:null,isOpenForSubmission:!0,hash:"52f8a3a1486912beae40b34ac557fed3",slug:null,bookSignature:"Ph.D. Yogendra Shah",coverURL:"https://cdn.intechopen.com/books/images_new/11369.jpg",editedByType:null,editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11027",title:"Basics of Hypoglycemia",subtitle:null,isOpenForSubmission:!0,hash:"98ebc1e36d02be82c204b8fd5d24f97a",slug:null,bookSignature:"Dr. Alok Raghav",coverURL:"https://cdn.intechopen.com/books/images_new/11027.jpg",editedByType:null,editors:[{id:"334465",title:"Dr.",name:"Alok",surname:"Raghav",slug:"alok-raghav",fullName:"Alok Raghav"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11124",title:"Next-Generation Textiles",subtitle:null,isOpenForSubmission:!0,hash:"093f9e26bb829b8d414d13626aea1086",slug:null,bookSignature:"Dr. Hassan Ibrahim",coverURL:"https://cdn.intechopen.com/books/images_new/11124.jpg",editedByType:null,editors:[{id:"90645",title:"Dr.",name:"Hassan",surname:"Ibrahim",slug:"hassan-ibrahim",fullName:"Hassan Ibrahim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11610",title:"New Insights in Herbicide Science",subtitle:null,isOpenForSubmission:!0,hash:"eb3830b8176caf3d1fd52c32313c5168",slug:null,bookSignature:"Ph.D. Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/11610.jpg",editedByType:null,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11561",title:"Zeolite From Wastes - New Perspectives on Innovative Resources and Their Valorization Process",subtitle:null,isOpenForSubmission:!0,hash:"3ed0dfd842de9cd1143212415903e6ad",slug:null,bookSignature:"Dr. Claudia Belviso",coverURL:"https://cdn.intechopen.com/books/images_new/11561.jpg",editedByType:null,editors:[{id:"61457",title:"Dr.",name:"Claudia",surname:"Belviso",slug:"claudia-belviso",fullName:"Claudia Belviso"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11709",title:"Type 1 Diabetes Mellitus",subtitle:null,isOpenForSubmission:!0,hash:"cc0e61f864a2a8a9595f4975ce301f70",slug:null,bookSignature:"Dr. Shilpa Mehta and Dr. Resmy Palliyil Gopi",coverURL:"https://cdn.intechopen.com/books/images_new/11709.jpg",editedByType:null,editors:[{id:"342545",title:"Dr.",name:"Shilpa",surname:"Mehta",slug:"shilpa-mehta",fullName:"Shilpa Mehta"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11814",title:"Liposomes - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"62d8542d18b8cddcf507f7948b2ae74b",slug:null,bookSignature:"Dr. Rajeev K. Tyagi",coverURL:"https://cdn.intechopen.com/books/images_new/11814.jpg",editedByType:null,editors:[{id:"269120",title:"Dr.",name:"Rajeev",surname:"Tyagi",slug:"rajeev-tyagi",fullName:"Rajeev Tyagi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11889",title:"Sexual Disorders and Dysfunctions",subtitle:null,isOpenForSubmission:!0,hash:"b988fda30a4e2364ee9d47e417bd0ba9",slug:null,bookSignature:"Dr. Dhastagir Sultan Sheriff",coverURL:"https://cdn.intechopen.com/books/images_new/11889.jpg",editedByType:null,editors:[{id:"167875",title:"Dr.",name:"Dhastagir Sultan",surname:"Sheriff",slug:"dhastagir-sultan-sheriff",fullName:"Dhastagir Sultan Sheriff"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11867",title:"Echocardiography",subtitle:null,isOpenForSubmission:!0,hash:"d9159ce31733bf78cc2a79b18c225994",slug:null,bookSignature:"Dr. Gabriel Cismaru",coverURL:"https://cdn.intechopen.com/books/images_new/11867.jpg",editedByType:null,editors:[{id:"191888",title:"Dr.",name:"Gabriel",surname:"Cismaru",slug:"gabriel-cismaru",fullName:"Gabriel Cismaru"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11793",title:"Production, Nutritional and Industrial Perspectives of Barley",subtitle:null,isOpenForSubmission:!0,hash:"996125d4599193b3b6b749f5d8aa3cb2",slug:null,bookSignature:"Dr. Farhan Saeed and Dr. Muhammad Afzaal",coverURL:"https://cdn.intechopen.com/books/images_new/11793.jpg",editedByType:null,editors:[{id:"192244",title:"Dr.",name:"Farhan",surname:"Saeed",slug:"farhan-saeed",fullName:"Farhan Saeed"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11698",title:"Pigmentation Disorders",subtitle:null,isOpenForSubmission:!0,hash:"2ac6c9f424eec37ed85232c2c97ef6f6",slug:null,bookSignature:"Associate Prof. Shahin Aghaei",coverURL:"https://cdn.intechopen.com/books/images_new/11698.jpg",editedByType:null,editors:[{id:"64024",title:"Associate Prof.",name:"Shahin",surname:"Aghaei",slug:"shahin-aghaei",fullName:"Shahin Aghaei"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11701",title:"Magnetic Resonance Spectroscopy",subtitle:null,isOpenForSubmission:!0,hash:"ba8e8f4710bed414568846f8162a4942",slug:null,bookSignature:"Prof. Ahmet Mesrur Halefoğlu",coverURL:"https://cdn.intechopen.com/books/images_new/11701.jpg",editedByType:null,editors:[{id:"51736",title:"Prof.",name:"Ahmet Mesrur",surname:"Halefoğlu",slug:"ahmet-mesrur-halefoglu",fullName:"Ahmet Mesrur Halefoğlu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:27},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:7},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:16},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:8},{group:"topic",caption:"Engineering",value:11,count:42},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:8},{group:"topic",caption:"Materials Science",value:14,count:17},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:68},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:3},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:6},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:7},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:264},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3737",title:"MATLAB",subtitle:"Modelling, Programming and Simulations",isOpenForSubmission:!1,hash:null,slug:"matlab-modelling-programming-and-simulations",bookSignature:"Emilson Pereira Leite",coverURL:"https://cdn.intechopen.com/books/images_new/3737.jpg",editors:[{id:"12051",title:"Prof.",name:"Emilson",middleName:null,surname:"Pereira Leite",slug:"emilson-pereira-leite",fullName:"Emilson Pereira Leite"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"1770",title:"Gel Electrophoresis",subtitle:"Principles and Basics",isOpenForSubmission:!1,hash:"279701f6c802cf02deef45103e0611ff",slug:"gel-electrophoresis-principles-and-basics",bookSignature:"Sameh Magdeldin",coverURL:"https://cdn.intechopen.com/books/images_new/1770.jpg",editors:[{id:"123648",title:"Dr.",name:"Sameh",middleName:null,surname:"Magdeldin",slug:"sameh-magdeldin",fullName:"Sameh Magdeldin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4797},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7175,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1981,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2308,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1473,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318571,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271836,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",publishedDate:"July 1st 2013",numberOfDownloads:243450,editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1582,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2082,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",publishedDate:"October 17th 2012",numberOfDownloads:256294,editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11328",title:"Botulinum Toxin",subtitle:"Recent Topics and Applications",isOpenForSubmission:!1,hash:"7dd05a316001cef143e209eda51387a7",slug:"botulinum-toxin-recent-topics-and-applications",bookSignature:"Suna Sabuncuoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11328.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"270856",title:"Associate Prof.",name:"Suna",middleName:null,surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11085",title:"Polycystic Ovary Syndrome",subtitle:"Functional Investigation and Clinical Application",isOpenForSubmission:!1,hash:"3066dd3ff29e1fac072fd60b08d4d3e7",slug:"polycystic-ovary-syndrome-functional-investigation-and-clinical-application",bookSignature:"Zhengchao Wang",coverURL:"https://cdn.intechopen.com/books/images_new/11085.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"204883",title:"Dr.",name:"Zhengchao",middleName:null,surname:"Wang",slug:"zhengchao-wang",fullName:"Zhengchao Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10833",title:"Tumor Angiogenesis and Modulators",subtitle:null,isOpenForSubmission:!1,hash:"f29b575c46128b2da061ef7f9bd1070b",slug:"tumor-angiogenesis-and-modulators",bookSignature:"Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/10833.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"59529",title:"Dr.",name:"Ke",middleName:null,surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11356",title:"Molecular Cloning",subtitle:null,isOpenForSubmission:!1,hash:"671c629dd86e97f0fb467b9e70e92296",slug:"molecular-cloning",bookSignature:"Sadık Dincer, Hatice Aysun Mercimek Takcı and Melis Sumengen Ozdenef",coverURL:"https://cdn.intechopen.com/books/images_new/11356.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"188141",title:"Prof.",name:"Sadik",middleName:null,surname:"Dincer",slug:"sadik-dincer",fullName:"Sadik Dincer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Advanced Topics of Topology",subtitle:null,isOpenForSubmission:!1,hash:"bf964c52f9e653fac20a7fcab58070e5",slug:"advanced-topics-of-topology",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"92918",title:"Dr.",name:"Francisco",middleName:null,surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11195",title:"Recent Advances in Biometrics",subtitle:null,isOpenForSubmission:!1,hash:"2d32e33e0f499cb5241734bb75dd2a83",slug:"recent-advances-in-biometrics",bookSignature:"Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/11195.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"219",title:"Pharmacology",slug:"pharmacology-toxicology-and-pharmaceutical-science-pharmacology",parent:{id:"19",title:"Pharmacology, Toxicology and Pharmaceutical Science",slug:"pharmacology-toxicology-and-pharmaceutical-science"},numberOfBooks:53,numberOfSeries:0,numberOfAuthorsAndEditors:1330,numberOfWosCitations:1376,numberOfCrossrefCitations:914,numberOfDimensionsCitations:2204,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"219",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10882",title:"Smart Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"70c3ce4256324b3c58db970d446ddac4",slug:"smart-drug-delivery",bookSignature:"Usama Ahmad, Md. Faheem Haider and Juber Akhtar",coverURL:"https://cdn.intechopen.com/books/images_new/10882.jpg",editedByType:"Edited by",editors:[{id:"255360",title:"Dr.",name:"Usama",middleName:null,surname:"Ahmad",slug:"usama-ahmad",fullName:"Usama Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editedByType:"Edited by",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9829",title:"Biosimilars",subtitle:null,isOpenForSubmission:!1,hash:"c72171c1d1cf6df5aad989cb07cc8e4e",slug:"biosimilars",bookSignature:"Valderilio Feijó Azevedo and Robert Moots",coverURL:"https://cdn.intechopen.com/books/images_new/9829.jpg",editedByType:"Edited by",editors:[{id:"69875",title:"Dr.",name:"Valderilio",middleName:"Feijó",surname:"Feijó Azevedo",slug:"valderilio-feijo-azevedo",fullName:"Valderilio Feijó Azevedo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10881",title:"Drug Repurposing",subtitle:"Molecular Aspects and Therapeutic Applications",isOpenForSubmission:!1,hash:"eca3f2d5ca97b457d38a2442b36d3ac7",slug:"drug-repurposing-molecular-aspects-and-therapeutic-applications",bookSignature:"Shailendra K. Saxena",coverURL:"https://cdn.intechopen.com/books/images_new/10881.jpg",editedByType:"Edited by",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10234",title:"High-Throughput Screening for Drug Discovery",subtitle:null,isOpenForSubmission:!1,hash:"37e6f5b6dd0567efb63dca4b2c73495f",slug:"high-throughput-screening-for-drug-discovery",bookSignature:"Shailendra K. Saxena",coverURL:"https://cdn.intechopen.com/books/images_new/10234.jpg",editedByType:"Edited by",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11038",title:"Vaccine Development",subtitle:null,isOpenForSubmission:!1,hash:"2604d260662a3a3cc91971ea07beca61",slug:"vaccine-development",bookSignature:"Yulia Desheva",coverURL:"https://cdn.intechopen.com/books/images_new/11038.jpg",editedByType:"Edited by",editors:[{id:"233433",title:"Dr.",name:"Yulia",middleName:null,surname:"Desheva",slug:"yulia-desheva",fullName:"Yulia Desheva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10357",title:"Drug Metabolism",subtitle:null,isOpenForSubmission:!1,hash:"3bd3ae5041cab45020555b49152b1ddc",slug:"drug-metabolism",bookSignature:"Katherine Dunnington",coverURL:"https://cdn.intechopen.com/books/images_new/10357.jpg",editedByType:"Edited by",editors:[{id:"232694",title:"Dr.",name:"Katherine",middleName:null,surname:"Dunnington",slug:"katherine-dunnington",fullName:"Katherine Dunnington"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10735",title:"Metformin",subtitle:"Pharmacology and Drug Interactions",isOpenForSubmission:!1,hash:"fee7e27a0fa000d000c459ff6e4b749e",slug:"metformin-pharmacology-and-drug-interactions",bookSignature:"Juber Akhtar, Usama Ahmad, Badruddeen and Mohammad Irfan Khan",coverURL:"https://cdn.intechopen.com/books/images_new/10735.jpg",editedByType:"Edited by",editors:[{id:"345595",title:"Prof.",name:"Juber",middleName:null,surname:"Akhtar",slug:"juber-akhtar",fullName:"Juber Akhtar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10716",title:"Corticosteroids",subtitle:"A Paradigmatic Drug Class",isOpenForSubmission:!1,hash:"d600ff66a3b0544bcbb713ea46287590",slug:"corticosteroids-a-paradigmatic-drug-class",bookSignature:"Celso Pereira",coverURL:"https://cdn.intechopen.com/books/images_new/10716.jpg",editedByType:"Edited by",editors:[{id:"66336",title:"Prof.",name:"Celso",middleName:null,surname:"Pereira",slug:"celso-pereira",fullName:"Celso Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10578",title:"Pharmacogenetics",subtitle:null,isOpenForSubmission:!1,hash:"ca2bc2ff6e15a7b735d662d9664086b1",slug:"pharmacogenetics",bookSignature:"Islam A. Khalil",coverURL:"https://cdn.intechopen.com/books/images_new/10578.jpg",editedByType:"Edited by",editors:[{id:"226598",title:"Dr.",name:"Islam",middleName:null,surname:"A. Khalil",slug:"islam-a.-khalil",fullName:"Islam A. Khalil"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10236",title:"Plasmodium Species and Drug Resistance",subtitle:null,isOpenForSubmission:!1,hash:"964a389525d1147af3e527c056ac1a73",slug:"plasmodium-species-and-drug-resistance",bookSignature:"Rajeev K. Tyagi",coverURL:"https://cdn.intechopen.com/books/images_new/10236.jpg",editedByType:"Edited by",editors:[{id:"269120",title:"Dr.",name:"Rajeev",middleName:"K.",surname:"Tyagi",slug:"rajeev-tyagi",fullName:"Rajeev Tyagi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9833",title:"New Insights into the Future of Pharmacoepidemiology and Drug Safety",subtitle:null,isOpenForSubmission:!1,hash:"33c717cdacfd3327b4c5d516f96010e9",slug:"new-insights-into-the-future-of-pharmacoepidemiology-and-drug-safety",bookSignature:"Maria Teresa Herdeiro, Fátima Roque, Adolfo Figueiras and Tânia Magalhães Silva",coverURL:"https://cdn.intechopen.com/books/images_new/9833.jpg",editedByType:"Edited by",editors:[{id:"227508",title:"Prof.",name:"Maria Teresa",middleName:null,surname:"Herdeiro",slug:"maria-teresa-herdeiro",fullName:"Maria Teresa Herdeiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:53,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"40253",doi:"10.5772/50486",title:"Lipid Nanoparticulate Drug Delivery Systems: A Revolution in Dosage Form Design and Development",slug:"lipid-nanoparticulate-drug-delivery-systems-a-revolution-in-dosage-form-design-and-development",totalDownloads:11293,totalCrossrefCites:22,totalDimensionsCites:105,abstract:null,book:{id:"2509",slug:"recent-advances-in-novel-drug-carrier-systems",title:"Recent Advances in Novel Drug Carrier Systems",fullTitle:"Recent Advances in Novel Drug Carrier Systems"},signatures:"Anthony A. Attama, Mumuni A. Momoh and Philip F. Builders",authors:[{id:"142947",title:"Prof.",name:"Anthony",middleName:null,surname:"Attama",slug:"anthony-attama",fullName:"Anthony Attama"}]},{id:"67939",doi:"10.5772/intechopen.85991",title:"Molecular Docking in Modern Drug Discovery: Principles and Recent Applications",slug:"molecular-docking-in-modern-drug-discovery-principles-and-recent-applications",totalDownloads:3898,totalCrossrefCites:27,totalDimensionsCites:60,abstract:"The process of hunt of a lead molecule is a long and a tedious process and one is often demoralized by the endless possibilities one has to search through. Fortunately, computational tools have come to the rescue and have undoubtedly played a pivotal role in rationalizing the path to drug discovery. Of all techniques, molecular docking has played a crucial role in computer aided drug design and has swiftly gained ranks to secure a valuable position in the modern scenario of structure-based drug design. In this chapter, the principle, sampling algorithms, scoring functions and diverse available software’s for molecular docking have been summarized. We demonstrate the interplay of docking, classical techniques of structure-based design and X-ray crystallography in the process of drug discovery. In addition, we dwell upon some of the limitations faced in docking studies. Finally, several success stories of molecular docking approaches in drug discovery have been highlighted, concluding with remarks on molecular docking for the future.",book:{id:"7867",slug:"drug-discovery-and-development-new-advances",title:"Drug Discovery and Development",fullTitle:"Drug Discovery and Development - New Advances"},signatures:"Aaftaab Sethi, Khusbhoo Joshi, K. Sasikala and Mallika Alvala",authors:[{id:"252956",title:"Dr.",name:"Mallika",middleName:null,surname:"Alvala",slug:"mallika-alvala",fullName:"Mallika Alvala"},{id:"287101",title:"Mr.",name:"Aaftaab",middleName:null,surname:"Sethi",slug:"aaftaab-sethi",fullName:"Aaftaab Sethi"},{id:"295049",title:"Ms.",name:"Khusbhoo",middleName:null,surname:"Joshi",slug:"khusbhoo-joshi",fullName:"Khusbhoo Joshi"},{id:"295050",title:"Ms.",name:"Sasikala",middleName:null,surname:"K",slug:"sasikala-k",fullName:"Sasikala K"}]},{id:"29240",doi:"10.5772/31087",title:"Oral Absorption, Intestinal Metabolism and Human Oral Bioavailability",slug:"oral-absorption-intestinal-metabolism-and-human-oral-bioavailability-",totalDownloads:27184,totalCrossrefCites:28,totalDimensionsCites:58,abstract:null,book:{id:"672",slug:"topics-on-drug-metabolism",title:"Topics on Drug Metabolism",fullTitle:"Topics on Drug Metabolism"},signatures:"Ayman El-Kattan and Manthena Varma",authors:[{id:"85539",title:"Dr.",name:"Ayman",middleName:null,surname:"El-Kattan",slug:"ayman-el-kattan",fullName:"Ayman El-Kattan"},{id:"88221",title:"Dr.",name:"Manthena",middleName:null,surname:"Varma",slug:"manthena-varma",fullName:"Manthena Varma"}]},{id:"40262",doi:"10.5772/51384",title:"Nanotechnology in Drug Delivery",slug:"nanotechnology-in-drug-delivery",totalDownloads:15412,totalCrossrefCites:11,totalDimensionsCites:53,abstract:null,book:{id:"2509",slug:"recent-advances-in-novel-drug-carrier-systems",title:"Recent Advances in Novel Drug Carrier Systems",fullTitle:"Recent Advances in Novel Drug Carrier Systems"},signatures:"Martins Ochubiojo Emeje, Ifeoma Chinwude Obidike, Ekaete Ibanga Akpabio and Sabinus Ifianyi Ofoefule",authors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}]},{id:"65128",doi:"10.5772/intechopen.82860",title:"Natural Products in Drug Discovery",slug:"natural-products-in-drug-discovery",totalDownloads:6643,totalCrossrefCites:19,totalDimensionsCites:48,abstract:"Drug discovery using natural products is a challenging task for designing new leads. It describe the bioactive compounds derived from natural resources, its phytochemical analysis, characterization and pharmacological investigation. It focuses on the success of these resources in the process of finding and discovering new and effective drug compounds that can be useful for human resources. From many years, natural products have been acting as a source of therapeutic agents and have shown beneficial uses. Only natural product drug discovery plays an important role to develop the scientific evidence of these natural resources. Research in drug discovery needs to develop robust and viable lead molecules, which step forward from a screening hit to a drug candidate through structural elucidation and structure identification through GC–MS, NMR, IR, HPLC, and HPTLC. The development of new technologies has revolutionized the screening of natural products in discovering new drugs. Utilizing these technologies gives us an opportunity to perform research in screening new molecules using a software and database to establish natural products as a major source for drug discovery. It finally leads to lead structure discovery. Powerful new technologies are revolutionizing natural herbal drug discovery.",book:{id:"8290",slug:"pharmacognosy-medicinal-plants",title:"Pharmacognosy",fullTitle:"Pharmacognosy - Medicinal Plants"},signatures:"Akshada Amit Koparde, Rajendra Chandrashekar Doijad and Chandrakant Shripal Magdum",authors:[{id:"268668",title:"Dr.",name:"Akshada",middleName:"Amit",surname:"Koparde",slug:"akshada-koparde",fullName:"Akshada Koparde"}]}],mostDownloadedChaptersLast30Days:[{id:"49459",title:"Pharmacokinetics of Drugs Following IV Bolus, IV Infusion, and Oral Administration",slug:"pharmacokinetics-of-drugs-following-iv-bolus-iv-infusion-and-oral-administration",totalDownloads:15480,totalCrossrefCites:16,totalDimensionsCites:24,abstract:null,book:{id:"4491",slug:"basic-pharmacokinetic-concepts-and-some-clinical-applications",title:"Basic Pharmacokinetic Concepts and Some Clinical Applications",fullTitle:"Basic Pharmacokinetic Concepts and Some Clinical Applications"},signatures:"Tarek A. Ahmed",authors:[{id:"175649",title:"Dr.",name:"Tarek A",middleName:null,surname:"Ahmed",slug:"tarek-a-ahmed",fullName:"Tarek A Ahmed"}]},{id:"29240",title:"Oral Absorption, Intestinal Metabolism and Human Oral Bioavailability",slug:"oral-absorption-intestinal-metabolism-and-human-oral-bioavailability-",totalDownloads:27175,totalCrossrefCites:28,totalDimensionsCites:58,abstract:null,book:{id:"672",slug:"topics-on-drug-metabolism",title:"Topics on Drug Metabolism",fullTitle:"Topics on Drug Metabolism"},signatures:"Ayman El-Kattan and Manthena Varma",authors:[{id:"85539",title:"Dr.",name:"Ayman",middleName:null,surname:"El-Kattan",slug:"ayman-el-kattan",fullName:"Ayman El-Kattan"},{id:"88221",title:"Dr.",name:"Manthena",middleName:null,surname:"Varma",slug:"manthena-varma",fullName:"Manthena Varma"}]},{id:"66742",title:"Introductory Chapter: Alkaloids - Their Importance in Nature and for Human Life",slug:"introductory-chapter-alkaloids-their-importance-in-nature-and-for-human-life",totalDownloads:4131,totalCrossrefCites:16,totalDimensionsCites:32,abstract:null,book:{id:"6828",slug:"alkaloids-their-importance-in-nature-and-human-life",title:"Alkaloids",fullTitle:"Alkaloids - Their Importance in Nature and Human Life"},signatures:"Joanna Kurek",authors:[{id:"214632",title:"Dr.",name:"Joanna",middleName:null,surname:"Kurek",slug:"joanna-kurek",fullName:"Joanna Kurek"}]},{id:"65128",title:"Natural Products in Drug Discovery",slug:"natural-products-in-drug-discovery",totalDownloads:6637,totalCrossrefCites:19,totalDimensionsCites:48,abstract:"Drug discovery using natural products is a challenging task for designing new leads. It describe the bioactive compounds derived from natural resources, its phytochemical analysis, characterization and pharmacological investigation. It focuses on the success of these resources in the process of finding and discovering new and effective drug compounds that can be useful for human resources. From many years, natural products have been acting as a source of therapeutic agents and have shown beneficial uses. Only natural product drug discovery plays an important role to develop the scientific evidence of these natural resources. Research in drug discovery needs to develop robust and viable lead molecules, which step forward from a screening hit to a drug candidate through structural elucidation and structure identification through GC–MS, NMR, IR, HPLC, and HPTLC. The development of new technologies has revolutionized the screening of natural products in discovering new drugs. Utilizing these technologies gives us an opportunity to perform research in screening new molecules using a software and database to establish natural products as a major source for drug discovery. It finally leads to lead structure discovery. Powerful new technologies are revolutionizing natural herbal drug discovery.",book:{id:"8290",slug:"pharmacognosy-medicinal-plants",title:"Pharmacognosy",fullTitle:"Pharmacognosy - Medicinal Plants"},signatures:"Akshada Amit Koparde, Rajendra Chandrashekar Doijad and Chandrakant Shripal Magdum",authors:[{id:"268668",title:"Dr.",name:"Akshada",middleName:"Amit",surname:"Koparde",slug:"akshada-koparde",fullName:"Akshada Koparde"}]},{id:"48805",title:"Biopharmaceutics and Pharmacokinetics",slug:"biopharmaceutics-and-pharmacokinetics",totalDownloads:26159,totalCrossrefCites:2,totalDimensionsCites:7,abstract:null,book:{id:"4491",slug:"basic-pharmacokinetic-concepts-and-some-clinical-applications",title:"Basic Pharmacokinetic Concepts and Some Clinical Applications",fullTitle:"Basic Pharmacokinetic Concepts and Some Clinical Applications"},signatures:"S. Lakshmana Prabu, T.N.K. Suriyaprakash, K. Ruckmani and R.\nThirumurugan",authors:[{id:"91590",title:"Dr.",name:"Sakthivel",middleName:null,surname:"Lakshmana Prabu",slug:"sakthivel-lakshmana-prabu",fullName:"Sakthivel Lakshmana Prabu"},{id:"128690",title:"Dr.",name:"Suriyaprakash",middleName:null,surname:"Tnk",slug:"suriyaprakash-tnk",fullName:"Suriyaprakash Tnk"}]}],onlineFirstChaptersFilter:{topicId:"219",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"81857",title:"Use of Oral Ketamine in Palliative Care",slug:"use-of-oral-ketamine-in-palliative-care",totalDownloads:31,totalDimensionsCites:0,doi:"10.5772/intechopen.104875",abstract:"Ketamine, an N-methyl-D-Aspartate receptor antagonist, has been used for more than 50 years. From its initial potential as an anesthetic drug, its use has increased in the fields of pain medicine, psychiatry, and palliative care. It is available in different formulations, of which oral use is promising due to its active metabolite, norketamine which reaches 2–3 times higher levels when administered orally in comparison with parenteral use. Oral use is also more feasible and easier to use in settings, where medical staff is not that present, such as home care or hospices. Oral solution of ketamine has not yet been officially licensed for use although there have been several reports which recommend its use in neuropathic pain, severe depression, airway obstruction, and anxiety. Palliative care is defined as total care for patients whose diseases do not respond to curative treatment. It encompasses good control of physical symptoms, and psychological, social and spiritual problems. Patients often experience pain, despite high doses of opioids, depression and anxiety, and dyspnea. Oral ketamine does not have the side effects of opioids therefore it represents a good alternative. It may also reduce the need for high opioid doses and be more suitable for patients who wish to avoid the necessary sedation.",book:{id:"11036",title:"Ketamine Revisited - New Insights into NMDA Inhibitors",coverURL:"https://cdn.intechopen.com/books/images_new/11036.jpg"},signatures:"Mateja Lopuh"},{id:"81722",title:"Ketamine for Chronic Pain",slug:"ketamine-for-chronic-pain",totalDownloads:21,totalDimensionsCites:0,doi:"10.5772/intechopen.104874",abstract:"The treatment of chronic pain is a chronic problem for many specialities. It is generally based on an approach with antidepressants, anti-epileptics and opioids as drugs of first choice. It has been worked by many different protocols. Ketamine, which is known as a good anaesthetic, has been used for chronic pain. When the pain has a neuropathic component, ketamine is a promising treatment for pain management. Ketamine: by inhibiting the N-methyl-D-aspartate receptor and having some other effects like enhancement of descending inhibition and anti-inflammatory effects at central sites, takes part in chronic pain management. Besides having analgesic effects, there are some concerns about the side effects of ketamine. Some psychedelic symptoms as hallucinations, memory defects, panic attacks, nausea and vomiting, somnolence, cardiovascular stimulation and sometimes hepatoxicity may be seen in patients. Ketamine is generally well-tolerated in clinical settings. Close monitoring of patients receiving ketamine should be mandatory in order to be aware of central nervous system, haemodynamic, renal and hepatic symptoms as well as abuse.",book:{id:"11036",title:"Ketamine Revisited - New Insights into NMDA Inhibitors",coverURL:"https://cdn.intechopen.com/books/images_new/11036.jpg"},signatures:"Cigdem Yildirim Guclu"},{id:"81646",title:"Cortical Plasticity under Ketamine: From Synapse to Map",slug:"cortical-plasticity-under-ketamine-from-synapse-to-map",totalDownloads:19,totalDimensionsCites:0,doi:"10.5772/intechopen.104787",abstract:"Sensory systems need to process signals in a highly dynamic way to efficiently respond to variations in the animal’s environment. For instance, several studies showed that the visual system is subject to neuroplasticity since the neurons’ firing changes according to stimulus properties. This dynamic information processing might be supported by a network reorganization. Since antidepressants influence neurotransmission, they can be used to explore synaptic plasticity sustaining cortical map reorganization. To this goal, we investigated in the primary visual cortex (V1 of mouse and cat), the impact of ketamine on neuroplasticity through changes in neuronal orientation selectivity and the functional connectivity between V1 cells, using cross correlation analyses. We found that ketamine affects cortical orientation selectivity and alters the functional connectivity within an assembly. These data clearly highlight the role of the antidepressant drugs in inducing or modeling short-term plasticity in V1 which suggests that cortical processing is optimized and adapted to the properties of the stimulus.",book:{id:"11036",title:"Ketamine Revisited - New Insights into NMDA Inhibitors",coverURL:"https://cdn.intechopen.com/books/images_new/11036.jpg"},signatures:"Ouelhazi Afef, Rudy Lussiez and Molotchnikoff Stephane"},{id:"81561",title:"Ketamine and Low-Resource Countries",slug:"ketamine-and-low-resource-countries",totalDownloads:51,totalDimensionsCites:0,doi:"10.5772/intechopen.104651",abstract:"Safe anaesthesia and surgery are piloted to reduce the morbidity and mortality associated with anaesthesia and surgery, and improve surgical outcomes. This goal is far-fetched in developing countries as a result of limited manpower, poor operation theatre infrastructure, unavailability of equipment, life-saving drugs, and anaesthetic agents. Postoperative pain is also widely undertreated in this environment, mostly due to financial constraints patients and their relatives face and the unavailability of analgesics. Sometimes the physicians face problems associated with their resource-limited working environment, such as unreliable electricity, unavailability of compressed oxygen and other gases, sophisticated machines, and modern drugs. Thus, easy adaptability and proper utilisation of available resources have been described as a resounding quality required of anaesthetists working in developing countries, to thrive and provide anaesthetic services. Ketamine is readily available in resource-limited environments, and adaptability to the use of this drug has made it possible for the anaesthetist to provide anaesthesia, pain care services, sedation, and save lives.",book:{id:"11036",title:"Ketamine Revisited - New Insights into NMDA Inhibitors",coverURL:"https://cdn.intechopen.com/books/images_new/11036.jpg"},signatures:"Chimaobi Tim Nnaji"},{id:"81236",title:"The Role of Ketamine in Trauma",slug:"the-role-of-ketamine-in-trauma",totalDownloads:52,totalDimensionsCites:0,doi:"10.5772/intechopen.103655",abstract:"Early and effective pain control in trauma patients improves outcomes and limits disability, but analgesia is often missed in the unstable patient, or hemodynamically depressing medications are avoided for fear of losing stability. This chapter outlines the role of ketamine in managing traumatic emergencies in both out-of-hospital and hospital environment, and beyond. Low-dose ketamine also called a sub-dissociative dose is safe, efficient and effective analgesic that can be considered for trauma patients, pediatric or adults, as an alternative to opioids or in combination with opioids for on additive or synergistic effect, with minimal impact on hemodynamic stability. Ketamine at higher doses is also an excellent drug for induction of anesthesia in rapid sequence induction (RSI), post-intubation sedation maintenance or procedural sedation in the trauma patient. Also, can be used for acute agitation and excited delirium. In this chapter, we are describing this drug focusing on a deeper understanding of the safety and efficacy of this agent and, if supported, to encourage physicians to consider ketamine for pain control in trauma and beyond. Also, we are presenting the current literature surrounding ketamine’s evidences in the trauma condition to establish its utility and profile of safety for these patients.",book:{id:"11036",title:"Ketamine Revisited - New Insights into NMDA Inhibitors",coverURL:"https://cdn.intechopen.com/books/images_new/11036.jpg"},signatures:"Mihai Octavian Botea and Erika Bimbo-Szuhai"},{id:"81029",title:"Uses of Ketamine in the Paediatric Population",slug:"uses-of-ketamine-in-the-paediatric-population",totalDownloads:43,totalDimensionsCites:0,doi:"10.5772/intechopen.103658",abstract:"General anesthesia in pediatric patients can vary from light sedation to complete anesthesia with unconsciousness, amnesia and muscle relaxation. A wide variety of procedures are done under general anesthesia in children ranging from surgeries done for correction of congenital defects, cardiac surgeries, scoliosis surgery, hernia surgery etc. to procedures done outside the operating room (OR) for diagnostic and therapeutic purposes. Non-Operating room Anesthesia (NORA) may include painless procedures like CT scan, MRI, radiotherapy for cancer treatment etc. or painful procedures like biopsy, lumbar puncture, securing IV access, insertion of central line etc. done in ICU which requires a cooperative child. Ketamine has an important role in the pediatric population, both as an induction agent and as a sedative-analgesic drug especially in countries where newer drugs are not readily available. Ketamine helps to alleviate separation anxiety. Even procedures done under regional techniques in some older children require use of sedation. Ketamine can be administered through various routes-IV, IM, intranasal etc. It can be used along with other groups of drugs like Benzodiazepines, Barbiturates, Alpha 2 agonists, Propofol etc. Thus Ketamine is a versatile drug with various indications for use in the pediatric population which will be discussed in the current chapter.",book:{id:"11036",title:"Ketamine Revisited - New Insights into NMDA Inhibitors",coverURL:"https://cdn.intechopen.com/books/images_new/11036.jpg"},signatures:"Bhagyalakshmi Ramesh"}],onlineFirstChaptersTotal:17},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:140,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:123,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:22,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"24",title:"Sustainable Development",doi:"10.5772/intechopen.100361",issn:"2753-6580",scope:"\r\n\tThis topic aims to provide a comprehensive overview of the latest trends in Oral Health based on recent scientific evidence. Subjects will include an overview of oral diseases and infections, systemic diseases affecting the oral cavity, prevention, diagnosis, treatment, epidemiology, as well as current clinical recommendations for the management of oral, dental, and periodontal diseases.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/1.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11397,editor:{id:"173955",title:"Prof.",name:"Sandra",middleName:null,surname:"Marinho",slug:"sandra-marinho",fullName:"Sandra Marinho",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRGYMQA4/Profile_Picture_2022-06-01T13:22:41.png",biography:"Dr. Sandra A. Marinho is an Associate Professor and Brazilian researcher at the State University of Paraíba (Universidade Estadual da Paraíba- UEPB), Campus VIII, located in Araruna, state of Paraíba since 2011. She holds a degree in Dentistry from the Federal University of Alfenas (UNIFAL), while her specialization and professional improvement in Stomatology took place at Hospital Heliopolis (São Paulo, SP). Her qualifications are: a specialist in Dental Imaging and Radiology, Master in Dentistry (Periodontics) from the University of São Paulo (FORP-USP, Ribeirão Preto, SP), and Doctor (Ph.D.) in Dentistry (Stomatology Clinic) from Hospital São Lucas of the Pontifical Catholic University of Rio Grande do Sul (HSL-PUCRS, Porto Alegre, RS). She held a postdoctoral internship at the Federal University from Jequitinhonha and Mucuri Valleys (UFVJM, Diamantina, MG). She is currently a member of the Brazilian Society for Dental Research (SBPqO) and the Brazilian Society of Stomatology and Pathology (SOBEP). Dr. Marinho's experience in Dentistry mainly covers the following subjects: oral diagnosis, oral radiology; oral medicine; lesions and oral infections; oral pathology, laser therapy and epidemiological studies.",institutionString:null,institution:{name:"State University of Paraíba",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null,series:{id:"3",title:"Dentistry",doi:"10.5772/intechopen.71199",issn:"2631-6218"},editorialBoard:[{id:"267724",title:"Prof.",name:"Febronia",middleName:null,surname:"Kahabuka",slug:"febronia-kahabuka",fullName:"Febronia Kahabuka",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRZpJQAW/Profile_Picture_2022-06-27T12:00:42.JPG",institutionString:"Muhimbili University of Health and Allied Sciences, Tanzania",institution:{name:"Muhimbili University of Health and Allied Sciences",institutionURL:null,country:{name:"Tanzania"}}},{id:"70530",title:"Dr.",name:"Márcio",middleName:"Campos",surname:"Oliveira",slug:"marcio-oliveira",fullName:"Márcio Oliveira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRm0AQAS/Profile_Picture_2022-08-01T12:34:46.jpg",institutionString:null,institution:{name:"State University of Feira de Santana",institutionURL:null,country:{name:"Brazil"}}}]},onlineFirstChapters:{paginationCount:25,paginationItems:[{id:"82654",title:"Atraumatic Restorative Treatment: More than a Minimally Invasive Approach?",doi:"10.5772/intechopen.105623",signatures:"Manal A. Ablal",slug:"atraumatic-restorative-treatment-more-than-a-minimally-invasive-approach",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"82735",title:"The Influence of Salivary pH on the Prevalence of Dental Caries",doi:"10.5772/intechopen.106154",signatures:"Laura-Cristina Rusu, Alexandra Roi, Ciprian-Ioan Roi, Codruta Victoria Tigmeanu and Lavinia Cosmina Ardelean",slug:"the-influence-of-salivary-ph-on-the-prevalence-of-dental-caries",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"82357",title:"Caries Management Aided by Fluorescence-Based Devices",doi:"10.5772/intechopen.105567",signatures:"Atena Galuscan, Daniela Jumanca and Aurora Doris Fratila",slug:"caries-management-aided-by-fluorescence-based-devices",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"81894",title:"Diet and Nutrition and Their Relationship with Early Childhood Dental Caries",doi:"10.5772/intechopen.105123",signatures:"Luanna Gonçalves Ferreira, Giuliana de Campos Chaves Lamarque and Francisco Wanderley Garcia Paula-Silva",slug:"diet-and-nutrition-and-their-relationship-with-early-childhood-dental-caries",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80964",title:"Upper Airway Expansion in Disabled Children",doi:"10.5772/intechopen.102830",signatures:"David Andrade, Joana Andrade, Maria-João Palha, Cristina Areias, Paula Macedo, Ana Norton, Miguel Palha, Lurdes Morais, Dóris Rocha Ruiz and Sônia Groisman",slug:"upper-airway-expansion-in-disabled-children",totalDownloads:44,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80839",title:"Herbs and Oral Health",doi:"10.5772/intechopen.103715",signatures:"Zuhair S. Natto",slug:"herbs-and-oral-health",totalDownloads:69,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80441",title:"Periodontitis and Heart Disease: Current Perspectives on the Associative Relationships and Preventive Impact",doi:"10.5772/intechopen.102669",signatures:"Alexandra Roman, Andrada Soancă, Bogdan Caloian, Alexandru Bucur, Gabriela Valentina Caracostea, Andreia Paraschiva Preda, Dora Maria Popescu, Iulia Cristina Micu, Petra Șurlin, Andreea Ciurea, Diana Oneț, Mircea Viorel Ciurea, Dragoș Alexandru Țermure and Marius Negucioiu",slug:"periodontitis-and-heart-disease-current-perspectives-on-the-associative-relationships-and-preventive",totalDownloads:66,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79498",title:"Oral Aspects and Dental Management of Special Needs Patient",doi:"10.5772/intechopen.101067",signatures:"Pinar Kiymet Karataban",slug:"oral-aspects-and-dental-management-of-special-needs-patient",totalDownloads:112,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Pinar",surname:"Karataban"}],book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79699",title:"Metabolomics Distinction of Cigarette Smokers from Non-Smokers Using Non-Stationary Benchtop Nuclear Magnetic Resonance (NMR) Analysis of Human Saliva",doi:"10.5772/intechopen.101414",signatures:"Benita C. Percival, Angela Wann, Sophie Taylor, Mark Edgar, Miles Gibson and Martin Grootveld",slug:"metabolomics-distinction-of-cigarette-smokers-from-non-smokers-using-non-stationary-benchtop-nuclear",totalDownloads:56,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80295",title:"Preventive Methods and Treatments of White Spot Lesions in Orthodontics",doi:"10.5772/intechopen.102064",signatures:"Elif Nadide Akay",slug:"preventive-methods-and-treatments-of-white-spot-lesions-in-orthodontics",totalDownloads:89,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79876",title:"Management and Prevention Strategies for Treating Dentine Hypersensitivity",doi:"10.5772/intechopen.101495",signatures:"David G. Gillam",slug:"management-and-prevention-strategies-for-treating-dentine-hypersensitivity",totalDownloads:94,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80020",title:"Alternative Denture Base Materials for Allergic Patients",doi:"10.5772/intechopen.101956",signatures:"Lavinia Cosmina Ardelean, Laura-Cristina Rusu and Codruta Victoria Tigmeanu",slug:"alternative-denture-base-materials-for-allergic-patients",totalDownloads:197,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79297",title:"Oral Health and Prevention in Older Adults",doi:"10.5772/intechopen.101043",signatures:"Irma Fabiola Díaz-García, Dinorah Munira Hernández-Santos, Julio Alberto Díaz-Ramos and Neyda Ma. Mendoza-Ruvalcaba",slug:"oral-health-and-prevention-in-older-adults",totalDownloads:113,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79903",title:"Molecular Docking of Phytochemicals against Streptococcus mutans Virulence Targets: A Proteomic Insight into Drug Planning",doi:"10.5772/intechopen.101506",signatures:"Diego Romário da Silva, Tahyná Duda Deps, Otavio Akira Souza Sakaguchi, Edja Maria Melo de Brito Costa, Carlus Alberto Oliveira dos Santos, Joanilda Paolla Raimundo e Silva, Bruna Dantas da Silva, Frederico Favaro Ribeiro, Francisco Jaime Bezerra Mendonça-Júnior and Andréa Cristina Barbosa da Silva",slug:"molecular-docking-of-phytochemicals-against-em-streptococcus-mutans-em-virulence-targets-a-proteomic",totalDownloads:114,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79754",title:"Evaluation of Trans-Resveratrol as a Treatment for Periodontitis",doi:"10.5772/intechopen.101477",signatures:"Tracey Lynn Harney",slug:"evaluation-of-trans-resveratrol-as-a-treatment-for-periodontitis",totalDownloads:111,totalCrossrefCites:1,totalDimensionsCites:1,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79515",title:"White Spot Lesions and Remineralization",doi:"10.5772/intechopen.101372",signatures:"Monisha Khatri, Shreya Kishore, S. Nagarathinam, Suvetha Siva and Vanita Barai",slug:"white-spot-lesions-and-remineralization",totalDownloads:82,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}}]},publishedBooks:{paginationCount:6,paginationItems:[{type:"book",id:"9493",title:"Periodontology",subtitle:"Fundamentals and Clinical Features",coverURL:"https://cdn.intechopen.com/books/images_new/9493.jpg",slug:"periodontology-fundamentals-and-clinical-features",publishedDate:"February 16th 2022",editedByType:"Edited by",bookSignature:"Petra Surlin",hash:"dfe986c764d6c82ae820c2df5843a866",volumeInSeries:8,fullTitle:"Periodontology - Fundamentals and Clinical Features",editors:[{id:"171921",title:"Prof.",name:"Petra",middleName:null,surname:"Surlin",slug:"petra-surlin",fullName:"Petra Surlin",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:"University of Medicine and Pharmacy of Craiova",institution:{name:"University of Medicine and Pharmacy of Craiova",institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9588",title:"Clinical Concepts and Practical Management Techniques in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9588.jpg",slug:"clinical-concepts-and-practical-management-techniques-in-dentistry",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Aneesa Moolla",hash:"42deab8d3bcf3edf64d1d9028d42efd1",volumeInSeries:7,fullTitle:"Clinical Concepts and Practical Management Techniques in Dentistry",editors:[{id:"318170",title:"Dr.",name:"Aneesa",middleName:null,surname:"Moolla",slug:"aneesa-moolla",fullName:"Aneesa Moolla",profilePictureURL:"https://mts.intechopen.com/storage/users/318170/images/system/318170.png",institutionString:"University of the Witwatersrand",institution:{name:"University of the Witwatersrand",institutionURL:null,country:{name:"South Africa"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8202",title:"Periodontal Disease",subtitle:"Diagnostic and Adjunctive Non-surgical Considerations",coverURL:"https://cdn.intechopen.com/books/images_new/8202.jpg",slug:"periodontal-disease-diagnostic-and-adjunctive-non-surgical-considerations",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Nermin Mohammed Ahmed Yussif",hash:"0aee9799da7db2c732be44dd8fed16d8",volumeInSeries:6,fullTitle:"Periodontal Disease - Diagnostic and Adjunctive Non-surgical Considerations",editors:[{id:"210472",title:"Dr.",name:"Nermin",middleName:"Mohammed Ahmed",surname:"Yussif",slug:"nermin-yussif",fullName:"Nermin Yussif",profilePictureURL:"https://mts.intechopen.com/storage/users/210472/images/system/210472.jpg",institutionString:"MSA University",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8837",title:"Human Teeth",subtitle:"Key Skills and Clinical Illustrations",coverURL:"https://cdn.intechopen.com/books/images_new/8837.jpg",slug:"human-teeth-key-skills-and-clinical-illustrations",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Zühre Akarslan and Farid Bourzgui",hash:"ac055c5801032970123e0a196c2e1d32",volumeInSeries:5,fullTitle:"Human Teeth - Key Skills and Clinical Illustrations",editors:[{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",institutionString:"Gazi University",institution:{name:"Gazi University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:{id:"52177",title:"Prof.",name:"Farid",middleName:null,surname:"Bourzgui",slug:"farid-bourzgui",fullName:"Farid Bourzgui",profilePictureURL:"https://mts.intechopen.com/storage/users/52177/images/system/52177.png",biography:"Prof. Farid Bourzgui obtained his DMD and his DNSO option in Orthodontics at the School of Dental Medicine, Casablanca Hassan II University, Morocco, in 1995 and 2000, respectively. Currently, he is a professor of Orthodontics. He holds a Certificate of Advanced Study type A in Technology of Biomaterials used in Dentistry (1995); Certificate of Advanced Study type B in Dento-Facial Orthopaedics (1997) from the Faculty of Dental Surgery, University Denis Diderot-Paris VII, France; Diploma of Advanced Study (DESA) in Biocompatibility of Biomaterials from the Faculty of Medicine and Pharmacy of Casablanca (2002); Certificate of Clinical Occlusodontics from the Faculty of Dentistry of Casablanca (2004); University Diploma of Biostatistics and Perceptual Health Measurement from the Faculty of Medicine and Pharmacy of Casablanca (2011); and a University Diploma of Pedagogy of Odontological Sciences from the Faculty of Dentistry of Casablanca (2013). He is the author of several scientific articles, book chapters, and books.",institutionString:"University of Hassan II Casablanca",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"7",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Hassan II Casablanca",institutionURL:null,country:{name:"Morocco"}}},equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7060",title:"Gingival Disease",subtitle:"A Professional Approach for Treatment and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/7060.jpg",slug:"gingival-disease-a-professional-approach-for-treatment-and-prevention",publishedDate:"October 23rd 2019",editedByType:"Edited by",bookSignature:"Alaa Eddin Omar Al Ostwani",hash:"b81d39988cba3a3cf746c1616912cf41",volumeInSeries:4,fullTitle:"Gingival Disease - A Professional Approach for Treatment and Prevention",editors:[{id:"240870",title:"Ph.D.",name:"Alaa Eddin Omar",middleName:null,surname:"Al Ostwani",slug:"alaa-eddin-omar-al-ostwani",fullName:"Alaa Eddin Omar Al Ostwani",profilePictureURL:"https://mts.intechopen.com/storage/users/240870/images/system/240870.jpeg",institutionString:"International University for Science and Technology.",institution:{name:"Islamic University of Science and Technology",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6668",title:"Dental Caries",subtitle:"Diagnosis, Prevention and Management",coverURL:"https://cdn.intechopen.com/books/images_new/6668.jpg",slug:"dental-caries-diagnosis-prevention-and-management",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Zühre Akarslan",hash:"b0f7667770a391f772726c3013c1b9ba",volumeInSeries:1,fullTitle:"Dental Caries - Diagnosis, Prevention and Management",editors:[{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",institutionString:"Gazi University",institution:{name:"Gazi University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:140,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:123,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:22,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"August 3rd, 2022",hasOnlineFirst:!0,numberOfOpenTopics:3,numberOfPublishedChapters:107,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},subseries:[{id:"7",title:"Bioinformatics and Medical Informatics",keywords:"Biomedical Data, Drug Discovery, Clinical Diagnostics, Decoding Human Genome, AI in Personalized Medicine, Disease-prevention Strategies, Big Data Analysis in Medicine",scope:"Bioinformatics aims to help understand the functioning of the mechanisms of living organisms through the construction and use of quantitative tools. The applications of this research cover many related fields, such as biotechnology and medicine, where, for example, Bioinformatics contributes to faster drug design, DNA analysis in forensics, and DNA sequence analysis in the field of personalized medicine. Personalized medicine is a type of medical care in which treatment is customized individually for each patient. Personalized medicine enables more effective therapy, reduces the costs of therapy and clinical trials, and also minimizes the risk of side effects. Nevertheless, advances in personalized medicine would not have been possible without bioinformatics, which can analyze the human genome and other vast amounts of biomedical data, especially in genetics. The rapid growth of information technology enabled the development of new tools to decode human genomes, large-scale studies of genetic variations and medical informatics. The considerable development of technology, including the computing power of computers, is also conducive to the development of bioinformatics, including personalized medicine. In an era of rapidly growing data volumes and ever lower costs of generating, storing and computing data, personalized medicine holds great promises. Modern computational methods used as bioinformatics tools can integrate multi-scale, multi-modal and longitudinal patient data to create even more effective and safer therapy and disease prevention methods. Main aspects of the topic are: Applying bioinformatics in drug discovery and development; Bioinformatics in clinical diagnostics (genetic variants that act as markers for a condition or a disease); Blockchain and Artificial Intelligence/Machine Learning in personalized medicine; Customize disease-prevention strategies in personalized medicine; Big data analysis in personalized medicine; Translating stratification algorithms into clinical practice of personalized medicine.",annualVolume:11403,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"5886",title:"Dr.",name:"Alexandros",middleName:"T.",surname:"Tzallas",fullName:"Alexandros Tzallas",profilePictureURL:"https://mts.intechopen.com/storage/users/5886/images/system/5886.png",institutionString:"University of Ioannina, Greece & Imperial College London",institution:{name:"University of Ioannina",institutionURL:null,country:{name:"Greece"}}},{id:"257388",title:"Distinguished Prof.",name:"Lulu",middleName:null,surname:"Wang",fullName:"Lulu Wang",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRX6kQAG/Profile_Picture_1630329584194",institutionString:"Shenzhen Technology University",institution:{name:"Shenzhen Technology University",institutionURL:null,country:{name:"China"}}},{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",fullName:"Reda R. Gharieb",profilePictureURL:"https://mts.intechopen.com/storage/users/225387/images/system/225387.jpg",institutionString:"Assiut University",institution:{name:"Assiut University",institutionURL:null,country:{name:"Egypt"}}}]},{id:"8",title:"Bioinspired Technology and Biomechanics",keywords:"Bioinspired Systems, Biomechanics, Assistive Technology, Rehabilitation",scope:'Bioinspired technologies take advantage of understanding the actual biological system to provide solutions to problems in several areas. Recently, bioinspired systems have been successfully employing biomechanics to develop and improve assistive technology and rehabilitation devices. The research topic "Bioinspired Technology and Biomechanics" welcomes studies reporting recent advances in bioinspired technologies that contribute to individuals\' health, inclusion, and rehabilitation. Possible contributions can address (but are not limited to) the following research topics: Bioinspired design and control of exoskeletons, orthoses, and prostheses; Experimental evaluation of the effect of assistive devices (e.g., influence on gait, balance, and neuromuscular system); Bioinspired technologies for rehabilitation, including clinical studies reporting evaluations; Application of neuromuscular and biomechanical models to the development of bioinspired technology.',annualVolume:11404,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"49517",title:"Prof.",name:"Hitoshi",middleName:null,surname:"Tsunashima",fullName:"Hitoshi Tsunashima",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTP4QAO/Profile_Picture_1625819726528",institutionString:null,institution:{name:"Nihon University",institutionURL:null,country:{name:"Japan"}}},{id:"425354",title:"Dr.",name:"Marcus",middleName:"Fraga",surname:"Vieira",fullName:"Marcus Vieira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003BJSgIQAX/Profile_Picture_1627904687309",institutionString:null,institution:{name:"Universidade Federal de Goiás",institutionURL:null,country:{name:"Brazil"}}},{id:"196746",title:"Dr.",name:"Ramana",middleName:null,surname:"Vinjamuri",fullName:"Ramana Vinjamuri",profilePictureURL:"https://mts.intechopen.com/storage/users/196746/images/system/196746.jpeg",institutionString:"University of Maryland, Baltimore County",institution:{name:"University of Maryland, Baltimore County",institutionURL:null,country:{name:"United States of America"}}}]},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",keywords:"Biotechnology, Biosensors, Biomaterials, Tissue Engineering",scope:"The Biotechnology - Biosensors, Biomaterials and Tissue Engineering topic within the Biomedical Engineering Series aims to rapidly publish contributions on all aspects of biotechnology, biosensors, biomaterial and tissue engineering. We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics can include but are not limited to: Biotechnology such as biotechnological products and process engineering; Biotechnologically relevant enzymes and proteins; Bioenergy and biofuels; Applied genetics and molecular biotechnology; Genomics, transcriptomics, proteomics; Applied microbial and cell physiology; Environmental biotechnology; Methods and protocols. Moreover, topics in biosensor technology, like sensors that incorporate enzymes, antibodies, nucleic acids, whole cells, tissues and organelles, and other biological or biologically inspired components will be considered, and topics exploring transducers, including those based on electrochemical and optical piezoelectric, thermal, magnetic, and micromechanical elements. Chapters exploring biomaterial approaches such as polymer synthesis and characterization, drug and gene vector design, biocompatibility, immunology and toxicology, and self-assembly at the nanoscale, are welcome. Finally, the tissue engineering subcategory will support topics such as the fundamentals of stem cells and progenitor cells and their proliferation, differentiation, bioreactors for three-dimensional culture and studies of phenotypic changes, stem and progenitor cells, both short and long term, ex vivo and in vivo implantation both in preclinical models and also in clinical trials.",annualVolume:11405,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"35539",title:"Dr.",name:"Cecilia",middleName:null,surname:"Cristea",fullName:"Cecilia Cristea",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYQ65QAG/Profile_Picture_1621007741527",institutionString:null,institution:{name:"Iuliu Hațieganu University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"40735",title:"Dr.",name:"Gil",middleName:"Alberto Batista",surname:"Gonçalves",fullName:"Gil Gonçalves",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYRLGQA4/Profile_Picture_1628492612759",institutionString:null,institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}},{id:"211725",title:"Associate Prof.",name:"Johann F.",middleName:null,surname:"Osma",fullName:"Johann F. Osma",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDv7QAG/Profile_Picture_1626602531691",institutionString:null,institution:{name:"Universidad de Los Andes",institutionURL:null,country:{name:"Colombia"}}},{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",fullName:"Mani T. Valarmathi",profilePictureURL:"https://mts.intechopen.com/storage/users/69697/images/system/69697.jpg",institutionString:"Religen Inc. | A Life Science Company, United States of America",institution:null},{id:"205081",title:"Dr.",name:"Marco",middleName:"Vinícius",surname:"Chaud",fullName:"Marco Chaud",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDGeQAO/Profile_Picture_1622624307737",institutionString:null,institution:{name:"Universidade de Sorocaba",institutionURL:null,country:{name:"Brazil"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/86861",hash:"",query:{},params:{id:"86861"},fullPath:"/profiles/86861",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()