Validation of Satellite (TMPA and IMERG) Rainfall Products with the IMD Gridded Data Sets over Monsoon Core Region of India By Tumuluru Venkata Lakshmi Kumar, Humberto Alves Barbosa, Manoj Kumar Thakur and Franklin Paredes-Trejo
This work presents the validation of satellite (TMPA and IMERG) rainfall products against the India Meteorological Department (IMD) gridded data sets (0.25° × 0.25°) of dense network of rain gauges distributed over the monsoon core region of India. The validation uses the data sets covering the 20 years (1998–2017) and detects the time series bias; inter annual variations and Intra Seasonal Oscillations (ISO). The bias in the two data sets is found to be very less over the core region compared to whole India. The correlation between daily rainfall IMD and satellite is found to be +0.88 which is of 99% confidence level. The dominant periodicities in the rainfall patterns of IMD and satellite are Madden Julie Oscillation (30–60 days) and local oscillations (less than 20 days) are conspicuous and the normalized power varies from year to year. During the El Niño and La Niña years, the normalized power of rainfall pattern is low and high in satellite data sets which infer the suppressed and strongest activity of MJO over Indian Ocean that modulates the rainfall pattern over India.
Part of the book: Satellite Information Classification and Interpretation
Assessment of the CHIRPS-Based Satellite Precipitation Estimates By Franklin Paredes-Trejo, Humberto Alves Barbosa, Tumuluru Venkata Lakshmi Kumar, Manoj Kumar Thakur and Catarina de Oliveira Buriti
At present, satellite rainfall products, such as the Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) product, have become an alternative source of rainfall data for regions where rain gauge stations are sparse, e.g., Northeast Brazil (NEB). In this study, continuous scores (i.e., Pearson’s correlation coefficient, R; percentage bias, PBIAS; and unbiased root mean square error, ubRMSE) and categorical scores (i.e., probability of detection, POD; false alarm ratio, FAR; and threat score, TS) were used to assess the CHIRPS rainfall estimates against ground-based observations on a pixel-to-station basis, during 01 January 1981 to 30 June 2019 over NEB. Results showed that CHIRPS exhibits better performance in inland regions (R, PBIAS, and ubRMSE median: 0.51, −3.71%, and 9.20 mm/day; POD, FAR, and TS median: 0.59, 0.44, and 0.40, respectively) than near the coast (R, PBIAS, and ubRMSE median: 0.36, −5.66%, and 12.43 mm/day; POD, FAR, and TS median: 0.32, 0.42, and 0.26, respectively). It shows better performance in the wettest months (i.e., DJF) than in the driest months (i.e., JJA) and is sensitive to both the warm-top stratiform cloud systems and the sub-cloud evaporation processes. Overall, the CHIRPS rainfall data set could be used for some operational purposes in NEB.
Part of the book: Inland Waters